WO2024095352A1 - Measurement system and measurement method - Google Patents

Measurement system and measurement method Download PDF

Info

Publication number
WO2024095352A1
WO2024095352A1 PCT/JP2022/040831 JP2022040831W WO2024095352A1 WO 2024095352 A1 WO2024095352 A1 WO 2024095352A1 JP 2022040831 W JP2022040831 W JP 2022040831W WO 2024095352 A1 WO2024095352 A1 WO 2024095352A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide light
scanner
sensor
light
measurement system
Prior art date
Application number
PCT/JP2022/040831
Other languages
French (fr)
Japanese (ja)
Inventor
磊 郭
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/040831 priority Critical patent/WO2024095352A1/en
Publication of WO2024095352A1 publication Critical patent/WO2024095352A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication

Definitions

  • This disclosure relates to a measurement system and a measurement method.
  • the measurement system disclosed herein includes a scanner that irradiates guide light from a predetermined emission position toward an object, a first sensor that receives the guide light reflected by the object, and a calculation unit that calculates the distance between the scanner and the object based on information about the guide light from the first sensor.
  • the measurement method disclosed herein includes irradiating a guide light from a predetermined emission position toward an object, receiving the guide light reflected by the object, and calculating the distance between the scanner and the object based on information about the guide light.
  • FIG. 2 is a diagram for explaining an example of a laser oscillator and a measurement system.
  • FIG. 2 is a diagram illustrating an example of the internal structure of a scanner.
  • FIG. 13 is a diagram for explaining a calculation principle.
  • FIG. 2 is a block diagram showing an example of a hardware configuration of a control device.
  • FIG. 2 is a block diagram showing an example of a function of a control device.
  • FIG. 13 is a diagram for explaining a calculation principle.
  • FIG. 2 is a diagram illustrating an example of the internal structure of a scanner.
  • 10 is a flowchart showing an example of a flow of processes executed in the measurement system.
  • FIG. 2 is a diagram for explaining an example of a mounting mode of a detector.
  • FIG. 2 is a diagram for explaining an example of an internal structure of a detector.
  • based on XX means “based on at least XX,” and includes cases where it is based on other elements in addition to XX. Furthermore, “based on XX” is not limited to cases where XX is used directly, but also includes cases where it is based on XX that has been calculated or processed. "XX” is any element (for example, any information).
  • First Embodiment 1 is a diagram for explaining an example of a laser oscillator and a measurement system 2.
  • the laser oscillator 1 is a device that generates laser light.
  • the laser oscillator 1 is, for example, a gas laser oscillator, a fiber laser oscillator, a disk laser oscillator, a DDL laser oscillator, or a YAG laser oscillator.
  • the laser light generated by the laser oscillator is, for example, a high-power laser light for cutting, welding, marking, or engraving.
  • the laser oscillator 1 also generates a guide light.
  • the guide light is light having an optical axis that coincides with the optical axis of the laser light.
  • the guide light is, for example, a red laser light. Note that the guide light is not limited to a red laser light, and may be any visible light.
  • the laser oscillator 1 is connected to the measurement system 2.
  • the laser oscillator 1 supplies the generated laser light and guide light to the measurement system 2 via an optical fiber or the like.
  • the measurement system 2 includes a scanner 21, a first sensor 22, a control device 23, an industrial machine 24, and a second sensor (not shown).
  • the scanner 21 is a device that irradiates the laser light and guide light supplied from the laser oscillator 1 toward the object O from a predetermined emission position.
  • the scanner 21 has a function of changing the emission direction of the laser light and guide light supplied from the laser oscillator 1.
  • the scanner 21 is a device for scanning the object O with the laser light and guide light.
  • the scanner 21 is, for example, a galvano scanner.
  • the guide light is output from the scanner 21 coaxially with the laser light.
  • the guide light is irradiated at the same position on the object O as the position irradiated by the laser light.
  • the worker can visually check the position irradiated by the guide light to confirm in advance the position where the laser will be irradiated.
  • FIG. 2 is a diagram for explaining an example of the internal structure of the scanner 21.
  • the directions indicated by the arrows in each diagram are defined as the positive X-axis direction, the positive Y-axis direction, and the positive Z-axis direction, respectively, in the explanation of this embodiment.
  • the scanner 21 has, for example, a rectangular parallelepiped housing (not shown). Inside the housing, the scanner 21 has, for example, a focus control mechanism 211, a focusing lens 212, and an angle control mechanism 213.
  • the focus control mechanism 211 is a mechanism for controlling the focus position of the laser light.
  • the focus control mechanism 211 has a lens unit 211a and a drive unit 211b.
  • Lens portion 211a is, for example, a convex lens. However, lens portion 211a is not limited to a convex lens and may be another type of lens.
  • the driving unit 211b is a device that moves the lens unit 211a along the transmission direction of the laser light.
  • the driving unit 211b is a linear motion mechanism.
  • the linear motion mechanism is, for example, a ball screw linear motion mechanism.
  • the driving unit 211b moves the lens unit 211a along, for example, the X-axis.
  • the focusing lens 212 is a lens for focusing the laser light on the angle control mechanism 213.
  • the focusing lens 212 is, for example, a convex lens.
  • the focusing lens 212 is disposed between the focus control mechanism 211 and the angle control mechanism 213.
  • the angle control mechanism 213 is a mechanism for changing the irradiation angle of the laser light and the guide light with respect to the object O.
  • the angle control mechanism 213 is a mechanism for changing the emission angle of the laser light and the guide light emitted from a specific emission position of the scanner 21, which will be described later.
  • the angle control mechanism 213 includes a drive mechanism and a mirror.
  • the drive mechanism includes a first drive mechanism 213a and a second drive mechanism 213c.
  • the mirror includes a first mirror 213b and a second mirror 213d.
  • the first driving mechanism 213a is a mechanism that rotates the first mirror 213b.
  • the first driving mechanism 213a has a rotation shaft.
  • the rotation shaft is connected to the first mirror 213b.
  • the first driving mechanism 213a is, for example, a servo motor.
  • the first mirror 213b is a mirror for scanning the laser light and the guide light, for example, along the X-axis.
  • the first mirror 213b changes the direction of the optical axis of the laser light and the guide light by reflecting the laser light and the guide light.
  • the first mirror 213b is a mirror that totally reflects the laser light.
  • the first mirror 213b is also a mirror that totally reflects the guide light.
  • the second driving mechanism 213c is a mechanism that rotates the second mirror 213d.
  • the second driving mechanism 213c has a rotation shaft.
  • the rotation shaft is connected to the second mirror 213d.
  • the second driving mechanism 213c is, for example, a servo motor.
  • the second mirror 213d is, for example, a mirror for scanning the laser light and the guide light along the Y axis.
  • the second mirror 213d changes the direction of the optical axis of the laser light and the guide light by reflecting the laser light and the guide light.
  • the second mirror 213d is a mirror that totally reflects the laser light.
  • the second mirror 213d is a half mirror that reflects part of the guide light and transmits the other part of the guide light.
  • the laser light is guided to the lens unit 211a.
  • the laser light guided to the lens unit 211a passes through the lens unit 211a and is guided to the focusing lens 212.
  • the laser light guided to the focusing lens 212 passes through the focusing lens 212 and is guided to the first mirror 213b.
  • the laser light guided to the first mirror 213b is reflected by the first mirror 213b and is guided to the second mirror 213d.
  • the laser light guided to the second mirror 213d is reflected by the second mirror 213d and is irradiated from the emission position towards the object O.
  • the emission position is the position from which the scanner 21 emits the laser light and the guide light to the outside.
  • the emission position is, for example, the position where the surface on which the bottom plate of the housing of the scanner 21 is placed intersects with the optical axis of the laser light and the guide light.
  • the driving unit 211b of the focus control mechanism 211 moves the lens unit 211a to adjust the focal position of the laser light. Furthermore, the first driving mechanism 213a rotates the first mirror 213b to scan the laser light along the X-axis. Furthermore, the second driving mechanism 213c rotates the second mirror 213d to scan the laser light along the Y-axis.
  • the guide light When guide light is supplied from the laser oscillator 1 to the scanner 21, the guide light is guided to the lens unit 211a.
  • the guide light guided to the lens unit 211a passes through the lens unit 211a and is guided to the condenser lens 212.
  • the guide light guided to the condenser lens 212 passes through the condenser lens 212 and is guided to the first mirror 213b.
  • the guide light guided to the first mirror 213b is reflected by the first mirror 213b and is guided to the second mirror 213d.
  • the guide light guided to the second mirror 213d is reflected by the second mirror 213d and is irradiated from the emission position towards the object O.
  • the first driving mechanism 213a rotates the first mirror 213b, thereby allowing the guide light to scan along the X-axis.
  • the second driving mechanism 213c rotates the second mirror 213d, thereby allowing the guide light to scan along the Y-axis.
  • the first sensor 22 is a sensor that detects the guide light.
  • the first sensor 22 has a light receiving section (not shown).
  • the first sensor 22 receives the guide light reflected by the object O at the light receiving section.
  • the first sensor 22 is, for example, a photosensor.
  • the object O is, for example, a workpiece to be machined.
  • the first sensor 22 sends information about the received guide light to the control device 23.
  • the information about the guide light is position information about the position of the guide light received by the first sensor 22.
  • the position information is information indicating at which position of the light receiving section of the first sensor 22 the guide light is received.
  • the first sensor 22 acquires position information about the position in the direction along the X-axis where the guide light is incident on the light receiving section, for example.
  • the control device 23 calculates the distance between the scanner 21 and the object O based on the information about the guide light.
  • FIG. 3 is a diagram for explaining the principle of calculating the distance between the scanner 21 and the object O.
  • the scanner 21 irradiates a guide light from an emission position P1 toward the object O.
  • the object O reflects the guide light irradiated from the scanner 21 at a reflection position P2.
  • the intersection of the optical axis of the guide light and the surface of the object O is the reflection position P2.
  • the first sensor 22 receives the guide light reflected at reflection position P2.
  • the guide light is incident on the light receiving section of the first sensor 22 at incident position P3.
  • the intersection point between the optical axis of the guide light and the light receiving section of the first sensor 22 is incident position P3.
  • the first sensor 22 acquires information about the incident position P3 of the guide light. This determines the distance d between the exit position P1 and the incident position P3.
  • the exit angle ⁇ of the guide light is determined based on the rotation angle of the mirror. Therefore, the distance between the exit position P1 and the object O, i.e., the distance D1 between the scanner 21 and the object O, can be calculated using the following formula 1.
  • the control device 23 is a device that controls the scanner 21 and the industrial machine 24.
  • the control device 23 controls the operation of the scanner 21 and the industrial machine 24 based on, for example, an operating program.
  • FIG. 4 is a block diagram showing an example of the hardware configuration of the control device 23.
  • the control device 23 includes a hardware processor 231, a bus 232, a ROM (Read Only Memory) 233, a RAM (Random Access Memory) 234, and a non-volatile memory 235.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the hardware processor 231 is a processor that controls the entire control device 23 in accordance with a system program.
  • the hardware processor 231 reads the system program stored in the ROM 233 via the bus 232, and performs various processes based on the system program.
  • the hardware processor 231 controls the scanner 21 and the industrial machine 24 based on the operation program.
  • the hardware processor 231 is, for example, a CPU (Central Processing Unit) or an electronic circuit.
  • the bus 232 is a communication path that connects each piece of hardware in the control device 23 to each other. Each piece of hardware in the control device 23 exchanges data via the bus 232.
  • ROM 233 is a storage device that stores system programs and the like for controlling the entire control device 23.
  • ROM 233 is a computer-readable storage medium.
  • RAM 234 is a storage device that temporarily stores various data. RAM 234 functions as a working area for the hardware processor 231 to process various data.
  • the non-volatile memory 235 is a storage device that retains data even when the control device 23 is turned off and no power is being supplied to the control device 23.
  • the non-volatile memory 235 stores, for example, operating programs and various parameters.
  • the non-volatile memory 235 is a computer-readable storage medium.
  • the non-volatile memory 235 is, for example, a battery-backed memory or an SSD (Solid State Drive).
  • the control device 23 further includes an axis control circuit 236, a first interface 237, a second interface 238, and a third interface 239.
  • the axis control circuit 236 is a circuit that controls a servo motor (not shown) of the industrial machine 24.
  • the axis control circuit 236 receives control commands from the hardware processor 231 and sends various commands to the servo motor for driving the servo motor. For example, the axis control circuit 236 sends a torque command to the servo motor for controlling the torque of the servo motor.
  • Industrial machinery 24 is machinery used in factories and the like.
  • Industrial machinery 24 is, for example, an industrial robot such as a manipulator, and a three-dimensional scanner processing machine.
  • scanner 21 is attached, for example, to the tip of an arm of the industrial robot.
  • scanner 21 is attached to the tip of the processing machine.
  • the first interface 237 connects the bus 232 and the scanner 21.
  • the first interface 237 sends, for example, various commands or various data processed by the hardware processor 231 to the scanner 21.
  • the second interface 238 connects the bus 232 and the first sensor 22.
  • the second interface 238 sends, for example, information acquired by the first sensor 22 to the hardware processor 231, RAM 234, etc.
  • the third interface 239 connects the bus 232 and the second sensor 25.
  • the third interface 239 for example, sends information acquired by the second sensor 25 to the hardware processor 231, the RAM 234, etc.
  • the second sensor 25 will be described in detail later.
  • FIG. 5 is a block diagram showing an example of the functions of the control device 23.
  • the control device 23 includes a receiving unit 23a, a calculating unit 23b, and a control unit 23c.
  • the receiver 23a is connected to the first sensor 22 by wire or wirelessly, for example, via a network.
  • the receiver 23a receives information about the guide light from the first sensor 22.
  • the calculation unit 23b calculates the distance D1 between the scanner 21 and the object O based on information about the guide light from the first sensor 22 received by the receiving unit 23a.
  • the distance D1 between the scanner 21 and the object O is, for example, the distance between the emission position P1 and the surface of the object O.
  • the distance D1 between the scanner 21 and the object O is the length of the line segment connecting the intersection of the perpendicular line and the object O to the emission position P1 when a perpendicular line is drawn from the emission position P1 of the scanner 21 to the object O.
  • the control unit 23c controls the scanner 21 and the industrial machine 24.
  • the control unit 23c controls the industrial machine 24 based on the distance D1 between the scanner 21 and the object O calculated by the calculation unit 23b.
  • the control unit 23c controls the industrial machine 24, for example, so that the distance D1 between the scanner 21 and the object O becomes a predetermined reference distance.
  • the calculation unit 23b can further calculate the distance between an arbitrary position on the object O where the guide light is irradiated and the emission position P1 based on the emission angle ⁇ of the guide light.
  • FIG. 6 is a diagram for explaining the principle of calculating the distance between an arbitrary position P4 on the object O onto which the guide light is irradiated and the emission position P1.
  • the distance D1 between the scanner 21 and the object O has already been calculated
  • the distance D2 between an arbitrary position P4 on the object O onto which the guide light is irradiated and the emission position P1 can be calculated by the following formula 2.
  • is the angle between the perpendicular line drawn from the emission position P1 to the object O and the optical axis of the guide light.
  • the measurement system 2 further includes the second sensor 25 as described above.
  • the second sensor 25 is a sensor that detects the guide light.
  • the second sensor 25 receives the guide light reflected by the object O.
  • the second sensor 25 is, for example, a photosensor.
  • the calculation unit 23b calculates the parallelism between the scanner 21 and the object O based on information from the second sensor 25 that has received the guide light.
  • FIG. 7 is a diagram for explaining an example of the internal structure of the scanner 21. Note that the first mirror 213b and the driving mechanism are omitted from FIG. 7.
  • the scanner 21 has a second sensor 25 at a position opposite the position where the object O is placed, with the second mirror 213d as a reference. In other words, the second mirror 213d is placed between the object O and the second sensor 25.
  • the second mirror 213d is positioned so that the angle between the surface that reflects the guide light and the bottom plate of the housing is 45°.
  • the scanner 21 also has one or more first apertures 214 between the second mirror 213d and the second sensor 25. When the scanner 21 has multiple first apertures 214, the multiple first apertures 214 are positioned parallel to each other.
  • the second sensor 25 receives the guide light reflected by the object O.
  • the second sensor 25 sends information about the received guide light to the control device 23.
  • the information about the guide light is, for example, intensity information about the intensity of the guide light.
  • Light intensity is an index that represents the degree of brightness of light.
  • the guide light supplied from the laser oscillator 1 passes through the lens section 211a and the focusing lens 212, is reflected by the first mirror 213b, and is guided to the second mirror 213d.
  • a portion of the guide light guided to the second mirror 213d is reflected by the second mirror 213d and irradiated onto the object O.
  • the guide light irradiated onto the object O is reflected by the surface of the object O, and is again guided to the second mirror 213d.
  • a portion of the guide light guided to the second mirror 213d passes through the second mirror 213d.
  • the guide light that passes through the second mirror 213d and the first aperture 214 is incident on the second sensor 25.
  • the second sensor 25 sends information about the received guide light to the control device 23.
  • the receiver 23a receives information about the guide light from the second sensor 25.
  • the calculator 23b calculates the parallelism between the scanner 21 and the object O based on the information about the guide light from the second sensor 25.
  • the parallelism between the scanner 21 and the object O is, for example, the parallelism between the bottom plate of the housing of the scanner 21 and the surface of the object O.
  • the intensity of the guide light passing through the first aperture 214 becomes stronger.
  • the intensity of the guide light received by the second sensor 25 becomes stronger.
  • the calculation unit 23b calculates the parallelism between the scanner 21 and the object O based on the correlation between the intensity of the guide light received by the second sensor 25 and the parallelism between the scanner 21 and the object O.
  • the calculation unit 23b may calculate the perpendicularity between the guide light and the surface of the object O instead of the parallelism between the scanner 21 and the object O.
  • FIG. 8 is a flowchart showing an example of the flow of processing executed by the measurement system 2.
  • the control unit 23c moves the scanner 21 to a predetermined position where the emission position P1 of the scanner 21 faces the surface of the target object O (step S1).
  • the control unit 23c controls the industrial machine 24 based on a predetermined operation program, for example, to move the scanner 21 to the predetermined position.
  • the control unit 23c may also move the scanner 21 to the predetermined position based on manual operation by an operator.
  • step S2 the parallelism between the scanner 21 and the object O is measured (step S2). Specifically, first, the control unit 23c controls the scanner 21 to irradiate the guide light toward the object O. Next, the receiving unit 23a receives information about the guide light from the second sensor 25. Next, the calculation unit 23b calculates the parallelism between the scanner 21 and the object O based on the information about the guide light from the second sensor 25 that has received the guide light.
  • control unit 23c controls the industrial machine 24, for example, based on an operating program, and adjusts the parallelism between the scanner 21 and the target object O (step S4).
  • step S3 If the parallelism calculated by the calculation unit 23b satisfies the predetermined condition (Yes in step S3), the parallelism is not adjusted by the control unit 23c.
  • the measurement of the parallelism and the determination of whether or not the predetermined condition is satisfied may be repeated until the predetermined condition is satisfied.
  • the distance D1 between the scanner 21 and the object O is measured (step S5). Specifically, first, the control unit 23c controls the scanner 21 to irradiate the guide light toward the object O. Next, the receiving unit 23a receives information about the guide light from the first sensor 22. Next, the calculation unit 23b calculates the distance D1 between the scanner 21 and the object O based on the information about the guide light from the first sensor 22 that has received the guide light.
  • control unit 23c controls the industrial machine 24, for example, based on an operation program, and adjusts the distance D1 between the scanner 21 and the target object O (step S7).
  • step S6 If the distance D1 calculated by the calculation unit 23b satisfies the predetermined condition (Yes in step S6), the control unit 23c does not adjust the distance and the process ends.
  • the distance measurement and the determination of whether or not the predetermined condition is satisfied may be repeated until the predetermined condition is satisfied.
  • control unit 23c may operate the industrial machine 24 and the scanner 21 based on the operation program to process the object O.
  • the distance between the exit position P1 and the entrance position P3 is obtained based on information about the entrance position P3 acquired by the first sensor 22, and further, the distance D1 between the scanner 21 and the target object O is calculated using a predetermined exit angle ⁇ of the guide light.
  • the emission angle ⁇ of the guide light may be adjusted so that a predetermined position of the light receiving section becomes the incident position P3.
  • the control device 23 may adjust the rotation angle of the mirror of the scanner 21 so that the guide light is received at a predetermined position of the light receiving section of the first sensor 22.
  • the receiver 23a acquires information about the emission angle ⁇ of the guide light from the scanner 21.
  • the emission angle ⁇ is the emission angle of the guide light when the guide light is adjusted so that it is incident on a predetermined position of the light receiver.
  • the calculation unit 23b calculates the distance D1 between the scanner 21 and the object O based on the emission angle ⁇ and the distance d between the emission position P1 and the incidence position P3.
  • the calculation unit 23b calculates the parallelism between the scanner 21 and the object O based on information from the second sensor 25 that receives the guide light.
  • the measurement system 2 of the present embodiment includes a detector that detects the parallelism between the scanner 21 and the object O, instead of the second sensor 25.
  • FIG. 9 is a diagram for explaining an example of a manner in which the detector is attached to the scanner 21.
  • the detector 26 is attached, for example, at a position adjacent to the emission position P1 of the guide light.
  • FIG. 10 is a diagram for explaining an example of the internal structure of the detector 26.
  • the detector 26 includes a light source 261, a third mirror 262, one or more second apertures 263, and a third sensor 264.
  • the light source 261 emits light toward the third mirror 262.
  • the light source 261 emits, for example, red laser light.
  • the direction in which the light source 261 emits light is parallel to the bottom plate of the housing of the scanner 21.
  • the third mirror 262 is a half mirror that transmits part of the light emitted from the light source 261 and reflects the other part.
  • the third mirror 262 is positioned so that the angle between the surface that reflects the light emitted from the light source 261 and the bottom plate of the housing of the scanner 21 is 45°.
  • the third sensor 264 is a sensor that detects light.
  • the third sensor 264 receives light reflected by the object O.
  • the third sensor 264 sends information about the received light to the control device 23.
  • the information about the light is, for example, intensity information about the intensity of the light.
  • the detector 26 has the third sensor 264 at a position opposite the position where the object O is placed, with the third mirror 262 as a reference. In other words, the third mirror 262 is placed between the object O and the third sensor 264.
  • the detector 26 also has one or more second apertures 263 between the third mirror 262 and the third sensor 264. When the detector 26 has multiple second apertures 263, the multiple second apertures 263 are arranged parallel to each other.
  • Light emitted by light source 261 is guided to third mirror 262. A portion of the light guided to third mirror 262 is reflected by third mirror 262 and irradiated to object O. That is, light source 261 irradiates light toward object O via third mirror 262. The light irradiated to object O is reflected by the surface of object O and is again guided to third mirror 262.
  • a portion of the light guided to the third mirror 262 passes through the third mirror 262.
  • the light that passes through the third mirror 262 and the second aperture 263 is incident on the third sensor 264.
  • the receiving unit 23a receives information about the light from the third sensor 264.
  • the calculating unit 23b calculates the parallelism between the scanner 21 and the object O based on the information from the third sensor 264 that has received the light.
  • the measurement system 2 of the present disclosure includes a scanner 21 that irradiates guide light from a predetermined emission position P1 toward an object O, a first sensor 22 that receives the guide light reflected by the object O, and a calculation unit 23b that calculates a distance D1 between the scanner 21 and the object O based on information about the guide light from the first sensor 22.
  • the measurement system 2 can automatically measure distance and adjust the distance. For example, compared to a case where an operator measures distance while visually checking the graduations on a scale or the numbers displayed on a rangefinder, the measurement system 2 can reduce the burden on the operator.
  • the measurement system 2 can improve the accuracy of distance measurement compared to when an operator measures distance while visually checking the graduations on a scale or the numbers displayed on a rangefinder.
  • the measurement system 2 measures distance using guide light, there is no need to provide another light source for measuring distance.
  • the information about the guide light is position information about the position of the guide light received by the first sensor 22. That is, the first sensor 22 obtains position information indicating at which position in the light receiving section the guide light is incident.
  • the scanner may be positioned at any position before measuring the distance, so long as the guide light is received by the light receiving section. This makes it easier to position the scanner before measuring the distance.
  • the scanner 21 also includes a mirror that changes the emission angle ⁇ of the guide light emitted from a predetermined emission position P1, and the calculation unit 23b calculates the distance based on the emission angle ⁇ . In this case, the scanner 21 adjusts the emission angle ⁇ of the guide light so that the predetermined position of the light receiving unit of the first sensor 22 becomes the incident position P3. This allows the measurement range of the measurement system 2 to be increased.
  • the calculation unit 23b further calculates the distance between an arbitrary position P4 on the object O onto which the guide light is irradiated and the emission position P1 based on the emission angle ⁇ . Therefore, the control unit 23c can easily focus the laser light on an arbitrary position P4 on the object O onto which the laser light is irradiated.
  • the measurement system 2 further includes a second sensor 25 that receives the guide light reflected by the object O, and the calculation unit 23b calculates the parallelism between the scanner 21 and the object O based on information from the second sensor 25 that receives the guide light.
  • the information from the second sensor 25 is intensity information related to the intensity of the guide light.
  • measurement system 2 can reduce the burden on the worker compared to when an operator measures parallelism while visually checking the scale on a spirit level. Also, measurement system 2 can improve the measurement accuracy of parallelism compared to when an operator measures parallelism while visually checking the scale on a spirit level.
  • the scanner 21 further includes a light source 261 that irradiates light toward the object O, and a third sensor 264 that receives the light reflected by the object O.
  • the calculation unit 23b calculates the parallelism between the scanner 21 and the object O based on information from the third sensor 264 that receives the light.
  • the information from the third sensor 264 is intensity information related to the intensity of the light.
  • measurement system 2 can reduce the burden on the worker compared to when an operator measures parallelism while visually checking the scale on a spirit level. Also, measurement system 2 can improve the measurement accuracy of parallelism compared to when an operator measures parallelism while visually checking the scale on a spirit level.
  • the measurement system 2 further includes an industrial machine 24, and the scanner 21 is attached to the industrial machine 24.
  • the industrial machine 24 is an industrial robot. Therefore, when the scanner 21 is attached to the industrial machine 24, particularly an industrial robot, the distance D1 between the scanner 21 and the object O, and the parallelism between the scanner 21 and the object O can be automatically measured.
  • Appendix [1] A measurement system comprising: a scanner that irradiates guide light from a predetermined emission position toward an object; a first sensor that receives the guide light reflected by the object; and a calculation unit that calculates a distance between the scanner and the object based on information about the guide light from the first sensor.
  • Appendix [2] The measurement system according to claim 1, wherein the information regarding the guide light is position information regarding a position of the guide light received by the first sensor.
  • Appendix [3] The measurement system according to claim 1 or 2, wherein the scanner includes a mirror that changes an emission angle of the guide light emitted from the predetermined emission position, and the calculation unit calculates the distance based on the emission angle.
  • Appendix [4] The measurement system according to claim 3, wherein the calculation unit further calculates a distance between a position on the object where the guide light is irradiated and the emission position based on the emission angle.
  • Appendix [5] The measurement system of any of Appendices [1] to [4], further comprising a second sensor that receives the guide light reflected by the object, wherein the calculation unit calculates a parallelism between the scanner and the object based on information from the second sensor that has received the guide light.
  • Appendix [6] The measurement system according to claim 5, wherein the information from the second sensor is intensity information regarding the intensity of the guide light.
  • Appendix [7] The measurement system of any of appendices [1] to [4] further includes a light source that irradiates light toward the object, and a third sensor that receives the light reflected by the object, wherein the calculation unit calculates the parallelism between the scanner and the object based on information from the third sensor that receives the light.
  • Appendix [8] The measurement system of claim 7, wherein the information from the third sensor is intensity information regarding the intensity of the light.
  • Appendix [9] The measurement system according to any one of appendices [1] to [8], further comprising an industrial machine, wherein the scanner is attached to the industrial machine.
  • Appendix [10] The measurement system according to claim [9], wherein the industrial machine is an industrial robot.
  • Appendix [11] A measurement method including: irradiating a guide light from a predetermined emission position toward an object; receiving the guide light reflected by the object; and calculating a distance between the scanner and the object based on information about the guide light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

Provided is a measurement system comprising a scanner which emits guide light from a predetermined emission position toward a target, a first sensor which receives the guide light reflected on the target, and a calculation unit which calculates a distance between the scanner and the target on the basis of information relating to the guide light from the first sensor.

Description

測定システムおよび測定方法Measurement system and method
 本開示は、測定システムおよび測定方法に関する。 This disclosure relates to a measurement system and a measurement method.
 対象物に向けてレーザ光を照射するレーザ加工機などでは、対象物の加工前に、レーザ光の焦点を対象物に合わせる必要がある。そのため、レーザ光が出射される出射位置と対象物との間の距離の測定が行われる。この距離の測定は、スケールなどの目盛り、または、距離計に表示される数値を作業者が目視で確認しながら行われる(例えば、特許文献1)。 In laser processing machines that irradiate a laser beam toward an object, it is necessary to focus the laser beam on the object before processing the object. For this reason, the distance between the emission position from which the laser beam is emitted and the object is measured. This distance is measured by the operator visually checking the graduations on a scale or the number displayed on a rangefinder (for example, Patent Document 1).
特開平11-47970号公報Japanese Patent Application Laid-Open No. 11-47970
 しかし、この距離の測定が作業者にとって大きな負担となっている。そのため、自動で距離の測定が行われるシステムが求められている。 However, measuring this distance is a heavy burden for workers. Therefore, there is a demand for a system that can measure distance automatically.
 本開示の測定システムは、ガイド光を所定の出射位置から対象物に向けて照射するスキャナと、対象物で反射するガイド光を受ける第1のセンサと、第1のセンサからのガイド光に関する情報に基づいて、スキャナと対象物との間の距離を算出する算出部と、を備える。 The measurement system disclosed herein includes a scanner that irradiates guide light from a predetermined emission position toward an object, a first sensor that receives the guide light reflected by the object, and a calculation unit that calculates the distance between the scanner and the object based on information about the guide light from the first sensor.
 本開示の測定方法は、ガイド光を所定の出射位置から対象物に向けて照射することと、対象物で反射するガイド光を受けることと、ガイド光に関する情報に基づいて、スキャナと対象物との間の距離を算出することと、を含む。 The measurement method disclosed herein includes irradiating a guide light from a predetermined emission position toward an object, receiving the guide light reflected by the object, and calculating the distance between the scanner and the object based on information about the guide light.
レーザ発振器と測定システムの一例を説明するための図である。FIG. 2 is a diagram for explaining an example of a laser oscillator and a measurement system. スキャナの内部構造の一例を説明するための図である。FIG. 2 is a diagram illustrating an example of the internal structure of a scanner. 算出原理を説明するための図である。FIG. 13 is a diagram for explaining a calculation principle. 制御装置のハードウェア構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of a hardware configuration of a control device. 制御装置の機能の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of a function of a control device. 算出原理を説明するための図である。FIG. 13 is a diagram for explaining a calculation principle. スキャナの内部構造の一例を説明するための図である。FIG. 2 is a diagram illustrating an example of the internal structure of a scanner. 測定システムで実行される処理の流れの一例を示すフローチャートである。10 is a flowchart showing an example of a flow of processes executed in the measurement system. 検出器の取り付け態様の一例を説明するための図である。FIG. 2 is a diagram for explaining an example of a mounting mode of a detector. 検出器の内部構造の一例を説明するための図である。FIG. 2 is a diagram for explaining an example of an internal structure of a detector.
 以下、本開示の実施形態に係る測定システム、および測定方法について図面を参照して説明する。なお、以下の説明では、同一または類似の機能を有する構成に同一の符号を付す。そして、それら構成の重複する説明は、省略する場合がある。 Below, a measurement system and a measurement method according to an embodiment of the present disclosure will be described with reference to the drawings. In the following description, components having the same or similar functions will be given the same reference numerals. Furthermore, duplicate descriptions of those components may be omitted.
 本願でいう「XXに基づく」とは、「少なくともXXに基づく」ことを意味し、XXに加えて別の要素に基づく場合も含む。また、「XXに基づく」とは、XXを直接に用いる場合に限定されず、XXに対して演算や加工が行われたものに基づく場合も含む。「XX」は、任意の要素(例えば、任意の情報)である。 In this application, "based on XX" means "based on at least XX," and includes cases where it is based on other elements in addition to XX. Furthermore, "based on XX" is not limited to cases where XX is used directly, but also includes cases where it is based on XX that has been calculated or processed. "XX" is any element (for example, any information).
〈第1の実施形態〉
 図1は、レーザ発振器と測定システム2の一例を説明するための図である。レーザ発振器1は、レーザ光を生成する装置である。レーザ発振器1は、例えば、ガスレーザ発振器、Fiberレーザ発振器、Diskレーザ発振器、DDLレーザ発振器、およびYAGレーザ発振器である。レーザ発振器が生成するレーザ光は、例えば、切断、溶接、マーキング、または彫刻のための高出力レーザ光である。
First Embodiment
1 is a diagram for explaining an example of a laser oscillator and a measurement system 2. The laser oscillator 1 is a device that generates laser light. The laser oscillator 1 is, for example, a gas laser oscillator, a fiber laser oscillator, a disk laser oscillator, a DDL laser oscillator, or a YAG laser oscillator. The laser light generated by the laser oscillator is, for example, a high-power laser light for cutting, welding, marking, or engraving.
 また、レーザ発振器1は、ガイド光を生成する。ガイド光とは、レーザ光の光軸と一致する光軸を有する光である。ガイド光は、例えば、赤色レーザ光である。なお、ガイド光は、赤色レーザ光に限らず、可視光であればよい。 The laser oscillator 1 also generates a guide light. The guide light is light having an optical axis that coincides with the optical axis of the laser light. The guide light is, for example, a red laser light. Note that the guide light is not limited to a red laser light, and may be any visible light.
 レーザ発振器1は、測定システム2に接続される。レーザ発振器1は、生成したレーザ光、およびガイド光を、光ファイバなどを通して測定システム2に供給する。 The laser oscillator 1 is connected to the measurement system 2. The laser oscillator 1 supplies the generated laser light and guide light to the measurement system 2 via an optical fiber or the like.
 測定システム2は、スキャナ21と、第1のセンサ22と、制御装置23と、産業機械24と、第2のセンサ(不図示)とを含む。 The measurement system 2 includes a scanner 21, a first sensor 22, a control device 23, an industrial machine 24, and a second sensor (not shown).
 スキャナ21は、レーザ発振器1から供給されたレーザ光、およびガイド光を所定の出射位置から対象物Oに向けて照射する装置である。スキャナ21は、レーザ発振器1から供給されたレーザ光、およびガイド光の出射方向を変更させる機能を有する。言い換えれば、スキャナ21は、レーザ光、およびガイド光で対象物Oを走査するための装置である。スキャナ21は、例えば、ガルバノスキャナである。 The scanner 21 is a device that irradiates the laser light and guide light supplied from the laser oscillator 1 toward the object O from a predetermined emission position. The scanner 21 has a function of changing the emission direction of the laser light and guide light supplied from the laser oscillator 1. In other words, the scanner 21 is a device for scanning the object O with the laser light and guide light. The scanner 21 is, for example, a galvano scanner.
 ガイド光は、スキャナ21からレーザ光と同軸で出力される。つまり、ガイド光は、レーザ光が照射される対象物O上の位置と同じ位置に照射される。作業者は、ガイド光が照射された位置を目視で確認することにより、レーザが照射される位置を事前に確認することができる。 The guide light is output from the scanner 21 coaxially with the laser light. In other words, the guide light is irradiated at the same position on the object O as the position irradiated by the laser light. The worker can visually check the position irradiated by the guide light to confirm in advance the position where the laser will be irradiated.
 図2は、スキャナ21の内部構造の一例を説明するための図である。なお、便宜上、各図の各矢印で示す各方向をそれぞれ、X軸プラス方向、Y軸プラス方向、およびZ軸プラス方向と定義して本実施形態の説明を行う。 FIG. 2 is a diagram for explaining an example of the internal structure of the scanner 21. For convenience, the directions indicated by the arrows in each diagram are defined as the positive X-axis direction, the positive Y-axis direction, and the positive Z-axis direction, respectively, in the explanation of this embodiment.
 スキャナ21は、例えば、直方体形状の筐体(不図示)を有する。スキャナ21は、筐体の内部に、例えば、焦点制御機構211と、集光レンズ212と、角度制御機構213とを有している。 The scanner 21 has, for example, a rectangular parallelepiped housing (not shown). Inside the housing, the scanner 21 has, for example, a focus control mechanism 211, a focusing lens 212, and an angle control mechanism 213.
 焦点制御機構211は、レーザ光の焦点位置を制御するための機構である。焦点制御機構211は、レンズ部211aと、駆動部211bとを有している。 The focus control mechanism 211 is a mechanism for controlling the focus position of the laser light. The focus control mechanism 211 has a lens unit 211a and a drive unit 211b.
 レンズ部211aは、例えば、凸レンズである。ただし、レンズ部211aは、凸レンズに限らず、他のレンズであってもよい。 Lens portion 211a is, for example, a convex lens. However, lens portion 211a is not limited to a convex lens and may be another type of lens.
 駆動部211bは、レーザ光の伝達方向に沿ってレンズ部211aを移動させる装置である。駆動部211bは、直動機構である。直動機構は、例えば、ボールねじ直動機構である。駆動部211bは、例えば、X軸に沿ってレンズ部211aを移動させる。 The driving unit 211b is a device that moves the lens unit 211a along the transmission direction of the laser light. The driving unit 211b is a linear motion mechanism. The linear motion mechanism is, for example, a ball screw linear motion mechanism. The driving unit 211b moves the lens unit 211a along, for example, the X-axis.
 集光レンズ212は、角度制御機構213にレーザ光を集光させるためのレンズである。集光レンズ212は、例えば、凸レンズである。集光レンズ212は、焦点制御機構211と、角度制御機構213との間に配置される。 The focusing lens 212 is a lens for focusing the laser light on the angle control mechanism 213. The focusing lens 212 is, for example, a convex lens. The focusing lens 212 is disposed between the focus control mechanism 211 and the angle control mechanism 213.
 角度制御機構213は、レーザ光およびガイド光の対象物Oに対する照射角度を変更する機構である。言い換えれば、角度制御機構213は、スキャナ21の後述する所定の出射位置から出射するレーザ光、およびガイド光の出射角度を変更するための機構である。 The angle control mechanism 213 is a mechanism for changing the irradiation angle of the laser light and the guide light with respect to the object O. In other words, the angle control mechanism 213 is a mechanism for changing the emission angle of the laser light and the guide light emitted from a specific emission position of the scanner 21, which will be described later.
 角度制御機構213は、駆動機構と、ミラーとを含む。駆動機構は、第1の駆動機構213aおよび第2の駆動機構213cを含む。ミラーは、第1のミラー213bと第2のミラー213dとを含む。 The angle control mechanism 213 includes a drive mechanism and a mirror. The drive mechanism includes a first drive mechanism 213a and a second drive mechanism 213c. The mirror includes a first mirror 213b and a second mirror 213d.
 第1の駆動機構213aは、第1のミラー213bを回転させる機構である。第1の駆動機構213aは、回転軸を有する。回転軸は、第1のミラー213bに連結される。回転軸が回転することにより、回転軸に連結された第1のミラー213bが回転する。第1の駆動機構213aは、例えば、サーボモータである。 The first driving mechanism 213a is a mechanism that rotates the first mirror 213b. The first driving mechanism 213a has a rotation shaft. The rotation shaft is connected to the first mirror 213b. When the rotation shaft rotates, the first mirror 213b connected to the rotation shaft rotates. The first driving mechanism 213a is, for example, a servo motor.
 第1のミラー213bは、レーザ光、およびガイド光を、例えば、X軸に沿って走査させるためのミラーである。第1のミラー213bは、レーザ光、およびガイド光を反射させることにより、レーザ光およびガイド光の光軸の向きを変化させる。第1のミラー213bは、レーザ光を全反射させるミラーである。また、第1のミラー213bは、ガイド光を全反射させるミラーである。 The first mirror 213b is a mirror for scanning the laser light and the guide light, for example, along the X-axis. The first mirror 213b changes the direction of the optical axis of the laser light and the guide light by reflecting the laser light and the guide light. The first mirror 213b is a mirror that totally reflects the laser light. The first mirror 213b is also a mirror that totally reflects the guide light.
 第2の駆動機構213cは、第2のミラー213dを回転させる機構である。第2の駆動機構213cは、回転軸を有する。回転軸は、第2のミラー213dに連結される。回転軸が回転することにより、回転軸に取り付けられた第2のミラー213dが回転する。第2の駆動機構213cは、例えば、サーボモータである。 The second driving mechanism 213c is a mechanism that rotates the second mirror 213d. The second driving mechanism 213c has a rotation shaft. The rotation shaft is connected to the second mirror 213d. When the rotation shaft rotates, the second mirror 213d attached to the rotation shaft rotates. The second driving mechanism 213c is, for example, a servo motor.
 第2のミラー213dは、例えば、レーザ光、およびガイド光をY軸に沿って走査させるためのミラーである。第2のミラー213dは、レーザ光、およびガイド光を反射させることにより、レーザ光およびガイド光の光軸の向きを変化させる。第2のミラー213dは、レーザ光を全反射させるミラーである。第2のミラー213dは、ガイド光の一部を反射させ、ガイド光の他の一部を透過させるハーフミラーである。 The second mirror 213d is, for example, a mirror for scanning the laser light and the guide light along the Y axis. The second mirror 213d changes the direction of the optical axis of the laser light and the guide light by reflecting the laser light and the guide light. The second mirror 213d is a mirror that totally reflects the laser light. The second mirror 213d is a half mirror that reflects part of the guide light and transmits the other part of the guide light.
 レーザ発振器1からスキャナ21に対してレーザ光が供給されると、レーザ光は、レンズ部211aに導かれる。レンズ部211aに導かれたレーザ光は、レンズ部211aを透過し、集光レンズ212に導かれる。さらに、集光レンズ212に導かれたレーザ光は、集光レンズ212を透過し、第1のミラー213bに導かれる。第1のミラー213bに導かれたレーザ光は、第1のミラー213bで反射し、第2のミラー213dに導かれる。第2のミラー213dに導かれたレーザ光は、第2のミラー213dで反射し、出射位置から対象物Oに向けて照射される。 When laser light is supplied from the laser oscillator 1 to the scanner 21, the laser light is guided to the lens unit 211a. The laser light guided to the lens unit 211a passes through the lens unit 211a and is guided to the focusing lens 212. The laser light guided to the focusing lens 212 passes through the focusing lens 212 and is guided to the first mirror 213b. The laser light guided to the first mirror 213b is reflected by the first mirror 213b and is guided to the second mirror 213d. The laser light guided to the second mirror 213d is reflected by the second mirror 213d and is irradiated from the emission position towards the object O.
 出射位置とは、スキャナ21が外部にレーザ光およびガイド光を出射する位置である。出射位置は、例えば、スキャナ21の筐体の底板が配置される面とレーザ光およびガイド光の光軸とが交差する位置である。 The emission position is the position from which the scanner 21 emits the laser light and the guide light to the outside. The emission position is, for example, the position where the surface on which the bottom plate of the housing of the scanner 21 is placed intersects with the optical axis of the laser light and the guide light.
 焦点制御機構211の駆動部211bがレンズ部211aを移動させることにより、レーザ光の焦点位置が調整される。また、第1の駆動機構213aが第1のミラー213bを回転させることにより、レーザ光をX軸に沿って走査させることができる。また、第2の駆動機構213cが第2のミラー213dを回転させることにより、レーザ光をY軸に沿って走査させることができる。 The driving unit 211b of the focus control mechanism 211 moves the lens unit 211a to adjust the focal position of the laser light. Furthermore, the first driving mechanism 213a rotates the first mirror 213b to scan the laser light along the X-axis. Furthermore, the second driving mechanism 213c rotates the second mirror 213d to scan the laser light along the Y-axis.
 レーザ発振器1からスキャナ21に対してガイド光が供給されると、ガイド光は、レンズ部211aに導かれる。レンズ部211aに導かれたガイド光は、レンズ部211aを透過し、集光レンズ212に導かれる。さらに、集光レンズ212に導かれたガイド光は、集光レンズ212を透過し、第1のミラー213bに導かれる。第1のミラー213bに導かれたガイド光は、第1のミラー213bで反射し、第2のミラー213dに導かれる。第2のミラー213dに導かれたガイド光は、第2のミラー213dで反射し、出射位置から対象物Oに向けて照射される。 When guide light is supplied from the laser oscillator 1 to the scanner 21, the guide light is guided to the lens unit 211a. The guide light guided to the lens unit 211a passes through the lens unit 211a and is guided to the condenser lens 212. The guide light guided to the condenser lens 212 passes through the condenser lens 212 and is guided to the first mirror 213b. The guide light guided to the first mirror 213b is reflected by the first mirror 213b and is guided to the second mirror 213d. The guide light guided to the second mirror 213d is reflected by the second mirror 213d and is irradiated from the emission position towards the object O.
 第1の駆動機構213aが第1のミラー213bを回転させることにより、ガイド光をX軸に沿って走査させることができる。また、第2の駆動機構213cが第2のミラー213dを回転させることにより、ガイド光をY軸に沿って走査させることができる。ここで、図1の説明に戻る。 The first driving mechanism 213a rotates the first mirror 213b, thereby allowing the guide light to scan along the X-axis. The second driving mechanism 213c rotates the second mirror 213d, thereby allowing the guide light to scan along the Y-axis. Now, let us return to the explanation of FIG. 1.
 第1のセンサ22は、ガイド光を検出するセンサである。第1のセンサ22は、受光部(不図示)を有する。第1のセンサ22は、対象物Oで反射するガイド光を受光部で受ける。第1のセンサ22は、例えば、フォトセンサである。対象物Oは、例えば、加工対象のワークである。第1のセンサ22は、受けたガイド光に関する情報を制御装置23に送る。 The first sensor 22 is a sensor that detects the guide light. The first sensor 22 has a light receiving section (not shown). The first sensor 22 receives the guide light reflected by the object O at the light receiving section. The first sensor 22 is, for example, a photosensor. The object O is, for example, a workpiece to be machined. The first sensor 22 sends information about the received guide light to the control device 23.
 ガイド光に関する情報は、第1のセンサ22が受けるガイド光の位置に関する位置情報である。すなわち、位置情報は、第1のセンサ22の受光部のどの位置においてガイド光が受光されたかを示す情報である。第1のセンサ22は、例えば、ガイド光が受光部に入射するX軸に沿った方向の位置に関する位置情報を取得する。後述するように、制御装置23では、ガイド光に関する情報に基づいて、スキャナ21と対象物Oとの間の距離が算出される。 The information about the guide light is position information about the position of the guide light received by the first sensor 22. In other words, the position information is information indicating at which position of the light receiving section of the first sensor 22 the guide light is received. The first sensor 22 acquires position information about the position in the direction along the X-axis where the guide light is incident on the light receiving section, for example. As will be described later, the control device 23 calculates the distance between the scanner 21 and the object O based on the information about the guide light.
 図3は、スキャナ21と対象物Oとの間の距離の算出原理を説明するための図である。スキャナ21は、出射位置P1から対象物Oに向けてガイド光を照射する。対象物Oは、スキャナ21から照射されたガイド光を反射位置P2で反射させる。すなわち、ガイド光の光軸と対象物Oの表面との交点が反射位置P2である。 FIG. 3 is a diagram for explaining the principle of calculating the distance between the scanner 21 and the object O. The scanner 21 irradiates a guide light from an emission position P1 toward the object O. The object O reflects the guide light irradiated from the scanner 21 at a reflection position P2. In other words, the intersection of the optical axis of the guide light and the surface of the object O is the reflection position P2.
 第1のセンサ22は、反射位置P2で反射したガイド光を受ける。言い換えれば、ガイド光は、第1のセンサ22の受光部の入射位置P3に入射する。つまり、ガイド光の光軸と第1のセンサ22の受光部との交点が入射位置P3である。 The first sensor 22 receives the guide light reflected at reflection position P2. In other words, the guide light is incident on the light receiving section of the first sensor 22 at incident position P3. In other words, the intersection point between the optical axis of the guide light and the light receiving section of the first sensor 22 is incident position P3.
 第1のセンサ22は、ガイド光の入射位置P3に関する情報を取得する。これにより、出射位置P1と入射位置P3との間の距離dが定まる。また、ガイド光の出射角度θは、ミラーの回転角度に基づいて定まる。したがって、出射位置P1と対象物Oとの間の距離、すなわち、スキャナ21と対象物Oとの間の距離D1は、以下の数1式で求められる。 The first sensor 22 acquires information about the incident position P3 of the guide light. This determines the distance d between the exit position P1 and the incident position P3. The exit angle θ of the guide light is determined based on the rotation angle of the mirror. Therefore, the distance between the exit position P1 and the object O, i.e., the distance D1 between the scanner 21 and the object O, can be calculated using the following formula 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 次に制御装置23について説明する。制御装置23は、スキャナ21、および産業機械24を制御する装置である。制御装置23は、例えば、動作プログラムに基づいて、スキャナ21および産業機械24の動作を制御する。 Next, the control device 23 will be described. The control device 23 is a device that controls the scanner 21 and the industrial machine 24. The control device 23 controls the operation of the scanner 21 and the industrial machine 24 based on, for example, an operating program.
 図4は、制御装置23のハードウェア構成の一例を示すブロック図である。制御装置23は、ハードウェアプロセッサ231と、バス232と、ROM(Read Only Memory)233と、RAM(Random Access Memory)234と、不揮発性メモリ235とを備える。 FIG. 4 is a block diagram showing an example of the hardware configuration of the control device 23. The control device 23 includes a hardware processor 231, a bus 232, a ROM (Read Only Memory) 233, a RAM (Random Access Memory) 234, and a non-volatile memory 235.
 ハードウェアプロセッサ231は、システムプログラムに従って制御装置23全体を制御するプロセッサである。ハードウェアプロセッサ231は、バス232を介してROM233に格納されたシステムプログラムなどを読み出し、システムプログラムに基づいて各種処理を行う。ハードウェアプロセッサ231は、動作プログラムに基づいて、スキャナ21および産業機械24を制御する。ハードウェアプロセッサ231は、例えば、CPU(Central Processing Unit)、または電子回路である。 The hardware processor 231 is a processor that controls the entire control device 23 in accordance with a system program. The hardware processor 231 reads the system program stored in the ROM 233 via the bus 232, and performs various processes based on the system program. The hardware processor 231 controls the scanner 21 and the industrial machine 24 based on the operation program. The hardware processor 231 is, for example, a CPU (Central Processing Unit) or an electronic circuit.
 バス232は、制御装置23内の各ハードウェアを互いに接続する通信路である。制御装置23内の各ハードウェアはバス232を介してデータをやり取りする。 The bus 232 is a communication path that connects each piece of hardware in the control device 23 to each other. Each piece of hardware in the control device 23 exchanges data via the bus 232.
 ROM233は、制御装置23全体を制御するためのシステムプログラムなどを記憶する記憶装置である。ROM233は、コンピュータ読み取り可能な記憶媒体である。 ROM 233 is a storage device that stores system programs and the like for controlling the entire control device 23. ROM 233 is a computer-readable storage medium.
 RAM234は、各種データを一時的に格納する記憶装置である。RAM234は、ハードウェアプロセッサ231が各種データを処理するための作業領域として機能する。 RAM 234 is a storage device that temporarily stores various data. RAM 234 functions as a working area for the hardware processor 231 to process various data.
 不揮発性メモリ235は、制御装置23の電源が切られ、制御装置23に電力が供給されていない状態でもデータを保持する記憶装置である。不揮発性メモリ235は、例えば、動作プログラム、および各種パラメータを記憶する。不揮発性メモリ235は、コンピュータ読み取り可能な記憶媒体である。不揮発性メモリ235は、例えば、バッテリでバックアップされたメモリ、または、SSD(Solid State Drive)である。 The non-volatile memory 235 is a storage device that retains data even when the control device 23 is turned off and no power is being supplied to the control device 23. The non-volatile memory 235 stores, for example, operating programs and various parameters. The non-volatile memory 235 is a computer-readable storage medium. The non-volatile memory 235 is, for example, a battery-backed memory or an SSD (Solid State Drive).
 制御装置23は、さらに、軸制御回路236と、第1のインタフェース237と、第2のインタフェース238と、第3のインタフェース239とを備える。 The control device 23 further includes an axis control circuit 236, a first interface 237, a second interface 238, and a third interface 239.
 軸制御回路236は、産業機械24のサーボモータ(不図示)を制御する回路である。軸制御回路236は、ハードウェアプロセッサ231からの制御指令を受けてサーボモータを駆動させるための各種指令をサーボモータに送る。軸制御回路236は、例えば、サーボモータのトルクを制御するトルクコマンドをサーボモータに送る。 The axis control circuit 236 is a circuit that controls a servo motor (not shown) of the industrial machine 24. The axis control circuit 236 receives control commands from the hardware processor 231 and sends various commands to the servo motor for driving the servo motor. For example, the axis control circuit 236 sends a torque command to the servo motor for controlling the torque of the servo motor.
 産業機械24は、工場などで用いられる機械である。産業機械24は、例えば、マニピュレータなどの産業用ロボット、および、3次元スキャナ加工機である。産業機械24が産業用ロボットである場合、スキャナ21は、例えば、産業用ロボットのアームの先端に取り付けられる。産業機械24が3次元スキャナ加工機である場合、スキャナ21は、加工機の先端に取り付けられる。 Industrial machinery 24 is machinery used in factories and the like. Industrial machinery 24 is, for example, an industrial robot such as a manipulator, and a three-dimensional scanner processing machine. When industrial machinery 24 is an industrial robot, scanner 21 is attached, for example, to the tip of an arm of the industrial robot. When industrial machinery 24 is a three-dimensional scanner processing machine, scanner 21 is attached to the tip of the processing machine.
 第1のインタフェース237は、バス232とスキャナ21とを接続する。第1のインタフェース237は、例えば、ハードウェアプロセッサ231によって処理された各種指令、または各種データをスキャナ21に送る。 The first interface 237 connects the bus 232 and the scanner 21. The first interface 237 sends, for example, various commands or various data processed by the hardware processor 231 to the scanner 21.
 第2のインタフェース238は、バス232と第1のセンサ22とを接続する。第2のインタフェース238は、例えば、第1のセンサ22が取得した情報をハードウェアプロセッサ231、RAM234などに送る。 The second interface 238 connects the bus 232 and the first sensor 22. The second interface 238 sends, for example, information acquired by the first sensor 22 to the hardware processor 231, RAM 234, etc.
 第3のインタフェース239は、バス232と第2のセンサ25とを接続する。第3のインタフェース239は、例えば、第2のセンサ25が取得した情報をハードウェアプロセッサ231、RAM234などに送る。第2のセンサ25については、後に詳しく説明する。 The third interface 239 connects the bus 232 and the second sensor 25. The third interface 239, for example, sends information acquired by the second sensor 25 to the hardware processor 231, the RAM 234, etc. The second sensor 25 will be described in detail later.
 図5は、制御装置23の機能の一例を示すブロック図である。制御装置23は、受信部23aと、算出部23bと、制御部23cと、を備えている。 FIG. 5 is a block diagram showing an example of the functions of the control device 23. The control device 23 includes a receiving unit 23a, a calculating unit 23b, and a control unit 23c.
 受信部23aは、例えば、ネットワークを介して、第1のセンサ22と有線接続、または無線接続される。受信部23aは、第1のセンサ22からガイド光に関する情報を受信する。 The receiver 23a is connected to the first sensor 22 by wire or wirelessly, for example, via a network. The receiver 23a receives information about the guide light from the first sensor 22.
 算出部23bは、受信部23aによって受信された第1のセンサ22からのガイド光に関する情報に基づいて、スキャナ21と対象物Oとの間の距離D1を算出する。スキャナ21と対象物Oとの間の距離D1とは、例えば、出射位置P1と対象物Oの表面との間の距離である。すなわち、スキャナ21と対象物Oとの間の距離D1とは、スキャナ21の出射位置P1から対象物Oに対して垂線を描いた時の、垂線と対象物Oとの交点と出射位置P1とを結ぶ線分の長さである。 The calculation unit 23b calculates the distance D1 between the scanner 21 and the object O based on information about the guide light from the first sensor 22 received by the receiving unit 23a. The distance D1 between the scanner 21 and the object O is, for example, the distance between the emission position P1 and the surface of the object O. In other words, the distance D1 between the scanner 21 and the object O is the length of the line segment connecting the intersection of the perpendicular line and the object O to the emission position P1 when a perpendicular line is drawn from the emission position P1 of the scanner 21 to the object O.
 制御部23cは、スキャナ21および産業機械24を制御する。制御部23cは、算出部23bによって算出されたスキャナ21と対象物Oとの間の距離D1に基づいて、産業機械24を制御する。制御部23cは、例えば、スキャナ21と対象物Oとの間の距離D1があらかじめ定められた基準距離になるように、産業機械24を制御する。 The control unit 23c controls the scanner 21 and the industrial machine 24. The control unit 23c controls the industrial machine 24 based on the distance D1 between the scanner 21 and the object O calculated by the calculation unit 23b. The control unit 23c controls the industrial machine 24, for example, so that the distance D1 between the scanner 21 and the object O becomes a predetermined reference distance.
 スキャナ21と対象物Oとの間の距離D1が算出された場合、算出部23bは、さらに、ガイド光が照射される対象物O上の任意の位置と出射位置P1との間の距離をガイド光の出射角度θに基づいて算出することができる。 When the distance D1 between the scanner 21 and the object O is calculated, the calculation unit 23b can further calculate the distance between an arbitrary position on the object O where the guide light is irradiated and the emission position P1 based on the emission angle θ of the guide light.
 図6は、ガイド光が照射される対象物O上の任意の位置P4と出射位置P1との間の距離の算出原理を説明するための図である。スキャナ21と対象物Oとの間の距離D1がすでに算出されている場合、ガイド光が照射される対象物O上の任意の位置P4と出射位置P1との間の距離D2は、次の数2式によって算出することができる。なお、αは、出射位置P1から対象物Oに対して描いた垂線とガイド光の光軸との間の角度である。 FIG. 6 is a diagram for explaining the principle of calculating the distance between an arbitrary position P4 on the object O onto which the guide light is irradiated and the emission position P1. When the distance D1 between the scanner 21 and the object O has already been calculated, the distance D2 between an arbitrary position P4 on the object O onto which the guide light is irradiated and the emission position P1 can be calculated by the following formula 2. Note that α is the angle between the perpendicular line drawn from the emission position P1 to the object O and the optical axis of the guide light.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 測定システム2は、さらに、上述したように第2のセンサ25を有している。第2のセンサ25は、ガイド光を検出するセンサである。第2のセンサ25は、対象物Oで反射したガイド光を受ける。第2のセンサ25は、例えば、フォトセンサである。算出部23bは、ガイド光を受けた第2のセンサ25からの情報に基づいて、スキャナ21と対象物Oとの平行度を算出する。 The measurement system 2 further includes the second sensor 25 as described above. The second sensor 25 is a sensor that detects the guide light. The second sensor 25 receives the guide light reflected by the object O. The second sensor 25 is, for example, a photosensor. The calculation unit 23b calculates the parallelism between the scanner 21 and the object O based on information from the second sensor 25 that has received the guide light.
 図7は、スキャナ21の内部構造の一例を説明するための図である。なお、図7では、第1のミラー213b、および駆動機構などの図示は、省略されている。 FIG. 7 is a diagram for explaining an example of the internal structure of the scanner 21. Note that the first mirror 213b and the driving mechanism are omitted from FIG. 7.
 スキャナ21は、第2のミラー213dを基準として対象物Oが配置される位置とは反対側の位置に第2のセンサ25を有する。すなわち、対象物Oと第2のセンサ25の間に第2のミラー213dが配置される。 The scanner 21 has a second sensor 25 at a position opposite the position where the object O is placed, with the second mirror 213d as a reference. In other words, the second mirror 213d is placed between the object O and the second sensor 25.
 第2のミラー213dは、ガイド光を反射させる面と筐体の底板との間の角度が45°になるように配置される。また、スキャナ21は、第2のミラー213dと第2のセンサ25との間に、1または複数の第1のアパーチャ214を有する。スキャナ21が複数の第1のアパーチャ214を有する場合、複数の第1のアパーチャ214は、互いに平行に配置される。 The second mirror 213d is positioned so that the angle between the surface that reflects the guide light and the bottom plate of the housing is 45°. The scanner 21 also has one or more first apertures 214 between the second mirror 213d and the second sensor 25. When the scanner 21 has multiple first apertures 214, the multiple first apertures 214 are positioned parallel to each other.
 第2のセンサ25は、対象物Oで反射したガイド光を受ける。第2のセンサ25は、受けたガイド光に関する情報を制御装置23に送る。ここで、ガイド光に関する情報は、例えば、ガイド光の強度に関する強度情報である。光の強度とは、光の明るさの度合いを表す指標である。 The second sensor 25 receives the guide light reflected by the object O. The second sensor 25 sends information about the received guide light to the control device 23. Here, the information about the guide light is, for example, intensity information about the intensity of the guide light. Light intensity is an index that represents the degree of brightness of light.
 レーザ発振器1から供給されたガイド光は、レンズ部211a、集光レンズ212を透過し、第1のミラー213bに反射して、第2のミラー213dに導かれる。第2のミラー213dに導かれたガイド光の一部は、第2のミラー213dで反射して、対象物Oに照射される。対象物Oの照射されたガイド光は、対象物Oの表面で反射し、再び、第2のミラー213dに導かれる。 The guide light supplied from the laser oscillator 1 passes through the lens section 211a and the focusing lens 212, is reflected by the first mirror 213b, and is guided to the second mirror 213d. A portion of the guide light guided to the second mirror 213d is reflected by the second mirror 213d and irradiated onto the object O. The guide light irradiated onto the object O is reflected by the surface of the object O, and is again guided to the second mirror 213d.
 第2のミラー213dに導かれたガイド光の一部は、第2のミラー213dを透過する。第2のミラー213dを透過して第1のアパーチャ214を通過したガイド光は、第2のセンサ25に入射する。第2のセンサ25は、受けたガイド光に関する情報を制御装置23に送る。 A portion of the guide light guided to the second mirror 213d passes through the second mirror 213d. The guide light that passes through the second mirror 213d and the first aperture 214 is incident on the second sensor 25. The second sensor 25 sends information about the received guide light to the control device 23.
 受信部23aは、第2のセンサ25からガイド光に関する情報を受信する。算出部23bは、第2のセンサ25からのガイド光に関する情報に基づいて、スキャナ21と対象物Oとの平行度を算出する。スキャナ21と対象物Oとの平行度とは、例えば、スキャナ21の筐体の底板と対象物Oの表面との平行度である。 The receiver 23a receives information about the guide light from the second sensor 25. The calculator 23b calculates the parallelism between the scanner 21 and the object O based on the information about the guide light from the second sensor 25. The parallelism between the scanner 21 and the object O is, for example, the parallelism between the bottom plate of the housing of the scanner 21 and the surface of the object O.
 スキャナ21と対象物Oの表面との平行度が高い場合、第1のアパーチャ214を通過するガイド光の強度が強くなる。その結果、第2のセンサ25が受光するガイド光の強度は強くなる。 When the parallelism between the scanner 21 and the surface of the object O is high, the intensity of the guide light passing through the first aperture 214 becomes stronger. As a result, the intensity of the guide light received by the second sensor 25 becomes stronger.
 一方、スキャナ21と対象物Oの表面との平行度が低い場合、第1のアパーチャ214を通過するガイド光の強度は弱くなる。その結果、第2のセンサ25が受光するガイド光の強度は弱くなる。つまり、算出部23bは、第2のセンサ25が受けたガイド光の強度と、スキャナ21と対象物Oとの平行度との相関に基づいて、スキャナ21と対象物Oとの平行度を算出する。 On the other hand, if the parallelism between the scanner 21 and the surface of the object O is low, the intensity of the guide light passing through the first aperture 214 will be weak. As a result, the intensity of the guide light received by the second sensor 25 will be weak. In other words, the calculation unit 23b calculates the parallelism between the scanner 21 and the object O based on the correlation between the intensity of the guide light received by the second sensor 25 and the parallelism between the scanner 21 and the object O.
 なお、スキャナ21と対象物Oとの平行度と、ガイド光の光軸と対象物Oの表面との直角度との間には、正の相関がある。したがって、算出部23bは、スキャナ21と対象物Oとの平行度に代えて、ガイド光と対象物Oの表面との直角度を算出してもよい。 Note that there is a positive correlation between the parallelism between the scanner 21 and the object O and the perpendicularity between the optical axis of the guide light and the surface of the object O. Therefore, the calculation unit 23b may calculate the perpendicularity between the guide light and the surface of the object O instead of the parallelism between the scanner 21 and the object O.
 次に、測定システム2で実行される処理の流れの一例について説明する。上記説明では、まず、スキャナ21と対象物Oとの間の距離D1の算出について、次に、スキャナ21と対象物Oとの平行度の算出について言及した。しかし、測定システム2では、次に説明するように、まず、スキャナ21と対象物Oとの平行度の測定が行われ、その後に、スキャナ21と対象物Oとの距離の測定が行われる。 Next, an example of the flow of processing executed by the measurement system 2 will be described. In the above explanation, first, the calculation of the distance D1 between the scanner 21 and the object O was mentioned, and then the calculation of the parallelism between the scanner 21 and the object O was mentioned. However, in the measurement system 2, as will be explained below, first the parallelism between the scanner 21 and the object O is measured, and then the distance between the scanner 21 and the object O is measured.
 図8は、測定システム2で実行される処理の流れの一例を示すフローチャートである。まず、制御部23cが、スキャナ21の出射位置P1が対象物Oの表面と対向する所定の位置まで、スキャナ21を移動させる(ステップS1)。制御部23cは、例えば、所定の動作プログラムに基づいて産業機械24を制御し、スキャナ21を所定の位置まで移動させる。制御部23cは、作業者の手動操作に基づいて、スキャナ21を所定の位置まで移動させてもよい。 FIG. 8 is a flowchart showing an example of the flow of processing executed by the measurement system 2. First, the control unit 23c moves the scanner 21 to a predetermined position where the emission position P1 of the scanner 21 faces the surface of the target object O (step S1). The control unit 23c controls the industrial machine 24 based on a predetermined operation program, for example, to move the scanner 21 to the predetermined position. The control unit 23c may also move the scanner 21 to the predetermined position based on manual operation by an operator.
 次に、スキャナ21と対象物Oとの平行度が測定される(ステップS2)。具体的には、まず、制御部23cが、スキャナ21を制御し、対象物Oに向けてガイド光を照射させる。次に、受信部23aが、第2のセンサ25からガイド光に関する情報を受信する。次に、算出部23bは、ガイド光を受けた第2のセンサ25からのガイド光に関する情報に基づいて、スキャナ21と対象物Oとの平行度を算出する。 Next, the parallelism between the scanner 21 and the object O is measured (step S2). Specifically, first, the control unit 23c controls the scanner 21 to irradiate the guide light toward the object O. Next, the receiving unit 23a receives information about the guide light from the second sensor 25. Next, the calculation unit 23b calculates the parallelism between the scanner 21 and the object O based on the information about the guide light from the second sensor 25 that has received the guide light.
 算出部23bによって算出された平行度があらかじめ定められた条件を満たさない場合(ステップS3においてNoの場合)、制御部23cは、例えば、動作プログラムに基づいて産業機械24を制御し、スキャナ21と対象物Oとの平行度を調整する(ステップS4)。 If the parallelism calculated by the calculation unit 23b does not satisfy the predetermined condition (No in step S3), the control unit 23c controls the industrial machine 24, for example, based on an operating program, and adjusts the parallelism between the scanner 21 and the target object O (step S4).
 算出部23bによって算出された平行度があらかじめ定められた条件を満たす場合(ステップS3においてYesの場合)、制御部23cによって平行度の調整は行われない。 If the parallelism calculated by the calculation unit 23b satisfies the predetermined condition (Yes in step S3), the parallelism is not adjusted by the control unit 23c.
 なお、一度、平行度の調整が行われた後に、あらかじめ定められた条件が満たされるまで、平行度の測定と条件が満たされるか否かの判定とが繰り返されるようにしてもよい。 In addition, after the parallelism has been adjusted once, the measurement of the parallelism and the determination of whether or not the predetermined condition is satisfied may be repeated until the predetermined condition is satisfied.
 次に、スキャナ21と対象物Oとの間の距離D1が測定される(ステップS5)。具体的には、まず、制御部23cが、スキャナ21を制御し、対象物Oに向けてガイド光を照射させる。次に、受信部23aが、第1のセンサ22からガイド光に関する情報を受信する。次に、算出部23bは、ガイド光を受けた第1のセンサ22からのガイド光に関する情報に基づいて、スキャナ21と対象物Oとの間の距離D1を算出する。 Next, the distance D1 between the scanner 21 and the object O is measured (step S5). Specifically, first, the control unit 23c controls the scanner 21 to irradiate the guide light toward the object O. Next, the receiving unit 23a receives information about the guide light from the first sensor 22. Next, the calculation unit 23b calculates the distance D1 between the scanner 21 and the object O based on the information about the guide light from the first sensor 22 that has received the guide light.
 算出部23bによって算出された距離D1があらかじめ定められた条件を満たさない場合(ステップS6においてNoの場合)、制御部23cは、例えば、動作プログラムに基づいて産業機械24を制御し、スキャナ21と対象物Oとの間の距離D1を調整する(ステップS7)。 If the distance D1 calculated by the calculation unit 23b does not satisfy the predetermined condition (No in step S6), the control unit 23c controls the industrial machine 24, for example, based on an operation program, and adjusts the distance D1 between the scanner 21 and the target object O (step S7).
 算出部23bによって算出された距離D1があらかじめ定められた条件を満たす場合(ステップS6においてYesの場合)、制御部23cによって距離の調整は行われず、当該処理は終了する。 If the distance D1 calculated by the calculation unit 23b satisfies the predetermined condition (Yes in step S6), the control unit 23c does not adjust the distance and the process ends.
 なお、距離の調整が行われた後に、あらかじめ定められた条件が満たされるまで、距離の測定と条件が満たされるか否かの判定とが繰り返されるようにしてもよい。 In addition, after the distance is adjusted, the distance measurement and the determination of whether or not the predetermined condition is satisfied may be repeated until the predetermined condition is satisfied.
 なお、平行度の測定および調整、ならびに距離の測定および調整が終了した後、制御部23cは、動作プログラムに基づいて、産業機械24およびスキャナ21を動作させ、対象物Oの加工を行ってもよい。 After the parallelism measurement and adjustment, and the distance measurement and adjustment are completed, the control unit 23c may operate the industrial machine 24 and the scanner 21 based on the operation program to process the object O.
〈第2の実施形態〉
 上記第1の実施形態では、第1のセンサ22が取得する入射位置P3に関する情報に基づいて出射位置P1と入射位置P3との間の距離が求められ、さらに、あらかじめ定められたガイド光の出射角度θを用いてスキャナ21と対象物Oとの間の距離D1が算出される。
Second Embodiment
In the above first embodiment, the distance between the exit position P1 and the entrance position P3 is obtained based on information about the entrance position P3 acquired by the first sensor 22, and further, the distance D1 between the scanner 21 and the target object O is calculated using a predetermined exit angle θ of the guide light.
 しかし、受光部のあらかじめ定められた位置が入射位置P3となるように、ガイド光の出射角度θを調整するようにしてもよい。すなわち、ガイド光が第1のセンサ22の受光部のあらかじめ定められた位置で受光されるように、制御装置23がスキャナ21のミラーの回転角度を調整してもよい。 However, the emission angle θ of the guide light may be adjusted so that a predetermined position of the light receiving section becomes the incident position P3. In other words, the control device 23 may adjust the rotation angle of the mirror of the scanner 21 so that the guide light is received at a predetermined position of the light receiving section of the first sensor 22.
 この場合、受信部23aは、スキャナ21からガイド光の出射角度θに関する情報を取得する。この場合、出射角度θとは、ガイド光が受光部のあらかじめ定められた位置に入射されるように調整されたときのガイド光の出射角度である。 In this case, the receiver 23a acquires information about the emission angle θ of the guide light from the scanner 21. In this case, the emission angle θ is the emission angle of the guide light when the guide light is adjusted so that it is incident on a predetermined position of the light receiver.
 算出部23bは、出射角度θ、および、出射位置P1と入射位置P3との間の距離dに基づいて、スキャナ21と対象物Oとの間の距離D1を算出する。 The calculation unit 23b calculates the distance D1 between the scanner 21 and the object O based on the emission angle θ and the distance d between the emission position P1 and the incidence position P3.
〈第3の実施形態〉
 上記第1の実施形態では、算出部23bは、ガイド光を受けた第2のセンサ25からの情報に基づいて、スキャナ21と対象物Oとの平行度を算出する。一方、本実施形態の測定システム2は、第2のセンサ25の代わりに、スキャナ21と対象物Oとの平行度を検出する検出器を備える。
Third embodiment
In the first embodiment, the calculation unit 23b calculates the parallelism between the scanner 21 and the object O based on information from the second sensor 25 that receives the guide light. On the other hand, the measurement system 2 of the present embodiment includes a detector that detects the parallelism between the scanner 21 and the object O, instead of the second sensor 25.
 図9は、スキャナ21に対する検出器の取り付け態様の一例を説明するための図である。検出器26は、例えば、ガイド光の出射位置P1に隣接する位置に取り付けられる。 FIG. 9 is a diagram for explaining an example of a manner in which the detector is attached to the scanner 21. The detector 26 is attached, for example, at a position adjacent to the emission position P1 of the guide light.
 図10は、検出器26の内部構造の一例を説明するための図である。検出器26は、光源261と、第3のミラー262と、1または複数の第2のアパーチャ263と、第3のセンサ264とを備える。 FIG. 10 is a diagram for explaining an example of the internal structure of the detector 26. The detector 26 includes a light source 261, a third mirror 262, one or more second apertures 263, and a third sensor 264.
 光源261は、第3のミラー262に向けて光を照射する。光源261は、例えば、赤色レーザ光を発する。光源261が光を発する方向は、スキャナ21の筐体の底板と平行な方向である。 The light source 261 emits light toward the third mirror 262. The light source 261 emits, for example, red laser light. The direction in which the light source 261 emits light is parallel to the bottom plate of the housing of the scanner 21.
 第3のミラー262は、光源261から照射された光の一部を透過させ、他の一部を反射させるハーフミラーである。第3のミラー262は、光源261から照射された光を反射させる面とスキャナ21の筐体の底板との間の角度が45°になるように配置される。 The third mirror 262 is a half mirror that transmits part of the light emitted from the light source 261 and reflects the other part. The third mirror 262 is positioned so that the angle between the surface that reflects the light emitted from the light source 261 and the bottom plate of the housing of the scanner 21 is 45°.
 第3のセンサ264は、光を検出するセンサである。第3のセンサ264は、対象物Oで反射した光を受ける。第3のセンサ264は、受けた光に関する情報を制御装置23に送る。ここで、光に関する情報は、例えば、光の強度に関する強度情報である。検出器26は、第3のミラー262を基準として対象物Oが配置される位置の反対側の位置に第3のセンサ264を有する。すなわち、対象物Oと第3のセンサ264との間に第3のミラー262が配置される。 The third sensor 264 is a sensor that detects light. The third sensor 264 receives light reflected by the object O. The third sensor 264 sends information about the received light to the control device 23. Here, the information about the light is, for example, intensity information about the intensity of the light. The detector 26 has the third sensor 264 at a position opposite the position where the object O is placed, with the third mirror 262 as a reference. In other words, the third mirror 262 is placed between the object O and the third sensor 264.
 また、検出器26は、第3のミラー262と第3のセンサ264との間に、1または複数の第2のアパーチャ263を有する。検出器26が複数の第2のアパーチャ263を有する場合、複数の第2のアパーチャ263は、互いに平行に配置される。 The detector 26 also has one or more second apertures 263 between the third mirror 262 and the third sensor 264. When the detector 26 has multiple second apertures 263, the multiple second apertures 263 are arranged parallel to each other.
 光源261が発する光は、第3のミラー262に導かれる。第3のミラー262に導かれた光の一部は、第3のミラー262で反射して、対象物Oに照射される。すなわち、光源261は、第3のミラー262を介して、対象物Oに向けて光を照射する。対象物Oに照射された光は、対象物Oの表面で反射し、再び、第3のミラー262に導かれる。 Light emitted by light source 261 is guided to third mirror 262. A portion of the light guided to third mirror 262 is reflected by third mirror 262 and irradiated to object O. That is, light source 261 irradiates light toward object O via third mirror 262. The light irradiated to object O is reflected by the surface of object O and is again guided to third mirror 262.
 第3のミラー262に導かれた光の一部は、第3のミラー262を透過する。第3のミラー262を透過して第2のアパーチャ263を通過した光は、第3のセンサ264に入射する。 A portion of the light guided to the third mirror 262 passes through the third mirror 262. The light that passes through the third mirror 262 and the second aperture 263 is incident on the third sensor 264.
 受信部23aは、第3のセンサ264から光に関する情報を受信する。算出部23bは、光を受けた第3のセンサ264からの情報に基づいて、スキャナ21と対象物Oとの平行度を算出する。 The receiving unit 23a receives information about the light from the third sensor 264. The calculating unit 23b calculates the parallelism between the scanner 21 and the object O based on the information from the third sensor 264 that has received the light.
 以上説明したように、本開示の測定システム2は、ガイド光を所定の出射位置P1から対象物Oに向けて照射するスキャナ21と、対象物Oで反射するガイド光を受ける第1のセンサ22と、第1のセンサ22からのガイド光に関する情報に基づいて、スキャナ21と対象物Oとの間の距離D1を算出する算出部23bと、を備える。 As described above, the measurement system 2 of the present disclosure includes a scanner 21 that irradiates guide light from a predetermined emission position P1 toward an object O, a first sensor 22 that receives the guide light reflected by the object O, and a calculation unit 23b that calculates a distance D1 between the scanner 21 and the object O based on information about the guide light from the first sensor 22.
 そのため、測定システム2は、自動で距離の測定および距離の調整を行うことができる。例えば、作業者がスケールの目盛り、または距離計に表示される数値を目視で確認しながら距離の測定を行う場合と比較して、測定システム2は、作業者の負荷を軽減することができる。 As a result, the measurement system 2 can automatically measure distance and adjust the distance. For example, compared to a case where an operator measures distance while visually checking the graduations on a scale or the numbers displayed on a rangefinder, the measurement system 2 can reduce the burden on the operator.
 また、測定システム2は、作業者がスケールの目盛り、または距離計に表示される数値を目視で確認しながら距離の測定を行う場合と比較して、距離の測定精度を向上させることができる。 In addition, the measurement system 2 can improve the accuracy of distance measurement compared to when an operator measures distance while visually checking the graduations on a scale or the numbers displayed on a rangefinder.
 また、測定システム2は、ガイド光を用いて距離を測定しているため、距離を測定するための他の光源を備える必要がない。 In addition, since the measurement system 2 measures distance using guide light, there is no need to provide another light source for measuring distance.
 また、ガイド光に関する情報は、第1のセンサ22が受けるガイド光の位置に関する位置情報である。すなわち、第1のセンサ22は、受光部のどの位置にガイド光が入射するかを示す位置情報を取得する。この場合、ガイド光が受光部に受光される位置であれば、距離の測定前にスキャナはどの位置に位置決めされてもよい。そのため、距離の測定前のスキャナの位置決めが容易になる。 The information about the guide light is position information about the position of the guide light received by the first sensor 22. That is, the first sensor 22 obtains position information indicating at which position in the light receiving section the guide light is incident. In this case, the scanner may be positioned at any position before measuring the distance, so long as the guide light is received by the light receiving section. This makes it easier to position the scanner before measuring the distance.
 また、スキャナ21は、所定の出射位置P1から出射するガイド光の出射角度θを変更するミラーを備え、算出部23bは、出射角度θに基づいて、距離を算出する。この場合、スキャナ21は、第1のセンサ22の受光部のあらかじめ定められた位置が入射位置P3となるようにガイド光の出射角度θを調整する。そのため、測定システム2の測定範囲を大きくすることができる。 The scanner 21 also includes a mirror that changes the emission angle θ of the guide light emitted from a predetermined emission position P1, and the calculation unit 23b calculates the distance based on the emission angle θ. In this case, the scanner 21 adjusts the emission angle θ of the guide light so that the predetermined position of the light receiving unit of the first sensor 22 becomes the incident position P3. This allows the measurement range of the measurement system 2 to be increased.
 また、算出部23bは、さらに、ガイド光が照射される対象物O上の任意の位置P4と出射位置P1との間の距離を出射角度αに基づいて算出する。したがって、制御部23cは、レーザ光が照射される対象物O上の任意の位置P4にレーザ光の焦点を容易に合わせることができる。 The calculation unit 23b further calculates the distance between an arbitrary position P4 on the object O onto which the guide light is irradiated and the emission position P1 based on the emission angle α. Therefore, the control unit 23c can easily focus the laser light on an arbitrary position P4 on the object O onto which the laser light is irradiated.
 また、測定システム2は、対象物Oで反射したガイド光を受ける第2のセンサ25をさらに備え、算出部23bは、ガイド光を受けた第2のセンサ25からの情報に基づいて、スキャナ21と対象物Oとの平行度を算出する。また、第2のセンサ25からの情報は、ガイド光の強度に関する強度情報である。 The measurement system 2 further includes a second sensor 25 that receives the guide light reflected by the object O, and the calculation unit 23b calculates the parallelism between the scanner 21 and the object O based on information from the second sensor 25 that receives the guide light. The information from the second sensor 25 is intensity information related to the intensity of the guide light.
 そのため、作業者が水準器の目盛りを目視で確認しながら平行度の測定を行う場合と比較して、測定システム2は、作業者の負荷を軽減することができる。また、作業者が水準器の目盛りを目視で確認しながら平行度の測定を行う場合と比較して、測定システム2は、平行度の測定精度を向上させることができる。 As a result, measurement system 2 can reduce the burden on the worker compared to when an operator measures parallelism while visually checking the scale on a spirit level. Also, measurement system 2 can improve the measurement accuracy of parallelism compared to when an operator measures parallelism while visually checking the scale on a spirit level.
 また、対象物Oに向けて光を照射する光源261と、対象物Oで反射した光を受ける第3のセンサ264と、をさらに備え、算出部23bは、光を受けた第3のセンサ264からの情報に基づいて、スキャナ21と対象物Oとの平行度を算出する。また、第3のセンサ264からの情報は、光の強度に関する強度情報である。 The scanner 21 further includes a light source 261 that irradiates light toward the object O, and a third sensor 264 that receives the light reflected by the object O. The calculation unit 23b calculates the parallelism between the scanner 21 and the object O based on information from the third sensor 264 that receives the light. The information from the third sensor 264 is intensity information related to the intensity of the light.
 そのため、作業者が水準器の目盛りを目視で確認しながら平行度の測定を行う場合と比較して、測定システム2は、作業者の負荷を軽減することができる。また、作業者が水準器の目盛りを目視で確認しながら平行度の測定を行う場合と比較して、測定システム2は、平行度の測定精度を向上させることができる。 As a result, measurement system 2 can reduce the burden on the worker compared to when an operator measures parallelism while visually checking the scale on a spirit level. Also, measurement system 2 can improve the measurement accuracy of parallelism compared to when an operator measures parallelism while visually checking the scale on a spirit level.
 また、測定システム2は、産業機械24をさらに備え、スキャナ21は、産業機械24に取り付けられる。また、産業機械24は、産業用ロボットである。したがって、スキャナ21が産業機械24、特に、産業用ロボットに取り付けられた場合において、スキャナ21と対象物Oとの間の距離D1、およびスキャナ21と対象物Oとの平行度を自動で測定することができる。 The measurement system 2 further includes an industrial machine 24, and the scanner 21 is attached to the industrial machine 24. The industrial machine 24 is an industrial robot. Therefore, when the scanner 21 is attached to the industrial machine 24, particularly an industrial robot, the distance D1 between the scanner 21 and the object O, and the parallelism between the scanner 21 and the object O can be automatically measured.
 本開示について詳述したが、本開示は上述した個々の実施形態に限定されるものではない。これらの実施形態は、本開示の要旨を逸脱しない範囲で、または、請求の範囲に記載された内容とその均等物から導き出される本開示の要旨を逸脱しない範囲で、種々の追加、置き換え、変更、部分的削除等が可能である。また、これらの実施形態は、組み合わせて実施することもできる。 Although the present disclosure has been described in detail, the present disclosure is not limited to the individual embodiments described above. Various additions, substitutions, modifications, partial deletions, etc. are possible to these embodiments without departing from the gist of the present disclosure, or without departing from the gist of the present disclosure derived from the contents of the claims and their equivalents. These embodiments can also be implemented in combination.
 以下に、本開示の実施形態に係る付記を示す。
付記[1]
 ガイド光を所定の出射位置から対象物に向けて照射するスキャナと、前記対象物で反射する前記ガイド光を受ける第1のセンサと、前記第1のセンサからの前記ガイド光に関する情報に基づいて、前記スキャナと前記対象物との間の距離を算出する算出部と、を備える測定システム。
付記[2]
 前記ガイド光に関する前記情報は、前記第1のセンサが受ける前記ガイド光の位置に関する位置情報である付記[1]に記載の測定システム。
付記[3]
 前記スキャナは、前記所定の出射位置から出射する前記ガイド光の出射角度を変更するミラーを備え、前記算出部は、前記出射角度に基づいて、前記距離を算出する付記[1]または[2]に記載の測定システム。
付記[4]
 前記算出部は、さらに、前記ガイド光が照射される前記対象物上の位置と前記出射位置との間の距離を前記出射角度に基づいて算出する付記[3]に記載の測定システム。
付記[5]
 前記対象物で反射した前記ガイド光を受ける第2のセンサをさらに備え、前記算出部は、前記ガイド光を受けた前記第2のセンサからの情報に基づいて、前記スキャナと前記対象物との平行度を算出する付記[1]~[4]のいずれかに記載の測定システム。
付記[6]
 前記第2のセンサからの前記情報は、前記ガイド光の強度に関する強度情報である付記[5]に記載の測定システム。
付記[7]
 前記対象物に向けて光を照射する光源と、前記対象物で反射した前記光を受ける第3のセンサと、をさらに備え、前記算出部は、前記光を受けた前記第3のセンサからの情報に基づいて、前記スキャナと前記対象物との平行度を算出する付記[1]~[4]のいずれかに記載の測定システム。
付記[8]
 前記第3のセンサからの前記情報は、前記光の強度に関する強度情報である付記[7]に記載の測定システム。
付記[9]
 産業機械をさらに備え、前記スキャナは、前記産業機械に取り付けられる付記[1]~[8]のいずれかに記載の測定システム。
付記[10]
 前記産業機械は、産業用ロボットである付記[9]に記載の測定システム。
付記[11]
 ガイド光を所定の出射位置から対象物に向けて照射することと、前記対象物で反射する前記ガイド光を受けることと、前記ガイド光に関する情報に基づいて、前記スキャナと前記対象物との間の距離を算出することと、を含む測定方法。
Below, notes relating to the embodiments of the present disclosure are provided.
Appendix [1]
A measurement system comprising: a scanner that irradiates guide light from a predetermined emission position toward an object; a first sensor that receives the guide light reflected by the object; and a calculation unit that calculates a distance between the scanner and the object based on information about the guide light from the first sensor.
Appendix [2]
The measurement system according to claim 1, wherein the information regarding the guide light is position information regarding a position of the guide light received by the first sensor.
Appendix [3]
The measurement system according to claim 1 or 2, wherein the scanner includes a mirror that changes an emission angle of the guide light emitted from the predetermined emission position, and the calculation unit calculates the distance based on the emission angle.
Appendix [4]
The measurement system according to claim 3, wherein the calculation unit further calculates a distance between a position on the object where the guide light is irradiated and the emission position based on the emission angle.
Appendix [5]
The measurement system of any of Appendices [1] to [4], further comprising a second sensor that receives the guide light reflected by the object, wherein the calculation unit calculates a parallelism between the scanner and the object based on information from the second sensor that has received the guide light.
Appendix [6]
The measurement system according to claim 5, wherein the information from the second sensor is intensity information regarding the intensity of the guide light.
Appendix [7]
The measurement system of any of appendices [1] to [4] further includes a light source that irradiates light toward the object, and a third sensor that receives the light reflected by the object, wherein the calculation unit calculates the parallelism between the scanner and the object based on information from the third sensor that receives the light.
Appendix [8]
The measurement system of claim 7, wherein the information from the third sensor is intensity information regarding the intensity of the light.
Appendix [9]
The measurement system according to any one of appendices [1] to [8], further comprising an industrial machine, wherein the scanner is attached to the industrial machine.
Appendix [10]
The measurement system according to claim [9], wherein the industrial machine is an industrial robot.
Appendix [11]
A measurement method including: irradiating a guide light from a predetermined emission position toward an object; receiving the guide light reflected by the object; and calculating a distance between the scanner and the object based on information about the guide light.
  1       レーザ発振器
  2       測定システム
  21      スキャナ
  211     焦点制御機構
  211a    レンズ部
  211b    駆動部
  212     集光レンズ
  213     角度制御機構
  213a    第1の駆動機構
  213b    第1のミラー
  213c    第2の駆動機構
  213d    第2のミラー
  214     第1のアパーチャ
  22      第1のセンサ
  23      制御装置
  231     ハードウェアプロセッサ
  232     バス
  233     ROM
  234     RAM
  235     不揮発性メモリ
  236     軸制御回路
  237     第1のインタフェース
  238     第2のインタフェース
  239     第3のインタフェース
  23a     受信部
  23b     算出部
  23c     制御部
  24      産業機械
  25      第2のセンサ
  26      検出器
  261     光源
  262     第3のミラー
  263     第2のアパーチャ
  264     第3のセンサ
REFERENCE SIGNS LIST 1 Laser oscillator 2 Measurement system 21 Scanner 211 Focus control mechanism 211a Lens section 211b Driving section 212 Condenser lens 213 Angle control mechanism 213a First driving mechanism 213b First mirror 213c Second driving mechanism 213d Second mirror 214 First aperture 22 First sensor 23 Control device 231 Hardware processor 232 Bus 233 ROM
234 RAM
235 Non-volatile memory 236 Axis control circuit 237 First interface 238 Second interface 239 Third interface 23a Receiving unit 23b Calculating unit 23c Control unit 24 Industrial machine 25 Second sensor 26 Detector 261 Light source 262 Third mirror 263 Second aperture 264 Third sensor

Claims (11)

  1.  ガイド光を所定の出射位置から対象物に向けて照射するスキャナと、
     前記対象物で反射する前記ガイド光を受ける第1のセンサと、
     前記第1のセンサからの前記ガイド光に関する情報に基づいて、前記スキャナと前記対象物との間の距離を算出する算出部と、
    を備える測定システム。
    a scanner that irradiates the guide light from a predetermined emission position toward an object;
    A first sensor that receives the guide light reflected by the object;
    a calculation unit that calculates a distance between the scanner and the object based on information about the guide light from the first sensor;
    A measurement system comprising:
  2.  前記ガイド光に関する前記情報は、前記第1のセンサが受ける前記ガイド光の位置に関する位置情報である請求項1に記載の測定システム。 The measurement system of claim 1, wherein the information about the guide light is position information about the position of the guide light received by the first sensor.
  3.  前記スキャナは、前記所定の出射位置から出射する前記ガイド光の出射角度を変更するミラーを備え、
     前記算出部は、前記出射角度に基づいて、前記距離を算出する請求項1または2に記載の測定システム。
    the scanner includes a mirror for changing an emission angle of the guide light emitted from the predetermined emission position,
    The measurement system according to claim 1 , wherein the calculation unit calculates the distance based on the emission angle.
  4.  前記算出部は、さらに、前記ガイド光が照射される前記対象物上の位置と前記出射位置との間の距離を前記出射角度に基づいて算出する請求項3に記載の測定システム。 The measurement system according to claim 3, wherein the calculation unit further calculates the distance between the position on the object where the guide light is irradiated and the emission position based on the emission angle.
  5.  前記対象物で反射した前記ガイド光を受ける第2のセンサをさらに備え、
     前記算出部は、前記ガイド光を受けた前記第2のセンサからの情報に基づいて、前記スキャナと前記対象物との平行度を算出する請求項1~4のいずれか1項に記載の測定システム。
    A second sensor is further provided to receive the guide light reflected by the object.
    5. The measurement system according to claim 1, wherein the calculation unit calculates parallelism between the scanner and the object based on information from the second sensor that receives the guide light.
  6.  前記第2のセンサからの前記情報は、前記ガイド光の強度に関する強度情報である請求項5に記載の測定システム。 The measurement system of claim 5, wherein the information from the second sensor is intensity information regarding the intensity of the guide light.
  7.  前記対象物に向けて光を照射する光源と、
     前記対象物で反射した前記光を受ける第3のセンサと、をさらに備え、
     前記算出部は、前記光を受けた前記第3のセンサからの情報に基づいて、前記スキャナと前記対象物との平行度を算出する請求項1~4のいずれか1項に記載の測定システム。
    A light source that irradiates light toward the object;
    a third sensor that receives the light reflected from the object;
    5. The measurement system according to claim 1, wherein the calculation unit calculates parallelism between the scanner and the object based on information from the third sensor that receives the light.
  8.  前記第3のセンサからの前記情報は、前記光の強度に関する強度情報である請求項7に記載の測定システム。 The measurement system of claim 7, wherein the information from the third sensor is intensity information regarding the intensity of the light.
  9.  産業機械をさらに備え、
     前記スキャナは、前記産業機械に取り付けられる請求項1~8のいずれか1項に記載の測定システム。
    Further equipped with industrial machinery,
    The measurement system according to any one of claims 1 to 8, wherein the scanner is attached to the industrial machine.
  10.  前記産業機械は、産業用ロボットである請求項9に記載の測定システム。 The measurement system according to claim 9, wherein the industrial machine is an industrial robot.
  11.  ガイド光をスキャナの所定の出射位置から対象物に向けて照射することと、
     前記対象物で反射する前記ガイド光を受けることと、
     前記ガイド光に関する情報に基づいて、前記スキャナと前記対象物との間の距離を算出することと、
    を含む測定方法。
    Irradiating the guide light from a predetermined emission position of the scanner toward the object;
    receiving the guide light reflected by the object;
    Calculating a distance between the scanner and the object based on information about the guide light;
    Measurement methods including:
PCT/JP2022/040831 2022-10-31 2022-10-31 Measurement system and measurement method WO2024095352A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040831 WO2024095352A1 (en) 2022-10-31 2022-10-31 Measurement system and measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040831 WO2024095352A1 (en) 2022-10-31 2022-10-31 Measurement system and measurement method

Publications (1)

Publication Number Publication Date
WO2024095352A1 true WO2024095352A1 (en) 2024-05-10

Family

ID=90930072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040831 WO2024095352A1 (en) 2022-10-31 2022-10-31 Measurement system and measurement method

Country Status (1)

Country Link
WO (1) WO2024095352A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316892A (en) * 1986-07-10 1988-01-23 Mitsubishi Electric Corp Distance measuring instrument for laser beam machine
JP2015152585A (en) * 2014-02-19 2015-08-24 小林 茂樹 Shape measurement device and shape inspection device for metallic surface
JP2018176245A (en) * 2017-04-18 2018-11-15 ファナック株式会社 Laser processing system having measurement function
JP2020175409A (en) * 2019-04-17 2020-10-29 パナソニックIpマネジメント株式会社 Weld determination device, welding equipment and weld determination method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316892A (en) * 1986-07-10 1988-01-23 Mitsubishi Electric Corp Distance measuring instrument for laser beam machine
JP2015152585A (en) * 2014-02-19 2015-08-24 小林 茂樹 Shape measurement device and shape inspection device for metallic surface
JP2018176245A (en) * 2017-04-18 2018-11-15 ファナック株式会社 Laser processing system having measurement function
JP2020175409A (en) * 2019-04-17 2020-10-29 パナソニックIpマネジメント株式会社 Weld determination device, welding equipment and weld determination method

Similar Documents

Publication Publication Date Title
US10502555B2 (en) Laser processing system having measurement function
EP2800945B1 (en) Non-contact sensor having improved laser spot
JP6386501B2 (en) Laser processing robot system and laser processing method
US10281579B2 (en) Method of operating a confocal white light sensor on a coordinate measuring machine
US20070221639A1 (en) Apparatus and method for performing laser welding
CN111055030A (en) Device and method for monitoring and feeding back light beam pointing stability
KR20040012719A (en) Apparatus and method for focal point control for laser machining
CN103128450A (en) Ultraviolet laser processing device
US20010023862A1 (en) Method and apparatus for the laser machining of workpieces
CN112839765B (en) Method and processing machine for determining a characteristic variable of a processing operation
KR20200140213A (en) Apparatus for automatically correcting the position of laser scanning system
WO2017168833A1 (en) Laser processing device
CN110023025B (en) Core adjusting method
WO2024095352A1 (en) Measurement system and measurement method
CN212470240U (en) Light beam pointing stability monitoring and feedback device
KR101554389B1 (en) Laser processing apparatus
WO2019176786A1 (en) Laser light centering method and laser processing device
US20210114139A1 (en) Controller, control system, and recording medium storing program
US20200376593A1 (en) Measurement device and recording medium encoding a program
JP2003035510A (en) Position detector
JP3510359B2 (en) Optical measuring device
KR20190122515A (en) Apparatus for automatically correcting the position of laser scanning system
EP3553574A1 (en) Alignment method
JP3808128B2 (en) Laser processing machine
JP2019171431A (en) Laser processing device and method for adjusting laser processing device