WO2024094218A1 - 一种低功耗电路及电子设备 - Google Patents

一种低功耗电路及电子设备 Download PDF

Info

Publication number
WO2024094218A1
WO2024094218A1 PCT/CN2023/131658 CN2023131658W WO2024094218A1 WO 2024094218 A1 WO2024094218 A1 WO 2024094218A1 CN 2023131658 W CN2023131658 W CN 2023131658W WO 2024094218 A1 WO2024094218 A1 WO 2024094218A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
switch
switch circuit
electronic device
low
Prior art date
Application number
PCT/CN2023/131658
Other languages
English (en)
French (fr)
Other versions
WO2024094218A8 (zh
Inventor
胡超
靳建波
杨天池
Original Assignee
中科信息安全共性技术国家工程研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科信息安全共性技术国家工程研究中心有限公司 filed Critical 中科信息安全共性技术国家工程研究中心有限公司
Publication of WO2024094218A1 publication Critical patent/WO2024094218A1/zh
Publication of WO2024094218A8 publication Critical patent/WO2024094218A8/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors

Definitions

  • the utility model relates to the technical field of electronic circuit design, in particular to a low power consumption circuit and electronic equipment.
  • the main measures for electronic devices to solve static power consumption are: when the electronic device needs to enter the standby or shutdown state, the functional devices outside the circuit are turned off, the IP cores inside the processor are turned off, and the clock is switched to the internal low-frequency clock, only the low-frequency working state of the processor core is guaranteed, so that the overall power consumption of the circuit is minimized.
  • ultra-low power microcontroller processors are usually used as the core processors of embedded systems, or large-capacity batteries are used to achieve sustainable operation for a long time under static power consumption.
  • the utility model provides a low-power consumption circuit and electronic equipment to solve the problems in the prior art of low current loss under static power consumption and failure to meet the requirements of sustainable operation for a long time.
  • a low power consumption circuit comprising:
  • a device switch connected between the power supply and the power input terminal of the device main circuit, the device switch can be triggered to turn on or off;
  • a first switch circuit and a second switch circuit the first switch circuit includes a control end, a first end, and a second end, and the second switch circuit includes a control end, a first end, and a second end;
  • the control end of the first switch circuit is used to receive a control signal of the device main circuit, the first end of the first switch circuit is connected to the control end of the second switch circuit, the second end of the first switch circuit is grounded, the first end and the second end of the second switch circuit are respectively connected to the two ends of the device switch, the first switch circuit is used to control the conduction or disconnection of the second switch circuit according to the signal of the control end of the first switch circuit, and the second switch circuit short-circuits the device switch after being turned on.
  • the first switching circuit includes a first MOS tube and a first resistor; the gate of the first MOS tube is connected to the control end of the first switching circuit, the source of the first MOS tube is grounded, and the drain of the first MOS tube is connected to the first end of the first switching circuit; one end of the first resistor is connected to the gate of the first MOS tube, and the other end of the first resistor is grounded.
  • the second switching circuit includes a second MOS tube and a second resistor; the gate of the second MOS tube is connected to the control end of the second switching circuit, and the drain of the second MOS tube is connected to the first end of the second switching circuit; the second resistor is connected between the drain and the gate of the second MOS tube.
  • the first MOS tube includes an N-type MOS tube.
  • the second MOS tube includes a P-type MOS tube.
  • an electronic device which includes the low-power consumption circuit.
  • the electronic device also includes a power supply and a device main circuit, and the device main circuit includes a processor; the device switch is connected to the power supply and the processor, and the processor is connected to the low-power consumption circuit.
  • the power supply includes a battery, and the battery is used to provide power to the electronic device.
  • the device switch includes a touch switch for connecting or disconnecting the power provided by the battery to the processor.
  • the processor is used to send a control signal to control the on or off of the low power consumption circuit.
  • the low power consumption circuit is turned on after the device switch is closed, and the electronic device forms a "self-locking" power supply state.
  • the technical solution of the embodiment of the utility model provides a low-power circuit including: a device switch connected between the power supply and the power input end of the device main circuit, and the device switch can be triggered to turn on or off; a first switch circuit and a second switch circuit; the first switch circuit includes a control end, a first end, and a second end, and the second switch circuit includes a control end, a first end, and a second end; the control end of the first switch circuit is used to receive the control signal of the device main circuit, the first end of the first switch circuit is connected to the control end of the second switch circuit, the second end of the first switch circuit is grounded, the first end and the second end of the second switch circuit are respectively connected to the two ends of the device switch, the first switch circuit is used to control the conduction or disconnection of the second switch circuit according to the signal of the control end of the first switch circuit, and the second switch circuit short-circuits the device switch after being turned on.
  • FIG1 is a schematic diagram of a low power consumption circuit structure provided by an embodiment of the utility model
  • FIG2 is a schematic diagram of a low power consumption circuit connection provided by an embodiment of the present utility model
  • FIG3 is a schematic diagram of the structure of an electronic device provided by an embodiment of the utility model
  • FIG4 is a schematic diagram of a low power consumption circuit of an electronic device provided by an embodiment of the utility model
  • FIG5 is a schematic diagram of a low power consumption circuit of an electronic device that stops operating according to an embodiment of the present utility model
  • FIG6 is a schematic diagram of a low power consumption circuit of an electronic device in normal operation according to an embodiment of the present utility model.
  • FIG1 is a schematic diagram of a low-power circuit structure provided by an embodiment of the utility model.
  • the low-power circuit 100 includes a device switch 110, which is connected between a power supply 120 and a power input terminal of a device main circuit 130, and the device switch 110 can be triggered to turn on or off; a first switch circuit 140 and a second switch circuit 150; the first switch circuit 140 includes a control terminal, a first terminal, and a second terminal, and the second switch circuit 150 includes a control terminal, a first terminal, and a second terminal; the control terminal of the first switch circuit 140 is used to receive a control signal of the device main circuit 130, the first terminal of the first switch circuit 140 is connected to the control terminal of the second switch circuit 150, the second terminal of the first switch circuit 140 is grounded, the first terminal and the second terminal of the second switch circuit 150 are respectively connected to the two ends of the device switch 110, the first switch circuit 140 is used to control the conduction or disconnection of the second switch circuit 150 according to the signal of the control terminal of
  • the low-power circuit 100 is used to solve the power consumption problem.
  • the low-power circuit 100 is applied to electronic devices to reduce the power consumption of electronic devices.
  • the device switch 110 is a switch of the electronic device, which is used to control the opening or closing of the electronic device. For example, when the device switch 110 is closed, the electronic device is in the startup state, and when the device switch 110 is disconnected, the electronic device is in the shutdown state.
  • the power supply 120 provides power for the electronic device.
  • the power supply 120 can be a battery.
  • the device main circuit 130 as the main circuit of the electronic device, controls the working state of the electronic device.
  • the device main circuit 130 may include a controller, electrical components, etc.
  • the first switch circuit 140 and the second switch circuit 150 are the main components of the low-power circuit 100, which are used to control the working state of the low-power circuit.
  • the main circuit 130 of the electronic device is started, the electronic device is in a working state, the control end of the first switch circuit 140 is connected to the main circuit 130 of the electronic device, and the controller in the main circuit 130 of the electronic device sends a first control signal, which can be represented by a high level.
  • the first switch circuit 140 receives the high level signal, and the first switch circuit 140 is in a conducting state.
  • the first end of the first switch circuit 140 is connected to the control end of the second switch circuit 150.
  • the first end of the first switch circuit 140 outputs a high level signal as the output end of the first switch circuit 140.
  • the second switch circuit 150 receives the high level signal, and the second switch circuit 150 is in a conducting state.
  • the first end and the second end of the second switch circuit 150 are respectively connected to the two ends of the device switch 110.
  • the low power consumption circuit 100 short-circuits the device switch 110 to avoid affecting the power supply state of the electronic device due to the failure of the device switch.
  • the electronic device main circuit 130 When the device switch 110 is disconnected, the electronic device main circuit 130 is turned off, and the electronic device is in a shutdown state.
  • the control end of the first switch circuit 140 is connected to the electronic device main circuit 130.
  • the controller in the electronic device main circuit 130 sends a second control signal, which can be represented by a low level.
  • the first switch circuit 140 receives the low level signal.
  • the switch circuit 140 is in the disconnected state, the first end of the first switch circuit 140 is connected to the control end of the second switch circuit 150, the first end of the first switch circuit 140 outputs a low level signal as the output end of the first switch circuit 140, the second switch circuit 150 receives the low level signal, and the second switch circuit 150 is in the disconnected state.
  • the current in the low-power circuit 100 is very small and is usually ignored in the circuit power consumption.
  • the electronic device is in an extremely low static power consumption state.
  • the technical solution of this embodiment provides a low-power circuit including: a device switch connected between the power supply and the power input terminal of the device main circuit, and the device switch can be triggered to turn on or off; a first switch circuit and a second switch circuit; the first switch circuit includes a control terminal, a first terminal, and a second terminal, and the second switch circuit includes a control terminal, a first terminal, and a second terminal; the control terminal of the first switch circuit is used to receive a control signal of the device main circuit, the first terminal of the first switch circuit is connected to the control terminal of the second switch circuit, the second terminal of the first switch circuit is grounded, the first terminal and the second terminal of the second switch circuit are respectively connected to the two ends of the device switch, the first switch circuit is used to control the conduction or disconnection of the second switch circuit according to the signal of the control terminal of the first switch circuit, and the second switch circuit short-circuits the device switch after being turned on.
  • FIG2 is a low-power circuit connection diagram provided in an embodiment of the utility model.
  • the first switch circuit 140 includes a first MOS tube 210 and a first resistor 220
  • the second switch circuit 150 includes a second MOS tube 230 and a second resistor 240 .
  • the gate of the first MOS transistor 210 is connected to the control end of the first switch circuit 140, the drain of the first MOS transistor 210 is grounded, and the source of the first MOS transistor 210 is connected to the first end of the first switch circuit 140; one end of the first resistor 220 is connected to the gate of the first MOS transistor 210, and the other end of the first resistor 220 is grounded.
  • the gate of the second MOS transistor 230 is connected to the control end of the second switch circuit 150, and the drain of the second MOS transistor 230 is connected to the first end of the second switch circuit 150; the second resistor 240 is connected between the drain and the gate of the second MOS transistor 230.
  • MOS transistor generally refers to metal-oxide-semiconductor field effect transistor, and field effect transistor is divided into P-type MOS (P-channel type) transistor and N-type MOS (N-channel type) transistor, which belongs to insulated gate field effect transistor.
  • the first MOS transistor 210 includes an N-type MOS transistor
  • the second MOS transistor 230 includes a P-type MOS transistor.
  • the first resistor 220 is grounded and can be used as a pull-down resistor.
  • the second resistor 240 is connected to the power supply 120 and can be used as a pull-up resistor.
  • the gate of the second MOS transistor 230 connected to one end of the second resistor 240 is at a high level.
  • the pull-down resistor and the pull-up resistor can give a fixed level to the line node when the circuit driver is turned off.
  • Figure 3 is a schematic diagram of the structure of an electronic device provided by an embodiment of the utility model.
  • the electronic device 300 includes a low-power circuit 100, a power supply 120, and a device main circuit 130.
  • the device main circuit 130 includes a processor 310; the device switch 110 is connected to the power supply 120 and the processor 310, and the processor 310 is connected to the low-power circuit 100.
  • the power supply 120 provides power for the operation of the electronic device, and the power supply 120 includes a battery, which is used to provide power to the electronic device 300.
  • the device main circuit 130 is the main working circuit of the electronic device when it is in working state, and realizes various functions of the electronic device.
  • the processor 310 as the core of the device main circuit 130, has functions such as information processing, data interaction, and logical operation. For example, the processor 310 can be used to send a control signal to control the conduction or shutdown of the low-power circuit 100.
  • the device switch 110 is used to connect or disconnect the power provided by the battery to the processor 310, and may include a touch switch, which is a key switch. One end of the device switch 110 is connected to the power supply 120, and the other end is connected to the processor 310.
  • the device switch 110 controls the working state of the electronic device. When the device switch 110 is closed, the electronic device is in a normal working state.
  • the processor 310 outputs a control signal to the low-power circuit 100 and controls the low-power circuit 100 to turn on, that is, the low-power circuit 100 turns on after the device switch 110 is closed.
  • the second switch circuit 150 in the low-power circuit 100 short-circuits the device switch 110, and the electronic device 300 forms a "self-locking" power supply state, which can make the electronic device continue to work after the device switch 110 is turned off.
  • the power supply 120 and the processor 310 are disconnected, and the electronic device does not work.
  • the processor 310 outputs a control signal to the low-power circuit 100 and controls the low-power circuit 100 to turn off.
  • the current consumption of the low-power circuit 100 is close to zero, which meets the ultra-low power consumption requirements of the electronic device when it is static.
  • FIG4 is a schematic diagram of a low-power circuit of an electronic device provided by an embodiment of the utility model.
  • the static low-power circuit is mainly composed of a touch switch, a resistor, an NMOS tube and a PMOS tube in conjunction with the main circuit of the device.
  • the touch switch is a start switch of the circuit system, which is used to trigger the power supply of the main circuit of the device to put the main circuit of the device into working state.
  • the PMOS tube and the NMOS tube cooperate with the resistor to bypass the touch switch through the high-level signal given by the processor in the main circuit of the device after the touch switch triggers the circuit, so that the main circuit of the device can be maintained in a powered-on state.
  • control logic of the low-power circuit is explained with the complete operation process of the initial state, startup, and shutdown of an electronic device:
  • FIG. 5 is a schematic diagram of a low-power circuit operation when an electronic device stops running provided by an embodiment of the utility model.
  • the initial state of the circuit is the lowest power consumption state of the circuit.
  • the power supply of the main circuit of the device is in a short-circuit state, and the processor output of the main circuit is low level or high impedance state, so the gate of the NMOS tube is controlled by the pull-down resistor, and the level is low level, and the source and drain of the NMOS are cut off and not conducting. Therefore, at this time, the gate of the PMOS tube is controlled by the pull-up resistor, and the level is high level, and the source and drain of the PMOS tube are cut off and not conducting.
  • the state of the circuit is that there is only a slight leakage current between the NMOS tube and the poles of the PMOS, as shown in I1, I2, I3, and I4 in FIG. 5.
  • the current is the leakage current in the cut-off state between the semiconductor PN junctions, which is very small and usually ignored in the circuit power consumption. Therefore, the circuit is in an extremely low static power consumption state at this time.
  • FIG. 6 is a schematic diagram of the operation of a low-power circuit of an electronic device provided by an embodiment of the utility model during normal operation.
  • the touch switch When the touch switch is pressed, the switch is turned on, and the main circuit of the device is powered by the battery and operates.
  • the output pin of the processor or other control circuits of the main circuit of the device After the main circuit of the device is running, the output pin of the processor or other control circuits of the main circuit of the device first outputs a high level to the level signal, and the gate of the NMOS tube is then high level, and the source and drain are connected, so that the gate level of the PMOS tube is equivalent to grounding, that is, low level, and the source and drain of the PMOS tube are connected.
  • the power supply conduction state is shown by the dotted arrow in FIG. 6.
  • the level signal can be controlled to jump to a low level through a processing program or other circuits. Referring to the initial state principle of the electronic device circuit, the power supply of the main circuit of the device is disconnected, and the circuit is restored to the initial state shown in Figure 5, that is, it enters an extremely low static power consumption state.
  • the static current consumption of the circuit is I1, I2, I3 and I4 as shown in Figure 5.
  • the gate-source leakage current of the NMOS tube is usually not more than 80nA
  • the drain-source leakage current is usually not more than 80nA in the cut-off state.
  • the static current consumption in the electronic device can reach the nanoampere level.
  • the designed low-power circuit is suitable for common electronic devices, and the electronic device can achieve ultra-low static power consumption when it is turned off or in standby mode.
  • the low-power circuit can enable the electronic device to form a "self-locking" power supply state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)
  • Keying Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Power Sources (AREA)

Abstract

一种低功耗电路(100)及电子设备(300)。其中,低功耗电路(100)包括设备开关(110),设备开关(110)能够被触发导通或者断开;第一开关电路(140)和第二开关电路(150);第一开关电路(140)的控制端用于接收设备主电路(130)的控制信号,第一开关电路(140)的第一端与第二开关电路(150)的控制端连接,第一开关电路(140)的第二端接地,第二开关电路(150)的第一端和第二端分别连接设备开关(110)的两端,第一开关电路(140)用于根据第一开关电路(140)控制端的信号控制第二开关电路(150)的导通或断开,第二开关电路(150)导通后将设备开关(110)短路。通过设置低功耗电路(100),可以实现电子设备(300)在关机或待机时达到超低静态功耗,同时电子设备(300)在静态功耗下可持续运行较长时间。

Description

一种低功耗电路及电子设备 技术领域
本实用新型涉及电子电路设计技术领域,尤其涉及一种低功耗电路及电子设备。
背景技术
电子产品已经成为人们生活必不可少的工具之一,越来越多的电子产品使用电池供电,使得人们对电子产品的低功耗性能需求与日俱增。
目前,电子设备在解决静态功耗的主要措施为:在电子设备需要进入到待机或关机状态时,将电路围外功能性器件关闭,处理器内部将各IP核关闭,并将时钟切换到内部低频时钟,仅保证处理器内核的低频工作状态,使电路的整体电能消耗降到最低。对于长时间处于待机状态的电子设备,通常使用超低功耗的单片机处理器作为嵌入式系统的核心处理器,或者使用大容量电池,实现在静态功耗下可持续运行较长时间。
然而,现有技术中解决静态功耗的措施仍然存在低电流损耗,且对于体积较小、无法容纳大容量电池,或者无法使用超低功耗处理器的电子设备无法满足静态功耗下可持续运行较长时间的需求。
实用新型内容
本实用新型提供了一种低功耗电路及电子设备,以解决现有技术中静态功耗下存在低电流损耗,以及无法满足可持续运行较长时间的问题。
根据本实用新型的一方面,提供了一种低功耗电路,该电路包括:
设备开关,连接于供电电源和设备主电路的电源输入端之间,所述设备开关能够被触发导通或者断开;
第一开关电路和第二开关电路;所述第一开关电路包括控制端、第一端、和第二端,所述第二开关电路包括控制端、第一端、和第二端;所述第一开关电路的控制端用于接收所述设备主电路的控制信号,所述第一开关电路的第一端与所述第二开关电路的控制端连接,所述第一开关电路的所述第二端接地,所述第二开关电路的第一端和第二端分别连接所述设备开关的两端,所述第一开关电路用于根据所述第一开关电路控制端的信号控制所述第二开关电路的导通或断开,所述第二开关电路导通后将所述设备开关短路。
可选的,所述第一开关电路包括第一MOS管、第一电阻;所述第一MOS管的栅极与所述第一开关电路的控制端连接,所述第一MOS管的源极接地,所述第一MOS管的漏极与所述第一开关电路的第一端连接;所述第一电阻的一端与所述第一MOS管的栅极连接,所述第一电阻的另一端接地。
可选的,所述第二开关电路包括第二MOS管、第二电阻;所述第二MOS管的栅极与所述第二开关电路的控制端连接,所述第二MOS管的漏极与所述第二开关电路的第一端连接;所述第二电阻连接于所述第二MOS管的漏极和栅极之间。
可选的,所述第一MOS管包括N型MOS管。
可选的,所述第二MOS管包括P型MOS管。
根据本实用新型的另一方面,提供了一种电子设备,该电子设备包括所述的低功耗电路,所述电子设备还包括供电电源、设备主电路,所述设备主电路包括处理器;所述设备开关与所述供电电源、处理器连接,所述处理器与所述低功耗电路连接。
可选的,所述供电电源包括电池,所述电池用于向所述电子设备提供电源。
可选的,所述设备开关包括轻触开关,用于接通或断开所述电池为所述处理器提供的电源。
可选的,所述处理器用于发送控制信号控制所述低功耗电路的导通或关断。
可选的,所述低功耗电路在所述设备开关闭合后导通,所述电子设备形成“自锁”供电状态。
本实用新型实施例的技术方案,提供的一种低功耗电路包括:设备开关,连接于供电电源和设备主电路的电源输入端之间,所述设备开关能够被触发导通或者断开;第一开关电路和第二开关电路;所述第一开关电路包括控制端、第一端、和第二端,所述第二开关电路包括控制端、第一端、和第二端;所述第一开关电路的控制端用于接收所述设备主电路的控制信号,所述第一开关电路的第一端与所述第二开关电路的控制端连接,所述第一开关电路的所述第二端接地,所述第二开关电路的第一端和第二端分别连接所述设备开关的两端,所述第一开关电路用于根据所述第一开关电路控制端的信号控制所述第二开关电路的导通或断开,所述第二开关电路导通后将所述设备开关短路。通过在电子设备中设置低功耗电路,解决现有技术中静态功耗下存在低电流损耗的问题,可以实现电子设备在关机或待机时达到超低静态功耗,同时电子设备在静态功耗下可持续运行较长时间。
应当理解,本部分所描述的内容并非旨在标识本实用新型的实施例的关键或重要特征,也不用于限制本实用新型的范围。本实用新型的其它特征将通过以下的说明书而变得容易理解。
附图说明
为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本实用新型实施例提供的一种低功耗电路结构示意图;
图2是本实用新型实施例提供的一种低功耗电路连接示意图;
图3是本实用新型实施例提供的一种电子设备结构示意图;
图4是本实用新型实施例提供的一种电子设备的低功耗电路示意图;
图5是本实用新型实施例提供的一种电子设备停止运行时低功耗电路工作示意图;
图6是本实用新型实施例提供的一种电子设备正常运行时低功耗电路工作示意图。
具体实施方式
为了使本技术领域的人员更好地理解本实用新型方案,下面将结合本实用新型实 施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分的实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本实用新型保护的范围。
需要说明的是,本实用新型的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本实用新型的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
图1是本实用新型实施例提供的一种低功耗电路结构示意图,如图1所示,低功耗电路100包括设备开关110,设备开关110连接于供电电源120和设备主电路130的电源输入端之间,设备开关110能够被触发导通或者断开;第一开关电路140和第二开关电路150;第一开关电路140包括控制端、第一端、和第二端,第二开关电路150包括控制端、第一端、和第二端;第一开关电路140的控制端用于接收设备主电路130的控制信号,第一开关电路140的第一端与第二开关电路150的控制端连接,第一开关电路140的第二端接地,第二开关电路150的第一端和第二端分别连接设备开关110的两端,第一开关电路140用于根据第一开关电路140控制端的信号控制第二开关电路150的导通或断开,第二开关电路150导通后将设备开关110短路。
本实施例中,低功耗电路100用于解决功率消耗问题,低功耗电路100应用于电子设备中可以实现降低电子设备的功率消耗。设备开关110是电子设备的开关,用于控制电子设备的开启或关闭,例如,设备开关110闭合时,电子设备处于启动状态,设备开关110断开时,电子设备处于关机状态。供电电源120为电子设备提供电源,例如,供电电源120可以是电池。设备主电路130作为电子设备的主电路控制电子设备的工作状态,设备主电路130可以包括控制器、电器元件等。第一开关电路140、第二开关电路150作为低功耗电路100的主要组成电路,用于控制低功耗电路的工作状态。
在设备开关110闭合时,由于设备开关110与电子设备的供电电源120和电子设备主电路130的电源输入端连接,电子设备主电路130启动,电子设备处于工作状态,第一开关电路140的控制端与电子设备主电路130连接,电子设备主电路130中的控制器发送第一控制信号,第一控制信号可以用高电平表示,第一开关电路140接收到高电平信号,第一开关电路140处于导通状态,第一开关电路140的第一端与第二开关电路150的控制端连接,第一开关电路140的第一端作为第一开关电路140的输出端输出高电平信号,第二开关电路150接收到高电平信号,第二开关电路150处于导通状态,第二开关电路150的第一端和第二端分别连接设备开关110的两端,此时,低功耗电路100将设备开关110短路,避免因设备开关故障影响电子设备的供电状态。
在设备开关110断开时,电子设备主电路130关闭,电子设备处于关机状态,第一开关电路140的控制端与电子设备主电路130连接,电子设备主电路130中的控制器发送第二控制信号,第二控制信号可以用低电平表示,第一开关电路140接收到低电平信号,第一开 关电路140处于断开状态,第一开关电路140的第一端与第二开关电路150的控制端连接,第一开关电路140的第一端作为第一开关电路140的输出端输出低电平信号,第二开关电路150接收到低电平信号,第二开关电路150处于断开状态,此时,低功耗电路100中的电流非常微小,通常在电路功耗中被忽略不计,电子设备处于极低静态功耗状态。
本实施例技术方案,提供的一种低功耗电路包括:设备开关,连接于供电电源和设备主电路的电源输入端之间,设备开关能够被触发导通或者断开;第一开关电路和第二开关电路;第一开关电路包括控制端、第一端、和第二端,第二开关电路包括控制端、第一端、和第二端;第一开关电路的控制端用于接收设备主电路的控制信号,第一开关电路的第一端与第二开关电路的控制端连接,第一开关电路的第二端接地,第二开关电路的第一端和第二端分别连接设备开关的两端,第一开关电路用于根据第一开关电路控制端的信号控制第二开关电路的导通或断开,第二开关电路导通后将设备开关短路。通过在电子设备中设置低功耗电路,解决现有技术中静态功耗下存在低电流损耗的问题,可以实现电子设备在关机或待机时达到超低静态功耗,同时电子设备在静态功耗下可持续运行较长时间。
在上述实施例的基础上,本实施例在上述实施例的基础上进行细化,图2是本实用新型实施例提供的一种低功耗电路连接示意图,如图2所示,第一开关电路140包括第一MOS管210、第一电阻220,第二开关电路150包括第二MOS管230、第二电阻240。
本实施例中,第一MOS管210的栅极与第一开关电路140的控制端连接,第一MOS管210的漏极接地,第一MOS管210的源极与第一开关电路140的第一端连接;第一电阻220的一端与第一MOS管210的栅极连接,第一电阻220的另一端接地。第二MOS管230的栅极与第二开关电路150的控制端连接,第二MOS管230的漏极与第二开关电路150的第一端连接;第二电阻240连接于第二MOS管230的漏极和栅极之间。
本实施例中,MOS管一般是指金属(metal)—氧化物(oxide)—半导体(semiconductor)场效应晶体管,场效应晶体管分为P型MOS(P沟道型)管和N型MOS(N沟道型)管,属于绝缘栅场效应管。例如,第一MOS管210包括N型MOS管,第二MOS管230包括P型MOS管。第一电阻220接地可作为下拉电阻,在第一开关电路140断开时,使得与第一电阻220一端连接的第一MOS管210的栅极接地,第二电阻240与供电电源120连接可作为上拉电阻,在第二开关电路150断开时,使得与第二电阻240一端连接的第二MOS管230的栅极为高电平。下拉电阻和上拉电阻在电路驱动器关闭时可以给线路节点以一个固定的电平。
图3是本实用新型实施例提供的一种电子设备结构示意图,如图3所示,电子设备300包括低功耗电路100、供电电源120、设备主电路130,设备主电路130包括处理器310;设备开关110与供电电源120、处理器310连接,处理器310与低功耗电路100连接。
本实施例中,供电电源120为电子设备的运行提供电能,供电电源120包括电池,电池用于向电子设备300提供电源。设备主电路130作为电子设备工作状态时的主要工作电路,实现电子设备的各种功能,处理器310作为设备主电路130的核心具有进行信息处理、数据交互、逻辑运算等功能,例如,处理器310可用于发送控制信号控制低功耗电路100的导通或关断。
设备开关110用于接通或断开电池为处理器310提供的电源,可以包括轻触开关,轻触开关即按键开关。设备开关110的一端连接供电电源120,另一端连接处理器310,设备开关110控制电子设备的工作状态。当设备开关110闭合时,电子设备处于正常工作状态,处 理器310输出控制信号至低功耗电路100并控制低功耗电路100导通,即低功耗电路100在设备开关110闭合后导通,此时,参考上述实施例,低功耗电路100中的第二开关电路150将设备开关110短路,电子设备300形成“自锁”供电状态,可以使得设备开关110断开后电子设备保持继续工作。当设备开关110断开时,供电电源120与处理器310之间断路,电子设备不工作,处理器310输出控制信号至低功耗电路100并控制低功耗电路100关断,此时,低功耗电路100的电流消耗接近零,满足了电子设备静态时超低功耗的需求。
示例性的,图4是本实用新型实施例提供的一种电子设备的低功耗电路示意图,静态低功耗电路主要由轻触开关、电阻、NMOS管与PMOS管配合设备主电路组成。轻触开关为电路系统的启动开关,用于触发设备主电路的电源供电,使设备主电路进入到工作状态。PMOS管与NMOS管配合电阻用于在轻触开关触发电路后,通过设备主电路中的处理器给出的高电平信号将轻触开关旁路,使设备主电路能够维持在通电状态。
低功耗电路的控制逻辑以一个电子设备的初始状态、开机、关机的完整运行流程进行阐述:
一、图5是本实用新型实施例提供的一种电子设备停止运行时低功耗电路工作示意图,电路的初始状态即为电路的最低功耗状态,此时设备主电路电源处于短路状态,主电路的处理器输出为低电平或者高阻态,所以NMOS管栅极由下拉电阻控制,电平为低电平,NMOS的源极与漏极之间截止不导通,故此时PMOS管栅极由上拉电阻控制,电平为高电平,PMOS管的源极与漏极之间截止不导通,电路的状态为仅在NMOS管与PMOS的各极点之间有轻微的漏电流,如图5所示的I1、I2、I3、I4处,该电流为半导体PN结之间截止状态下的漏电流,非常微小,通常在电路功耗中被忽略不计,故电路此时处于极低静态功耗状态。
二、图6是本实用新型实施例提供的一种电子设备正常运行时低功耗电路工作示意图,当按下轻触开关后,开关导通,设备主电路由电池供电并运行。设备主电路运行后首先通过处理器的输出引脚或设备主电路的其他控制电路给电平信号输出高电平,NMOS管栅极随即为高电平,源极与漏极之间导通,使得PMOS管的栅极电平等效于接地,即低电平,PMOS管源极与漏极之间导通。在PMOS管导通之后,即使轻触开关抬起,也不影响设备主电路的供电状态,电源电路形成一个“自锁”状态,电源导通状态如图6虚线箭头所示。
三、当设备主电路需要关机时,可通过处理程序或其他电路控制电平信号跳转为低电平,参考电子设备电路的初始状态原理所述,设备主电路的电源断开,电路恢复到如图5所示的初始状态,即进入到极低静态功耗状态。
电路在初始状态下,电路的静态消耗电流为图5所示的I1、I2、I3与I4。根据当前常用的MOS管的电气参数可知,NMOS管在截止状态下,栅源极漏电流通常不大于80nA,漏源极漏电流通常不大于80nA,PMOS管的与NMOS的参数一致。以最大漏电流80nA为例,I1+I2+I3+I4=320nA=0.32μA,静态电流不足1μA,远低于常见电子设备的低功耗状态下的静态电流。
本实施例,通过设计低功耗电路并将低功耗电路应用于电子设备,可以使得电子设备中的静态电流消耗达到纳安级,设计的低功耗电路适用于普遍的电子设备,实现了电子设备在关机或待机时达到超低静态功耗,同时电子设备在工作状态下,低功耗电路可以使得电子设备形成“自锁”供电状态。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本实用新型中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执 行,只要能够实现本实用新型的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本实用新型保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本实用新型的精神和原则之内所作的修改、等同替换和改进等,均应包含在本实用新型保护范围之内。

Claims (10)

  1. 一种低功耗电路,其特征在于,包括:
    设备开关,连接于供电电源和设备主电路的电源输入端之间,所述设备开关能够被触发导通或者断开;
    第一开关电路和第二开关电路;所述第一开关电路包括控制端、第一端、和第二端,所述第二开关电路包括控制端、第一端、和第二端;所述第一开关电路的控制端用于接收所述设备主电路的控制信号,所述第一开关电路的第一端与所述第二开关电路的控制端连接,所述第一开关电路的所述第二端接地,所述第二开关电路的第一端和第二端分别连接所述设备开关的两端,所述第一开关电路用于根据所述第一开关电路控制端的信号控制所述第二开关电路的导通或断开,所述第二开关电路导通后将所述设备开关短路。
  2. 根据权利要求1所述的低功耗电路,其特征在于,所述第一开关电路包括第一MOS管、第一电阻;
    所述第一MOS管的栅极与所述第一开关电路的控制端连接,所述第一MOS管的源极接地,所述第一MOS管的漏极与所述第一开关电路的第一端连接;
    所述第一电阻的一端与所述第一MOS管的栅极连接,所述第一电阻的另一端接地。
  3. 根据权利要求2所述的低功耗电路,其特征在于,所述第二开关电路包括第二MOS管、第二电阻;
    所述第二MOS管的栅极与所述第二开关电路的控制端连接,所述第二MOS管的漏极与所述第二开关电路的第一端连接;
    所述第二电阻连接于所述第二MOS管的漏极和栅极之间。
  4. 根据权利要求2所述的低功耗电路,其特征在于,所述第一MOS管包括N型MOS管。
  5. 根据权利要求3所述的低功耗电路,其特征在于,所述第二MOS管包括P型MOS管。
  6. 一种电子设备,其特征在于,包括权利要求1-5任一项所述的低功耗电路,所述电子设备还包括供电电源、设备主电路,所述设备主电路包括处理器;
    所述设备开关与所述供电电源、处理器连接,所述处理器与所述低功耗电路连接。
  7. 根据权利要求6所述的电子设备,其特征在于,所述供电电源包括电池,所述电池用于向所述电子设备提供电源。
  8. 根据权利要求7所述的电子设备,其特征在于,所述设备开关包括轻触开关,用于接通或断开所述电池为所述处理器提供的电源。
  9. 根据权利要求6所述的电子设备,其特征在于,所述处理器用于发送控制信号控制所述低功耗电路的导通或关断。
  10. 根据权利要求6所述的电子设备,其特征在于,所述低功耗电路在所述设备开关闭合后导通,所述电子设备形成“自锁”供电状态。
PCT/CN2023/131658 2022-10-31 2023-11-14 一种低功耗电路及电子设备 WO2024094218A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222890362.5 2022-10-31
CN202222890362.5U CN219041762U (zh) 2022-10-31 2022-10-31 一种低功耗电路及电子设备

Publications (2)

Publication Number Publication Date
WO2024094218A1 true WO2024094218A1 (zh) 2024-05-10
WO2024094218A8 WO2024094218A8 (zh) 2024-09-12

Family

ID=86313712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/131658 WO2024094218A1 (zh) 2022-10-31 2023-11-14 一种低功耗电路及电子设备

Country Status (2)

Country Link
CN (1) CN219041762U (zh)
WO (1) WO2024094218A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN219041762U (zh) * 2022-10-31 2023-05-16 长春吉大正元信息技术股份有限公司 一种低功耗电路及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08116221A (ja) * 1994-10-19 1996-05-07 Nippondenso Co Ltd 定電流回路
JP2005268895A (ja) * 2004-03-16 2005-09-29 Toshiba Corp スイッチ回路
CN206640342U (zh) * 2017-03-18 2017-11-14 西安甘鑫电子科技有限公司 一种低功耗的信号控制开机电路
CN109417206A (zh) * 2018-09-03 2019-03-01 深圳迈瑞生物医疗电子股份有限公司 一种电源管理电路
CN209233535U (zh) * 2019-01-18 2019-08-09 歌尔科技有限公司 一种低功耗供电电路及电子设备
CN213243599U (zh) * 2020-09-30 2021-05-18 合肥安轩能源有限公司 Bms低功耗休眠供电控制及唤醒电路
CN213338364U (zh) * 2020-09-11 2021-06-01 深圳市当智科技有限公司 低功耗电路和智能设备
CN219041762U (zh) * 2022-10-31 2023-05-16 长春吉大正元信息技术股份有限公司 一种低功耗电路及电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08116221A (ja) * 1994-10-19 1996-05-07 Nippondenso Co Ltd 定電流回路
JP2005268895A (ja) * 2004-03-16 2005-09-29 Toshiba Corp スイッチ回路
CN206640342U (zh) * 2017-03-18 2017-11-14 西安甘鑫电子科技有限公司 一种低功耗的信号控制开机电路
CN109417206A (zh) * 2018-09-03 2019-03-01 深圳迈瑞生物医疗电子股份有限公司 一种电源管理电路
CN209233535U (zh) * 2019-01-18 2019-08-09 歌尔科技有限公司 一种低功耗供电电路及电子设备
CN213338364U (zh) * 2020-09-11 2021-06-01 深圳市当智科技有限公司 低功耗电路和智能设备
CN213243599U (zh) * 2020-09-30 2021-05-18 合肥安轩能源有限公司 Bms低功耗休眠供电控制及唤醒电路
CN219041762U (zh) * 2022-10-31 2023-05-16 长春吉大正元信息技术股份有限公司 一种低功耗电路及电子设备

Also Published As

Publication number Publication date
WO2024094218A8 (zh) 2024-09-12
CN219041762U (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
WO2024094218A1 (zh) 一种低功耗电路及电子设备
US7279927B2 (en) Integrated circuit with multiple power domains
CN209419591U (zh) 输出驱动器
WO2021159651A1 (zh) 一种服务器集中供电的控制装置
WO2022161356A1 (zh) 一种开机控制电路及其相关装置
WO2021223139A1 (zh) 开关机控制装置和电子设备
CN103959648A (zh) 节约电荷的功率门控装置和方法
CN204463019U (zh) 一种供电控制电路
CN101212147B (zh) 电源电压供电电路
CN105720956B (zh) 一种基于FinFET器件的双时钟控制触发器
CN203747778U (zh) 一种系统供电电路
CN105720948B (zh) 一种基于FinFET器件的时钟控制触发器
CN102063170B (zh) 一种解决电子产品关机漏电流的电路
CN112994670B (zh) Soc芯片的低关机功耗电路和soc芯片
CN206894613U (zh) 一种开关机电路
CN105577170A (zh) 隔离控制电路
CN207070036U (zh) 一种按键复用电源开关电路
CN205193723U (zh) 一种硬盘分时上电系统
CN204578138U (zh) 一种仪表供电电路
CN104753145A (zh) 一种具有自锁功能的电源开关
CN211151936U (zh) 电源开关电路
CN102890556B (zh) 一种显示终端
CN220173096U (zh) 一种电子设备及供电使能回路
WO2015100623A1 (zh) 一种指示灯控制电路及电子设备
CN218102572U (zh) 一种低功耗的控制电路及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885142

Country of ref document: EP

Kind code of ref document: A1