WO2024094801A1 - Rotor à maintien des aimants simplifié - Google Patents

Rotor à maintien des aimants simplifié Download PDF

Info

Publication number
WO2024094801A1
WO2024094801A1 PCT/EP2023/080582 EP2023080582W WO2024094801A1 WO 2024094801 A1 WO2024094801 A1 WO 2024094801A1 EP 2023080582 W EP2023080582 W EP 2023080582W WO 2024094801 A1 WO2024094801 A1 WO 2024094801A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnets
rotor
claws
yoke
rotor according
Prior art date
Application number
PCT/EP2023/080582
Other languages
English (en)
Inventor
Antoine Foucaut
Original Assignee
Moving Magnet Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moving Magnet Technologies filed Critical Moving Magnet Technologies
Publication of WO2024094801A1 publication Critical patent/WO2024094801A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • H02K1/27915Magnets shaped to vary the mechanical air gap between the magnets and the stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • H02K1/2781Magnets shaped to vary the mechanical air gap between the magnets and the stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/128Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs

Definitions

  • the present invention relates to the field of rotors, constituting the movable part, relative to the stator, of an electric machine or an electromagnetic sensor.
  • the rotor is in the form of a cylindrical sleeve driving or being driven by an axis linked to a yoke supporting permanent magnets which induce an electrical voltage in the windings of the stator of the generator/alternator separated from the circumferential surface of the rotor by a air gap.
  • the rotor can rotate at high speeds, which results in a significant centrifugal force acting on the magnets attached to the periphery of the cylinder head.
  • these magnets are glued to the surface of the cylinder head or held by a peripheral ring.
  • IPM in English “interior permanent magnet”
  • the magnets are housed in cavities formed in the cylinder head, including the peripheral developments form the magnetic poles.
  • Patent application JP2003037954 describes a rotor comprising a non-magnetic magnet holder having a first arm portion and a circular tube-shaped non-magnetic rotor cover attached to cover the magnet holder and the magnet.
  • Patent application GB2559059 describes a rotor, a rotating electrical machine and a rotor manufacturing method in which the number of components is reduced, attachment is facilitated and misalignment can be eliminated.
  • the rotor comprises: a cylindrical rotor core in which a plurality of insertion holes are formed; and an annular detection magnet disposed coaxial with the rotor core.
  • the detection magnet has a plurality of protruding parts protruding in the direction of the rotor core, said protruding parts being inserted into the insertion holes.
  • Patent application DE4331803 describes a rotor consisting of a support guided on the rotor shaft and magnet segments arranged on its peripheral face which, according to the invention, are kept in contact with the support by clamps. retainer also guided on the rotor shaft. These retaining clips are designed in such a way that, when assembling the different rotor elements, they take care of the centering of the magnet segments during the assembly of the different parts of the rotor and are reinforced by discs of compensation only after all the rotor elements have been completely assembled, so that they keep the magnet segments pressed radially against the rotor magnet holder.
  • Patent application US2020212739 describes a rotor having magnets located radially outside the rotor core and arranged along a circumferential direction, a support including a support portion that supports the rotor core and the magnets of a first side in an axial direction, and a rotor cover comprising a cylindrical part which surrounds the rotor core, the magnets and the holder from the outside in a radial direction and which opens towards the first side.
  • the rotor cover includes a bottom part that supports the rotor core from a second side of the rotor core in the axial direction.
  • a part of the radial outer edge of the support part includes a first part and a second part adjacent to the first part in the circumferential direction.
  • the attachment causes magnetic leakage at the slots between two consecutive magnets, reducing performance.
  • the present invention relates in its most general sense to a rotor having the characteristics set out in claim 1 as well as in the independent claims.
  • the rotor comprises a yoke made of a ferromagnetic material and an axis, said yoke supporting N magnets,
  • said magnets being held on either side of their axial ends by at least one flange having at one of its peripheries N claws extending in the axial direction
  • said magnets being magnetized radially or according to a rotating magnetization generating a radial main field, the width of the magnets being at least three times greater than the distance separating two adjacent magnets at the periphery of the rotor,
  • the section of said magnets is curved
  • said tubular envelope has a radius corresponding to the radius passing through the top of the curved part of the magnets, and said claws come to rest on two consecutive magnets, straddling the slot separating said two consecutive magnets.
  • the section of said magnets is rectangular, said tubular envelope has a radius corresponding to the radius passing through the outer edge of the magnets, and said claws come to rest on a central zone of a magnet.
  • said claws are elastically deformable and configured to present, with the profile of said magnets, an increasing interference as a function of the axial engagement of the flange on said cylinder head.
  • said cylinder head has cavities of trapezoidal section with a large base of arcuate shape
  • said flanges have a peripheral ring formed of arcuate segments extending over an angular width of between 0.5 times and 2 times the angular width of a magnet, said arcuate segments connected by deformable segments, each of said arcuate segments having two claws coming rest on the exterior surface of one or two magnets, fitting inside the tubular envelope of the magnetized structure,
  • each arcuate segment is folded on the side opposite the claw to form a wedge whose exterior face is inclined, in the radial plane, to force the centripetal movement of said arcuate segment by the force exerted on said wedge by the exterior edge of the corresponding cavity, during the axial engagement of said flange on said cylinder head.
  • said magnets are curved and in that said claws come to rest on the exterior surface of two consecutive magnets, fitting inside the tubular envelope of the magnetized structure, said wedges being positioned angularly between two consecutive claws.
  • said magnets are of rectangular section and in that said claws come to rest at the center of the exterior surface of a magnet, fitting inside the tubular envelope of the magnetized structure, said wedges being angularly aligned with said claws.
  • an additional characteristic is that said magnets have a constant section over their entire length.
  • said claws are formed by blades extending perpendicular to the surface of said flange and have an end of decreasing width.
  • said flange has a radial rib at the level of the folding edge of each of said claws.
  • said magnets have a curved exterior surface.
  • said claws have a three-dimensional corner shape capable of engaging in the space between the lateral flanks of two consecutive magnets.
  • the invention also relates to an electric machine comprising a stator and a rotor having one or a combination of the characteristics previously described.
  • the rotor is located inside the stator.
  • the rotor is located outside the stator.
  • the invention also relates to a magnetic sensor comprising a magnetosensible probe and a rotor having one or a combination of the characteristics previously described.
  • internal surface of the magnet we mean the surface in contact with the yoke of the rotor, the opposite surface being the external surface of the magnet.
  • tubular envelope inscribing the magnets a tube whose interior and exterior cylindrical surfaces make it possible to contain all of the magnets, that is to say that no interior or exterior surface of any of the magnets will pass through. one or other of the cylindrical surfaces of the tubular envelope.
  • the rotor (1) comprises a yoke (10) formed by a stack of stacked ferromagnetic sheets, or optionally, for applications to a sensor, or when magnetic losses are not a major concern, by a ferromagnetic material not laminated.
  • This cylinder head (10) has a general cylindrical shape, possibly hollowed out by pockets (17) to reduce its weight and its inertia. It is linked to an axis (11) supported by bearings (12, 13).
  • the circumferential surface (14) of the yoke (10) has facets (15) of complementary shape to the rear face (51) of the magnets (50).
  • the rotor comprises N magnets (50) and the yoke (10) has N complementary facets (15).
  • the yoke (10) has axial ribs (16) forming radial protuberances arranged between the consecutive facets (10) to facilitate the positioning of the magnets (50) which stick magnetically to the facets (15).
  • the thickness of these axial ribs (16) is less than half the thickness of the magnets (50).
  • the magnets (50) are surface magnets, formed by elements arranged tangentially on the circumferential surface of the yoke (10), and magnetized radially or with a rotating magnetization with a radial main component.
  • the tangential dimension L of the magnets (50) is at least twice greater than the radial dimension l of the magnet (50).
  • Two consecutive magnets (50) are separated by an interval (52) corresponding to the width of the ribs (16).
  • the magnets (50) form an assembly resembling the boudoirs of a strawberry charlotte, with a succession of magnets (50) whose exterior surface defines a tubular envelope (55) intersected by intervals of small width.
  • the means for fixing the magnets (50) to the yoke (10) are completely embedded in the tubular casing (55) of the magnets (50), without penetrating the air gap between the rotor and the stator.
  • the outer surface (54) of the magnets (50) is optionally curved and convex, with a radius of curvature less than the radius of the tubular casing (55); it can also be flat.
  • the invention relates to maintaining the magnets (50) on the yoke (10) using one or more flanges (20, 30) having claws (21, 31) extending in directions axial, substantially perpendicular to the plane of the disc zone (22, 32) of the flanges (20, 30).
  • These flanges (20, 30) are engaged axially on the cylinder head (10), on either side of the cylinder head (10).
  • the claws (21, 31) are folded with a re-entrant angle relative to the periphery of the disc zone (22, 32), less than or equal to 90° before assembly and engagement of the flanges (20, 30) on the magnets (50). ).
  • These flanges present an interference with the assembly composed of the cylinder head (10) on which the magnets (50) are arranged, said interference being increasing as the axial engagement of the flanges progresses, so that the claws (21 , 31) exert an increasing force on the magnets (50) during this engagement.
  • flanges (20, 30) are engaged axially on the cylinder head (10), on either side of the cylinder head (10).
  • the claws (21, 31) are folded with a re-entrant angle relative to the periphery of the disc area (22, 32), less than 90°, typically between 80° and 88° before assembly and engagement of the flanges (20, 30). ) on the magnets (50).
  • the claws (21, 31) have an end (23, 33) of decreasing width, defining two converging edges (26, 25; 35, 36).
  • the contact When engaging the claws (21, 31) on the exterior surface (54) of the magnets, the contact first occurs in a contact zone (28, 29; 38, 39) corresponding to the intersection of the face interior (27, 37) of the claw (21, 31) on the one hand, with the curved exterior surfaces (54) of the two adjacent magnets.
  • the claws By exerting pressure on the flanges (20, 30) so as to bring them closer to the axial end of the magnets (50), the claws are deformed radially, the angle relative to the periphery of the disc area (22, 32 ) increasing, and the contact zones (28, 29; 38, 39) move along the two edges (26, 25; 35, 36), the contact zones (28, 29; 38, 39) then optionally being longer than during initial contact when the profile of the ends (23, 33) is designed to be congruent with the landing surface on the outer surfaces of the adjacent magnets (54).
  • the magnets (50) are firmly held by the radial forces exerted by the elastic bending of the claws (21, 31), and the entire exterior surface (24, 34) of the claws (21, 31) is completely embedded in the tubular envelope (55) of the magnets (50), without penetrating into the air gap between the rotor and the stator.
  • the claws thus exert sufficient radial force to support the centrifugal forces applying to the magnets when the motor is used at its maximum working speed.
  • the claw bending angle does not exceed 90°. In this engagement position, the interference between the claws (21, 31) and the exterior surfaces of the magnets (51) is maximum.
  • the disc zone (22, 32) of the flange (20, 30) also has an annular protuberance (18, 19) for guiding on the axis (11) and axial support and stop for the bearings (12, 13).
  • the folding zones (60) formed between the disc zone (22, 32) of the flange (20, 30) and the claws (21, 31) have a punching or a radial rib (61) increasing the stiffness of the claw ( 21, 31), which allows the use of thinner and therefore less expensive sheets.
  • the cylinder head (10) has radial protrusions (70) with a T-shaped section, in the median transverse plane of the cylinder head (10), and extending over a third at most of the axial height of the cylinder head ( 10).
  • the claws (21, 31) have a complementary notch (71) which engages on this radial protuberance (70) to form a radial stop of the end of the claw (21, 31) and prevent its unexpected separation.
  • the flanges (20, 30) can be made by cutting and stamping a metal sheet, preferably non-magnetic, for example a stainless steel or aluminum sheet.
  • the disc areas (22, 32) of the flanges (20, 30) are preferably full to close the pockets (17) and reduce turbulence sources of airflow noise.
  • these flanges (20, 30) can receive an unbalance by brazing or by machining to balance the rotor.
  • the claws (21, 31) are, at rest, slightly recessed relative to a flange (20, 30) whose external diameter corresponds to the diameter of the tubular envelope in which the assembly of the magnets (50).
  • the axial engagement of the flange causes the centrifugal deformation of the ends of the claws (21, 31), through the increasing interference with the tubular surface of the magnets (50).
  • An alternative embodiment as presented in Figures 8 to 11 or 12, consists of providing a flange (20, 30) having before assembly a diameter slightly greater than the diameter of the tubular envelope in which the assembly of magnets, with deformable zones allowing a reduction in the diameter after assembly, up to a diameter corresponding to that of the tubular envelope of the magnet assembly.
  • the claws (21, 31) are pressed against the exterior surface of the magnets (50) less by elastic deformation (they could even be rigid) but rather by the ruzement caused by the centripetal deformation of the flange (20, 30).
  • This deformation of the flange (20, 30) can be carried out by cutting alternating arcuate annular segments (91) and deformable segments (92).
  • These deformable segments (92) are for example formed by cutouts of “S”-shaped strips making it possible to absorb a r engagement of two consecutive arcuate annular segments (91).
  • These arcuate annular segments (91) and these deformable segments (92) define a deformable ring whose diameter can be reduced.
  • the arcuate annular segments (91) extend to a central zone for the passage of the axis (11), by points connected together by annular connections (94).
  • the angular width of the arcuate annular segments (91) is between one and two times the angular width of a magnet (50), with the deformable segments (92) occupying the complementary angular width.
  • the deformation can be in the plane of the flange (20, 30), or in a perpendicular direction.
  • Each arcuate segment (91) has two claws (21) resting on the exterior surface (54) of one or two magnets, fitting inside the peripheral envelope of the magnetized structure.
  • the yoke (10) has cavities (17) of trapezoidal section with a large base of arcuate shape having an angular width less than the angular width of a magnet (50).
  • the exterior arcuate surface forces, during engagement of the flange (20, 30) on the cylinder head (10), the centripetal movement of a wedge (93) formed by folding the arcuate segment (91), on the side opposite the claw (21).
  • This wedge (93) whose exterior face (95) is inclined, in the radial plane (that is to say the plane containing both the axis of rotation and a ray passing through the center of mass of a wedge), forces the centripetal movement of said corresponding arcuate segment (91) by the force exerted on said wedge (93) by the outer edge (87) of the corresponding cavity (17), during the axial engagement of said flange on said cylinder head (10), and the crushing of the deformable sectors (92) located between two consecutive arcuate segments (91).
  • This deformation mechanically ensures the bringing together of the claws (21, 31) against the surface of the magnets (50).
  • Figures 10 and 11 show a detailed sectional view in a plane parallel to the radial plane, but slightly offset within a cavity (17), so as to be able to observe the insertion of a wedge (93) within of said cavity (17).
  • a radial play is visible between the outer edge (87) of the cavity (17) and the inclined outer face (95) of the wedge (93).
  • this play has been absorbed and where the outer edge (87) and the inclined outer face (95) are in contact.
  • the play between the magnet (50) and the claw (21) has been deliberately exaggerated by to improve readability, but very slight deformations of the order of 1 or a few tenths of a mm, make it possible to ensure assembly taking into account manufacturing dispersions, while guaranteeing good retention of the magnet.
  • the magnets (50) are curved and the claws (21, 31) come to bear on the exterior surface of two consecutive magnets (50), registering at the interior of the peripheral envelope of the magnetic structure, said wedges (93) being positioned angularly between two consecutive claws (21, 31).
  • the magnets (50) are of rectangular section and the claws (21, 31) come to rest in the center of the exterior surface of a magnet (50), fitting inside the peripheral envelope of the magnetic structure, said wedges (93) being angularly aligned with said claws (21, 31).
  • the flange (20, 30) can be provided with fins (90) extending to the disc surface to ensure cooling.
  • the rotor described above, in its different targeted variants, is applicable to the production of a sensor. There illustrates an example of implementation.
  • the particularity of the cylinder head (10) is that the axis is hollow to allow coupling to the axis of a driving member.
  • the magnets (50) are generally more numerous, but thinner than in the application to a motor.
  • a magnetosensitive probe (80) mounted on a printed circuit (81) is positioned opposite the enveloping surface (55) of the magnets (50).
  • the outer surface of the magnets (50) is configured to produce a sinusoidal variation of the magnetic field as it moves.
  • the rotor of a sensor Compared to a rotor intended for a motor, the rotor of a sensor generally rotates at a lower angular speed, but has a larger diameter. Consequently, the peripheral speed can lead, as in "motor” applications, to centrifugal forces exerted on the magnets (50) relatively large, which justifies the use of retention by claws such as proposed herein. invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

Un rotor intérieur comportant une culasse (10), des aimants (50), un axe (11) et un ou deux flasques (20,30) à l'extrémité axiale du rotor. La surface intérieure (51) de chacun desdits aimants étant disposées contre la périphérie de ladite culasse. Le ou chaque flasque (20, 30) présent à sa périphérie N griffes (21, 31) s'épanouissant dans la direction axiale, étant formées par des lames s'étendant à peu près perpendiculairement à la surface dudit flasque. Les flasques (20,30) présentent une interférence avec l'ensemble composé de la culasse (10) et des aimants (50). Ladite interférence étant croissante au fur et à mesure de l'engagement axial des flasques sur l'ensemble, de sorte que les griffes (21, 31) exercent une force croissante sur les aimants (50) lors de cet assemblage. Les aimants et griffes sont inscrits dans l'enveloppe tubulaire (55) des aimants, sans pénétrer dans l'entrefer entre le rotor et le stator.

Description

Rotor à maintien des aimants simplifié Domaine de l’invention
La présente invention concerne le domaine des rotors, constituant la partie mobile, par rapport au stator, d’une machine électrique ou d’un capteur électromagnétique. Le rotor se présente sous la forme d’un manchon cylindrique entraînant ou étant entraîné par un axe lié à une culasse supportant des aimants permanents qui induisent une tension électrique dans les enroulements du stator du générateur/alternateur séparés de la surface circonférentielle du rotor par un entrefer.
Le rotor peut tourner à des vitesses élevées, ce qui se traduit par une force centrifuge significative qui s’exerce sur les aimants fixés à la périphérie de la culasse. Habituellement, ces aimants sont collés à la surface de la culasse ou maintenus par une frette périphérique. Plus récemment, on a aussi proposé une solution où les aimants permanents sont intégrés dans un noyau de rotor dite « IPM » (en anglais « interior permanent magnet ») où les aimants sont logés dans des cavités formées dans la culasse, dont les épanouissements périphériques forment les pôles magnétiques.
Etat de la technique
On connaît dans l’état de la technique la demande de brevet WO2022243411 décrivant un rotor conçu pour un moteur électrique, présentant un corps de rotor comportant un paquet de tôles rotoriques cylindrique et un certain nombre d'aimants de surface qui sont répartis sur une surface externe du paquet de tôles rotoriques en tant que pôles de rotor, et qui présentent une forme de section transversale en forme de miche de pain possédant une courbure convexe orientée vers la périphérie extérieure, et un manchon de protection en forme de manchette qui est disposé sur la périphérie extérieure du corps de rotor, le manchon de protection présentant, au moins sur une face frontale, un collet rabattu qui est façonné par complémentarité de forme et/ou à force dans les zones radialement intérieures entre les courbures des aimants de surface adjacents de manière tangentielle.
La demande de brevet JP2003037954 décrit un rotor comprenant un porte-aimant non magnétique ayant une première partie de bras et un couvercle de rotor non magnétique en forme de tube circulaire fixé pour couvrir le porte-aimant et l'aimant.
La demande de brevet GB2559059 décrit un rotor, une machine électrique tournante et un procédé de fabrication de rotor dans lesquels le nombre de composants est réduit, la fixation est facilitée et un désalignement peut être supprimé. Le rotor comprend : un noyau de rotor cylindrique dans lequel une pluralité de trous d'insertion sont formés ; et un aimant de détection annulaire disposé coaxial avec le noyau de rotor. L'aimant de détection comporte une pluralité de parties saillantes faisant saillie dans la direction du noyau de rotor, lesdites parties saillantes étant insérées dans les trous d'insertion.
La demande de brevet DE4331803 décrit un rotor est constitué d'un support guidé sur l'arbre du rotor et de segments d'aimants disposés sur sa face périphérique qui, selon l'invention, sont maintenus en contact avec le support par des pinces de retenue également guidées sur l'arbre du rotor. Ces pinces de retenue sont conçues de telle sorte que, lors de l'assemblage des différents éléments du rotor, elles prennent en charge le centrage des segments d'aimant pendant l'assemblage des différentes parties du rotor et ne sont renforcées par des disques de compensation qu'après l'assemblage complet de tous les éléments du rotor, de telle sorte qu'elles maintiennent les segments d'aimant pressés radialement contre le porte-aimant du rotor.
La demande de brevet US2020212739 décrit un rotor présentant des aimants situés radialement à l'extérieur du noyau de rotor et disposés le long d'une direction circonférentielle, un support comprenant une partie de support qui soutient le noyau de rotor et les aimants d'un premier côté dans une direction axiale, et un couvercle de rotor comprenant une partie cylindrique qui entoure le noyau de rotor, les aimants et le support depuis l'extérieur dans une direction radiale et qui s'ouvre vers le premier côté. Le couvercle du rotor comprend une partie inférieure qui supporte le noyau du rotor à partir d'un deuxième côté du noyau du rotor dans la direction axiale. Une partie du bord extérieur radial de la partie de support comprend une première partie et une deuxième partie adjacente à la première partie dans la direction circonférentielle.
Inconvénients de l’art antérieur
Des solutions de l’art antérieur présentent un premier inconvénient qui est l’augmentation de l’entrefer. Les pièces de fixation des aimants forment une couronne ou des protubérances venant augmenter localement le diamètre et donc conduit à une augmentation de l’entrefer.
Par rapport à d’autres documents, tel que la demande de brevet WO2022243411 (document intercalaire), le maintien des aimants est mal assuré par un moyen complémentaire tel que l’ajout d’une frette périphérique métallique ou un surmoulage plastique qui conduit également à une augmentation de l’entrefer magnétique, mais également à des pertes plus importantes lorsque le frettage est réalisé par un matériau conducteur électriquement. Les pattes de forme rectangulaire ne sont pas optimisées pour réaliser le maintien des aimants en fonctionnement, mais permettent seulement un maintien temporaire durant le processus d’assemblage avant la solidarisation finale par un moyen complémentaire.
Dans d’autres solutions, la fixation provoque des fuites magnétiques au niveau des fentes séparant deux aimants consécutifs, ce qui réduit les performances.
Afin de répondre aux inconvénients de l’art antérieur, la présente invention concerne selon son acception la plus générale un rotor présentant les caractéristiques énoncées dans la revendication 1 ainsi que dans les revendications indépendantes.
Le rotor comporte une culasse constituée d’un matériau ferromagnétique et un axe, ladite culasse supportant N aimants,
lesdits aimants étant maintenus de part et d’autre de leurs extrémités axiales par au moins un flasque présentant à l’une de ses périphéries N griffes s’épanouissant dans la direction axiale
• lesdits aimants étant aimantés radialement ou selon une aimantation tournante générant un champ principal radial, la largeur des aimants étant au moins trois fois supérieure à la distance séparant deux aimants adjacents à la périphérie du rotor,
• la surface intérieure de chacun desdits aimants étant disposée contre la périphérie de ladite culasse,
• Dans une variante, la section desdits aimants est bombée, ladite enveloppe tubulaire présente un rayon correspondant au rayon passant par le sommet de la partie bombée des aimants, et lesdites griffes viennent s’appuyer sur deux aimants consécutifs, à cheval sur la fente séparant lesdits deux aimants consécutifs.
En alternative possible, la section desdits aimants est rectangulaire, ladite enveloppe tubulaire présente un rayon correspondant au rayon passant par l’arête extérieure des aimants, et lesdites griffes viennent s’appuyer sur une zone médiane d’un aimant.
En complément, dans une variante, lesdites griffes sont déformables élastiquement et configurés pour présenter, avec le profil desdits aimants, une interférence croissante en fonction de l’engagement axial du flasque sur ladite culasse.
Dans une variante :
- ladite culasse présente des cavités de section trapézoïdale avec une grande base de forme arquée
- lesdits flasques présentent un anneau périphérique formés de segments arqués s’étendant sur une largeur angulaire comprise entre 0.5 fois et 2 fois la largeur angulaire d’un aimant, lesdits segments arqués reliés par des segments déformables, chacun desdits segments arqués présentant deux griffes venant s’appuyer sur la surface extérieure d’un ou deux aimants, en s’inscrivant à l’intérieur de l’enveloppe tubulaire de la structure aimantée,
- chaque segment arqué est replié du côté opposé à la griffe pour former une cale dont la face extérieure est inclinée, dans le plan radial, pour forcer le déplacement centripète dudit segment arqué par l’effort exercé sur ladite cale par le bord extérieur de la cavité correspondante, lors de l’engagement axial dudit flasque sur ladite culasse.
En particulier pour cette variante, lesdits aimants sont bombés et en ce que lesdites griffes viennent en appui sur la surface extérieure de deux aimants consécutifs, en s’inscrivant à l’intérieur de l’enveloppe tubulaire de la structure aimantée, lesdites cales étant positionnées angulairement entre deux griffes consécutives.
En alternative, lesdits aimants sont de section rectangulaire et en ce que lesdites griffes viennent en appui au centre de la surface extérieure d’un aimant, en s’inscrivant à l’intérieur de l’enveloppe tubulaire de la structure aimantée, lesdites cales étant alignées angulairement avec lesdites griffes.
Dans toutes les variantes compatibles, une caractéristique supplémentaire est que lesdits aimants sont de section constante sur toute leur longueur.
Dans toutes les variantes compatibles, lesdites griffes sont formées par des lames s’étendant perpendiculairement à la surface dudit flasque et présentent une extrémité de largeur décroissante.
En particulier, ledit flasque présente au niveau de l’arête de pliage de chacune desdites griffes une nervure radiale.
Dans toutes les variantes compatibles, lesdits aimants présentent une surface extérieure bombée.
Dans une variante, lesdites griffes présentent une forme tridimensionnelle de coins apte à s’engager dans l’espace compris entre les flancs latéraux de deux aimants consécutifs.
L’invention concerne également une machine électrique comportant un stator et un rotor présentant une ou combinaison des caractéristiques précédemment décrites.
En particulier, le rotor est situé à l’intérieur du stator.
En alternative, le rotor est situé à l’extérieur du stator.
L’invention concerne également un capteur magnétique comportant une sonde magnétosentible et un rotor présentant une ou combinaison des caractéristiques précédemment décrites.
On entend par surface intérieure de l’aimant, la surface en contact avec la culasse du rotor, la surface opposée étant la surface extérieure de l’aimant. On entend ainsi par enveloppe tubulaire inscrivant les aimants un tube dont les surfaces cylindriques intérieure et extérieure permettent de contenir l’intégralité des aimants, c’est-à-dire qu’aucune surface intérieure ou extérieure de n’importe lequel des aimants ne traversera l’une ou l’autre des surfaces cylindriques de l’enveloppe tubulaire.
Description détaillée d’un exemple non limitatif de réalisation
La présente invention sera mieux comprise à la lecture de la description qui suit, concernant un exemple non limitatif de réalisation illustré par les dessins annexés où :
La représente une vue éclatée d’un rotor correspondant à un premier exemple de réalisation,
la représente une vue en perspective du rotor en cours d’assemblage,
la représente une vue en coupe du rotor en cours d’assemblage,
la représente une vue en perspective du rotor après assemblage,
la représente une vue en coupe du rotor après assemblage,
la représente une vue en perspective du rotor selon une première variante de réalisation,
la représente une vue en perspective du rotor selon une deuxième variante de réalisation,
la représente une vue de détail en direction axiale du rotor selon une troisième variante de réalisation,
la représente une vue en perspective du rotor selon la troisième variante de réalisation,
la représente une vue de détail en coupe transversale, au niveau d’une poche du rotor selon la troisième variante de réalisation avant insertion axiale du flasque,
la représente la même vue détaillée de la troisième variante de réalisation dans l’état après insertion axiale du flasque,
la représente une vue de détail en direction axiale du rotor selon une quatrième variante de réalisation présentant des aimants prismatiques,
la représente une vue en perspective d’un capteur de position angulaire comportant un rotor correspondant à la présente invention.
la représente une vue en coupe d’un rotor, destiné à un moteur à rotor extérieur, selon une cinquième variante de réalisation
Principe général
Le rotor (1) selon l’invention comprend une culasse (10) formée par un paquet de tôles ferromagnétiques empilées, ou éventuellement, pour les applications à un capteur, ou lorsque les pertes magnétiques ne constituent pas une préoccupation majeure, par un matériau ferromagnétique non feuilleté.
Cette culasse (10) présente une forme générale cylindrique, éventuellement évidée par des poches (17) pour réduire son poids et son inertie. Elle est liée à un axe (11) supporté par des paliers (12, 13). La surface circonférentielle (14) de la culasse (10) présente des facettes (15) de forme complémentaire à la face arrière (51) des aimants (50). Le rotor comporte N aimants (50) et la culasse (10) présente N facettes (15) complémentaires.
Optionnellement, la culasse (10) présente des nervures axiales (16) formant des protubérances radiales disposées entre les facettes (10) consécutives pour faciliter le positionnement des aimants (50) qui viennent se coller magnétiquement sur les facettes (15). L’épaisseur de ces nervures axiales (16) est inférieure la moitié de l’épaisseur des aimants (50). Bien entendu, dans le cas où les aimants sont aimantés après leur positionnement sur le rotor, l’homme de métier n’aurait aucune difficulté à trouver une solution temporaire de maintien en position avant leur bridage final.
Les aimants (50) sont des aimants surfaciques, formés par des éléments disposés tangentiellement sur la surface circonférentielle de la culasse (10), et aimantés radialement ou avec une aimantation tournante à composante principale radiale. La dimension tangentielle L des aimants (50) est au moins deux fois supérieure à la dimension radiale l de l’aimant (50). Deux aimants (50) consécutifs sont séparés par un intervalle (52) correspondant à la largeur des nervures (16). Après assemblage, les aimants (50) forment un assemblage ressemblant aux boudoirs d’une charlotte aux fraises, avec une succession d’aimants (50) dont la surface extérieure définie une enveloppe tubulaire (55) entrecoupée par des intervalles de faible largeur. De manière générale, les moyens de fixation des aimants (50) sur la culasse (10) sont totalement inscrits dans l’enveloppe tubulaire (55) des aimants (50), sans pénétrer dans l’entrefer entre le rotor et le stator.
La surface extérieure (54) des aimants (50) est optionnellement bombée et convexe, avec un rayon de courbure inférieur au rayon de l’enveloppe tubulaire (55) ; elle peut aussi être plane.
Plus particulièrement, l’invention porte sur le maintien des aimants (50) sur la culasse (10) à l’aide d’un ou plusieurs flasques (20, 30) présentant des griffes (21, 31) s’étendant dans des directions axiales, sensiblement perpendiculairement au plan de la zone discale (22, 32) des flasques (20, 30).
Ces flasques (20, 30) sont engagés axialement sur la culasse (10), de part et d’autre de la culasse (10). Les griffes (21, 31) sont repliées avec un angle rentrant par rapport à la périphérie de la zone discale (22, 32), inférieur ou égal à 90° avant assemblage et engagement des flasques (20, 30) sur les aimants (50). Ces flasques présentent une interférence avec l’ensemble composé de la culasse (10) sur laquelle sont disposés les aimants (50), ladite interférence étant croissante au fur et à mesure de l’engagement axial des flasques, de sorte que les griffes (21, 31) exercent une force croissante sur les aimants (50) lors de cet engagement.
Exemple d’assemblage et maintien des aimants (50) sur la culasse (10)
Les modes de réalisations présentés par les figures 1 à 7, divulguent un mode de réalisation préférentiel de la liaison entre les aimants (50) et la culasse (10).
Cette liaison est assurée par deux flasques (20, 30) présentant des griffes (21, 31) s’étendant dans des directions axiales, sensiblement perpendiculairement au plan de la zone discale (22, 32) des flasques (20, 30).
Ces flasques (20, 30) sont engagés axialement sur la culasse (10), de part et d’autre de la culasse (10). Les griffes (21, 31) sont repliées avec un angle rentrant par rapport à la périphérie de la zone discale (22, 32), inférieur à 90°, typiquement entre 80° et 88° avant assemblage et engagement des flasques (20, 30) sur les aimants (50).
Les griffes (21, 31) présentent une extrémité (23, 33) de largeur décroissante, définissant deux arêtes (26, 25 ; 35, 36) convergentes.
Lors de l’engagement des griffes (21, 31) sur la surface extérieure (54) des aimants, le contact intervient d’abord dans une zone de contact (28, 29 ; 38, 39) correspondant à l’intersection de la face intérieure (27, 37) de la griffe (21, 31) d’une part, avec les surfaces extérieures (54) courbes des deux aimants adjacents. En exerçant une pression sur les flasques (20, 30) de manière à les rapprocher de l’extrémité axiale des aimants (50), les griffes se déforment radialement, l’angle par rapport à la périphérie de la zone discale (22, 32) augmentant, et les zones de contact (28, 29 ; 38, 39) se déplacent le long des deux arêtes (26, 25 ; 35, 36), les zones de contact (28, 29 ; 38, 39) étant alors optionnellement plus longue que lors du contact initiale lorsque le profil des extrémités (23, 33) est dessiné pour être congruent avec la surface d’atterrissage sur les surfaces extérieures des aimants adjacents (54). On parle alors de l’existence d’une interférence croissante entre les griffes (21, 31) et les aimants (54) lors de l’engagement des flasques (20, 30) sur les aimants (50) pour procéder à leur maintien.
Lorsque cette position d’engagement des deux flasques est atteinte, les aimants (50) sont fermement maintenus par les efforts radiaux exercés par la flexion élastique des griffes (21, 31), et la totalité de la surface extérieure (24, 34) des griffes (21, 31) est totalement inscrite dans l’enveloppe tubulaire (55) des aimants (50), sans pénétrer dans l’entrefer entre le rotor et le stator. Les griffes exercent ainsi une force radiale suffisante pour supporter les forces centrifuges s’appliquant sur les aimants lorsque le moteur est utilisé à son point de travail maximum en vitesse. L’angle de pliage des griffes ne dépasse pas 90°. Dans cette position d’engagement, l’interférence entre les griffes (21, 31) et les surfaces extérieures des aimants (51) est maximale.
La zone discale (22, 32) du flasque (20, 30) présente par ailleurs une protubérance annulaire (18, 19) pour le guidage sur l’axe (11) et d’appui axial et de butée pour les paliers (12, 13).
Variante de réalisation pour augmenter la raideur des griffes (21, 31)
Selon une première variante, illustrée par la , les zones de pliage (60) formées entre la zone discale (22, 32) du flasque (20, 30) et les griffes (21, 31) présentent un poinçonnage ou une nervure radiale (61) augmentant la raideur de la griffe (21, 31), ce qui permet d’utiliser des tôles plus fines et donc moins coûteuses.
Selon une deuxième variante, illustrée par la , la culasse (10) présente des excroissances radiales (70) avec une section en forme de T, dans le plan transversal médian de la culasse (10), et s’étendant sur un tiers au plus de la hauteur axiale de la culasse (10).
Les griffes (21, 31) présentent une encoche complémentaire (71) qui vient s’engager sur cette excroissance radiale (70) pour former une butée radiale de l’extrémité de la griffe (21, 31) et empêcher son écartement inopiné.
Réalisation des flasques
Les flasques (20, 30) peuvent être réalisés par découpe et estampage d’une tôle métallique, de préférence amagnétique, par exemple une tôle d’acier inoxydable ou en aluminium.
Les zones discales (22, 32) des flasques (20, 30) sont de préférence pleines pour obturer les poches (17) et réduire les turbulences sources de bruit aérauliques.
Accessoirement, ces flasques (20, 30) peuvent recevoir un balourd par brasage ou par usinage pour réaliser un équilibrage du rotor.
Ces deux variantes sont particulièrement avantageuses pour les moteurs à haute vitesse.
Variante de réalisation avec flasques déformables radialement
Dans les variantes décrites ci-dessus, les griffes (21, 31) sont, au repos, légèrement rentrantes par rapport à un flasque (20, 30) dont le diamètre extérieur correspond au diamètre de l’enveloppe tubulaire dans laquelle s’inscrit l’assemblage des aimants (50). L’engagement axial du flasque provoque la déformation centrifuge de l’extrémité des griffes (21, 31), par l’interférence croissante avec la surface tubulaire des aimants (50).
Une variante de réalisation alternative, tel que présentée dans figures 8 à 11 ou 12, consiste à prévoir un flasque (20, 30) présentant avant assemblage un diamètre légèrement supérieur au diamètre de l’enveloppe tubulaire dans laquelle est inscrit l’assemblage d’aimants, avec des zones déformables permettant une réduction du diamètre après assemblage, jusqu’à un diamètre correspondant à celui de l’enveloppe tubulaire de l’assemblage d’aimants.
Pour ces variantes de réalisation où le flasque (20, 30) est de diamètre variable, les griffes (21, 31) sont appuyées contre la surface extérieure des aimants (50) moins par déformation élastique (elles pourraient même être rigides) mais plutôt par le rapprochement provoqué par la déformation centripète du flasque (20, 30).
Cette déformation du flasque (20, 30) peut être réalisée par une découpe alternant des segments annulaires arqués (91) et des segments déformables (92). Ces segments déformables (92) sont par exemple formés par des découpes de bandes en forme de « S » permettant d’absorber un rapprochement de deux segments annulaires arqués (91) consécutifs. Ces segments annulaires arqués (91) et ces segments déformables (92) définissent un anneau déformable dont le diamètre peut être réduit. Les segments annulaires arqués (91) se prolongent jusqu’à une zone centrale pour le passage de l’axe (11), par des pointes reliées entre elles par des liaisons (94) annulaires.
La largeur angulaire des segments annulaires arqués (91) est comprise entre une fois et deux fois la largeur angulaire d’un aimant (50), les segments déformables (92) occupant la largeur angulaire complémentaire. La déformation peut être dans le plan du flasque (20, 30), ou dans une direction perpendiculaire.
Chaque segments arqués (91) présente deux griffes (21) venant s’appuyer sur la surface extérieure (54) d’un ou deux aimants, en s’inscrivant à l’intérieur de l’enveloppe périphérique de la structure aimantée.
La modification du diamètre du flasque (20, 30) résulte de l’interaction avec la culasse (10) lors de son engagement axial.
La culasse (10) présente des cavités (17) de section trapézoïdale avec un grande base de forme arquée présentant une largeur angulaire inférieure à la largeur angulaire d’un aimant (50). La surface arquée extérieure contraint, lors de l’engagement du flasque (20, 30) sur la culasse (10), le déplacement centripète d’une cale (93) formée par repliement du segment arqué (91), du côté opposé à la griffe (21). Cette cale (93) dont la face extérieure (95) est inclinée, dans le plan radial (c’est-à-dire le plan contenant à la fois l’axe de rotation et un rayon passant par le centre de masse d’une cale), force le déplacement centripète dudit segment arqué (91) correspondant par l’effort exercé sur ladite cale (93) par le bord extérieur (87) de la cavité (17) correspondante, lors de l’engagement axial dudit flasque sur ladite culasse (10), et l’écrasement des secteurs déformables (92) situés entre deux segments arqués (91) consécutifs. Cette déformation assure mécaniquement le rapprochement des griffes (21, 31) contre la surface des aimants (50). Les figures 10 et 11 présentent une vue de détail en coupe dans un plan parallèle au plan radial, mais légèrement décalé au sein d’une cavité (17), de manière à pouvoir observer l’insertion d’une cale (93) au sein de ladite cavité (17). La représente l’état en début d’insertion pour lequel un jeu radial est visible entre le bord extérieur (87) de la cavité (17) et la face extérieure (95) inclinée de la cale (93). La représente l’état à la fin de l’insertion pour lequel ce jeu a été résorbé et où le bord extérieur (87) et la face extérieure (95) inclinée sont en contact. Le jeu entre l’aimant (50) et la griffe (21) a été volontairement exagéré en pour améliorer la lisibilité, mais de très légères déformations de l’ordre de 1 ou quelques dixièmes de mm, permettent d’assurer l’assemblage compte tenu des dispersions de fabrication, tout en garantissant un bon maintien de l’aimant.
On peut noter que lorsque les flasques (20, 30) sont complètement engagées sur la culasse (10) du rotor (1), la contrainte s’exerçant entre les prolongements (93) et les parois extérieures des cavités (17) est maximale. Ce mode de réalisation comporte donc, comme les modes de réalisation précédents, une interférence croissante entre les flasques (20, 30) et la culasse (10) du rotor ou les aimants (50), conduisant à augmenter la force de maintien desdits aimants (50) au fur et à mesure de l’insertion axiale des flasques (20, 30) pour atteindre leur position finale d’assemblage.
Dans une première réalisation, représentée par les figures 8 à 11, les aimants (50) sont bombés et les griffes (21, 31) viennent en appui sur la surface extérieure de deux aimants (50) consécutifs, en s’inscrivant à l’intérieur de l’enveloppe périphérique de la structure aimantée, lesdites cales (93) étant positionnées angulairement entre deux griffes consécutives (21, 31).
Dans une deuxième réalisation, représentée par la , les aimants (50) sont de section rectangulaire et les griffes (21, 31) viennent en appui au centre de la surface extérieure d’un aimant (50), en s’inscrivant à l’intérieur de l’enveloppe périphérique de la structure aimantée, lesdites cales (93) étant alignées angulairement avec lesdites griffes (21, 31).
Flasque assurant le refroidissement
Optionnellement et comme plus particulièrement visible sur les figures 9 et 10, le flasque (20, 30) peut être munie d’ailettes (90) s’étendant à la surface discale pour assurer le refroidissement.
Application à la réalisation d’un capteur
Le rotor décrit ci-dessus, dans ses différentes variantes visées, est applicable à la réalisation d’un capteur. La en illustre un exemple de réalisation.
La particularité de la culasse (10) est que l’axe est creux pour permettre à l’accouplement à l’axe d’un organe entraînant. Les aimants (50) sont généralement plus nombreux, mais plus fins que dans l’application à un moteur. Une sonde magnétosensible (80) montée sur un circuit imprimé (81) est positionnée en face de la surface enveloppante (55) des aimants (50). La surface extérieure des aimants (50) est configurée pour produire une variation sinusoïdale du champ magnétique lors de son déplacement.
Par rapport à un rotor destiné à un moteur, le rotor d’un capteur tourne généralement à une vitesse angulaire plus faible, mais présente un plus grand diamètre. En conséquence la vitesse périphérique peut conduire, comme dans les applications « moteur » à des forces centrifuges s’exerçant sur les aimants (50) relativement importants, ce qui justifie l’emploi d’un maintien par des griffes telles que proposées par la présente invention.
Variante à rotor extérieur
La représente une variante de réalisation à rotor extérieur. Ce mode de réalisation diffère du mode de réalisation précédent en ce que le rotor est prévu pour accueillir un stator en son sein. Ainsi, les aimants sont disposés sur la périphérie intérieure de la culasse (10). Les aimants sont représentés dans la avec des pôles de formes, mais l’invention est compatible avec des aimants parallélépipédiques tel que présenté dans le cas à rotor intérieur.

Claims (17)

  1. - Rotor comportant une culasse (10) et un axe (11), ladite culasse (10) supportant N aimants (50) aimantés radialement ou selon une aimantation tournante générant un champ principal radial, la surface intérieure (51) de chacun desdits aimants (50) étant disposées contre la périphérie de ladite culasse (10),
    lesdits aimants (50) étant maintenus de part et d’autre de leurs extrémités axiales par au moins un flasque (20, 30) présentant à l’une de ses périphéries N griffes (21, 31) s’épanouissant dans la direction axiale, lesdites griffes (21, 31) sont formées par des lames s’étendant obliquement à la surface dudit flasque
    caractérisé en ce que
    • le ou les flasques (20, 30) sont configurés pour être engagés axialement sur l’ensemble constitué de la culasse (10) rotorique sur laquelle sont positionnés les aimants (50), en présentant une interférence croissante avec ladite culasse (10) ou lesdits aimants (50),
    • l’enveloppe périphérique desdites griffes (21, 31) est inscrite, après assemblage, dans l’enveloppe tubulaire (55) inscrivant lesdits aimants (50), lesdites griffes (21, 31) venant en contact contraint avec une partie de la surface extérieure (54) de l’aimant (50).
  2. - Rotor selon la revendication 1 caractérisé en ce que la section desdits aimants (50) est bombée, ladite enveloppe tubulaire (55) présentant un rayon correspondant au rayon passant par le sommet de la partie bombée des aimants (50), et en ce que lesdites griffes (21, 31) viennent s’appuyer sur deux aimants (50) consécutifs, à cheval sur la fente séparant lesdits deux aimants (50) consécutifs.
  3. - Rotor selon la revendication 1 caractérisé en ce que la section desdits aimants (50) est rectangulaire, ladite enveloppe tubulaire (55) présentant un rayon correspondant au rayon passant par l’arête extérieure des aimants (50), et en ce que lesdites griffes (21, 31) viennent s’appuyer sur une zone médiane d’un aimant (50).
  4. - Rotor selon la revendication 1 caractérisé en ce que lesdites griffes sont déformables élastiquement et configurés pour présenter, avec le profil desdits aimants, une interférence croissante en fonction de l’engagement axial du flasque sur ladite culasse (10).
  5. - Rotor selon la revendication 1 caractérisé en ce que :
    • ladite culasse (10) présente des cavités (17) de section trapézoïdale avec une grande base de forme arquée
    • lesdits flasques (20, 30) présentent un anneau périphérique formés de segments arqués (91) s’étendant sur une largeur angulaire comprise entre 0.5 fois et 2 fois la largeur angulaire d’un aimant (50), lesdits segments arqués (91) reliés par des segments déformables (92), chacun desdits segments arqués (91) présentant deux griffes (21) venant s’appuyer sur la surface extérieure (54) d’un ou deux aimants, en s’inscrivant à l’intérieur de l’enveloppe tubulaire (55) de la structure aimantée,
    • chaque segment arqué (91) est replié du coté opposée à la griffe (21) pour former une cale (93) dont la face extérieure est inclinée, dans le plan radial, pour forcer le déplacement centripète dudit segment arqué (91) par l’effort exercé sur ladite cale (93) par le bord extérieur de la cavité (17) correspondante, lors de l’engagement axial dudit flasque sur ladite culasse (10).
  6. - Rotor selon la revendication 5 caractérisé en ce que lesdits aimants (50) sont bombés et en ce que lesdites griffes (21, 31) viennent en appui sur la surface extérieure (54) de deux aimants (50) consécutifs, en s’inscrivant à l’intérieur de l’enveloppe tubulaire (55) de la structure aimantée, lesdites cales (93) étant positionnées angulairement entre deux griffes consécutives (21, 31).
  7. - Rotor selon la revendication 5 caractérisé en ce que lesdits aimants (50) sont de section rectangulaire et en ce que lesdites griffes (21, 31) viennent en appui au centre de la surface extérieure (54) d’un aimant (50), en s’inscrivant à l’intérieur de l’enveloppe tubulaire (55) de la structure aimantée, lesdites cales (93) étant alignées angulairement avec lesdites griffes (21, 31).
  8. - Rotor selon la revendication 1 caractérisé en ce que lesdits aimants (50) sont de section constante sur toute leur longueur.
  9. - Rotor selon la revendication 1 caractérisé en ce que lesdites griffes (21, 31) sont formées par des lames s’étendant dans la direction axiale en formant un angle aigu avec le plan de la zone discale (22, 32) dudit flaque (20, 30) et présentent une extrémité (23, 33) de largeur décroissante.
  10. - Rotor selon la revendication précédente caractérisé en ce que ledit flasque présente au niveau de l’arête de pliage de chacune desdites griffes une nervure radiale.
  11. - Rotor selon la revendication 1 caractérisé en ce que lesdits aimants (50) présentent une surface extérieure (54) bombée.
  12. - Rotor selon la revendication 1 caractérisé en ce que lesdites griffes (21, 31) présentent une forme tridimensionnelle de coins apte à s’engager dans l’espace compris entre les flancs latéraux de deux aimants consécutifs.
  13. - Rotor selon la revendication 1 caractérisé en ce que l’intégralité des moyens de fixation des aimants (50) sur la culasse (10) soient situés dans l’enveloppe tubulaire (55) inscrivant lesdits aimants (50).
  14. - Machine électrique comportant un stator et un rotor caractérisé en ce que ledit rotor est conforme à la revendication 1.
  15. - Machine électrique selon la revendication précédente caractérisé en ce que le rotor est situé à l’intérieur du stator.
  16. - Machine électrique selon la revendication 14 caractérisé en ce que le rotor est situé à l’extérieur du stator.
  17. - Capteur électromagnétique comportant une sonde magnétosensible et un rotor caractérisé en ce que ledit rotor est conforme à la revendication 1.
PCT/EP2023/080582 2022-11-02 2023-11-02 Rotor à maintien des aimants simplifié WO2024094801A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2211412A FR3141575A1 (fr) 2022-11-02 2022-11-02 Rotor à maintien des aimants simplifié
FRFR2211412 2022-11-02

Publications (1)

Publication Number Publication Date
WO2024094801A1 true WO2024094801A1 (fr) 2024-05-10

Family

ID=84819955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/080582 WO2024094801A1 (fr) 2022-11-02 2023-11-02 Rotor à maintien des aimants simplifié

Country Status (2)

Country Link
FR (1) FR3141575A1 (fr)
WO (1) WO2024094801A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4331803A1 (de) 1993-09-18 1995-03-23 Bosch Gmbh Robert Elektronisch kommutierter Elektromotor
JP2003037954A (ja) 2001-07-25 2003-02-07 Asmo Co Ltd ロータ及びブラシレスモータ
US20090001838A1 (en) * 2006-01-10 2009-01-01 Masayuki Okubo Rotating Electrical Machine
JP2010246239A (ja) * 2009-04-03 2010-10-28 Nidec Sankyo Corp モータ装置およびその製造方法
GB2559059A (en) 2015-11-13 2018-07-25 Mitsubishi Electric Corp Rotor, rotating electric machine, and rotor manufacturing method
US20200212739A1 (en) 2018-12-28 2020-07-02 Nidec Corporation Rotor and motor
WO2022243411A1 (fr) 2021-05-20 2022-11-24 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Rotor pour moteur électrique

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI356562B (en) 2008-02-04 2012-01-11 System General Corp Motor rotor
JP2010239800A (ja) 2009-03-31 2010-10-21 Mitsubishi Electric Corp 回転電機の回転子およびその製造方法
US9568012B2 (en) 2012-01-31 2017-02-14 Mitsubishi Electric Corporation Pump, refrigeration cycle apparatus, and method for manufacturing pump
JP5326014B2 (ja) 2012-02-16 2013-10-30 ファナック株式会社 磁石を鉄心の外周面に確実に取付けるための構造を有する電動機の回転子及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4331803A1 (de) 1993-09-18 1995-03-23 Bosch Gmbh Robert Elektronisch kommutierter Elektromotor
JP2003037954A (ja) 2001-07-25 2003-02-07 Asmo Co Ltd ロータ及びブラシレスモータ
US20090001838A1 (en) * 2006-01-10 2009-01-01 Masayuki Okubo Rotating Electrical Machine
JP2010246239A (ja) * 2009-04-03 2010-10-28 Nidec Sankyo Corp モータ装置およびその製造方法
GB2559059A (en) 2015-11-13 2018-07-25 Mitsubishi Electric Corp Rotor, rotating electric machine, and rotor manufacturing method
US20200212739A1 (en) 2018-12-28 2020-07-02 Nidec Corporation Rotor and motor
WO2022243411A1 (fr) 2021-05-20 2022-11-24 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Rotor pour moteur électrique

Also Published As

Publication number Publication date
FR3141575A1 (fr) 2024-05-03

Similar Documents

Publication Publication Date Title
EP2856612B1 (fr) Rotor de machine électrique et dispositif de maintien d'aimants permanents associé
FR3056849A1 (fr) Dissipateur thermique pour machine electrique tournante
WO2015075364A2 (fr) Lames de maintien des aimants
EP2856613B1 (fr) Rotor de machine électrique et ressort pour le maintien radial d'aimant permanent associe
EP3625879B1 (fr) Machine électrique comprenant un arbre de rotor moleté et procédé de fabrication d'une telle machine
WO2024094801A1 (fr) Rotor à maintien des aimants simplifié
WO2016177968A1 (fr) Rotor de machine electrique tournante muni d'au moins un element de plaquage d'un aimant a l'interieur d'une cavite correspondante
EP2879275A1 (fr) Procédé d'assemblage par rivetage d'un rotor de machine électrique tournante, rotor et compresseur correspondants
EP3259830B1 (fr) Rotor de machine électrique tournante a aimants permanents segmentes
EP3627660A1 (fr) Tôle magnétique pour rotor avec un arbre non traversant, procédé d'obtention d'une telle tôle et rotor associé
EP3223393B1 (fr) Machine electrique tournante ayant un ratio de dimensions minimisant les ondulations de couple
FR2977090A1 (fr) Rotor de moteur electrique
FR3069115A1 (fr) Rotor de machine electrique tournante muni de languettes de maintien d'aimants permanents
EP2781007A2 (fr) Rotor a aimants permanents pour une machine electrique tournante
EP3107193B1 (fr) Rotor à tôles empilées
FR3097912A1 (fr) Machine electrique tournante munie d'un organe de precontrainte de roulement
FR3086118A1 (fr) Machine electrique tournante munie d'un rotor a masse reduite
EP3033823B1 (fr) Rotor pour machine électrique et procédé de réalisation
FR3069973A1 (fr) Rotor de machine electrique tournante muni d'un flasque ayant une fonction de maintien d'aimants permanents
WO2018042124A1 (fr) Rotor de machine electrique tournante muni d'au moins une portion deformable pour le remplissage d'une cavité
FR3055484A1 (fr) Rotor de machine electrique tournante muni d'au moins une portion incurvee de reception d'un ressort
FR2893460A1 (fr) Machine electrique tournante.
FR3069974A1 (fr) Rotor de machine electrique tournante muni d'un systeme de fixation de flasque ameliore
WO2015132110A2 (fr) Rotor pour machine électrique tournante comprenant des moyens de précontrainte d'aimants, et procédé de montage associé
WO2023073312A1 (fr) Moteur à acoustique améliorée