WO2024095775A1 - 積載状況推定装置および積載状況推定方法 - Google Patents

積載状況推定装置および積載状況推定方法 Download PDF

Info

Publication number
WO2024095775A1
WO2024095775A1 PCT/JP2023/037740 JP2023037740W WO2024095775A1 WO 2024095775 A1 WO2024095775 A1 WO 2024095775A1 JP 2023037740 W JP2023037740 W JP 2023037740W WO 2024095775 A1 WO2024095775 A1 WO 2024095775A1
Authority
WO
WIPO (PCT)
Prior art keywords
loading
load
viscosity
bucket
distribution
Prior art date
Application number
PCT/JP2023/037740
Other languages
English (en)
French (fr)
Inventor
幸紀 松村
浩詞 奥田
潤爾 大山
Original Assignee
株式会社小松製作所
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所, 国立研究開発法人産業技術総合研究所 filed Critical 株式会社小松製作所
Publication of WO2024095775A1 publication Critical patent/WO2024095775A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices

Definitions

  • the present disclosure relates to a loading status estimating device and a loading status estimating method.
  • This application claims priority to Japanese Patent Application No. 2022-174614, filed in Japan on October 31, 2022, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a technology that detects the shape of the load on the loading platform using an imaging device installed on the loading machine and calculates an area with relatively little load as the target loading point in order to assist in loading transported goods evenly across the entire area of the loading target.
  • An object of the present disclosure is to provide a loading situation estimation device and a loading situation estimation method that are capable of estimating the loading situation in the entire area of a loading target.
  • the loading status estimation device includes a loading determination unit that determines whether a load held by a work tool provided on a loading machine has been loaded onto a loading target, a relative position determination unit that determines the relative positional relationship between the work tool and the loading target when the load is loaded onto the loading target, and a distribution estimation unit that estimates the distribution of the load loaded onto the loading target based on the viscosity of the load loaded onto the loading target.
  • the loading status estimation device can estimate the loading status in the entire area of the loading target.
  • FIG. 2 is a diagram showing the configuration of a loading area according to the first embodiment.
  • 1 is a schematic diagram showing a configuration of a loading machine according to a first embodiment.
  • FIG. FIG. 2 is a diagram showing the internal configuration of a driver's cab according to the first embodiment.
  • FIG. 2 is a schematic block diagram showing the configuration of a control device according to the first embodiment.
  • FIG. 4 is a diagram showing an example of a viscosity input screen according to the first embodiment; 4 is an example of a distribution image according to the first embodiment.
  • 4 is a flowchart showing a method for displaying a distribution image according to the first embodiment.
  • FIG. 11 is a schematic block diagram showing the configuration of a control device according to a second embodiment.
  • 13 is a flowchart showing a method for displaying a distribution image according to a second embodiment.
  • FIG. 1 is a diagram showing the configuration of a loading area according to the first embodiment.
  • a loading machine 100 and a loading target 200 are deployed at a work site.
  • the loading machine 100 operates at a construction site, excavates a construction target such as soil and sand, and loads the soil as a load L onto a loading target 200 such as a dump truck.
  • Examples of the loading machine 100 include a face shovel, a backhoe shovel, and a rope shovel.
  • the loading machine 100 may be electrically driven or hydraulically driven.
  • the loading machine 100 according to the first embodiment is a backhoe shovel.
  • the loading machine 100 includes a traveling body 110, a rotating body 120, a working machine 130, and a cab 140.
  • Examples of the loading target 200 include a dump truck and a hopper.
  • the loading target 200 includes a vessel 210 that is a container for storing the load L.
  • the vessel 210 is provided with a payload meter 211 that measures the weight of the load L loaded into the vessel 210.
  • the loading target 200 also includes a position/orientation calculator 220 and a communication device 230.
  • the position/orientation calculator 220 calculates the position and orientation of the loading target 200.
  • the position/orientation calculator 220 calculates the position and orientation of the loading target 200 based on, for example, positioning signals from artificial satellites constituting the GNSS.
  • the communication device 230 transmits measurement data of the payload meter 211 and the position/orientation calculator 220 to the loading machine 100.
  • the communication device 230 communicates with the loading machine 100 by, for example, short-range wireless communication.
  • FIG. 2 is a schematic diagram showing the configuration of the loading machine 100 according to the first embodiment.
  • the running body 110 supports the loading machine 100 so that the loading machine 100 can run.
  • the running body 110 includes two endless tracks 111 provided on the left and right sides, and two travel motors 112 for driving each of the endless tracks 111.
  • the running body 110 is an example of a support portion.
  • the rotating body 120 is supported by the running body 110 so as to be capable of rotating about a rotation center.
  • the work machine 130 is hydraulically driven and supported on the front part of the revolving body 120 so as to be drivable in the vertical direction.
  • the operator's cab 140 is a space where an operator rides in and operates the loading machine 100.
  • the operator's cab 140 is provided at the left front part of the rotating body 120.
  • the portion of the rotating body 120 to which the work machine 130 is attached is referred to as the front portion.
  • the portion opposite the front portion is referred to as the rear portion, the left portion as the left portion, and the right portion as the right portion.
  • the rotating body 120 is equipped with an engine 121, a hydraulic pump 122, a control valve 123, and a rotating motor 124.
  • the engine 121 is a prime mover that drives the hydraulic pump 122.
  • the engine 121 is an example of a power source.
  • the hydraulic pump 122 is a variable displacement pump driven by the engine 121.
  • the hydraulic pump 122 supplies hydraulic oil via a control valve 123 to each actuator (the boom cylinder 131C, the arm cylinder 132C, the bucket cylinder 133C, the travel motor 112, and the swing motor 124).
  • the control valve 123 controls the flow rate of the hydraulic oil supplied from the hydraulic pump 122 .
  • the swing motor 124 is driven by hydraulic oil supplied from a hydraulic pump 122 via a control valve 123 to swing the swing body 120 .
  • the work machine 130 includes a boom 131, an arm 132, a bucket 133 as a work tool, a boom cylinder 131C, an arm cylinder 132C, and a bucket cylinder 133C.
  • Other examples of the work tool include a clam bucket, a tilt bucket, and a tilt rotate bucket.
  • the base end of the boom 131 is rotatably attached to the revolving body 120 via a boom pin.
  • the boom 131 is provided at the center of the front of the revolving body 120, but the present invention is not limited to this and the boom 131 may be attached offset in the left-right direction. In this case, the center of rotation of the revolving body 120 is not located on the operating plane of the work machine 130.
  • the arm 132 connects the boom 131 and the bucket 133.
  • a base end of the arm 132 is rotatably attached to a tip end of the boom 131 via an arm pin.
  • the bucket 133 is rotatably attached to the tip of the arm 132 via a pin.
  • the bucket 133 functions as a container for accommodating the load L.
  • the bucket 133 is attached so that its opening faces the rotating body 120 (rear).
  • the loading machine 100 which is a backhoe excavator, performs excavation by pulling the bucket 133 to the front side of the rotating body 120.
  • the boom cylinder 131C is a hydraulic cylinder for operating the boom 131.
  • a base end of the boom cylinder 131C is attached to the rotating body 120.
  • a tip end of the boom cylinder 131C is attached to the boom 131.
  • the arm cylinder 132C is a hydraulic cylinder for driving the arm 132.
  • a base end of the arm cylinder 132C is attached to the boom 131.
  • a tip end of the arm cylinder 132C is attached to the arm 132.
  • the bucket cylinder 133C is a hydraulic cylinder for driving the bucket 133.
  • a base end of the bucket cylinder 133C is attached to the boom 131.
  • a tip end of the bucket cylinder 133C is attached to a link mechanism that enables the bucket 133 to rotate.
  • FIG. 3 is a diagram showing the internal configuration of the operator's cab 140 according to the first embodiment.
  • a driver's seat 141, an operation terminal 142, and an operation device 143 are provided in the driver's cab 140.
  • the operation terminal 142 is provided near the driver's seat 141, and is a user interface with the control device 160 described later.
  • the operation terminal 142 is a display device configured with, for example, a touch panel, and may have an operation unit operated by an operator and an input reception unit that receives operations.
  • the operation terminal 142 displays information on the distribution of the loads L loaded into the vessel 210 of the loading target 200 on the vessel 210 in order to assist the loading operation.
  • the operation terminal 142 may include a display unit such as an LCD.
  • the operation terminal 142 is an example of a display device.
  • the loading machine 100 may include a head-up display that projects an image on the windshield of the driver's cab 140 instead of the operation terminal 142.
  • the operating device 143 is a device for driving the running body 110, the rotating body 120, and the work machine 130 by manual operation by the operator.
  • the loading machine 100 includes a position/orientation calculator 151 , an inclination measuring device 152 , a boom stroke sensor 153 , an arm stroke sensor 154 , and a bucket stroke sensor 155 .
  • the position and orientation calculator 151 calculates the position of the revolving body 120 and the orientation in which the revolving body 120 faces.
  • the position and orientation calculator 151 includes two receivers that receive positioning signals from artificial satellites that constitute the GNSS. The two receivers are installed at different positions on the revolving body 120.
  • the position and orientation calculator 151 detects the position of a representative point of the revolving body 120 in the site coordinate system (the origin of the excavator coordinate system) based on the positioning signals received by the receivers.
  • the position and orientation calculator 151 uses the positioning signals received by the two receivers to calculate the orientation of the revolving body 120 as the relationship between the installation position of one receiver and the installation position of the other receiver.
  • the orientation of the revolving body 120 is a direction perpendicular to the front of the revolving body 120.
  • the orientation of the revolving body 120 is equal to the horizontal component of the extension direction of a straight line extending from the boom 131 to the bucket 133 of the work machine 130.
  • the inclination measuring device 152 measures the acceleration and angular velocity of the rotating body 120, and detects the attitude (e.g., roll angle, pitch angle, yaw angle) and rotation speed of the rotating body 120 based on the measurement results.
  • the inclination measuring device 152 is installed, for example, on the underside of the rotating body 120.
  • the inclination measuring device 152 can be, for example, an inertial measurement unit (IMU).
  • IMU inertial measurement unit
  • the boom stroke sensor 153 is attached to the boom cylinder 131C and detects the cylinder length of the boom cylinder 131C.
  • the cylinder length of the boom cylinder 131C can be converted into a relative angle of the boom 131 with respect to the rotating body 120.
  • the arm stroke sensor 154 is attached to the arm cylinder 132C and detects the cylinder length of the arm cylinder 132C.
  • the cylinder length of the arm cylinder 132C can be converted into a relative angle of the arm 132 with respect to the boom 131.
  • the bucket stroke sensor 155 is attached to the bucket cylinder 133C and detects the cylinder length of the bucket cylinder 133C.
  • the cylinder length of the bucket cylinder 133C can be converted into a relative angle of the bucket 133 with respect to the arm 132.
  • the loading machine 100 specifies the angle of each link component of the work machine 130 using the boom stroke sensor 153, the arm stroke sensor 154, and the bucket stroke sensor 155, but this is not limited to the above in other embodiments.
  • a potentiometer that detects the relative rotation angle of the link component may be provided, or an inclination sensor that detects the ground angle of each link component may be provided.
  • FIG. 4 is a schematic block diagram showing the configuration of the control device 160 according to the first embodiment.
  • the loading machine 100 includes a control device 160.
  • the control device 160 may be implemented in the operation terminal 142, or may be provided separately from the operation terminal 142 and receive input and output from the operation terminal 142.
  • the control device 160 receives an operation signal from the operation device 143.
  • the control device 160 drives the work machine 130, the revolving body 120, and the traveling body 110 by outputting the received operation signal or an operation signal generated for automatic control to the control valve 123.
  • the operation signal received from the operation device 143 is also referred to as a manual operation signal
  • the operation signal generated for automatic control is also referred to as an automatic operation signal.
  • the automatic operation signal is composed of an operation signal that drives the revolving body 120 and the work machine 130, and does not include an operation signal that drives the traveling body 110.
  • the control device 160 may stop the automatic control.
  • the control device 160 is a computer that includes a processor 610, a main memory 630, a storage 650, and an interface 670.
  • the storage 650 stores a program.
  • the processor 610 reads the program from the storage 650, expands it in the main memory 630, and executes processing according to the program.
  • Examples of storage 650 include semiconductor memory, magnetic disks, magneto-optical disks, optical disks, etc. Storage 650 may be internal media directly connected to the common communication line of control device 160, or may be external media connected to control device 160 via interface 670. Main memory 630 and storage 650 are non-transitory tangible storage media.
  • the processor 610 is provided with a data acquisition unit 611, a data receiving unit 612, a viscosity input unit 613, a bucket attitude identification unit 614, a relative position identification unit 615, a loading determination unit 616, a loading amount estimation unit 617, a distribution estimation unit 618, and a display control unit 619.
  • the data acquisition unit 611 acquires measurement data by the measurement system of the loading machine 100. Specifically, the data acquisition unit 611 acquires measurement data from the position and orientation calculator 151, the inclination measuring instrument 152, the boom stroke sensor 153, the arm stroke sensor 154, and the bucket stroke sensor 155. The data acquisition unit 611 calculates the angle of the revolving unit 120 by integrating the angular velocity of the revolving unit 120 measured by the inclination measuring instrument 152. The data receiving unit 612 receives measurement data of the position and orientation of the object 200 to be loaded, and the weight of the load L, from the communication device 230 of the object 200 to be loaded.
  • the viscosity input unit 613 accepts input of the viscosity of the load L through the operation of the operator.
  • the viscosity of the load L affects how the load L spreads when loaded and the angle of the bucket 133 when the load L leaves the bucket 133. For example, when the viscosity of the load L is low, the load L loaded into the vessel 210 is distributed shallowly and widely. On the other hand, when the viscosity of the load L is high, the load L loaded into the vessel 210 is distributed high and narrowly. Also, when the viscosity of the load L is low, the load L starts to leave the bucket 133 before the angle of the bucket 133 faces vertically downward. On the other hand, when the viscosity of the load L is high, the load L leaves the bucket 133 after the angle of the bucket 133 exceeds the vertical downward direction.
  • the viscosity input unit 613 may display a viscosity input screen as shown in FIG. 5 on the operation terminal 142 and accept viscosity input by operating the input screen.
  • a slider U1 and a model image U2 are displayed on the input screen.
  • the slider U1 is an input interface for setting a viscosity value by moving the handle left and right. For example, the slider U1 indicates that the viscosity is higher as the handle is positioned to the left, and lower as the handle is positioned to the right.
  • the model image U2 indicates the distribution of the load L discharged from the bucket 133 and the angle of the bucket 133 when the load L leaves the bucket 133 when the load L has a viscosity according to the handle position of the slider U1.
  • the model image U2 is updated each time the handle of the slider U1 is moved. For example, the operator compares the angle of the bucket 133 and the distribution of the load L when the load L is actually discharged with the model image U2. If the operator determines that the viscosity of the load L is lower than that shown in the model image U2, he or she moves the handle of the slider U1 to the right. As a result, the bucket 133 displayed in the model image U2 tilts more in the excavation direction, and the load L becomes lower in height and wider in width.
  • the operator determines that the viscosity of the load L is lower than that shown in the model image U2, he or she moves the handle of the slider U1 to the left. As a result, the bucket 133 displayed in the model image U2 tilts more in the dump direction, and the load L becomes higher in height and narrower in width. As a result, the operator can input the viscosity of the load L so as to approximate the behavior of the actual load L by checking the model image U2.
  • the viscosity value input to the viscosity input unit 613 is recorded in the main memory 630.
  • the relationship between the viscosity of the load L, the bucket angle, and the distribution of the load L is specified in advance and incorporated into the program, or is recorded in the main memory 630 or the storage 650.
  • the bucket attitude identification unit 614 identifies the position and attitude (ground angle) of the cutting edge of the bucket 133 in the global coordinate system based on the measurement data acquired by the data acquisition unit 611. Specifically, the bucket attitude identification unit 614 calculates the position and angle of the cutting edge of the bucket 133 in the vehicle body coordinate system based on the rotating body 120 based on the measurement data of the boom stroke sensor 153, arm stroke sensor 154, and bucket stroke sensor 155, and known shape data of the boom 131, arm 132, and bucket 133.
  • the bucket attitude identification unit 614 also converts the position and angle of the cutting edge of the bucket 133 in the vehicle body coordinate system into a position and coordinates in the global coordinate system based on the measurement data of the position and orientation calculator 151 and the inclination measuring device 152.
  • the relative position identification unit 615 identifies the relative positional relationship between the bucket 133 and the vessel 210 of the loading target 200. Specifically, the relative position identification unit 615 identifies the range in the global coordinate system in which the vessel 210 of the loading target 200 exists, based on the position and attitude of the loading target 200 and the known shape of the loading target 200. The relative position identification unit 615 identifies the relative positional relationship between the bucket 133 and the vessel 210, based on the position of the bucket 133 identified by the bucket attitude identification unit 614 and the range in which the identified vessel 210 exists.
  • the loading determination unit 616 determines whether or not the load L has been loaded onto the loading object 200 based on the relative positional relationship between the bucket 133 and the vessel 210 identified by the relative position identification unit 615, the position and posture of the loading object 200 received by the data receiving unit 612, and the viscosity of the load L input to the viscosity input unit 613. Specifically, the loading determination unit 616 according to the first embodiment determines whether or not the load L has been loaded onto the loading object 200 in the following procedure. The loading determination unit 616 determines whether or not the bucket 133 is located above the vessel 210 based on the relative positional relationship between the bucket 133 and the vessel 210 identified by the relative position identification unit 615.
  • the loading determination unit 616 determines the angle at which the load L leaves the bucket 133 based on the viscosity input to the viscosity input unit 613. The loading determination unit 616 determines that the load L has been loaded onto the loading target 200 when the bucket 133 is positioned above the vessel 210 and the angle of the bucket 133 is tilted in the discharge direction and exceeds the angle at which the load L is lifted off.
  • the loading amount estimation unit 617 determines the loading amount of the load L based on the weight of the loading object 200 received by the data receiving unit 612. Specifically, the difference between the weight of the loading object 200 at the time of the previous loading and the weight of the loading object 200 after the load L has been loaded is estimated as the weight of the load L. The loading amount estimation unit 617 then estimates the volume (loading amount) of the load L based on the weight and viscosity of the load L. Note that the weight and volume of the load L are both examples of the loading amount of the load L.
  • the distribution estimation unit 618 estimates the distribution of the load L in the vessel 210 by a simulation using the position of the bucket 133 relative to the loading target 200 when the load L is loaded onto the loading target 200, the loading amount estimated by the loading amount estimation unit 617, and the viscosity of the load L. For example, the distribution estimation unit 618 estimates the distribution of the load L in the vessel 210 by a particle simulation using the load L as a particle. Note that the distribution estimation unit 618 according to other embodiments may estimate the distribution of the load L in the vessel 210 by a simulation using a predetermined loading amount (for example, the maximum loading amount of the bucket) and the viscosity of the load L instead of the loading amount estimated by the loading amount estimation unit 617.
  • a predetermined loading amount for example, the maximum loading amount of the bucket
  • the display control unit 619 displays the distribution of the load L estimated by the distribution estimation unit 618 on the display unit of the operation terminal 142.
  • FIG. 6 is an example of a distribution image according to the first embodiment.
  • the distribution image is an image showing the loading status of the load L displayed on the operation terminal 142.
  • the distribution image shown in FIG. 6 depicts the loading target 200 in a plan view as seen from above, divides the vessel 210 of the loading target 200 into meshes, and displays the height of the soil and sand for each mesh in a heat map.
  • the distribution image according to other embodiments may be depicted as a contour map instead of a heat map display, or may be depicted as a three-dimensional graphic with shading. According to the distribution image shown in FIG.
  • the display control unit 619 may display the distribution image on such a display device.
  • FIG. 7 is a flowchart showing a method for displaying a distribution image according to the first embodiment.
  • the control device 160 starts the display process of the distribution image, it repeatedly executes the flowchart shown in Fig. 7. Note that it is assumed that the viscosity value is recorded in the main memory 630 in advance by the viscosity input unit 613 before the display process of the distribution image is started. Alternatively, an initial viscosity value may be recorded in the main memory 630.
  • the data acquisition unit 611 acquires measurement data from the position/orientation calculator 151, the inclination measuring device 152, the boom stroke sensor 153, the arm stroke sensor 154, and the bucket stroke sensor 155 (step S1).
  • the data receiving unit 612 receives measurement data on the position and orientation of the loading target 200 and the weight of the load L from the communication device 230 of the loading target 200 (step S2).
  • the bucket attitude identification unit 614 identifies the position and attitude of the cutting edge of the bucket 133 in the global coordinate system based on the measurement data acquired in step S1 (step S3).
  • the relative position identification unit 615 identifies the range or position of the vessel 210 of the loading target 200 in the global coordinate system based on the measurement data of the position and attitude of the loading target 200 received in step S2 and the known shape of the loading target 200 (step S4). This allows the relative position identification unit 615 to identify the relative positions of the bucket 133 and the vessel 210 from the position of the blade tip of the bucket 133 identified in step S3 and the range or position of the vessel 210.
  • the loading determination unit 616 determines whether the bucket 133 is located above the vessel 210 based on the relative positional relationship between the bucket 133 and the vessel 210 (step S5). In other words, the loading determination unit 616 determines whether the position identified in step S3 is inside the range identified in step S4. At this time, the loading determination unit 616 identifies the relative position of the bucket 133 with respect to the vessel 210.
  • step S5 If the bucket 133 is located above the vessel 210 (step S5: YES), the loading determination unit 616 determines the angle at which the load L leaves the bucket 133 based on the viscosity stored in the main memory 630 (step S6). Next, the loading determination unit 616 determines whether the angle of the bucket 133 determined in step S3 exceeds the angle determined in step S6 (step S7).
  • step S8 the data receiving unit 612 receives weight measurement data from the loading object 200 (step S8).
  • the data receiving unit 612 continues to receive weight measurement data from the loading object 200 until the amount of change in weight falls below a predetermined threshold. This allows the data receiving unit 612 to receive the weight when all of the load L contained in the bucket 133 has been loaded onto the loading object 200.
  • the loading amount estimation unit 617 estimates the volume of the load L based on the difference between the weight of the load object 200 received in step S8 and the weight of the load object 200 at the time of the previous loading, and the viscosity of the load L (step S9).
  • the loading amount estimation unit 617 records the weight measurement data received in step S8 in the main memory 630 for use in the next calculation.
  • the distribution estimation unit 618 simulates the behavior of the load L loaded in the vessel 210 based on the relative position of the bucket 133 with respect to the vessel 210 identified in step S5, i.e., the loading position of the load L, the viscosity of the load L, and the loading amount of the load L, and estimates the distribution of the load L in the vessel 210 (step S10).
  • the distribution estimation unit 618 records the results of the simulation in step S10 in the main memory for use in the next calculation.
  • the display control unit 619 then generates a distribution image showing the distribution of the load L estimated in step S10, and displays it on the operation terminal 142 (step S11).
  • step S5 If the bucket 133 is not positioned above the vessel 210 (step S5: NO), or if the attitude of the bucket 133 does not exceed the angle at which the load L is released (step S7: NO), the control device 160 ends the process without updating the distribution image displayed on the operation terminal 142.
  • the control device 160 includes a relative position identification unit 615, a loading amount estimation unit 617, and a distribution estimation unit 618.
  • the relative position identification unit 615 identifies the relative positional relationship between the bucket 133 and the loading target 200 when the load L is loaded onto the loading target 200.
  • the distribution estimation unit 618 estimates the distribution of the load L loaded onto the loading target 200 based on the viscosity of the load loaded onto the loading target. In this manner, the control device 160 according to the first embodiment estimates the distribution of the load L from the loading positions of the load L, and therefore can estimate the loading status over the entire area of the loading target 200 regardless of the blind spot of the imaging device.
  • the control device 160 also includes a display control unit that causes the operation terminal 142 to display an image showing the distribution of the load L. This allows the operator to easily recognize the position in the vessel 210 where the load L should be loaded by visually checking the operation terminal 142.
  • control device 160 estimates the loading position of the load L based on the viscosity input to the viscosity input unit 613. In contrast to this, the control device 160 according to the second embodiment automatically estimates the viscosity of the load L.
  • Configuration of the control device 160 8 is a schematic block diagram showing the configuration of a control device 160 according to the second embodiment.
  • the control device 160 according to the second embodiment includes a viscosity estimation unit 620 instead of the viscosity input unit 613 according to the first embodiment.
  • the control device 160 according to the second embodiment also differs from the first embodiment in the processing of a loading determination unit 616.
  • the loading determination unit 616 determines whether or not the load L has been loaded based on the amount of change in the weight of the loading object 200. Specifically, the loading determination unit 616 determines that the load L has been loaded when the amount of change in the weight of the loading object 200 exceeds a threshold value.
  • the viscosity estimation unit 620 estimates the viscosity of the load L based on the angle of the bucket 133 when the loading determination unit 616 determines that loading has started.
  • the control device 160 according to the first embodiment determines the angle of the bucket 133 when the load L is released based on the viscosity of the load L
  • the control device 160 according to the second embodiment estimates the viscosity of the load L based on the angle of the bucket 133 when the load L is released.
  • Displaying distribution images 9 is a flowchart showing a method for displaying a distribution image according to the second embodiment.
  • the control device 160 starts the display process of the distribution image, it repeatedly executes the flowchart shown in FIG.
  • the data acquisition unit 611 acquires measurement data from the position/orientation calculator 151, the inclination measuring device 152, the boom stroke sensor 153, the arm stroke sensor 154, and the bucket stroke sensor 155 (step S21).
  • the data receiving unit 612 receives measurement data on the position and orientation of the loading target 200 and the weight of the load L from the communication device 230 of the loading target 200 (step S22).
  • the bucket attitude identification unit 614 identifies the position and attitude of the cutting edge of the bucket 133 in the global coordinate system based on the measurement data acquired in step S21 (step S23).
  • the relative position identification unit 615 identifies the range or position in the global coordinate system where the vessel 210 of the loading target 200 is located, based on the measurement data of the position and attitude of the loading target 200 received in step S22 and the known shape of the loading target 200 (step S24).
  • the relative position identification unit 615 identifies the relative positional relationship between the bucket 133 and the vessel 210, based on the position of the bucket 133 identified in step S23 and the range or position where the vessel 210 is located.
  • the loading determination unit 616 determines whether the bucket 133 is located above the vessel 210, based on the relative positional relationship between the bucket 133 and the vessel 210 (step S25). At this time, the loading determination unit 616 identifies the relative position of the bucket 133 with respect to the vessel 210.
  • the loading determination unit 616 calculates the amount of change in the weight of the load L based on the measurement data of the weight of the load object 200 received in step S2 (step S26). The loading determination unit 616 determines whether the amount of change in the weight of the load L exceeds a predetermined threshold value (step S27).
  • step S27 If the change in weight of the load L exceeds a predetermined threshold (step S27: YES), the loading determination unit 616 determines that the load L has been loaded onto the loading target 200.
  • the viscosity estimation unit 620 estimates the viscosity of the load L based on the angle of the bucket when it is determined that the load L has been loaded onto the loading target 200 (step S28).
  • the data receiving unit 612 receives weight measurement data from the loading object 200 until the amount of change in weight falls below a predetermined threshold, and determines the weight when the load L contained in the bucket 133 is completely loaded onto the loading object 200 (step S29).
  • the loading amount estimation unit 617 estimates the volume of the load L based on the difference between the weight of the load object 200 received in step S29 and the weight of the load object 200 at the time of the previous loading, and the viscosity of the load L (step 30).
  • the loading amount estimation unit 617 records the weight measurement data received in step S29 in the main memory 630 for use in the next calculation.
  • the distribution estimation unit 618 simulates the behavior of the load L loaded in the vessel 210 based on the loading position of the load L identified in step S25, the viscosity of the load L estimated in step S28, and the loading amount of the load L, and estimates the distribution of the load L in the vessel 210 (step S31).
  • the distribution estimation unit 618 records the results of the simulation in step S31 in the main memory for use in the next calculation.
  • the display control unit 619 generates a distribution image showing the distribution of the load L estimated in step S31, and displays it on the operation terminal 142 (step S32).
  • step S25: NO If the bucket 133 is not positioned above the vessel 210 (step S25: NO), or if the change in weight of the load L does not exceed a predetermined threshold (step S27: NO), the control device 160 ends the process without updating the distribution image displayed on the operation terminal 142.
  • the control device 160 includes a viscosity estimation unit that estimates the viscosity of the loaded load L. This allows the control device 160 to estimate the distribution of the load L based on the viscosity without receiving a viscosity input from an operator.
  • control device 160 estimates the viscosity of the loaded load L and determines whether the load L has been loaded based on the change in weight of the loading target 200, but is not limited to this.
  • the control device 160 may be provided with a viscosity input unit 613 as in the first embodiment to receive input of the viscosity of the load L and determine whether the load L has been loaded based on the change in weight of the loading target 200.
  • the control device 160 may estimate the viscosity of the loaded load L and then determine whether the load L has been loaded based on the angle of the bucket 133 as in the first embodiment.
  • the viscosity estimation unit 620 may determine whether the load L has been loaded based on information other than the angle at the time of loading the load L. For example, the viscosity estimation unit 620 may estimate the viscosity from the magnitude of the resistance force that the work machine 130 receives during excavation.
  • control device 160 may be configured by a single computer, or the configuration of the control device 160 may be divided into a plurality of computers, and the plurality of computers may cooperate with each other to function as the control device 160. In this case, some of the computers constituting the control device 160 may be mounted inside the loading machine, and other computers may be provided outside the loading machine.
  • the cab 140 and some of the computers constituting the control device 160 may be provided at a location remote from the loading machine 100.
  • all of the computers constituting the control device 160 may be provided at a location remote from the loading machine 100.
  • the loading machine 100 is provided with an imaging device
  • the remote cab 140 is provided with a display device for displaying an image captured by the imaging device. In this case, the distribution image may be displayed on the display device.
  • the control device 160 displays the distribution image on the operation terminal 142, but is not limited to this.
  • the control device 160 may display the distribution image on a transparent head mounted display worn by the operator.
  • the distribution image does not have to be a top view as shown in FIG. 6, and may be displayed by superimposing a three-dimensional model representing the distribution of the load L on the loading target 200 viewed through the transparent head mounted display.
  • the display control unit 619 determines the position and orientation of the three-dimensional model of the load L based on the position and attitude of the loading target 200 received by the data receiving unit 612 and the position of the operator's viewpoint.
  • the display control unit 619 may also generate an image in which the load L is visible through the wire frame that emphasizes the outline of the vessel 210, by displaying the three-dimensional model of the load L.
  • the distribution image displayed on the operation terminal 142 is not limited to the view shown in FIG. 6, and may be an overhead image from diagonally above, or may be a side view.
  • the distribution image is represented by a side view
  • the distribution of the loads L is represented as a graph with the horizontal axis representing the position in the length direction of the loading object 200 and the vertical axis representing the height of the loads L. Since the side view does not show the distribution in the width direction of the loading object 200, the distribution image may include a graph drawn with different line types for each position in the width direction, for example.
  • the distribution image according to other embodiments may display text information such as "rear left: O, front right: X".
  • control device 160 may notify the distribution by sound rather than as a distribution image.
  • the control device 160 may cause a speaker installed in the cab 140 to output a recommended loading position based on the distribution of the load L.
  • the control device 160 may output a sound that prompts the user to change the loading position when the bucket 133 is in a position in the vessel 210 close to the load L's maximum loading height.
  • the control device 160 specifies the weight of the load L based on the measurement data of the payload meter 211 provided in the vessel 210, but is not limited to this.
  • the control device 160 may perform calculations based on measurement data of a strain sensor that measures the strain of the tires or vehicle body of the loading target 200, or the sinking amount of the vehicle body calculated from measurement data of an inertial sensor.
  • the control device 160 may specify the weight of the load L based on measurement data of a payload meter provided in the loading machine 100.
  • the payload meter provided in the loading machine 100 may measure the payload from, for example, the inclination of the rotating body 120 and the load applied to the boom cylinder.
  • the control device 160 may calculate the volume based on imaging data captured by an imaging device that captures an image of the inside of the bucket 133, rather than calculating the volume from the weight of the load L.
  • the control device 160 receives measurement data of the position and orientation from the loading target 200, but is not limited to this.
  • the control device 160 may identify the position and orientation of the loading target 200 based on imaging data from an imaging device provided in front of the rotating body 120.
  • the loading status estimation device can estimate the loading status in the entire area of the loading target.
  • Boom stroke sensor 154 ...Arm stroke sensor 155...Bucket stroke sensor 160
  • Data receiver 613 ...Viscosity input section 614
  • Bucket attitude identification section 615 ...Relative position identification section 616
  • “Loading judgment section 617 ...Loading amount estimation section 618...Distribution estimation section 619...Display control section 630...Main memory 650...Storage 670...Interface L...Load

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

積込判定部は、積込機械が備える作業具に保持された荷が積込対象に積み込まれたか否かを判定する。相対位置特定部は、荷が積込対象に積み込まれたときにおける作業具と積込対象との相対的な位置関係を特定する。分布推定部は、積込対象に積み込まれた荷の粘度に基づいて、積込対象に積み込まれた荷の分布を推定する。

Description

積載状況推定装置および積載状況推定方法
 本開示は、積載状況推定装置および積載状況推定方法に関する。
 本願は、2022年10月31日に日本に出願された特願2022-174614号について優先権を主張し、その内容をここに援用する。
 特許文献1には、積込対象の全域にわたって万遍なく運搬物を積み込むことを支援するために、積込機械に設けられた撮像装置に基づいて荷台上の荷の形状を検知し、比較的荷が少ない領域を目標積込ポイントとして算出する技術が開示されている。
特開2022-56134号公報
 荷台全体の積載状況は、積込機械の操縦者から認識することが困難である。また特許文献1に記載の技術では、撮像装置と積込対象との位置関係によっては撮像画像において死角が生じる可能性があり、必ずしも積込対象の全域の荷の形状を検知できるとは限らない。
 本開示の目的は、積込対象の全域における積載状況を推定することができる積載状況推定装置および積載状況推定方法を提供することにある。
 本発明の一態様によれば、積載状況推定装置は、積込機械が備える作業具に保持された荷が積込対象に積み込まれたか否かを判定する積込判定部と、前記荷が前記積込対象に積み込まれたときにおける前記作業具と前記積込対象との相対的な位置関係を特定する相対位置特定部と、前記積込対象に積み込まれた前記荷の粘度に基づいて、前記積込対象に積み込まれた荷の分布を推定する分布推定部と、を備える。
 上記態様によれば、積載状況推定装置は、積込対象の全域における積載状況を推定することができる。
第一実施形態に係る積込場の構成を示す図である。 第一実施形態に係る積込機械の構成を示す概略図である。 第一実施形態に係る運転室の内部の構成を示す図である。 第一実施形態に係る制御装置の構成を示す概略ブロック図である。 第一実施形態に係る粘度の入力画面の例を示す図である。 第一実施形態に係る分布画像の一例である。 第一実施形態に係る分布画像の表示方法を示すフローチャートである。 第二実施形態に係る制御装置の構成を示す概略ブロック図である。 第二実施形態に係る分布画像の表示方法を示すフローチャートである。
〈第一実施形態〉
 以下、図面を参照しながら実施形態について詳しく説明する。
 図1は、第一実施形態に係る積込場の構成を示す図である。
 作業現場には、積込機械100と積込対象200とが配備される。積込機械100は、施工現場にて稼働し、土砂などの施工対象を掘削し、荷Lとしてダンプトラックなどの積込対象200に積み込む。積込機械100の例としては、フェイスショベル、バックホウショベル、ロープショベルなどが挙げられる。また積込機械100は電動駆動するものであってもよいし、油圧駆動するものであってもよい。第一実施形態に係る積込機械100は、バックホウショベルである。積込機械100は、走行体110、旋回体120、作業機130及び運転室140を備える。積込対象200の例としては、ダンプトラック、ホッパなどが挙げられる。積込対象200は、荷Lを収容する容器であるベッセル210を備える。ベッセル210には、ベッセル210に積み込まれた荷Lの重量を計測するペイロードメータ211が設けられる。また積込対象200は、位置方位演算器220および通信装置230を備える。位置方位演算器220は、積込対象200の位置および方位を演算する。位置方位演算器220は、例えば、GNSSを構成する人工衛星からの測位信号に基づいて、積込対象200の位置及び方位を演算する。通信装置230は、ペイロードメータ211および位置方位演算器220の計測データを積込機械100に送信する。通信装置230は、例えば近距離無線通信などにより積込機械100との通信を行う。
《積込機械100の構成》
 図2は、第一実施形態に係る積込機械100の構成を示す概略図である。
 走行体110は、積込機械100を走行可能に支持する。走行体110は、左右に設けられた2つの無限軌道111と、各無限軌道111を駆動するための2つの走行モータ112を備える。走行体110は、支持部の一例である。
 旋回体120は、走行体110に旋回中心回りに旋回可能に支持される。
 作業機130は、油圧により駆動する。作業機130は、旋回体120の前部に上下方向に駆動可能に支持される。
 運転室140は、オペレータが搭乗し、積込機械100の操作を行うためのスペースである。運転室140は、旋回体120の左前部に設けられる。
 ここで、旋回体120のうち作業機130が取り付けられる部分を前部という。また、旋回体120について、前部を基準に、反対側の部分を後部、左側の部分を左部、右側の部分を右部という。
《旋回体120の構成》
 旋回体120は、エンジン121、油圧ポンプ122、コントロールバルブ123、旋回モータ124を備える。
 エンジン121は、油圧ポンプ122を駆動する原動機である。エンジン121は、動力源の一例である。
 油圧ポンプ122は、エンジン121により駆動される可変容量ポンプである。油圧ポンプ122は、コントロールバルブ123を介して各アクチュエータ(ブームシリンダ131C、アームシリンダ132C、バケットシリンダ133C、走行モータ112、及び旋回モータ124)に作動油を供給する。
 コントロールバルブ123は、油圧ポンプ122から供給される作動油の流量を制御する。
 旋回モータ124は、コントロールバルブ123を介して油圧ポンプ122から供給される作動油によって駆動し、旋回体120を旋回させる。
《作業機130の構成》
 作業機130は、ブーム131、アーム132、作業具としてのバケット133、ブームシリンダ131C、アームシリンダ132C、及びバケットシリンダ133Cを備える。作業具の他の例として、クラムバケット、チルトバケット、チルトローテートバケットなどが挙げられる。
 ブーム131の基端部は、旋回体120にブームピンを介して回転可能に取り付けられる。なお、図2に示す積込機械100においては、ブーム131が旋回体120の正面中央部分に設けられるが、これに限られず、ブーム131は左右方向にオフセットして取り付けられたものであってもよい。この場合、旋回体120の旋回中心は作業機130の動作平面上に位置しない。
 アーム132は、ブーム131とバケット133とを連結する。アーム132の基端部は、ブーム131の先端部にアームピンを介して回転可能に取り付けられる。
 バケット133は、アーム132の先端部にピンを介して回転可能に取り付けられる。バケット133は、荷Lを収容するための容器として機能する。バケット133は、開口が旋回体120側(後方)を向くように取り付けられる。つまり、バックホウショベルである積込機械100は、バケット133を旋回体120の手前側に引き寄せることで掘削を行う。
 ブームシリンダ131Cは、ブーム131を作動させるための油圧シリンダである。ブームシリンダ131Cの基端部は、旋回体120に取り付けられる。ブームシリンダ131Cの先端部は、ブーム131に取り付けられる。
 アームシリンダ132Cは、アーム132を駆動するための油圧シリンダである。アームシリンダ132Cの基端部は、ブーム131に取り付けられる。アームシリンダ132Cの先端部は、アーム132に取り付けられる。
 バケットシリンダ133Cは、バケット133を駆動するための油圧シリンダである。バケットシリンダ133Cの基端部は、ブーム131に取り付けられる。バケットシリンダ133Cの先端部は、バケット133を回動可能にするリンク機構に取り付けられる。
《運転室140の構成》
 図3は、第一実施形態に係る運転室140の内部の構成を示す図である。
 運転室140内には、運転席141、操作端末142及び操作装置143が設けられる。操作端末142は、運転席141の近傍に設けられ、後述する制御装置160とのユーザインタフェースである。操作端末142は、例えばタッチパネルで構成された表示装置であり、オペレータが操作する操作部と、操作を受け付ける入力受付部があってもよい。また、積込作業中、操作端末142には、積込作業を補助するために、積込対象200のベッセル210に積み込まれた荷Lのベッセル210上における分布に関する情報が表示される。操作端末142は、LCDなどの表示部を備えるものであってよい。操作端末142は表示装置の一例である。また、他の実施形態においては、積込機械100は、操作端末142に代えて、運転室140のフロントガラスに画像を投影するヘッドアップディスプレイを備えてもよい。
 操作装置143は、オペレータの手動操作によって走行体110、旋回体120及び作業機130を駆動させるための装置である。
《計測系の構成》
 図2に示すように、積込機械100は、位置方位演算器151、傾斜計測器152、ブームストロークセンサ153、アームストロークセンサ154、バケットストロークセンサ155を備える。
 位置方位演算器151は、旋回体120の位置及び旋回体120が向く方位を演算する。位置方位演算器151は、GNSSを構成する人工衛星から測位信号を受信する2つの受信器を備える。2つの受信器は、それぞれ旋回体120の異なる位置に設置される。位置方位演算器151は、受信器が受信した測位信号に基づいて、現場座標系における旋回体120の代表点(ショベル座標系の原点)の位置を検出する。
 位置方位演算器151は、2つの受信器が受信した各測位信号を用いて、一方の受信器の設置位置に対する他方の受信器の設置位置の関係として、旋回体120の向く方位を演算する。旋回体120が向く方位とは、旋回体120の正面に直交する方向である。また、旋回体120が向く方位は、作業機130のブーム131からバケット133へ伸びる直線の延在方向の水平成分に等しい。
 傾斜計測器152は、旋回体120の加速度及び角速度を計測し、計測結果に基づいて旋回体120の姿勢(例えば、ロール角、ピッチ角、ヨー角)および旋回速度を検出する。傾斜計測器152は、例えば旋回体120の下面に設置される。傾斜計測器152は、例えば、慣性計測装置(IMU:Inertial Measurement Unit)を用いることができる。
 ブームストロークセンサ153は、ブームシリンダ131Cに取り付けられ、ブームシリンダ131Cのシリンダ長を検出する。ブームシリンダ131Cのシリンダ長は、旋回体120に対するブーム131の相対角度に換算可能である。
 アームストロークセンサ154は、アームシリンダ132Cに取り付けられ、アームシリンダ132Cのシリンダ長を検出する。アームシリンダ132Cのシリンダ長は、ブーム131に対するアーム132の相対角度に換算可能である。
 バケットストロークセンサ155は、バケットシリンダ133Cに取り付けられ、バケットシリンダ133Cのシリンダ長を検出する。バケットシリンダ133Cのシリンダ長は、アーム132に対するバケット133の相対角度に換算可能である。
 第一実施形態に係る積込機械100は、ブームストロークセンサ153、アームストロークセンサ154、及びバケットストロークセンサ155を用いて作業機130の各リンク部品の角度を特定するが、他の実施形態においてはこれに限られない。例えば、他の実施形態においては、ストロークセンサに代えて、リンク部品の相対回転角を検出するポテンショメータを備えてもよいし、各リンク部品の対地角を検出する傾斜センサを備えてもよい。
《制御装置160の構成》
 図4は、第一実施形態に係る制御装置160の構成を示す概略ブロック図である。
 積込機械100は、制御装置160を備える。制御装置160は、操作端末142に実装されるものであってもよいし、操作端末142と別個に設けられ、操作端末142からの入出力を受け付けるものであってもよい。制御装置160は、操作装置143から操作信号を受信する。制御装置160は、受信した操作信号又は自動制御のために生成された操作信号をコントロールバルブ123に出力することで、作業機130、旋回体120及び走行体110を駆動させる。以下、操作装置143から受信した操作信号を手動操作信号ともよび、自動制御のために生成された操作信号を自動操作信号ともよぶ。なお、自動操作信号は、旋回体120および作業機130を駆動させる操作信号からなり、走行体110を駆動させる操作信号を含まない。自動制御中に、オペレータによる手動操作信号を受信した場合、制御装置160は自動制御を停止してもよい。
 制御装置160は、プロセッサ610、メインメモリ630、ストレージ650、インタフェース670を備えるコンピュータである。ストレージ650は、プログラムを記憶する。プロセッサ610は、プログラムをストレージ650から読み出してメインメモリ630に展開し、プログラムに従った処理を実行する。
 ストレージ650の例としては、半導体メモリ、磁気ディスク、光磁気ディスク、光ディスク等が挙げられる。ストレージ650は、制御装置160の共通通信線に直接接続された内部メディアであってもよいし、インタフェース670を介して制御装置160に接続される外部メディアであってもよい。メインメモリ630及びストレージ650は、一時的でない有形の記憶媒体である。
 プロセッサ610は、プログラムの実行により、データ取得部611、データ受信部612、粘度入力部613、バケット姿勢特定部614、相対位置特定部615、積込判定部616、積込量推定部617、分布推定部618、表示制御部619を備える。
 データ取得部611は、積込機械100の計測系による計測データを取得する。具体的には、データ取得部611は、位置方位演算器151、傾斜計測器152、ブームストロークセンサ153、アームストロークセンサ154およびバケットストロークセンサ155から計測データを取得する。データ取得部611は、傾斜計測器152が計測した旋回体120の角速度を積分することで、旋回体120の角度を算出する。
 データ受信部612は、積込対象200の通信装置230から、積込対象200の位置および方位、ならびに荷Lの重量の計測データを受信する。
 粘度入力部613は、オペレータの操作によって、荷Lの粘度の入力を受け付ける。荷Lの粘度は、荷Lを積み込んだときの広がり方、および荷Lがバケット133から離れるときのバケット133の角度に影響する。例えば、荷Lの粘度が低い場合、ベッセル210に積み込まれた荷Lは浅く広く分布する。他方、荷Lの粘度が高い場合、ベッセル210に積み込まれた荷Lは高く狭く分布する。また、荷Lの粘度が低い場合、バケット133の角度が鉛直下方を向く前からバケット133から荷Lが離れ始める。他方、荷Lの粘度が高い場合、バケット133の角度が鉛直下方を超えた後にバケット133から荷Lが離れる。
 図5は、第一実施形態に係る粘度の入力画面の例を示す図である。粘度入力部613は、操作端末142に図5に示すような粘度の入力画面を表示し、当該入力画面の操作によって粘度の入力を受け付けてもよい。図5に示す例では、入力画面にはスライダーU1と、モデル画像U2とが表示される。スライダーU1は、ハンドルを左右に移動させることで、粘度の値を設定する入力インタフェースである。例えば、スライダーU1は、ハンドルが左側に位置するほど粘度が高いことを表し、ハンドルが右側に位置するほど粘度が低いことを表す。モデル画像U2は、スライダーU1のハンドルの位置に応じた粘度を荷Lが有する場合におけるバケット133から排土された荷Lの分布と荷Lが離れるときのバケット133の角度とを表す。モデル画像U2は、スライダーU1のハンドルが移動されるたびに更新される。例えば、オペレータは、実際に荷Lを排土したときのバケット133の角度及び荷Lの分布とモデル画像U2とを比較する。オペレータは、モデル画像U2が表す荷Lの粘度より実際の荷Lの粘度が低いと判断した場合、スライダーU1のハンドルを右に移動させる。これにより、モデル画像U2に表示されているバケット133はより掘削方向に傾き、荷Lは高さが低くかつ幅が広くなる。他方、オペレータは、モデル画像U2が表す荷Lの粘度より実際の荷Lの粘度が低いと判断した場合、スライダーU1のハンドルを左に移動させる。これにより、モデル画像U2に表示されているバケット133はよりダンプ方向に傾き、荷Lは高さが高くかつ幅が狭くなる。これにより、オペレータは、モデル画像U2を確認することで、実際の荷Lの挙動に近づくように荷Lの粘度を入力することができる。粘度入力部613に入力された粘度の値はメインメモリ630に記録される。なお、荷Lの粘度とバケット角度及び荷Lの分布との関係は予め特定されてプログラムに組み込まれ、またはメインメモリ630やストレージ650に記録されている。
 バケット姿勢特定部614は、データ取得部611が取得した計測データに基づいて、グローバル座標系におけるバケット133の刃先の位置及び姿勢(対地角)を特定する。具体的にはバケット姿勢特定部614は、ブームストロークセンサ153、アームストロークセンサ154およびバケットストロークセンサ155の計測データと、ブーム131、アーム132およびバケット133の既知の形状データとに基づいて、旋回体120を基準とする車体座標系におけるバケット133の刃先の位置及び角度を計算する。またバケット姿勢特定部614は、位置方位演算器151および傾斜計測器152の計測データに基づいて、車体座標系におけるバケット133の刃先の位置及び角度を、グローバル座標系における位置及び座標に変換する。
 相対位置特定部615は、バケット133と積込対象200のベッセル210との相対的な位置関係を特定する。具体的には、相対位置特定部615は、積込対象200の位置及び姿勢と既知の積込対象200の形状に基づいてグローバル座標系における積込対象200のベッセル210が存在する範囲を特定する。相対位置特定部615は、バケット姿勢特定部614が特定したバケット133の位置と、特定したベッセル210が存在する範囲とに基づいて、バケット133とベッセル210との相対的な位置関係を特定する。
 積込判定部616は、相対位置特定部615が特定したバケット133とベッセル210との相対的な位置関係、データ受信部612が受信した積込対象200の位置及び姿勢、ならびに粘度入力部613に入力された荷Lの粘度に基づいて、荷Lが積込対象200に積み込まれたか否かを判定する。具体的には、第一実施形態に係る積込判定部616は、以下の手順で荷Lが積込対象200に積み込まれたか否かを判定する。積込判定部616は、相対位置特定部615が特定したバケット133とベッセル210との相対的な位置関係に基づいて、バケット133がベッセル210の上に位置するか否かを判定する。積込判定部616は、粘度入力部613に入力された粘度に基づいて、荷Lがバケット133から離れる角度を特定する。積込判定部616は、バケット133がベッセル210の上に位置し、かつバケット133の角度が排土方向に傾き荷Lが離れる角度を超えている場合に、荷Lが積込対象200に積み込まれたと判定する。
 積込量推定部617は、データ受信部612が受信した積込対象200の重量に基づいて、荷Lの積込量を特定する。具体的には、前回の積込時の積込対象200の重量と、荷Lが積み込まれた後の積込対象200の重量との差を、荷Lの重量として推定する。そして、積込量推定部617は、荷Lの重量と粘度とに基づいて、荷Lの体積(積込量)を推定する。なお、荷Lの重量および荷Lの体積は、いずれも荷Lの積込量の一例である。
 分布推定部618は、荷Lが積込対象200に積み込まれたときにおける、積込対象200に対するバケット133の位置と、積込量推定部617によって推定された積込量と、荷Lの粘度とを用いたシミュレーションによって、ベッセル210における荷Lの分布を推定する。例えば、分布推定部618は、荷Lをパーティクルとするパーティクルシミュレーションによって、ベッセル210における荷Lの分布を推定する。なお、他の実施形態に係る分布推定部618は、例えば、積込量推定部617によって推定された積込量の代わりに、予め決められた積込量(例えば、バケットの最大積込量)と、荷Lの粘度とも用いたシミュレーションによって、ベッセル210における荷Lの分布を推定してもよい。
 表示制御部619は、分布推定部618が推定した荷Lの分布を、操作端末142の表示部に表示させる。図6は、第一実施形態に係る分布画像の一例である。分布画像は、操作端末142に表示される荷Lの積込状況を示す画像である。図6に示す分布画像は、上方から見たときの平面視に係る積込対象200が描画され、積込対象200のベッセル210部分をメッシュで区切り、メッシュごとの土砂の高さをヒートマップ表示した画像である。なお、他の実施形態に係る分布画像は、ヒートマップ表示ではなく等高線図として描画されてもよいし、陰影を付した立体的なグラフィックスで描画されてもよい。図6に示す分布画像によれば、ベッセルの左奥に荷Lが多く積まれ、右手前の荷Lが少ないことが分かる。なお、他の実施形態において、積込機械100が操作端末142に代えて、入力機能を有しない表示装置を備える場合、表示制御部619は、このような表示装置に分布画像を表示させてもよい。
《分布画像の表示》
 図7は、第一実施形態に係る分布画像の表示方法を示すフローチャートである。制御装置160は、分布画像の表示処理を開始すると、図7に示すフローチャートを繰り返し実行する。なお、分布画像の表示処理を開始する前に、予め粘度入力部613によってメインメモリ630に粘度の値が記録されているものとする。またはメインメモリ630には粘度の初期設定値が記録されていてもよい。
 まず、データ取得部611は、位置方位演算器151、傾斜計測器152、ブームストロークセンサ153、アームストロークセンサ154およびバケットストロークセンサ155から計測データを取得する(ステップS1)。次に、データ受信部612は、積込対象200の通信装置230から、積込対象200の位置および方位、ならびに荷Lの重量の計測データを受信する(ステップS2)。次に、バケット姿勢特定部614は、ステップS1で取得した計測データに基づいて、グローバル座標系におけるバケット133の刃先の位置及び姿勢を特定する(ステップS3)。
 相対位置特定部615は、ステップS2で受信した積込対象200の位置及び姿勢の計測データと、既知の積込対象200の形状に基づいてグローバル座標系における積込対象200のベッセル210が存在する範囲または位置を特定する(ステップS4)。これにより、相対位置特定部615は、ステップS3で特定されたバケット133の刃先の位置とベッセル210が存在する範囲または位置とから、バケット133とベッセル210の相対的な位置を特定することができる。次に、積込判定部616は、バケット133とベッセル210の相対的な位置関係に基づいてバケット133がベッセル210の上に位置するか否かを判定する(ステップS5)。即ち、積込判定部616は、ステップS3で特定した位置が、ステップS4で特定した範囲の内側に存在するか否かを判定する。このとき、積込判定部616は、ベッセル210に対するバケット133の相対位置を特定する。
 バケット133がベッセル210の上に位置する場合(ステップS5:YES)、積込判定部616は、メインメモリ630に記憶された粘度に基づいて、荷Lがバケット133から離れる角度を特定する(ステップS6)。次に、積込判定部616は、ステップS3で特定したバケット133の角度がステップS6で特定した角度を超えるか否かを判定する(ステップS7)。
 バケット133の角度が荷Lが離れる角度を超える場合(ステップS7:YES)、データ受信部612は、積込対象200から重量の計測データを受信する(ステップS8)。データ受信部612は、重量の変化量が所定の閾値を下回るまで積込対象200から重量の計測データを受信し続ける。これにより、データ受信部612は、バケット133に収容されていた荷Lが積込対象200にすべて積み込まれたときの重量を受信することができる。
 積込量推定部617は、ステップS8で受信した積込対象200の重量と前回の積込時の積込対象200の重量との差と荷Lの粘度とに基づいて、荷Lの体積を推定する(ステップS9)。積込量推定部617は、ステップS8で受信した重量の計測データを、次回の計算に用いるためにメインメモリ630に記録する。
 次に、分布推定部618は、ステップS5で特定したベッセル210に対するバケット133の相対位置すなわち荷Lの積込位置と、荷Lの粘度と、荷Lの積込量とに基づいて、ベッセル210に積み込まれた荷Lの挙動をシミュレートし、ベッセル210における荷Lの分布を推定する(ステップS10)。分布推定部618は、次回の計算に用いるために、ステップS10によるシミュレーションの結果をメインメモリに記録する。そして、表示制御部619は、ステップS10で推定した荷Lの分布を示す分布画像を生成し、操作端末142に表示させる(ステップS11)。
 なお、バケット133がベッセル210の上に位置しない場合(ステップS5:NO)、またはバケット133の姿勢が荷Lが離れる角度を超えない場合(ステップS7:NO)、制御装置160は、操作端末142に表示される分布画像を更新せずに、処理を終了する。
《作用・効果》
 このように、第一実施形態に係る制御装置160は、相対位置特定部615と、積込量推定部617と、分布推定部618とを備える。相対位置特定部615は、荷Lが積込対象200に積み込まれたときにおけるバケット133と積込対象200との相対的な位置関係を特定する。分布推定部618は、前記積込対象に積み込まれた前記荷の粘度に基づいて、積込対象200に積み込まれた荷Lの分布を推定する。このように、第一実施形態に係る制御装置160は、荷Lの積込位置から荷Lの分布を推定するため、撮像装置の死角によらず、積込対象200の全域における積載状況を推定することができる。
 また、第一実施形態に係る制御装置160は、操作端末142に荷Lの分布を示す画像を表示させる表示制御部を備える。これにより、オペレータは、操作端末142を視認することで、ベッセル210のうち荷Lを積載すべき位置を容易に認識することができる。
〈第二実施形態〉
 第一実施形態に係る制御装置160は、粘度入力部613に入力された粘度に基づいて、荷Lの積込位置を推定する。これに対し、第二実施形態に係る制御装置160は、自動的に荷Lの粘度を推定する。
《制御装置160の構成》
 図8は、第二実施形態に係る制御装置160の構成を示す概略ブロック図である。第二実施形態に係る制御装置160は、第一実施形態に係る粘度入力部613に代えて、粘度推定部620を備える。また、第二実施形態に係る制御装置160は、第一実施形態と積込判定部616の処理が異なる。
 第二実施形態に係る積込判定部616は、積込対象200の重量の変化量に基づいて、荷Lが積み込まれたか否かを判定する。具体的には、積込判定部616は積込対象200の重量の変化量が閾値を超えたときに、荷Lが積み込まれたと判定する。
 粘度推定部620は、積込判定部616によって積込が開始されたと判定されたときのバケット133の角度に基づいて、荷Lの粘度を推定する。つまり、第一実施形態に係る制御装置160は荷Lの粘度に基づいて荷Lが離れるときのバケット133の角度を特定したが、第二実施形態に係る制御装置160は、荷Lが離れるときのバケット133の角度に基づいて荷Lの粘度を推定する。
《分布画像の表示》
 図9は、第二実施形態に係る分布画像の表示方法を示すフローチャートである。制御装置160は、分布画像の表示処理を開始すると、図9に示すフローチャートを繰り返し実行する。
 まず、データ取得部611は、位置方位演算器151、傾斜計測器152、ブームストロークセンサ153、アームストロークセンサ154およびバケットストロークセンサ155から計測データを取得する(ステップS21)。次に、データ受信部612は、積込対象200の通信装置230から、積込対象200の位置および方位、ならびに荷Lの重量の計測データを受信する(ステップS22)。次に、バケット姿勢特定部614は、ステップS21で取得した計測データに基づいて、グローバル座標系におけるバケット133の刃先の位置及び姿勢を特定する(ステップS23)。
 相対位置特定部615は、ステップS22で受信した積込対象200の位置及び姿勢の計測データと、既知の積込対象200の形状に基づいてグローバル座標系における積込対象200のベッセル210が存在する範囲または位置を特定する(ステップS24)。相対位置特定部615は、ステップS23で特定したバケット133の位置とベッセル210が存在する範囲または位置とに基づいて、バケット133とベッセル210との相対的な位置関係を特定する。次に、積込判定部616は、バケット133とベッセル210との相対的な位置関係に基づいてバケット133がベッセル210の上に位置するか否かを判定する(ステップS25)。このとき、積込判定部616は、ベッセル210に対するバケット133の相対位置を特定する。
 バケット133がベッセル210の上に位置する場合(ステップS25:YES)、積込判定部616は、ステップS2で受信した積込対象200の重量の計測データに基づいて荷Lの重量の変化量を算出する(ステップS26)。積込判定部616は、荷Lの重量の変化量が所定の閾値を超えたか否かを判定する(ステップS27)。
 荷Lの重量の変化量が所定の閾値を超えた場合(ステップS27:YES)、積込判定部616は、荷Lが積込対象200に積み込まれたと判定する。粘度推定部620は、荷Lが積込対象200に積み込まれたと判定したときのバケットの角度に基づいて、荷Lの粘度を推定する(ステップS28)。
 次に、データ受信部612は、重量の変化量が所定の閾値を下回るまで積込対象200から重量の計測データを受信し、バケット133に収容されていた荷Lが積込対象200にすべて積み込まれたときの重量を特定する(ステップS29)。
 積込量推定部617は、ステップS29で受信した積込対象200の重量と前回の積込時の積込対象200の重量との差と荷Lの粘度とに基づいて、荷Lの体積を推定する(ステップ30)。積込量推定部617は、ステップS29で受信した重量の計測データを、次回の計算に用いるためにメインメモリ630に記録する。
 次に、分布推定部618は、ステップS25で特定した荷Lの積込位置と、ステップS28で推定した荷Lの粘度と、荷Lの積込量とに基づいて、ベッセル210に積み込まれた荷Lの挙動をシミュレートし、ベッセル210における荷Lの分布を推定する(ステップS31)。分布推定部618は、次回の計算に用いるために、ステップS31によるシミュレーションの結果をメインメモリに記録する。そして、表示制御部619は、ステップS31で推定した荷Lの分布を示す分布画像を生成し、操作端末142に表示させる(ステップS32)。
 なお、バケット133がベッセル210の上に位置しない場合(ステップS25:NO)、または荷Lの重量の変化量が所定の閾値を超えない場合(ステップS27:NO)、制御装置160は、操作端末142に表示される分布画像を更新せずに、処理を終了する。
《作用・効果》
 このように、第二実施形態に係る制御装置160は、積み込まれた荷Lの粘度を推定する粘度推定部を備える。これにより、制御装置160は、オペレータによる粘度の入力を受け付けることなく、粘度に基づく荷Lの分布の推定を行うことができる。
 なお、第二実施形態に係る制御装置160は、積み込まれた荷Lの粘度を推定し、また積込対象200の重量の変化に基づいて荷Lが積み込まれたか否かの判定を行うが、これに限られない。例えば、他の実施形態に制御装置160は、第一実施形態のように粘度入力部613を備えて荷Lの粘度の入力を受け付け、積込対象200の重量の変化に基づいて荷Lが積み込まれたか否かの判定を行ってもよい。また例えば、他の実施形態に制御装置160は、積み込まれた荷Lの粘度を推定したうえで、第一実施形態のようにバケット133の角度に基づいて荷Lが積み込まれたか否かの判定を行ってもよい。この場合、粘度推定部620は、荷Lの積込時の角度以外の情報に基づいて積込の判定を行ってよい。例えば、粘度推定部620は、掘削時に作業機130が受ける抵抗力の大きさから粘度を推定してもよい。
〈他の実施形態〉
 以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。すなわち、他の実施形態においては、上述の処理の順序が適宜変更されてもよい。また、一部の処理が並列に実行されてもよい。
 上述した実施形態に係る制御装置160は、単独のコンピュータによって構成されるものであってもよいし、制御装置160の構成を複数のコンピュータに分けて配置し、複数のコンピュータが互いに協働することで制御装置160として機能するものであってもよい。このとき、制御装置160を構成する一部のコンピュータが積込機械の内部に搭載され、他のコンピュータが積込機械の外部に設けられてもよい。例えば、積込機械100が遠隔操作される場合に、運転室140および制御装置160を構成する一部のコンピュータが、積込機械100から離れた場所に設けられてもよい。また、積込機械100が遠隔操作される場合、制御装置160を構成する全てのコンピュータが、積込機械100から離れた場所に設けられてもよい。積込機械100を遠隔運転する場合、積込機械100が撮像装置を備え、遠隔の運転室140が撮像装置が撮像した画像を表示するための表示装置を備える。この場合、分布画像は表示装置に表示されてもよい。
 上述した実施形態に係る制御装置160は、分布画像を操作端末142に表示させるが、これに限られない。例えば、他の実施形態に係る制御装置160は、オペレータが装着する透過型ヘッドマウントディスプレイに分布画像を表示させてもよい。この場合の分布画像は、図6に示すような上面図でなくてもよく、例えば透過型ヘッドマウントディスプレイを介して視認される積込対象200に、荷Lの分布を表す三次元モデルを重畳して表示させてもよい。このとき、表示制御部619は、データ受信部612が受信した積込対象200の位置及び姿勢と、オペレータの視点の位置とに基づいて、荷Lの三次元モデルの位置および向きを決定する。また、表示制御部619は、ベッセル210の輪郭を強調するワイヤフレームを荷Lの三次元モデルとともに表示させることで、荷Lが透けて見えるような画像を生成してもよい。
 また、他の実施形態においては、図6に示す図に限られず、操作端末142に表示される分布画像は、斜め上方らの俯瞰画像であってもよいし、側面図であってもよい。分布画像が側面図によって表される場合、荷Lの分布は、横軸を積込対象200の長さ方向の位置とし、縦軸を荷Lの高さとするグラフとして表される。側面図には、積込対象200の幅方向における分布が表れないため、分布画像は例えば幅方向の位置ごとに異なる線種で描画されたグラフを含むものであってよい。また、他の実施形態に係る分布画像は、「左奥:〇、右手前:×」のような文字情報を表示するものであってもよい。
 また、他の実施形態に係る制御装置160は、分布画像としてではなく、音声によって分布を通知してもよい。例えば、制御装置160は、運転室140内に設けられたスピーカに、荷Lの分布から推奨される積込位置を発声させてもよい。また他の実施形態に係る制御装置160は、バケット133がベッセル210のうち荷Lが積載可能高さに近い位置にあるときに、積込位置の変更を促す音声を出力させてもよい。
 上述した実施形態に係る制御装置160は、ベッセル210に設けられたペイロードメータ211の計測データに基づいて荷Lの重量を特定するが、これに限られない。例えば、他の実施形態に係る制御装置160は、積込対象200のタイヤや車体の歪みを計測する歪みセンサの計測データ、慣性センサの計測データから算出される車体の沈み込み量などに基づいて算出されてもよい。また、他の実施形態に係る制御装置160は、積込機械100に設けられたペイロードメータの計測データに基づいて荷Lの重量を特定してもよい。積込機械100に設けられたペイロードメータは、例えば旋回体120の傾きとブームシリンダに掛かる負荷とからペイロードを計測するものであってよい。
 また、他の実施形態に係る制御装置160は、荷Lの重量から体積を算出せず、バケット133の中を撮像する撮像装置による撮像データに基づいて体積を算出してもよい。
 上述した実施形態に係る制御装置160は、積込対象200から位置及び向きの計測データを受信するが、これに限られない。例えば、他の実施形態に係る制御装置160は、旋回体120の前方に設けられた撮像装置の撮像データに基づいて積込対象200の位置及び向きを特定してもよい。
 上記態様によれば、積載状況推定装置は、積込対象の全域における積載状況を推定することができる。
 100…積込機械 110…走行体 111…無限軌道 112…走行モータ 120…旋回体 121…エンジン 122…油圧ポンプ 123…コントロールバルブ 124…旋回モータ 130…作業機 131…ブーム 131C…ブームシリンダ 132…アーム 132C…アームシリンダ 133…バケット 133C…バケットシリンダ 140…運転室 141…運転席 142…操作端末 143…操作装置 151…位置方位演算器 152…傾斜計測器 153…ブームストロークセンサ 154…アームストロークセンサ 155…バケットストロークセンサ 160…制御装置 200…積込対象 210…ベッセル 211…ペイロードメータ 220…位置方位演算器 230…通信装置 610…プロセッサ 611…データ取得部 612…データ受信部 613…粘度入力部 614…バケット姿勢特定部 615…相対位置特定部 616…積込判定部 617…積込量推定部 618…分布推定部 619…表示制御部 630…メインメモリ 650…ストレージ 670…インタフェース L…荷 

Claims (10)

  1.  積込機械が備える作業具に保持された荷が積込対象に積み込まれたか否かを判定する積込判定部と、
     前記荷が前記積込対象に積み込まれたときにおける前記作業具と前記積込対象との相対的な位置関係を特定する相対位置特定部と、
     前記積込対象に積み込まれた前記荷の粘度に基づいて、前記積込対象に積み込まれた荷の分布を推定する分布推定部と、
     を備える積載状況推定装置。
  2.  積み込まれた前記荷の粘度を推定する粘度推定部を備える、
     請求項1に記載の積載状況推定装置。
  3.  積み込まれた前記荷の粘度の入力を受け付ける粘度入力部を備える、
     請求項1に記載の積載状況推定装置。
  4.  積み込まれた前記荷の量を推定する積込量推定部を備え、
     前記分布推定部は、前記荷の粘度と前記荷の量とに基づいて前記荷の分布を推定する、
     請求項1に記載の積載状況推定装置。
  5.  前記粘度推定部は、前記荷が前記積込対象に積み込まれたときの前記作業具の角度に基づいて前記荷の粘度を推定する
     請求項2に記載の積載状況推定装置。
  6.  前記積込判定部は、前記作業具の角度に基づいて前記荷が積込対象に積み込まれたか否かを判定する
     請求項1から請求項4の何れか1項に記載の積載状況推定装置。
  7.  前記積込判定部は、前記積込機械または前記積込対象の重量を計測する重量センサの計測データの変化に基づいて前記荷が積込対象に積み込まれたか否かを判定する
     請求項1から請求項5の何れか1項に記載の積載状況推定装置。
  8.  前記分布推定部は、作業具であるバケットの最大容量における荷の分布を推定する、
     請求項1から請求項5の何れか1項に記載の積載状況推定装置。
  9.  前記荷の分布を示す画像を表示させる表示制御部を備える請求項1から請求項5の何れか1項に記載の積載状況推定装置。
  10.  積込機械が備える作業具に保持された荷が積込対象に積み込まれたか否かを判定するステップと、
     前記荷が前記積込対象に積み込まれたときにおける前記作業具と前記積込対象との相対的な位置関係を特定するステップと、
     前記積込対象に積み込まれた前記荷の粘度に基づいて、前記積込対象に積み込まれた荷の分布を推定するステップと
     を備える積載状況推定方法。
PCT/JP2023/037740 2022-10-31 2023-10-18 積載状況推定装置および積載状況推定方法 WO2024095775A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-174614 2022-10-31
JP2022174614A JP2024065639A (ja) 2022-10-31 2022-10-31 積載状況推定装置および積載状況推定方法

Publications (1)

Publication Number Publication Date
WO2024095775A1 true WO2024095775A1 (ja) 2024-05-10

Family

ID=90930267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037740 WO2024095775A1 (ja) 2022-10-31 2023-10-18 積載状況推定装置および積載状況推定方法

Country Status (2)

Country Link
JP (1) JP2024065639A (ja)
WO (1) WO2024095775A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010212A1 (ja) * 2015-07-15 2017-01-19 株式会社日立製作所 作業機械の操作システムおよび作業機械の操作システムを備えた作業機械
JP2021110544A (ja) * 2020-01-06 2021-08-02 清水建設株式会社 コンクリート試験方法および装置
JP2022074843A (ja) * 2020-11-05 2022-05-18 株式会社日立製作所 作業機械の動作検証装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010212A1 (ja) * 2015-07-15 2017-01-19 株式会社日立製作所 作業機械の操作システムおよび作業機械の操作システムを備えた作業機械
JP2021110544A (ja) * 2020-01-06 2021-08-02 清水建設株式会社 コンクリート試験方法および装置
JP2022074843A (ja) * 2020-11-05 2022-05-18 株式会社日立製作所 作業機械の動作検証装置

Also Published As

Publication number Publication date
JP2024065639A (ja) 2024-05-15

Similar Documents

Publication Publication Date Title
US10443214B2 (en) Control system for work vehicle, control method, and work vehicle
US7865285B2 (en) Machine control system and method
US9598845B2 (en) Posture computing apparatus for work machine, work machine, and posture computation method for work machine
CN112081171B (zh) 具有有效载荷跟踪系统的作业车辆
JP7361186B2 (ja) 制御装置、積込機械、および制御方法
JP7144252B2 (ja) 積込機械の制御装置および制御方法
EP3303084A1 (en) A method and system for predicting a risk for rollover of a working machine
JP7245119B2 (ja) 建設機械
JP6989255B2 (ja) 作業機制御装置および作業機械
EP3907336A1 (en) Monitoring device and construction machine
WO2024095775A1 (ja) 積載状況推定装置および積載状況推定方法
WO2022230980A1 (ja) 積込機械の制御装置及び制御方法
JP2017166308A (ja) 作業車両の制御システム、制御方法、及び作業車両
JP7197342B2 (ja) 作業機械、作業機械を含むシステム、および作業機械の制御方法
WO2024106536A1 (ja) 積込機械の制御装置、遠隔制御装置および制御方法
JP7416769B2 (ja) 作業車両、作業車両の制御装置、および作業車両の方向特定方法
WO2024024510A1 (ja) 積込機械の制御装置、積込機械の制御方法および制御システム
WO2022244832A1 (ja) 積込機械の制御システム及び制御方法
JP7390991B2 (ja) 作業機械および施工支援システム
JP7324100B2 (ja) 作業機械
WO2022244830A1 (ja) 積込機械の制御システム及び制御方法
WO2024004984A1 (ja) 作業機械
CN115030243A (zh) 对自推进式作业车辆进行基于地形的控制的系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885537

Country of ref document: EP

Kind code of ref document: A1