JPH02115052A - Rotary classification type pulverizer - Google Patents
Rotary classification type pulverizerInfo
- Publication number
- JPH02115052A JPH02115052A JP26802088A JP26802088A JPH02115052A JP H02115052 A JPH02115052 A JP H02115052A JP 26802088 A JP26802088 A JP 26802088A JP 26802088 A JP26802088 A JP 26802088A JP H02115052 A JPH02115052 A JP H02115052A
- Authority
- JP
- Japan
- Prior art keywords
- rotary
- classifier
- classification
- mill
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 5
- 239000002245 particle Substances 0.000 abstract description 38
- 239000002994 raw material Substances 0.000 abstract description 15
- 239000011362 coarse particle Substances 0.000 abstract description 8
- 239000010419 fine particle Substances 0.000 abstract description 6
- 238000005452 bending Methods 0.000 abstract description 4
- 239000003245 coal Substances 0.000 description 15
- 238000000227 grinding Methods 0.000 description 11
- 239000000047 product Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 7
- 238000010298 pulverizing process Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 239000004568 cement Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000007664 blowing Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 241001517013 Calidris pugnax Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Landscapes
- Combined Means For Separation Of Solids (AREA)
- Disintegrating Or Milling (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、粉砕部と分級部とを備え、分級部に複数の羽
根を装着した回転分級機能を設ける回転分級式微粉砕機
に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a rotary classification type pulverizer that is equipped with a crushing section and a classification section, and has a rotary classification function in which a plurality of blades are attached to the classification section. .
石炭焚ボイラにおいても、低公害燃焼(低N Ox 。Even in coal-fired boilers, low-pollution combustion (low N and Ox).
未燃分低減)や急速負荷変動運用(給炭量変化)が実施
され、それに伴い微粉砕機(ミル)も高性能化が要求さ
れるようになった。(reduction of unburned content) and rapid load fluctuation operations (changes in the amount of coal fed) were implemented, and as a result, higher performance pulverizers (mills) were required.
石炭、セメント原料あるいは新素材原料などの塊状物を
細かく粉砕する粉砕機の一タイプとして、粉砕テーブル
と複数のローラとを備えた竪型ローラミルが用いられ、
最近では代表機種としての地位を堅めつつある。A vertical roller mill equipped with a crushing table and multiple rollers is used as a type of crusher to finely crush lumps such as coal, cement raw materials, or new material raw materials.
Recently, it has been solidifying its position as a representative model.
竪型ローラミルの構造を第12図に示す。竪型ローラミ
ルは、ミルケーシング65内の下部にあって図示してい
ない減速機を有するモータで駆動され水平面上で低速回
転する円板状の回転テーブル55と、その上面外周部を
円周方向の等分する位置へ油圧あるいはスプリング等で
圧接されて回転する複数個の粉砕ローラ59を備えてい
る。回転テーブル55の中心部へ原料供給管51より供
給される被粉砕原料50は、回転テーブル55の回転に
よる遠心力とによって回転テーブル55をうず巻状の軌
跡を描いて外周部へ移動し、回転テーブル55の粉砕レ
ース面58と粉砕ローラ59の間にかみ込まれて粉砕さ
れる。The structure of the vertical roller mill is shown in Figure 12. The vertical roller mill includes a disc-shaped rotary table 55 that is located at the lower part of the mill casing 65 and rotates at low speed on a horizontal plane by a motor having a speed reducer (not shown), and a rotary table 55 that rotates at a low speed on a horizontal surface, and a rotary table 55 that rotates at a low speed on a horizontal surface. A plurality of crushing rollers 59 are provided which are rotated by being pressed into equal parts by hydraulic pressure or a spring. The raw material 50 to be crushed, which is supplied to the center of the rotary table 55 from the raw material supply pipe 51, moves to the outer periphery of the rotary table 55 in a spiral trajectory due to the centrifugal force caused by the rotation of the rotary table 55, and is rotated. It is caught between the crushing race surface 58 of the table 55 and the crushing roller 59 and is crushed.
ミルケーシング65の基底部には、図示していないダク
ト内を送られてきた熱風64が導かれており、この熱風
が回転テーブル55の外周部とミルケーシング65の内
周部との間のエア・スロート62から吹き上っている。Hot air 64 sent through a duct (not shown) is guided to the base of the mill casing 65, and this hot air flows between the outer circumference of the rotary table 55 and the inner circumference of the mill casing 65.・It is blowing up from the throat 62.
粉砕後の粉粒体はエア・スロート62から吹き上る熱風
64によってミルケーシング65内を上昇しながら乾燥
される。ミルケーシング65の上部へ輸送された粉粒体
は、ミルケーシング65の上部に設けたサイクロンセパ
レータあるいは回転分級機68で分級され、所定の粒径
以下の微粉は熱風によって製品微粉ダクト67より搬送
され、図示していないボイラでは微粉炭バーナあるいは
微粉貯蔵ビンへと送られる。回転分級機68を貫通する
ことのない所定粒径以上の粗粉は、回転テーブル55の
上に落下し、ミル内へ供給されたばかりの原料とともに
再度粉砕される。このようにして、粉砕ローラ59によ
って粉砕が繰り返される。The powder after pulverization is dried while rising inside the mill casing 65 by the hot air 64 blown up from the air throat 62. The powder and granules transported to the upper part of the mill casing 65 are classified by a cyclone separator or a rotary classifier 68 provided at the upper part of the mill casing 65, and fine powder with a predetermined particle size or less is transported through a product fine powder duct 67 by hot air. In a boiler (not shown), the coal is sent to a pulverized coal burner or to a pulverized storage bin. Coarse powder having a predetermined particle size or more that does not pass through the rotary classifier 68 falls onto the rotary table 55 and is crushed again together with the raw material that has just been fed into the mill. In this way, crushing is repeated by the crushing roller 59.
なお、図中の51は原料供給管(センターシュート)、
52は回転分級機シャフト、53は回転分級機ロータ、
54は回転分級機羽根、56は回転テーブルシャフト、
57は回転テーブル回転軸、60は粉砕ローラシャフト
、61は粉砕ローラシャフト回転軸、63はエアスロー
トベーン、66はダムリングである。In addition, 51 in the figure is a raw material supply pipe (center chute),
52 is a rotary classifier shaft, 53 is a rotary classifier rotor,
54 is a rotary classifier blade, 56 is a rotary table shaft,
57 is a rotary table rotation shaft, 60 is a crushing roller shaft, 61 is a crushing roller shaft rotation axis, 63 is an air throat vane, and 66 is a dam ring.
さて、上述したように竪型ミルの多くはミル上部に分級
部を有するミル内循環閉回路粉砕系であり、粉砕部のみ
ならず分級部の性能も、粉砕部との強い関連を保ちなが
ら製品の性質に大きな影響を与える。Now, as mentioned above, most vertical mills have an internal circulation closed circuit grinding system with a classification section at the top of the mill, and the performance of not only the grinding section but also the classification section has a strong relationship with the grinding section. has a great influence on the properties of
最近では、分級機としてサイクロンセパレータに替り回
転分級機68が多く使用されるようになった。回転分級
機68は、ミル中心軸部に設けた回転分級機ロータ53
に複数の回転分級羽根54を円周方向に等間隔で配設し
、回転テーブル55の回転駆動系とは独立の駆動系によ
って回転する構成である。Recently, a rotary classifier 68 has been increasingly used as a classifier instead of a cyclone separator. The rotary classifier 68 includes a rotary classifier rotor 53 provided at the center shaft of the mill.
A plurality of rotary classification blades 54 are arranged at equal intervals in the circumferential direction, and are rotated by a drive system independent of the rotation drive system of the rotary table 55.
ミル粉砕部より熱風64で吹き上げられた粉粒体は、回
転する回転分級羽根54によって生じる気流の遠心力の
作用によって再び粉砕部へ落下する。一方、所定の粒径
より小さな微粉は回転分級羽fli54の間をすり抜け
るように通過し、ミル外部へ製品微粉として製品微粉ダ
クト67から排出される0回転分級機68が広く使用さ
れるようになった主な背景は次の2点である。The powder particles blown up by the hot air 64 from the mill grinding section fall back into the grinding section due to the centrifugal force of the airflow generated by the rotating rotary classification blades 54. On the other hand, a zero-rotation classifier 68 has come into widespread use, in which fine powder smaller than a predetermined particle size passes between the rotary classification blades fli 54 and is discharged from a product fine powder duct 67 to the outside of the mill as product fine powder. The main reasons behind this are the following two points.
i)以前にも増して、シャープな粒度の製品微粉が要求
されるようになった。この要求は、セメントや新素材材
料の分野において特に強い。i) Product fine powder with sharp particle size is now required more than ever before. This requirement is particularly strong in the fields of cement and new materials.
ii )負荷変動に対し、応答性の向上が求められてい
る。これは主として微粉炭焚ボイラの負荷変動運用対応
であり、サイクロン分級機と比べて回転数制御が可能な
分のみ有利である。ii) Improved responsiveness to load fluctuations is required. This is mainly for handling load fluctuations in pulverized coal-fired boilers, and is advantageous over cyclone classifiers in that it allows rotation speed control.
回転分級機68は回転分級機ロータ53に板状の複数枚
の回転分級羽根54を設けたものであり、要求される製
品微粉の粒度、分級のシャープさあるいは負荷の変化速
度に応じて、回転分級羽根54の形状や仕様あるいは回
転数等を変化させて設計しもしくは運用法を設定する。The rotary classifier 68 is a rotary classifier rotor 53 equipped with a plurality of plate-shaped rotary classification blades 54, and the rotation speed is adjusted according to the required particle size of the product fine powder, the sharpness of classification, or the rate of change of load. The shape, specifications, rotation speed, etc. of the classification blade 54 are changed to design or to set an operating method.
従来の回転分級式ミルでは、給炭(粉砕)容量を増加さ
せたりあるいは回転分級機68の回転数を増やして分級
性能の向上を図ろうとする場合に、粉砕部から分級部へ
上昇しようとする粒子を高濃度に含む気流と、分級部か
ら粉砕部へ下降し戻ろうとする気流が衝突・合流し、ミ
ルケーシング65内において第12図の斜線で示す位置
によどみ部が生じるという問題があった。このような粒
子や気流が滞留する部分が生じると、ミル内の圧力損失
が増大し送風動力が増大するばかりか、燃焼に対して必
要な十分な微粉粒度が得られず、ミルの高負荷運用が不
可能になる。In conventional rotary classification mills, when trying to increase the coal feeding (pulverization) capacity or increase the rotation speed of the rotary classifier 68 to improve classification performance, the coal tends to rise from the crushing section to the classification section. There was a problem in that the airflow containing a high concentration of particles collided with the airflow descending from the classification section to the crushing section and coming back, creating a stagnation area in the mill casing 65 at the position shown by diagonal lines in Figure 12. . When such areas where particles and airflow accumulate, not only does the pressure loss inside the mill increase and the blowing power increases, but also the sufficient fineness required for combustion cannot be obtained, leading to high-load operation of the mill. becomes impossible.
第9図と第10図は、放射型羽根をとり付けた従来式回
転分級ミルの構造を示すものである。第11図は傾斜型
羽根の構造であるが、このタイプの回転分級機もこれま
で多く用いられている。第12図は、従来式回転分級ミ
ル内のフローパターンを模式的に描いたものであり、粉
砕部と分級部の中間位置において粒子の滞留が生じる。9 and 10 show the structure of a conventional rotary classification mill equipped with radial vanes. FIG. 11 shows a structure with inclined blades, and this type of rotary classifier has also been widely used up to now. FIG. 12 schematically depicts a flow pattern in a conventional rotary classification mill, and particles accumulate at an intermediate position between the crushing section and the classification section.
先行技術の中には、ミルケーシング65内における上昇
流と下降流とを強制的に分離させようとする意欲的な試
みもあるが、決定的でかつ十分な効果は得られていない
。Some prior art attempts have been made to forcibly separate the upward flow and downward flow within the mill casing 65, but no decisive or sufficient effect has been achieved.
第13図に示す先行技術側特開昭62−241559号
は、回転羽根315の水平断面形状を略し字状とし、か
つ縁端部に回転羽根ポケツ) 315 a 、 31
5 cを形成し、−度捕足した粗粒子317を確実にミ
ル粉砕部へ戻そうとする考案である。この考え方は、粒
子317と回転羽根315の衝突による再飛散を防ぐの
に有効であるとみなされる。なお、図中の316は隅角
部、318は粒子の軌跡である。In the prior art Japanese Patent Application Laid-Open No. 62-241559 shown in FIG. 13, the horizontal cross-sectional shape of the rotating blade 315 is in the shape of an abbreviated letter, and the rotating blade pocket is provided at the edge.
This is a device that attempts to reliably return the coarse particles 317 that form 5c and are trapped in the mill to the mill grinding section. This concept is considered to be effective in preventing particles 317 and rotating blades 315 from being re-scattering due to collisions. Note that 316 in the figure is a corner, and 318 is a particle trajectory.
しかし、この構成のように直角に近い曲折状態でまた回
転羽根ポケット315 a 、 315 cを設ける
ことは、流体力学的な気流抵抗の発生を促すばかりでな
く、回転羽根域における粒子317の滞留をも促進する
きらいがある。すなわち、分級部における圧力損失が増
大し、過度の戻り炭増加によりミルの粉砕能力も低下す
る可能性がある。However, providing the rotating blade pockets 315 a and 315 c in a nearly right-angled bent state as in this configuration not only promotes the generation of hydrodynamic airflow resistance but also prevents the particles 317 from staying in the rotating blade area. There is also a tendency to promote That is, the pressure loss in the classification section increases, and the grinding ability of the mill may also decrease due to an excessive increase in returned coal.
本発明の目的は、上記したような問題点を無くし、高負
荷運転時においても高品位の製品微粉を得ることが可能
な気流輸送分級式の回転分級式微粉砕機を提供すること
にある。An object of the present invention is to provide a rotary classification type pulverizer of air flow transport classification type that eliminates the above-mentioned problems and can obtain high-quality product fine powder even during high-load operation.
上記した問題点は、回転分級羽根の半径方向先端部を、
分級機回転方向へ曲折させることにより容易に達成する
ことができる。The problem mentioned above is that the radial tip of the rotating classification blade is
This can be easily achieved by bending it in the direction of rotation of the classifier.
望ましくは、分級機ロータに円周方向等間隔で複数枚設
置されミル上部方向に対し半径方向先端径が拡大する分
級羽根において、半径方向先端すなわちミル上部方向の
先端部を、分級機回転方向に曲折させ、かつ曲折部が分
級羽根先端から分級機回転軸方向へ羽根半径の約173
とする構造がとりわけ効果的である。Preferably, a plurality of classification blades are installed on the classifier rotor at equal intervals in the circumferential direction, and the diameter of the tip increases in the radial direction toward the top of the mill. The bending section is approximately 173 degrees of the blade radius from the tip of the classification blade to the direction of the rotation axis of the classifier.
A structure that follows is particularly effective.
本発明になる回転分級羽根では、その先端部が回転方向
に対し傾斜するかあるいは曲折しているために、分級羽
根先端近傍に存在する粉粒体を強制的に回転分級機中心
部に吸収することが可能になる。これによって、ミルケ
ーシング内に生成する粒子滞留域を大幅に縮小すること
ができる。分級羽根曲折部は、ミル上部方向に対し径が
増大する分級羽根において(このような場合、分級機の
下方から上方へいくにしたがって粗い粒子の分級から始
まり次第に細かな粒子の分離へと変化する)、分級機の
高さ方向ないし半径方向ともに先端部にある。このこと
は、粗い粒子はできるだけ分級機羽根列内へは迎へ入れ
ぬようにし、微小な粒子のみを分級機内部へと送給する
ことを可能にするものである。In the rotary classification blade according to the present invention, since its tip is inclined or bent with respect to the rotation direction, the powder and granules present near the tip of the classification blade are forcibly absorbed into the center of the rotary classifier. becomes possible. As a result, the particle retention area generated within the mill casing can be significantly reduced. The bending part of the classification blade is located in the classification blade whose diameter increases toward the top of the mill (in such a case, as you move from the bottom of the classifier to the top, it begins to classify coarse particles and gradually changes to separation of fine particles. ), located at the tip of the classifier in both the height and radial directions. This makes it possible to prevent coarse particles from entering the classifier blade row as much as possible, and to feed only minute particles into the classifier.
第1図は本発明を具体化した回転分級式微粉砕機(以下
ミルと略称する)の軸方向断面図、また第2図は本発明
の主要部である分級機上方からの親図である。FIG. 1 is an axial sectional view of a rotary classifier-type pulverizer (hereinafter referred to as a mill) embodying the present invention, and FIG. 2 is a parent view from above of the classifier, which is the main part of the present invention.
例えば石炭などの被粉砕原料1は、ミル中心軸上の原料
供給管(センターシュート)2の上方から送給され、回
転テーブル3上に落下し、遠心力によって回転テーブル
3の円周部に装着された粉砕リング6aへ導かれる。粉
砕リング6aの上側表面には円弧状の粉砕レース6bが
刻設されており、この粉砕レース6b上で圧下、状態の
まま転動する3個の粉砕ローラ7が回転テーブル3の円
周方向等分割(120°ずつ)の位置に設けられている
。被粉砕原料1は、粉砕レース6bと粉砕ローラフの間
で、両機具の圧縮・せん新作用によって微粉炭に粉砕さ
れる。A raw material 1 to be crushed, such as coal, is fed from above the raw material supply pipe (center chute) 2 on the center axis of the mill, falls onto the rotary table 3, and is attached to the circumference of the rotary table 3 by centrifugal force. It is guided to the grinding ring 6a. An arc-shaped crushing race 6b is carved on the upper surface of the crushing ring 6a, and three crushing rollers 7 that roll on this crushing race 6b while being compressed are rotated in the circumferential direction of the rotary table 3, etc. They are provided at divided positions (120 degrees each). The raw material 1 to be pulverized is pulverized into pulverized coal between the pulverizing race 6b and the pulverizing roller ruff by the compression and plunging action of both machines.
粉粒体状になった被粉砕原料lは、回転テーブル3の外
周に設けられたエアスロートIOより吹き出す熱風12
によって、ミルケーシング13の上方部へ空力輸送され
る。これら粉粒体のうち、かなり大きな粗粒子は、回転
分級機まで至ることなく重力によって回転テーブル3上
へ落下しく1次分級)再粉砕される。1次分級部を通過
した粒子群は回転分級機へ到達するが、比較的粗い粒子
は空力遠心作用によって分級機の外周囲へと追いやられ
る。The raw material to be crushed l in the form of granules is heated by hot air 12 blown out from the air throat IO provided on the outer periphery of the rotary table 3.
is aerodynamically transported to the upper part of the mill casing 13. Among these granules, fairly large coarse particles fall onto the rotary table 3 by gravity without reaching the rotary classifier and are re-pulverized (primary classification). The particle group that has passed through the primary classification section reaches the rotary classifier, but relatively coarse particles are driven to the outer periphery of the classifier by aerodynamic centrifugal action.
一方、微小な粒子群は、回転分級機の回転分級羽根16
間へ流入し、製品微粉排出ダクト18から図示していな
い微粉炭バーナへ供給
なお、第1図において、4は回転テーブルシャフト、5
は回転テーブル回転軸、8は粉砕ローラシャフト、9は
粉砕ローラ回転軸、11はエアスロートベーン、17は
ダムリングである。On the other hand, minute particle groups are collected by the rotary classification blade 16 of the rotary classifier.
In FIG. 1, 4 is a rotary table shaft, and 5 is a rotary table shaft.
8 is a rotary table rotating shaft, 8 is a crushing roller shaft, 9 is a crushing roller rotating shaft, 11 is an air throat vane, and 17 is a dam ring.
本発明に係る回転分級機は、原料供給管2のまわりを回
転する円筒状の回転分級機シャフト14と、その下端に
取り付けられた回転分級機ロータ15と、それらの円周
方向等間に装着する板状の回転分級機116から構成さ
れる。The rotary classifier according to the present invention includes a cylindrical rotary classifier shaft 14 that rotates around a raw material supply pipe 2, a rotary classifier rotor 15 attached to the lower end of the shaft 14, and a rotary classifier rotor 15 that is installed equally between these in the circumferential direction. It consists of a plate-shaped rotary classifier 116.
回転分級羽根16は、第2図に示すようにその先端部が
回転方向に円弧状に湾曲している。これは、分級機先端
で滞留する微粉群を、回転分級機中心部へ流入させるた
めの迎い部′に相当する。このように、回転方向に湾曲
する構造は、抵抗を誘発するように思いがちであるが、
実際は逆であり空力抵抗あるいは粒子群の存在に起因す
る流動抵抗は確実に低減する。As shown in FIG. 2, the rotary classification blade 16 has a tip portion curved in an arc shape in the rotation direction. This corresponds to a receiving part' for causing the fine powder group staying at the tip of the classifier to flow into the center of the rotary classifier. In this way, we tend to think that structures that curve in the direction of rotation induce resistance;
In fact, the opposite is true; flow resistance due to aerodynamic drag or the presence of particle groups is definitely reduced.
回転分級羽根16の湾曲開始点は、第3図に示すように
、回転分級機中心軸から回転分級機l116の先端まで
のスパンRに対する同じく中心軸から外周方向距離rの
比で表わせば、r/R〜2/3の位置に相当する。また
回転分級羽根16の高さ方向に対する湾曲開始点は、回
転分級羽根16の下端からちょうど半分の位置、つまり
第4図でh/H=1/2の関係が成り立つ点である。As shown in FIG. 3, the curve starting point of the rotary classification blade 16 is expressed as the ratio of the distance r in the outer circumferential direction from the central axis to the span R from the central axis of the rotary classifier to the tip of the rotary classifier 116. Corresponds to the position /R to 2/3. The starting point of the curve in the height direction of the rotary classification blade 16 is exactly half way from the lower end of the rotary classification blade 16, that is, the point where the relationship h/H=1/2 holds true in FIG.
このように回転分級羽根16の上方部を湾曲させたのは
、粗い粒子は回転分級羽根16.16の間へ流入させな
いようにするためである。回転分級機では、分級機の下
端から大きな粒子の分級が開始され、上方へいくにつれ
て順次微小な粒子へと分級されていく。もし、回転分級
羽根16の下端を湾曲させれば、粗い粒子までもが回転
分級羽根16.16の間へ入り込むことになってしまい
、粒度の向上という目的に対してはなはだ逆効果になる
。The reason why the upper part of the rotary classification blade 16 is curved in this manner is to prevent coarse particles from flowing into between the rotary classification blades 16.16. In a rotary classifier, large particles begin to be classified from the bottom of the classifier, and as they move upward, they are gradually classified into minute particles. If the lower ends of the rotary classification blades 16 are curved, even coarse particles will enter between the rotary classification blades 16, 16, which will be extremely counterproductive to the purpose of improving particle size.
第3図は、回転分級羽根16間の気流のフローパターン
を、分級機上方向から分級機の水平断面図として模式的
(二次元的)に描いたものである。FIG. 3 schematically (two-dimensionally) depicts the flow pattern of the airflow between the rotary classification blades 16 as a horizontal sectional view of the classifier from above.
本発明のように、回転分級羽根16の先端に設けた迎え
角の作用により、気流は回転分級羽根16の先端から分
級機中心軸方向へと囲い込まれるように流入する。当然
のことながら、気流により搬送される粒子の多くも回転
分級羽根16.16の間へ流入すると予測される。この
ような現象を、回転分級機横側から粒子の軌跡として示
したのが第4図である0回転分級機下方から輸送された
粒子群は、回転分級羽根16の先端の湾曲部から回転分
級羽根16、16の間へ流入し、回転分級機を貫通して
製品微粉として回収される。以上の作用によって、粒子
群は回転分級羽根16..16の間へ囲い込まれるよう
に流動するため、回転分級機入口部に生じる粒子滞留部
の発生を防止することができる。これによって、ミル内
における粒子の過度の循環や過粉砕が防止され、ミルは
効果的に運用されるようになる。As in the present invention, due to the action of the angle of attack provided at the tip of the rotary classification blade 16, the airflow flows from the tip of the rotary classification blade 16 toward the central axis of the classifier so as to be enclosed. Naturally, it is expected that many of the particles carried by the airflow will also flow between the rotating classification vanes 16.16. Figure 4 shows such a phenomenon as a trajectory of particles from the side of the rotary classifier. It flows between the blades 16, 16, passes through the rotary classifier, and is recovered as a product fine powder. Due to the above action, the particle group is transferred to the rotating classification blade 16. .. Since the particles flow so as to be enclosed between the particles 16, it is possible to prevent the formation of a particle retention area at the inlet of the rotary classifier. This prevents excessive circulation and over-grinding of particles within the mill, allowing the mill to operate effectively.
第5図は、給炭負荷率に対するミル差圧(圧力損失)の
変化を示す試験結果(パイロットミル)であり、本発明
になる回転分級機と従来式回転分級機の性能を比較した
ものである。Figure 5 shows test results (pilot mill) showing changes in mill differential pressure (pressure loss) with respect to coal feeding load rate, and compares the performance of the rotary classifier of the present invention and the conventional rotary classifier. be.
同一の給炭負荷率で比較すると、本発明になる回転分級
機を備えるミルの方がミル差圧が低い。When compared at the same coal feeding load rate, the mill equipped with the rotary classifier according to the present invention has a lower mill differential pressure.
この傾向は、実験を行った給炭負荷全範囲で供通してい
る。特に給炭負荷率の高い条件において両ミルのミル差
圧の差は拡大しており、これより、本発明になる回転分
級機は、ミル内がより高濃度の粉砕・分級条件下で効力
を発揮することがわがる。This tendency was observed over the entire range of coal feeding loads in which the experiment was conducted. In particular, the difference in the mill differential pressure between the two mills increases under conditions of high coal feeding load rate, and from this, the rotary classifier of the present invention is effective under grinding and classification conditions where the inside of the mill is more concentrated. I know what I can do.
第6図には、分級機回転数比に対するミル差圧の変化を
示す、この場合、給炭負荷は一定とした。FIG. 6 shows the change in mill differential pressure with respect to the classifier rotation speed ratio. In this case, the coal feeding load was assumed to be constant.
従来式回転分級機では、回転数を増加させると、ミル内
の粒子循環量が増大し、ミル差圧が急増している。一方
、本発明になる回転分級機では、回転分級羽根16の迎
え角の作用により、粒子滞留部が発生することなく、回
転数の高い分級条件でもミル差圧の増加は少ない。In conventional rotary classifiers, when the rotational speed is increased, the amount of particle circulation within the mill increases and the mill differential pressure increases rapidly. On the other hand, in the rotary classifier according to the present invention, due to the effect of the angle of attack of the rotary classification blades 16, no particle retention area is generated, and the mill differential pressure increases little even under classification conditions with a high rotational speed.
第7図は、分級機回転数比に対する製品微粉粒度(20
0メツシユパス残存率)の変化をもって、従来式回転分
級機と本発明になる回転分級機の性能を比較したもので
ある。一般に、分級機回転数が増加すると微粉粒度が向
上するが、試験範囲内の回転数において、本発明の分級
機の方が粒度が高い、これは前述したように、ミル内の
余分な循環が防止されたためと考えられる。Figure 7 shows the product fine particle size (20
The performance of the conventional rotary classifier and the rotary classifier according to the present invention are compared based on changes in the 0 mesh pass survival rate). In general, the fine particle size improves as the classifier rotation speed increases, but at the rotation speed within the test range, the particle size of the classifier of the present invention is higher.As mentioned above, this is due to the extra circulation in the mill. This is thought to be because it was prevented.
第8図は、粉砕した微粉炭を用いての燃焼実験結果であ
り、本発明の効果を実証したものである。FIG. 8 shows the results of a combustion experiment using crushed pulverized coal, demonstrating the effects of the present invention.
本発明になる分級機を利用した条件の方がN Ox及び
灰中未燃分がともに低く、大幅な燃焼改善効果が生じた
ことがわかる。これは微粉粒度の向上によって保炎が強
化されるため、バーナ近傍において低空気比の高温燃焼
域が安定に形成されるためである。すなわち、燃焼が促
進して灰中未燃分が低減じたばかりでなく、NoをN!
に還元するための中間生成物が高速熱分解により活発に
放出されたためと考えられる。It can be seen that under the conditions using the classifier of the present invention, both NOx and unburned content in the ash were lower, and a significant combustion improvement effect was produced. This is because flame holding is strengthened by improving the fine particle size, and a high-temperature combustion region with a low air ratio is stably formed near the burner. In other words, not only has combustion been accelerated and the amount of unburned matter in the ash has been reduced, but also the amount of unburned matter in the ash has been reduced.
This is thought to be due to the active release of intermediate products for reduction to by rapid thermal decomposition.
以上のように、本発明になる回転分級機を利用すること
でミルの性能が向上し運用性の改善が図られるばかりで
なく、低公害で高効率の燃焼が実現することにもなり、
火力プラント全般にわたり機能向上が達成されることに
なる。As described above, the use of the rotary classifier of the present invention not only improves the performance of the mill and improves its operability, but also achieves low-pollution and highly efficient combustion.
Functional improvements will be achieved throughout the thermal power plant.
本発明になる回転分級機を有する微粉砕機は、ここまで
例として取り上げ具体化例を示した微粉炭焚きあるいは
石油コークス等固体燃料焚きボイラのミルに限らず、セ
メント仕上げ用ミルや鉄鋼スラグミルあるいは特殊用途
としてセラミックス原料微粉砕用や顔料・タルワ製造用
ミルへも直接適用することができる。特にセメントの分
野では、最近になり、特に厳しい品質管理と省エネルギ
ー操業を推進中のため、本発明になる回転分級式微粉砕
機はとりわけ有効と考えられる。The pulverizer having a rotary classifier according to the present invention is not limited to the pulverized coal-fired or solid fuel-fired boiler mills such as petroleum coke, which have been taken as examples up to this point, but also the mills for cement finishing, steel slag mills, etc. For special purposes, it can be directly applied to mills for finely pulverizing ceramic raw materials and for producing pigments and talwa. Particularly in the field of cement, where particularly strict quality control and energy-saving operations have recently been promoted, the rotary classification type pulverizer of the present invention is considered to be particularly effective.
本発明を具体化したことによる効果をまとめると以下の
ようになる。The effects of embodying the present invention can be summarized as follows.
(1)最大粒子径が減少し微粉量が増加する。すなわち
製品微粉の粒度が向上する。(1) The maximum particle size decreases and the amount of fine powder increases. In other words, the particle size of the product fine powder is improved.
(2)上記効果(1)に関連し、所定の粒度を満足する
粉砕容量が上昇する。これによってコンパクトなミルが
実現する。(2) Related to the above effect (1), the crushing capacity that satisfies a predetermined particle size increases. This creates a compact mill.
(3)上記効果(1)に関連し、硬度や粉砕性の大幅に
異なる多種多様な原料の微粉砕と微粉粒度の制御が可能
になる。(3) Related to the above effect (1), it becomes possible to finely crush a wide variety of raw materials with significantly different hardness and crushability, and to control the fine powder particle size.
(4) ミル内循環量が低減し、ミル内の圧力損失が
低減する。(4) The amount of circulation within the mill is reduced, and the pressure loss within the mill is reduced.
(5)粒子の分級羽根間流れがスムーズになり、羽根先
端やミルハウジング壁面近傍における粒子の滞留時間が
短縮し、機器材料の摩耗量を大幅に低減することができ
る。(5) The flow of particles between the classification blades becomes smoother, the residence time of particles near the tips of the blades and the wall surface of the mill housing is shortened, and the amount of wear on equipment materials can be significantly reduced.
以上のように、本発明によれば、特に微粉粒度の向上と
省エネルギー操業に好適なミルが提供されることになる
。As described above, according to the present invention, a mill particularly suitable for improving the fine particle size and energy-saving operation is provided.
第1図は本発明の実施例に係る回転分級式粉砕機の概略
構成図、第2図はその微粉砕機の回転分級部の平面図、
第3図および第4図はその回転分級部のメカニズムを示
す説明図、第5図、第6図。
第7図ならびに第8図は各特性図、第9図および第10
図は従来の回転分級部の平面図および断面図、第11図
は従来の他の回転分級部の平面図、第12図は微粉砕機
の概略構成図、第13図は従来提案された分級部の説明
図である。
1・・・被粉砕原料、3・・・回転テーブル、7・・・
粉砕ローラ、15・・・回転分級機ロータ、16・・・
回転分級羽根。
第1図
一:[] $’t、 7f’i
第
図
、拾汝」1梢牽
(’/、)
(Nx:ENi[l:軟)
粥
図
躬
図
第
図
弔
図
双中禾ホ会
(0ム)
第
面
りl
第11図
第10図
第13図
0発
0発
広島県呉市宝町6番9号
内
広島県呉市宝町6番9号
バブコック日立株式会社呉工場
バブコック日立株式会社呉工場FIG. 1 is a schematic configuration diagram of a rotary classification type pulverizer according to an embodiment of the present invention, and FIG. 2 is a plan view of a rotary classification section of the pulverizer.
FIGS. 3 and 4 are explanatory diagrams showing the mechanism of the rotary classification section, and FIGS. 5 and 6. Figures 7 and 8 are characteristic diagrams, Figures 9 and 10.
The figure shows a plan view and a sectional view of a conventional rotary classifier, Figure 11 is a plan view of another conventional rotary classifier, Figure 12 is a schematic configuration diagram of a pulverizer, and Figure 13 is a conventionally proposed classification FIG. 1... Raw material to be crushed, 3... Rotary table, 7...
Grinding roller, 15...Rotating classifier rotor, 16...
Rotating classification blade. Fig. 1: [] $'t, 7f'i Fig. (0m) No. 1 Figure 11 Figure 10 Figure 13 0 shots 0 shots 6-9 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Co., Ltd. Kure Factory Babcock Hitachi Co., Ltd. 6-9 Takaracho, Kure City, Hiroshima Prefecture Kure factory
Claims (1)
昇気流とともに輸送される粉砕物を、ミル上部方向へ径
が拡大する複数の板状羽根を放射状あるいは接線方向に
傾斜させる如く放射状に取り付けた回転分級羽根で粗粉
と微粉とに分級し、ミルケーシングの上部に形成された
取出口から微粉を回収するようにした回転分級式微粉砕
機において、当該回転分級羽根先端部を、分級機回転方
向へ曲折させたことを特徴とする回転分級式微粉砕機。The crushed material is crushed in the crushing section installed at the bottom of the mill casing and transported with the upward airflow. A rotating system in which multiple plate-shaped blades whose diameter increases toward the top of the mill are installed radially or tangentially to incline the crushed material. In a rotary classification type pulverizer that uses classification blades to classify coarse powder and fine powder, and collects the fine powder from an outlet formed in the upper part of the mill casing, the tip of the rotary classification blade is moved in the direction of rotation of the classifier. A rotary classification type pulverizer characterized by a bent structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63268020A JP2742066B2 (en) | 1988-10-26 | 1988-10-26 | Rotary classifier fine crusher |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63268020A JP2742066B2 (en) | 1988-10-26 | 1988-10-26 | Rotary classifier fine crusher |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02115052A true JPH02115052A (en) | 1990-04-27 |
JP2742066B2 JP2742066B2 (en) | 1998-04-22 |
Family
ID=17452779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63268020A Expired - Fee Related JP2742066B2 (en) | 1988-10-26 | 1988-10-26 | Rotary classifier fine crusher |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2742066B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012045477A (en) * | 2010-08-26 | 2012-03-08 | Ricoh Co Ltd | Classifying apparatus and classifying method, toner and method for producing the toner |
WO2014034613A1 (en) * | 2012-08-28 | 2014-03-06 | 三菱重工業株式会社 | Rotating classifier and vertical mill |
CN105583155A (en) * | 2016-03-23 | 2016-05-18 | 君联益能(北京)科技有限公司 | Double-regulation flow distribution type efficient separator |
CN112400483A (en) * | 2020-12-04 | 2021-02-26 | 陕西天秦农产品开发有限公司 | A straw crushing apparatus for agricultural production has an edulcoration function |
JP2021142453A (en) * | 2020-03-10 | 2021-09-24 | 株式会社Ihi | Vertical roller mill |
WO2022209456A1 (en) * | 2021-03-31 | 2022-10-06 | 三菱重工業株式会社 | Classifier, power plant, and method for operating classifier |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62241559A (en) * | 1986-04-11 | 1987-10-22 | 宇部興産株式会社 | Rotary type separator for vertical type crusher |
JPS62258785A (en) * | 1986-04-30 | 1987-11-11 | 宇部興産株式会社 | Vertical crusher |
JPS62258786A (en) * | 1986-04-30 | 1987-11-11 | 宇部興産株式会社 | Vertical crusher |
JPS62258758A (en) * | 1986-04-30 | 1987-11-11 | 宇部興産株式会社 | Vertical crusher |
-
1988
- 1988-10-26 JP JP63268020A patent/JP2742066B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62241559A (en) * | 1986-04-11 | 1987-10-22 | 宇部興産株式会社 | Rotary type separator for vertical type crusher |
JPS62258785A (en) * | 1986-04-30 | 1987-11-11 | 宇部興産株式会社 | Vertical crusher |
JPS62258786A (en) * | 1986-04-30 | 1987-11-11 | 宇部興産株式会社 | Vertical crusher |
JPS62258758A (en) * | 1986-04-30 | 1987-11-11 | 宇部興産株式会社 | Vertical crusher |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012045477A (en) * | 2010-08-26 | 2012-03-08 | Ricoh Co Ltd | Classifying apparatus and classifying method, toner and method for producing the toner |
WO2014034613A1 (en) * | 2012-08-28 | 2014-03-06 | 三菱重工業株式会社 | Rotating classifier and vertical mill |
JP2014042900A (en) * | 2012-08-28 | 2014-03-13 | Mitsubishi Heavy Ind Ltd | Rotary classifier and vertical type mill |
CN104703717A (en) * | 2012-08-28 | 2015-06-10 | 三菱重工业株式会社 | Rotating classifier and vertical mill |
US10124373B2 (en) | 2012-08-28 | 2018-11-13 | Mitsubishi Heavy Industries, Ltd. | Rotary classifier and vertical mill |
CN105583155A (en) * | 2016-03-23 | 2016-05-18 | 君联益能(北京)科技有限公司 | Double-regulation flow distribution type efficient separator |
JP2021142453A (en) * | 2020-03-10 | 2021-09-24 | 株式会社Ihi | Vertical roller mill |
CN112400483A (en) * | 2020-12-04 | 2021-02-26 | 陕西天秦农产品开发有限公司 | A straw crushing apparatus for agricultural production has an edulcoration function |
WO2022209456A1 (en) * | 2021-03-31 | 2022-10-06 | 三菱重工業株式会社 | Classifier, power plant, and method for operating classifier |
EP4238653A4 (en) * | 2021-03-31 | 2025-04-02 | Mitsubishi Heavy Ind Ltd | Classifier, power plant and method for operating a classifier |
Also Published As
Publication number | Publication date |
---|---|
JP2742066B2 (en) | 1998-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101131539B1 (en) | Classifier, vertical crusher having the classifier, and coal fired boiler apparatus having the vertical crusher | |
KR101159152B1 (en) | Classification device, standing pulverizer using the classification device, and coal burning boiler apparatus | |
JP5812668B2 (en) | Rotary classifier | |
WO2017138302A1 (en) | Sorter, crushing/sorting device, and pulverized coal-fired boiler | |
JP3722565B2 (en) | Vertical roller mill and coal fired boiler system | |
JPH02115052A (en) | Rotary classification type pulverizer | |
CN108602069B (en) | Crushing device, throat pipe of crushing device and pulverized coal combustion boiler | |
JP6275442B2 (en) | Vertical roller mill | |
JP4562871B2 (en) | Classifier and vertical mill | |
JPS641182B2 (en) | ||
JP2685820B2 (en) | Roller type crusher | |
JP2928567B2 (en) | Vertical mill | |
JP2774117B2 (en) | Mill with rotary classifier | |
JPH0226682A (en) | Grinding and classifying apparatus | |
JP2873026B2 (en) | Ring roller mill for fine grinding | |
JP2690753B2 (en) | Vertical roller mill | |
JPH0226651A (en) | Crushed material sorting apparatus | |
JP4272456B2 (en) | Classifier, vertical pulverizer and coal fired boiler device equipped with the same | |
JP2011240233A (en) | Vertical type crushing device, and coal burning boiler device | |
JP4759285B2 (en) | Crusher | |
JP2855211B2 (en) | Vertical mill | |
JP2001300333A (en) | Vertical roll mill | |
JP2000042439A (en) | Vertical roller mill | |
JP2740536B2 (en) | Hard roller mill | |
JPH03154654A (en) | Vertical mill |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |