WO2020158270A1 - Crusher, boiler system, and method for operating crusher - Google Patents

Crusher, boiler system, and method for operating crusher Download PDF

Info

Publication number
WO2020158270A1
WO2020158270A1 PCT/JP2019/050849 JP2019050849W WO2020158270A1 WO 2020158270 A1 WO2020158270 A1 WO 2020158270A1 JP 2019050849 W JP2019050849 W JP 2019050849W WO 2020158270 A1 WO2020158270 A1 WO 2020158270A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid fuel
rotary table
inclined surface
housing
particle size
Prior art date
Application number
PCT/JP2019/050849
Other languages
French (fr)
Japanese (ja)
Inventor
優也 植田
筒場 孝志
貴之 梅野
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Publication of WO2020158270A1 publication Critical patent/WO2020158270A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/04Mills with pressed pendularly-mounted rollers, e.g. spring pressed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy
    • B02C23/24Passing gas through crushing or disintegrating zone
    • B02C23/26Passing gas through crushing or disintegrating zone characterised by point of gas entry or exit or by gas flow path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/083Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by rotating vanes, discs, drums, or brushes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K1/00Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • F23K3/02Pneumatic feeding arrangements, i.e. by air blast

Definitions

  • the present invention relates to a crusher, a boiler system, and a method for operating the crusher.
  • a crusher crushes solid fuel such as coal or biomass by sandwiching it with rollers on a rotary table.
  • the pulverized solid fuel is rolled up vertically by the primary air passing through the air outlet (gap between the inner peripheral surface of the housing and the outer peripheral end of the rotary table) provided on the outer peripheral side of the rotary table of the housing, Guided to the classifier.
  • the coarse powder fuel with a large diameter is returned to the rotary table and pulverized again, and the fine powder fuel with a small diameter is guided to the outlet at the ceiling of the housing.
  • the mill may be provided with a structure for adjusting the ascending airflow and the descending airflow generated in the mill (for example, Patent Document 1 and Patent Document 2).
  • Patent Document 1 discloses a device in which an inner wall surface of a housing is provided with a drift portion configured to divert an air flow rising in an outer peripheral region toward a central axis of the housing. ..
  • the drift portion is provided on the inner wall surface of the housing over the entire circumference of the housing.
  • Patent Document 2 discloses a device in which a baffle part is provided on the inner wall surface of the housing between the crushing table and the classifying part in the height direction of the housing.
  • the baffle portion projects toward the central axis of the housing and extends only in a partial region of the housing in the circumferential direction. Further, a plurality of baffle portions are provided, and the plurality of baffle portions are arranged at intervals in the circumferential direction of the housing.
  • the drift portion is provided over the entire circumference of the housing. That is, the uneven flow portion is provided above the crushing roller at a position where it does not interfere with the crushing roller. In this way, when the uneven flow portion is provided above the crushing roller, the distance between the uneven flow portion and the air outlet becomes long. If the distance between the drift portion and the air outlet becomes long, there is a possibility that the updraft that has passed through the air outlet cannot be suitably guided by the drift portion.
  • a configuration in which a plurality of uneven flow portions (baffle portions) are provided only in a partial area in the circumferential direction as in Patent Document 2 and a plurality of baffle portions are provided may be considered. That is, a configuration may be considered in which a drift portion extending only in a partial area in the circumferential direction is provided between a plurality of rollers.
  • the device of Patent Document 1 does not consider the angle of the inclined surface of the drift portion.
  • the drift portion is provided at a relatively low position, but depending on the angle of the inclined surface of the drift portion, it is difficult for the ascending airflow to reach the classification portion, and crushed solid fuel is suitable. There was a possibility that it could not be transported to.
  • An object of the present invention is to provide a crusher and a boiler system capable of further suppressing the above, and an operating method of the crusher. It is another object of the present invention to provide a pulverizer and a boiler system that can suitably convey pulverized solid fuel to a classifying unit by a carrier gas, and a method for operating the pulverizer.
  • a crusher according to a first aspect of the present invention is provided with a casing that extends in a vertical vertical direction and forms an outer shell, and is separated from an inner peripheral surface of the casing, and is supplied into the casing. And a crushed solid fuel, which is supported by a rotary table on which the solid fuel is placed, and a support portion which extends from the inner peripheral surface toward the center of the rotary table, and which crushes the solid fuel placed on the rotary table.
  • a plurality of crushing rollers, and a classifying unit that is provided vertically above the rotary table and classifies the crushed solid fuel into the crushed solid fuel having a particle size larger than a predetermined particle size and the crushed solid fuel having a particle size smaller than the predetermined particle size.
  • a transport gas for transporting the crushed solid fuel to the classifying unit inside the casing and a transport gas supply unit provided vertically below the rotary table, and a vertical upper and lower portion of the casing.
  • a first inclined surface extending obliquely downward toward a central axis extending in the direction and a second inclined surface located vertically below the first inclined surface and extending obliquely upward toward the central axis.
  • a diverging portion provided on an inner peripheral surface, wherein the plurality of crushing rollers are arranged along a circumferential direction of the rotary table, and the diverging portion is between the plurality of crushing rollers.
  • the peripheral edge of the first inclined surface and the second inclined surface is provided at the same height as the crushing roller, and the peripheral edge of each of the first inclined surface and the second inclined surface is on one side with respect to the radial direction of the rotary table. Is inclined so that the inner radial end thereof approaches the inner radial end of the other edge.
  • the transport gas supplied from the transport gas supply unit passes through a gap (hereinafter, referred to as “blowout port”) formed between the rotary table and the housing. Then, the carrier gas that has passed through the blowout port carries the crushed solid fuel on the rotary table to the classifying unit.
  • the crushing roller that presses the solid fuel placed on the rotary table from above in the vertical direction and the drift portion are provided at the same height position. That is, the drift portion itself is provided at a position higher than the height position of the crushing table (that is, vertically above the air outlet).
  • updraft a part of the carrier gas that passes through the air outlet and heads to the vertically upward classifying unit flows along the second inclined surface.
  • the second inclined surface extends obliquely upward toward the central axis line extending in the vertical vertical direction of the housing, the upward airflow flowing along the second inclined surface is guided in the central axis direction of the housing.
  • the crushed solid fuel hereinafter, referred to as "coarse powder fuel” having a larger particle size than the predetermined particle size that is classified in the classifying unit and returned to the crushing table drops downward from above vertically, and therefore generates a descending air flow. A part of the descending airflow generated by the falling coarse powder fuel flows along the first inclined surface.
  • the first inclined surface extends obliquely downward toward the central axis extending in the vertical vertical direction of the housing, the downdraft flowing along the first inclined surface is guided in the central axis direction of the housing. .. In this way, both the ascending airflow and the descending airflow are guided in the central axis direction of the housing, so that the position where the ascending airflow and the descending airflow that occur in the housing interfere with each other is a central region with a large volume in the housing. Be on the side.
  • the position where the ascending airflow and the descending airflow interfere with each other can be set to a position where the influence of the airflow in the housing is small, so that the conveyance of the crushed solid fuel to the classification unit can be maintained and the pressure loss in the housing Can be suppressed. Therefore, since it is possible to suppress an increase in the blowing power of the carrier gas, it is possible to improve the production efficiency of a small pulverized solid fuel (hereinafter referred to as “fine powder fuel”) pulverized to a predetermined particle size or less.
  • the same height position is a height position where the lower end (lower edge) of the flow diverter plate and the lower end of the crushing roller (closest portion to the rotary table surface) coincide with each other within a predetermined range with respect to the rotary table. That is. Further, the predetermined range may be set with respect to the height position of the upper end of the air outlet around the rotary table.
  • the drift portion is provided at the same height as the crushing roller. That is, in the above configuration, the drift portion is provided near the air outlet.
  • the carrier gas that has passed through the outlet can be immediately and reliably guided in the central axis direction of the housing.
  • the circumferential end edges of the first inclined surface and the second inclined surface have the inner end in the radial direction of one end with respect to the radial direction of the crushing table and the other end. It is inclined so that it approaches the inner edge. That is, the edges of the first inclined surface and the second inclined surface are inclined so as to substantially follow the outer shape of the crushing roller adjacent to the drift portion. Accordingly, even when the drift portion is arranged near the outlet, it is possible to prevent the drift portion and the crushing roller from interfering with each other.
  • the circumferential edges of the first inclined surface and the second inclined surface extend in the radial direction of the turntable.
  • the area of the first inclined surface and the second inclined surface can be increased as compared with the configuration described above. Therefore, more upward airflow and lower airflow can be guided toward the center of the housing, so that the transport of the pulverized solid fuel to the classifying unit can be maintained and the pressure loss in the housing can be further suppressed. ..
  • the crusher according to the second aspect of the present invention is arranged such that the casing forming an outer shell and the inner peripheral surface of the casing are spaced apart from each other, and the solid fuel supplied into the casing is mounted on the casing. And a crushing unit for crushing the solid fuel into crushed solid fuel on the rotary table; and a crushing solid fuel provided above the rotary table in a vertical direction above the predetermined particle size.
  • a classifying unit for classifying the crushed solid fuel having a larger size and the crushed solid fuel having a particle size smaller than a predetermined particle size, and a carrier gas for transporting the crushed solid fuel to the classifying unit are supplied into the casing to rotate
  • a conveying gas supply portion provided vertically below the table, a first inclined surface extending obliquely downward toward a central axis extending in the vertical vertical direction of the housing, and a vertical lower side than the first inclined surface.
  • a second inclined surface that is positioned and extends obliquely upward toward the central axis, and a drift portion provided on the inner peripheral surface, and the acute angle formed by the first inclined surface and the horizontal plane is: It is smaller than the acute angle formed by the second inclined surface and the horizontal plane.
  • the acute angle formed by the first inclined surface and the horizontal surface is smaller than the acute angle formed by the second inclined surface and the horizontal surface. That is, the upward airflow along the second inclined surface has a stronger vertical guiding force than the downward airflow along the first inclined surface. As a result, the flow velocity of the updraft becomes higher than that of the downdraft. Therefore, the crushed solid fuel can be reliably transported to the classifying unit provided vertically upward by the transport gas.
  • the drift portion is arranged such that a vertical lower end of the second inclined surface is located at a predetermined height position, and the predetermined height is set.
  • the height position is a height position above the height position of the upper end of the gap formed between the rotary table and the inner peripheral surface of the housing by 25% of the radius of the rotary table. And a height position between a height position of 25% of the radius of the rotary table and a height position lower than the height position of the upper end of the gap.
  • the lower end (lower edge) of the deflector plate and the lower end of the crushing roller coincide with each other at a height position within a predetermined range with respect to the rotary table.
  • the predetermined range is set with respect to the height position of the upper end of the gap of the air outlet around the rotary table, and the height position is the same as the length of 25% of the radius of the crushing table and the upper position.
  • the height position is between 25% of the radius of the crushing table and the height position below the same length. Therefore, the carrier gas that passes through the air outlet of the housing immediately reaches the drift portion. Thereby, the ascending airflow can be reliably guided to the central axis side of the housing. Therefore, the collision position with the descending airflow can be surely set to the center region side in the housing, so that the pressure loss in the housing can be suppressed.
  • the drift portion has a fixing portion fixed to the inner peripheral surface, and the fixing portion is from a lower end of the second inclined surface. It may extend vertically downward.
  • the position where the drift portion is provided is, for example, a height position equivalent to the height of the worker or a height position higher than the height of the worker, the worker does not attach the drift portion to the housing. May be accessed from below.
  • the drift portion is fixed to the housing by the fixing portion that extends downward from the lower end of the second inclined surface. This makes it difficult for the worker to interfere with the first inclined surface and the second inclined surface when performing the work of fixing the drift portion to the inner peripheral surface of the housing. Therefore, the fixing work can be facilitated. Further, in the above configuration, the fixing portion extends downward from the lower end of the second inclined surface. Therefore, the solid fuel can be prevented from accumulating on the fixed portion.
  • a wear resistant portion may be provided on the second inclined surface.
  • the wear resistant portion is provided on the second inclined surface. As a result, it is possible to suppress the wear of the second inclined surface due to guiding the primary air containing the crushed solid fuel.
  • a boiler system includes any one of the above crushers and a boiler that combusts the solid fuel crushed by the crusher to generate steam.
  • the crusher extends vertically and vertically, and is disposed apart from a casing that forms an outer shell and an inner peripheral surface of the casing.
  • the rotary table on which the solid fuel supplied into the housing is placed and the solid fuel placed on the rotary table and supported by the supporting portion extending from the inner peripheral surface toward the center of the rotary table.
  • a classifying unit for classifying into a solid fuel and a carrier gas for carrying the crushed solid fuel to the classifying unit are supplied to the inside of the casing, and a carrier gas supply unit is provided vertically below the rotary table.
  • a first inclined surface extending obliquely downward toward a central axis extending vertically in the vertical direction of the housing, and a first inclined surface located vertically below the first inclined surface and extending obliquely upward toward the central axis.
  • a plurality of the crushing rollers are arranged along the circumferential direction of the rotary table, and the plurality of crushing rollers have a plurality of sloping portions. It is provided between the crushing rollers and at the same height position as the crushing rollers, and the circumferential edges of the first inclined surface and the second inclined surface are with respect to the radial direction of the rotary table.
  • One end of the inner edge in the radial direction of the end edge is inclined so as to approach the other end, and the carrier gas supplied from the carrier gas supply unit is directed along the second inclined surface in the central axis direction. And a step of guiding the pulverized solid fuel returning from the classifying unit to the rotary table in the direction of the central axis along the first inclined surface.
  • the crusher is provided in a casing that forms an outer shell, and is spaced apart from an inner peripheral surface of the casing, and is supplied into the casing.
  • first inclined surface and a first inclined surface extending obliquely downward toward a central axis line extending vertically in the vertical direction of the housing.
  • a second inclined surface that is located vertically below and extends obliquely upward toward the central axis, and a drift portion provided on the inner peripheral surface, wherein the first inclined surface and the horizontal surface are The acute angle formed is smaller than the acute angle formed by the second inclined surface and the horizontal plane, and the carrier gas supplied from the carrier gas supply unit is directed along the second inclined surface in the central axis direction.
  • the crushed solid fuel can be suitably conveyed to the classification section.
  • FIG. 3 is a perspective view of a crushing unit and a deflector plate of the mill of FIG. 2.
  • FIG. 3 is a schematic plan view of a crushing roller and a deflector plate of the mill shown in FIG. 2. It is a schematic front view of the deflector plate of FIG.
  • the boiler system 1 includes a solid fuel crushing device 100 and a boiler 200.
  • the solid fuel crushing device 100 is, for example, a device that crushes solid fuel such as coal or biomass fuel to generate pulverized fuel and supplies the pulverized fuel to the burner unit 220 of the boiler 200.
  • the boiler system 1 includes one solid fuel crushing device 100, but may be a system including a plurality of solid fuel crushing devices 100 corresponding to each of the plurality of burner units 220 of one boiler 200. ..
  • the solid fuel crushing apparatus 100 of the present embodiment includes a mill (crusher) 10, a coal feeder 20, an air blower 30, a state detector 40, and a controller 50.
  • “upper” means a vertically upper direction
  • “upper” such as an upper part and an upper surface means a vertically upper part.
  • “below” indicates the vertically lower part.
  • the mill 10 for pulverizing solid fuel such as coal or biomass fuel supplied to the boiler 200 into pulverized solid fuel, which is pulverized solid fuel may be of a type that pulverizes only coal or only biomass fuel. It may be in a form or may be a form in which biomass fuel is crushed together with coal.
  • the biomass fuel is an organic resource derived from renewable organisms, and includes, for example, thinned wood, waste timber, driftwood, grass, waste, sludge, tires, and recycled fuel (pellets and Chip) and the like, and is not limited to those presented here.
  • Biomass fuel is carbon-neutral that does not emit carbon dioxide, which is a global warming gas, because it takes in carbon dioxide during the growth process of biomass. Therefore, various uses thereof have been studied.
  • the mill 10 includes a housing (housing) 11 forming an outer shell, a rotary table (crushing table) 12 on which a solid fuel is placed, a roller 13 (crushing roller),
  • the driving unit 14, the classifying unit 16, the fuel supply unit 17, and the motor 18 that rotationally drives the classifying unit 16 are provided.
  • the rotary table 12 and the roller 13 form a crushing unit.
  • the housing 11 is a housing that is formed in a cylindrical shape extending in the vertical direction and that houses the rotary table 12, the rollers 13, the classifying unit 16, and the fuel supply unit 17.
  • the inner peripheral surface 11a of the housing 11 has a substantially cylindrical shape, and the center axis C (see FIG.
  • the fuel supply unit 17 is attached to the central portion of the ceiling portion 42 of the housing 11.
  • the fuel supply unit 17 supplies the solid fuel introduced from the bunker 21 into the housing 11, is arranged at the center position of the housing 11 along the vertical direction, and the lower end portion is extended to the inside of the housing 11. ing.
  • the drive unit 14 is installed near the bottom surface 41 of the housing 11, and the rotary table 12 that is rotated by the drive force transmitted from the drive unit 14 is rotatably arranged.
  • the rotary table 12 is a circular member in plan view (that is, a disk-shaped member), and is arranged so that the lower ends of the fuel supply units 17 face each other. Further, the rotary table 12 is arranged such that the outer peripheral end thereof is separated from the inner peripheral surface 11 a of the housing 11 by a predetermined distance.
  • the upper surface of the rotary table 12 may have, for example, a slanted shape such that the central portion is low and the height is high toward the outside, and the outer peripheral portion is bent upward.
  • the fuel supply unit 17 supplies solid fuel (for example, coal or biomass fuel in the present embodiment) from the upper side to the lower rotary table 12.
  • the rotary table 12 crushes the supplied solid fuel between the rotary table 12 and the roller 13.
  • the crushed solid fuel becomes crushed solid fuel, and is a carrier gas (hereinafter, referred to as primary air) introduced from a carrier gas channel (carrier gas supply unit; hereinafter referred to as primary air channel) 100a. Is wound up upward by the () and is guided to the classifying unit 16.
  • the primary air flow path 100a supplies primary air into the housing 11 below the turntable 12 via a primary air duct 27 (see FIG. 2) connected to the housing 11.
  • An air outlet 25 (see FIG.
  • the outlet 25 is formed by a gap between the outer peripheral end of the rotary table 12 and the inner peripheral surface 11 a of the housing 11.
  • a vane 26 (see FIG. 2) is installed above the blowout port 25, and gives a swirling force to the primary air blown out from the blowout port 25.
  • the primary air to which the swirling force is given by the vane 26 becomes an air flow having a swirling velocity component, and guides the solid fuel crushed on the rotary table 12 to the upper classification section 16 in the housing 11.
  • those having a particle size larger than a predetermined particle size are classified by the classifying unit 16 or are dropped onto the rotary table 12 without reaching the classifying unit 16. And crushed again.
  • the roller 13 is a rotating body that pulverizes the solid fuel supplied from the fuel supply unit 17 to the turntable 12.
  • the roller 13 is pressed against the upper surface of the rotary table 12 and cooperates with the rotary table 12 to crush the solid fuel.
  • FIG. 1 only one roller 13 is shown as a representative, but a plurality of rollers 13 are opposed to each other at regular intervals in the circumferential direction of the rotary table 12 so as to press the upper surface of the rotary table 12. Will be placed.
  • FIG. 5 an example will be described in which three rollers 13 are evenly arranged in the circumferential direction at an angular interval of 120° on the outer peripheral portion.
  • the portions where the three rollers 13 are in contact with the upper surface of the rotary table 12 (the portions that are pressed) have the same distance from the center of rotation of the rotary table 12.
  • the number of rollers is not limited to three, and may be two or less, or four or more.
  • a drift plate 60 (a drift portion) is provided in each of the three spaces formed between the three rollers 13 in the circumferential direction. Details of the deflector plate 60 will be described later.
  • the roller 13 is swingable up and down by a journal head (support portion) 45, and is supported by the upper surface of the rotary table 12 so that the roller 13 can approach and separate freely.
  • a journal head (support portion) 45 When the rotary table 12 rotates while the outer peripheral surface of the roller 13 is in contact with the upper surface of the rotary table 12, the roller 13 receives the rotational force from the rotary table 12 and rotates together.
  • the solid fuel is supplied from the fuel supply unit 17, the solid fuel is pressed between the roller 13 and the rotary table 12 and is crushed to be crushed solid fuel.
  • the support arm 47 of the journal head 45 is supported by a support shaft 48 having an intermediate portion extending horizontally. That is, the support arm 47 is supported on the side surface of the housing 11 so as to be swingable in the vertical direction of the roller about the support shaft 48.
  • a pressing device 49 is provided on the upper end of the support arm 47 on the vertically upper side. The pressing device 49 is fixed to the housing 11 and applies a load to the roller 13 via the support arm 47 or the like so as to press the roller 13 against the rotary table 12.
  • the drive unit 14 is a device that transmits a driving force to the rotary table 12 and rotates the rotary table 12 around the central axis C (see FIG. 2).
  • the drive unit 14 generates a driving force that rotates the turntable 12.
  • the classifying portion 16 is provided on the upper part of the housing 11 and has a hollow, substantially inverted conical shape.
  • the classifying unit 16 is provided with a plurality of classifying blades 16a extending in the vertical direction at the outer peripheral position thereof.
  • the classifying blades 16a are provided in parallel around the central axis C (see FIG. 2) of the classifying unit 16 at predetermined intervals (equal intervals).
  • the classifying unit 16 has a size of the crushed solid fuel crushed by the roller 13 that is larger than a predetermined particle size (for example, 70 to 100 ⁇ m in the case of coal) (hereinafter, crushed solid fuel having a size larger than the predetermined particle size is “coarse powder”).
  • a predetermined particle size for example, 70 to 100 ⁇ m in the case of coal
  • crushed solid fuel having a size larger than the predetermined particle size is “coarse powder”.
  • This is a device for classifying into “fuel”) and particles having a predetermined particle size or less (hereinafter, solid fuel crushed to have a particle size of the predetermined particle size or less is referred to as "fine powder fuel”).
  • the rotary classifier that classifies by rotating the entire classification unit 16 is also called a rotary separator. A rotation driving force is applied to the classifying unit 16 by the motor 18.
  • the solid fuel pulverized product (pulverized solid fuel) that has reached the classification unit 16 has a large diameter of coarse powder fuel due to the relative balance between the centrifugal force generated by the rotation of the classification blade 16a and the centripetal force generated by the primary air flow. , Is blown off by the classification blade 16a, returned to the rotary table 12 and pulverized again, and the fine powder fuel is guided to the outlet 19 in the ceiling portion 42 of the housing 11.
  • the pulverized fuel classified by the classification unit 16 is discharged from the outlet 19 to the supply flow path 100b and is transported together with the primary air.
  • the pulverized fuel flowing out to the supply flow path 100b is supplied to the burner section 220 of the boiler 200.
  • the fuel supply unit 17 is attached such that the lower end extends vertically into the housing 11 so as to penetrate the upper end of the housing 11 and the solid fuel injected from the upper portion is substantially centered on the rotary table 12. Supply.
  • the fuel supply unit 17 is supplied with solid fuel from the coal feeder 20.
  • the coal feeder 20 includes a bunker 21, a transfer unit 22, and a motor 23.
  • the transport unit 22 transports the solid fuel discharged from the lower end portion of the down spout unit 24 located immediately below the bunker 21 by the driving force applied from the motor 23, and is guided to the fuel supply unit 17 of the mill 10.
  • the inside of the mill 10 is supplied with primary air for carrying the pulverized solid fuel, which is a pulverized solid fuel, to increase the pressure.
  • Fuel is held in a stacked state inside the down spout portion 24, which is a vertically extending pipe just below the bunker 21, and the fuel layer stacked inside the down spout portion 24 causes A sealing property is ensured so that the primary air and pulverized fuel do not flow back.
  • the supply amount of the solid fuel supplied to the mill 10 may be adjusted by the belt speed of the belt conveyor of the transport unit 22.
  • the blower unit 30 is a device that dries the solid fuel crushed by the rollers 13 and blows primary air for supplying to the classifying unit 16 into the housing 11.
  • the blower unit 30 includes a hot gas blower 30a, a cold gas blower 30b, a hot gas damper 30c, and a cold gas damper 30d in order to adjust the primary air blown to the housing 11 to an appropriate temperature.
  • the hot gas blower 30a is a blower that blows heated primary air supplied from a heat exchanger (heater) such as an air preheater.
  • a hot gas damper 30c (first air blower) is provided on the downstream side of the hot gas blower 30a.
  • the opening of the hot gas damper 30c is controlled by the controller 50.
  • the flow rate of the primary air blown by the hot gas blower 30a is determined by the opening degree of the hot gas damper 30c.
  • the cold gas blower 30b is a blower that blows primary air that is the outside air at room temperature.
  • a cold gas damper 30d is provided on the downstream side of the cold gas blower 30b.
  • the opening degree of the cold gas damper 30d is controlled by the control unit 50.
  • the flow rate of the primary air blown by the cold gas blower 30b is determined by the opening degree of the cold gas damper 30d.
  • the flow rate of the primary air is the sum of the flow rate of the primary air blown by the hot gas blower 30a and the flow rate of the primary air blown by the cold gas blower 30b, and the temperature of the primary air is the primary air blown by the hot gas blower 30a.
  • the state detection unit 40 of the housing 11 transmits the measured or detected data to the control unit 50.
  • the state detection unit 40 of the present embodiment is, for example, a differential pressure measurement unit, and a portion where primary air flows from the primary air flow passage 100a into the mill 10 and the supply air flow passage 100b from the inside of the mill 10 to the primary air and the fine powder fuel.
  • the differential pressure between the outlet 19 and the outlet 19 is measured as the differential pressure in the mill 10. Due to the classification performance of the classification unit 16, the increase/decrease in the circulation amount of the fine powder fuel of the solid fuel circulating inside the mill 10 and the increase/decrease in the differential pressure in the mill 10 corresponding to this change.
  • the state detection unit 40 of the present embodiment is, for example, a temperature measurement unit, and a blower unit that blows the primary air for supplying the solid fuel crushed by the rollers 13 to the classification unit 16 into the housing 11.
  • the temperature of the primary air whose temperature is adjusted by 30 is detected in the housing 11, and the blower unit 30 is controlled so as not to exceed the upper limit temperature. Since the primary air is cooled in the housing 11 by transporting the pulverized material while drying it, the temperature of the upper space of the housing 11 is, for example, about 60 to 80 degrees.
  • the control unit 50 is a device that controls each unit of the solid fuel crushing apparatus 100.
  • the control unit 50 can control the rotation of the turntable 12 with respect to the operation of the mill 10 by transmitting a drive instruction to the drive unit 14, for example.
  • the control unit 50 adjusts the classification performance by transmitting a drive instruction to the motor 18 of the classifying unit 16 to control the number of revolutions, thereby optimizing the differential pressure in the mill 10 and supplying the fine powder fuel. Can be stabilized.
  • the control unit 50 adjusts the supply amount of the solid fuel supplied by the transfer unit 22 to the fuel supply unit 17 by transmitting the drive instruction to the motor 23 of the coal feeder 20, for example. You can Further, the control unit 50 can control the flow rate and temperature of the primary air by transmitting the opening degree instruction to the blower unit 30 to control the opening degree of the hot gas damper 30c and the cold gas damper 30d.
  • the control unit 50 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium.
  • a series of processes for realizing various functions is stored in a storage medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing/arithmetic processing. As a result, various functions are realized.
  • the program is installed in a ROM or other storage medium in advance, provided in a state of being stored in a computer-readable storage medium, or delivered via wired or wireless communication means. Etc. may be applied.
  • the computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the boiler 200 that combusts using the fine fuel supplied from the solid fuel pulverizer 100 to generate steam will be described.
  • the boiler 200 includes a furnace 210 and a burner section 220.
  • the burner unit 220 uses a primary air containing pulverized fuel supplied from the supply passage 100b and a secondary air supplied from a heat exchanger (not shown) to combust the pulverized fuel to form a flame. Is. Combustion of the pulverized fuel is performed in the furnace 210, and the high temperature combustion gas is discharged to the outside of the boiler 200 after passing through a heat exchanger (not shown) such as an evaporator, a superheater, and an economizer.
  • a heat exchanger such as an evaporator, a superheater, and an economizer.
  • the combustion gas discharged from the boiler 200 is subjected to a predetermined treatment by an environmental device (not shown in a denitration device, an electric dust collector, etc.), and heat exchange with outside air is performed by a heat exchanger (not shown) such as an air preheater. It is carried out, is guided to a chimney (not shown) through an induction fan (not shown), and is discharged to the atmosphere.
  • the outside air heated by heat exchange with the combustion gas in the heat exchanger is sent to the hot gas blower 30a described above.
  • Water supplied to each heat exchanger of the boiler 200 is heated in an economizer (not shown) and then further heated by an evaporator (not shown) and a superheater (not shown) to generate high-temperature high-pressure steam. It is sent to a turbine (not shown) and a generator (not shown) is rotationally driven to generate electricity.
  • the deflector plate 60 will be described in detail with reference to FIGS. 3 to 6.
  • the drift plate 60 is provided between the adjacent rollers 13 and at the same height position as the rollers 13.
  • the same height position is a height position where the lower end (lower end edge 65a) of the drift plate 60 and the lower end of the roller 13 (closest portion to the rotary table surface) coincide with each other within a predetermined range with respect to the rotary table 12. It is.
  • the predetermined range may be set with respect to the height position of the upper end 25a of the outlet 25 around the turntable 12. More specifically, as shown in FIG. 5, the deflector plates 60 are provided one by one in each of the three spaces formed between the three rollers 13 along the circumferential direction of the housing 11.
  • each of the drift plates 60 extends a predetermined length along the circumferential direction and is fixed to the inner peripheral surface 11 a of the housing 11. Note that, in FIG. 4, one roller 13 and one deflector plate 60 are shown for the sake of illustration. Since the three deflector plates 60 have the same configuration, only one of them will be described below, and the description of the other components will be omitted.
  • the deflector plate 60 includes a main body portion 61 protruding from the inner peripheral surface 11a of the housing 11 toward the central axis C and a fixing portion 62 fixed to the inner peripheral surface 11a of the housing 11.
  • the main body 61 includes a first inclined surface 64 that extends obliquely downward from the inner peripheral surface 11 a of the housing 11 toward the central axis C of the housing 11, and a lower portion of the first inclined surface 64 that faces the central axis C.
  • a second inclined surface 65 that extends obliquely upward and two third inclined surfaces that connect the side edge 64b (circumferential edge) of the first inclined surface 64 and the side edge 65b of the second inclined surface 65.
  • the main body 61 has a tapered shape in which the length in the circumferential direction becomes shorter toward the central axis C.
  • the surface of the second inclined surface 65 is covered with a wear resistant portion 63 formed of a wear resistant material. 4 and 6, the fixing portion 62 is omitted for the sake of illustration.
  • the lower end of the deflector plate 60 (lower edge 65a) and the lower end of the roller 13 (the portion closest to the rotary table surface) are at the same height position within a predetermined range.
  • This predetermined range is set with respect to the height position of the upper end 25a of the air outlet 25 around the rotary table 12.
  • the lower end (lower end edge 65a described later) of the second inclined surface 65 is the same as the length of 25% of the radius of the rotary table 12 with respect to the height position of the upper end 25a of the outlet 25.
  • the drift plate 60 is arranged so that the lower end of the surface 65 is located.
  • the upper end 25a of the outlet 25 is at the same height as the upper end of the rotary table 12 facing the outlet 25.
  • the first inclined surface 64 includes an arc-shaped upper end edge 64a extending along the circumferential direction of the inner peripheral surface 11a of the housing 11, and both ends of the upper end edge 64a in the circumferential direction. It has two side end edges 64b each extending obliquely downward in the direction of the central axis C of 11 and an arcuate lower end edge 64c connecting the inner ends 64ba of the two side end edges 64b.
  • the side edge 64b is connected to the upper edge 66a of the third inclined surface 66.
  • the lower edge 64c is connected to the upper edge 65c of the second inclined surface 65.
  • the first inclined surface 64 forms an inclination angle ⁇ 1 with respect to the horizontal plane H, as shown in FIG.
  • the inclination angle ⁇ 1 is set to be equal to or greater than the repose angle of the pulverized fixed fuel and smaller than the inclination angle ⁇ 2 described later.
  • the inclination angle ⁇ 1 is set to, for example, 35 degrees or more and 45 degrees or less.
  • the inclination angle ⁇ 1 may be determined according to the distance from the flow diverter plate 60 to the turntable 12, for example.
  • the end edges 64b on both sides of the first inclined surface 64 are respectively inner ends of the end edges 64b on both sides as approaching the central axis C with respect to the radial direction R (see FIG. 5) of the rotary table 12 and the housing 11.
  • 64ba (the end on the side of the central axis C) are inclined so that they come close to each other.
  • the end edges 64b on both sides of the first inclined surface 64 are respectively the inner end 64ba of one side end edge 64b and the other side end edge 64b with respect to the radial direction R of the rotary table 12 and the housing 11. Is inclined so as to approach the inner end 64ba of the. Therefore, the angle ⁇ 3 formed by the arc of the upper edge 64a of the first inclined surface 64 is formed larger than the angle ⁇ 4 formed by the arc of the lower edge 64c.
  • the second inclined surface 65 includes an arcuate lower end edge 65a extending along the circumferential direction of the inner peripheral surface 11a of the housing 11, and both ends of the lower end edge 65a in the circumferential direction. It has two side end edges 65b extending obliquely upward in the direction of the central axis C of 11 and an arcuate upper end edge 65c connecting the inner ends 65ba of the two side end edges 65b.
  • the side edge 65b is connected to the lower edge 66b of the third inclined surface 66.
  • the upper edge 65c is connected to the lower edge 64c of the first inclined surface 64.
  • the second inclined surface 65 makes an inclination angle ⁇ 2 with respect to the horizontal plane H, as shown in FIG.
  • the inclination angle ⁇ 2 is larger than the inclination angle ⁇ 1 and is set so that the primary air can reach the classification unit 16 appropriately.
  • the inclination angle ⁇ 2 is, for example, an angle larger than 45 degrees and set to an angle of 60 degrees or less.
  • the angle at which the primary air can be properly reached to the classifying unit 16 is derived from operating results, tests, simulations, and the like. Further, the inclination angle ⁇ 2 may be determined according to the distance from the drift plate 60 to the classifying unit 16, for example.
  • the end edges 65b on both sides of the second inclined surface 65 are respectively inner ends of the end edges 65b on both sides as approaching the central axis C with respect to the radial direction R (see FIG. 5) of the rotary table 12 and the housing 11.
  • 65ba (the end on the side of the central axis C) are inclined so that they approach each other.
  • the end edges 65b on both sides of the second inclined surface 65 are respectively the inner end 65ba of one side end edge 65b and the other side end edge 65b with respect to the radial direction R of the rotary table 12 and the housing 11. Is inclined so as to approach the inner end 65ba of the.
  • the angle formed by the arc of the lower edge 65a of the second inclined surface 65 (the angle having the same magnitude as the angle ⁇ 3 formed by the arc of the upper edge 64a of the first inclined surface 64) is the angle formed by the arc of the upper edge 65c ( The angle is the same as the angle ⁇ 4 formed by the arc of the lower edge 64c of the first inclined surface 64).
  • the third inclined surface 66 is formed in a triangular shape in plan view connecting the side end edges 64b, 65b of the first inclined surface 64 and the second inclined surface 65.
  • the third inclined surface 66 is formed to incline with respect to a vertical plane extending along the radial direction R of the rotary table 12 and the housing 11.
  • the third inclined surface 66 is formed so that the angle ⁇ 3 is larger than the angle ⁇ 4
  • the third inclined surface 66 is formed so as to be inclined with respect to the vertical plane extending along the radial direction R.
  • the wear resistant portion 63 is formed of a wear resistant material such as high chromium cast iron or ceramics. As shown in FIG. 6, the wear resistant portion 63 covers almost the entire area of the second inclined surface 65.
  • the wear-resistant portion 63 is configured by combining the panel-shaped divided wear-resistant portions 63a so that the gap does not become large. In the wear resistant portion 63, the adjacent side surfaces of the divided wear resistant portion 63a may be overlapped with each other in a key shape or a slope shape. With this configuration, it is possible to allow a gap to occur while allowing the thermal expansion of the divided wear resistant portion 63a.
  • Each of the divided wear resistant portions 63a is fixed to the body portion 61 by a penetrating pin 68. As described above, by configuring the wear resistant portion 63 by the plurality of divided wear resistant portions 63a, the work of attaching the wear resistant portion 63 can be facilitated and the deformation due to the difference in thermal expansion can be suppressed. ..
  • the fixing portion 62 is a plate-shaped member that extends substantially vertically downward from almost the entire lower edge 65a of the second inclined surface 65. That is, the fixed portion 62 extends along the inner peripheral surface 11 a of the housing 11.
  • a plurality of through-holes 69 penetrating in the plate thickness direction are formed in the fixing portion 62.
  • the plurality of through holes 69 are formed at predetermined intervals along the circumferential direction.
  • a bolt 70 is inserted into each of the plurality of through holes 69.
  • the bolt 70 inserted through the through hole 69 is fastened and fixed to a boss portion (not shown) provided on the inner peripheral surface 11 a of the housing 11 or a welded nut (not shown). That is, the drift plate 60 is fastened and fixed to the inner peripheral surface 11 a of the housing 11 by the bolts 70.
  • the flow of fluid generated in the housing 11 will be described.
  • the primary air supplied from the primary air flow path 100 a passes through the air outlet 25 which is a gap formed between the rotary table 12 and the housing 11, and is pulverized on the rotary table 12.
  • the crushed solid fuel (including the fine powder fuel and the coarse powder fuel) is conveyed to the classifying unit 16.
  • updraft a flow of primary air containing the pulverized solid fuel that passes through the air outlet 25 and goes to the upper classifying unit 16 is generated.
  • Part of the rising airflow circulates along the second inclined surface 65.
  • the second inclined surface 65 extends obliquely upward toward the central axis C of the housing 11, the upward airflow flowing along the second inclined surface 65 is guided in the central axis C direction of the housing.
  • the coarse fuel that is classified by the classifying unit 16 and returned to the rotary table 12 drops from the upper side to the lower side, so that a downward airflow is generated in the housing 11.
  • Part of the descending airflow generated by the falling coarse powder fuel flows along the first inclined surface 64. Since the first inclined surface 64 extends obliquely downward toward the central axis C of the housing 11, the downdraft flowing along the first inclined surface 64 is guided in the central axis C direction of the housing 11.
  • the position where the updraft and the downdraft generated in the housing 11 interfere or collide with each other is inside the housing 11. It is not a narrow space area along the peripheral surface 11a, but a large space area on the central area side (area A in FIG. 3) in the housing 11. Therefore, the position where the ascending airflow and the descending airflow interfere or collide with each other can be set to a position where the influence of the airflow in the housing 11 is small.
  • the ascending airflow continues to ascend even after colliding with or colliding with the descending airflow, and reaches the classifying unit 16. Further, the descending airflow continues to descend even after colliding with or colliding with the ascending airflow, and reaches the turntable 12.
  • the deflector plate 60 When the deflector plate 60 is not provided on the inner peripheral surface 11a of the housing 11, the main flow of the primary air that has passed through the outlet 25 continues to rise along the inner peripheral surface 11a.
  • the coarse fuel is repelled by the classifying blade 16a of the classifying unit 16, so that a descending air flow that drops along the inner peripheral surface 11a of the housing 11 is generated. Therefore, the position where the ascending airflow and the descending airflow mainly interfere or collide with each other becomes a narrow space area along the inner peripheral surface 11a of the housing 11, and the outer peripheral area of the housing 11 that greatly affects the pressure loss in the housing 11. Will be.
  • the position where the ascending airflow and the descending airflow generated in the housing 11 interfere or collide with each other is the area of the large-volume space on the central area side of the housing 11.
  • the positions where they interfere or collide with each other can be set to positions that are less affected by the air flow in the housing 11, and thus pressure loss in the housing 11 can be suppressed. Therefore, the increase in power of the mill 10 can be suppressed, and the pulverized coal can be suitably carried out, so that the production efficiency of the pulverized coal can be improved.
  • the deflector plate 60 is provided at the same height position as the roller 13. That is, the deflector plate 60 is provided near the outlet 25. Specifically, the lower end (lower end edge 65a) of the second inclined surface 65 is higher than the height position of the upper end 25a of the outlet 25 by the same length as 25% of the radius of the rotary table 12. Biased to a height position between the height position and the height position of the upper end 25a of the air outlet 25 and a height position that is 25% of the radius of the rotary table 12 and the same length downward. A plate 60 is arranged.
  • the primary air passing through the air outlet 25 of the housing 11 immediately reaches the deflector plate 60, so that the upward airflow can be reliably guided to the central axis C side of the housing 11. Therefore, the position where the ascending airflow and the ascending airflow interfere or collide with each other can be surely set as the area of the large-volume space on the central area side in the housing 11. Therefore, the position where the ascending airflow and the descending airflow interfere or collide with each other can be set to a position where the influence of the airflow in the housing 11 is small, so that the pressure loss in the housing 11 can be suppressed. Therefore, since it is possible to suppress an increase in the blowing power of the primary air of the mill 10, it is possible to improve the production efficiency of the pulverized fuel pulverized to have a predetermined particle size or less.
  • the side edges 64b and 65b in the deflector plate 60, the side edges 64b and 65b (in other words, the third inclined surface 66) in the circumferential direction of the first inclined surface 64 and the second inclined surface 65 are the same as those of the turntable 12.
  • the inner ends 64ba, 65ba of the side end edges 64b, 65b are inclined with respect to the radial direction R so that the inner ends 64ba, 65ba are closer to each other, and the angle ⁇ 3 is larger than the angle ⁇ 4. That is, the side edges 64b, 65b of the first inclined surface 64 and the second inclined surface 65 are inclined along the roller 13 adjacent to the drift portion.
  • Both the deflector plate 60 and the roller 13 are provided so as to project in the central axis C direction of the housing 11 and the rotary table 12. For this reason, the inner ends 64ba and 65ba of the side end edges 64b and 65b of the first inclined surface 64 and the second inclined surface 65 of the deflector plate 60 are most likely to interfere with the roller 13. Therefore, in order to increase the areas of the first inclined surface 64 and the second inclined surface 65, the positions of the inner ends 64ba and 65ba are positions that do not interfere with the roller 13 and that are close to the roller 13. And need to. In this embodiment, the deflector plate 60 and the roller 13 are less likely to interfere with each other.
  • the angle ⁇ 3 is equal to the angle ⁇ 4 (in other words, the circumferential end edges of the first inclined surface 64 and the second inclined surface 65 are the same).
  • the configuration of the present embodiment in which the angle ⁇ 3 is larger than the angle ⁇ 4 is the first inclined surface 64 and the second inclined surface.
  • the area of 65 can be enlarged. Therefore, more ascending airflow and more descending airflow can be guided toward the center of the housing 11, so that the pressure loss in the housing 11 can be further suppressed.
  • the roller 13 needs to be removed from the housing 11 at the time of maintenance.
  • the roller 13 is removed by rotating it upward.
  • the deflector plates 60 are not provided over the entire circumference but are provided at a plurality of positions between the adjacent rollers 13, and the deflector plates 60 and the rollers 13 are provided. Since they are provided at the same height position, they do not interfere with the deflector plate 60 when the roller 13 is removed. Therefore, the work of removing the roller 13 can be facilitated.
  • the acute inclination angle ⁇ 1 formed by the first inclined surface 64 and the horizontal plane H is smaller than the acute inclination angle ⁇ 2 formed by the second inclined surface 65 and the horizontal plane H. That is, the upward airflow along the second inclined surface 65 has a stronger vertical guiding force than the downward airflow along the first inclined surface 64. As a result, the flow velocity of the updraft becomes higher than that of the downdraft. Therefore, the crushed pulverized solid fuel can be reliably transported to the classifying unit 16 provided above by the primary air. If the inclination angle ⁇ 2 is set too large, the position where the ascending airflow and the descending airflow collide with each other becomes a high position, which may be a position close to the classifying unit 16.
  • the inclination angle ⁇ 2 is preferably 60 degrees or less.
  • the drift plate 60 when the drift plate 60 is fixed to the housing 11, if the position where the drift plate 60 is provided is, for example, a height position equivalent to the height of the worker or a height position higher than the height of the worker. The worker may access the fixed portion between the drift portion and the casing from the lower side.
  • the drift plate 60 is fixed to the housing by the fixing portion 62 extending downward from the lower end of the second inclined surface 65. This makes it difficult for the worker to interfere with the first inclined surface 64 and the second inclined surface 65 when the work of fixing the deflector plate 60 to the inner peripheral surface 11a of the housing 11 is performed. Therefore, the fixing work can be facilitated.
  • the fixing portion 62 extends downward from the lower end of the second inclined surface 65. Therefore, the solid fuel can be prevented from accumulating on the fixed portion 62.
  • the second inclined surface 65 guides the primary air containing the pulverized pulverized solid fuel, and is therefore easily worn. Further, in the present embodiment, since the second inclined surface 65 is located in the vicinity of the air outlet 25, the primary air having a high flow velocity is guided, so that it is more easily worn. In the present embodiment, the second inclined surface 65 is covered with the wear resistant portion 63. As a result, when the primary air passes through the air outlet 25 which is a gap formed between the rotary table 12 and the housing 11 and conveys the pulverized solid fuel to the classifying unit 16 as an ascending airflow, It is possible to suppress the abrasion of the second inclined surface 65 which is likely to collide with the pulverized solid fuel contained in.
  • the present invention is not limited to the above-described embodiment, and can be appropriately modified without departing from the scope of the invention.
  • the wear resistant portion 63 is provided so as to cover the second inclined surface 65
  • the present invention is not limited to this.
  • the abrasion resistant portion 63 may be provided so as to cover both the first inclined surface 64 and the second inclined surface 65, or the abrasion resistant portion 63 may be provided only on the first inclined surface 64.
  • the fixing portion 62 may be provided so as to extend upward from the upper end edge 64a of the first inclined surface 64. Further, the fixing portion 62 may be provided so as to extend both upward from the upper end edge 64a of the first inclined surface 64 and downward from the lower end edge 65a. Further, the main body 61 may be fixed to the inner peripheral surface 11a of the housing 11 by welding or the like without providing the fixing portion 62.
  • the main body 61 has a substantially triangular cross-sectional shape, but the present invention is not limited to this.
  • a vertical plane is provided between the lower end edge 64c of the first inclined surface 64 and the upper end edge 65c of the second inclined surface 65, and the main body 61 has a substantially trapezoidal cross section or an elliptical shape with rounded corners. You may form so that it may become.
  • the deflector plate 60 is provided in each of the three spaces formed between the rollers 13 in each of the three spaces formed between the rollers 13 in each of the three spaces formed between the rollers 13 in each of the three spaces formed between the rollers 13 in the above embodiment, but the present invention is not limited to this.
  • a plurality of drift plates 60 may be provided in each space formed between the rollers 13.
  • the non-uniform flow plate 60 may not be provided in all the spaces formed between the rollers 13, and a space in which the non-uniform flow plate 60 is provided and a space in which the non-uniform flow plate 60 is not provided may be provided.
  • Boiler system 10 Mill (crusher) 11: Housing 11a: inner peripheral surface 12: rotary table (crushing table) 13: Roller (crushing roller) 14: Drive part 16: Classification part 16a: Classification blade 17: Fuel supply part 18: Motor 19: Outlet 20: Coal feeder 21: Bunker 22: Transfer part 23: Motor 24: Downspout part 25: Outlet port 26: Vane 27: Primary air duct 30: Air blower 30a: Hot gas blower 30b: Cold gas blower 30c: Hot gas damper 30d: Cold gas damper 40: Status detector 41: Bottom portion 42: Ceiling portion 45: Journal head (support portion) 47: Support arm 48: Support shaft 49: Pressing device 50: Control part 60: Drift plate (diffusion part) 61: body part 62: fixed part 63: wear resistant part 63a: divided wear resistant part 64: first inclined surface 64a: upper edge 64b: side edge 64ba: inner end 64c: lower edge 65: second inclined surface 65a: Lower edge 65b: Side edge 65ba: Inner

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Crushing And Grinding (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

A mill (10) comprises: a housing (11); a rotating table (12) and a roller (13) which crush a solid fuel into a fine powder solid fuel; a classifier; a primary air flow channel which supplies primary air that conveys the fine powder solid fuel on the rotating table (12) to the classifier; and a drift plate (60) which is provided to an internal peripheral surface and which has a first inclined surface (64) extending at a downward slant toward the center axis of the housing (11) and a second inclined surface (65) extending at an upward slant toward the center axis. The drift plate (60) is provided between the plurality of rollers (13), at a position at the same height as the rollers (13), and the circumferential side end edges of the first inclined surface (64) and the second inclined surface (65) are both inclined so that the radially inward ends of the side end edges on one side and the radially inward ends of the side end edges on the other side are close to the radial direction of the rotating table (12).

Description

粉砕機及びボイラシステム並びに粉砕機の運転方法Crusher and boiler system, and operating method of the crusher
 本発明は、粉砕機及びボイラシステム並びに粉砕機の運転方法に関するものである。 The present invention relates to a crusher, a boiler system, and a method for operating the crusher.
 粉砕機(ミル)は、石炭やバイオマス等の固体燃料を、回転テーブル上でローラとの間に挟み込むことで粉砕する。粉砕された固体燃料は、ハウジングの回転テーブル外周側に設けた吹出口(ハウジングの内周面と回転テーブルの外周端との間の隙間)を通過する一次空気により鉛直方向上方へと巻き上げられ、分級機へと導かれる。分級機に到達した固体燃料のうち、大きな径の粗粉燃料は回転テーブルへと戻されて再び粉砕され、小さな径の微粉燃料はハウジングの天井部にある出口に導かれる。このように、ミルの運転中において、ミル内には、一次空気による回転テーブル下部からの上昇気流と、分級機からテーブルに戻される粗粉燃料を含む下降気流とが発生する。上昇気流と下降気流とが発生することで、上昇気流と下降気流がミル内部で干渉や衝突することにより、圧力損失が発生する可能性がある。したがって、ミルには、ミル内に発生する上昇気流及び下降気流を調整する構造が設けられる場合がある(例えば、特許文献1及び特許文献2)。 A crusher (mill) crushes solid fuel such as coal or biomass by sandwiching it with rollers on a rotary table. The pulverized solid fuel is rolled up vertically by the primary air passing through the air outlet (gap between the inner peripheral surface of the housing and the outer peripheral end of the rotary table) provided on the outer peripheral side of the rotary table of the housing, Guided to the classifier. Among the solid fuels that have reached the classifier, the coarse powder fuel with a large diameter is returned to the rotary table and pulverized again, and the fine powder fuel with a small diameter is guided to the outlet at the ceiling of the housing. Thus, during the operation of the mill, an ascending airflow from the lower part of the rotary table due to the primary air and a descending airflow containing the coarse fuel that is returned to the table from the classifier are generated in the mill. When the updraft and the downdraft are generated, the updraft and the downdraft interfere with or collide with each other inside the mill, which may cause a pressure loss. Therefore, the mill may be provided with a structure for adjusting the ascending airflow and the descending airflow generated in the mill (for example, Patent Document 1 and Patent Document 2).
 特許文献1には、ハウジングの内壁面に、外周側領域を上昇する気流をハウジングの中心軸側に向けて変向させるように構成されている偏流部が設けられている装置が開示されている。この装置では、偏流部が、ハウジングの全周に亘って、ハウジングの内壁面に設けられている。 Patent Document 1 discloses a device in which an inner wall surface of a housing is provided with a drift portion configured to divert an air flow rising in an outer peripheral region toward a central axis of the housing. .. In this device, the drift portion is provided on the inner wall surface of the housing over the entire circumference of the housing.
 特許文献2には、ハウジングの高さ方向において、粉砕テーブルと分級部との間に、ハウジングの内壁面にバッフル部が設けられている装置が開示されている。バッフル部はハウジングの中心軸側へ突出し、かつハウジングの周方向の一部の領域のみに延在している。また、バッフル部は複数設けられ、複数のバッフル部はハウジングの周方向に互いに間隔を空けて配置されている。 Patent Document 2 discloses a device in which a baffle part is provided on the inner wall surface of the housing between the crushing table and the classifying part in the height direction of the housing. The baffle portion projects toward the central axis of the housing and extends only in a partial region of the housing in the circumferential direction. Further, a plurality of baffle portions are provided, and the plurality of baffle portions are arranged at intervals in the circumferential direction of the housing.
特開2017-131829号公報JP, 2017-131829, A 特開2017-140566号公報JP, 2017-140566, A
 特許文献1の装置では、偏流部がハウジングの全周に亘って設けられている。すなわち、偏流部は、粉砕ローラと干渉しない位置である粉砕ローラの上方に設けられている。このように、粉砕ローラの上方に偏流部を設けた場合、偏流部と吹出口との距離が長くなる。偏流部と吹出口との距離が長くなると、吹出口を通過した上昇気流を偏流部によって好適に案内できない可能性がある。 In the device of Patent Document 1, the drift portion is provided over the entire circumference of the housing. That is, the uneven flow portion is provided above the crushing roller at a position where it does not interfere with the crushing roller. In this way, when the uneven flow portion is provided above the crushing roller, the distance between the uneven flow portion and the air outlet becomes long. If the distance between the drift portion and the air outlet becomes long, there is a possibility that the updraft that has passed through the air outlet cannot be suitably guided by the drift portion.
 偏流部と吹出口との距離を近くするためには、鉛直上下方向で粉砕ローラと同じ高さ位置に偏流部を設ける必要がある。しかしながら、偏流部と粉砕ローラとは、ともにハウジングの内周面に設けられているため、互いに干渉する可能性がある。偏流部と粉砕ローラとの干渉を避けるために、特許文献2のように偏流部(バッフル部)を周方向の一部の領域のみであって、かつ、複数設ける構成も考えられる。すなわち、複数のローラの間に、周方向の一部の領域のみに延在する偏流部を設ける構成も考えられる。しかしながら、特許文献2のバッフル部では、実際に複数のローラの間に設けられていないので、ローラと偏流部との干渉について考慮されていない。このため、特許文献2のバッフル部では、周方向の端縁がハウジング及び回転テーブルの半径方向に延びている。このような構成では、バッフル部の傾斜面の面積を大きく形成できず、好適に上昇気流及び下降気流を案内できない可能性がある。 In order to reduce the distance between the drift portion and the outlet, it is necessary to provide the drift portion at the same vertical position as the crushing roller in the vertical direction. However, since the drift portion and the crushing roller are both provided on the inner peripheral surface of the housing, they may interfere with each other. In order to avoid interference between the uneven flow portion and the crushing roller, a configuration in which a plurality of uneven flow portions (baffle portions) are provided only in a partial area in the circumferential direction as in Patent Document 2 and a plurality of baffle portions are provided may be considered. That is, a configuration may be considered in which a drift portion extending only in a partial area in the circumferential direction is provided between a plurality of rollers. However, in the baffle portion of Patent Document 2, since it is not actually provided between the plurality of rollers, consideration is not given to the interference between the rollers and the drift portion. For this reason, in the baffle portion of Patent Document 2, the circumferential edge extends in the radial direction of the housing and the rotary table. With such a configuration, the area of the inclined surface of the baffle portion cannot be formed large, and there is a possibility that the upward airflow and the downward airflow cannot be guided appropriately.
 また、特許文献1の装置では、偏流部の傾斜面の角度について考慮されていない。特許文献1の装置では、偏流部が比較的低い位置に設けられているが、偏流部の傾斜面の角度によっては、上昇気流が分級部へまで到達し難くなり、粉砕された固体燃料を好適に搬送できない可能性があった。 In addition, the device of Patent Document 1 does not consider the angle of the inclined surface of the drift portion. In the device of Patent Document 1, the drift portion is provided at a relatively low position, but depending on the angle of the inclined surface of the drift portion, it is difficult for the ascending airflow to reach the classification portion, and crushed solid fuel is suitable. There was a possibility that it could not be transported to.
 本発明は、このような事情に鑑みてなされたものであって、粉砕機の筐体内で発生する上昇気流及び下降気流を好適に筐体の中心方向へ案内することで、筐体内における圧力損失をより抑制することができる粉砕機及びボイラシステム並びに粉砕機の運転方法を提供することを目的とする。
 また、本発明は、搬送用ガスによって、粉砕された固体燃料を分級部まで好適に搬送することができる粉砕機及びボイラシステム並びに粉砕機の運転方法を提供することを目的とする。
The present invention has been made in view of such circumstances, and by appropriately guiding the ascending airflow and the descending airflow generated in the housing of the crusher toward the center of the housing, the pressure loss in the housing is reduced. An object of the present invention is to provide a crusher and a boiler system capable of further suppressing the above, and an operating method of the crusher.
It is another object of the present invention to provide a pulverizer and a boiler system that can suitably convey pulverized solid fuel to a classifying unit by a carrier gas, and a method for operating the pulverizer.
 上記課題を解決するために、本発明の粉砕機及びボイラシステム並びに粉砕機の運転方法は以下の手段を採用する。
 本発明の第1態様に係る粉砕機は、鉛直上下方向に延在し、外殻を為す筐体と、前記筐体の内周面から離間して配置されるとともに、前記筐体内に供給された固体燃料が載置される回転テーブルと、前記内周面から前記回転テーブルの中心方向へ延びる支持部に支持され、該回転テーブル上に載置された固体燃料を粉砕して粉砕固体燃料とする複数の粉砕ローラと、前記回転テーブルの鉛直上方側に設けられ、前記粉砕固体燃料を所定粒径よりも大きい前記粉砕固体燃料と所定粒径よりも小さい前記粉砕固体燃料とに分級する分級部と、前記粉砕固体燃料を前記分級部へ搬送する搬送用ガスを前記筐体の内部に供給し、前記回転テーブルよりも鉛直下方側に設けられる搬送用ガス供給部と、前記筐体の鉛直上下方向に延びる中心軸線に向かって斜め下方に延びる第1傾斜面及び該第1傾斜面よりも鉛直下方側に位置して前記中心軸線に向かって斜め上方に延びる第2傾斜面を有し、前記内周面に設けられる偏流部と、を備え、複数の前記粉砕ローラは、前記回転テーブルの周方向に沿って配置されていて、前記偏流部は、複数の前記粉砕ローラの間であって前記粉砕ローラと同じ高さ位置に設けられるとともに、前記第1傾斜面及び前記第2傾斜面の前記周方向の端縁が、各々、前記回転テーブルの半径方向に対して、一側の前記端縁の前記半径方向の内端が他側の前記端縁の前記半径方向の内端に近づくように傾斜している。
In order to solve the above problems, the crusher, the boiler system, and the method for operating the crusher of the present invention employ the following means.
A crusher according to a first aspect of the present invention is provided with a casing that extends in a vertical vertical direction and forms an outer shell, and is separated from an inner peripheral surface of the casing, and is supplied into the casing. And a crushed solid fuel, which is supported by a rotary table on which the solid fuel is placed, and a support portion which extends from the inner peripheral surface toward the center of the rotary table, and which crushes the solid fuel placed on the rotary table. A plurality of crushing rollers, and a classifying unit that is provided vertically above the rotary table and classifies the crushed solid fuel into the crushed solid fuel having a particle size larger than a predetermined particle size and the crushed solid fuel having a particle size smaller than the predetermined particle size. And a transport gas for transporting the crushed solid fuel to the classifying unit inside the casing, and a transport gas supply unit provided vertically below the rotary table, and a vertical upper and lower portion of the casing. A first inclined surface extending obliquely downward toward a central axis extending in the direction and a second inclined surface located vertically below the first inclined surface and extending obliquely upward toward the central axis. A diverging portion provided on an inner peripheral surface, wherein the plurality of crushing rollers are arranged along a circumferential direction of the rotary table, and the diverging portion is between the plurality of crushing rollers. The peripheral edge of the first inclined surface and the second inclined surface is provided at the same height as the crushing roller, and the peripheral edge of each of the first inclined surface and the second inclined surface is on one side with respect to the radial direction of the rotary table. Is inclined so that the inner radial end thereof approaches the inner radial end of the other edge.
 搬送用ガス供給部から供給された搬送用ガスは、回転テーブルと筐体との間に形成された隙間(以下、「吹出口」という。)を通過する。そして、吹出口を通過した搬送用ガスは、回転テーブル上の粉砕固体燃料を分級部へ搬送する。上記構成では、回転テーブル上に載置された固体燃料を鉛直上方から押圧する粉砕ローラと偏流部とが、同じ高さ位置に設けられている。すなわち、偏流部自体は、粉砕テーブルの高さ位置よりも高い位置(すなわち、吹出口の鉛直上方側)に設けられている。これにより、吹出口を通過し、鉛直上方の分級部へと向かう搬送用ガス(以下、「上昇気流」という。)のうちの一部は、第2傾斜面に沿って流通する。第2傾斜面は、筐体の鉛直上下方向に延在する中心軸線に向かって斜め上方に延びているので、第2傾斜面に沿って流通する上昇気流は、筐体の中心軸線方向へ案内される。一方、分級部で分級され粉砕テーブルへ戻される所定粒径よりも大きな粉砕固体燃料(以下、「粗粉燃料」という。)は、鉛直上方から下方へ向い落下するため、下降気流を発生させる。落下する粗粉燃料により生じた下降気流のうちの一部は、第1傾斜面に沿って流通する。第1傾斜面は、筐体の鉛直上下方向に延びる中心軸線に向かって斜め下方に延びているので、第1傾斜面に沿って流通する下降気流は、筐体の中心軸線方向へ案内される。このように、上昇気流及び下降気流のいずれもが、筐体の中心軸線方向へ案内されるので、筐体内に生じる上昇気流と下降気流とが干渉する位置が、筐体内において容積が大きい中心領域側となる。これにより、上昇気流と下降気流との干渉位置を、筐体内の気流における影響が少ない位置とすることができるので、分級部への粉砕固体燃料の搬送を維持するとともに、筐体内における圧力損失を抑制することができる。したがって、搬送用ガスの送風動力の増加を抑制することができるので、所定粒径以下に粉砕された小さな粉砕固体燃料(以下、「微粉燃料」という。)の製造効率を向上させることができる。
 なお、同じ高さ位置とは、回転テーブルに対して、偏流板の下端(下端縁)と粉砕ローラの下端(回転テーブル面との最接近部分)が所定範囲内で一致する高さ位置にあることである。また、所定範囲は、回転テーブルの周囲にある吹出口の上端の高さ位置に対して設定されてもよい。
The transport gas supplied from the transport gas supply unit passes through a gap (hereinafter, referred to as “blowout port”) formed between the rotary table and the housing. Then, the carrier gas that has passed through the blowout port carries the crushed solid fuel on the rotary table to the classifying unit. In the above configuration, the crushing roller that presses the solid fuel placed on the rotary table from above in the vertical direction and the drift portion are provided at the same height position. That is, the drift portion itself is provided at a position higher than the height position of the crushing table (that is, vertically above the air outlet). As a result, a part of the carrier gas (hereinafter, referred to as “updraft”) that passes through the air outlet and heads to the vertically upward classifying unit flows along the second inclined surface. Since the second inclined surface extends obliquely upward toward the central axis line extending in the vertical vertical direction of the housing, the upward airflow flowing along the second inclined surface is guided in the central axis direction of the housing. To be done. On the other hand, the crushed solid fuel (hereinafter, referred to as "coarse powder fuel") having a larger particle size than the predetermined particle size that is classified in the classifying unit and returned to the crushing table drops downward from above vertically, and therefore generates a descending air flow. A part of the descending airflow generated by the falling coarse powder fuel flows along the first inclined surface. Since the first inclined surface extends obliquely downward toward the central axis extending in the vertical vertical direction of the housing, the downdraft flowing along the first inclined surface is guided in the central axis direction of the housing. .. In this way, both the ascending airflow and the descending airflow are guided in the central axis direction of the housing, so that the position where the ascending airflow and the descending airflow that occur in the housing interfere with each other is a central region with a large volume in the housing. Be on the side. As a result, the position where the ascending airflow and the descending airflow interfere with each other can be set to a position where the influence of the airflow in the housing is small, so that the conveyance of the crushed solid fuel to the classification unit can be maintained and the pressure loss in the housing Can be suppressed. Therefore, since it is possible to suppress an increase in the blowing power of the carrier gas, it is possible to improve the production efficiency of a small pulverized solid fuel (hereinafter referred to as “fine powder fuel”) pulverized to a predetermined particle size or less.
The same height position is a height position where the lower end (lower edge) of the flow diverter plate and the lower end of the crushing roller (closest portion to the rotary table surface) coincide with each other within a predetermined range with respect to the rotary table. That is. Further, the predetermined range may be set with respect to the height position of the upper end of the air outlet around the rotary table.
 また、上記構成では、偏流部が粉砕ローラと同じ高さ位置に設けられている。すなわち、上記構成では、偏流部が吹出口の近傍に設けられている。これにより、吹出口を通過した搬送用ガスを直ちに、かつ、確実に、筐体の中心軸線方向へ案内することができる。 Moreover, in the above configuration, the drift portion is provided at the same height as the crushing roller. That is, in the above configuration, the drift portion is provided near the air outlet. Thus, the carrier gas that has passed through the outlet can be immediately and reliably guided in the central axis direction of the housing.
 また、上記構成では、偏流部は、第1傾斜面及び第2傾斜面の周方向の端縁が、粉砕テーブルの半径方向に対して、一方の端縁の半径方向の内端が、他方の内端に近づくように傾斜している。すなわち、第1傾斜面及び第2傾斜面の端縁が、偏流部と隣接する粉砕ローラの外形に略沿うように傾斜している。これにより、偏流部を吹出口の近傍に配置した場合であっても、偏流部と粉砕ローラとが干渉しないようにすることができる。したがって、第1傾斜面及び第2傾斜面の周方向の端縁の内端を同位置とした場合、第1傾斜面及び第2傾斜面の周方向の端縁が回転テーブルの半径方向に延びている構成と比較して、第1傾斜面及び第2傾斜面の面積を大きくすることができる。よって、より多くの上昇気流及び下降気流を筐体の中心方向へ案内することができるので、分級部への粉砕固体燃料の搬送を維持するとともに、筐体内における圧力損失をより抑制することができる。 Further, in the above-described configuration, in the drift portion, the circumferential end edges of the first inclined surface and the second inclined surface have the inner end in the radial direction of one end with respect to the radial direction of the crushing table and the other end. It is inclined so that it approaches the inner edge. That is, the edges of the first inclined surface and the second inclined surface are inclined so as to substantially follow the outer shape of the crushing roller adjacent to the drift portion. Accordingly, even when the drift portion is arranged near the outlet, it is possible to prevent the drift portion and the crushing roller from interfering with each other. Therefore, when the inner ends of the circumferential edges of the first inclined surface and the second inclined surface are in the same position, the circumferential edges of the first inclined surface and the second inclined surface extend in the radial direction of the turntable. The area of the first inclined surface and the second inclined surface can be increased as compared with the configuration described above. Therefore, more upward airflow and lower airflow can be guided toward the center of the housing, so that the transport of the pulverized solid fuel to the classifying unit can be maintained and the pressure loss in the housing can be further suppressed. ..
 また、本発明の第2態様に係る粉砕機は、外殻を為す筐体と、前記筐体の内周面から離間して配置されるとともに、前記筐体内に供給された固体燃料が載置される回転テーブルを有し、前記回転テーブル上で前記固体燃料を粉砕して粉砕固体燃料とする粉砕部と、前記回転テーブルの鉛直上方側に設けられ、前記粉砕固体燃料を所定粒径よりも大きい前記粉砕固体燃料と所定粒径よりも小さい前記粉砕固体燃料とに分級する分級部と、前記粉砕固体燃料を前記分級部へ搬送する搬送用ガスを前記筐体の内部に供給し、前記回転テーブルよりも鉛直下方側に設けられる搬送用ガス供給部と、前記筐体の鉛直上下方向に延びる中心軸線に向かって斜め下方に延びる第1傾斜面及び該第1傾斜面よりも鉛直下方側に位置して前記中心軸線に向かって斜め上方に延びる第2傾斜面を有し、前記内周面に設けられる偏流部と、を備え、前記第1傾斜面と水平面とが為す鋭角の角度は、前記第2傾斜面と水平面とが為す鋭角の角度よりも小さい。 Further, the crusher according to the second aspect of the present invention is arranged such that the casing forming an outer shell and the inner peripheral surface of the casing are spaced apart from each other, and the solid fuel supplied into the casing is mounted on the casing. And a crushing unit for crushing the solid fuel into crushed solid fuel on the rotary table; and a crushing solid fuel provided above the rotary table in a vertical direction above the predetermined particle size. A classifying unit for classifying the crushed solid fuel having a larger size and the crushed solid fuel having a particle size smaller than a predetermined particle size, and a carrier gas for transporting the crushed solid fuel to the classifying unit are supplied into the casing to rotate A conveying gas supply portion provided vertically below the table, a first inclined surface extending obliquely downward toward a central axis extending in the vertical vertical direction of the housing, and a vertical lower side than the first inclined surface. A second inclined surface that is positioned and extends obliquely upward toward the central axis, and a drift portion provided on the inner peripheral surface, and the acute angle formed by the first inclined surface and the horizontal plane is: It is smaller than the acute angle formed by the second inclined surface and the horizontal plane.
 上記構成では、第1傾斜面と水平面とが為す鋭角の角度が、第2傾斜面と水平面とが為す鋭角の角度よりも小さい。すなわち、第1傾斜面に沿う下降気流よりも、第2傾斜面に沿う上昇気流の方が、上下方向に案内される力が強い。これにより、下降気流よりも上昇気流の方が、流速が大きくなる。したがって、搬送用ガスによって、鉛直方向上方に設けられている分級部まで、粉砕固体燃料を確実に搬送することができる。 In the above configuration, the acute angle formed by the first inclined surface and the horizontal surface is smaller than the acute angle formed by the second inclined surface and the horizontal surface. That is, the upward airflow along the second inclined surface has a stronger vertical guiding force than the downward airflow along the first inclined surface. As a result, the flow velocity of the updraft becomes higher than that of the downdraft. Therefore, the crushed solid fuel can be reliably transported to the classifying unit provided vertically upward by the transport gas.
 また、本発明の第1態様または第2態様に係る粉砕機は、前記偏流部は、前記第2傾斜面の鉛直方向下端が所定の高さ位置に位置するように配置され、前記所定の高さ位置は、前記回転テーブルと前記筐体の前記内周面との間に形成された隙間の上端の高さ位置に対して前記回転テーブルの半径の25%の長さ分上方の高さ位置と、前記隙間の上端の高さ位置に対して前記回転テーブルの半径の25%の長さと分下方の高さ位置との間の高さ位置であってもよい。 Further, in the crusher according to the first aspect or the second aspect of the present invention, the drift portion is arranged such that a vertical lower end of the second inclined surface is located at a predetermined height position, and the predetermined height is set. The height position is a height position above the height position of the upper end of the gap formed between the rotary table and the inner peripheral surface of the housing by 25% of the radius of the rotary table. And a height position between a height position of 25% of the radius of the rotary table and a height position lower than the height position of the upper end of the gap.
 上記構成では、回転テーブルに対して、偏流板の下端(下端縁)と粉砕ローラの下端(回転テーブル面との最接近部分)が所定範囲の高さ位置で一致している。また、所定範囲は、回転テーブルの周囲にある吹出口の隙間の上端の高さ位置に対して設定されていて、粉砕テーブルの半径の25%の長さと同じ長さ分上方の高さ位置と、粉砕テーブルの半径の25%の長さと同じ長さ分下方の高さ位置との間の高さ位置としている。このため、筐体の吹出口を通過する搬送用ガスが、直ちに偏流部に至る。これにより、上昇気流を確実に筐体の中心軸線側に案内することができる。したがって、確実に下降気流との衝突位置を筐体内の中心領域側とすることができるので、筐体内における圧力損失を抑制することができる。 In the above configuration, the lower end (lower edge) of the deflector plate and the lower end of the crushing roller (the portion closest to the surface of the rotary table) coincide with each other at a height position within a predetermined range with respect to the rotary table. In addition, the predetermined range is set with respect to the height position of the upper end of the gap of the air outlet around the rotary table, and the height position is the same as the length of 25% of the radius of the crushing table and the upper position. The height position is between 25% of the radius of the crushing table and the height position below the same length. Therefore, the carrier gas that passes through the air outlet of the housing immediately reaches the drift portion. Thereby, the ascending airflow can be reliably guided to the central axis side of the housing. Therefore, the collision position with the descending airflow can be surely set to the center region side in the housing, so that the pressure loss in the housing can be suppressed.
 また、本発明の第1態様または第2態様に係る粉砕機は、前記偏流部は、前記内周面に固定される固定部を有し、前記固定部は、前記第2傾斜面の下端から鉛直下方側に延びていてもよい。 Further, in the crusher according to the first or second aspect of the present invention, the drift portion has a fixing portion fixed to the inner peripheral surface, and the fixing portion is from a lower end of the second inclined surface. It may extend vertically downward.
 偏流部を設ける位置が、例えば、作業者の身長と同等の高さ位置又は作業者の身長よりも高い高さ位置である場合には、作業者は偏流部と筐体との固定箇所に対して下方側からアクセスすることがある。上記構成では、偏流部が、第2傾斜面の下端から下方に延びる固定部によって筐体に固定されている。これにより、偏流部を筐体の内周面に固定する作業を行う際に、第1傾斜面及び第2傾斜面と作業者とが干渉し難い。したがって、固定作業を容易化することができる。
 また、上記構成では、固定部が第2傾斜面の下端から下方に延びている。したがって、固定部に固体燃料が堆積しない構成とすることができる。
If the position where the drift portion is provided is, for example, a height position equivalent to the height of the worker or a height position higher than the height of the worker, the worker does not attach the drift portion to the housing. May be accessed from below. In the above configuration, the drift portion is fixed to the housing by the fixing portion that extends downward from the lower end of the second inclined surface. This makes it difficult for the worker to interfere with the first inclined surface and the second inclined surface when performing the work of fixing the drift portion to the inner peripheral surface of the housing. Therefore, the fixing work can be facilitated.
Further, in the above configuration, the fixing portion extends downward from the lower end of the second inclined surface. Therefore, the solid fuel can be prevented from accumulating on the fixed portion.
 また、本発明の第1態様または第2態様に係る粉砕機は、前記第2傾斜面には、耐摩耗部が設けられていてもよい。 Further, in the crusher according to the first aspect or the second aspect of the present invention, a wear resistant portion may be provided on the second inclined surface.
 上記構成では、第2傾斜面に耐摩耗部が設けられている。これにより、粉砕された固体燃料を含んだ一次空気を案内することによる第2傾斜面の摩耗を抑制することができる。 ▼ In the above configuration, the wear resistant portion is provided on the second inclined surface. As a result, it is possible to suppress the wear of the second inclined surface due to guiding the primary air containing the crushed solid fuel.
 本発明の第3態様に係るボイラシステムは、上記いずれかの粉砕機と、前記粉砕機で粉砕された固体燃料を燃焼し、蒸気を生成するボイラと、を備えている。 A boiler system according to a third aspect of the present invention includes any one of the above crushers and a boiler that combusts the solid fuel crushed by the crusher to generate steam.
 本発明の第4態様に係る粉砕機の運転方法は、前記粉砕機は、鉛直上下方向に延在し、外殻を為す筐体と、前記筐体の内周面から離間して配置されるとともに、前記筐体内に供給された固体燃料が載置される回転テーブルと、前記内周面から前記回転テーブルの中心方向へ延びる支持部に支持され、該回転テーブル上に載置された固体燃料を粉砕して粉砕固体燃料とする複数の粉砕ローラと、前記回転テーブルの鉛直上方側に設けられ、前記粉砕固体燃料を所定粒径よりも大きい前記粉砕固体燃料と所定粒径よりも小さい前記粉砕固体燃料とに分級する分級部と、前記粉砕固体燃料を前記分級部へ搬送する搬送用ガスを前記筐体の内部に供給し、前記回転テーブルよりも鉛直下方側に設けられる搬送用ガス供給部と、前記筐体の鉛直上下方向に延びる中心軸線に向かって斜め下方に延びる第1傾斜面及び該第1傾斜面よりも鉛直下方側に位置して前記中心軸線に向かって斜め上方に延びる第2傾斜面を有し、前記内周面に設けられる偏流部と、を備え、複数の前記粉砕ローラは、前記回転テーブルの周方向に沿って配置されていて、前記偏流部は、複数の前記粉砕ローラの間であって前記粉砕ローラと同じ高さ位置に設けられるとともに、前記第1傾斜面及び前記第2傾斜面の前記周方向の端縁が、前記回転テーブルの半径方向に対して、前記端縁の前記半径方向の内端の一端が他端に近づくように傾斜していて、前記搬送用ガス供給部から供給された搬送用ガスを前記第2傾斜面に沿って前記中心軸線方向へ案内する工程と、前記分級部から前記回転テーブルに戻る前記粉砕固体燃料を前記第1傾斜面に沿って前記中心軸線方向へ案内する工程と、を備える。 In the method for operating a crusher according to a fourth aspect of the present invention, the crusher extends vertically and vertically, and is disposed apart from a casing that forms an outer shell and an inner peripheral surface of the casing. At the same time, the rotary table on which the solid fuel supplied into the housing is placed, and the solid fuel placed on the rotary table and supported by the supporting portion extending from the inner peripheral surface toward the center of the rotary table. A plurality of pulverizing rollers for pulverizing the pulverized solid fuel into pulverized solid fuel, and the pulverized solid fuel having a pulverized solid fuel having a particle size larger than a predetermined particle size and the pulverized solid fuel having a particle size smaller than the predetermined particle size provided above the rotary table A classifying unit for classifying into a solid fuel and a carrier gas for carrying the crushed solid fuel to the classifying unit are supplied to the inside of the casing, and a carrier gas supply unit is provided vertically below the rotary table. And a first inclined surface extending obliquely downward toward a central axis extending vertically in the vertical direction of the housing, and a first inclined surface located vertically below the first inclined surface and extending obliquely upward toward the central axis. A plurality of the crushing rollers are arranged along the circumferential direction of the rotary table, and the plurality of crushing rollers have a plurality of sloping portions. It is provided between the crushing rollers and at the same height position as the crushing rollers, and the circumferential edges of the first inclined surface and the second inclined surface are with respect to the radial direction of the rotary table. One end of the inner edge in the radial direction of the end edge is inclined so as to approach the other end, and the carrier gas supplied from the carrier gas supply unit is directed along the second inclined surface in the central axis direction. And a step of guiding the pulverized solid fuel returning from the classifying unit to the rotary table in the direction of the central axis along the first inclined surface.
 本発明の第5態様に係る粉砕機の運転方法は、前記粉砕機は、外殻を為す筐体と、前記筐体の内周面から離間して配置されるとともに、前記筐体内に供給された固体燃料が載置される回転テーブルを有し、前記回転テーブル上で前記固体燃料を粉砕して粉砕固体燃料とする粉砕部と、前記回転テーブルの鉛直上方側に設けられ、前記粉砕固体燃料を所定粒径よりも大きい前記粉砕固体燃料と所定粒径よりも小さい前記粉砕固体燃料とに分級する分級部と、前記粉砕固体燃料を前記分級部へ搬送する搬送用ガスを前記筐体の内部に供給し、前記回転テーブルよりも鉛直下方側に設けられる搬送用ガス供給部と、前記筐体の鉛直上下方向に延びる中心軸線に向かって斜め下方に延びる第1傾斜面及び該第1傾斜面よりも鉛直下方側に位置して前記中心軸線に向かって斜め上方に延びる第2傾斜面を有し、前記内周面に設けられる偏流部と、を備え、前記第1傾斜面と水平面とが為す鋭角の角度は、前記第2傾斜面と水平面とが為す鋭角の角度よりも小さく、前記搬送用ガス供給部から供給された搬送用ガスを前記第2傾斜面に沿って前記中心軸方向へ案内する工程と、前記分級部から前記回転テーブルに戻る前記粉砕固体燃料を前記第1傾斜面に沿って前記中心軸方向へ案内する工程と、を備える。 In a method of operating a crusher according to a fifth aspect of the present invention, the crusher is provided in a casing that forms an outer shell, and is spaced apart from an inner peripheral surface of the casing, and is supplied into the casing. A crushing unit for crushing the solid fuel on the rotary table to obtain crushed solid fuel, and a crushed solid fuel provided vertically above the rotary table. Inside the casing, a classifying unit for classifying the pulverized solid fuel having a particle size larger than a predetermined particle size into the pulverized solid fuel having a particle size smaller than the predetermined particle size, and a carrier gas for conveying the pulverized solid fuel to the classifying unit. And a first inclined surface and a first inclined surface extending obliquely downward toward a central axis line extending vertically in the vertical direction of the housing. A second inclined surface that is located vertically below and extends obliquely upward toward the central axis, and a drift portion provided on the inner peripheral surface, wherein the first inclined surface and the horizontal surface are The acute angle formed is smaller than the acute angle formed by the second inclined surface and the horizontal plane, and the carrier gas supplied from the carrier gas supply unit is directed along the second inclined surface in the central axis direction. And a step of guiding the pulverized solid fuel returning from the classifying unit to the rotary table in the central axis direction along the first inclined surface.
 本発明によれば、粉砕機の筐体内で発生する上昇気流及び下降気流を好適に筐体の中心方向へ案内することで、筐体内における圧力損失をより抑制することができる。
 また、本発明によれば、粉砕された固体燃料を分級部まで好適に搬送することができる。
According to the present invention, by appropriately guiding the ascending airflow and the descending airflow generated in the casing of the crusher toward the center of the casing, it is possible to further suppress the pressure loss in the casing.
Further, according to the present invention, the crushed solid fuel can be suitably conveyed to the classification section.
本発明の実施形態に係るボイラシステムの概略構成図である。It is a schematic block diagram of the boiler system which concerns on embodiment of this invention. 図1のミルの模式的な縦断面図である。It is a typical longitudinal cross-sectional view of the mill of FIG. 図2のミルに設けられた偏流板の模式的な縦断面図である。It is a typical longitudinal cross-sectional view of the deflector plate provided in the mill of FIG. 図2のミルの粉砕部及び偏流板の斜視図である。FIG. 3 is a perspective view of a crushing unit and a deflector plate of the mill of FIG. 2. 図2のミルの粉砕ローラ及び偏流板の模式的な平面図である。FIG. 3 is a schematic plan view of a crushing roller and a deflector plate of the mill shown in FIG. 2. 図3の偏流板の模式的な正面図である。It is a schematic front view of the deflector plate of FIG.
 以下に、本発明に係る粉砕機及びボイラシステム並びに粉砕機の運転方法の一実施形態について、図面を参照して説明する。
 本実施形態に係るボイラシステム1は、図1に示すように、固体燃料粉砕装置100とボイラ200とを備えている。
 固体燃料粉砕装置100は、一例として石炭やバイオマス燃料等の固体燃料を粉砕し、微粉燃料を生成してボイラ200のバーナ部220へ供給する装置である。ボイラシステム1は、1台の固体燃料粉砕装置100を備えるものであるが、1台のボイラ200の複数のバーナ部220のそれぞれに対応する複数台の固体燃料粉砕装置100を備えるシステムとしてもよい。
Hereinafter, an embodiment of a crusher, a boiler system, and a crusher operating method according to the present invention will be described with reference to the drawings.
As shown in FIG. 1, the boiler system 1 according to the present embodiment includes a solid fuel crushing device 100 and a boiler 200.
The solid fuel crushing device 100 is, for example, a device that crushes solid fuel such as coal or biomass fuel to generate pulverized fuel and supplies the pulverized fuel to the burner unit 220 of the boiler 200. The boiler system 1 includes one solid fuel crushing device 100, but may be a system including a plurality of solid fuel crushing devices 100 corresponding to each of the plurality of burner units 220 of one boiler 200. ..
 本実施形態の固体燃料粉砕装置100は、ミル(粉砕機)10と、給炭機20と、送風部30と、状態検出部40と、制御部50とを備えている。
 なお、本実施形態では、上方とは鉛直上側の方向を、上部や上面などの“上”とは鉛直上側の部分を示している。また同様に“下”とは鉛直下側の部分を示している。
The solid fuel crushing apparatus 100 of the present embodiment includes a mill (crusher) 10, a coal feeder 20, an air blower 30, a state detector 40, and a controller 50.
In the present embodiment, “upper” means a vertically upper direction, and “upper” such as an upper part and an upper surface means a vertically upper part. Similarly, “below” indicates the vertically lower part.
 ボイラ200に供給する石炭やバイオマス燃料等の固体燃料を微粉状の固体燃料である微粉燃料へと粉砕するミル10は、石炭のみを粉砕する形式であっても良いし、バイオマス燃料のみを粉砕する形式であっても良いし、石炭とともにバイオマス燃料を粉砕する形式であってもよい。
 ここで、バイオマス燃料とは、再生可能な生物由来の有機性資源であり、例えば、間伐材、廃材木、流木、草類、廃棄物、汚泥、タイヤ及びこれらを原料としたリサイクル燃料(ペレットやチップ)などであり、ここに提示したものに限定されることはない。バイオマス燃料は、バイオマスの成育過程において二酸化炭素を取り込むことから、地球温暖化ガスとなる二酸化炭素を排出しないカーボンニュートラルとされるため、その利用が種々検討されている。
The mill 10 for pulverizing solid fuel such as coal or biomass fuel supplied to the boiler 200 into pulverized solid fuel, which is pulverized solid fuel, may be of a type that pulverizes only coal or only biomass fuel. It may be in a form or may be a form in which biomass fuel is crushed together with coal.
Here, the biomass fuel is an organic resource derived from renewable organisms, and includes, for example, thinned wood, waste timber, driftwood, grass, waste, sludge, tires, and recycled fuel (pellets and Chip) and the like, and is not limited to those presented here. Biomass fuel is carbon-neutral that does not emit carbon dioxide, which is a global warming gas, because it takes in carbon dioxide during the growth process of biomass. Therefore, various uses thereof have been studied.
 ミル10は、図1及び図2に示すように、外殻を為すハウジング(筐体)11と、固体燃料が載置される回転テーブル(粉砕テーブル)12と、ローラ13(粉砕ローラ)と、駆動部14と、分級部16と、燃料供給部17と、分級部16を回転駆動させるモータ18とを備えている。本実施形態では、回転テーブル12とローラ13とによって、粉砕部を構成している。
 ハウジング11は、鉛直方向に延びる筒状に形成されるとともに、回転テーブル12とローラ13と分級部16と、燃料供給部17とを収容する筐体である。ハウジング11の内周面11aは、略円筒状であり、ハウジング11の上下方向に延びる中心軸線C(図2参照)は、後述する回転テーブル12及び分級部16の中心軸線C(回転軸線)と略一致している。
 ハウジング11の天井部42の中央部には、燃料供給部17が取り付けられている。この燃料供給部17は、バンカ21から導かれた固体燃料をハウジング11内に供給するものであり、ハウジング11の中心位置に上下方向に沿って配置され、下端部がハウジング11内部まで延設されている。
As shown in FIGS. 1 and 2, the mill 10 includes a housing (housing) 11 forming an outer shell, a rotary table (crushing table) 12 on which a solid fuel is placed, a roller 13 (crushing roller), The driving unit 14, the classifying unit 16, the fuel supply unit 17, and the motor 18 that rotationally drives the classifying unit 16 are provided. In the present embodiment, the rotary table 12 and the roller 13 form a crushing unit.
The housing 11 is a housing that is formed in a cylindrical shape extending in the vertical direction and that houses the rotary table 12, the rollers 13, the classifying unit 16, and the fuel supply unit 17. The inner peripheral surface 11a of the housing 11 has a substantially cylindrical shape, and the center axis C (see FIG. 2) of the housing 11 extending in the vertical direction is the same as the center axis C (rotation axis) of the rotary table 12 and the classifying unit 16 described later. It almost agrees.
The fuel supply unit 17 is attached to the central portion of the ceiling portion 42 of the housing 11. The fuel supply unit 17 supplies the solid fuel introduced from the bunker 21 into the housing 11, is arranged at the center position of the housing 11 along the vertical direction, and the lower end portion is extended to the inside of the housing 11. ing.
 ハウジング11の底面部41付近には駆動部14が設置され、この駆動部14から伝達される駆動力により回転する回転テーブル12が回転自在に配置されている。
 回転テーブル12は、平面視円形の部材(すなわち、円盤状の部材)であり、燃料供給部17の下端部が対向するように配置されている。また、回転テーブル12は、外周端がハウジング11の内周面11aと所定距離離間するように配置されている。回転テーブル12の上面は、例えば、中心部が低く、外側に向けて高くなるような傾斜形状をなし、外周部が上方に曲折した形状をなしていてもよい。燃料供給部17は、固体燃料(本実施形態では例えば石炭やバイオマス燃料)を上方から下方の回転テーブル12に向けて供給する。回転テーブル12は供給された固体燃料をローラ13との間で粉砕する。
The drive unit 14 is installed near the bottom surface 41 of the housing 11, and the rotary table 12 that is rotated by the drive force transmitted from the drive unit 14 is rotatably arranged.
The rotary table 12 is a circular member in plan view (that is, a disk-shaped member), and is arranged so that the lower ends of the fuel supply units 17 face each other. Further, the rotary table 12 is arranged such that the outer peripheral end thereof is separated from the inner peripheral surface 11 a of the housing 11 by a predetermined distance. The upper surface of the rotary table 12 may have, for example, a slanted shape such that the central portion is low and the height is high toward the outside, and the outer peripheral portion is bent upward. The fuel supply unit 17 supplies solid fuel (for example, coal or biomass fuel in the present embodiment) from the upper side to the lower rotary table 12. The rotary table 12 crushes the supplied solid fuel between the rotary table 12 and the roller 13.
 固体燃料が燃料供給部17から回転テーブル12の中央へ向けて投入されると、回転テーブル12の回転による遠心力によって固体燃料は回転テーブル12の外周側へと導かれ、ローラ13との間に挟み込まれて粉砕される。粉砕された固体燃料は粉砕固体燃料となり、搬送用ガス流路(搬送用ガス供給部。以降は、一次空気流路と記載する)100aから導かれた搬送用ガス(以降は、一次空気と記載する)によって上方へと巻き上げられ、分級部16へと導かれる。一次空気流路100aは、回転テーブル12の下方で、ハウジング11と接続する一次空気ダクト27(図2参照)を介して、一次空気をハウジング11内に供給している。回転テーブル12の外周側には、一次空気流路100aから流入する一次空気をハウジング11内の回転テーブル12の上方の空間に流出させる吹出口25(図2参照)が設けられている。吹出口25は、回転テーブル12の外周端とハウジング11の内周面11aとの間の隙間によって構成されている。吹出口25の上部にはベーン26(図2参照)が設置されており、吹出口25から吹き出した一次空気に旋回力を与える。ベーン26により旋回力が与えられた一次空気は、旋回する速度成分を有する気流となって、回転テーブル12上で粉砕された固体燃料をハウジング11内の上方の分級部16へと導く。なお、一次空気に混合した固体燃料の粉砕物のうち、所定粒径より大きいものは分級部16により分級されて、または、分級部16まで到達することなく、落下して回転テーブル12に戻されて、再び粉砕される。 When the solid fuel is fed from the fuel supply unit 17 toward the center of the rotary table 12, the solid fuel is guided to the outer peripheral side of the rotary table 12 by the centrifugal force due to the rotation of the rotary table 12, and is brought into contact with the roller 13. It is sandwiched and crushed. The crushed solid fuel becomes crushed solid fuel, and is a carrier gas (hereinafter, referred to as primary air) introduced from a carrier gas channel (carrier gas supply unit; hereinafter referred to as primary air channel) 100a. Is wound up upward by the () and is guided to the classifying unit 16. The primary air flow path 100a supplies primary air into the housing 11 below the turntable 12 via a primary air duct 27 (see FIG. 2) connected to the housing 11. An air outlet 25 (see FIG. 2) is provided on the outer peripheral side of the rotary table 12 to let the primary air flowing in from the primary air flow path 100a flow into the space above the rotary table 12 in the housing 11. The outlet 25 is formed by a gap between the outer peripheral end of the rotary table 12 and the inner peripheral surface 11 a of the housing 11. A vane 26 (see FIG. 2) is installed above the blowout port 25, and gives a swirling force to the primary air blown out from the blowout port 25. The primary air to which the swirling force is given by the vane 26 becomes an air flow having a swirling velocity component, and guides the solid fuel crushed on the rotary table 12 to the upper classification section 16 in the housing 11. Among the pulverized solid fuel particles mixed with the primary air, those having a particle size larger than a predetermined particle size are classified by the classifying unit 16 or are dropped onto the rotary table 12 without reaching the classifying unit 16. And crushed again.
 ローラ13は、燃料供給部17から回転テーブル12に供給された固体燃料を粉砕する回転体である。ローラ13は、回転テーブル12の上面に押圧されて回転テーブル12と協働して固体燃料を粉砕する。
 図1では、ローラ13が代表して1つのみ示されているが、回転テーブル12の上面を押圧するように、回転テーブル12の周方向に一定の間隔を空けて、複数のローラ13が対向して配置される。本実施形態では、図5に示すように、外周部上に120°の角度間隔を空けて、3つのローラ13が周方向に均等に配置される例について説明する。3つのローラ13が回転テーブル12の上面と接する部分(押圧する部分)は、回転テーブル12の回転中心からの距離が等距離となる。なお、ローラの数は3つに限定されず、2つ以下であってもよく、また、4つ以上であってもよい。
 また、3つのローラ13の周方向の間に形成された3つの空間には、各々、偏流板60(偏流部)が設けられている。偏流板60の詳細については、後述する。
The roller 13 is a rotating body that pulverizes the solid fuel supplied from the fuel supply unit 17 to the turntable 12. The roller 13 is pressed against the upper surface of the rotary table 12 and cooperates with the rotary table 12 to crush the solid fuel.
In FIG. 1, only one roller 13 is shown as a representative, but a plurality of rollers 13 are opposed to each other at regular intervals in the circumferential direction of the rotary table 12 so as to press the upper surface of the rotary table 12. Will be placed. In the present embodiment, as shown in FIG. 5, an example will be described in which three rollers 13 are evenly arranged in the circumferential direction at an angular interval of 120° on the outer peripheral portion. The portions where the three rollers 13 are in contact with the upper surface of the rotary table 12 (the portions that are pressed) have the same distance from the center of rotation of the rotary table 12. The number of rollers is not limited to three, and may be two or less, or four or more.
A drift plate 60 (a drift portion) is provided in each of the three spaces formed between the three rollers 13 in the circumferential direction. Details of the deflector plate 60 will be described later.
 ローラ13は、ジャーナルヘッド(支持部)45によって、上下に揺動可能となっており、回転テーブル12の上面に対して接近離間自在に支持されている。ローラ13は、外周面が回転テーブル12の上面に接触した状態で、回転テーブル12が回転すると、回転テーブル12から回転力を受けて連れ回りするようになっている。燃料供給部17から固体燃料が供給されると、ローラ13と回転テーブル12との間で固体燃料が押圧されて粉砕されて、粉砕固体燃料となる。 The roller 13 is swingable up and down by a journal head (support portion) 45, and is supported by the upper surface of the rotary table 12 so that the roller 13 can approach and separate freely. When the rotary table 12 rotates while the outer peripheral surface of the roller 13 is in contact with the upper surface of the rotary table 12, the roller 13 receives the rotational force from the rotary table 12 and rotates together. When the solid fuel is supplied from the fuel supply unit 17, the solid fuel is pressed between the roller 13 and the rotary table 12 and is crushed to be crushed solid fuel.
 ジャーナルヘッド45の支持アーム47は、その中間部が水平方向に延在する支持軸48によって支持されている。すなわち、支持アーム47は、ハウジング11の側面部に支持軸48を中心としてローラ上下方向に揺動可能に支持されている。また、支持アーム47の鉛直上側にある上端部には、押圧装置49が設けられている。押圧装置49は、ハウジング11に固定され、ローラ13を回転テーブル12に押し付けるように、支持アーム47等を介してローラ13に荷重を付与する。 The support arm 47 of the journal head 45 is supported by a support shaft 48 having an intermediate portion extending horizontally. That is, the support arm 47 is supported on the side surface of the housing 11 so as to be swingable in the vertical direction of the roller about the support shaft 48. A pressing device 49 is provided on the upper end of the support arm 47 on the vertically upper side. The pressing device 49 is fixed to the housing 11 and applies a load to the roller 13 via the support arm 47 or the like so as to press the roller 13 against the rotary table 12.
 駆動部14は、回転テーブル12に駆動力を伝達し、回転テーブル12を中心軸線C(図2参照)回りに回転させる装置である。駆動部14は、回転テーブル12を回転させる駆動力を発生する。
 分級部16は、ハウジング11の上部に設けられ、中空状の略逆円錐形状の外形を有している。分級部16は、その外周位置に上下方向に延在する複数の分級羽根16aを備えている。各分級羽根16aは、分級部16の中心軸線C(図2参照)周りに所定の間隔(均等間隔)を空けて並列に設けられている。また、分級部16は、ローラ13により粉砕された粉砕固体燃料を所定粒径(例えば、石炭では70~100μm)よりも大きいもの(以下、所定粒径を超える粉砕された固体燃料を「粗粉燃料」という。)と所定粒径以下のもの(以下、所定粒径以下に粉砕された固体燃料を「微粉燃料」という。)に分級する装置である。分級部16のうち、全体が回転することによって分級する回転式分級機は、ロータリセパレータとも称されている。分級部16に対しては、モータ18によって回転駆動力が与えられる。
The drive unit 14 is a device that transmits a driving force to the rotary table 12 and rotates the rotary table 12 around the central axis C (see FIG. 2). The drive unit 14 generates a driving force that rotates the turntable 12.
The classifying portion 16 is provided on the upper part of the housing 11 and has a hollow, substantially inverted conical shape. The classifying unit 16 is provided with a plurality of classifying blades 16a extending in the vertical direction at the outer peripheral position thereof. The classifying blades 16a are provided in parallel around the central axis C (see FIG. 2) of the classifying unit 16 at predetermined intervals (equal intervals). Further, the classifying unit 16 has a size of the crushed solid fuel crushed by the roller 13 that is larger than a predetermined particle size (for example, 70 to 100 μm in the case of coal) (hereinafter, crushed solid fuel having a size larger than the predetermined particle size is “coarse powder”). This is a device for classifying into "fuel") and particles having a predetermined particle size or less (hereinafter, solid fuel crushed to have a particle size of the predetermined particle size or less is referred to as "fine powder fuel"). The rotary classifier that classifies by rotating the entire classification unit 16 is also called a rotary separator. A rotation driving force is applied to the classifying unit 16 by the motor 18.
 分級部16に到達した固体燃料の粉砕物(粉砕固体燃料)は、分級羽根16aの回転により生じる遠心力と、一次空気の気流による向心力との相対的なバランスにより、大きな径の粗粉燃料は、分級羽根16aによって叩き落とされ、回転テーブル12へと戻されて再び粉砕され、微粉燃料はハウジング11の天井部42にある出口19に導かれる。
 分級部16によって分級された微粉燃料は、出口19から供給流路100bへ排出され、一次空気とともに搬送される。供給流路100bへ流出した微粉燃料は、ボイラ200のバーナ部220へ供給される。
The solid fuel pulverized product (pulverized solid fuel) that has reached the classification unit 16 has a large diameter of coarse powder fuel due to the relative balance between the centrifugal force generated by the rotation of the classification blade 16a and the centripetal force generated by the primary air flow. , Is blown off by the classification blade 16a, returned to the rotary table 12 and pulverized again, and the fine powder fuel is guided to the outlet 19 in the ceiling portion 42 of the housing 11.
The pulverized fuel classified by the classification unit 16 is discharged from the outlet 19 to the supply flow path 100b and is transported together with the primary air. The pulverized fuel flowing out to the supply flow path 100b is supplied to the burner section 220 of the boiler 200.
 燃料供給部17は、ハウジング11の上端を貫通するように上下方向に沿って下端部がハウジング11内部まで延設されて取り付けられ、上部から投入される固体燃料を回転テーブル12の略中央領域に供給する。燃料供給部17は、給炭機20から固体燃料が供給される。 The fuel supply unit 17 is attached such that the lower end extends vertically into the housing 11 so as to penetrate the upper end of the housing 11 and the solid fuel injected from the upper portion is substantially centered on the rotary table 12. Supply. The fuel supply unit 17 is supplied with solid fuel from the coal feeder 20.
 給炭機20は、バンカ21と、搬送部22と、モータ23とを備える。搬送部22は、モータ23から与えられる駆動力によってバンカ21の直下にあるダウンスパウト部24の下端部から排出される固体燃料を搬送し、ミル10の燃料供給部17に導かれる。
 通常、ミル10の内部には、粉砕した固体燃料である微粉燃料を搬送するための一次空気が供給されて、圧力が高くなっている。バンカ21の直下にある上下方向に延在する管であるダウンスパウト部24には内部に燃料が積層状態で保持されていて、ダウンスパウト部24内に積層された燃料層により、ミル10側の一次空気と微粉燃料が逆流入しないようなシール性を確保している。
ミル10へ供給する固体燃料の供給量は、搬送部22のベルトコンベアのベルト速度で調整されてもよい。
The coal feeder 20 includes a bunker 21, a transfer unit 22, and a motor 23. The transport unit 22 transports the solid fuel discharged from the lower end portion of the down spout unit 24 located immediately below the bunker 21 by the driving force applied from the motor 23, and is guided to the fuel supply unit 17 of the mill 10.
Usually, the inside of the mill 10 is supplied with primary air for carrying the pulverized solid fuel, which is a pulverized solid fuel, to increase the pressure. Fuel is held in a stacked state inside the down spout portion 24, which is a vertically extending pipe just below the bunker 21, and the fuel layer stacked inside the down spout portion 24 causes A sealing property is ensured so that the primary air and pulverized fuel do not flow back.
The supply amount of the solid fuel supplied to the mill 10 may be adjusted by the belt speed of the belt conveyor of the transport unit 22.
 送風部30は、ローラ13により粉砕された固体燃料を乾燥させるとともに分級部16へ供給するための一次空気をハウジング11の内部へ送風する装置である。
 送風部30は、ハウジング11へ送風される一次空気を適切な温度に調整するために、熱ガス送風機30aと、冷ガス送風機30bと、熱ガスダンパ30cと、冷ガスダンパ30dとを備えている。
The blower unit 30 is a device that dries the solid fuel crushed by the rollers 13 and blows primary air for supplying to the classifying unit 16 into the housing 11.
The blower unit 30 includes a hot gas blower 30a, a cold gas blower 30b, a hot gas damper 30c, and a cold gas damper 30d in order to adjust the primary air blown to the housing 11 to an appropriate temperature.
 熱ガス送風機30aは、空気予熱器などの熱交換器(加熱器)から供給される熱せられた一次空気を送風する送風機である。熱ガス送風機30aの下流側には熱ガスダンパ30c(第1送風部)が設けられている。熱ガスダンパ30cの開度は制御部50によって制御される。熱ガスダンパ30cの開度によって熱ガス送風機30aが送風する一次空気の流量が決定する。 The hot gas blower 30a is a blower that blows heated primary air supplied from a heat exchanger (heater) such as an air preheater. A hot gas damper 30c (first air blower) is provided on the downstream side of the hot gas blower 30a. The opening of the hot gas damper 30c is controlled by the controller 50. The flow rate of the primary air blown by the hot gas blower 30a is determined by the opening degree of the hot gas damper 30c.
 冷ガス送風機30bは、常温の外気である一次空気を送風する送風機である。冷ガス送風機30bの下流側には冷ガスダンパ30dが設けられている。冷ガスダンパ30dの開度は制御部50によって制御される。冷ガスダンパ30dの開度によって冷ガス送風機30bが送風する一次空気の流量が決定する。
 一次空気の流量は、熱ガス送風機30aが送風する一次空気の流量と冷ガス送風機30bが送風する一次空気の流量の合計の流量となり、一次空気の温度は、熱ガス送風機30aが送風する一次空気と冷ガス送風機30bが送風する一次空気の混合比率で決まり、制御部50によって制御される。
 また、熱ガス送風機30aが送風する一次空気に、ガス再循環通風機を介して電気集塵機など環境装置を通過したボイラ200から排出された燃焼ガスの一部を導き、混合気とすることで、一次空気流路100aから流入する一次空気の酸素濃度を調整してもよい。
The cold gas blower 30b is a blower that blows primary air that is the outside air at room temperature. A cold gas damper 30d is provided on the downstream side of the cold gas blower 30b. The opening degree of the cold gas damper 30d is controlled by the control unit 50. The flow rate of the primary air blown by the cold gas blower 30b is determined by the opening degree of the cold gas damper 30d.
The flow rate of the primary air is the sum of the flow rate of the primary air blown by the hot gas blower 30a and the flow rate of the primary air blown by the cold gas blower 30b, and the temperature of the primary air is the primary air blown by the hot gas blower 30a. Is determined by the mixing ratio of the primary air blown by the cold gas blower 30b and controlled by the control unit 50.
In addition, by guiding a part of the combustion gas discharged from the boiler 200 that has passed through the environmental device such as the electric dust collector through the gas recirculation blower to the primary air blown by the hot gas blower 30a to form a mixture, You may adjust the oxygen concentration of the primary air which flows in from the primary air flow path 100a.
 本実施形態では、ハウジング11の状態検出部40により、計測または検出したデータを制御部50に送信する。本実施形態の状態検出部40は、例えば、差圧計測手段であり、一次空気流路100aからミル10内部へ一次空気が流入する部分及びミル10内部から供給流路100bへ一次空気及び微粉燃料が排出する出口19との差圧をミル10内の差圧として計測する。分級部16の分級性能により、ミル10内部を循環する固体燃料の微粉燃料の循環量の増減とこれに対するミル10内の差圧の上昇低減が変化する。すなわち、ミル10の内部に供給する固体燃料に対して、出口19から排出させる微粉燃料を調整して管理することができるので、微粉燃料の粒度がバーナ部220の燃焼性に影響しない範囲で、多くの微粉燃料をボイラ200に設けられたバーナ部220に供給することができる。
 また、本実施形態の状態検出部40は、例えば、温度計測手段であり、ローラ13により粉砕された固体燃料を分級部16へ供給するための一次空気を、ハウジング11の内部に送風する送風部30により温度調整される一次空気のハウジング11での温度を検出して、上限温度を超えないように送風部30を制御する。なお、一次空気は、ハウジング11内において、粉砕物を乾燥しながら搬送することによって冷却されるので、ハウジング11の上部空間の温度は、例えば約60~80度程度となる。
In the present embodiment, the state detection unit 40 of the housing 11 transmits the measured or detected data to the control unit 50. The state detection unit 40 of the present embodiment is, for example, a differential pressure measurement unit, and a portion where primary air flows from the primary air flow passage 100a into the mill 10 and the supply air flow passage 100b from the inside of the mill 10 to the primary air and the fine powder fuel. The differential pressure between the outlet 19 and the outlet 19 is measured as the differential pressure in the mill 10. Due to the classification performance of the classification unit 16, the increase/decrease in the circulation amount of the fine powder fuel of the solid fuel circulating inside the mill 10 and the increase/decrease in the differential pressure in the mill 10 corresponding to this change. That is, since it is possible to adjust and manage the fine powder fuel discharged from the outlet 19 with respect to the solid fuel supplied to the inside of the mill 10, the particle size of the fine powder fuel does not affect the combustibility of the burner section 220. A large amount of pulverized fuel can be supplied to the burner section 220 provided in the boiler 200.
Further, the state detection unit 40 of the present embodiment is, for example, a temperature measurement unit, and a blower unit that blows the primary air for supplying the solid fuel crushed by the rollers 13 to the classification unit 16 into the housing 11. The temperature of the primary air whose temperature is adjusted by 30 is detected in the housing 11, and the blower unit 30 is controlled so as not to exceed the upper limit temperature. Since the primary air is cooled in the housing 11 by transporting the pulverized material while drying it, the temperature of the upper space of the housing 11 is, for example, about 60 to 80 degrees.
 制御部50は、固体燃料粉砕装置100の各部を制御する装置である。制御部50は、例えば、駆動部14に駆動指示を伝達することによりミル10の運転に対する回転テーブル12の回転を制御することができる。制御部50は、例えば分級部16のモータ18へ駆動指示を伝達して回転数を制御することで、分級性能を調整することにより、ミル10内の差圧を適正化して微粉燃料の供給を安定化させることができる。また、制御部50は、例えば給炭機20のモータ23へ駆動指示を伝達することにより、搬送部22が固体燃料を搬送して燃料供給部17へ供給する固体燃料の供給量を調整することができる。また、制御部50は、開度指示を送風部30に伝達することにより、熱ガスダンパ30c及び冷ガスダンパ30dの開度を制御して一次空気の流量と温度を制御することができる。 The control unit 50 is a device that controls each unit of the solid fuel crushing apparatus 100. The control unit 50 can control the rotation of the turntable 12 with respect to the operation of the mill 10 by transmitting a drive instruction to the drive unit 14, for example. The control unit 50 adjusts the classification performance by transmitting a drive instruction to the motor 18 of the classifying unit 16 to control the number of revolutions, thereby optimizing the differential pressure in the mill 10 and supplying the fine powder fuel. Can be stabilized. In addition, the control unit 50 adjusts the supply amount of the solid fuel supplied by the transfer unit 22 to the fuel supply unit 17 by transmitting the drive instruction to the motor 23 of the coal feeder 20, for example. You can Further, the control unit 50 can control the flow rate and temperature of the primary air by transmitting the opening degree instruction to the blower unit 30 to control the opening degree of the hot gas damper 30c and the cold gas damper 30d.
 制御部50は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。 The control unit 50 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium. A series of processes for realizing various functions is stored in a storage medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing/arithmetic processing. As a result, various functions are realized. The program is installed in a ROM or other storage medium in advance, provided in a state of being stored in a computer-readable storage medium, or delivered via wired or wireless communication means. Etc. may be applied. The computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
 次に、固体燃料粉砕装置100から供給される微粉燃料を用いて燃焼を行って蒸気を発生させるボイラ200について説明する。
 ボイラ200は、火炉210とバーナ部220とを備えている。
Next, the boiler 200 that combusts using the fine fuel supplied from the solid fuel pulverizer 100 to generate steam will be described.
The boiler 200 includes a furnace 210 and a burner section 220.
 バーナ部220は、供給流路100bから供給される微粉燃料を含む一次空気と、熱交換器(図示省略)から供給される二次空気とを用いて微粉燃料を燃焼させて火炎を形成する装置である。微粉燃料の燃焼は火炉210内で行われ、高温の燃焼ガスは、蒸発器,過熱器,エコノマイザなどの熱交換器(図示省略)を通過した後にボイラ200の外部に排出される。 The burner unit 220 uses a primary air containing pulverized fuel supplied from the supply passage 100b and a secondary air supplied from a heat exchanger (not shown) to combust the pulverized fuel to form a flame. Is. Combustion of the pulverized fuel is performed in the furnace 210, and the high temperature combustion gas is discharged to the outside of the boiler 200 after passing through a heat exchanger (not shown) such as an evaporator, a superheater, and an economizer.
 ボイラ200から排出された燃焼ガスは、環境装置(脱硝装置、電気集塵機などで図示省略)で所定の処理を行うとともに、空気予熱器などの熱交換器(図示省略)で外気との熱交換が行われ、誘引通風機(図示省略)を介して煙突(図示省略)へと導かれて大気へと放出される。熱交換器において燃焼ガスとの熱交換により加熱された外気は、前述した熱ガス送風機30aに送られる。
 ボイラ200の各熱交換器への給水は、エコノマイザ(図示省略)において加熱された後に、蒸発器(図示省略)及び過熱器(図示省略)によって更に加熱されて高温高圧の蒸気が生成され、蒸気タービン(図示省略)へと送られて発電機(図示省略)を回転駆動して発電が行われる。
The combustion gas discharged from the boiler 200 is subjected to a predetermined treatment by an environmental device (not shown in a denitration device, an electric dust collector, etc.), and heat exchange with outside air is performed by a heat exchanger (not shown) such as an air preheater. It is carried out, is guided to a chimney (not shown) through an induction fan (not shown), and is discharged to the atmosphere. The outside air heated by heat exchange with the combustion gas in the heat exchanger is sent to the hot gas blower 30a described above.
Water supplied to each heat exchanger of the boiler 200 is heated in an economizer (not shown) and then further heated by an evaporator (not shown) and a superheater (not shown) to generate high-temperature high-pressure steam. It is sent to a turbine (not shown) and a generator (not shown) is rotationally driven to generate electricity.
 次に、偏流板60について、図3から図6を用いて詳細に説明する。
 図4に示すように、偏流板60は、隣接するローラ13の間であってローラ13と同じ高さ位置に設けられている。同じ高さ位置とは、回転テーブル12に対して、偏流板60の下端(下端縁65a)とローラ13の下端(回転テーブル面との最接近部分)が所定範囲内で一致する高さ位置にあることである。また、所定範囲は、回転テーブル12の周囲にある吹出口25の上端25aの高さ位置に対して設定されてもよい。
 詳細には、偏流板60は、図5に示すように、ハウジング11の周方向に沿って3つのローラ13の間に形成された3つの空間に、各々、1つずつ設けられている。すなわち、本実施形態では、偏流板60がハウジング11の内周面11aに3つ設けられており、各偏流板60は、ハウジング11の周方向に沿って等間隔に配置されている。また、各偏流板60は、周方向に沿って所定の長さ延在しており、ハウジング11の内周面11aに固定されている。なお、図4では、図示の関係上、ローラ13及び偏流板60を1つずつ図示している。また、3つの偏流板60は、同様の構成であるため、以下ではそのうちの1つについて説明し、他の構成については説明を省略する。
Next, the deflector plate 60 will be described in detail with reference to FIGS. 3 to 6.
As shown in FIG. 4, the drift plate 60 is provided between the adjacent rollers 13 and at the same height position as the rollers 13. The same height position is a height position where the lower end (lower end edge 65a) of the drift plate 60 and the lower end of the roller 13 (closest portion to the rotary table surface) coincide with each other within a predetermined range with respect to the rotary table 12. It is. Further, the predetermined range may be set with respect to the height position of the upper end 25a of the outlet 25 around the turntable 12.
More specifically, as shown in FIG. 5, the deflector plates 60 are provided one by one in each of the three spaces formed between the three rollers 13 along the circumferential direction of the housing 11. That is, in the present embodiment, three deflector plates 60 are provided on the inner peripheral surface 11 a of the housing 11, and the deflector plates 60 are arranged at equal intervals along the circumferential direction of the housing 11. Further, each of the drift plates 60 extends a predetermined length along the circumferential direction and is fixed to the inner peripheral surface 11 a of the housing 11. Note that, in FIG. 4, one roller 13 and one deflector plate 60 are shown for the sake of illustration. Since the three deflector plates 60 have the same configuration, only one of them will be described below, and the description of the other components will be omitted.
 偏流板60は、図3に示すように、ハウジング11の内周面11aから中心軸線C側へ突出する本体部61と、ハウジング11の内周面11aに固定される固定部62とを備えている。本体部61は、ハウジング11の内周面11aからハウジング11の中心軸線Cに向かって斜め下方に延びる第1傾斜面64と、第1傾斜面64よりも下方に位置して中心軸線Cに向かって斜め上方に延びる第2傾斜面65と、第1傾斜面64の側端縁64b(周方向の端縁)と第2傾斜面65の側端縁65bとを連結する2つの第3傾斜面66と、を有し、長手方向の断面が略三角形状に形成されている。すなわち、本体部61は、中心軸線Cに向かうほど周方向の長さが短くなるテーパ形状をしている。また、第2傾斜面65の表面は、耐摩耗材で形成された耐摩耗部63によって覆われている。なお、図4及び図6では、図示の関係上、固定部62を省略している。 As shown in FIG. 3, the deflector plate 60 includes a main body portion 61 protruding from the inner peripheral surface 11a of the housing 11 toward the central axis C and a fixing portion 62 fixed to the inner peripheral surface 11a of the housing 11. There is. The main body 61 includes a first inclined surface 64 that extends obliquely downward from the inner peripheral surface 11 a of the housing 11 toward the central axis C of the housing 11, and a lower portion of the first inclined surface 64 that faces the central axis C. And a second inclined surface 65 that extends obliquely upward and two third inclined surfaces that connect the side edge 64b (circumferential edge) of the first inclined surface 64 and the side edge 65b of the second inclined surface 65. 66, and the cross section in the longitudinal direction is formed in a substantially triangular shape. That is, the main body 61 has a tapered shape in which the length in the circumferential direction becomes shorter toward the central axis C. The surface of the second inclined surface 65 is covered with a wear resistant portion 63 formed of a wear resistant material. 4 and 6, the fixing portion 62 is omitted for the sake of illustration.
 回転テーブル12に対して、偏流板60の下端(下端縁65a)とローラ13の下端(回転テーブル面との最接近部分)は、所定範囲内で一致する高さ位置にあるとしている。この所定範囲は、回転テーブル12の周囲にある吹出口25の上端25aの高さ位置に対して設定される。詳細には、偏流板60は、第2傾斜面65の下端(後述する下端縁65a)が、吹出口25の上端25aの高さ位置に対して回転テーブル12の半径の25%の長さと同じ長さ分上方の高さ位置と、吹出口25の上端25aの高さ位置に対して回転テーブル12の半径の25%の長さと同じ長さ分下方の高さ位置との間の高さ位置となるように、ハウジング11の内周面11aに固定されている。すなわち、回転テーブル12の半径が、例えば1mの場合には、吹出口25の上端25aを基準として、上方へ25cmの高さ位置から下方へ25cmの高さ位置との間の範囲に第2傾斜面65の下端が位置するように、偏流板60は配置される。なお、吹出口25の上端25aは、吹出口25に面する回転テーブル12の上端と同じ高さ位置となる。 With respect to the rotary table 12, the lower end of the deflector plate 60 (lower edge 65a) and the lower end of the roller 13 (the portion closest to the rotary table surface) are at the same height position within a predetermined range. This predetermined range is set with respect to the height position of the upper end 25a of the air outlet 25 around the rotary table 12. Specifically, in the deflector plate 60, the lower end (lower end edge 65a described later) of the second inclined surface 65 is the same as the length of 25% of the radius of the rotary table 12 with respect to the height position of the upper end 25a of the outlet 25. A height position between the height position above the length and the height position 25% of the radius of the rotary table 12 with respect to the height position of the upper end 25a of the air outlet 25 and the height position below the same length. It is fixed to the inner peripheral surface 11a of the housing 11 so that That is, when the radius of the turntable 12 is, for example, 1 m, the second inclination is set in a range between the height position of 25 cm upward and the height position of 25 cm downward with reference to the upper end 25 a of the outlet 25. The drift plate 60 is arranged so that the lower end of the surface 65 is located. The upper end 25a of the outlet 25 is at the same height as the upper end of the rotary table 12 facing the outlet 25.
 第1傾斜面64は、図4及び図5に示すように、ハウジング11の内周面11aの周方向に沿って延びる円弧状の上端縁64aと、上端縁64aの周方向の両端部からハウジング11の中心軸線C方向へ向かって斜め下方へ各々延びる2つの側端縁64bと、2つの側端縁64bの内端64ba同士を接続する円弧状の下端縁64cと、を有している。側端縁64bは、第3傾斜面66の上端縁66aと接続されている。また、下端縁64cは、第2傾斜面65の上端縁65cと接続されている。 As shown in FIGS. 4 and 5, the first inclined surface 64 includes an arc-shaped upper end edge 64a extending along the circumferential direction of the inner peripheral surface 11a of the housing 11, and both ends of the upper end edge 64a in the circumferential direction. It has two side end edges 64b each extending obliquely downward in the direction of the central axis C of 11 and an arcuate lower end edge 64c connecting the inner ends 64ba of the two side end edges 64b. The side edge 64b is connected to the upper edge 66a of the third inclined surface 66. Further, the lower edge 64c is connected to the upper edge 65c of the second inclined surface 65.
 第1傾斜面64は、図3に示すように、水平面Hに対して傾斜角度θ1を為す。傾斜角度θ1は、粉砕された固定燃料の安息角度以上であって、後述する傾斜角度θ2よりも小さい角度に設定される。具体的には、傾斜角度θ1は、例えば、35度以上であって、45度以下の角度に設定されている。なお、傾斜角度θ1は、例えば、偏流板60から回転テーブル12までの距離に応じて決められてもよい。 The first inclined surface 64 forms an inclination angle θ1 with respect to the horizontal plane H, as shown in FIG. The inclination angle θ1 is set to be equal to or greater than the repose angle of the pulverized fixed fuel and smaller than the inclination angle θ2 described later. Specifically, the inclination angle θ1 is set to, for example, 35 degrees or more and 45 degrees or less. The inclination angle θ1 may be determined according to the distance from the flow diverter plate 60 to the turntable 12, for example.
 また、第1傾斜面64の両側の端縁64bは、各々、回転テーブル12及びハウジング11の半径方向R(図5参照)に対して、中心軸線Cに近づくにつれて両側の端縁64bの内端64ba(中心軸線C側の端部)同士が近づくように傾斜している。換言すれば、第1傾斜面64の両側の端縁64bは、各々、回転テーブル12及びハウジング11の半径方向Rに対して、一方の側端縁64bの内端64baが他方の側端縁64bの内端64baに近づくように傾斜している。したがって、第1傾斜面64の上端縁64aの円弧が為す角度θ3は、下端縁64cの円弧が為す角度θ4よりも大きく形成されている。 Further, the end edges 64b on both sides of the first inclined surface 64 are respectively inner ends of the end edges 64b on both sides as approaching the central axis C with respect to the radial direction R (see FIG. 5) of the rotary table 12 and the housing 11. 64ba (the end on the side of the central axis C) are inclined so that they come close to each other. In other words, the end edges 64b on both sides of the first inclined surface 64 are respectively the inner end 64ba of one side end edge 64b and the other side end edge 64b with respect to the radial direction R of the rotary table 12 and the housing 11. Is inclined so as to approach the inner end 64ba of the. Therefore, the angle θ3 formed by the arc of the upper edge 64a of the first inclined surface 64 is formed larger than the angle θ4 formed by the arc of the lower edge 64c.
 第2傾斜面65は、図4及び図5に示すように、ハウジング11の内周面11aの周方向に沿って延びる円弧状の下端縁65aと、下端縁65aの周方向の両端部からハウジング11の中心軸線C方向へ向かって斜め上方へ各々延びる2つの側端縁65bと、2つの側端縁65bの内端65ba同士を接続する円弧状の上端縁65cと、を有している。側端縁65bは、第3傾斜面66の下端縁66bと接続されている。また、上端縁65cは、第1傾斜面64の下端縁64cと接続されている。 As shown in FIGS. 4 and 5, the second inclined surface 65 includes an arcuate lower end edge 65a extending along the circumferential direction of the inner peripheral surface 11a of the housing 11, and both ends of the lower end edge 65a in the circumferential direction. It has two side end edges 65b extending obliquely upward in the direction of the central axis C of 11 and an arcuate upper end edge 65c connecting the inner ends 65ba of the two side end edges 65b. The side edge 65b is connected to the lower edge 66b of the third inclined surface 66. The upper edge 65c is connected to the lower edge 64c of the first inclined surface 64.
 第2傾斜面65は、図3に示すように、水平面Hに対して傾斜角度θ2を為す。傾斜角度θ2は、傾斜角度θ1よりも大きい角度であって、一次空気を分級部16まで好適に到達させられる角度となるように設定される。具体的には、傾斜角度θ2は、例えば、45度よりも大きい角度であって、60度以下の角度に設定されている。一次空気を分級部16まで好適に到達させられる角度とは、運転実績、試験、シミュレーション等によって導出される。また、傾斜角度θ2は、例えば、偏流板60から分級部16までの距離に応じて決められてもよい。 The second inclined surface 65 makes an inclination angle θ2 with respect to the horizontal plane H, as shown in FIG. The inclination angle θ2 is larger than the inclination angle θ1 and is set so that the primary air can reach the classification unit 16 appropriately. Specifically, the inclination angle θ2 is, for example, an angle larger than 45 degrees and set to an angle of 60 degrees or less. The angle at which the primary air can be properly reached to the classifying unit 16 is derived from operating results, tests, simulations, and the like. Further, the inclination angle θ2 may be determined according to the distance from the drift plate 60 to the classifying unit 16, for example.
 また、第2傾斜面65の両側の端縁65bは、各々、回転テーブル12及びハウジング11の半径方向R(図5参照)に対して、中心軸線Cに近づくにつれて両側の端縁65bの内端65ba(中心軸線C側の端部)同士が近づくように傾斜している。換言すれば、第2傾斜面65の両側の端縁65bは、各々、回転テーブル12及びハウジング11の半径方向Rに対して、一方の側端縁65bの内端65baが他方の側端縁65bの内端65baに近づくように傾斜している。したがって、第2傾斜面65の下端縁65aの円弧が為す角度(第1傾斜面64の上端縁64aの円弧が為す角度θ3と同じ大きさの角度)は、上端縁65cの円弧が為す角度(第1傾斜面64の下端縁64cの円弧が為す角度θ4と同じ大きさの角度)よりも大きく形成されている。 Further, the end edges 65b on both sides of the second inclined surface 65 are respectively inner ends of the end edges 65b on both sides as approaching the central axis C with respect to the radial direction R (see FIG. 5) of the rotary table 12 and the housing 11. 65ba (the end on the side of the central axis C) are inclined so that they approach each other. In other words, the end edges 65b on both sides of the second inclined surface 65 are respectively the inner end 65ba of one side end edge 65b and the other side end edge 65b with respect to the radial direction R of the rotary table 12 and the housing 11. Is inclined so as to approach the inner end 65ba of the. Therefore, the angle formed by the arc of the lower edge 65a of the second inclined surface 65 (the angle having the same magnitude as the angle θ3 formed by the arc of the upper edge 64a of the first inclined surface 64) is the angle formed by the arc of the upper edge 65c ( The angle is the same as the angle θ4 formed by the arc of the lower edge 64c of the first inclined surface 64).
 第3傾斜面66は、図4に示すように、第1傾斜面64及び第2傾斜面65の側端縁64b,65b同士を接続する平面視で三角形状に形成されている。第3傾斜面66は、回転テーブル12及びハウジング11の半径方向Rに沿って延びる鉛直面に対して、傾斜するように形成される。換言すれば、第3傾斜面66は、角度θ3が角度θ4より大きくなるように形成されているため、半径方向Rに沿って延びる鉛直面に対して傾斜するように形成される。 As shown in FIG. 4, the third inclined surface 66 is formed in a triangular shape in plan view connecting the side end edges 64b, 65b of the first inclined surface 64 and the second inclined surface 65. The third inclined surface 66 is formed to incline with respect to a vertical plane extending along the radial direction R of the rotary table 12 and the housing 11. In other words, since the third inclined surface 66 is formed so that the angle θ3 is larger than the angle θ4, the third inclined surface 66 is formed so as to be inclined with respect to the vertical plane extending along the radial direction R.
 耐摩耗部63は、例えば高クロム鋳鉄やセラミックス等の耐摩耗材によって形成されている。耐摩耗部63は、図6に示すように、第2傾斜面65の略全域を覆っている。耐摩耗部63は、パネル状の分割耐摩耗部63aを、隙間が大きくならないよう組み合わせることで構成されている。なお、耐摩耗部63は、分割耐摩耗部63aの隣接する側面同士がカギ状形状や斜面状形状として重ね合わさっていてもよい。このように構成することで、分割耐摩耗部63aの熱伸びを許容しながら、隙間が生じようにすることができる。
 分割耐摩耗部63aは、各々、貫通するピン68によって本体部61に固定されている。このように、複数の分割耐摩耗部63aによって、耐摩耗部63を構成することで、耐摩耗部63の取り付け作業を容易化することができるとともに、熱伸び差による変形を抑制することができる。
The wear resistant portion 63 is formed of a wear resistant material such as high chromium cast iron or ceramics. As shown in FIG. 6, the wear resistant portion 63 covers almost the entire area of the second inclined surface 65. The wear-resistant portion 63 is configured by combining the panel-shaped divided wear-resistant portions 63a so that the gap does not become large. In the wear resistant portion 63, the adjacent side surfaces of the divided wear resistant portion 63a may be overlapped with each other in a key shape or a slope shape. With this configuration, it is possible to allow a gap to occur while allowing the thermal expansion of the divided wear resistant portion 63a.
Each of the divided wear resistant portions 63a is fixed to the body portion 61 by a penetrating pin 68. As described above, by configuring the wear resistant portion 63 by the plurality of divided wear resistant portions 63a, the work of attaching the wear resistant portion 63 can be facilitated and the deformation due to the difference in thermal expansion can be suppressed. ..
 固定部62は、図3に示すように、第2傾斜面65の下端縁65aの略全域から略鉛直下方に延びる板状の部材である。すなわち、固定部62は、ハウジング11の内周面11aに沿って延在している。固定部62には、板厚方向に貫通する貫通孔69が複数形成されている。複数の貫通孔69は、周方向に沿って所定の間隔で形成されている。複数の貫通孔69には、各々、ボルト70が挿通している。貫通孔69を挿通するボルト70は、ハウジング11の内周面11aに設けられたボス部(図示省略)または溶接取付したナット(図示省略)に締結固定される。すなわち、偏流板60は、ハウジング11の内周面11aにボルト70により締結固定されている。 As shown in FIG. 3, the fixing portion 62 is a plate-shaped member that extends substantially vertically downward from almost the entire lower edge 65a of the second inclined surface 65. That is, the fixed portion 62 extends along the inner peripheral surface 11 a of the housing 11. A plurality of through-holes 69 penetrating in the plate thickness direction are formed in the fixing portion 62. The plurality of through holes 69 are formed at predetermined intervals along the circumferential direction. A bolt 70 is inserted into each of the plurality of through holes 69. The bolt 70 inserted through the through hole 69 is fastened and fixed to a boss portion (not shown) provided on the inner peripheral surface 11 a of the housing 11 or a welded nut (not shown). That is, the drift plate 60 is fastened and fixed to the inner peripheral surface 11 a of the housing 11 by the bolts 70.
 次に、ハウジング11内に発生する流体の流れについて説明する。
 図3に示すように、一次空気流路100aから供給された一次空気は、回転テーブル12とハウジング11との間に形成された隙間である吹出口25を通過して、回転テーブル12上で粉砕された粉砕固体燃料(微粉燃料と粗粉燃料を含む)を分級部16へ搬送する。このように、ハウジング11内には、吹出口25を通過し、上方の分級部16へと向かう粉砕された固体燃料を含む一次空気の流れ(以下、「上昇気流」という。)が発生する。上昇気流のうちの一部は、第2傾斜面65に沿って流通する。第2傾斜面65は、ハウジング11の中心軸線Cに向かって斜め上方に延びているので、第2傾斜面65に沿って流通する上昇気流は、筐体の中心軸線C方向へ案内される。
 一方、分級部16で分級され回転テーブル12へ戻される粗粉燃料は、上方から下方へ落下するため、ハウジング11内に下降気流を発生させる。落下する粗粉燃料により生じた下降気流のうちの一部は、第1傾斜面64に沿って流通する。第1傾斜面64は、ハウジング11の中心軸線Cに向かって斜め下方に延びているので、第1傾斜面64に沿って流通する下降気流は、ハウジング11の中心軸線C方向へ案内される。
 このように、上昇気流及び下降気流のいずれもが、ハウジング11の中心軸線C方向へ案内されるので、ハウジング11内に生じる上昇気流と下降気流とが干渉や衝突する位置が、ハウジング11の内周面11aに沿った狭い空間の領域ではなく、ハウジング11内の中心領域側(図3の領域A)の容積の大きな空間の領域となる。このため、上昇気流と下降気流とが干渉や衝突する位置を、ハウジング11内の気流における影響が少ない位置とすることができる。上昇気流は、下降気流と干渉や衝突した後にも上昇を続け、分級部16へと到達する。また、下降気流は、上昇気流と干渉や衝突した後にも下降を続け、回転テーブル12へと到達する。
Next, the flow of fluid generated in the housing 11 will be described.
As shown in FIG. 3, the primary air supplied from the primary air flow path 100 a passes through the air outlet 25 which is a gap formed between the rotary table 12 and the housing 11, and is pulverized on the rotary table 12. The crushed solid fuel (including the fine powder fuel and the coarse powder fuel) is conveyed to the classifying unit 16. In this way, in the housing 11, a flow of primary air containing the pulverized solid fuel (hereinafter, referred to as “updraft”) that passes through the air outlet 25 and goes to the upper classifying unit 16 is generated. Part of the rising airflow circulates along the second inclined surface 65. Since the second inclined surface 65 extends obliquely upward toward the central axis C of the housing 11, the upward airflow flowing along the second inclined surface 65 is guided in the central axis C direction of the housing.
On the other hand, the coarse fuel that is classified by the classifying unit 16 and returned to the rotary table 12 drops from the upper side to the lower side, so that a downward airflow is generated in the housing 11. Part of the descending airflow generated by the falling coarse powder fuel flows along the first inclined surface 64. Since the first inclined surface 64 extends obliquely downward toward the central axis C of the housing 11, the downdraft flowing along the first inclined surface 64 is guided in the central axis C direction of the housing 11.
As described above, since both the updraft and the downdraft are guided in the direction of the central axis C of the housing 11, the position where the updraft and the downdraft generated in the housing 11 interfere or collide with each other is inside the housing 11. It is not a narrow space area along the peripheral surface 11a, but a large space area on the central area side (area A in FIG. 3) in the housing 11. Therefore, the position where the ascending airflow and the descending airflow interfere or collide with each other can be set to a position where the influence of the airflow in the housing 11 is small. The ascending airflow continues to ascend even after colliding with or colliding with the descending airflow, and reaches the classifying unit 16. Further, the descending airflow continues to descend even after colliding with or colliding with the ascending airflow, and reaches the turntable 12.
 本実施形態によれば、以下の作用効果を奏する。 According to this embodiment, the following operational effects are achieved.
 ハウジング11の内周面11aに偏流板60を設けない場合、吹出口25を通過した一次空気の主流は内周面11aに沿って上昇を続ける。一方、粗粉燃料は分級部16の分級羽根16aによって弾かれるため、ハウジング11の内周面11aに沿って落下する下降気流が生じる。このため、上昇気流と下降気流とが主に干渉や衝突する位置が、ハウジング11の内周面11aに沿った狭い空間の領域となり、ハウジング11内の圧力損失に影響の大きいハウジング11の外周領域となってしまう。
 本実施形態では、ハウジング11内に生じる上昇気流と下降気流とが相互に干渉や衝突する位置が、ハウジング11内の中心領域側の容積の大きな空間の領域となる。これにより、相互に干渉や衝突する位置をハウジング11内の気流流れにおける影響が少ない位置とすることができるので、ハウジング11内における圧力損失を抑制することができる。したがって、ミル10の動力の増加を抑制することができるとともに、微粉炭を好適に搬出することができるので、微粉炭の製造効率を向上させることができる。
When the deflector plate 60 is not provided on the inner peripheral surface 11a of the housing 11, the main flow of the primary air that has passed through the outlet 25 continues to rise along the inner peripheral surface 11a. On the other hand, the coarse fuel is repelled by the classifying blade 16a of the classifying unit 16, so that a descending air flow that drops along the inner peripheral surface 11a of the housing 11 is generated. Therefore, the position where the ascending airflow and the descending airflow mainly interfere or collide with each other becomes a narrow space area along the inner peripheral surface 11a of the housing 11, and the outer peripheral area of the housing 11 that greatly affects the pressure loss in the housing 11. Will be.
In the present embodiment, the position where the ascending airflow and the descending airflow generated in the housing 11 interfere or collide with each other is the area of the large-volume space on the central area side of the housing 11. As a result, the positions where they interfere or collide with each other can be set to positions that are less affected by the air flow in the housing 11, and thus pressure loss in the housing 11 can be suppressed. Therefore, the increase in power of the mill 10 can be suppressed, and the pulverized coal can be suitably carried out, so that the production efficiency of the pulverized coal can be improved.
 また、本実施形態では、偏流板60がローラ13と同じ高さ位置に設けられている。すなわち、偏流板60が吹出口25の近傍に設けられている。具体的には、第2傾斜面65の下端(下端縁65a)が、吹出口25の上端25aの高さ位置に対して回転テーブル12の半径の25%の長さと同じ長さ分上方の高さ位置と、吹出口25の上端25aの高さ位置に対して回転テーブル12の半径の25%の長さと同じ長さ分下方の高さ位置との間の高さ位置となるように、偏流板60が配置されている。これにより、ハウジング11の吹出口25を通過する一次空気が、直ちに偏流板60に至るので、上昇気流を確実にハウジング11の中心軸線C側に案内することができる。したがって、上昇気流と下降気流とが干渉や衝突する位置を、確実にハウジング11内の中心領域側の容積の大きな空間の領域とすることができる。よって、上昇気流と下降気流とが干渉や衝突する位置を、ハウジング11内の気流における影響が少ない位置とすることができるので、ハウジング11内における圧力損失を抑制することができる。よって、ミル10の一次空気の送風動力の増加を抑制することができるので、所定粒径以下に粉砕された微粉燃料の製造効率を向上させることができる。 Further, in the present embodiment, the deflector plate 60 is provided at the same height position as the roller 13. That is, the deflector plate 60 is provided near the outlet 25. Specifically, the lower end (lower end edge 65a) of the second inclined surface 65 is higher than the height position of the upper end 25a of the outlet 25 by the same length as 25% of the radius of the rotary table 12. Biased to a height position between the height position and the height position of the upper end 25a of the air outlet 25 and a height position that is 25% of the radius of the rotary table 12 and the same length downward. A plate 60 is arranged. As a result, the primary air passing through the air outlet 25 of the housing 11 immediately reaches the deflector plate 60, so that the upward airflow can be reliably guided to the central axis C side of the housing 11. Therefore, the position where the ascending airflow and the ascending airflow interfere or collide with each other can be surely set as the area of the large-volume space on the central area side in the housing 11. Therefore, the position where the ascending airflow and the descending airflow interfere or collide with each other can be set to a position where the influence of the airflow in the housing 11 is small, so that the pressure loss in the housing 11 can be suppressed. Therefore, since it is possible to suppress an increase in the blowing power of the primary air of the mill 10, it is possible to improve the production efficiency of the pulverized fuel pulverized to have a predetermined particle size or less.
 また、本実施形態では、偏流板60は、第1傾斜面64及び第2傾斜面65の周方向の側端縁64b,65b(換言すれば、第3傾斜面66)が、回転テーブル12の半径方向Rに対して、側端縁64b,65bの内端64ba,65ba同士が近づくように傾斜していて、角度θ3が角度θ4よりも大きい角度となっている。すなわち、第1傾斜面64及び第2傾斜面65の側端縁64b,65bが、偏流部と隣接するローラ13に沿うように傾斜している。これにより、偏流板60を吹出口25の近傍に配置した場合であっても、偏流板60とローラ13とを干渉しにくくすることができる。 Further, in the present embodiment, in the deflector plate 60, the side edges 64b and 65b (in other words, the third inclined surface 66) in the circumferential direction of the first inclined surface 64 and the second inclined surface 65 are the same as those of the turntable 12. The inner ends 64ba, 65ba of the side end edges 64b, 65b are inclined with respect to the radial direction R so that the inner ends 64ba, 65ba are closer to each other, and the angle θ3 is larger than the angle θ4. That is, the side edges 64b, 65b of the first inclined surface 64 and the second inclined surface 65 are inclined along the roller 13 adjacent to the drift portion. As a result, even when the deflector plate 60 is arranged near the outlet 25, it is possible to prevent the deflector plate 60 and the roller 13 from interfering with each other.
 偏流板60及びローラ13は、どちらも、ハウジング11及び回転テーブル12の中心軸線C方向に突出するように設けられている。このため、偏流板60の第1傾斜面64及び第2傾斜面65の側端縁64b,65bの内端64ba,65baは、ローラ13と最も干渉し易い。よって、第1傾斜面64及び第2傾斜面65の面積を大きく形成するためには、内端64ba,65baの位置を、ローラ13と干渉しない位置であって、かつ、ローラ13と近接する位置とする必要がある。
 本実施形態では、偏流板60とローラ13とを干渉しにくくしている。このため、内端64ba,65baを同位置として考えた場合、角度θ3と角度θ4が等しい角度である構成(換言すれば、第1傾斜面64及び第2傾斜面65の周方向の端縁が回転テーブル12の半径方向Rに沿って延びている構成)と比較して、角度θ3が角度θ4よりも大きい角度としている本実施形態の構成の方が、第1傾斜面64及び第2傾斜面65の面積を大きくすることができる。よって、より多くの上昇気流及び下降気流をハウジング11の中心方向へ案内することができるので、ハウジング11内における圧力損失をより抑制することができる。
Both the deflector plate 60 and the roller 13 are provided so as to project in the central axis C direction of the housing 11 and the rotary table 12. For this reason, the inner ends 64ba and 65ba of the side end edges 64b and 65b of the first inclined surface 64 and the second inclined surface 65 of the deflector plate 60 are most likely to interfere with the roller 13. Therefore, in order to increase the areas of the first inclined surface 64 and the second inclined surface 65, the positions of the inner ends 64ba and 65ba are positions that do not interfere with the roller 13 and that are close to the roller 13. And need to.
In this embodiment, the deflector plate 60 and the roller 13 are less likely to interfere with each other. Therefore, when the inner ends 64ba and 65ba are considered to be at the same position, the angle θ3 is equal to the angle θ4 (in other words, the circumferential end edges of the first inclined surface 64 and the second inclined surface 65 are the same). Compared with the configuration in which the rotary table 12 extends in the radial direction R), the configuration of the present embodiment in which the angle θ3 is larger than the angle θ4 is the first inclined surface 64 and the second inclined surface. The area of 65 can be enlarged. Therefore, more ascending airflow and more descending airflow can be guided toward the center of the housing 11, so that the pressure loss in the housing 11 can be further suppressed.
 また、ローラ13は、メンテナンス時にハウジング11から取り外す必要がある。ローラ13をハウジング11から取り外す際には、ローラ13を上方向へ回動させることで取り外す。本実施形態では、上述のように、ハウジング11の内周面11aにおいて、偏流板60を全周に亘って設けずに隣接するローラ13の間に複数箇所に設け、偏流板60がローラ13と同じ高さ位置に設けられているので、ローラ13を取り外す際に、偏流板60と干渉しない。したがって、ローラ13の取り外し作業を容易化することができる。 Also, the roller 13 needs to be removed from the housing 11 at the time of maintenance. When removing the roller 13 from the housing 11, the roller 13 is removed by rotating it upward. In the present embodiment, as described above, on the inner peripheral surface 11a of the housing 11, the deflector plates 60 are not provided over the entire circumference but are provided at a plurality of positions between the adjacent rollers 13, and the deflector plates 60 and the rollers 13 are provided. Since they are provided at the same height position, they do not interfere with the deflector plate 60 when the roller 13 is removed. Therefore, the work of removing the roller 13 can be facilitated.
 本実施形態では、第1傾斜面64と水平面Hとが為す鋭角の傾斜角度θ1が、第2傾斜面65と水平面Hとが為す鋭角の傾斜角度θ2よりも小さい。すなわち、第1傾斜面64に沿う下降気流よりも、第2傾斜面65に沿う上昇気流の方が、鉛直方向に案内される力が強い。これにより、下降気流よりも上昇気流の方が、流速が大きくなる。したがって、一次空気によって、上方に設けられている分級部16まで、粉砕された粉砕固体燃料を確実に搬送することができる。なお、傾斜角度θ2を大きくしすぎると、上昇気流と下降気流とが衝突する位置が、高い位置となり、分級部16に近い位置となる可能性がある。分級部16に近い位置で相互に干渉や衝突した場合、分級部16によって弾かれた粗粉燃料が、上昇気流によって再度分級部16に搬送される可能性があり、分級性能が低減する可能性がある。したがって、傾斜角度θ2は、60度以下が好適となる。 In the present embodiment, the acute inclination angle θ1 formed by the first inclined surface 64 and the horizontal plane H is smaller than the acute inclination angle θ2 formed by the second inclined surface 65 and the horizontal plane H. That is, the upward airflow along the second inclined surface 65 has a stronger vertical guiding force than the downward airflow along the first inclined surface 64. As a result, the flow velocity of the updraft becomes higher than that of the downdraft. Therefore, the crushed pulverized solid fuel can be reliably transported to the classifying unit 16 provided above by the primary air. If the inclination angle θ2 is set too large, the position where the ascending airflow and the descending airflow collide with each other becomes a high position, which may be a position close to the classifying unit 16. If they interfere or collide with each other at a position close to the classifying unit 16, the coarse fuel repelled by the classifying unit 16 may be conveyed to the classifying unit 16 again by the ascending air current, and the classification performance may be reduced. There is. Therefore, the inclination angle θ2 is preferably 60 degrees or less.
 また、偏流板60をハウジング11に固定する際に、偏流板60を設ける位置が、例えば、作業者の身長と同等の高さ位置又は作業者の身長よりも高い高さ位置である場合には、作業者は偏流部と筐体との固定箇所に対して下方側からアクセスすることがある。本実施形態では、偏流板60が、第2傾斜面65の下端から下方に延びる固定部62によって筐体に固定されている。これにより、偏流板60をハウジング11の内周面11aに固定する作業を行う際に、第1傾斜面64及び第2傾斜面65と作業者とが干渉し難い。したがって、固定作業を容易化することができる。
 また、本実施形態では、固定部62が第2傾斜面65の下端から下方に延びている。したがって、固定部62に固体燃料が堆積しない構成とすることができる。
Further, when the drift plate 60 is fixed to the housing 11, if the position where the drift plate 60 is provided is, for example, a height position equivalent to the height of the worker or a height position higher than the height of the worker. The worker may access the fixed portion between the drift portion and the casing from the lower side. In the present embodiment, the drift plate 60 is fixed to the housing by the fixing portion 62 extending downward from the lower end of the second inclined surface 65. This makes it difficult for the worker to interfere with the first inclined surface 64 and the second inclined surface 65 when the work of fixing the deflector plate 60 to the inner peripheral surface 11a of the housing 11 is performed. Therefore, the fixing work can be facilitated.
Further, in the present embodiment, the fixing portion 62 extends downward from the lower end of the second inclined surface 65. Therefore, the solid fuel can be prevented from accumulating on the fixed portion 62.
 また、本実施形態では、第2傾斜面65は、粉砕された粉砕固体燃料を含んだ一次空気を案内するので、摩耗しやすい。また、本実施形態では、吹出口25の近傍に第2傾斜面65が位置しているので、流速の速い一次空気を案内するため、より摩耗しやすい。本実施形態では、第2傾斜面65が耐摩耗部63で覆われている。これにより、一次空気が回転テーブル12とハウジング11との間に形成された隙間である吹出口25を通過して、上昇気流として粉砕固体燃料を分級部16へ搬送する際に、上昇気流の中に含まれる粉砕固体燃料が衝突し易い第2傾斜面65の摩耗を抑制することができる。 Further, in the present embodiment, the second inclined surface 65 guides the primary air containing the pulverized pulverized solid fuel, and is therefore easily worn. Further, in the present embodiment, since the second inclined surface 65 is located in the vicinity of the air outlet 25, the primary air having a high flow velocity is guided, so that it is more easily worn. In the present embodiment, the second inclined surface 65 is covered with the wear resistant portion 63. As a result, when the primary air passes through the air outlet 25 which is a gap formed between the rotary table 12 and the housing 11 and conveys the pulverized solid fuel to the classifying unit 16 as an ascending airflow, It is possible to suppress the abrasion of the second inclined surface 65 which is likely to collide with the pulverized solid fuel contained in.
 なお、本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。
 例えば、上記実施形態では、耐摩耗部63を、第2傾斜面65を覆うように設ける例について説明したが、本発明はこれに限定されない。例えば、耐摩耗部63は、第1傾斜面64と第2傾斜面65の両方を覆うように設けてもよいし、第1傾斜面64のみに耐摩耗部63を設けても良い。
It should be noted that the present invention is not limited to the above-described embodiment, and can be appropriately modified without departing from the scope of the invention.
For example, in the above embodiment, an example in which the wear resistant portion 63 is provided so as to cover the second inclined surface 65 has been described, but the present invention is not limited to this. For example, the abrasion resistant portion 63 may be provided so as to cover both the first inclined surface 64 and the second inclined surface 65, or the abrasion resistant portion 63 may be provided only on the first inclined surface 64.
 また、上記実施形態では、固定部62を第2傾斜面65の下端縁65aから下方に延びるように形成する例について説明したが、本発明はこれに限定されない。例えば、固定部62は、第1傾斜面64の上端縁64aから上方に延びるように設けてもよい。また、固定部62は、第1傾斜面64の上端縁64aから上方と下端縁65aから下方の両方に延びるように設けてもよい。また、固定部62を設けずに、本体部61を溶接等でハウジング11の内周面11aに固定してもよい。 Further, in the above embodiment, an example in which the fixing portion 62 is formed to extend downward from the lower end edge 65a of the second inclined surface 65 has been described, but the present invention is not limited to this. For example, the fixing portion 62 may be provided so as to extend upward from the upper end edge 64a of the first inclined surface 64. Further, the fixing portion 62 may be provided so as to extend both upward from the upper end edge 64a of the first inclined surface 64 and downward from the lower end edge 65a. Further, the main body 61 may be fixed to the inner peripheral surface 11a of the housing 11 by welding or the like without providing the fixing portion 62.
 また、上記実施形態では、本体部61が、断面形状が略三角形状となる例について説明したが、本発明はこれに限定されない。例えば、第1傾斜面64の下端縁64cと第2傾斜面65の上端縁65cとの間に、鉛直面を設けて、本体部61を断面形状が略台形状や角のとれた楕円形状となるように形成してもよい。 Further, in the above embodiment, an example in which the main body 61 has a substantially triangular cross-sectional shape has been described, but the present invention is not limited to this. For example, a vertical plane is provided between the lower end edge 64c of the first inclined surface 64 and the upper end edge 65c of the second inclined surface 65, and the main body 61 has a substantially trapezoidal cross section or an elliptical shape with rounded corners. You may form so that it may become.
 また、上記実施形態では、偏流板60が、ローラ13の間に形成された3つの空間に、各々、1つずつ設けられている例について説明したが、本発明はこれに限定されない。例えば、ローラ13の間に形成された各空間に、複数の偏流板60を設けてもよい。また、ローラ13の間に形成された全ての空間に偏流板60を設けずに、偏流板60が設けられている空間と、偏流板60が設けられていない空間とを設けてもよい。 In addition, in the above embodiment, an example in which the deflector plate 60 is provided in each of the three spaces formed between the rollers 13 is described, but the present invention is not limited to this. For example, a plurality of drift plates 60 may be provided in each space formed between the rollers 13. In addition, the non-uniform flow plate 60 may not be provided in all the spaces formed between the rollers 13, and a space in which the non-uniform flow plate 60 is provided and a space in which the non-uniform flow plate 60 is not provided may be provided.
1    :ボイラシステム
10   :ミル(粉砕機)
11   :ハウジング(筐体)
11a  :内周面
12   :回転テーブル(粉砕テーブル)
13   :ローラ(粉砕ローラ)
14   :駆動部
16   :分級部
16a  :分級羽根
17   :燃料供給部
18   :モータ
19   :出口
20   :給炭機
21   :バンカ
22   :搬送部
23   :モータ
24   :ダウンスパウト部
25   :吹出口
26   :ベーン
27   :一次空気ダクト
30   :送風部
30a  :熱ガス送風機
30b  :冷ガス送風機
30c  :熱ガスダンパ
30d  :冷ガスダンパ
40   :状態検出部
41   :底面部
42   :天井部
45   :ジャーナルヘッド(支持部)
47   :支持アーム
48   :支持軸
49   :押圧装置
50   :制御部
60   :偏流板(偏流部)
61   :本体部
62   :固定部
63   :耐摩耗部
63a  :分割耐摩耗部
64   :第1傾斜面
64a  :上端縁
64b  :側端縁
64ba :内端
64c  :下端縁
65   :第2傾斜面
65a  :下端縁
65b  :側端縁
65ba :内端
65c  :上端縁
66   :第3傾斜面
66a  :上端縁
66b  :下端縁
68   :ピン
69   :貫通孔
70   :ボルト
100  :固体燃料粉砕装置
100a :一次空気流路(搬送用ガス供給部)
100b :供給流路
200  :ボイラ
210  :火炉
220  :バーナ部
1: Boiler system 10: Mill (crusher)
11: Housing
11a: inner peripheral surface 12: rotary table (crushing table)
13: Roller (crushing roller)
14: Drive part 16: Classification part 16a: Classification blade 17: Fuel supply part 18: Motor 19: Outlet 20: Coal feeder 21: Bunker 22: Transfer part 23: Motor 24: Downspout part 25: Outlet port 26: Vane 27: Primary air duct 30: Air blower 30a: Hot gas blower 30b: Cold gas blower 30c: Hot gas damper 30d: Cold gas damper 40: Status detector 41: Bottom portion 42: Ceiling portion 45: Journal head (support portion)
47: Support arm 48: Support shaft 49: Pressing device 50: Control part 60: Drift plate (diffusion part)
61: body part 62: fixed part 63: wear resistant part 63a: divided wear resistant part 64: first inclined surface 64a: upper edge 64b: side edge 64ba: inner end 64c: lower edge 65: second inclined surface 65a: Lower edge 65b: Side edge 65ba: Inner edge 65c: Upper edge 66: Third inclined surface 66a: Upper edge 66b: Lower edge 68: Pin 69: Through hole 70: Bolt 100: Solid fuel pulverizer 100a: Primary air flow Road (transport gas supply section)
100b: Supply flow path 200: Boiler 210: Furnace 220: Burner section

Claims (8)

  1.  鉛直上下方向に延在し、外殻を為す筐体と、
     前記筐体の内周面から離間して配置されるとともに、前記筐体内に供給された固体燃料が載置される回転テーブルと、
     前記内周面から前記回転テーブルの中心方向へ延びる支持部に支持され、該回転テーブル上に載置された固体燃料を粉砕して粉砕固体燃料とする複数の粉砕ローラと、
     前記回転テーブルの鉛直上方側に設けられ、前記粉砕固体燃料を所定粒径よりも大きい前記粉砕固体燃料と所定粒径よりも小さい前記粉砕固体燃料とに分級する分級部と、
     前記粉砕固体燃料を前記分級部へ搬送する搬送用ガスを前記筐体の内部に供給し、前記回転テーブルよりも鉛直下方側に設けられる搬送用ガス供給部と、
     前記筐体の鉛直上下方向に延びる中心軸線に向かって斜め下方に延びる第1傾斜面及び該第1傾斜面よりも鉛直下方側に位置して前記中心軸線に向かって斜め上方に延びる第2傾斜面を有し、前記内周面に設けられる偏流部と、を備え、
     複数の前記粉砕ローラは、前記回転テーブルの周方向に沿って配置されていて、
     前記偏流部は、複数の前記粉砕ローラの間であって前記粉砕ローラと同じ高さ位置に設けられるとともに、
     前記第1傾斜面及び前記第2傾斜面の前記周方向の端縁が、各々、前記回転テーブルの半径方向に対して、一側の前記端縁の前記半径方向の内端が他側の前記端縁の前記半径方向の内端に近づくように傾斜している粉砕機。
    A case that extends vertically and forms an outer shell,
    A rotary table which is arranged apart from the inner peripheral surface of the housing and on which the solid fuel supplied into the housing is placed;
    A plurality of crushing rollers supported by a support portion extending from the inner peripheral surface toward the center of the rotary table and crushing solid fuel placed on the rotary table into crushed solid fuel;
    A classification unit provided on the vertically upper side of the rotary table for classifying the pulverized solid fuel into the pulverized solid fuel having a particle size larger than a predetermined particle size and the pulverized solid fuel having a particle size smaller than a predetermined particle size,
    A carrier gas for supplying the crushed solid fuel to the classifying unit is supplied to the inside of the casing, and a carrier gas supply unit is provided vertically below the rotary table.
    A first inclined surface extending obliquely downward toward a central axis extending vertically in the vertical direction of the housing and a second inclination positioned vertically downward from the first inclined surface and extending obliquely upward toward the central axis. And a drift portion provided on the inner peripheral surface,
    A plurality of the crushing rollers are arranged along the circumferential direction of the rotary table,
    The uneven flow portion is provided between the plurality of crushing rollers at the same height position as the crushing rollers,
    The circumferential end edges of the first slanted surface and the second slanted surface are the radial inner ends of the one end of the rotary table in the radial direction, respectively. A crusher that is inclined so as to approach the radially inner end of the edge.
  2.  外殻を為す筐体と、
     前記筐体の内周面から離間して配置されるとともに、前記筐体内に供給された固体燃料が載置される回転テーブルを有し、前記回転テーブル上で前記固体燃料を粉砕して粉砕固体燃料とする粉砕部と、
     前記回転テーブルの鉛直上方側に設けられ、前記粉砕固体燃料を所定粒径よりも大きい前記粉砕固体燃料と所定粒径よりも小さい前記粉砕固体燃料とに分級する分級部と、
     前記粉砕固体燃料を前記分級部へ搬送する搬送用ガスを前記筐体の内部に供給し、前記回転テーブルよりも鉛直下方側に設けられる搬送用ガス供給部と、
     前記筐体の鉛直上下方向に延びる中心軸線に向かって斜め下方に延びる第1傾斜面及び該第1傾斜面よりも鉛直下方側に位置して前記中心軸線に向かって斜め上方に延びる第2傾斜面を有し、前記内周面に設けられる偏流部と、を備え、
     前記第1傾斜面と水平面とが為す鋭角の角度は、前記第2傾斜面と水平面とが為す鋭角の角度よりも小さい粉砕機。
    A casing that forms the outer shell,
    It has a rotary table which is arranged apart from the inner peripheral surface of the casing, and on which the solid fuel supplied into the casing is placed, and the solid fuel is crushed and crushed on the rotary table. A crushing unit for fuel,
    A classification unit provided on the vertically upper side of the rotary table for classifying the pulverized solid fuel into the pulverized solid fuel having a particle size larger than a predetermined particle size and the pulverized solid fuel having a particle size smaller than a predetermined particle size,
    A carrier gas for supplying the crushed solid fuel to the classifying unit is supplied to the inside of the casing, and a carrier gas supply unit is provided vertically below the rotary table.
    A first inclined surface extending obliquely downward toward a central axis extending vertically in the vertical direction of the housing and a second inclination positioned vertically downward from the first inclined surface and extending obliquely upward toward the central axis. And a drift portion provided on the inner peripheral surface,
    A crusher in which an acute angle formed by the first inclined surface and the horizontal surface is smaller than an acute angle formed by the second inclined surface and the horizontal surface.
  3.  前記偏流部は、前記第2傾斜面の鉛直方向下端が所定の高さ位置に位置するように配置され、
     前記所定の高さ位置は、前記回転テーブルと前記筐体の前記内周面との間に形成された隙間の上端の高さ位置に対して前記回転テーブルの半径の25%の長さ分上方の高さ位置と、前記隙間の上端の高さ位置に対して前記回転テーブルの半径の25%の長さと分下方の高さ位置との間の高さ位置である請求項1または請求項2に記載の粉砕機。
    The drift portion is arranged such that a vertical lower end of the second inclined surface is located at a predetermined height position,
    The predetermined height position is above the height position of the upper end of the gap formed between the rotary table and the inner peripheral surface of the housing by 25% of the radius of the rotary table. Or a height position between the height position of the upper end of the gap and the height position 25% lower than the radius of the rotary table with respect to the height position of the upper end of the gap. The crusher described in.
  4.  前記偏流部は、前記内周面に固定される固定部を有し、
     前記固定部は、前記第2傾斜面の下端から鉛直下方側に延びている請求項1から請求項3のいずれかに記載の粉砕機。
    The drift portion has a fixing portion fixed to the inner peripheral surface,
    The crusher according to claim 1, wherein the fixing portion extends vertically downward from a lower end of the second inclined surface.
  5.  前記第2傾斜面には、耐摩耗部が設けられている請求項1から請求項4のいずれかに記載の粉砕機。 The crusher according to any one of claims 1 to 4, wherein a wear resistant portion is provided on the second inclined surface.
  6.  請求項1から請求項5のいずれかに記載の粉砕機と、
     前記粉砕機で粉砕された固体燃料を燃焼し、蒸気を生成するボイラと、を備えたボイラシステム。
    A crusher according to any one of claims 1 to 5,
    A boiler system comprising: a boiler that combusts solid fuel pulverized by the pulverizer to generate steam.
  7.  粉砕機の運転方法であって、
     前記粉砕機は、
     鉛直上下方向に延在し、外殻を為す筐体と、
     前記筐体の内周面から離間して配置されるとともに、前記筐体内に供給された固体燃料が載置される回転テーブルと、
     前記内周面から前記回転テーブルの中心方向へ延びる支持部に支持され、該回転テーブル上に載置された固体燃料を粉砕して粉砕固体燃料とする複数の粉砕ローラと、
     前記回転テーブルの鉛直上方側に設けられ、前記粉砕固体燃料を所定粒径よりも大きい前記粉砕固体燃料と所定粒径よりも小さい前記粉砕固体燃料とに分級する分級部と、
     前記粉砕固体燃料を前記分級部へ搬送する搬送用ガスを前記筐体の内部に供給し、前記回転テーブルよりも鉛直下方側に設けられる搬送用ガス供給部と、
     前記筐体の鉛直上下方向に延びる中心軸線に向かって斜め下方に延びる第1傾斜面及び該第1傾斜面よりも鉛直下方側に位置して前記中心軸線に向かって斜め上方に延びる第2傾斜面を有し、前記内周面に設けられる偏流部と、を備え、
     複数の前記粉砕ローラは、前記回転テーブルの周方向に沿って配置されていて、
     前記偏流部は、複数の前記粉砕ローラの間であって前記粉砕ローラと同じ高さ位置に設けられるとともに、
     前記第1傾斜面及び前記第2傾斜面の前記周方向の端縁が、各々、前記回転テーブルの半径方向に対して、一側の前記端縁の前記半径方向の内端が他側の前記端縁の前記半径方向の内端に近づくように傾斜していて、
     前記搬送用ガス供給部から供給された搬送用ガスを前記第2傾斜面に沿って前記中心軸線方向へ案内する工程と、
     前記分級部から前記回転テーブルに戻る前記粉砕固体燃料を前記第1傾斜面に沿って前記中心軸線方向へ案内する工程と、を備える粉砕機の運転方法。
    A method of operating the crusher,
    The crusher is
    A case that extends vertically and forms an outer shell,
    A rotary table which is arranged apart from the inner peripheral surface of the housing and on which the solid fuel supplied into the housing is placed;
    A plurality of crushing rollers supported by a support portion extending from the inner peripheral surface toward the center of the rotary table and crushing solid fuel placed on the rotary table into crushed solid fuel;
    A classification unit provided on the vertically upper side of the rotary table for classifying the pulverized solid fuel into the pulverized solid fuel having a particle size larger than a predetermined particle size and the pulverized solid fuel having a particle size smaller than a predetermined particle size,
    A carrier gas for supplying the crushed solid fuel to the classifying unit is supplied to the inside of the casing, and a carrier gas supply unit is provided vertically below the rotary table.
    A first inclined surface extending obliquely downward toward a central axis extending vertically in the vertical direction of the housing and a second inclination positioned vertically downward from the first inclined surface and extending obliquely upward toward the central axis. And a drift portion provided on the inner peripheral surface,
    A plurality of the crushing rollers are arranged along the circumferential direction of the rotary table,
    The uneven flow portion is provided between the plurality of crushing rollers at the same height position as the crushing rollers,
    The circumferential end edges of the first slanted surface and the second slanted surface are the radial inner ends of the one end of the rotary table in the radial direction, respectively. Inclined so as to approach the inner end in the radial direction of the edge,
    Guiding the carrier gas supplied from the carrier gas supply unit in the direction of the central axis along the second inclined surface;
    Guiding the crushed solid fuel returning from the classification unit to the rotary table in the direction of the central axis along the first inclined surface.
  8.  粉砕機の運転方法であって、
     前記粉砕機は、
     外殻を為す筐体と、
     前記筐体の内周面から離間して配置されるとともに、前記筐体内に供給された固体燃料が載置される回転テーブルを有し、前記回転テーブル上で前記固体燃料を粉砕して粉砕固体燃料とする粉砕部と、
     前記回転テーブルの鉛直上方側に設けられ、前記粉砕固体燃料を所定粒径よりも大きい前記粉砕固体燃料と所定粒径よりも小さい前記粉砕固体燃料とに分級する分級部と、
     前記粉砕固体燃料を前記分級部へ搬送する搬送用ガスを前記筐体の内部に供給し、前記回転テーブルよりも鉛直下方側に設けられる搬送用ガス供給部と、
     前記筐体の鉛直上下方向に延びる中心軸線に向かって斜め下方に延びる第1傾斜面及び該第1傾斜面よりも鉛直下方側に位置して前記中心軸線に向かって斜め上方に延びる第2傾斜面を有し、前記内周面に設けられる偏流部と、を備え、
     前記第1傾斜面と水平面とが為す鋭角の角度は、前記第2傾斜面と水平面とが為す鋭角の角度よりも小さく、
     前記搬送用ガス供給部から供給された搬送用ガスを前記第2傾斜面に沿って前記中心軸線方向へ案内する工程と、
     前記分級部から前記回転テーブルに戻る前記粉砕固体燃料を前記第1傾斜面に沿って前記中心軸線方向へ案内する工程と、を備える粉砕機の運転方法。
    A method of operating the crusher,
    The crusher is
    A casing that forms the outer shell,
    It has a rotary table which is arranged apart from the inner peripheral surface of the casing, and on which the solid fuel supplied into the casing is placed, and the solid fuel is crushed and crushed on the rotary table. A crushing unit for fuel,
    A classification unit provided on the vertically upper side of the rotary table for classifying the pulverized solid fuel into the pulverized solid fuel having a particle size larger than a predetermined particle size and the pulverized solid fuel having a particle size smaller than a predetermined particle size,
    A carrier gas for supplying the crushed solid fuel to the classifying unit is supplied to the inside of the casing, and a carrier gas supply unit is provided vertically below the rotary table.
    A first inclined surface extending obliquely downward toward a central axis extending vertically in the vertical direction of the housing and a second inclination positioned vertically downward from the first inclined surface and extending obliquely upward toward the central axis. And a drift portion provided on the inner peripheral surface,
    The acute angle formed by the first inclined surface and the horizontal plane is smaller than the acute angle formed by the second inclined surface and the horizontal plane,
    Guiding the carrier gas supplied from the carrier gas supply unit in the direction of the central axis along the second inclined surface;
    Guiding the crushed solid fuel returning from the classification unit to the rotary table in the direction of the central axis along the first inclined surface.
PCT/JP2019/050849 2019-01-31 2019-12-25 Crusher, boiler system, and method for operating crusher WO2020158270A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-015720 2019-01-31
JP2019015720A JP2020121283A (en) 2019-01-31 2019-01-31 Pulverizer and boiler system as well as method for operating pulverizer

Publications (1)

Publication Number Publication Date
WO2020158270A1 true WO2020158270A1 (en) 2020-08-06

Family

ID=71840916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050849 WO2020158270A1 (en) 2019-01-31 2019-12-25 Crusher, boiler system, and method for operating crusher

Country Status (3)

Country Link
JP (1) JP2020121283A (en)
TW (1) TW202031359A (en)
WO (1) WO2020158270A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115463736A (en) * 2022-06-01 2022-12-13 浙江浙能兰溪发电有限责任公司 Wing-shaped air ring of coal mill

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022114696A (en) * 2021-01-27 2022-08-08 三菱重工業株式会社 Solid fuel pulverization device, power plant, and roller wear monitoring method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240448U (en) * 1988-09-08 1990-03-19
JPH07155627A (en) * 1993-12-06 1995-06-20 Mitsubishi Heavy Ind Ltd Vertical grinder
JP2007209838A (en) * 2006-02-07 2007-08-23 Mitsubishi Heavy Ind Ltd Vertical roller mill
JP2008036535A (en) * 2006-08-07 2008-02-21 Chugoku Electric Power Co Inc:The Ceramic liner, attaching structure of ceramic liner, method of attaching ceramic liner
JP2017136540A (en) * 2016-02-02 2017-08-10 三菱日立パワーシステムズ株式会社 Solid fuel pulverizing apparatus and control method of the same
WO2018016266A1 (en) * 2016-07-21 2018-01-25 株式会社Ihi Vertical roller mill
JP2018079424A (en) * 2016-11-16 2018-05-24 三菱日立パワーシステムズ株式会社 Solid fuel pulverizer and operation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240448U (en) * 1988-09-08 1990-03-19
JPH07155627A (en) * 1993-12-06 1995-06-20 Mitsubishi Heavy Ind Ltd Vertical grinder
JP2007209838A (en) * 2006-02-07 2007-08-23 Mitsubishi Heavy Ind Ltd Vertical roller mill
JP2008036535A (en) * 2006-08-07 2008-02-21 Chugoku Electric Power Co Inc:The Ceramic liner, attaching structure of ceramic liner, method of attaching ceramic liner
JP2017136540A (en) * 2016-02-02 2017-08-10 三菱日立パワーシステムズ株式会社 Solid fuel pulverizing apparatus and control method of the same
WO2018016266A1 (en) * 2016-07-21 2018-01-25 株式会社Ihi Vertical roller mill
JP2018079424A (en) * 2016-11-16 2018-05-24 三菱日立パワーシステムズ株式会社 Solid fuel pulverizer and operation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115463736A (en) * 2022-06-01 2022-12-13 浙江浙能兰溪发电有限责任公司 Wing-shaped air ring of coal mill

Also Published As

Publication number Publication date
TW202031359A (en) 2020-09-01
JP2020121283A (en) 2020-08-13

Similar Documents

Publication Publication Date Title
WO2022209456A1 (en) Classifier, power plant, and method for operating classifier
WO2020158270A1 (en) Crusher, boiler system, and method for operating crusher
KR20210021917A (en) Solid fuel grinding apparatus, power generation plant, and control method for solid fuel grinding apparatus
JP2020116536A (en) Solid fuel crushing device and electric power generating plant comprising the same as well as control method for solid fuel crushing device
WO2023120083A1 (en) Crushing roller, solid fuel crushing device, and method for producing crushing roller
WO2020045276A1 (en) Solid fuel crushing device, power plant equipped with same, and solid fuel crushing method
CN111482243B (en) Solid fuel pulverizer, power generation facility provided with same, and control method therefor
CN111558432B (en) Solid fuel pulverizer, power generation facility provided with same, and solid fuel pulverizing method
JP2023095072A (en) Discharge device, solid fuel crushing device and control method of discharge device
KR102150849B1 (en) Mill and method of operating the mill
JP7341669B2 (en) Solid fuel crushing device, power plant equipped with the same, and solid fuel crushing method
JP7258581B2 (en) Crusher, boiler system and method of operating the crusher
JP2022041973A (en) Device, power generation plant, method for controlling device, program, power generation plant system, and method for controlling power generation plant system
JP3221183U (en) Pulverizer, solid fuel pulverizer equipped with the same, and boiler system
JP2022156405A (en) Classifier and power plant, and operation method of classifier
JP2022086304A (en) Crushing machine and power generation plant and operation method of crushing machine
WO2024135079A1 (en) Drift structure, crusher, and method for assembling crusher
JP2022054095A (en) Mill and power plant, and operational method for mill
JP7483404B2 (en) Fuel supply device, solid fuel pulverizer, boiler system, and method for operating the fuel supply device
JP2022130854A (en) Solid fuel supplying facility, power generation plant and solid fuel supplying method
JP7224810B2 (en) SOLID FUEL CRUSHING DEVICE, POWER PLANT INCLUDING THE SAME, AND CONTROL METHOD FOR SOLID FUEL CRUSHING
JP2022086305A (en) Crushing machine and power generation plant and operation method of crushing machine
JP2022130855A (en) Solid fuel crushing device and power plant and operation method of solid fuel crushing device
JP2022130856A (en) Rotary valve and power generation plant, and operational method of rotary valve
JP2024095040A (en) Solid fuel crushing device and power generation plant and operation method of solid fuel crushing device and design method of solid fuel crushing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913388

Country of ref document: EP

Kind code of ref document: A1