WO2024095381A1 - Switching unit and system - Google Patents

Switching unit and system Download PDF

Info

Publication number
WO2024095381A1
WO2024095381A1 PCT/JP2022/040941 JP2022040941W WO2024095381A1 WO 2024095381 A1 WO2024095381 A1 WO 2024095381A1 JP 2022040941 W JP2022040941 W JP 2022040941W WO 2024095381 A1 WO2024095381 A1 WO 2024095381A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
connection switch
unit
battery
switching unit
Prior art date
Application number
PCT/JP2022/040941
Other languages
French (fr)
Japanese (ja)
Inventor
孝佳 板東
将義 廣田
Original Assignee
住友電気工業株式会社
住友電装株式会社
株式会社オートネットワーク技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電装株式会社, 株式会社オートネットワーク技術研究所 filed Critical 住友電気工業株式会社
Priority to PCT/JP2022/040941 priority Critical patent/WO2024095381A1/en
Publication of WO2024095381A1 publication Critical patent/WO2024095381A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters

Definitions

  • This disclosure relates to a switching unit and system.
  • Patent Document 1 discloses a charging device incorporated into a system that includes two storage batteries and two inverters and supplies power to an open-end winding motor.
  • This charging device includes three relays for connecting the two storage batteries in series or in parallel.
  • the charging device uses the three relays to connect the two storage batteries in series or in parallel, and charges these two storage batteries.
  • the switching unit includes a parallel connection switch that connects the first storage battery and the second storage battery in a parallel connection state, a series connection switch that connects the first storage battery and the second storage battery in a series connection state, and a first voltage sensor that measures the voltage between both terminals of the first storage battery and the second storage battery that are connected in parallel or in series.
  • a system includes a first storage battery and a second storage battery, and a switching unit that switches the connection state of the first storage battery and the second storage battery, the switching unit including a parallel connection switch that connects the first storage battery and the second storage battery in a parallel connection state, a series connection switch that connects the first storage battery and the second storage battery in a series connection state, and a voltage sensor that measures the voltage between both terminals of the first storage battery and the second storage battery that are connected in parallel or in series.
  • FIG. 1 is a block diagram illustrating a power conversion system including a switching unit according to an embodiment of the present disclosure.
  • FIG. 2 is a circuit diagram showing a specific configuration of the power conversion system shown in FIG.
  • FIG. 3 is a circuit diagram showing a state in which two storage batteries are connected in series in the power conversion system shown in FIG.
  • FIG. 4 is a circuit diagram showing a state in which two storage batteries are connected in parallel in the power conversion system shown in FIG.
  • FIG. 5 is a circuit diagram showing a configuration of a power conversion system including a switching unit different from that in FIG.
  • EV Electric Vehicle
  • power is normally supplied from a storage battery to a motor by a single inverter.
  • the motor uses a closed-end winding motor in which one end of each winding is connected.
  • the method disclosed in Patent Document 1 that is, a method of driving a motor with open-end windings using two storage batteries and two inverters, has the advantage that the TN characteristics, which represent the torque and rotation speed of the motor, can be improved and the driving range can be expanded.
  • the charging device of Patent Document 1 is applied to a system with such a method, there is a problem that the influence on the peripheral devices in the vehicle is large, such as the need to change the peripheral devices.
  • the present disclosure aims to provide a switching unit and system that can reduce the impact on peripheral devices within a vehicle.
  • the switching unit includes a parallel connection switch that connects the first storage battery and the second storage battery in a parallel connection state, a series connection switch that connects the first storage battery and the second storage battery in a series connection state, and a first voltage sensor that measures the voltage between both terminals of the first storage battery and the second storage battery that are connected in parallel or in series. This reduces the impact on peripheral devices in the vehicle.
  • the switching unit may further include a control unit that controls the on/off of the parallel connection switch and the series connection switch. This allows the first storage battery and the second storage battery to be efficiently connected in parallel or in series. In addition, the amount of electrical wiring between the switching unit and the outside can be reduced, reducing the impact of noise on surrounding devices.
  • the switching unit may further include a first connection switch for connecting a charger for charging the first storage battery and the second storage battery to both terminals of the first storage battery and the second storage battery that are connected in parallel or series. This makes it possible to connect the external charger and the storage battery after confirming that the first storage battery and the second storage battery are connected in parallel or series.
  • the parallel connection switch when the first storage battery and the second storage battery are charged in a parallel connection state, the parallel connection switch may be turned on and the series connection switch may be turned off, and when the first storage battery and the second storage battery are charged in a series connection state, the series connection switch may be turned on and the parallel connection switch may be turned off. This ensures that the first storage battery and the second storage battery are connected in parallel or in series.
  • the switching unit may further include a plurality of second connection switches for connecting the switching unit to the first storage battery and the second storage battery. This improves the ease of installation of the switching unit in the EV.
  • the switching unit may further include a circuit breaker connected in series with one of the second connection switches. This makes it possible to prevent excessive current from flowing and protect the storage battery.
  • the switching unit may further include a second voltage sensor that detects the voltage between both terminals of each of the first storage battery and the second storage battery. This makes it possible to determine the difference in voltage between the first storage battery and the second storage battery, and if the difference is large (e.g., a difference equal to or greater than a predetermined threshold), the first storage battery and the second storage battery can be balanced, for example, by making the voltages of the first storage battery and the second storage battery equal.
  • a second voltage sensor that detects the voltage between both terminals of each of the first storage battery and the second storage battery.
  • the switching unit may be disposed in a housing that houses the first storage battery and the second storage battery. This allows the first storage battery and the second storage battery to be configured integrally with the parallel connection switch and the direct connection switch, making handling easier and, for example, improving workability when mounting the device on a vehicle. In addition, the layout design of peripheral devices of the switching unit becomes easier.
  • the parallel connection switch when the first storage battery and the second storage battery are discharged, the parallel connection switch may be turned on and the series connection switch may be turned off. This allows power of an appropriate voltage to be supplied.
  • the first storage battery supplies power to a first inverter for driving the motor
  • the second storage battery supplies power to a second inverter for driving the motor
  • the switching unit switches the connection state of the first storage battery and the second storage battery so that current flows bypassing the first inverter and the second inverter.
  • the switching unit may be mounted on a vehicle, and the parallel connection switch and the series connection switch may switch the connection state of the first storage battery and the second storage battery to a series connection state or a parallel connection state according to the voltage of the storage battery mounted on the other vehicle when supplying power from the first storage battery and the second storage battery mounted on the vehicle to a storage battery mounted on another vehicle other than the vehicle. This allows the storage battery of the other vehicle to be charged with an appropriate voltage according to the voltage of the storage battery of the other vehicle.
  • a system includes a first storage battery and a second storage battery, and a switching unit that switches the connection state of the first storage battery and the second storage battery, and the switching unit includes a parallel connection switch that connects the first storage battery and the second storage battery to a parallel connection state, a series connection switch that connects the first storage battery and the second storage battery to a series connection state, and a voltage sensor that measures the voltage between both terminals of the first storage battery and the second storage battery that are connected in parallel or in series. This reduces the impact on peripheral devices in the vehicle.
  • the switching unit 100 includes a first parallel connection switch RY1, a series connection switch RY2, a second parallel connection switch RY3, a voltage sensor 106, and a control unit 120.
  • the switching unit 100 is integrally formed by accommodating the first parallel connection switch RY1, the series connection switch RY2, the second parallel connection switch RY3, the voltage sensor 106, and the control unit 120 in a housing made of, for example, resin.
  • the switching unit 100 constitutes a power conversion system together with the first battery unit 102, the second battery unit 104, the voltage sensor 108, the voltage sensor 110, the first inverter 130, the second inverter 132, and the inverter control unit 134.
  • the power conversion system is a double-ended inverter system that drives a motor using two battery units and two inverters.
  • the power conversion system is installed in the EV and controlled by a vehicle ECU (Electric Control Unit) 202, supplying power to a motor 140 and high-voltage auxiliary equipment 210 for driving the EV.
  • An external charger is connected to a terminal section 212 of the power conversion system, and the power conversion system charges the first battery unit 102 and the second battery unit 104.
  • the short-circuit control and the open control are also collectively referred to as on-off control.
  • Each of the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 is, for example, a relay. By using a relay, as described later, multiple batteries can be efficiently connected in parallel or in series under the control of the control unit 120.
  • Each of the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 may be a semiconductor element having a switching function, such as a FET (Field Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor).
  • FET Field Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • control unit 120 Under the control of the vehicle ECU 202, the control unit 120 outputs a control signal (see the three dashed arrows output from the control unit 120) and controls the on/off of the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3.
  • the control unit 120 can efficiently connect the first battery unit 102 and the second battery unit 104 in parallel or series.
  • the control unit 120 can be realized by a logic circuit. That is, the control unit 120 can be realized by a semiconductor integrated circuit such as an ASIC (Application Specific Integrated Circuit) or a programmable logic device (such as an FPGA (Field Programmable Gate Array)).
  • the control unit 120 may be configured as a control device (computer) including a computing element (CPU: Central Processing Unit) and a storage element (memory), etc.
  • the voltage sensor 106 measures the voltage between both terminals of the first battery unit 102 and the second battery unit 104, which are connected in parallel or in series.
  • the voltage measured by the voltage sensor 106 i.e., an electrical signal corresponding to the measured voltage
  • the control unit 120 determines whether the first battery unit 102 and the second battery unit 104 are connected in parallel or in series. That is, after the control unit 120 performs on/off control of the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3, it can confirm that the first battery unit 102 and the second battery unit 104 are connected as controlled.
  • the power conversion system further includes a system main relay RY4, ..., a system main relay RY7, a DC relay (Direct Cut Relay) DCR1, and a DC relay DCR2.
  • Each of the system main relays RY4, ..., the system main relay RY7, the DC relay DCR1, and the DC relay DCR2 turns on or off both terminals under the control of the vehicle ECU 202.
  • the switching unit 100 is connected to the first battery unit 102 and the second battery unit 104.
  • an external charger is connected to the terminal portion 212
  • the DC relay DCR1 and the DC relay DCR2 are turned on, and the switching unit 100 is connected to the external charger.
  • Each of the system main relays RY4, ..., the system main relay RY7, the DC relay DCR1, and the DC relay DCR2 is, for example, a relay.
  • Each of the system main relays RY4, ..., system main relay RY7, DC relay DCR1, and DC relay DCR2 may be a semiconductor element having a switching function such as an FET or an IGBT.
  • the power conversion system further includes a circuit breaker Fu1 and a circuit breaker Fu2.
  • the circuit breaker Fu1 is connected in series to a system main relay RY4 connected to the first battery unit 102.
  • the circuit breaker Fu2 is connected in series to a system main relay RY6 connected to the second battery unit 104.
  • the circuit breakers Fu1 and Fu2 connect their respective terminals with a low resistance value, and have the function of opening the connection between the respective terminals when a large current of a predetermined value or more flows.
  • the circuit breakers Fu1 and Fu2 are, for example, fuses. When a large current flows and the fuse becomes hot, it melts and opens the connection between the two terminals.
  • the circuit breaker Fu1 may be connected in series to the system main relay RY5.
  • the circuit breaker Fu2 may be connected in series to the system main relay RY7.
  • the first battery unit 102 and the second battery unit 104 are units of the same specifications, composed of chargeable and dischargeable storage batteries.
  • the first battery unit 102 and the second battery unit 104 include, for example, lithium ion batteries.
  • the first battery unit 102 and the second battery unit 104 are, for example, battery units of 400V specifications (i.e., rated charging voltage and output voltage are 400V). Note that the battery unit is not limited to being composed of multiple batteries, and may also be composed of a single battery.
  • Each of the first battery unit 102 and the second battery unit 104 is provided with a battery management system (BMS) (not shown).
  • the battery management system has functions such as preventing overcharging and overdischarging of each battery unit, preventing overcurrent, and calculating the remaining capacity of the battery (SOC: State of Charge).
  • the first inverter 130 and the second inverter 132 convert the DC power supplied from the first battery unit 102 and the second battery unit 104 into AC power and supply it to the motor 140.
  • the control unit 120 turns off the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3.
  • Each of the first inverter 130 and the second inverter 132 includes a plurality of switching elements as described below.
  • the power conversion system shown in FIG. 1 further includes an inverter control unit 134 for controlling the on/off of each switching element constituting the first inverter 130 and the second inverter 132 in response to an instruction from the vehicle ECU 202.
  • the motor 140 is a three-phase AC motor driven by AC power. In this embodiment, the motor 140 is a motor with open-end windings as described below.
  • the power conversion system further includes a voltage sensor 108 and a voltage sensor 110.
  • the voltage sensor 108 measures the voltage between both terminals of the first battery unit 102.
  • the voltage sensor 110 measures the voltage between both terminals of the second battery unit 104.
  • the voltages detected by the voltage sensors 108 and 110 i.e., electrical signals corresponding to the detected voltages are input to the inverter control unit 134 and used to control the first inverter 130 and the second inverter 132.
  • the high-voltage auxiliary equipment 210 is a high-voltage load of the auxiliary equipment system, and is supplied with power from the power conversion system.
  • the high-voltage auxiliary equipment 210 includes, for example, an air conditioner, a heater, and a step-down DC/DC converter.
  • the step-down DC/DC converter steps down the voltage from the first battery unit 102 when supplying power to a low-voltage (e.g., 12 V) battery.
  • each of the first inverter 130 and the second inverter 132 is composed of a plurality of switching elements.
  • FIG. 2 explicitly shows that the motor 140 is a motor with open-end windings in which the ends of each winding are not connected but are pulled out to the outside.
  • FIG. 2 does not show the inverter control unit 134, high-voltage auxiliary equipment 210, and terminal unit 212 shown in FIG. 1, but shows the external charger 200 connected to terminal unit 212.
  • the other components are the same as those shown in FIG. 1, except that their positions are different from those shown in FIG. 1.
  • the first inverter 130 is a three-phase inverter that converts DC power from the first battery unit 102 into three-phase AC power.
  • the first inverter 130 includes six switching elements Q1, ..., and switching element Q6.
  • a freewheel diode is connected to each of the switching elements Q1, ..., and switching element Q6.
  • Each of the switching elements Q1, ..., and switching element Q6 is, for example, an FET.
  • the switching elements and the freewheel diodes are connected in parallel so that their forward bias directions are opposite to each other.
  • Each of the switching elements Q1, ..., and switching element Q6 may be, for example, an IGBT.
  • Switching elements Q1, ... and switching element Q6 form the upper and lower arms of the U phase, V phase, and W phase.
  • switching element Q1 which is the upper arm element
  • switching element Q2, which is the lower arm element are connected in series to form the upper and lower arms of the U phase.
  • Switching element Q3, which is the upper arm element, and switching element Q4, which is the lower arm element are connected in series to form the upper and lower arms of the V phase.
  • Switching element Q5, which is the upper arm element, and switching element Q6, which is the lower arm element are connected in series to form the upper and lower arms of the W phase.
  • the second inverter 132 is configured in the same manner as the first inverter 130. That is, the second inverter 132 is a three-phase inverter that converts DC power from the second battery unit 104 into three-phase AC power.
  • the second inverter 132 includes six switching elements Q7, ..., and switching element Q12.
  • a freewheel diode is connected to each of the switching elements Q7, ..., and switching element Q12.
  • Each of the switching elements Q7, ..., and switching element Q12 is, for example, an FET.
  • the switching elements and the freewheel diodes are connected in parallel so that their forward bias directions are opposite to each other.
  • Each of the switching elements Q7, ..., and switching element Q12 may be, for example, an IGBT.
  • Switching elements Q7, ... and switching element Q12 form the upper and lower arms of the U phase, V phase, and W phase.
  • switching element Q7, which is the upper arm element, and switching element Q8, which is the lower arm element are connected in series to form the upper and lower arms of the U phase.
  • Switching element Q9, which is the upper arm element, and switching element Q10, which is the lower arm element are connected in series to form the upper and lower arms of the V phase.
  • Switching element Q11, which is the upper arm element, and switching element Q12, which is the lower arm element are connected in series to form the upper and lower arms of the W phase.
  • Motor 140 includes three-phase windings (U-phase winding, V-phase winding, and W-phase winding). Both terminals of each winding are connected to first inverter 130 and second inverter 132. That is, both terminals of the U-phase winding of motor 140 are connected to the connection node of switching element Q1 and switching element Q2 that constitute the upper and lower arms of the U-phase of first inverter 130, and the connection node of switching element Q7 and switching element Q8 that constitute the upper and lower arms of the U-phase of second inverter 132.
  • Both terminals of the V-phase winding of motor 140 are connected to the connection node of switching element Q3 and switching element Q4 that constitute the upper and lower arms of the V-phase of first inverter 130, and the connection node of switching element Q9 and switching element Q10 that constitute the upper and lower arms of the V-phase of second inverter 132.
  • Both terminals of the W-phase winding of the motor 140 are connected to the connection node of the switching elements Q5 and Q6 that constitute the upper and lower arms of the W-phase of the first inverter 130, and the connection node of the switching elements Q11 and Q12 that constitute the upper and lower arms of the W-phase of the second inverter 132.
  • the first inverter 130, the second inverter 132, and the motor 140 are configured, and the switching elements Q1, ..., and switching element Q12 constituting the first inverter 130 and the second inverter 132 are controlled by the inverter control unit 134, causing a current to flow through each winding of the motor 140 and driving the motor 140.
  • the inverter control unit 134 receives instructions from the vehicle ECU 202 and controls the switching elements Q1, ..., and switching element Q12.
  • the first inverter 130 and the second inverter 132 are controlled by setting target values so that the power supplied from the first battery unit 102 to the motor 140 is equal to the power supplied from the second battery unit 104 to the motor 140.
  • the external charger 200 is a DC power source for charging the first battery unit 102 and the second battery unit 104.
  • a rapid charger e.g., output 800V
  • the first battery unit 102 and the second battery unit 104 are connected in series by the switching unit 100.
  • a normal charger e.g., output 400V
  • the first battery unit 102 and the second battery unit 104 are connected in parallel by the switching unit 100.
  • the switching unit 100 switches the connection state of the first battery unit 102 and the second battery unit 104 so that the first inverter 130 and the second inverter 132 are bypassed, that is, the charging current is supplied without passing through the first inverter 130 and the second inverter 132. Therefore, an EV equipped with two battery units, two inverters, and a motor with open-end windings can be realized, and the driving range can be expanded.
  • the switching unit 100 is integrally formed including the control unit 120 that controls the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3, so that the first battery unit 102 and the second battery unit 104 can be efficiently connected in parallel or in series.
  • the amount of electrical wiring between the switching unit 100 and the vehicle ECU 202 can be reduced, reducing the impact of noise on surrounding devices.
  • the first inverter 130 and the second inverter 132 are controlled by setting a target value so that the power supplied from the first battery unit 102 to the motor 140 is equal to the power supplied from the second battery unit 104 to the motor 140.
  • the capacity of the first battery unit 102 to which the high-voltage auxiliary device 210 is connected usually decreases faster than that of the second battery unit 104. Therefore, an imbalance in the remaining capacity occurs between the first battery unit 102 and the second battery unit 104.
  • the power conversion system can determine the imbalance in the remaining capacity between the first battery unit 102 and the second battery unit 104, for example, by measuring the voltage with the voltage sensor 108 and the voltage sensor 110. Therefore, it is possible to supply power from one of the first battery unit 102 and the second battery unit 104 to the other, and balance the remaining capacity between the first battery unit 102 and the second battery unit 104.
  • the motor 140 may be driven by the other battery unit and its corresponding inverter.
  • the system main relays RY4, ... and RY7 the system main relays corresponding to the normal battery units are turned on, and the system main relays corresponding to the abnormal battery unit are turned off.
  • the lower arm of the inverter corresponding to the abnormal battery unit is turned on, and the corresponding ends of the three windings of the motor 140 are connected to each other.
  • An abnormality in the first battery unit 102 and the second battery unit 104 can be determined from the voltage values output from the voltage sensors 108 and 110.
  • the operation of the first battery unit 102 and the second battery unit 104 during charging will be described.
  • the quick charger is connected to the terminal unit 212.
  • the vehicle ECU 202 turns on the system main relays RY4, ..., and RY7, and then instructs the control unit 120 to control the on/off of the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 so that the first battery unit 102 and the second battery unit 104 are in a series connection state.
  • the control unit 120 turns on the series connection switch RY2 and maintains the first parallel connection switch RY1 and the second parallel connection switch RY3 in an off state in accordance with the instruction from the vehicle ECU 202. Note that the initial states of the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 are off.
  • the control unit 120 judges whether or not the voltage input from the voltage sensor 106 is the voltage (for example, about 800 V) when the first battery unit 102 and the second battery unit 104 are connected in series.
  • the control unit 120 judges that the voltage input from the voltage sensor 106 is the voltage when the first battery unit 102 and the second battery unit 104 are connected in series, it notifies the vehicle ECU 202 that the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 have been set as instructed. In response to this, the vehicle ECU 202 turns on the DC relays DCR1 and DCR2. As a result, the current supplied from the quick charger connected to the terminal unit 212 in FIG. 3 flows without passing through the first inverter 130 and the second inverter 132, as indicated by the thick dashed arrow, and the first battery unit 102 and the second battery unit 104 are charged.
  • control unit 120 determines that the voltage input from the voltage sensor 106 is not the voltage when the first battery unit 102 and the second battery unit 104 are connected in series, it notifies the vehicle ECU 202 of an abnormality. In response to this, the vehicle ECU 202 keeps the DC relays DCR1 and DCR2 off, and quick charging is not performed. The vehicle ECU 202 may issue an alarm or the like indicating the abnormality.
  • the vehicle ECU 202 turns on the system main relays RY4, ..., and RY7, and then instructs the control section 120 to control the on/off of the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 so that the first battery unit 102 and the second battery unit 104 are connected in parallel.
  • the control section 120 turns on the first parallel connection switch RY1 and the second parallel connection switch RY3 and maintains the series connection switch RY2 off in accordance with the instruction from the vehicle ECU 202.
  • the control section 120 determines whether the voltage input from the voltage sensor 106 is the voltage (e.g., about 400 V) when the first battery unit 102 and the second battery unit 104 are connected in parallel.
  • the control unit 120 determines that the voltage input from the voltage sensor 106 is the voltage when the first battery unit 102 and the second battery unit 104 are connected in parallel.
  • it notifies the vehicle ECU 202 that the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 have been set as instructed.
  • the vehicle ECU 202 turns on the DC relays DCR1 and DCR2.
  • the current supplied from the normal charger connected to the terminal unit 212 in FIG. 4 flows without passing through the first inverter 130 and the second inverter 132, as shown by the thick dashed arrow, and the first battery unit 102 and the second battery unit 104 are charged.
  • control unit 120 determines that the voltage input from the voltage sensor 106 is not the voltage when the first battery unit 102 and the second battery unit 104 are connected in parallel, it notifies the vehicle ECU 202 of an abnormality. In response to this, the vehicle ECU 202 keeps the DC relays DCR1 and DCR2 off, and normal charging is not performed. The vehicle ECU 202 may issue an alarm or the like indicating the abnormality.
  • the switching unit 100 configured in this manner can reliably determine whether the first battery unit 102 and the second battery unit 104 are connected in parallel or in series. For example, if any of the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 does not operate normally during quick charging, a high voltage will be applied when the first battery unit 102 and the second battery unit 104 are not connected in series, damaging the first battery unit 102 and the second battery unit 104. By checking the voltage input from the voltage sensor 106, such an abnormality can be reliably avoided.
  • the first battery unit 102 and the second battery unit 104 can be discharged to supply power to the outside from the terminal unit 212.
  • the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 are controlled by the control unit 120 in the same manner as described above to place the first battery unit 102 and the second battery unit 104 in a series connection state or a parallel connection state. That is, the control unit 120 turns on the series connection switch RY2 and keeps the first parallel connection switch RY1 and the second parallel connection switch RY3 off, so that the first battery unit 102 and the second battery unit 104 connected in series can supply a high voltage (e.g., about 800 V) DC voltage.
  • a high voltage e.g., about 800 V
  • the control unit 120 turns on the first parallel connection switch RY1 and the second parallel connection switch RY3 and keeps the series connection switch RY2 off, so that the first battery unit 102 and the second battery unit 104 connected in parallel can supply a normal voltage (e.g., about 400 V) DC voltage. Therefore, power of an appropriate voltage can be supplied from the terminal portion 212 .
  • a normal voltage e.g., about 400 V
  • power can be supplied from a power conversion system mounted on a vehicle to a battery unit mounted on another vehicle.
  • the control unit 120 controls the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 so that the first battery unit 102 and the second battery unit 104 are connected in parallel or in series according to the voltage of the battery unit of the other vehicle. This allows the battery unit of the other vehicle to be charged with an appropriate voltage according to the voltage of the battery unit of the other vehicle.
  • a connection terminal that receives the output (i.e., a signal representing the measured voltage) of a voltage sensor that measures the voltage of the battery unit of the other vehicle may be provided in the terminal unit 212, and electrical wiring may be provided between the terminal unit 212 and the control unit 120.
  • the switching unit 100 may also include DC relays DCR1 and DCR2 for connecting an external charger to the first battery unit 102 and the second battery unit 104. In this way, after confirming from the voltage measured by the voltage sensor 106 that the two storage batteries are connected in parallel or in series, the external charger can be connected to the first battery unit 102 and the second battery unit 104.
  • the switching unit 100 may also include a system main relay RY4 and a system main relay RY5 for connecting to the first battery unit 102, and a system main relay RY6 and a system main relay RY7 for connecting to the second battery unit 104. This improves the ease of installation of the switching unit in an EV.
  • the switching unit 100 may also include a circuit breaker Fu1 and a circuit breaker Fu2 connected in series with any of the system main relays RY4, ..., and the system main relay RY7. This can prevent excessive current from flowing, and protect the first battery unit 102 and the second battery unit 104.
  • the switching unit 100 may also include a voltage sensor 108 that detects the voltage of the first battery unit 102, and a voltage sensor 110 that detects the voltage of the second battery unit 104. This allows the difference in voltage between the first battery unit 102 and the second battery unit 104 to be determined as described above, and if the difference is large (e.g., a difference equal to or greater than a predetermined threshold), the first battery unit 102 and the second battery unit 104 can be balanced, such as by making the voltages of the first battery unit 102 and the second battery unit 104 equal.
  • a voltage sensor 108 that detects the voltage of the first battery unit 102
  • a voltage sensor 110 that detects the voltage of the second battery unit 104.
  • the switching unit 100 may be disposed in a housing that houses the first battery unit 102 and the second battery unit 104. This allows the first battery unit 102 and the second battery unit 104 to be configured integrally with the switching unit 100, making it easier to handle and improving workability, for example, when mounting the switching unit on a vehicle.
  • the switching unit 150 includes a first parallel connection switch RY1, a series connection switch RY2, and a second parallel connection switch RY3.
  • the switching unit 150 is integrally formed by accommodating the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 in a housing made of, for example, resin.
  • the switching unit 150 constitutes a power conversion system together with the first battery unit 102, the second battery unit 104, the voltage sensor 106, the voltage sensor 108, the voltage sensor 110, the first inverter 130, the second inverter 132, and the inverter control unit 134.
  • the power conversion system shown in FIG. 5 is the power conversion system shown in FIG. 1 except that the control unit 120, the circuit breaker Fu1, and the circuit breaker Fu2 are deleted, the voltage sensor 106 is disposed outside the switching unit 100, and the vehicle ECU 202 is replaced by the vehicle ECU 220.
  • components having the same reference numerals as those in Fig. 1 are the same as those in Fig. 1 and have the same functions, so in the following, overlapping descriptions will not be repeated and differences will mainly be described.
  • the vehicle ECU 220 In the power conversion system shown in FIG. 5, the vehicle ECU 220, like the vehicle ECU 202 shown in FIG. 1, performs on/off control of the system main relays RY4, ..., and RY7, as well as the DC relays DCR1 and DCR2. In addition, the vehicle ECU 220 also performs on/off control of the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3, which were handled by the control unit 120 in FIG. 1. The voltage measured by the voltage sensor 106 (i.e., a signal corresponding to the measured voltage) is input to the vehicle ECU 220.
  • the voltage measured by the voltage sensor 106 i.e., a signal corresponding to the measured voltage
  • the vehicle ECU 220 performs on/off control of the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 so that the first battery unit 102 and the second battery unit 104 are in a series connection state or a parallel connection state, and then performs a process of determining the voltage between both terminals based on the voltage input from the voltage sensor 106.
  • the control program of the vehicle ECU must be significantly modified from the conventional program.
  • the switching unit 100 controls the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3, and includes a control unit 120 that determines the voltage measured by the voltage sensor 106. Therefore, the control program of the vehicle ECU 202 can be realized with only slight modifications from the control program of the conventional vehicle ECU. Therefore, when the power conversion system shown in FIG. 1 is installed in a vehicle such as an EV, the impact on surrounding devices in the vehicle can be suppressed.
  • the vehicle ECU 220 needs to be connected to the switching unit 150 and the voltage sensor 106. That is, electrical wiring is required to control the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3, and electrical wiring is required to transmit a signal from the voltage sensor 106.
  • only two electrical wiring is required between the switching unit 100 and the vehicle ECU 202: an electrical wiring for transmitting a command from the vehicle ECU 202 to the switching unit 100, and an electrical wiring for transmitting a voltage confirmation from the switching unit 100 to the vehicle ECU 202. That is, the switching unit 100 can reduce the number of wirings, and the power conversion system shown in FIG. 1 can be easily installed in a vehicle such as an EV. In addition, the effect of noise on devices around the vehicle can be reduced.
  • the circuit breakers Fu1 and Fu2 may be any element capable of interrupting a large current such as a short circuit current, and may be a circuit breaker or the like.
  • the switching unit of the present disclosure may be mounted on a device that includes a motor driven by a battery.
  • the switching unit may be mounted on, for example, a hybrid electric vehicle (HEV) and a plug-in hybrid electric vehicle (PHEV), etc.
  • HEV hybrid electric vehicle
  • PHEV plug-in hybrid electric vehicle
  • the motor is described as having open-end windings, but this is not limited to this. Motors with windings other than open-end windings may also be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This switching unit comprises: a parallel-connection switch that causes a first storage battery and a second storage battery to be in a parallel-connection state; a serial-connection switch that causes the first storage battery and the second storage battery to be in a serial-connection state; and a first voltage sensor that measures voltage between both terminals of each of the first storage battery and the second storage battery that have been caused to be in the parallel-connection state or in the serial-connection state.

Description

切替ユニットおよびシステムSwitching Unit and System
 本開示は、切替ユニットおよびシステムに関する。 This disclosure relates to a switching unit and system.
 複数の蓄電池の直列接続と並列接続とを切替え可能なシステムが知られている。例えば、下記特許文献1には、2つの蓄電池と2つのインバータとを含み、オープエンド巻線のモータに電力を供給するシステムに組込まれた充電装置が開示されている。この充電装置は、2つの蓄電池を直列接続状態または並列接続状態にするための3つのリレーを含む。充電装置は、3つのリレーにより、2つの蓄電池を直列接続状態または並列接続状態にして、これら2つの蓄電池の充電を行う。  Systems capable of switching between series and parallel connection of multiple storage batteries are known. For example, the following Patent Document 1 discloses a charging device incorporated into a system that includes two storage batteries and two inverters and supplies power to an open-end winding motor. This charging device includes three relays for connecting the two storage batteries in series or in parallel. The charging device uses the three relays to connect the two storage batteries in series or in parallel, and charges these two storage batteries.
特開2020-88913号公報JP 2020-88913 A
 本開示のある局面に係る切替ユニットは、第1の蓄電池および第2の蓄電池を並列接続状態にする並列接続スイッチと、第1の蓄電池および第2の蓄電池を直列接続状態にする直列接続スイッチと、並列接続状態または直列接続状態にされた第1の蓄電池および第2の蓄電池の両端子の間の電圧を測定する第1電圧センサとを含む。 The switching unit according to one aspect of the present disclosure includes a parallel connection switch that connects the first storage battery and the second storage battery in a parallel connection state, a series connection switch that connects the first storage battery and the second storage battery in a series connection state, and a first voltage sensor that measures the voltage between both terminals of the first storage battery and the second storage battery that are connected in parallel or in series.
 本開示の別の局面に係るシステムは、第1の蓄電池および第2の蓄電池と、第1の蓄電池および第2の蓄電池の接続状態を切替える切替ユニットとを含み、切替ユニットは、第1の蓄電池および第2の蓄電池を並列接続状態にする並列接続スイッチと、第1の蓄電池および第2の蓄電池を直列接続状態にする直列接続スイッチと、並列接続状態または直列接続状態にされた第1の蓄電池および第2の蓄電池の両端子の間の電圧を測定する電圧センサとを含む。 A system according to another aspect of the present disclosure includes a first storage battery and a second storage battery, and a switching unit that switches the connection state of the first storage battery and the second storage battery, the switching unit including a parallel connection switch that connects the first storage battery and the second storage battery in a parallel connection state, a series connection switch that connects the first storage battery and the second storage battery in a series connection state, and a voltage sensor that measures the voltage between both terminals of the first storage battery and the second storage battery that are connected in parallel or in series.
図1は、本開示の実施形態に係る切替ユニットを含む電力変換システムを示すブロック図である。FIG. 1 is a block diagram illustrating a power conversion system including a switching unit according to an embodiment of the present disclosure. 図2は、図1に示した電力変換システムの具体的構成を示す回路図である。FIG. 2 is a circuit diagram showing a specific configuration of the power conversion system shown in FIG. 図3は、図1に示した電力変換システムにおいて、2つの蓄電池が直列接続された状態を示す回路図である。FIG. 3 is a circuit diagram showing a state in which two storage batteries are connected in series in the power conversion system shown in FIG. 図4は、図1に示した電力変換システムにおいて、2つの蓄電池が並列接続された状態を示す回路図である。FIG. 4 is a circuit diagram showing a state in which two storage batteries are connected in parallel in the power conversion system shown in FIG. 図5は、図1と異なる切替ユニットを含む電力変換システムの構成を示す回路図である。FIG. 5 is a circuit diagram showing a configuration of a power conversion system including a switching unit different from that in FIG.
 [本開示が解決しようとする課題]
 電気自動車(以下、EV(Electric Vehicle)という)は、通常、1つのインバータにより蓄電池からの電力をモータに供給する。モータには、各巻線の一方の端部が結線されたクローズドエンド巻線のモータが使用されている。こうした構成のEVに対して、特許文献1に開示された方式、即ち、オープンエンド巻線のモータを2つの蓄電池および2つのインバータを用いて駆動する方式においては、モータのトルクと回転数を表すTN特性を改善でき、走行領域を拡大できるという利点がある。しかし、このような方式のシステムに対して特許文献1の充電装置を適用する場合、車両内における周辺機器の変更が必要になる等、周辺機器への影響が大きくなるという問題がある。
[Problem to be solved by this disclosure]
In an electric vehicle (hereinafter referred to as EV (Electric Vehicle)), power is normally supplied from a storage battery to a motor by a single inverter. The motor uses a closed-end winding motor in which one end of each winding is connected. For an EV with such a configuration, the method disclosed in Patent Document 1, that is, a method of driving a motor with open-end windings using two storage batteries and two inverters, has the advantage that the TN characteristics, which represent the torque and rotation speed of the motor, can be improved and the driving range can be expanded. However, when the charging device of Patent Document 1 is applied to a system with such a method, there is a problem that the influence on the peripheral devices in the vehicle is large, such as the need to change the peripheral devices.
 したがって、本開示は、車両内における周辺機器への影響を少なくできる切替ユニットおよびシステムを提供することを目的とする。 Therefore, the present disclosure aims to provide a switching unit and system that can reduce the impact on peripheral devices within a vehicle.
 [本開示の効果]
 本開示によれば、車両内における周辺機器への影響を少なくできる切替ユニットおよびシステムを提供できる。
[Effects of the present disclosure]
According to the present disclosure, it is possible to provide a switching unit and system that can reduce the effect on peripheral devices in a vehicle.
 [本開示の実施形態の説明]
 本開示の実施形態の内容を列記して説明する。以下に記載する実施形態の少なくとも一部を任意に組合せてもよい。
[Description of the embodiments of the present disclosure]
The contents of the embodiments of the present disclosure will be listed and described below. At least some of the embodiments described below may be combined in any combination.
 (1)本開示の第1の局面に係る切替ユニットは、第1の蓄電池および第2の蓄電池を並列接続状態にする並列接続スイッチと、第1の蓄電池および第2の蓄電池を直列接続状態にする直列接続スイッチと、並列接続状態または直列接続状態にされた第1の蓄電池および第2の蓄電池の両端子の間の電圧を測定する第1電圧センサとを含む。これにより、車両内における周辺機器への影響を少なくできる。 (1) The switching unit according to the first aspect of the present disclosure includes a parallel connection switch that connects the first storage battery and the second storage battery in a parallel connection state, a series connection switch that connects the first storage battery and the second storage battery in a series connection state, and a first voltage sensor that measures the voltage between both terminals of the first storage battery and the second storage battery that are connected in parallel or in series. This reduces the impact on peripheral devices in the vehicle.
 (2)上記(1)において、切替ユニットは、並列接続スイッチおよび直列接続スイッチをオンオフ制御する制御部をさらに含むことができる。これにより、第1の蓄電池および第2の蓄電池を効率的に並列接続または直列接続にできる。また、切替ユニットと外部との電気配線を少なくでき、周囲の機器へのノイズの影響を低減できる。 (2) In the above (1), the switching unit may further include a control unit that controls the on/off of the parallel connection switch and the series connection switch. This allows the first storage battery and the second storage battery to be efficiently connected in parallel or in series. In addition, the amount of electrical wiring between the switching unit and the outside can be reduced, reducing the impact of noise on surrounding devices.
 (3)上記(1)または(2)において、切替ユニットは、第1の蓄電池および第2の蓄電池を充電するための充電器を、並列接続状態または直列接続状態にされた第1の蓄電池および第2の蓄電池の両端子に接続するための第1接続スイッチをさらに含んでいてもよい。これにより、第1の蓄電池および第2の蓄電池が並列接続または直列接続されていることを確認した後に、外部充電器と蓄電池とを接続することができる。 (3) In the above (1) or (2), the switching unit may further include a first connection switch for connecting a charger for charging the first storage battery and the second storage battery to both terminals of the first storage battery and the second storage battery that are connected in parallel or series. This makes it possible to connect the external charger and the storage battery after confirming that the first storage battery and the second storage battery are connected in parallel or series.
 (4)上記(1)から(3)のいずれか1つにおいて、並列接続状態において第1の蓄電池および第2の蓄電池を充電する場合、並列接続スイッチはオンされ、且つ直列接続スイッチはオフされてもよく、直列接続状態において第1の蓄電池および第2の蓄電池を充電する場合、直列接続スイッチはオンされ、且つ並列接続スイッチはオフされてもよい。これにより、第1の蓄電池および第2の蓄電池を確実に並列接続状態または直列接続状態にできる。 (4) In any one of (1) to (3) above, when the first storage battery and the second storage battery are charged in a parallel connection state, the parallel connection switch may be turned on and the series connection switch may be turned off, and when the first storage battery and the second storage battery are charged in a series connection state, the series connection switch may be turned on and the parallel connection switch may be turned off. This ensures that the first storage battery and the second storage battery are connected in parallel or in series.
 (5)上記(1)から(4)のいずれか1つにおいて、切替ユニットは、切替ユニットを、第1の蓄電池および第2の蓄電池に接続するための複数の第2接続スイッチをさらに含んでいてもよい。これにより、切替ユニットをEVに搭載する際の作業性が向上する。 (5) In any one of (1) to (4) above, the switching unit may further include a plurality of second connection switches for connecting the switching unit to the first storage battery and the second storage battery. This improves the ease of installation of the switching unit in the EV.
 (6)上記(5)において、切替ユニットは、複数の第2接続スイッチのうちの1つの第2接続スイッチと直列接続される遮断器をさらに含んでいてもよい。これにより、過剰電流が流れることを防止でき、蓄電池を保護できる。 (6) In the above (5), the switching unit may further include a circuit breaker connected in series with one of the second connection switches. This makes it possible to prevent excessive current from flowing and protect the storage battery.
 (7)上記(1)から(6)のいずれか1つにおいて、切替ユニットは、第1の蓄電池および第2の蓄電池の各々の両端子間の電圧を検出する第2電圧センサをさらに含んでいてもよい。これにより、第1の蓄電池および第2の蓄電池の電圧の差を判定でき、差が大きければ(例えば、所定のしきい値以上の差)、第1の蓄電池および第2の蓄電池の電圧を等しくする等、第1の蓄電池および第2の蓄電池をバランスさせることができる。 (7) In any one of (1) to (6) above, the switching unit may further include a second voltage sensor that detects the voltage between both terminals of each of the first storage battery and the second storage battery. This makes it possible to determine the difference in voltage between the first storage battery and the second storage battery, and if the difference is large (e.g., a difference equal to or greater than a predetermined threshold), the first storage battery and the second storage battery can be balanced, for example, by making the voltages of the first storage battery and the second storage battery equal.
 (8)上記(1)から(7)のいずれか1つにおいて、切替ユニットは、第1の蓄電池および第2の蓄電池を収容する筐体内に配置されていてもよい。これにより、第1の蓄電池および第2の蓄電池と、並列接続スイッチおよび直接接続スイッチとを一体に構成できるので取扱いが容易になり、例えば、車両に搭載する際の作業性が向上する。また、切替ユニットの周辺機器の配置設計が容易になる。 (8) In any one of (1) to (7) above, the switching unit may be disposed in a housing that houses the first storage battery and the second storage battery. This allows the first storage battery and the second storage battery to be configured integrally with the parallel connection switch and the direct connection switch, making handling easier and, for example, improving workability when mounting the device on a vehicle. In addition, the layout design of peripheral devices of the switching unit becomes easier.
 (9)上記(1)から(8)のいずれか1つにおいて、第1の蓄電池および第2の蓄電池が放電するとき、並列接続スイッチはオンされ、且つ直列接続スイッチはオフされてもよい。これにより、適切な電圧の電力を供給できる。 (9) In any one of (1) to (8) above, when the first storage battery and the second storage battery are discharged, the parallel connection switch may be turned on and the series connection switch may be turned off. This allows power of an appropriate voltage to be supplied.
 (10)上記(1)から(9)のいずれか1つにおいて、第1の蓄電池は、モータを駆動するための第1のインバータに電力を供給し、第2の蓄電池は、モータを駆動するための第2のインバータに電力を供給し、切替ユニットは、第1のインバータおよび第2のインバータをバイパスして電流が流れるように、第1の蓄電池および第2の蓄電池の接続状態を切替える。これにより、2つの蓄電池および2つのインバータと、例えばオープンエンド巻線のモータとを搭載したEVを実現でき、走行領域を拡大できる。 (10) In any one of (1) to (9) above, the first storage battery supplies power to a first inverter for driving the motor, the second storage battery supplies power to a second inverter for driving the motor, and the switching unit switches the connection state of the first storage battery and the second storage battery so that current flows bypassing the first inverter and the second inverter. This makes it possible to realize an EV equipped with two storage batteries and two inverters, and, for example, a motor with open-end windings, thereby expanding the driving range.
 (11)上記(1)から(10)のいずれか1つにおいて、切替ユニットは、車両に搭載され、並列接続スイッチおよび直列接続スイッチは、車両とは別の車両である他車両に搭載された蓄電池に対して、車両に搭載された第1の蓄電池および第2の蓄電池から電力を供給するときに、他車両に搭載された蓄電池の電圧に応じて、第1の蓄電池および第2の蓄電池の接続状態を直列接続状態または並列接続状態に切替えてもよい。これにより、他車両の蓄電池の電圧に応じた適切な電圧により、他車両の蓄電池を充電できる。 (11) In any one of (1) to (10) above, the switching unit may be mounted on a vehicle, and the parallel connection switch and the series connection switch may switch the connection state of the first storage battery and the second storage battery to a series connection state or a parallel connection state according to the voltage of the storage battery mounted on the other vehicle when supplying power from the first storage battery and the second storage battery mounted on the vehicle to a storage battery mounted on another vehicle other than the vehicle. This allows the storage battery of the other vehicle to be charged with an appropriate voltage according to the voltage of the storage battery of the other vehicle.
 (12)本開示の第2の局面に係るシステムは、第1の蓄電池および第2の蓄電池と、第1の蓄電池および第2の蓄電池の接続状態を切替える切替ユニットとを含み、切替ユニットは、第1の蓄電池および第2の蓄電池を並列接続状態にする並列接続スイッチと、第1の蓄電池および第2の蓄電池を直列接続状態にする直列接続スイッチと、並列接続状態または直列接続状態にされた第1の蓄電池および第2の蓄電池の両端子の間の電圧を測定する電圧センサとを含む。これにより、車両内における周辺機器への影響を少なくできる。 (12) A system according to a second aspect of the present disclosure includes a first storage battery and a second storage battery, and a switching unit that switches the connection state of the first storage battery and the second storage battery, and the switching unit includes a parallel connection switch that connects the first storage battery and the second storage battery to a parallel connection state, a series connection switch that connects the first storage battery and the second storage battery to a series connection state, and a voltage sensor that measures the voltage between both terminals of the first storage battery and the second storage battery that are connected in parallel or in series. This reduces the impact on peripheral devices in the vehicle.
 [本開示の実施形態の詳細]
 以下の実施形態においては、同一の部品には同一の参照番号を付してある。それらの名称および機能も同一である。したがって、それらについての詳細な説明は繰返さない。
[Details of the embodiment of the present disclosure]
In the following embodiments, the same parts are denoted by the same reference numerals, and their names and functions are also the same, so detailed description thereof will not be repeated.
 図1を参照して本開示の実施形態に係る切替ユニット100は、第1並列接続スイッチRY1、直列接続スイッチRY2、第2並列接続スイッチRY3、電圧センサ106および制御部120を含む。切替ユニット100は、例えば樹脂等の筐体に、第1並列接続スイッチRY1、直列接続スイッチRY2、第2並列接続スイッチRY3、電圧センサ106および制御部120を収容することにより、一体に形成されている。切替ユニット100は、第1バッテリユニット102、第2バッテリユニット104、電圧センサ108、電圧センサ110、第1インバータ130、第2インバータ132およびインバータ制御部134と共に、電力変換システムを構成する。即ち、電力変換システムは、2つのバッテリユニットと2つのインバータとによってモータを駆動するダブルエンド型インバータシステムである。電力変換システムはEVに搭載され、車両ECU(Electric Control Unit)202により制御され、EVを走行させるためのモータ140および高圧補機210に電力を供給する。電力変換システムは、端子部212に外部充電器が接続され、第1バッテリユニット102および第2バッテリユニット104を充電する。 1, the switching unit 100 according to the embodiment of the present disclosure includes a first parallel connection switch RY1, a series connection switch RY2, a second parallel connection switch RY3, a voltage sensor 106, and a control unit 120. The switching unit 100 is integrally formed by accommodating the first parallel connection switch RY1, the series connection switch RY2, the second parallel connection switch RY3, the voltage sensor 106, and the control unit 120 in a housing made of, for example, resin. The switching unit 100 constitutes a power conversion system together with the first battery unit 102, the second battery unit 104, the voltage sensor 108, the voltage sensor 110, the first inverter 130, the second inverter 132, and the inverter control unit 134. That is, the power conversion system is a double-ended inverter system that drives a motor using two battery units and two inverters. The power conversion system is installed in the EV and controlled by a vehicle ECU (Electric Control Unit) 202, supplying power to a motor 140 and high-voltage auxiliary equipment 210 for driving the EV. An external charger is connected to a terminal section 212 of the power conversion system, and the power conversion system charges the first battery unit 102 and the second battery unit 104.
 切替ユニット100を構成する、第1並列接続スイッチRY1、直列接続スイッチRY2および第2並列接続スイッチRY3は、制御部120の制御を受けて、各々の両端子を短絡(以下、オンという)または開放(以下、オフという)する。短絡する制御および開放する制御をまとめてオンオフ制御ともいう。第1並列接続スイッチRY1、直列接続スイッチRY2および第2並列接続スイッチRY3の各々は、例えばリレーである。リレーを用いることにより、後述するように、複数のバッテリを、制御部120の制御により、効率的に並列接続状態または直列接続状態にできる。第1並列接続スイッチRY1、直列接続スイッチRY2および第2並列接続スイッチRY3の各々は、FET(Field Effect Transistor)またはIGBT(Insulated Gate Bipolar Transistor)等のスイッチング機能を有する半導体素子であってもよい。 The first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3, which constitute the switching unit 100, short-circuit (hereinafter referred to as "on") or open (hereinafter referred to as "off") both terminals of each switch under the control of the control unit 120. The short-circuit control and the open control are also collectively referred to as on-off control. Each of the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 is, for example, a relay. By using a relay, as described later, multiple batteries can be efficiently connected in parallel or in series under the control of the control unit 120. Each of the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 may be a semiconductor element having a switching function, such as a FET (Field Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor).
 制御部120は、車両ECU202の制御を受けて、制御信号(制御部120から出力される3本の破線の矢印参照)を出力し、第1並列接続スイッチRY1、直列接続スイッチRY2および第2並列接続スイッチRY3のオンオフ制御を行う。制御部120は、第1バッテリユニット102および第2バッテリユニット104を、効率的に並列接続または直列接続にできる。制御部120は、ロジック回路により実現され得る。即ち、制御部120は、例えばASIC(Application Specific Integrated Circuit)またはプログラマブルロジックデバイス(FPGA(Field Programmable Gate Array)等)等の半導体集積回路により実現され得る。制御部120は、演算素子(CPU:Central Processing Unit)および記憶素子(メモリ)等を含む制御装置(コンピュータ)として構成されてもよい。 Under the control of the vehicle ECU 202, the control unit 120 outputs a control signal (see the three dashed arrows output from the control unit 120) and controls the on/off of the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3. The control unit 120 can efficiently connect the first battery unit 102 and the second battery unit 104 in parallel or series. The control unit 120 can be realized by a logic circuit. That is, the control unit 120 can be realized by a semiconductor integrated circuit such as an ASIC (Application Specific Integrated Circuit) or a programmable logic device (such as an FPGA (Field Programmable Gate Array)). The control unit 120 may be configured as a control device (computer) including a computing element (CPU: Central Processing Unit) and a storage element (memory), etc.
 電圧センサ106は、並列接続または直列接続された第1バッテリユニット102および第2バッテリユニット104の両端子間の電圧を測定する。電圧センサ106により測定された電圧(即ち、測定された電圧に対応する電気信号)は、制御部120に入力される。これにより、制御部120は、第1バッテリユニット102および第2バッテリユニット104を並列接続されているか、直列接続されているかを判定できる。即ち、制御部120は、第1並列接続スイッチRY1、直列接続スイッチRY2および第2並列接続スイッチRY3のオンオフ制御を行った後、制御した通りに第1バッテリユニット102および第2バッテリユニット104が接続されていることを確認できる。 The voltage sensor 106 measures the voltage between both terminals of the first battery unit 102 and the second battery unit 104, which are connected in parallel or in series. The voltage measured by the voltage sensor 106 (i.e., an electrical signal corresponding to the measured voltage) is input to the control unit 120. This allows the control unit 120 to determine whether the first battery unit 102 and the second battery unit 104 are connected in parallel or in series. That is, after the control unit 120 performs on/off control of the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3, it can confirm that the first battery unit 102 and the second battery unit 104 are connected as controlled.
 電力変換システムは、システムメインリレー(System Main Relay)RY4、…、およびシステムメインリレーRY7、並びに、DCリレー(Direct Cuttent Relay)DCR1およびDCリレーDCR2をさらに含む。システムメインリレーRY4、…、システムメインリレーRY7、DCリレーDCR1およびDCリレーDCR2の各々は、車両ECU202による制御を受けて、各々の両端子をオンまたはオフする。システムメインリレーRY4、…、およびシステムメインリレーRY7がオンすることにより、切替ユニット100と第1バッテリユニット102および第2バッテリユニット104とが接続される。また、端子部212に外部充電器が接続される場合には、DCリレーDCR1およびDCリレーDCR2がオンすることにより、切替ユニット100が外部充電器に接続される。システムメインリレーRY4、…、システムメインリレーRY7、DCリレーDCR1およびDCリレーDCR2の各々は、例えばリレーである。システムメインリレーRY4、…、システムメインリレーRY7、DCリレーDCR1およびDCリレーDCR2の各々は、FETまたはIGBT等のスイッチング機能を有する半導体素子であってもよい。 The power conversion system further includes a system main relay RY4, ..., a system main relay RY7, a DC relay (Direct Cut Relay) DCR1, and a DC relay DCR2. Each of the system main relays RY4, ..., the system main relay RY7, the DC relay DCR1, and the DC relay DCR2 turns on or off both terminals under the control of the vehicle ECU 202. When the system main relays RY4, ..., and the system main relay RY7 are turned on, the switching unit 100 is connected to the first battery unit 102 and the second battery unit 104. When an external charger is connected to the terminal portion 212, the DC relay DCR1 and the DC relay DCR2 are turned on, and the switching unit 100 is connected to the external charger. Each of the system main relays RY4, ..., the system main relay RY7, the DC relay DCR1, and the DC relay DCR2 is, for example, a relay. Each of the system main relays RY4, ..., system main relay RY7, DC relay DCR1, and DC relay DCR2 may be a semiconductor element having a switching function such as an FET or an IGBT.
 電力変換システムは、遮断器Fu1および遮断器Fu2をさらに含む。遮断器Fu1は、第1バッテリユニット102に接続されたシステムメインリレーRY4に直列接続されている。遮断器Fu2は、第2バッテリユニット104に接続されたシステムメインリレーRY6に直列接続されている。遮断器Fu1および遮断器Fu2は、各々の両端子を低抵抗値により接続し、所定値以上の大電流が流れることにより、各々の両端子の接続を開放する機能を有する。遮断器Fu1および遮断器Fu2は、例えばヒューズである。ヒューズは、大電流が流れることにより高温になれば溶断し、両端子の接続を開放する。したがって、過剰電流が流れることを防止でき、第1バッテリユニット102および第2バッテリユニット104を保護できる。なお、遮断器Fu1は、システムメインリレーRY5に直列接続されてもよい。遮断器Fu2は、システムメインリレーRY7に直列接続されてもよい。 The power conversion system further includes a circuit breaker Fu1 and a circuit breaker Fu2. The circuit breaker Fu1 is connected in series to a system main relay RY4 connected to the first battery unit 102. The circuit breaker Fu2 is connected in series to a system main relay RY6 connected to the second battery unit 104. The circuit breakers Fu1 and Fu2 connect their respective terminals with a low resistance value, and have the function of opening the connection between the respective terminals when a large current of a predetermined value or more flows. The circuit breakers Fu1 and Fu2 are, for example, fuses. When a large current flows and the fuse becomes hot, it melts and opens the connection between the two terminals. Therefore, it is possible to prevent an excessive current from flowing, and to protect the first battery unit 102 and the second battery unit 104. The circuit breaker Fu1 may be connected in series to the system main relay RY5. The circuit breaker Fu2 may be connected in series to the system main relay RY7.
 第1バッテリユニット102および第2バッテリユニット104は、充放電可能な蓄電池により構成された、同じ仕様のユニットである。第1バッテリユニット102および第2バッテリユニット104は、例えばリチウムイオン電池を含む。第1バッテリユニット102および第2バッテリユニット104は、例えば、400V仕様(即ち、充電電圧および出力電圧の定格が400V)のバッテリユニットである。なお、バッテリユニットは、複数のバッテリにより構成される場合に限らず、1つのバッテリにより構成される場合も含む。 The first battery unit 102 and the second battery unit 104 are units of the same specifications, composed of chargeable and dischargeable storage batteries. The first battery unit 102 and the second battery unit 104 include, for example, lithium ion batteries. The first battery unit 102 and the second battery unit 104 are, for example, battery units of 400V specifications (i.e., rated charging voltage and output voltage are 400V). Note that the battery unit is not limited to being composed of multiple batteries, and may also be composed of a single battery.
 第1バッテリユニット102および第2バッテリユニット104の各々には、バッテリ管理装置(BMS:Battery Management System)(図示せず)が設けられている。バッテリ管理装置は、各バッテリユニットの過充電および過放電を防ぐ機能、過電流を防ぐ機能、並びに電池の残容量(SOC:State Of Charge)を算出する機能等を有する。 Each of the first battery unit 102 and the second battery unit 104 is provided with a battery management system (BMS) (not shown). The battery management system has functions such as preventing overcharging and overdischarging of each battery unit, preventing overcurrent, and calculating the remaining capacity of the battery (SOC: State of Charge).
 第1インバータ130および第2インバータ132は、第1バッテリユニット102および第2バッテリユニット104から供給される直流電力を交流電力に変換してモータ140に供給する。このとき、制御部120は、第1並列接続スイッチRY1、直列接続スイッチRY2および第2並列接続スイッチRY3を全てオフにする。第1インバータ130および第2インバータ132の各々は、後述するように複数のスイッチング素子を含む。図1に示した電力変換システムは、車両ECU202からの指示を受けて、第1インバータ130および第2インバータ132を構成する各スイッチング素子のオンオフを制御するためのインバータ制御部134をさらに含む。モータ140は、交流電力によって駆動する三相交流モータである。本実施形態においては、モータ140は、後述するようにオープンエンド巻線のモータである。 The first inverter 130 and the second inverter 132 convert the DC power supplied from the first battery unit 102 and the second battery unit 104 into AC power and supply it to the motor 140. At this time, the control unit 120 turns off the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3. Each of the first inverter 130 and the second inverter 132 includes a plurality of switching elements as described below. The power conversion system shown in FIG. 1 further includes an inverter control unit 134 for controlling the on/off of each switching element constituting the first inverter 130 and the second inverter 132 in response to an instruction from the vehicle ECU 202. The motor 140 is a three-phase AC motor driven by AC power. In this embodiment, the motor 140 is a motor with open-end windings as described below.
 電力変換システムは、電圧センサ108および電圧センサ110をさらに含む。電圧センサ108は、第1バッテリユニット102の両端子間の電圧を測定する。電圧センサ110は、第2バッテリユニット104の両端子間の電圧を測定する。電圧センサ108および電圧センサ110により検出された電圧(即ち、検出された電圧に対応する電気信号)は、インバータ制御部134に入力され、第1インバータ130および第2インバータ132の制御に利用される。 The power conversion system further includes a voltage sensor 108 and a voltage sensor 110. The voltage sensor 108 measures the voltage between both terminals of the first battery unit 102. The voltage sensor 110 measures the voltage between both terminals of the second battery unit 104. The voltages detected by the voltage sensors 108 and 110 (i.e., electrical signals corresponding to the detected voltages) are input to the inverter control unit 134 and used to control the first inverter 130 and the second inverter 132.
 高圧補機210は、補機系の高圧負荷であり、電力変換システムから電力が供給される。高圧補機210は、例えば、エアコン、ヒータおよび降圧DC/DCコンバータ等を含む。降圧DC/DCコンバータは、低圧(例えば12V)のバッテリに電力を供給する際に、第1バッテリユニット102からの電圧を降圧する。 The high-voltage auxiliary equipment 210 is a high-voltage load of the auxiliary equipment system, and is supplied with power from the power conversion system. The high-voltage auxiliary equipment 210 includes, for example, an air conditioner, a heater, and a step-down DC/DC converter. The step-down DC/DC converter steps down the voltage from the first battery unit 102 when supplying power to a low-voltage (e.g., 12 V) battery.
 図2を参照して、第1インバータ130および第2インバータ132の各々は、複数のスイッチング素子により構成されている。図2においては、モータ140が、各巻線の端部を結線せずに外部に引出したオープンエンド巻線のモータであることを明示的に示している。図2においては、図1に示したインバータ制御部134、高圧補機210および端子部212を図示せず、端子部212に接続される外部充電器200を示している。それ以外の構成要素は、図1とは図示されている位置が異なっているだけであり、図1に示した構成要素と同じである。 Referring to FIG. 2, each of the first inverter 130 and the second inverter 132 is composed of a plurality of switching elements. FIG. 2 explicitly shows that the motor 140 is a motor with open-end windings in which the ends of each winding are not connected but are pulled out to the outside. FIG. 2 does not show the inverter control unit 134, high-voltage auxiliary equipment 210, and terminal unit 212 shown in FIG. 1, but shows the external charger 200 connected to terminal unit 212. The other components are the same as those shown in FIG. 1, except that their positions are different from those shown in FIG. 1.
 第1インバータ130は、第1バッテリユニット102からの直流電力を三相の交流電力に変換する三相インバータである。第1インバータ130は、6つのスイッチング素子Q1、…、およびスイッチング素子Q6を含む。スイッチング素子Q1、…、およびスイッチング素子Q6の各々には、還流ダイオードが接続されている。スイッチング素子Q1、…、およびスイッチング素子Q6の各々は、例えばFETである。サージ電流からの保護等を目的として、スイッチング素子および還流ダイオードは、順バイアス方向が相互に逆向きになるように並列接続されている。なお、スイッチング素子Q1、…、およびスイッチング素子Q6の各々は、例えばIGBTであってもよい。 The first inverter 130 is a three-phase inverter that converts DC power from the first battery unit 102 into three-phase AC power. The first inverter 130 includes six switching elements Q1, ..., and switching element Q6. A freewheel diode is connected to each of the switching elements Q1, ..., and switching element Q6. Each of the switching elements Q1, ..., and switching element Q6 is, for example, an FET. For the purpose of protection from surge currents, etc., the switching elements and the freewheel diodes are connected in parallel so that their forward bias directions are opposite to each other. Each of the switching elements Q1, ..., and switching element Q6 may be, for example, an IGBT.
 スイッチング素子Q1、…、およびスイッチング素子Q6は、U相、V相およびW相の上下アームを構成する。例えば、上アーム素子であるスイッチング素子Q1と下アーム素子であるスイッチング素子Q2とが直列に接続されてU相の上下アームが構成される。上アーム素子であるスイッチング素子Q3と下アーム素子であるスイッチング素子Q4とが直列に接続されて、V相の上下アームが構成される。上アーム素子であるスイッチング素子Q5と下アーム素子であるスイッチング素子Q6とが直列に接続されて、W相の上下アームが構成される。 Switching elements Q1, ... and switching element Q6 form the upper and lower arms of the U phase, V phase, and W phase. For example, switching element Q1, which is the upper arm element, and switching element Q2, which is the lower arm element, are connected in series to form the upper and lower arms of the U phase. Switching element Q3, which is the upper arm element, and switching element Q4, which is the lower arm element, are connected in series to form the upper and lower arms of the V phase. Switching element Q5, which is the upper arm element, and switching element Q6, which is the lower arm element, are connected in series to form the upper and lower arms of the W phase.
 第2インバータ132も第1インバータ130と同様に構成されている。即ち、第2インバータ132は、第2バッテリユニット104からの直流電力を三相の交流電力に変換する三相インバータである。第2インバータ132は、6つのスイッチング素子Q7、…、およびスイッチング素子Q12を含む。スイッチング素子Q7、…、およびスイッチング素子Q12の各々には、還流ダイオードが接続されている。スイッチング素子Q7、…、およびスイッチング素子Q12の各々は、例えばFETである。スイッチング素子および還流ダイオードは、順バイアス方向が相互に逆向きになるように並列接続されている。スイッチング素子Q7、…、およびスイッチング素子Q12の各々は、例えばIGBTであってもよい。 The second inverter 132 is configured in the same manner as the first inverter 130. That is, the second inverter 132 is a three-phase inverter that converts DC power from the second battery unit 104 into three-phase AC power. The second inverter 132 includes six switching elements Q7, ..., and switching element Q12. A freewheel diode is connected to each of the switching elements Q7, ..., and switching element Q12. Each of the switching elements Q7, ..., and switching element Q12 is, for example, an FET. The switching elements and the freewheel diodes are connected in parallel so that their forward bias directions are opposite to each other. Each of the switching elements Q7, ..., and switching element Q12 may be, for example, an IGBT.
 スイッチング素子Q7、…、およびスイッチング素子Q12は、U相、V相およびW相の上下アームを構成する。例えば、上アーム素子であるスイッチング素子Q7と下アーム素子であるスイッチング素子Q8とが直列に接続されてU相の上下アームが構成される。上アーム素子であるスイッチング素子Q9と下アーム素子であるスイッチング素子Q10とが直列に接続されて、V相の上下アームが構成される。上アーム素子であるスイッチング素子Q11と下アーム素子であるスイッチング素子Q12とが直列に接続されて、W相の上下アームが構成される。 Switching elements Q7, ... and switching element Q12 form the upper and lower arms of the U phase, V phase, and W phase. For example, switching element Q7, which is the upper arm element, and switching element Q8, which is the lower arm element, are connected in series to form the upper and lower arms of the U phase. Switching element Q9, which is the upper arm element, and switching element Q10, which is the lower arm element, are connected in series to form the upper and lower arms of the V phase. Switching element Q11, which is the upper arm element, and switching element Q12, which is the lower arm element, are connected in series to form the upper and lower arms of the W phase.
 モータ140は、三相の巻線(U相巻線、V相巻線およびW相巻線)を含む。各巻線の両端子は第1インバータ130および第2インバータ132に接続されている。即ち、モータ140のU相巻線の両端子はそれぞれ、第1インバータ130のU相の上下アームを構成するスイッチング素子Q1およびスイッチング素子Q2の接続ノードと、第2インバータ132のU相の上下アームを構成するスイッチング素子Q7およびスイッチング素子Q8の接続ノードに接続されている。モータ140のV相巻線の両端子はそれぞれ、第1インバータ130のV相の上下アームを構成するスイッチング素子Q3およびスイッチング素子Q4の接続ノードと、第2インバータ132のV相の上下アームを構成するスイッチング素子Q9およびスイッチング素子Q10の接続ノードに接続されている。モータ140のW相巻線の両端子はそれぞれ、第1インバータ130のW相の上下アームを構成するスイッチング素子Q5およびスイッチング素子Q6の接続ノードと、第2インバータ132のW相の上下アームを構成するスイッチング素子Q11およびスイッチング素子Q12の接続ノードに接続されている。 Motor 140 includes three-phase windings (U-phase winding, V-phase winding, and W-phase winding). Both terminals of each winding are connected to first inverter 130 and second inverter 132. That is, both terminals of the U-phase winding of motor 140 are connected to the connection node of switching element Q1 and switching element Q2 that constitute the upper and lower arms of the U-phase of first inverter 130, and the connection node of switching element Q7 and switching element Q8 that constitute the upper and lower arms of the U-phase of second inverter 132. Both terminals of the V-phase winding of motor 140 are connected to the connection node of switching element Q3 and switching element Q4 that constitute the upper and lower arms of the V-phase of first inverter 130, and the connection node of switching element Q9 and switching element Q10 that constitute the upper and lower arms of the V-phase of second inverter 132. Both terminals of the W-phase winding of the motor 140 are connected to the connection node of the switching elements Q5 and Q6 that constitute the upper and lower arms of the W-phase of the first inverter 130, and the connection node of the switching elements Q11 and Q12 that constitute the upper and lower arms of the W-phase of the second inverter 132.
 このように、第1インバータ130、第2インバータ132およびモータ140が構成され、第1インバータ130および第2インバータ132を構成するスイッチング素子Q1、…、およびスイッチング素子Q12がインバータ制御部134により制御されることにより、モータ140の各巻線に電流が流れ、モータ140が駆動する。上記したように、インバータ制御部134は車両ECU202からの指示を受けて、スイッチング素子Q1、…、およびスイッチング素子Q12を制御する。例えば、第1インバータ130および第2インバータ132は、第1バッテリユニット102からモータ140に供給される電力と、第2バッテリユニット104からモータ140に供給される電力とが等しくなるように目標値が設定されて制御される。 In this manner, the first inverter 130, the second inverter 132, and the motor 140 are configured, and the switching elements Q1, ..., and switching element Q12 constituting the first inverter 130 and the second inverter 132 are controlled by the inverter control unit 134, causing a current to flow through each winding of the motor 140 and driving the motor 140. As described above, the inverter control unit 134 receives instructions from the vehicle ECU 202 and controls the switching elements Q1, ..., and switching element Q12. For example, the first inverter 130 and the second inverter 132 are controlled by setting target values so that the power supplied from the first battery unit 102 to the motor 140 is equal to the power supplied from the second battery unit 104 to the motor 140.
 外部充電器200は、第1バッテリユニット102および第2バッテリユニット104を充電するための直流電源である。外部充電器200として、急速充電器(例えば、出力800V)を用いて、第1バッテリユニット102および第2バッテリユニット104を急速充電する場合、第1バッテリユニット102および第2バッテリユニット104は切替ユニット100により直列接続状態になる。外部充電器200として、通常充電器(例えば、出力400V)を用いて、第1バッテリユニット102および第2バッテリユニット104を充電する場合、第1バッテリユニット102および第2バッテリユニット104は切替ユニット100により並列接続状態になる。 The external charger 200 is a DC power source for charging the first battery unit 102 and the second battery unit 104. When a rapid charger (e.g., output 800V) is used as the external charger 200 to rapid charge the first battery unit 102 and the second battery unit 104, the first battery unit 102 and the second battery unit 104 are connected in series by the switching unit 100. When a normal charger (e.g., output 400V) is used as the external charger 200 to charge the first battery unit 102 and the second battery unit 104, the first battery unit 102 and the second battery unit 104 are connected in parallel by the switching unit 100.
 以上により、第1並列接続スイッチRY1、直列接続スイッチRY2、第2並列接続スイッチRY3および電圧センサ106を1つの切替ユニット100に組込むことにより、車両内における周辺機器への影響を少なくできる。また、電圧センサ106により、第1バッテリユニット102および第2バッテリユニット104が並列接続または直列接続されていることを確実に判定できる。したがって、外部充電器による充電時において安全性が向上する。また、切替ユニット100は、第1インバータ130および第2インバータ132をバイパスして、即ち第1インバータ130および第2インバータ132を介さずに充電電流が供給されるように、第1バッテリユニット102および第2バッテリユニット104の接続状態を切替える。したがって、2つのバッテリユニットおよび2つのインバータとオープンエンド巻線のモータとを搭載したEVを実現でき、走行領域を拡大できる。 As described above, by incorporating the first parallel connection switch RY1, the series connection switch RY2, the second parallel connection switch RY3, and the voltage sensor 106 into one switching unit 100, the influence on peripheral devices in the vehicle can be reduced. In addition, the voltage sensor 106 can reliably determine whether the first battery unit 102 and the second battery unit 104 are connected in parallel or in series. Therefore, safety is improved when charging with an external charger. In addition, the switching unit 100 switches the connection state of the first battery unit 102 and the second battery unit 104 so that the first inverter 130 and the second inverter 132 are bypassed, that is, the charging current is supplied without passing through the first inverter 130 and the second inverter 132. Therefore, an EV equipped with two battery units, two inverters, and a motor with open-end windings can be realized, and the driving range can be expanded.
 切替ユニット100が、第1並列接続スイッチRY1、直列接続スイッチRY2および第2並列接続スイッチRY3を制御する制御部120を含んで一体に形成されることにより、第1バッテリユニット102および第2バッテリユニット104を効率的に並列接続または直列接続にできる。また、切替ユニット100と車両ECU202との電気配線を少なくでき、周囲の機器へのノイズの影響を低減できる。 The switching unit 100 is integrally formed including the control unit 120 that controls the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3, so that the first battery unit 102 and the second battery unit 104 can be efficiently connected in parallel or in series. In addition, the amount of electrical wiring between the switching unit 100 and the vehicle ECU 202 can be reduced, reducing the impact of noise on surrounding devices.
 上記したように、第1バッテリユニット102からモータ140に供給される電力と、第2バッテリユニット104からモータ140に供給される電力とが等しくなるように目標値を設定して第1インバータ130および第2インバータ132を制御する。これにより、通常、高圧補機210が接続されている第1バッテリユニット102の方が第2バッテリユニット104よりも容量の低下が速くなる。したがって、第1バッテリユニット102および第2バッテリユニット104間において残容量の不平衡が生じる。電力変換システムは、例えば、電圧センサ108および電圧センサ110により電圧を測定することにより、第1バッテリユニット102および第2バッテリユニット104間において残容量の不平衡を判定できる。したがって、第1バッテリユニット102および第2バッテリユニット104の一方から他方に電力を供給し、第1バッテリユニット102および第2バッテリユニット104間の残容量をバランスさせることができる。 As described above, the first inverter 130 and the second inverter 132 are controlled by setting a target value so that the power supplied from the first battery unit 102 to the motor 140 is equal to the power supplied from the second battery unit 104 to the motor 140. As a result, the capacity of the first battery unit 102 to which the high-voltage auxiliary device 210 is connected usually decreases faster than that of the second battery unit 104. Therefore, an imbalance in the remaining capacity occurs between the first battery unit 102 and the second battery unit 104. The power conversion system can determine the imbalance in the remaining capacity between the first battery unit 102 and the second battery unit 104, for example, by measuring the voltage with the voltage sensor 108 and the voltage sensor 110. Therefore, it is possible to supply power from one of the first battery unit 102 and the second battery unit 104 to the other, and balance the remaining capacity between the first battery unit 102 and the second battery unit 104.
 モータ140によりEVの走行中に、第1バッテリユニット102および第2バッテリユニット104の一方に異常があれば、他方のバッテリユニットとそれに対応するインバータとによりモータ140を駆動させてもよい。このとき、システムメインリレーRY4、…、およびシステムメインリレーRY7のうち、正常なバッテリユニットに対応するシステムメインリレーはオンされ、異常のあるバッテリユニットに対応するシステムメインリレーはオフされる。また、異常のあるバッテリユニットに対応するインバータの下アームはオンされ、モータ140の3つの巻線の対応する一端は、相互に接続される。第1バッテリユニット102および第2バッテリユニット104の異常は、電圧センサ108および電圧センサ110から出力される電圧値により判定できる。 If an abnormality occurs in one of the first battery unit 102 and the second battery unit 104 while the EV is running using the motor 140, the motor 140 may be driven by the other battery unit and its corresponding inverter. At this time, among the system main relays RY4, ... and RY7, the system main relays corresponding to the normal battery units are turned on, and the system main relays corresponding to the abnormal battery unit are turned off. In addition, the lower arm of the inverter corresponding to the abnormal battery unit is turned on, and the corresponding ends of the three windings of the motor 140 are connected to each other. An abnormality in the first battery unit 102 and the second battery unit 104 can be determined from the voltage values output from the voltage sensors 108 and 110.
(充電動作)
 第1バッテリユニット102および第2バッテリユニット104の充電時の動作に関して説明する。図3を参照して、第1バッテリユニット102および第2バッテリユニット104を急速充電器により充電する場合、端子部212に急速充電器が接続される。このとき、車両ECU202は、システムメインリレーRY4、…、およびRY7をオンさせた後、第1バッテリユニット102および第2バッテリユニット104が直列接続状態になるように、第1並列接続スイッチRY1、直列接続スイッチRY2および第2並列接続スイッチRY3のオンオフを制御するように制御部120に指示する。制御部120は、車両ECU202からの指示に従って、直列接続スイッチRY2をオンさせ、第1並列接続スイッチRY1および第2並列接続スイッチRY3をオフに維持する。なお、第1並列接続スイッチRY1、直列接続スイッチRY2および第2並列接続スイッチRY3の初期状態はオフである。制御部120は、電圧センサ106から入力される電圧が、第1バッテリユニット102および第2バッテリユニット104を直列接続したときの電圧(例えば、約800V)であるか否かを判定する。制御部120は、電圧センサ106から入力される電圧が、第1バッテリユニット102および第2バッテリユニット104を直列接続したときの電圧であると判定すると、車両ECU202に、指示通りに第1並列接続スイッチRY1、直列接続スイッチRY2および第2並列接続スイッチRY3を設定したことを通知する。これを受けて、車両ECU202は、DCリレーDCR1およびDCリレーDCR2をオンする。これにより、図3において、端子部212に接続された急速充電器から供給される電流が、破線の太線の矢印により示すように、第1インバータ130および第2インバータ132を介さずに流れ、第1バッテリユニット102および第2バッテリユニット104は充電される。
(Charging operation)
The operation of the first battery unit 102 and the second battery unit 104 during charging will be described. With reference to FIG. 3, when the first battery unit 102 and the second battery unit 104 are charged by a quick charger, the quick charger is connected to the terminal unit 212. At this time, the vehicle ECU 202 turns on the system main relays RY4, ..., and RY7, and then instructs the control unit 120 to control the on/off of the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 so that the first battery unit 102 and the second battery unit 104 are in a series connection state. The control unit 120 turns on the series connection switch RY2 and maintains the first parallel connection switch RY1 and the second parallel connection switch RY3 in an off state in accordance with the instruction from the vehicle ECU 202. Note that the initial states of the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 are off. The control unit 120 judges whether or not the voltage input from the voltage sensor 106 is the voltage (for example, about 800 V) when the first battery unit 102 and the second battery unit 104 are connected in series. When the control unit 120 judges that the voltage input from the voltage sensor 106 is the voltage when the first battery unit 102 and the second battery unit 104 are connected in series, it notifies the vehicle ECU 202 that the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 have been set as instructed. In response to this, the vehicle ECU 202 turns on the DC relays DCR1 and DCR2. As a result, the current supplied from the quick charger connected to the terminal unit 212 in FIG. 3 flows without passing through the first inverter 130 and the second inverter 132, as indicated by the thick dashed arrow, and the first battery unit 102 and the second battery unit 104 are charged.
 なお、制御部120は、電圧センサ106から入力される電圧が、第1バッテリユニット102および第2バッテリユニット104を直列接続したときの電圧でないと判定すると、車両ECU202に異常を通知する。これを受けて、車両ECU202はDCリレーDCR1およびDCリレーDCR2をオフのままに維持し、急速充電は実行されない。車両ECU202は、異常を表す警報等を報知してもよい。 If the control unit 120 determines that the voltage input from the voltage sensor 106 is not the voltage when the first battery unit 102 and the second battery unit 104 are connected in series, it notifies the vehicle ECU 202 of an abnormality. In response to this, the vehicle ECU 202 keeps the DC relays DCR1 and DCR2 off, and quick charging is not performed. The vehicle ECU 202 may issue an alarm or the like indicating the abnormality.
 図4を参照して、第1バッテリユニット102および第2バッテリユニット104を通常充電する場合、端子部212に通常充電器が接続される。このとき、車両ECU202は、システムメインリレーRY4、…、およびRY7をオンさせた後、第1バッテリユニット102および第2バッテリユニット104が並列接続状態になるように、第1並列接続スイッチRY1、直列接続スイッチRY2および第2並列接続スイッチRY3のオンオフを制御するように制御部120に指示する。制御部120は、車両ECU202からの指示に従って、第1並列接続スイッチRY1および第2並列接続スイッチRY3をオンさせ、直列接続スイッチRY2をオフに維持する。制御部120は、電圧センサ106から入力される電圧が、第1バッテリユニット102および第2バッテリユニット104を並列接続したときの電圧(例えば、約400V)であるか否かを判定する。制御部120は、電圧センサ106から入力される電圧が、第1バッテリユニット102および第2バッテリユニット104を並列接続したときの電圧であると判定すると、車両ECU202に、指示通りに第1並列接続スイッチRY1、直列接続スイッチRY2および第2並列接続スイッチRY3を設定したことを通知する。これを受けて、車両ECU202は、DCリレーDCR1およびDCリレーDCR2をオンする。これにより、図4において、端子部212に接続された通常充電器から供給される電流が、破線の太線の矢印により示すように、第1インバータ130および第2インバータ132を介さずに流れ、第1バッテリユニット102および第2バッテリユニット104は充電される。 4, when the first battery unit 102 and the second battery unit 104 are normally charged, a normal charger is connected to the terminal section 212. At this time, the vehicle ECU 202 turns on the system main relays RY4, ..., and RY7, and then instructs the control section 120 to control the on/off of the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 so that the first battery unit 102 and the second battery unit 104 are connected in parallel. The control section 120 turns on the first parallel connection switch RY1 and the second parallel connection switch RY3 and maintains the series connection switch RY2 off in accordance with the instruction from the vehicle ECU 202. The control section 120 determines whether the voltage input from the voltage sensor 106 is the voltage (e.g., about 400 V) when the first battery unit 102 and the second battery unit 104 are connected in parallel. When the control unit 120 determines that the voltage input from the voltage sensor 106 is the voltage when the first battery unit 102 and the second battery unit 104 are connected in parallel, it notifies the vehicle ECU 202 that the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 have been set as instructed. In response to this, the vehicle ECU 202 turns on the DC relays DCR1 and DCR2. As a result, the current supplied from the normal charger connected to the terminal unit 212 in FIG. 4 flows without passing through the first inverter 130 and the second inverter 132, as shown by the thick dashed arrow, and the first battery unit 102 and the second battery unit 104 are charged.
 制御部120は、電圧センサ106から入力される電圧が、第1バッテリユニット102および第2バッテリユニット104を並列接続したときの電圧でないと判定すると、車両ECU202に異常を通知する。これを受けて、車両ECU202はDCリレーDCR1およびDCリレーDCR2をオフのままに維持し、通常充電は実行されない。車両ECU202は、異常を表す警報等を報知してもよい。 When the control unit 120 determines that the voltage input from the voltage sensor 106 is not the voltage when the first battery unit 102 and the second battery unit 104 are connected in parallel, it notifies the vehicle ECU 202 of an abnormality. In response to this, the vehicle ECU 202 keeps the DC relays DCR1 and DCR2 off, and normal charging is not performed. The vehicle ECU 202 may issue an alarm or the like indicating the abnormality.
 このように構成された切替ユニット100により、第1バッテリユニット102および第2バッテリユニット104が並列接続または直列接続されていることを確実に判定できる。例えば急速充電時において、第1並列接続スイッチRY1、直列接続スイッチRY2および第2並列接続スイッチRY3のいずれかが正常に動作しなければ、第1バッテリユニット102および第2バッテリユニット104が直列接続されていない状態において、高電圧が印加され、第1バッテリユニット102および第2バッテリユニット104が損傷する。電圧センサ106から入力される電圧を確認することにより、このような異常を確実に回避できる。 The switching unit 100 configured in this manner can reliably determine whether the first battery unit 102 and the second battery unit 104 are connected in parallel or in series. For example, if any of the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 does not operate normally during quick charging, a high voltage will be applied when the first battery unit 102 and the second battery unit 104 are not connected in series, damaging the first battery unit 102 and the second battery unit 104. By checking the voltage input from the voltage sensor 106, such an abnormality can be reliably avoided.
(放電動作)
 第1バッテリユニット102および第2バッテリユニット104を放電させて、端子部212から外部に電力を供給することもできる。その場合にも、第1並列接続スイッチRY1、直列接続スイッチRY2および第2並列接続スイッチRY3は、上記と同様に制御部120の制御を受けて、第1バッテリユニット102および第2バッテリユニット104を直列接続状態または並列接続状態にする。即ち、制御部120が、直列接続スイッチRY2をオンさせ、第1並列接続スイッチRY1および第2並列接続スイッチRY3をオフに維持することにより、直列接続された第1バッテリユニット102および第2バッテリユニット104により高電圧(例えば、約800V)の直流電圧を供給できる。制御部120が、第1並列接続スイッチRY1および第2並列接続スイッチRY3をオンさせ、直列接続スイッチRY2をオフに維持することにより、並列接続された第1バッテリユニット102および第2バッテリユニット104により通常電圧(例えば、約400V)の直流電圧を供給できる。したがって、端子部212から適切な電圧の電力を供給できる。
(Discharge operation)
The first battery unit 102 and the second battery unit 104 can be discharged to supply power to the outside from the terminal unit 212. In this case, the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 are controlled by the control unit 120 in the same manner as described above to place the first battery unit 102 and the second battery unit 104 in a series connection state or a parallel connection state. That is, the control unit 120 turns on the series connection switch RY2 and keeps the first parallel connection switch RY1 and the second parallel connection switch RY3 off, so that the first battery unit 102 and the second battery unit 104 connected in series can supply a high voltage (e.g., about 800 V) DC voltage. The control unit 120 turns on the first parallel connection switch RY1 and the second parallel connection switch RY3 and keeps the series connection switch RY2 off, so that the first battery unit 102 and the second battery unit 104 connected in parallel can supply a normal voltage (e.g., about 400 V) DC voltage. Therefore, power of an appropriate voltage can be supplied from the terminal portion 212 .
 例えば、車両に搭載された電力変換システムから、他車両に搭載されたバッテリユニットに電力を供給できる。その場合、制御部120は、他車両のバッテリユニットの電圧に応じて、第1バッテリユニット102および第2バッテリユニット104が並列接続状態または直列接続状態になるように、第1並列接続スイッチRY1、直列接続スイッチRY2および第2並列接続スイッチRY3を制御することが好ましい。これにより、他車両のバッテリユニットの電圧に応じた適切な電圧により、他車両のバッテリユニットを充電できる。制御部120が、他車両のバッテリユニットの電圧を知るには、例えば、他車両のバッテリユニットの電圧を測定する電圧センサの出力(即ち、測定された電圧を表す信号)を受信する接続端子を端子部212に設け、端子部212と制御部120との間に電気配線を設ければよい。 For example, power can be supplied from a power conversion system mounted on a vehicle to a battery unit mounted on another vehicle. In this case, it is preferable that the control unit 120 controls the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 so that the first battery unit 102 and the second battery unit 104 are connected in parallel or in series according to the voltage of the battery unit of the other vehicle. This allows the battery unit of the other vehicle to be charged with an appropriate voltage according to the voltage of the battery unit of the other vehicle. In order for the control unit 120 to know the voltage of the battery unit of the other vehicle, for example, a connection terminal that receives the output (i.e., a signal representing the measured voltage) of a voltage sensor that measures the voltage of the battery unit of the other vehicle may be provided in the terminal unit 212, and electrical wiring may be provided between the terminal unit 212 and the control unit 120.
 上記においては、切替ユニット100が、第1並列接続スイッチRY1、直列接続スイッチRY2、第2並列接続スイッチRY3、電圧センサ106および制御部120を含む場合を説明したが、これに限定されない。切替ユニット100は、外部充電器を第1バッテリユニット102および第2バッテリユニット104に接続するためのDCリレーDCR1およびDCリレーDCR2を含んでもよい。これより、電圧センサ106により測定された電圧から、2つの蓄電池が並列接続または直列接続されていることを確認した後に、外部充電器と第1バッテリユニット102および第2バッテリユニット104とを接続できる。 In the above, the case where the switching unit 100 includes the first parallel connection switch RY1, the series connection switch RY2, the second parallel connection switch RY3, the voltage sensor 106, and the control unit 120 has been described, but is not limited to this. The switching unit 100 may also include DC relays DCR1 and DCR2 for connecting an external charger to the first battery unit 102 and the second battery unit 104. In this way, after confirming from the voltage measured by the voltage sensor 106 that the two storage batteries are connected in parallel or in series, the external charger can be connected to the first battery unit 102 and the second battery unit 104.
 また、切替ユニット100は、第1バッテリユニット102と接続するためのシステムメインリレーRY4およびシステムメインリレーRY5と、第2バッテリユニット104と接続するためのシステムメインリレーRY6およびシステムメインリレーRY7とを含んでもよい。これにより、切替ユニットをEVに搭載する際の作業性が向上する。 The switching unit 100 may also include a system main relay RY4 and a system main relay RY5 for connecting to the first battery unit 102, and a system main relay RY6 and a system main relay RY7 for connecting to the second battery unit 104. This improves the ease of installation of the switching unit in an EV.
 また、切替ユニット100は、システムメインリレーRY4、…、およびシステムメインリレーRY7のいずれかと直列接続された遮断器Fu1および遮断器Fu2を含んでもよい。これにより、過剰電流が流れることを防止でき、第1バッテリユニット102および第2バッテリユニット104を保護できる。 The switching unit 100 may also include a circuit breaker Fu1 and a circuit breaker Fu2 connected in series with any of the system main relays RY4, ..., and the system main relay RY7. This can prevent excessive current from flowing, and protect the first battery unit 102 and the second battery unit 104.
 また、切替ユニット100は、第1バッテリユニット102の電圧を検出する電圧センサ108と、第2バッテリユニット104の電圧を検出する電圧センサ110とを含んでもよい。これにより、上記したように、第1バッテリユニット102および第2バッテリユニット104の電圧の差を判定でき、差が大きければ(例えば、所定のしきい値以上の差)、第1バッテリユニット102および第2バッテリユニット104の電圧を等しくする等、第1バッテリユニット102および第2バッテリユニット104をバランスさせることができる。 The switching unit 100 may also include a voltage sensor 108 that detects the voltage of the first battery unit 102, and a voltage sensor 110 that detects the voltage of the second battery unit 104. This allows the difference in voltage between the first battery unit 102 and the second battery unit 104 to be determined as described above, and if the difference is large (e.g., a difference equal to or greater than a predetermined threshold), the first battery unit 102 and the second battery unit 104 can be balanced, such as by making the voltages of the first battery unit 102 and the second battery unit 104 equal.
 切替ユニット100は、第1バッテリユニット102および第2バッテリユニット104を収容する筐体内に配置されてもよい。これにより、第1バッテリユニット102および第2バッテリユニット104と切替ユニット100とを一体に構成できるので、取扱いが容易になり、例えば、車両に搭載する際の作業性が向上する。 The switching unit 100 may be disposed in a housing that houses the first battery unit 102 and the second battery unit 104. This allows the first battery unit 102 and the second battery unit 104 to be configured integrally with the switching unit 100, making it easier to handle and improving workability, for example, when mounting the switching unit on a vehicle.
(比較例)
 以下に、図1とは異なる構成の切替ユニットを含む電力変換システムの構成を示すことにより、図1に示した切替ユニット100の有効性を示す。例えば、図5を参照して切替ユニット150は、第1並列接続スイッチRY1、直列接続スイッチRY2および第2並列接続スイッチRY3を含む。切替ユニット150は、例えば樹脂等の筐体に、第1並列接続スイッチRY1、直列接続スイッチRY2および第2並列接続スイッチRY3を収容することにより、一体に形成されている。切替ユニット150は、第1バッテリユニット102、第2バッテリユニット104、電圧センサ106、電圧センサ108、電圧センサ110、第1インバータ130、第2インバータ132およびインバータ制御部134と共に、電力変換システムを構成する。図5に示した電力変換システムは、図1に示した電力変換システムにおいて、制御部120、遮断器Fu1および遮断器Fu2を削除し、電圧センサ106を切替ユニット100の外部に配置し、車両ECU202を車両ECU220により代替したものである。図5において、図1と同じ符号を付した構成要素は、図1と同じものであり、同じ機能を有する。したがって、以下においては重複説明を繰返さず、主として異なる点に関して説明する。
Comparative Example
The effectiveness of the switching unit 100 shown in FIG. 1 will be shown below by showing the configuration of a power conversion system including a switching unit having a different configuration from that shown in FIG. 1. For example, referring to FIG. 5, the switching unit 150 includes a first parallel connection switch RY1, a series connection switch RY2, and a second parallel connection switch RY3. The switching unit 150 is integrally formed by accommodating the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 in a housing made of, for example, resin. The switching unit 150 constitutes a power conversion system together with the first battery unit 102, the second battery unit 104, the voltage sensor 106, the voltage sensor 108, the voltage sensor 110, the first inverter 130, the second inverter 132, and the inverter control unit 134. The power conversion system shown in FIG. 5 is the power conversion system shown in FIG. 1 except that the control unit 120, the circuit breaker Fu1, and the circuit breaker Fu2 are deleted, the voltage sensor 106 is disposed outside the switching unit 100, and the vehicle ECU 202 is replaced by the vehicle ECU 220. In Fig. 5, components having the same reference numerals as those in Fig. 1 are the same as those in Fig. 1 and have the same functions, so in the following, overlapping descriptions will not be repeated and differences will mainly be described.
 図5に示した電力変換システムにおいて、車両ECU220は、図1に示した車両ECU202と同様に、システムメインリレーRY4、…、およびシステムメインリレーRY7、並びに、DCリレーDCR1およびDCリレーDCR2のオンオフ制御を行う。車両ECU220は、これに加えて、図1の制御部120が担っていた第1並列接続スイッチRY1、直列接続スイッチRY2および第2並列接続スイッチRY3のオンオフ制御をも行う。車両ECU220には、電圧センサ106により測定された電圧(即ち、測定された電圧に対応する信号)が入力される。車両ECU220は、第1並列接続スイッチRY1、直列接続スイッチRY2および第2並列接続スイッチRY3を、第1バッテリユニット102および第2バッテリユニット104が直列接続状態または並列接続状態になるようにオンオフ制御した後、その両端子間の電圧を、電圧センサ106から入力される電圧により判定する処理をも行う。 In the power conversion system shown in FIG. 5, the vehicle ECU 220, like the vehicle ECU 202 shown in FIG. 1, performs on/off control of the system main relays RY4, ..., and RY7, as well as the DC relays DCR1 and DCR2. In addition, the vehicle ECU 220 also performs on/off control of the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3, which were handled by the control unit 120 in FIG. 1. The voltage measured by the voltage sensor 106 (i.e., a signal corresponding to the measured voltage) is input to the vehicle ECU 220. The vehicle ECU 220 performs on/off control of the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3 so that the first battery unit 102 and the second battery unit 104 are in a series connection state or a parallel connection state, and then performs a process of determining the voltage between both terminals based on the voltage input from the voltage sensor 106.
 したがって、図5に示した電力変換システムを車両(即ちEV)に搭載する場合、車両ECUの制御プログラムを、従来のプログラムから大きく変更することが必要になる。これに対して、図1に示した電力変換システムであれば、切替ユニット100が、第1並列接続スイッチRY1、直列接続スイッチRY2および第2並列接続スイッチRY3を制御し、且つ電圧センサ106により測定された電圧を判定する制御部120を含む。そのため、車両ECU202の制御プログラムは、従来の車両ECUの制御プログラムからわずかの修正により実現できる。したがって、図1に示した電力変換システムをEV等の車両に搭載する際、車両内の周囲の機器への影響を抑制できる。 Therefore, when the power conversion system shown in FIG. 5 is installed in a vehicle (i.e., an EV), the control program of the vehicle ECU must be significantly modified from the conventional program. In contrast, in the power conversion system shown in FIG. 1, the switching unit 100 controls the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3, and includes a control unit 120 that determines the voltage measured by the voltage sensor 106. Therefore, the control program of the vehicle ECU 202 can be realized with only slight modifications from the control program of the conventional vehicle ECU. Therefore, when the power conversion system shown in FIG. 1 is installed in a vehicle such as an EV, the impact on surrounding devices in the vehicle can be suppressed.
 また、車両ECU220は、切替ユニット150および電圧センサ106と接続される必要がある。即ち、第1並列接続スイッチRY1、直列接続スイッチRY2および第2並列接続スイッチRY3を制御するための電気配線と、電圧センサ106からの信号を伝送するための電気配線とが必要である。これに対して、図1に示した構成においては、切替ユニット100と車両ECU202との間には、車両ECU202から切替ユニット100への指令を伝送する電気配線と、切替ユニット100から車両ECU202への電圧確認を伝送する電気配線の2本でよい。即ち、切替ユニット100により、配線の本数を少なくでき、図1に示した電力変換システムをEV等の車両に搭載することが容易である。また、車両の周囲の機器へのノイズの影響を低減できる。 Furthermore, the vehicle ECU 220 needs to be connected to the switching unit 150 and the voltage sensor 106. That is, electrical wiring is required to control the first parallel connection switch RY1, the series connection switch RY2, and the second parallel connection switch RY3, and electrical wiring is required to transmit a signal from the voltage sensor 106. In contrast, in the configuration shown in FIG. 1, only two electrical wiring is required between the switching unit 100 and the vehicle ECU 202: an electrical wiring for transmitting a command from the vehicle ECU 202 to the switching unit 100, and an electrical wiring for transmitting a voltage confirmation from the switching unit 100 to the vehicle ECU 202. That is, the switching unit 100 can reduce the number of wirings, and the power conversion system shown in FIG. 1 can be easily installed in a vehicle such as an EV. In addition, the effect of noise on devices around the vehicle can be reduced.
 上記においては、遮断器Fu1および遮断器Fu2としてヒューズを用いる場合を説明したが、これに限定されない。遮断器Fu1および遮断器Fu2は、短絡電流等の大電流を遮断できる素子であればよく、サーキットブレーカ(Circuit Breaker)等であってもよい。 In the above, the case where fuses are used as the circuit breakers Fu1 and Fu2 has been described, but the present invention is not limited to this. The circuit breakers Fu1 and Fu2 may be any element capable of interrupting a large current such as a short circuit current, and may be a circuit breaker or the like.
 上記において、切替ユニットがEVに搭載される場合に関して説明したが、これに限定されない。本開示の切替ユニットは、バッテリにより駆動されるモータを含んでいる装置に搭載され得る。切替ユニットは、例えば、ハイブリッド車(HEV:Hybrid Electric Vehicle)およびプラグインハイブリッド車(PHEV:Plug-in Hybrid Electric Vehicle)等に搭載されてもよい。 Although the above describes the case where the switching unit is mounted on an EV, this is not limiting. The switching unit of the present disclosure may be mounted on a device that includes a motor driven by a battery. The switching unit may be mounted on, for example, a hybrid electric vehicle (HEV) and a plug-in hybrid electric vehicle (PHEV), etc.
 上記においては、モータがオープンエンド巻線のモータである場合を説明したが、これに限定されない。オープンエンド巻線以外の巻線のモータを用いてもよい。  In the above, the motor is described as having open-end windings, but this is not limited to this. Motors with windings other than open-end windings may also be used.
 以上、実施の形態を説明することにより本開示を説明したが、上記した実施の形態は例示であって、本開示は上記した実施の形態のみに制限されるわけではない。本開示の範囲は、発明の詳細な説明の記載を参酌した上で、請求の範囲の各請求項によって示され、そこに記載された文言と均等の意味および範囲内での全ての変更を含む。 The present disclosure has been described above by explaining the embodiments, but the above-mentioned embodiments are merely examples, and the present disclosure is not limited to only the above-mentioned embodiments. The scope of the present disclosure is indicated by each claim in the scope of claims, taking into consideration the detailed description of the invention, and includes all modifications within the meaning and scope equivalent to the wording described therein.
100、150  切替ユニット
102  第1バッテリユニット
104  第2バッテリユニット
106、108、110  電圧センサ
120  制御部
130  第1インバータ
132  第2インバータ
134  インバータ制御部
140  モータ
200  外部充電器
202、220  車両ECU
210  高圧補機
212  端子部
DCR1、DCR2  DCリレー
Fu1、Fu2  遮断器
Q1、Q2、Q3、Q4、Q5、Q6、Q7、Q8、Q9、Q10、Q11、Q12  スイッチング素子
RY1  第1並列接続スイッチ
RY2  直列接続スイッチ
RY3  第2並列接続スイッチ
RY4、RY5、RY6、RY7  システムメインリレー
Reference Signs List 100, 150 Switching unit 102 First battery unit 104 Second battery unit 106, 108, 110 Voltage sensor 120 Control unit 130 First inverter 132 Second inverter 134 Inverter control unit 140 Motor 200 External charger 202, 220 Vehicle ECU
210 High voltage auxiliary machine 212 Terminal section DCR1, DCR2 DC relay Fu1, Fu2 Circuit breaker Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12 Switching element RY1 First parallel connection switch RY2 Series connection switch RY3 Second parallel connection switches RY4, RY5, RY6, RY7 System main relay

Claims (12)

  1.  第1の蓄電池および第2の蓄電池を並列接続状態にする並列接続スイッチと、
     前記第1の蓄電池および前記第2の蓄電池を直列接続状態にする直列接続スイッチと、
     前記並列接続状態または前記直列接続状態にされた前記第1の蓄電池および前記第2の蓄電池の両端子の間の電圧を測定する第1電圧センサとを含む、切替ユニット。
    a parallel connection switch that connects the first storage battery and the second storage battery in parallel;
    a series connection switch that connects the first storage battery and the second storage battery in series;
    a first voltage sensor that measures a voltage between both terminals of the first storage battery and the second storage battery that are in the parallel connection state or the series connection state.
  2.  前記並列接続スイッチおよび前記直列接続スイッチをオンオフ制御する制御部をさらに含む、請求項1に記載の切替ユニット。 The switching unit according to claim 1, further comprising a control unit that controls the on/off of the parallel connection switch and the series connection switch.
  3.  前記第1の蓄電池および前記第2の蓄電池を充電するための充電器を、前記並列接続状態または前記直列接続状態にされた前記第1の蓄電池および前記第2の蓄電池の前記両端子に接続するための第1接続スイッチをさらに含む、請求項1または請求項2に記載の切替ユニット。 The switching unit according to claim 1 or claim 2, further comprising a first connection switch for connecting a charger for charging the first storage battery and the second storage battery to both terminals of the first storage battery and the second storage battery in the parallel connection state or the series connection state.
  4.  前記並列接続状態において前記第1の蓄電池および前記第2の蓄電池を充電する場合、前記並列接続スイッチはオンされ、且つ前記直列接続スイッチはオフされ、
     前記直列接続状態において前記第1の蓄電池および前記第2の蓄電池を充電する場合、前記直列接続スイッチはオンされ、且つ前記並列接続スイッチはオフされる、請求項1から請求項3のいずれか1項に記載の切替ユニット。
    When the first storage battery and the second storage battery are charged in the parallel connection state, the parallel connection switch is turned on and the series connection switch is turned off;
    The switching unit according to claim 1 , wherein when the first storage battery and the second storage battery are charged in the series connection state, the series connection switch is turned on and the parallel connection switch is turned off.
  5.  前記切替ユニットを、前記第1の蓄電池および前記第2の蓄電池に接続するための複数の第2接続スイッチをさらに含む、請求項1から請求項4のいずれか1項に記載の切替ユニット。 The switching unit according to any one of claims 1 to 4, further comprising a plurality of second connection switches for connecting the switching unit to the first storage battery and the second storage battery.
  6.  前記複数の第2接続スイッチのうちの1つの第2接続スイッチと直列接続される遮断器をさらに含む、請求項5に記載の切替ユニット。 The switching unit according to claim 5, further comprising a circuit breaker connected in series with one of the plurality of second connection switches.
  7.  前記第1の蓄電池および前記第2の蓄電池の各々の両端子間の電圧を検出する第2電圧センサをさらに含む、請求項1から請求項6のいずれか1項に記載の切替ユニット。 The switching unit according to any one of claims 1 to 6, further comprising a second voltage sensor that detects the voltage between both terminals of the first storage battery and the second storage battery.
  8.  前記切替ユニットは、前記第1の蓄電池および前記第2の蓄電池を収容する筐体内に配置される、請求項1から請求項7のいずれか1項に記載の切替ユニット。 The switching unit according to any one of claims 1 to 7, wherein the switching unit is disposed in a housing that houses the first storage battery and the second storage battery.
  9.  前記第1の蓄電池および前記第2の蓄電池が放電するとき、前記並列接続スイッチはオンされ、且つ前記直列接続スイッチはオフされる、請求項1から請求項8のいずれか1項に記載の切替ユニット。 The switching unit according to any one of claims 1 to 8, wherein when the first storage battery and the second storage battery are discharged, the parallel connection switch is turned on and the series connection switch is turned off.
  10.  前記第1の蓄電池は、モータを駆動するための第1のインバータに電力を供給し、
     前記第2の蓄電池は、前記モータを駆動するための第2のインバータに電力を供給し、
     前記切替ユニットは、前記第1のインバータおよび前記第2のインバータをバイパスして電流が流れるように、前記第1の蓄電池および前記第2の蓄電池の接続状態を切替える、請求項1から請求項9のいずれか1項に記載の切替ユニット。
    The first storage battery supplies power to a first inverter for driving a motor;
    the second storage battery supplies power to a second inverter for driving the motor;
    The switching unit according to claim 1 , wherein the switching unit switches a connection state of the first storage battery and the second storage battery so that a current flows bypassing the first inverter and the second inverter.
  11.  前記切替ユニットは、車両に搭載され、
     前記並列接続スイッチおよび前記直列接続スイッチは、前記車両とは別の車両である他車両に搭載された蓄電池に対して、前記車両に搭載された前記第1の蓄電池および前記第2の蓄電池から電力を供給するときに、前記他車両に搭載された前記蓄電池の電圧に応じて、前記第1の蓄電池および前記第2の蓄電池の接続状態を前記直列接続状態または前記並列接続状態に切替える、請求項1から請求項10のいずれか1項に記載の切替ユニット。
    The switching unit is mounted on a vehicle,
    The switching unit according to any one of claims 1 to 10, wherein when power is supplied from the first storage battery and the second storage battery mounted on the vehicle to a storage battery mounted on another vehicle other than the vehicle, the parallel connection switch and the series connection switch switch a connection state of the first storage battery and the second storage battery to the series connection state or the parallel connection state depending on a voltage of the storage battery mounted on the other vehicle.
  12.  第1の蓄電池および第2の蓄電池と、
     前記第1の蓄電池および前記第2の蓄電池の接続状態を切替える切替ユニットとを含み、
     前記切替ユニットは、
      前記第1の蓄電池および前記第2の蓄電池を並列接続状態にする並列接続スイッチと、
      前記第1の蓄電池および前記第2の蓄電池を直列接続状態にする直列接続スイッチと、
      前記並列接続状態または前記直列接続状態にされた前記第1の蓄電池および前記第2の蓄電池の両端子の間の電圧を測定する電圧センサとを含む、システム。
    A first storage battery and a second storage battery;
    a switching unit that switches a connection state of the first storage battery and the second storage battery,
    The switching unit includes:
    a parallel connection switch that connects the first storage battery and the second storage battery in parallel;
    a series connection switch that connects the first storage battery and the second storage battery in series;
    a voltage sensor that measures a voltage between both terminals of the first storage battery and the second storage battery that are in the parallel connection state or the series connection state.
PCT/JP2022/040941 2022-11-02 2022-11-02 Switching unit and system WO2024095381A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040941 WO2024095381A1 (en) 2022-11-02 2022-11-02 Switching unit and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040941 WO2024095381A1 (en) 2022-11-02 2022-11-02 Switching unit and system

Publications (1)

Publication Number Publication Date
WO2024095381A1 true WO2024095381A1 (en) 2024-05-10

Family

ID=90930085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040941 WO2024095381A1 (en) 2022-11-02 2022-11-02 Switching unit and system

Country Status (1)

Country Link
WO (1) WO2024095381A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004364387A (en) * 2003-06-03 2004-12-24 Toshiba Battery Co Ltd Charging method of secondary battery, charger, and charge control program thereof
JP2010187466A (en) * 2009-02-12 2010-08-26 Omron Corp Battery charging device for vehicle
JP2017103949A (en) * 2015-12-03 2017-06-08 トヨタ自動車株式会社 Power supply system
JP2018033284A (en) * 2016-08-26 2018-03-01 株式会社豊田自動織機 Power storage device and charger
JP2018098892A (en) * 2016-12-13 2018-06-21 スズキ株式会社 Power supply device of electric vehicle
JP2020088913A (en) * 2018-11-15 2020-06-04 トヨタ自動車株式会社 Charger
JP2020150784A (en) * 2018-12-07 2020-09-17 矢崎総業株式会社 Power system
JP2021005944A (en) * 2019-06-26 2021-01-14 株式会社Soken Charging system
JP2021132517A (en) * 2020-02-21 2021-09-09 住友電気工業株式会社 Switching device, power storage system including switching device, vehicle including power storage system, and switching method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004364387A (en) * 2003-06-03 2004-12-24 Toshiba Battery Co Ltd Charging method of secondary battery, charger, and charge control program thereof
JP2010187466A (en) * 2009-02-12 2010-08-26 Omron Corp Battery charging device for vehicle
JP2017103949A (en) * 2015-12-03 2017-06-08 トヨタ自動車株式会社 Power supply system
JP2018033284A (en) * 2016-08-26 2018-03-01 株式会社豊田自動織機 Power storage device and charger
JP2018098892A (en) * 2016-12-13 2018-06-21 スズキ株式会社 Power supply device of electric vehicle
JP2020088913A (en) * 2018-11-15 2020-06-04 トヨタ自動車株式会社 Charger
JP2020150784A (en) * 2018-12-07 2020-09-17 矢崎総業株式会社 Power system
JP2021005944A (en) * 2019-06-26 2021-01-14 株式会社Soken Charging system
JP2021132517A (en) * 2020-02-21 2021-09-09 住友電気工業株式会社 Switching device, power storage system including switching device, vehicle including power storage system, and switching method

Similar Documents

Publication Publication Date Title
EP3576273B1 (en) Dc/dc conversion unit
US11984719B2 (en) Quick battery disconnect system for high current circuits
CN110505972B (en) Vehicle with a steering wheel
CN109716614B (en) Control system
US10608575B2 (en) Abnormality diagnosis apparatus
US20140321019A1 (en) Method for protecting an intermediate circuit capacitor in a power converter circuit
JP2009261230A (en) Electric vehicle charging system
US20230086550A1 (en) Power supply system
CN113939970A (en) Vehicle traction battery circuit and control system
WO2024095381A1 (en) Switching unit and system
JP2018139462A (en) Power unit
WO2018193782A1 (en) Dynamo-electric machine control device, and power supply system
JP6668210B2 (en) Power supply control device and power supply system
WO2022091309A1 (en) Electricity storage machine
JP6620769B2 (en) Control system
WO2024105796A1 (en) Switching device and switching system
WO2022259867A1 (en) Power conversion device
US20240178697A1 (en) Battery and power storage system
JP7373372B2 (en) battery control device
JP7268489B2 (en) storage battery system
US20240162734A1 (en) An electric battery junction arrangement and an electrical system
JP2021197834A (en) Power storage system
JP2023012386A (en) motor drive system
WO2018021032A1 (en) Control system
JP2022138959A (en) vehicle