WO2024095556A1 - ファイバ保持構造及びレーザモジュール - Google Patents

ファイバ保持構造及びレーザモジュール Download PDF

Info

Publication number
WO2024095556A1
WO2024095556A1 PCT/JP2023/029219 JP2023029219W WO2024095556A1 WO 2024095556 A1 WO2024095556 A1 WO 2024095556A1 JP 2023029219 W JP2023029219 W JP 2023029219W WO 2024095556 A1 WO2024095556 A1 WO 2024095556A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fiber
ferrule
protective member
holding structure
Prior art date
Application number
PCT/JP2023/029219
Other languages
English (en)
French (fr)
Inventor
好浩 田畑
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2024095556A1 publication Critical patent/WO2024095556A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses

Definitions

  • the present invention relates to a fiber holding structure and a laser module, and in particular to a fiber holding structure that holds an optical fiber to which laser light emitted from a laser element is coupled.
  • an optical fiber is inserted into the fiber holding hole of a ferrule and fixed with an adhesive, and the laser light emitted from the laser element is focused on the end of this optical fiber (see, for example, Patent Document 1).
  • Part of the adhesive that fixes the optical fiber to the ferrule often overflows from the fiber holding hole of the ferrule and hardens around it, but with the recent increase in the power output of laser light, when aligning the laser light or while the laser module is in operation, high power density laser light that is not coupled to the optical fiber may enter the adhesive around the fiber holding hole.
  • Such high power density laser light is absorbed by the adhesive, which may heat up and burn the optical fiber.
  • the present invention was made in consideration of the problems with the conventional technology, and aims to provide a fiber holding structure and laser module that can suppress heat generation caused by light that is not coupled to the optical fiber.
  • the fiber holding structure of aspect 1 of the present invention comprises an optical fiber including a front end, a first fixing portion located behind the front end, and an intermediate portion located between the front end and the first fixing portion, a ferrule having a fiber holding hole for holding the first fixing portion of the optical fiber, an adhesive for fixing the first fixing portion of the optical fiber to the fiber holding hole of the ferrule, and a protective member for covering the ferrule.
  • the protective member includes a support portion that covers the periphery of the ferrule, and a shielding portion that covers the front surface of the ferrule and has a fiber insertion hole formed therein into which the intermediate portion of the optical fiber is inserted.
  • Aspect 2 of the present invention is the fiber holding structure of aspect 1, further comprising a flange that holds a second fixing portion located behind the first fixing portion of the optical fiber.
  • the support portion of the protective member is fixed to the flange.
  • a highly reflective coating layer having a high reflectance for the light coupled to the front end of the optical fiber is formed on the front surface of the shielding portion of the protective member in the fiber holding structure of aspect 1 or 2.
  • Aspect 4 of the present invention is a fiber holding structure according to any one of aspects 1 to 3, in which the protective member is made of a material having a higher thermal conductivity than the optical fiber.
  • Aspect 5 of the present invention is the fiber holding structure of any one of aspects 1 to 4, further comprising a cooling member having a higher thermal conductivity than the optical fiber.
  • the cooling member is arranged so as to contact the support portion of the protective member.
  • Aspect 6 of the present invention is a fiber holding structure according to any one of aspects 1 to 5, in which the intermediate portion of the optical fiber contacts the inner surface of the fiber insertion hole of the shielding portion of the protective member.
  • an air layer is formed between the intermediate portion of the optical fiber and the inner surface of the fiber insertion hole of the shielding portion of the protective member.
  • a laser module that can suppress heat generation due to laser light that is not coupled to an optical fiber. That is, the laser module of aspect 8 of the present invention comprises a laser element capable of emitting laser light, a fiber holding structure of any one of aspects 1 to 7 above, and a lens that couples the laser light emitted from the laser element to the front end of the optical fiber of the fiber holding structure.
  • FIG. 1 is a partial cross-sectional view showing a schematic diagram of a laser module according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a schematic diagram of a fiber holding structure in the laser module shown in FIG.
  • FIG. 3 is a diagram showing the dimensions of the main parts of the fiber holding structure shown in FIG.
  • FIG. 4 is a diagram showing the dimensions of the main parts of the fiber holding structure shown in FIG.
  • FIG. 5 is a cross-sectional view showing a schematic modification of the fiber holding structure shown in FIG.
  • FIG. 6 is a cross-sectional view showing a schematic diagram of another modified example of the fiber holding structure shown in FIG.
  • FIG. 7 is a cross-sectional view showing a schematic diagram of another modified example of the fiber holding structure shown in FIG.
  • a laser module according to the present invention will be described in detail with reference to Figs. 1 to 7.
  • identical or corresponding components are given the same reference numerals and duplicated descriptions will be omitted.
  • the scale and dimensions of each component may be exaggerated or some components may be omitted.
  • terms such as “first” and “second” are used only to distinguish components from each other and do not indicate a specific order or sequence.
  • the laser module 1 is a partial cross-sectional view showing a schematic diagram of a laser module 1 according to a first embodiment of the present invention.
  • the laser module 1 according to this embodiment includes a bottom plate 10, a side wall 11 fixed to the top surface 10A of the bottom plate 10, a cover plate 12 placed on the top of the side wall 11, a submount 13 arranged on the top surface 10A of the bottom plate 10, a high-power semiconductor laser element 14 mounted on the submount 13, lenses 16 and 17 arranged on a lens mount 15 arranged on the top surface 10A of the bottom plate 10, and a fiber holding structure 30 including an optical fiber 20 that propagates the laser light P emitted from the semiconductor laser element 14 to the outside of the laser module 1.
  • the laser element 14 for example, a high-power laser diode of several W to 20 W can be used.
  • a heat sink is connected to the bottom surface of the bottom plate 10.
  • the -X direction in FIG. 1 is referred to as "front” or “forward” and the +X direction is referred to as “rear” or “rear”.
  • the fiber holding structure 30 is provided so as to penetrate one of the side walls 11.
  • a lead 18 is provided so as to penetrate the other side wall 11, and this lead 18 is connected to the laser element 14 by a bonding wire 19.
  • power is supplied to the laser element 14 via the lead 18 and the bonding wire 19, and laser light P is emitted from the laser element 14 in the +X direction.
  • FIG. 2 is a cross-sectional view showing a schematic of the fiber holding structure 30.
  • the fiber holding structure 30 has an optical fiber 20, a ferrule 40 that holds the optical fiber 20, a protective member 50 that covers the ferrule 40, and a flange 32 that is attached to the side wall 11 of the laser module 1.
  • the optical fiber 20 has a front end 21 that is positioned so that the laser light P emitted from the semiconductor laser element 14 and focused by the lens 17 is optically coupled to the front end 21.
  • the optical fiber 20 includes a core, a cladding that covers the outer periphery of the core and has a lower refractive index than the core, and a coating that covers the outer periphery of the cladding and has a lower refractive index than the cladding, but in the portion forward of the flange 32, the coating is removed to expose the cladding.
  • the ferrule 40 is a generally cylindrical member made of, for example, zirconia, and has a fiber holding hole 41 formed in its center that penetrates in the X direction.
  • This fiber holding hole 41 holds a first fixing part 22 located behind the front end 21 of the optical fiber 20.
  • the first fixing part 22 of the optical fiber 20 is fixed in the fiber holding hole 41 by an adhesive 60 filled in the fiber holding hole 41 of the ferrule 40, and part of this adhesive 60 overflows from the fiber holding hole 41 on the front surface 40A of the ferrule 40 and hardens around it, as shown in FIG. 2.
  • the protective member 50 has a cylindrical support portion 51 that covers the outer periphery of the ferrule 40, and a disk-shaped shielding portion 52 that covers the front surface 40A of the ferrule 40.
  • the support portion 51 and the shielding portion 52 may be formed of separate members, or the support portion 51 and the shielding portion 52 may be formed integrally.
  • a fiber insertion hole 53 is formed in the center of the shielding portion 52, into which the intermediate portion 23 located between the front end 21 of the optical fiber 20 and the first fixing portion 22 is inserted.
  • the support portion 51 of the protective member 50 may be fixed to the outer periphery of the ferrule 40 with an adhesive (not shown), or may be fixed to the outer periphery of the ferrule 40 by being fitted into the outer periphery of the ferrule 40.
  • a through hole 34 is formed in the center of the flange 32, penetrating in the X direction.
  • the second fixing portion 24 located behind the first fixing portion 22 of the optical fiber 20 is held in this through hole 34.
  • the support portion 51 of the protective member 50 may be fixed to this flange 32.
  • the support portion 51 of the protective member 50 may be fixed to the flange 32 by press-fitting, or may be fixed to the flange 32 using an adhesive.
  • an adhesive is used to fix the flange 32 and the support portion 51 of the protective member 50, it is considered that the adhesive leaks out to the front surface 40A of the ferrule 40 through the gap between the support portion 51 of the protective member 50 and the outer peripheral surface of the ferrule 40 due to capillary action.
  • the optical fiber 20 extends forward from the shielding portion 52 of the protective member 50, and the front end 21 of the optical fiber 20 is located forward of the shielding portion 52 of the protective member 50.
  • the middle portion 23 of the optical fiber 20 inserted into the fiber insertion hole 53 of the shielding portion 52 of the protective member 50 may be in contact with the inner surface of the fiber insertion hole 53, or may be spaced apart from the inner surface of the fiber insertion hole 53.
  • Figure 2 shows an example in which the middle portion 23 of the optical fiber 20 is spaced apart from the inner surface of the fiber insertion hole 53.
  • the laser light P that is not coupled to the front end 21 of the optical fiber 20 is blocked by the shielding portion 52 of the protective member 50 and is less likely to reach the adhesive 60 present around the fiber holding hole 41 on the front surface 40A of the ferrule 40, so that the amount of laser light P incident on the adhesive 60 can be reduced. Therefore, it is possible to prevent the adhesive 60 from generating heat due to absorption of the laser light P, which would cause the optical fiber 20 to burn.
  • NA n sin ⁇ (1)
  • the distance L from the front surface 40A of the ferrule 40 to the front end 21 of the optical fiber 20 is greater than (G-F)/2 ⁇ tan(asin(NA)), it is possible to prevent the laser light P from being incident on the adhesive 60.
  • the NA of the optical fiber 20 is 0.22
  • the diameter F of the front end 21 of the optical fiber 20 is 125 ⁇ m
  • the diameter G of the adhesive 60 around the fiber holding hole 41 of the ferrule 40 is 500 ⁇ m
  • L>832 ⁇ m Therefore, by making the distance L from the front surface 40A of the ferrule 40 to the front end 21 of the optical fiber 20 longer than 832 ⁇ m, it is possible to prevent the laser light P from being incident on the adhesive 60.
  • the front end 21 of the optical fiber 20 is formed by a cut surface, for example, by laser cleaving.
  • an anti-reflection coating may be formed on the front end 21 of the optical fiber 20 to suppress reflection of light in the wavelength band of the laser light P, so that the laser light P is efficiently coupled to the front end 21 of the optical fiber 20.
  • the diameter F of the front end 21 of the optical fiber 20 is 125 ⁇ m
  • the distance L from the front face 40A of the ferrule 40 to the front end 21 of the optical fiber 20 is 2 mm
  • the distance A along the X direction from the front face 52A of the shielding portion 52 to the front end 21 of the optical fiber 20 is 500 ⁇ m
  • the half angle ⁇ of the laser light Q with respect to the optical axis of the optical fiber 20 is 12.7°
  • the diameter G of the adhesive 60 around the fiber holding hole 41 of the ferrule 40 is 500 ⁇ m
  • the laser light is prevented from directly entering the adhesive 60. Therefore, the power density of the laser light impinging on the adhesive 60 is lower due to the presence of the shielding portion 52, compared to the conventional fiber holding structure.
  • the front end 21 of the optical fiber 20 is located forward of the shielding portion 52 of the protective member 50, but the front end 21 of the optical fiber 20 may be aligned in the X direction with the front surface 52A of the shielding portion 52 of the protective member 50 (may be flush), or the front end 21 of the optical fiber 20 may be located inside the fiber insertion hole 53 behind the front surface 52A of the shielding portion 52 of the protective member 50.
  • the intermediate portion 23 of the optical fiber 20 is spaced from the inner peripheral surface of the fiber insertion hole 53, but as described above, the intermediate portion 23 of the optical fiber 20 may be in contact with the inner peripheral surface of the fiber insertion hole 53. If the shielding portion 52 of the protective member 50 has a higher refractive index than the clad of the optical fiber 20, the intermediate portion 23 of the optical fiber 20 will come into contact with the inner peripheral surface of the fiber insertion hole 53, and the laser light P that is not confined in the core of the optical fiber 20 and leaks into the clad will leak into the shielding portion 52 of the protective member 50, thereby reducing the amount of laser light P that reaches the adhesive 60 around the fiber holding hole 41 of the ferrule 40 described above.
  • an air layer exists between the middle portion 23 of the optical fiber 20 and the inner surface of the fiber insertion hole 53 of the shielding portion 52 of the protective member 50, so the laser light P that is not confined in the core of the optical fiber 20 and leaks into the clad is confined within the clad and propagates downstream.
  • an adhesive 60 that has a lower refractive index than the clad of the optical fiber 20 as the adhesive 60 that fixes the optical fiber 20, the laser light P that leaks into the clad is prevented from leaking into the adhesive 60 that has overflowed around the fiber holding hole 41 of the ferrule 40.
  • a high-reflection coating layer having a high reflectance for light in the wavelength band of the laser light P may be formed on the front surface 52A of the shielding portion 52 of the protective member 50. Furthermore, in addition to the front surface 52A of the shielding portion 52 of the protective member 50, a high-reflection coating layer may also be formed on the front end surface 51A of the support portion 51.
  • a portion of the laser light P that is not coupled to the front end 21 of the optical fiber 20 can be reflected by the high-reflection coating layers of the shielding portion 52 and the support portion 51, so that the possibility that the laser light P that is not coupled to the front end 21 of the optical fiber 20 will reach the adhesive 60 around the fiber holding hole 41 can be further reduced.
  • the shielding part 52 may be made of, for example, quartz glass, sapphire, ceramic, or metal.
  • the support part 51 may be made of a material that absorbs the laser light P more easily than the optical fiber 20 and has a high thermal conductivity, such as metals such as copper or aluminum.
  • the protective member 50 is made of a material that absorbs the laser light P more easily than the optical fiber 20 and has a high thermal conductivity, such as metals such as copper or aluminum.
  • the protective member 50 (support part 51) preferably has a higher thermal conductivity than the optical fiber 20, and preferably has a higher thermal conductivity than the ferrule 40. In this way, by forming the protective member 50 (support part 51) from a material that has a higher thermal conductivity than the optical fiber 20 and the ferrule 40, the heat generated in the optical fiber 20 and the ferrule 40 by the laser light P can be easily released to the outside via the protective member 50.
  • the protective member 50 may also be formed integrally with the side wall 11 (FIG. 1) of the laser module 1.
  • a cooling member 70 having a higher thermal conductivity than the optical fiber 20 may be arranged so as to be in contact with the support portion 51 of the protective member 50.
  • This cooling member 70 may be made of metal such as copper or aluminum, and may have fins for heat dissipation. By arranging such a cooling member 70, heat generated in the optical fiber 20, the ferrule 40, and the protective member 50 can be easily dissipated to the outside via the cooling member 70. Also, such a cooling member 70 may be formed integrally with the side wall 11 (FIG. 1) of the laser module 1.
  • an adhesive may be applied between the cooling member 70 and the flange 32 to fix the cooling member 70 and the flange 32 with the adhesive.
  • a recess 72 may be formed around the support portion 51 of the protective member 50 on the end face of the cooling member 70 on the flange 32 side.
  • a fiber holding structure that can suppress heat generation due to light that is not coupled to an optical fiber.
  • the fiber holding structure according to the present invention can adopt the following configuration.
  • the fiber holding structure includes an optical fiber including a front end, a first fixing portion located rearward of the front end, and an intermediate portion located between the front end and the first fixing portion, a ferrule having a fiber holding hole for holding the first fixing portion of the optical fiber, an adhesive for fixing the first fixing portion of the optical fiber to the fiber holding hole of the ferrule, and a protective member for covering the ferrule.
  • the protective member includes a support portion for covering the periphery of the ferrule, and a shielding portion for covering the front surface of the ferrule and having a fiber insertion hole into which the intermediate portion of the optical fiber is inserted.
  • the fiber holding structure may further include a flange that holds a second fixing portion located behind the first fixing portion of the optical fiber.
  • the support portion of the protective member may be fixed to the flange.
  • a high-reflection coating layer having a high reflectance with respect to the light coupled to the front end of the optical fiber may be formed on a front surface of the shielding portion of the protective member.
  • the protective member may be made of a material having a higher thermal conductivity than the optical fiber.
  • the fiber-holding structure may further include a cooling member having a thermal conductivity higher than that of the optical fiber.
  • the cooling member is disposed so as to contact the support portion of the protective member. Such a cooling member makes it easier to release heat generated in the optical fiber, the ferrule, and the protective member to the outside via the cooling member.
  • the intermediate portion of the optical fiber may be in contact with an inner surface of the fiber insertion hole of the shielding portion of the protective member.
  • an air layer may be formed between the intermediate portion of the optical fiber and an inner surface of the fiber insertion hole of the shielding portion of the protective member.
  • a laser module capable of suppressing heat generation due to laser light not coupled to an optical fiber
  • the laser module comprising: a laser element capable of emitting laser light, a fiber holding structure according to any one of configurations 1 to 7, and a lens that couples the laser light emitted from the laser element to the front end of the optical fiber of the fiber holding structure.
  • the present invention is suitable for use in a fiber holding structure that holds an optical fiber to which laser light emitted from a laser element is coupled.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

光ファイバに結合されなかった光による発熱を抑制することができるファイバ保持構造を提供する。ファイバ保持構造30は、前端21と、前端21の後方に位置する第1の固定部22と、前端21と第1の固定部22との間に位置する中間部23とを含む光ファイバ20と、光ファイバ20の第1の固定部22を保持するファイバ保持孔41が形成されたフェルール40と、光ファイバ20の第1の固定部22をフェルール40のファイバ保持孔41に固定する接着材60と、フェルール40を覆う保護部材50とを備える。保護部材50は、フェルール40の周囲を覆う支持部51と、フェルール40の前面40Aを覆い、光ファイバ20の中間部23が挿入されるファイバ挿入孔53が形成された遮蔽部52とを含む。

Description

ファイバ保持構造及びレーザモジュール
 本発明は、ファイバ保持構造及びレーザモジュールに係り、特にレーザ素子から発せられたレーザ光が結合される光ファイバを保持するファイバ保持構造に関するものである。
 一般的に、レーザモジュールにおいては、フェルールのファイバ保持孔に光ファイバを挿入して、これを接着材で固定し、レーザ素子から出射されるレーザ光をこの光ファイバの端部に集光している(例えば、特許文献1参照)。光ファイバをフェルールに固定する接着材の一部は、フェルールのファイバ保持孔から溢れてその周囲に固まることが多いが、近年のレーザ光の高出力化に伴って、レーザ光の調心の際やレーザモジュールの稼働中に、光ファイバに結合されなかったパワー密度の高いレーザ光がファイバ保持孔の周囲の接着材に入射することがある。このようなパワー密度の高いレーザ光は接着材に吸収され、接着材が発熱して光ファイバが焼損してしまうことも考えられる。
特開2018-155791号公報
 本発明は、このような従来技術の問題点に鑑みてなされたもので、光ファイバに結合されなかった光による発熱を抑制することができるファイバ保持構造及びレーザモジュールを提供することを目的とする。
 本発明の一態様によれば、光ファイバに結合されなかった光による発熱を抑制することができるファイバ保持構造が提供される。すなわち、本発明の態様1のファイバ保持構造は、前端と、上記前端の後方に位置する第1の固定部と、上記前端と上記第1の固定部との間に位置する中間部とを含む光ファイバと、上記光ファイバの上記第1の固定部を保持するファイバ保持孔が形成されたフェルールと、上記光ファイバの上記第1の固定部を上記フェルールの上記ファイバ保持孔に固定する接着材と、上記フェルールを覆う保護部材とを備える。上記保護部材は、上記フェルールの周囲を覆う支持部と、上記フェルールの前面を覆い、上記光ファイバの上記中間部が挿入されるファイバ挿入孔が形成された遮蔽部とを含む。
 本発明の態様2は、上記態様1のファイバ保持構造において、上記ファイバ保持構造は、上記光ファイバの上記第1の固定部の後方に位置する第2の固定部を保持するフランジをさらに備える。上記保護部材の上記支持部は、上記フランジに固定される。
 本発明の態様3は、上記態様1又は2のファイバ保持構造において、上記保護部材の上記遮蔽部の前面には、上記光ファイバの上記前端に結合される光に対して高い反射率を有する高反射コーティング層が形成される。
 本発明の態様4は、上記態様1から3のいずれかのファイバ保持構造において、上記保護部材は、上記光ファイバよりも熱伝導率の高い材料から形成される。
 本発明の態様5は、上記態様1から4のいずれかのファイバ保持構造において、上記ファイバ保持構造は、上記光ファイバよりも高い熱伝導率を有する冷却部材をさらに備えている。上記冷却部材は、上記保護部材の上記支持部に接触するように配置される。
 本発明の態様6は、上記態様1から5のいずれかのファイバ保持構造において、上記光ファイバの上記中間部は、上記保護部材の上記遮蔽部の上記ファイバ挿入孔の内面に接触する。
 本発明の態様7は、上記態様1から5のいずれかのファイバ保持構造において、上記光ファイバの上記中間部と上記保護部材の上記遮蔽部の上記ファイバ挿入孔の内面との間には空気層が形成される。
 本発明の他の態様によれば、光ファイバに結合されなかったレーザ光による発熱を抑制することができるレーザモジュールが提供される。すなわち、本発明の態様8のレーザモジュールは、レーザ光を出射可能なレーザ素子と、上記態様1から7のいずれかのファイバ保持構造と、上記レーザ素子から出射された上記レーザ光を上記ファイバ保持構造の上記光ファイバの上記前端に結合するレンズとを備える。
図1は、本発明の第1の実施形態におけるレーザモジュールを模式的に示す部分断面図である。 図2は、図1に示すレーザモジュールにおけるファイバ保持構造を模式的に示す断面図である。 図3は、図2に示すファイバ保持構造の主要部の寸法を模式的に示す図である。 図4は、図2に示すファイバ保持構造の主要部の寸法を模式的に示す図である。 図5は、図2に示すファイバ保持構造の変形例を模式的に示す断面図である。 図6は、図2に示すファイバ保持構造の他の変形例を模式的に示す断面図である。 図7は、図2に示すファイバ保持構造の他の変形例を模式的に示す断面図である。
 以下、本発明に係るレーザモジュールの実施形態について図1から図7を参照して詳細に説明する。図1から図7において、同一又は相当する構成要素には、同一の符号を付して重複した説明を省略する。また、図1から図7においては、各構成要素の縮尺や寸法が誇張されて示されている場合や一部の構成要素が省略されている場合がある。以下の説明では、特に言及がない場合には、「第1」や「第2」などの用語は、構成要素を互いに区別するために使用されているだけであり、特定の順位や順番を表すものではない。
 図1は、本発明の第1の実施形態におけるレーザモジュール1を模式的に示す部分断面図である。図1に示すように、本実施形態におけるレーザモジュール1は、底板10と、底板10の上面10Aに固定された側壁11と、側壁11の上部に載置されるカバー板12と、底板10の上面10Aに配置されたサブマウント13と、サブマウント13上に載置された高出力の半導体レーザ素子14と、底板10の上面10Aに配置されたレンズマウント15上に配置されたレンズ16,17と、半導体レーザ素子14から出射されたレーザ光Pをレーザモジュール1の外部に伝搬する光ファイバ20を含むファイバ保持構造30とを備えている。レーザ素子14としては、例えば数W~20Wの高出力のレーザダイオードを使用することができる。図示はしないが、底板10の底面にはヒートシンクが接続される。なお、本実施形態では、便宜的に、図1における-X方向を「前」又は「前方」といい、+X方向を「後」又は「後方」ということとする。
 図1に示すように、ファイバ保持構造30は側壁11のうちの1つを貫通するように設けられている。また、別の側壁11にはリード18が貫通するように設けられており、このリード18はボンディングワイヤ19によってレーザ素子14に接続されている。このような構成により、リード18及びボンディングワイヤ19を介してレーザ素子14に電力が供給され、レーザ素子14からレーザ光Pが+X方向に向かって出射される。
 図2は、ファイバ保持構造30を模式的に示す断面図である。図2に示すように、ファイバ保持構造30は、光ファイバ20と、光ファイバ20を保持するフェルール40と、フェルール40を覆う保護部材50と、レーザモジュール1の側壁11に取り付けられるフランジ32とを有している。光ファイバ20は前端21を有しており、この前端21は、半導体レーザ素子14から出射されレンズ17により集光されるレーザ光Pが光学的に結合するような位置に配置される。光ファイバ20は、コアと、コアの外周を覆い、コアよりも屈折率の低いクラッドと、クラッドの外周を覆い、クラッドよりも屈折率の低い被覆とを含んでいるが、フランジ32よりも前方の部分では、被覆が除去されてクラッドが露出している。
 フェルール40は、例えばジルコニアから形成される略円筒状の部材であり、その中央にはX方向に貫通するファイバ保持孔41が形成されている。このファイバ保持孔41には、光ファイバ20の前端21の後方に位置する第1の固定部22が保持される。この光ファイバ20の第1の固定部22は、フェルール40のファイバ保持孔41に充填された接着材60によりファイバ保持孔41内に固定され、この接着材60の一部は、図2に示すように、フェルール40の前面40Aのファイバ保持孔41から溢れてその周囲に固まっている。
 保護部材50は、フェルール40の外周を覆う円筒状の支持部51と、フェルール40の前面40Aを覆う円板状の遮蔽部52とを有している。支持部51と遮蔽部52とは別個の部材により構成されていてもよいし、支持部51と遮蔽部52とが一体に形成されていてもよい。遮蔽部52の中央には、光ファイバ20の前端21と第1の固定部22との間に位置する中間部23が挿入されるファイバ挿入孔53が形成されている。保護部材50の支持部51は、接着材(図示せず)によりフェルール40の外周面に固定されていてもよく、あるいは、フェルール40の外周面に嵌入されることによりフェルール40の外周面に固定されていてもよい。
 フランジ32の中央にはX方向に貫通する貫通孔34が形成されている。この貫通孔34には、光ファイバ20の第1の固定部22の後方に位置する第2の固定部24が保持されている。このフランジ32には保護部材50の支持部51が固定されていてもよい。このように保護部材50の支持部51をフランジ32に固定することにより、光ファイバ20の第1の固定部22がフェルール40及び保護部材50の支持部51を介してフランジ32に固定され、さらに光ファイバ20の第2の固定部24がフランジ32に保持されるため、光ファイバ20がより安定的に保持される。例えば、保護部材50の支持部51は、圧入によりフランジ32に固定されていてもよいし、接着材を用いてフランジ32に固定されていてもよい。フランジ32と保護部材50の支持部51との固定に接着材を用いた場合には、その接着材が毛細管現象により保護部材50の支持部51とフェルール40の外周面との間を通ってフェルール40の前面40Aに漏れ出すことが考えられる。この場合には、後述するように光ファイバ20の前端21においてコアに結合せず後方に伝搬する光が接着材に入射して接着材が発熱してしまうことが考えられるが、フランジ32と保護部材50の支持部51とを圧入により固定すれば、このような発熱を避けることができる。なお、光ファイバ20の第2の固定部24においてはクラッドが被覆で覆われており、第1の固定部22、中間部23、及び前端21においてはクラッドが露出している。
 光ファイバ20は保護部材50の遮蔽部52から前方に延びており、光ファイバ20の前端21は、保護部材50の遮蔽部52よりも前方に位置している。保護部材50の遮蔽部52のファイバ挿入孔53に挿入される光ファイバ20の中間部23は、ファイバ挿入孔53の内周面と接触していてもよいし、あるいはファイバ挿入孔53の内周面から離間していてもよい。図2は、光ファイバ20の中間部23がファイバ挿入孔53の内周面から離間している例を示している。
 このように、本実施形態では、フェルール40を保護部材50で覆って、フェルール40の前面40Aと光ファイバ20の前端21との間に保護部材50の遮蔽部52を位置させることで、光ファイバ20の前端21に結合されなかったレーザ光Pが、保護部材50の遮蔽部52に遮られて、フェルール40の前面40Aのファイバ保持孔41の周囲に存在する接着材60に到達しにくくなるため、接着材60に入射するレーザ光Pを少なくすることができる。したがって、レーザ光Pの吸収により接着材60が発熱して光ファイバ20が焼損してしまうことを抑制することができる。
 ここで、レーザ光Pがフェルール40のファイバ保持孔41の周囲の接着材60に入射しない条件について検討する。光ファイバ20の開口数NAは、光ファイバ20の最大受光角をθ、光ファイバ20とレンズ17との間に存在する媒体(空気)の屈折率をnとすると、光ファイバ20の前端21におけるスネルの法則により、以下の式(1)で与えられる。
  NA=n・sinθ ・・・(1)
 光ファイバ20の最大受光角θを超える角度で伝搬するレーザ光Pは、光ファイバ20の前端21においてコアに結合せず後方に伝搬するが、図3に示すように、このレーザ光Pがフェルール40のファイバ保持孔41の周囲に固まっている接着材60に入射しない条件は、光ファイバ20の前端21の径をF、フェルール40のファイバ保持孔41の周囲の接着材60の径をG、フェルール40の前面40Aから光ファイバ20の前端21までの距離をLとすると、以下の式(2)で表される。
  G<F+2×Ltanθ ・・・(2)
 光ファイバ20とレンズ17との間に存在する媒体は空気であるからn=1とすると、上記式(1)及び(2)から以下の式(3)が導かれる。
  L>(G-F)/(2×tan(asin(NA))) ・・・(3)
 したがって、フェルール40の前面40Aから光ファイバ20の前端21までの距離Lを(G-F)/2×tan(asin(NA))よりも大きくすることで、レーザ光Pが接着材60に入射することを抑制することができる。一例として、光ファイバ20のNAが0.22、光ファイバ20の前端21の径Fが125μm、フェルール40のファイバ保持孔41の周囲の接着材60の径Gが500μmであるときには、asin(0.22)=12.7°であるから、式(2)より
  L>(500μm-125μm)/(2×tan(12.7°))
  L>832μm
となる。したがって、フェルール40の前面40Aから光ファイバ20の前端21までの距離Lを832μmより長くすることで、レーザ光Pが接着材60に入射することを抑制することができる。
 光ファイバ20の前端21は、例えばレーザクリーブによる切断面により形成されている。例えば、レーザ光Pが効率的に光ファイバ20の前端21に結合するように、光ファイバ20の前端21には、レーザ光Pの波長帯の光の反射を抑制する反射防止膜が形成されていてもよい。
 ここで、遮蔽部52のファイバ挿入孔53の内径が大きくなると、特にレーザ光を調心する際にレーザ光が接着材60に入射して接着材60が発熱するおそれがある。このため、レーザ光が接着材60に入射しないようなファイバ挿入孔53の内径の条件を検討する。図4に示すように、遮蔽部52のファイバ挿入孔53の内径をD、遮蔽部52の前面52Aから光ファイバ20の前端21までのX方向に沿った距離をA、光ファイバ20の光軸に対するレーザ光Qの半角をφとすると、接着材60にレーザ光Qが入射しない部分が生じる条件は、以下の式(4)で表される。
 上記式(4)は以下の式(5)と等価である。
  D<2(L-A)tanφ+G ・・・(5)
 したがって、遮蔽部52のファイバ挿入孔53の内径Dが以下の式(6)を満たすと、接着材60にレーザ光Qが入射しにくくなる。
  F<D<2(L-A)tanφ+G ・・・(6)
 一例として、光ファイバ20の前端21の径Fが125μm、フェルール40の前面40Aから光ファイバ20の前端21までの距離Lが2mm、遮蔽部52の前面52Aから光ファイバ20の前端21までのX方向に沿った距離Aが500μm、光ファイバ20の光軸に対するレーザ光Qの半角φが12.7°、フェルール40のファイバ保持孔41の周囲の接着材60の径Gが500μmであるときには、式(6)より
  125μm<D<1.63mm
が導かれる。Dがこの範囲内であるとき、例えばD=0.5mmであるときには、レーザ光が入射する面積の比から、D=1.63mmであるときに比べて、遮蔽部52のファイバ挿入孔53を通過するレーザ光が約1/10になる。このように、Dが上記の範囲内にあれば、レーザ光が直接接着材60に入射することが抑制される。したがって、従来のファイバ保持構造に比べて遮蔽部52の存在によって接着材60に当たるレーザ光のパワー密度は低くなる。
 また、図2に示す例では、光ファイバ20の前端21が保護部材50の遮蔽部52よりも前方に位置しているが、光ファイバ20の前端21が保護部材50の遮蔽部52の前面52AとX方向に揃っていてもよい(面一であってもよい)し、あるいは、光ファイバ20の前端21が保護部材50の遮蔽部52の前面52Aよりも後方のファイバ挿入孔53の内部に位置していてもよい。光ファイバ20の前端21を保護部材50の遮蔽部52の前面52Aと面一とするかこれよりも後方に位置させることにより、レーザモジュール1を取り扱う際に誤って光ファイバ20の前端21に接触してしまうことを抑制することができるので、光ファイバ20が破損しにくくなる。
 図2に示す例では、光ファイバ20の中間部23がファイバ挿入孔53の内周面から離間しているが、上述したように、光ファイバ20の中間部23はファイバ挿入孔53の内周面と接触していてもよい。保護部材50の遮蔽部52が光ファイバ20のクラッドよりも高い屈折率を有していれば、光ファイバ20の中間部23がファイバ挿入孔53の内周面と接触することで、光ファイバ20のコアに閉じ込められずにクラッドに漏れ出たレーザ光Pが保護部材50の遮蔽部52に漏れ出すことになるため、上述のフェルール40のファイバ保持孔41の周囲の接着材60まで到達するレーザ光Pを減らすことができる。
 この点に関して、図2に示す例では、光ファイバ20の中間部23と保護部材50の遮蔽部52のファイバ挿入孔53の内周面との間に空気層が存在しているため、光ファイバ20のコアに閉じ込められずにクラッドに漏れ出たレーザ光Pはクラッド内に閉じ込められて下流側に伝搬していくが、光ファイバ20を固定する接着材60として光ファイバ20のクラッドよりも低い屈折率の接着材を用いることにより、クラッドに漏れ出たレーザ光Pがフェルール40のファイバ保持孔41の周囲に溢れた接着材60に漏れ出ることが抑制される。
 また、保護部材50の遮蔽部52の前面52Aには、レーザ光Pの波長帯の光に対して高い反射率を有する高反射コーティング層を形成してもよい。さらに、保護部材50の遮蔽部52の前面52Aに加えて、支持部51の前端面51Aにも高反射コーティング層を形成してもよい。このような高反射コーティング層を形成することで、光ファイバ20の前端21に結合されなかったレーザ光Pの一部を遮蔽部52及び支持部51の高反射コーティング層で反射することができるので、光ファイバ20の前端21に結合されなかったレーザ光Pがファイバ保持孔41の周囲の接着材60に到達する可能性をさらに低減することができる。
 保護部材50の支持部51と遮蔽部52とが別の部材で構成される場合には、遮蔽部52は例えば石英ガラス、サファイヤ、セラミック、又は金属などで形成され得る。また、支持部51は光ファイバ20よりもレーザ光Pを吸収しやすく熱伝導率の高い材料、例えば銅やアルミニウムの金属から形成され得る。保護部材50の支持部51と遮蔽部52とが一体に形成される場合には、保護部材50は、光ファイバ20よりもレーザ光Pを吸収しやすく熱伝導率の高い材料、例えば銅やアルミニウムの金属から形成されていることが好ましい。保護部材50(支持部51)は、光ファイバ20よりも熱伝導率が高いことが好ましく、フェルール40よりも熱伝導率が高いことが好ましい。このように、保護部材50(支持部51)を光ファイバ20及びフェルール40よりも熱伝導率が高い材料から形成することで、レーザ光Pにより光ファイバ20やフェルール40に生じた熱を保護部材50を介して外部に放出しやすくなる。また、保護部材50は、レーザモジュール1の側壁11(図1)と一体的に形成されていてもよい。
 また、図5に示すように、光ファイバ20よりも高い熱伝導率を有する冷却部材70を保護部材50の支持部51に接触するように配置してもよい。この冷却部材70は、例えば銅やアルミニウムの金属から形成され得るもので、放熱用のフィンを有していてもよい。このような冷却部材70を配置することで、光ファイバ20やフェルール40、保護部材50に生じた熱を冷却部材70を介して外部に放出しやすくなる。また、このような冷却部材70は、レーザモジュール1の側壁11(図1)と一体的に形成されていてもよい。
 この場合において、冷却部材70とフランジ32との間に接着材を塗布して冷却部材70とフランジ32とを接着材により固定してもよい。この場合において、図6に示すように、冷却部材70のフランジ32側の端面に、保護部材50の支持部51の周囲に凹部72を形成してもよい。このような凹部72を形成することで、冷却部材70とフランジ32とを固定する接着材74を光ファイバ20及びフェルール40から遠ざけることができるため、レーザ光Pが伝搬する空間に接着材74が漏れ出しにくくなる。このため、レーザ光Pが接着材74に入射して発熱することが抑制され、レーザモジュール1の信頼性が向上する。また、図7に示すような傾斜面76により凹部72を形成することも可能である。
 本明細書において使用した用語「前」、「前方」、「後」、「後方」、その他の位置関係を示す用語は、図示した実施形態との関連において要素間の相対的な関係を特定するために使用されているだけであり、絶対的な位置関係を特定するものではない。したがって、装置の位置や姿勢が変われば、それに応じてこれらの用語が意味する方向も変化することに留意されたい。
 以上述べたように、本発明の第1の態様によれば、光ファイバに結合されなかった光による発熱を抑制することができるファイバ保持構造が提供される。具体的には、本発明に係るファイバ保持構造は、以下のような構成を採用することができる。
(構成1)
 ファイバ保持構造は、前端と、上記前端の後方に位置する第1の固定部と、上記前端と上記第1の固定部との間に位置する中間部とを含む光ファイバと、上記光ファイバの上記第1の固定部を保持するファイバ保持孔が形成されたフェルールと、上記光ファイバの上記第1の固定部を上記フェルールの上記ファイバ保持孔に固定する接着材と、上記フェルールを覆う保護部材とを備える。上記保護部材は、上記フェルールの周囲を覆う支持部と、上記フェルールの前面を覆い、上記光ファイバの上記中間部が挿入されるファイバ挿入孔が形成された遮蔽部とを含む。
 このように、フェルールを保護部材で覆って、フェルールの前面と光ファイバの前端との間に保護部材の遮蔽部を位置させることで、光ファイバの前端に結合されなかった光が、保護部材の遮蔽部に遮られて、フェルールの前面のファイバ保持孔の周囲に存在する接着材に到達しにくくなるため、接着材に入射する光を少なくすることができる。したがって、光の吸収により接着材が発熱して光ファイバが焼損してしまうことを抑制することができる。
(構成2)
 上記構成1において、上記ファイバ保持構造は、上記光ファイバの上記第1の固定部の後方に位置する第2の固定部を保持するフランジをさらに備えていてもよい。上記保護部材の上記支持部は、上記フランジに固定されていてもよい。このような構成により、光ファイバの第1の固定部がフェルール及び保護部材の支持部を介してフランジに固定され、さらに第2の固定部がフランジに保持されるため、光ファイバがより安定的に保持される。
(構成3)
 上記構成1又は2において、上記保護部材の上記遮蔽部の前面には、上記光ファイバの上記前端に結合される光に対して高い反射率を有する高反射コーティング層が形成されていてもよい。このような高反射コーティング層を形成することにより、光ファイバの前端に結合されなかった光の一部を遮蔽部の高反射コーティング層で反射することができるので、光ファイバの前端に結合されなかった光がファイバ保持孔の周囲の接着材に到達する可能性をさらに低減することができる。
(構成4)
 上記構成1から3のいずれかにおいて、上記保護部材は、上記光ファイバよりも熱伝導率の高い材料から形成されていてもよい。このように保護部材を光ファイバよりも熱伝導率の高い材料から形成することで、光ファイバやフェルールに生じた熱を保護部材を介して外部に放出しやすくなる。
(構成5)
 上記構成1から4のいずれかにおいて、上記ファイバ保持構造は、上記光ファイバよりも高い熱伝導率を有する冷却部材をさらに備えていてもよい。この冷却部材は、上記保護部材の上記支持部に接触するように配置される。このような冷却部材によって、光ファイバやフェルール、保護部材に生じた熱を冷却部材を介して外部に放出しやすくなる。
(構成6)
 上記構成1から5のいずれかにおいて、上記光ファイバの上記中間部は、上記保護部材の上記遮蔽部の上記ファイバ挿入孔の内面に接触していてもよい。
(構成7)
 上記構成1から5のいずれかにおいて、上記光ファイバの上記中間部と上記保護部材の上記遮蔽部の上記ファイバ挿入孔の内面との間には空気層が形成されていてもよい。
(構成8)
 本発明の第2の態様によれば、光ファイバに結合されなかったレーザ光による発熱を抑制することができるレーザモジュールが提供される。このレーザモジュールは、レーザ光を出射可能なレーザ素子と、上記構成1から7のいずれかのファイバ保持構造と、上記レーザ素子から出射された上記レーザ光を上記ファイバ保持構造の上記光ファイバの上記前端に結合するレンズとを備える。
 これまで本発明の好ましい実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
 本出願は、2022年11月2日に提出された日本国特許出願特願2022-176000号に基づくものであり、当該出願の優先権を主張するものである。当該出願の開示は参照によりその全体が本明細書に組み込まれる。
 本発明は、レーザ素子から発せられたレーザ光が結合される光ファイバを保持するファイバ保持構造に好適に用いられる。
  1   レーザモジュール
 10   底板
 11   側壁
 12   カバー板
 13   サブマウント
 14   レーザ素子
 16,17   レンズ
 20   光ファイバ
 21   前端
 22   第1の固定部
 23   中間部
 24   第2の固定部
 30   ファイバ保持構造
 32   フランジ
 34   貫通孔
 40   フェルール
 40A  前面
 41   ファイバ保持孔
 50   保護部材
 51   支持部
 52   遮蔽部
 53   ファイバ挿入孔
 60   接着材
 70   冷却部材
 72   凹部

Claims (8)

  1.  前端と、前記前端の後方に位置する第1の固定部と、前記前端と前記第1の固定部との間に位置する中間部とを含む光ファイバと、
     前記光ファイバの前記第1の固定部を保持するファイバ保持孔が形成されたフェルールと、
     前記光ファイバの前記第1の固定部を前記フェルールの前記ファイバ保持孔に固定する接着材と、
     前記フェルールを覆う保護部材であって、
      前記フェルールの周囲を覆う支持部と、
      前記フェルールの前面を覆い、前記光ファイバの前記中間部が挿入されるファイバ挿入孔が形成された遮蔽部と
    を含む保護部材と
    を備える、ファイバ保持構造。
  2.  前記光ファイバの前記第1の固定部の後方に位置する第2の固定部を保持するフランジをさらに備え、
     前記保護部材の前記支持部は、前記フランジに固定される、
    請求項1に記載のファイバ保持構造。
  3.  前記保護部材の前記遮蔽部の前面には、前記光ファイバの前記前端に結合される光に対して高い反射率を有する高反射コーティング層が形成される、請求項1に記載のファイバ保持構造。
  4.  前記保護部材は、前記光ファイバよりも熱伝導率の高い材料から形成される、請求項1に記載のファイバ保持構造。
  5.  前記光ファイバよりも高い熱伝導率を有する冷却部材であって、前記保護部材の前記支持部に接触するように配置される冷却部材をさらに備える、請求項1に記載のファイバ保持構造。
  6.  前記光ファイバの前記中間部は、前記保護部材の前記遮蔽部の前記ファイバ挿入孔の内面に接触する、請求項1に記載のファイバ保持構造。
  7.  前記光ファイバの前記中間部と前記保護部材の前記遮蔽部の前記ファイバ挿入孔の内面との間には空気層が形成される、請求項1に記載のファイバ保持構造。
  8.  レーザ光を出射可能なレーザ素子と、
     請求項1から7のいずれか一項に記載のファイバ保持構造と、
     前記レーザ素子から出射された前記レーザ光を前記ファイバ保持構造の前記光ファイバの前記前端に結合するレンズと
    を備える、レーザモジュール。
     
PCT/JP2023/029219 2022-11-02 2023-08-10 ファイバ保持構造及びレーザモジュール WO2024095556A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-176000 2022-11-02
JP2022176000 2022-11-02

Publications (1)

Publication Number Publication Date
WO2024095556A1 true WO2024095556A1 (ja) 2024-05-10

Family

ID=90930198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029219 WO2024095556A1 (ja) 2022-11-02 2023-08-10 ファイバ保持構造及びレーザモジュール

Country Status (1)

Country Link
WO (1) WO2024095556A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107294A (ja) * 2001-09-27 2003-04-09 Mitsubishi Cable Ind Ltd レーザ用光コネクタ及びレーザガイド
JP2006184337A (ja) * 2004-12-24 2006-07-13 Kyocera Corp 光ファイバ固定具及びそれを用いた光コネクタ
JP2007293298A (ja) * 2006-03-29 2007-11-08 Furukawa Electric Co Ltd:The 光学部品の光入出力端
WO2015037725A1 (ja) * 2013-09-12 2015-03-19 古河電気工業株式会社 半導体レーザモジュール
JP2015518185A (ja) * 2012-05-30 2015-06-25 アイピージー フォトニクス コーポレーション 高性能空間フィルタ
JP2016533543A (ja) * 2013-10-18 2016-10-27 オプトスカンド エービー オプトエレクトロニクス集成装置
US20200200363A1 (en) * 2018-12-21 2020-06-25 Soraa Laser Diode, Inc. Fiber-delivered laser-induced dynamic light system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107294A (ja) * 2001-09-27 2003-04-09 Mitsubishi Cable Ind Ltd レーザ用光コネクタ及びレーザガイド
JP2006184337A (ja) * 2004-12-24 2006-07-13 Kyocera Corp 光ファイバ固定具及びそれを用いた光コネクタ
JP2007293298A (ja) * 2006-03-29 2007-11-08 Furukawa Electric Co Ltd:The 光学部品の光入出力端
JP2015518185A (ja) * 2012-05-30 2015-06-25 アイピージー フォトニクス コーポレーション 高性能空間フィルタ
WO2015037725A1 (ja) * 2013-09-12 2015-03-19 古河電気工業株式会社 半導体レーザモジュール
JP2016533543A (ja) * 2013-10-18 2016-10-27 オプトスカンド エービー オプトエレクトロニクス集成装置
US20200200363A1 (en) * 2018-12-21 2020-06-25 Soraa Laser Diode, Inc. Fiber-delivered laser-induced dynamic light system

Similar Documents

Publication Publication Date Title
US9897768B2 (en) Optical fiber module
JP2019070807A (ja) オプトエレクトロニクス集成装置
US7526156B2 (en) Optical fiber for out-coupling optical signal and apparatus for detecting optical signal using the same optical fiber
JP2016164671A (ja) 半導体レーザモジュール
EP3130951B1 (en) Optical fiber assembly, optical coupling device, and optical fiber coupling device
WO2018181133A1 (ja) クラッドモード光除去構造及びレーザ装置
JP3850743B2 (ja) 光通信モジュール、および光ファイバと光通信モジュールとの光学的結合構造
JP5106309B2 (ja) 投写型表示装置
US8449204B2 (en) Optical module
WO2024095556A1 (ja) ファイバ保持構造及びレーザモジュール
JP5645877B2 (ja) レーザモジュール
US6892010B2 (en) Photodetector/optical fiber apparatus with enhanced optical coupling efficiency and method for forming the same
JP2004354771A (ja) 半導体レーザー装置
WO2005036212A2 (en) Photodetector/optical fiber apparatus with enhanced optical coupling efficiency and method for forming the same
TW201919462A (zh) 光纖元件之封裝散熱機構
US20230024623A1 (en) Supporting member, wavelength combining module, and light emitting device
JP2008242423A (ja) 光デバイス、及びそれを用いた光レセプタクル並びに光モジュール
JP5848803B1 (ja) 光デバイス、及び、光モジュール
JP2012098556A (ja) 光カップリングユニット及び光源装置
JP2005172990A (ja) 光コネクタ
JP2001025889A (ja) レーザ光出射装置
JP5856016B2 (ja) 光モジュール
JP2007226182A (ja) 光アイソレータ付き光ファイバ保持部品およびそれを用いた光レセプタクルならびに光モジュール
JP4710046B2 (ja) 光記録装置
JPWO2017099056A1 (ja) 光ファイバ引出部構造、光モジュール