WO2024093857A1 - 一种定位方法及相关装置 - Google Patents

一种定位方法及相关装置 Download PDF

Info

Publication number
WO2024093857A1
WO2024093857A1 PCT/CN2023/127413 CN2023127413W WO2024093857A1 WO 2024093857 A1 WO2024093857 A1 WO 2024093857A1 CN 2023127413 W CN2023127413 W CN 2023127413W WO 2024093857 A1 WO2024093857 A1 WO 2024093857A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
data
module
gnss
vehicle
Prior art date
Application number
PCT/CN2023/127413
Other languages
English (en)
French (fr)
Inventor
吴谋炎
金乐
黄国胜
朱宇洪
肖洋
史翔
李文懿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024093857A1 publication Critical patent/WO2024093857A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/024Guidance services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/33Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings

Definitions

  • the present application relates to the field of positioning technology, and in particular to a positioning method and related devices.
  • LBS location-based services
  • GNSS global navigation satellite system
  • IMU inertial measurement unit
  • the present application provides a positioning method and related devices, which enable an electronic device to automatically start navigation positioning when it recognizes that it is about to enter a geographic fence of an indoor area, so as to obtain the real-time position of the electronic device entering the indoor area.
  • the present application provides a positioning method, which is applied to an electronic device, wherein the electronic device includes an inertial measurement unit IMU and a global navigation satellite system GNSS module, wherein the IMU is used to detect the IMU data of the electronic device, and the GNSS module is used to obtain the GNSS data when it is turned on; the method includes: the GNSS module is in an off state; when the electronic device detects that the electronic device is in a vehicle-mounted state and the electronic device enters the geographic fence of a garage, the electronic device turns on the GNSS module and obtains the GNSS data through the GNSS module; the electronic device determines the real-time position of the electronic device based on the GNSS data and the IMU data; when the electronic device detects that the vehicle is parked, the electronic device determines the first position determined based on the GNSS data and the IMU data as the parking position; and the electronic device displays the parking position.
  • the electronic device includes an inertial measurement unit IMU and a global navigation satellite system GN
  • the electronic device can start the GNSS module, and initiate continuous navigation positioning through the GNSS data and IMU data obtained by the GNSS module, and obtain the parking position when the electronic device detects parking. In this way, even if the user does not turn on the GNSS module on the electronic device in advance, the electronic device can continue to obtain the user's real-time position, such as the parking position, after entering the indoor area.
  • the electronic device detects that the electronic device is in a vehicle-mounted state, specifically including: if the electronic device detects that the IMU data meets a first preset condition, the electronic device determines that the electronic device is in a vehicle-mounted state.
  • the first preset condition includes that the moving speed of the electronic device is between the first preset speed and the second preset speed and/or the moving acceleration of the electronic device is greater than the preset acceleration, wherein the first preset speed is less than the second preset speed.
  • the electronic device can determine whether the electronic device is in the vehicle-mounted state through the IMU data measured by the IMU, thereby making full use of the IMU.
  • the electronic device detects that the electronic device is in a vehicle-mounted state, specifically including: if the electronic device detects that a Bluetooth connection is established between the electronic device and the vehicle, the electronic device determines that the electronic device is in a vehicle-mounted state.
  • the electronic device can accurately identify that the electronic device is in a vehicle-mounted state.
  • the electronic device detects that the vehicle has stopped, specifically including: if the electronic device detects that the IMU data meets a second preset condition, the electronic device determines that the vehicle has stopped.
  • the second preset condition includes that the moving speed of the electronic device is 0.
  • the electronic device can determine whether the vehicle is parked through the IMU data measured by the IMU, thereby making full use of the IMU.
  • the electronic device detects that the vehicle has stopped, specifically including: if the electronic device detects that the Bluetooth connection between the electronic device and the vehicle is disconnected, the electronic device determines that the vehicle has stopped.
  • the electronic device can accurately identify that the electronic device is parked.
  • the electronic device detects that the electronic device has entered the geofence of the garage, specifically including: if the electronic device detects that the cellular cell information of the location of the electronic device matches the cellular cell information in the geofence data of the garage, and/or the electronic device detects that the Wi-Fi data of the location of the electronic device matches the Wi-Fi data in the geofence data of the garage, the electronic device determines that it has entered the geofence of the garage; wherein the Wi-Fi data includes one or more of the following: the MAC address, IP address, and Wi-Fi signal strength of the Wi-Fi access point that sends the Wi-Fi signal.
  • the power consumption of the electronic device can be saved by judging whether the electronic device has entered the geographic fence of the garage through the cellular cell information obtained by the cellular module and/or the Wi-Fi data obtained by the Wi-Fi module.
  • the method before the electronic device detects that the electronic device has entered the geofence of the garage, the method also includes: the electronic device determines, from a geofence database, one or more geofence data within the target activity area where the electronic device is located based on cellular cell information and/or Wi-Fi data detected by the electronic device; the electronic device determines whether the electronic device has entered the geofence of the garage based on one or more geofence data within the target activity area, and the cellular cell information and/or Wi-Fi data detected by the electronic device.
  • the electronic device can first detect one or more geo-fence data corresponding to the target activity area where the electronic device is located from the geo-fence database, and then detect whether the electronic device enters the geo-fence of the garage, which can save the amount of data calculation and reduce the amount of data storage in the calculation device.
  • the electronic device determines the real-time position of the electronic device based on the GNSS data and the IMU data, specifically including: when the electronic device obtains the GNSS data through the GNSS module at a first moment, the electronic device calculates the position of the electronic device at the first moment based on the GNSS data; when the electronic device does not obtain the GNSS data through the GNSS module at a second moment, the electronic device determines the displacement information of the electronic device between the first moment and the second moment based on the IMU data; the electronic device determines the position of the electronic device at the second moment based on the position of the electronic device at the first moment and the displacement information between the first moment and the second moment.
  • the real-time position of the electronic device in the indoor area can be continuously obtained, and the parking position can be obtained.
  • the present application provides an electronic device, comprising: an IMU, a GNSS module, a processor and a display screen; wherein the IMU is used to detect IMU data of the electronic device, the IMU data including gyroscope data and acceleration data, and send the IMU data to the processor; the GNSS module is in an off state; the processor is used to turn on the GNSS module when it is detected that the electronic device is in a vehicle-mounted state and the electronic device enters the geographic fence of the garage; the GNSS module is used to obtain the GNSS data when turned on, and send the GNSS data to the processor; the processor is used to determine the real-time position of the electronic device based on the GNSS data and the IMU data; the processor is also used to determine the first position determined based on the GNSS data and the IMU as the parking position when parking is detected; the processor is also used to instruct the display screen to display the parking position.
  • the IMU is used to detect IMU data of the electronic device, the IMU data including
  • the electronic device if the IMU data meets a first preset condition, the electronic device is in a vehicle-mounted state.
  • the first preset condition includes that the moving speed of the electronic device is between the first preset speed and the second preset speed and/or the moving acceleration of the electronic device is greater than the preset acceleration, wherein the first preset speed is less than the second preset speed.
  • the electronic device also includes a sensor hub module; wherein the sensor hub module is used to obtain the IMU data from the IMU, and when the IMU data meets the first preset condition, determine that the electronic device is in a vehicle-mounted state; the sensor hub module is also used to notify the processor that the electronic device is in a vehicle-mounted state.
  • the processor is further configured to determine that the electronic device is in a vehicle-mounted state when it is detected that a Bluetooth connection is established with the vehicle.
  • the electronic device determines that the vehicle is parked.
  • the second preset condition includes that the moving speed of the electronic device is 0.
  • the electronic device also includes a sensor hub module; wherein the sensor hub module is used to obtain the IMU data from the IMU, and determine that the vehicle is stopped when the IMU data meets the second preset condition; the sensor hub module is also used to notify the processor that the vehicle is stopped.
  • the processor is further configured to, when detecting that the Bluetooth connection with the vehicle is disconnected, cause the electronic device to determine that the vehicle is parked.
  • the electronic device also includes: a cellular module and/or a Wi-Fi module, the cellular module is used to detect cellular cell information of the location of the electronic device, and the Wi-Fi module is used to detect Wi-Fi data of the location of the electronic device; if the cellular module detects that the cellular cell information of the location of the electronic device matches the cellular cell information in the geographic fence data of the garage, and/or the Wi-Fi module detects that the Wi-Fi data of the location of the electronic device matches the Wi-Fi data in the geographic fence data of the garage, then the electronic device enters the geographic fence of the garage; wherein the Wi-Fi data includes one or more of the following: MAC address, IP address, and Wi-Fi signal strength of the Wi-Fi access point that sends the Wi-Fi signal.
  • the Wi-Fi data includes one or more of the following: MAC address, IP address, and Wi-Fi signal strength of the Wi-Fi access point that sends the Wi-Fi signal.
  • the electronic device also includes a sensor hub module; the cellular module is further used to send the cellular cell information of the location of the electronic device to the sensor hub module; the Wi-Fi module is further used to send the Wi-Fi data of the location of the electronic device to the sensor hub module; the sensor hub module is further used to determine whether the electronic device enters the geographic fence of the garage based on the cellular cell information of the location of the electronic device and/or the Wi-Fi data of the Wi-Fi module; the sensor hub module is further used to notify the processor whether the electronic device enters the geographic fence of the garage.
  • the processor is further used to determine one or more geo-fence data within the target activity area where the electronic device is located from the geo-fence database based on the cellular cell information and/or Wi-Fi data detected by the electronic device; the processor is further used to send the one or more geo-fence data within the target activity area where the electronic device is located to the sensor hub module; the sensor hub module is specifically used to determine whether the electronic device has entered the geo-fence of the garage based on one or more geo-fence data within the target activity area, and the cellular cell information and/or Wi-Fi data detected by the electronic device.
  • the real-time position of the electronic device is determined based on the GNSS data and the IMU data, specifically including: when the GNSS data sent by the GNSS module is acquired at the first moment, based on the GNSS data, calculating the position of the electronic device at the first moment; when the GNSS data sent by the GNSS module is not acquired at the second moment, based on the IMU data, determining the displacement information of the electronic device between the first moment and the second moment; based on the position of the electronic device at the second moment and the displacement information between the first moment and the second moment.
  • the present application provides an electronic device, including an IMU, a GNSS module, a display screen, one or more processors, and one or more memories.
  • the one or more memories are coupled to the one or more processors, and the one or more memories are used to store computer program codes, and the computer program codes include computer instructions.
  • the electronic device executes the positioning method in any possible implementation of any of the above aspects.
  • an embodiment of the present application provides a computer storage medium, including computer instructions.
  • the computer instructions When the computer instructions are executed on an electronic device, the electronic device executes the positioning method in any possible implementation of any of the above aspects.
  • an embodiment of the present application provides a computer program product.
  • the computer program product When the computer program product is run on a computer, the computer executes the positioning method in any possible implementation of any of the above aspects.
  • the beneficial effects of the second to fifth aspects can be referred to the first aspect and any possible implementation method of the first aspect, and will not be repeated here.
  • FIG1 is a schematic diagram of the structure of an electronic device provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a positioning scenario provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of another positioning scenario provided in an embodiment of the present application.
  • FIG4 is a schematic diagram showing the principle of a positioning method provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a geographical fence division principle provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of a module device of an electronic device provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of a module device of another electronic device provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of a flow chart of a positioning method provided in an embodiment of the present application.
  • 9A-9B are schematic diagrams of a set of interfaces for displaying parking positions provided in an embodiment of the present application.
  • first and second are used for descriptive purposes only and are not to be understood as suggesting or implying relative importance or implicitly indicating the number of technical features indicated.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features, and in the description of the embodiments of the present application, unless otherwise specified, "plurality” means two or more.
  • the following describes an implementation method for finding a car in a garage provided in an embodiment of the present application.
  • Method 1 In order to find a car in a garage, a dedicated parking detection device or device (e.g., camera, sensor, etc.) can be deployed in the garage.
  • the parking detection device or device can detect the parking position of the vehicle in the garage and send the parking position of the vehicle to the application that matches the parking detection device.
  • the user can view the parking position of the vehicle on the application.
  • a dedicated parking detection device or device e.g., camera, sensor, etc.
  • the parking detection device or device can detect the parking position of the vehicle in the garage and send the parking position of the vehicle to the application that matches the parking detection device.
  • the user can view the parking position of the vehicle on the application.
  • it is necessary to deploy relevant hardware devices or devices in the garage and users are also required to download corresponding applications on electronic devices such as mobile phones, resulting in high deployment and maintenance costs, making it difficult to promote on a large scale.
  • Method 2 Mobile phones and other navigation devices can use IMU sensors, GNSS modules, cameras, etc. to perform autonomous navigation and positioning to obtain the parking position in the garage.
  • this method requires the user to manually open the navigation application before entering the garage, and start the navigation and positioning module through the navigation application for navigation and positioning.
  • the GNSS module usually cannot receive satellite signals and cannot be positioned through satellite signals. Therefore, IMU sensors and/or cameras and other devices can be used to complete dead reckoning and achieve positioning. If the user does not start the navigation and positioning module through the navigation application in advance, mobile phones and other navigation devices usually cannot obtain the parking position when the user parks. If the navigation and positioning module is always turned on, the power consumption of mobile phones and other navigation devices is large.
  • a positioning method is provided in an embodiment of the present application, which can realize the configuration of geo-fences for multiple indoor areas (for example, garages, tunnels, caves, etc.).
  • the navigation and positioning module on the electronic device is not turned on, if the electronic device detects that it has entered the geo-fence of the designated indoor area and the electronic device is in a vehicle-mounted state, the electronic device can start the navigation and positioning module, initiate continuous positioning, and obtain the parking position when the electronic device detects that the parking is completed.
  • the navigation and positioning module includes a GNSS positioning module and a vehicle dead reckoning (VDR) positioning module/dead reckoning (DR) positioning module.
  • VDR vehicle dead reckoning
  • DR dead reckoning
  • the indoor area is not limited to a garage, a tunnel, a cave, and other types of areas, and other types of indoor areas may also be included.
  • the indoor area in the embodiment of the present application is taken as a garage for exemplary description.
  • FIG. 1 shows a schematic structural diagram of an electronic device 100 .
  • the embodiment is described in detail below by taking the electronic device 100 as an example. It should be understood that the electronic device 100 shown in FIG1 is only an example, and the electronic device 100 may have more or fewer components than those shown in FIG1, may combine two or more components, or may have different component configurations.
  • the various components shown in the figure may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • the electronic device 100 may include: a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2, a mobile communication module 150, a wireless communication module 160, an audio module 170, a speaker 170A, a receiver 170B, a microphone 170C, an earphone interface 170D, a sensor module 180, a button 190, a motor 191, an indicator 192, a camera 193, a display screen 194, and a subscriber identification module (SIM) card interface 195, etc.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, an ambient light sensor 180L, a bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the electronic device 100.
  • the electronic device 100 may include more or fewer components than shown in the figure, or combine some components, or split some components, or arrange the components differently.
  • the components shown in the figure may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example, the processor 110 may include an application processor (AP), a modem processor, a graphics processor (GPU), an image signal processor (ISP), a controller, a memory, a video codec, a digital signal processor (DSP), a baseband processor, and/or a neural-network processing unit (NPU), etc.
  • AP application processor
  • GPU graphics processor
  • ISP image signal processor
  • controller a memory
  • video codec a digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • Different processing units may be independent devices or integrated in one or more processors.
  • the controller may be the nerve center and command center of the electronic device 100.
  • the controller may generate an operation control signal according to the instruction operation code and the timing signal to complete the control of fetching and executing instructions.
  • the processor 110 may also be provided with a memory for storing instructions and data.
  • the memory in the processor 110 is a cache memory.
  • the memory may store instructions or data that the processor 110 has just used or cyclically used. If the processor 110 needs to use the instruction or data again, it may be directly called from the memory. This avoids repeated access, reduces the waiting time of the processor 110, and thus improves the efficiency of the system.
  • the processor 110 may include one or more interfaces.
  • the interface may include an inter-integrated circuit (I2C) interface, an inter-integrated circuit sound (I2S) interface, a pulse code modulation (PCM) interface, a universal asynchronous receiver/transmitter (UART) interface, a mobile industry processor interface (MIPI), a general-purpose input/output (GPIO) interface, a subscriber identity module (SIM) interface, and/or a universal serial bus (USB) interface, etc.
  • I2C inter-integrated circuit
  • I2S inter-integrated circuit sound
  • PCM pulse code modulation
  • UART universal asynchronous receiver/transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus, including a serial data line (SDA) and a serial clock line (SCL).
  • the processor 110 may include multiple groups of I2C buses.
  • the processor 110 may be coupled to the touch sensor 180K, the charger, the flash, the camera 193, etc. through different I2C bus interfaces.
  • the processor 110 may be coupled to the touch sensor 180K through the I2C interface, so that the processor 110 communicates with the touch sensor 180K through the I2C bus interface, thereby realizing the touch function of the electronic device 100.
  • the I2S interface can be used for audio communication.
  • the processor 110 can include multiple I2S buses.
  • the processor 110 can be coupled to the audio module 170 via the I2S bus to achieve communication between the processor 110 and the audio module 170.
  • the audio module 170 can transmit an audio signal to the wireless communication module 160 via the I2S interface to achieve the function of answering a call through a Bluetooth headset.
  • the PCM interface can also be used for audio communication, sampling, quantizing and encoding analog signals.
  • the audio module 170 and the wireless communication module 160 can be coupled via a PCM bus interface.
  • the audio module 170 can also transmit audio signals to the wireless communication module 160 via the PCM interface to realize the function of answering calls via a Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus for asynchronous communication.
  • the bus can be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • the UART interface is generally used to connect the processor 110 with the wireless communication Module 160.
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to implement the Bluetooth function.
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the UART interface to implement the function of playing music through a Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193.
  • the MIPI interface includes a camera serial interface (CSI), a display serial interface (DSI), etc.
  • the processor 110 and the camera 193 communicate via the CSI interface to implement the shooting function of the electronic device 100.
  • the processor 110 and the display screen 194 communicate via the DSI interface to implement the display function of the electronic device 100.
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 110 with the camera 193, the display 194, the wireless communication module 160, the audio module 170, the sensor module 180, etc.
  • the GPIO interface can also be configured as an I2C interface, an I2S interface, a UART interface, a MIPI interface, etc.
  • the USB interface 130 is an interface that complies with USB standard specifications, and specifically can be a Mini USB interface, a Micro USB interface, a USB Type C interface, etc.
  • the USB interface 130 can be used to connect a charger to charge the electronic device 100, and can also be used to transmit data between the electronic device 100 and a peripheral device. It can also be used to connect headphones to play audio through the headphones.
  • the interface can also be used to connect other electronic devices, such as augmented reality devices, etc.
  • the interface connection relationship between the modules illustrated in the embodiment of the present invention is only a schematic illustration and does not constitute a structural limitation on the electronic device 100.
  • the electronic device 100 may also adopt different interface connection methods in the above embodiments, or a combination of multiple interface connection methods.
  • the charging management module 140 is used to receive charging input from a charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 140 may receive charging input from a wired charger through the USB interface 130.
  • the charging management module 140 may receive wireless charging input through a wireless charging coil of the electronic device 100. While the charging management module 140 is charging the battery 142, it may also power the electronic device through the power management module 141.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, the internal memory 121, the external memory, the display screen 194, the camera 193, and the wireless communication module 160.
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle number, battery health status (leakage, impedance), etc.
  • the power management module 141 can also be set in the processor 110.
  • the power management module 141 and the charging management module 140 can also be set in the same device.
  • the wireless communication function of the electronic device 100 can be implemented through the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
  • Antenna 1 and antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve the utilization of antennas.
  • antenna 1 can be reused as a diversity antenna for a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 150 can provide solutions for wireless communications including 2G/3G/4G/5G, etc., applied to the electronic device 100.
  • the mobile communication module 150 may include at least one filter, a switch, a power amplifier, a low noise amplifier (LNA), etc.
  • the mobile communication module 150 may receive electromagnetic waves from the antenna 1, and perform filtering, amplification, and other processing on the received electromagnetic waves, and transmit them to the modulation and demodulation processor for demodulation.
  • the mobile communication module 150 may also amplify the signal modulated by the modulation and demodulation processor, and convert it into electromagnetic waves for radiation through the antenna 1.
  • at least some of the functional modules of the mobile communication module 150 may be arranged in the processor 110.
  • at least some of the functional modules of the mobile communication module 150 may be arranged in the same device as at least some of the modules of the processor 110.
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low-frequency baseband signal to be sent into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
  • the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the application processor outputs a sound signal through an audio device (not limited to a speaker 170A, a receiver 170B, etc.), or displays an image or video through a display screen 194.
  • the modem processor may be an independent device.
  • the modem processor may be independent of the processor 110 and be set in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide wireless communication solutions including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), global navigation satellite system (GNSS), frequency modulation (FM), near field communication (NFC), infrared (IR), etc., which are applied to the electronic device 100.
  • the wireless communication module 160 can be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2, modulates the electromagnetic wave signal and filters it, and processes it. The processed signal is sent to the processor 110.
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110, modulate the frequency of the signal, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the antenna 1 of the electronic device 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), wideband code division multiple access (WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (LTE), BT, GNSS, WLAN, NFC, FM, and/or IR technology.
  • the GNSS may include a global positioning system (GPS), a global navigation satellite system (GLONASS), a Beidou navigation satellite system (BDS), a quasi-zenith satellite system (QZSS) and/or a satellite based augmentation system (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation system
  • the electronic device 100 implements the display function through a GPU, a display screen 194, and an application processor.
  • the GPU is a microprocessor for image processing, which connects the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • the processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos, etc.
  • the display screen 194 includes a display panel.
  • the display panel can be a liquid crystal display (LCD).
  • the display screen panel can also be made of an organic light-emitting diode (OLED), an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (AMOLED), a flexible light-emitting diode (FLED), miniled, microled, micro-oled, quantum dot light-emitting diodes (QLED), etc.
  • the electronic device 100 may include 1 or N display screens 194, where N is a positive integer greater than 1.
  • the electronic device 100 can realize the shooting function through ISP, camera 193, video codec, GPU, display screen 194 and application processor.
  • ISP is used to process the data fed back by camera 193. For example, when taking a photo, the shutter is opened, and the light is transmitted to the camera photosensitive element through the lens. The light signal is converted into an electrical signal, and the camera photosensitive element transmits the electrical signal to ISP for processing and converts it into an image visible to the naked eye. ISP can also perform algorithm optimization on the noise and brightness of the image. ISP can also optimize the exposure, color temperature and other parameters of the shooting scene. In some embodiments, ISP can be set in camera 193.
  • the camera 193 is used to capture still images or videos.
  • the object generates an optical image through the lens and projects it onto the photosensitive element.
  • the photosensitive element can be a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) phototransistor.
  • CMOS complementary metal oxide semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then passes the electrical signal to the ISP to be converted into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • the DSP converts the digital image signal into an image signal in a standard RGB, YUV or other format.
  • the electronic device 100 may include 1 or N cameras 193, where N is a positive integer greater than 1.
  • the digital signal processor is used to process digital signals, and can process not only digital image signals but also other digital signals. For example, when the electronic device 100 is selecting a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy.
  • Video codecs are used to compress or decompress digital videos.
  • the electronic device 100 may support one or more video codecs. In this way, the electronic device 100 may play or record videos in a variety of coding formats, such as Moving Picture Experts Group (MPEG) 1, MPEG2, MPEG3, MPEG4, etc.
  • MPEG Moving Picture Experts Group
  • MPEG2 MPEG2, MPEG3, MPEG4, etc.
  • NPU is a neural network (NN) computing processor.
  • NN neural network
  • applications such as intelligent cognition of electronic device 100 can be realized, such as image recognition, face recognition, voice recognition, text understanding, etc.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to implement a data storage function. For example, files such as music and videos can be stored in the external memory card.
  • the internal memory 121 can be used to store computer executable program codes, which include instructions.
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by running the instructions stored in the internal memory 121.
  • the internal memory 121 may include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the data storage area may store data created during the use of the electronic device 100 (such as audio data, a phone book, etc.), etc.
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one disk storage device, a flash memory device, a universal flash storage (UFS), etc.
  • UFS universal flash storage
  • the electronic device 100 can implement audio functions such as music playing and recording through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the headphone jack 170D, and the application processor.
  • the audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signals.
  • the audio module 170 can also be used to encode and decode audio signals.
  • the audio module 170 can be arranged in the processor 110, or some functional modules of the audio module 170 can be arranged in the processor 110.
  • the speaker 170A also called a "speaker" is used to convert an audio electrical signal into a sound signal.
  • the electronic device 100 can listen to music or listen to a hands-free call through the speaker 170A.
  • the receiver 170B also called a "earpiece" is used to convert audio electrical signals into sound signals.
  • the voice can be received by placing the receiver 170B close to the human ear.
  • Microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals. When making a call or sending a voice message, the user can speak by putting their mouth close to microphone 170C to input the sound signal into microphone 170C.
  • the electronic device 100 can be provided with at least one microphone 170C. In other embodiments, the electronic device 100 can be provided with two microphones 170C, which can not only collect sound signals but also realize noise reduction function. In other embodiments, the electronic device 100 can also be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify the sound source, realize directional recording function, etc.
  • the earphone interface 170D is used to connect a wired earphone.
  • the earphone interface 170D may be the USB interface 130, or may be a 3.5 mm open mobile terminal platform (OMTP) standard interface or a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the pressure sensor 180A is used to sense the pressure signal and can convert the pressure signal into an electrical signal.
  • the pressure sensor 180A can be set on the display screen 194.
  • the capacitive pressure sensor can be a parallel plate including at least two conductive materials.
  • the electronic device 100 determines the intensity of the pressure according to the change in capacitance.
  • the electronic device 100 detects the touch operation intensity according to the pressure sensor 180A.
  • the electronic device 100 can also calculate the touch position according to the detection signal of the pressure sensor 180A.
  • touch operations acting on the same touch position but with different touch operation intensities can correspond to different operation instructions. For example: when a touch operation with a touch operation intensity less than the first pressure threshold acts on the short message application icon, an instruction to view the short message is executed. When a touch operation with a touch operation intensity greater than or equal to the first pressure threshold acts on the short message application icon, an instruction to create a new short message is executed.
  • the gyro sensor 180B can be used to determine the motion posture of the electronic device 100.
  • the angular velocity of the electronic device 100 around three axes i.e., x, y, and z axes
  • the gyro sensor 180B can be used for anti-shake shooting. For example, when the shutter is pressed, the gyro sensor 180B detects the angle of the electronic device 100 shaking, calculates the distance that the lens module needs to compensate based on the angle, and allows the lens to offset the shaking of the electronic device 100 through reverse movement to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenes.
  • the air pressure sensor 180C is used to measure air pressure.
  • the electronic device 100 calculates the altitude through the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the electronic device 100 can use the magnetic sensor 180D to detect the opening and closing of the flip leather case.
  • the electronic device 100 when the electronic device 100 is a flip phone, the electronic device 100 can detect the opening and closing of the flip cover according to the magnetic sensor 180D. Then, according to the detected opening and closing state of the leather case or the opening and closing state of the flip cover, the flip cover can be automatically unlocked.
  • the acceleration sensor 180E can detect the magnitude of the acceleration of the electronic device 100 in all directions (generally three axes). When the electronic device 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of the electronic device and is applied to applications such as horizontal and vertical screen switching and pedometers.
  • the distance sensor 180F is used to measure the distance.
  • the electronic device 100 can measure the distance by infrared or laser. In some embodiments, when shooting a scene, the electronic device 100 can use the distance sensor 180F to measure the distance to achieve fast focusing.
  • the proximity light sensor 180G may include, for example, a light emitting diode (LED) and a light detector, such as a photodiode.
  • the light emitting diode may be an infrared light emitting diode.
  • the electronic device 100 emits infrared light outward through the light emitting diode.
  • the electronic device 100 uses a photodiode to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the electronic device 100. When insufficient reflected light is detected, the electronic device 100 can determine that there is no object near the electronic device 100.
  • the electronic device 100 can use the proximity light sensor 180G to detect that the user holds the electronic device 100 close to the ear to talk, so as to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in leather case mode and pocket mode to automatically unlock and lock the screen.
  • the ambient light sensor 180L is used to sense the brightness of the ambient light.
  • the electronic device 100 can adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the electronic device 100 is in a pocket to prevent accidental touches.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the electronic device 100 can use the collected fingerprint characteristics to achieve fingerprint unlocking, access application locks, fingerprint photography, fingerprint call answering, etc.
  • the temperature sensor 180J is used to detect temperature.
  • the electronic device 100 uses the temperature detected by the temperature sensor 180J to execute a temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds a threshold, the electronic device 100 reduces the performance of a processor located near the temperature sensor 180J to reduce power consumption and implement thermal protection. In other embodiments, when the temperature is lower than another threshold, the electronic device 100 heats the battery 142 to avoid abnormal shutdown of the electronic device 100 due to low temperature. In other embodiments, when the temperature is lower than another threshold, the electronic device 100 boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • the touch sensor 180K is also called a "touch panel”.
  • the touch sensor 180K can be set on the display screen 194, and the touch sensor 180K and the display screen 194 form a touch screen, also called a "touch screen”.
  • the touch sensor 180K is used to detect touch operations acting on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to the touch operation can be provided through the display screen 194.
  • the touch sensor 180K can also be set on the surface of the electronic device 100, which is different from the position of the display screen 194.
  • the bone conduction sensor 180M can obtain a vibration signal. In some embodiments, the bone conduction sensor 180M can obtain a vibration signal of a vibrating bone block of the vocal part of the human body. The bone conduction sensor 180M can also contact the human pulse to receive a blood pressure beat signal. In some embodiments, the bone conduction sensor 180M can also be set in an earphone and combined into a bone conduction earphone.
  • the audio module 170 can parse out a voice signal based on the vibration signal of the vibrating bone block of the vocal part obtained by the bone conduction sensor 180M to realize a voice function.
  • the application processor can parse the heart rate information based on the blood pressure beat signal obtained by the bone conduction sensor 180M to realize a heart rate detection function.
  • the key 190 includes a power key, a volume key, etc.
  • the key 190 may be a mechanical key or a touch key.
  • the electronic device 100 may receive key input and generate key signal input related to user settings and function control of the electronic device 100.
  • Motor 191 can generate vibration prompts.
  • Motor 191 can be used for incoming call vibration prompts, and can also be used for touch vibration feedback.
  • touch operations acting on different applications can correspond to different vibration feedback effects.
  • touch operations acting on different areas of the display screen 194 can also correspond to different vibration feedback effects.
  • Different application scenarios for example: time reminders, receiving messages, alarm clocks, games, etc.
  • the touch vibration feedback effect can also support customization.
  • Indicator 192 may be an indicator light, which may be used to indicate charging status, power changes, messages, missed calls, notifications, etc.
  • the SIM card interface 195 is used to connect a SIM card.
  • the SIM card can be connected to and separated from the electronic device 100 by inserting it into the SIM card interface 195 or pulling it out from the SIM card interface 195.
  • the electronic device 100 can support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • the SIM card interface 195 can support Nano SIM cards, Micro SIM cards, SIM cards, and the like. Multiple cards can be inserted into the same SIM card interface 195 at the same time. The types of the multiple cards can be the same or different.
  • the SIM card interface 195 can also be compatible with different types of SIM cards.
  • the SIM card interface 195 can also be compatible with external memory cards.
  • the electronic device 100 interacts with the network through the SIM card to implement functions such as calls and data communications.
  • the electronic device 100 uses an eSIM, i.e., an embedded SIM card.
  • the eSIM card can be embedded in the electronic device 100 and cannot be separated from the electronic device 100.
  • FIG. 2 shows a schematic diagram of a positioning scenario provided in an embodiment of the present application.
  • the user can carry the electronic device 100 and drive the vehicle to the garage. Among them, the user does not actively open the navigation application on the electronic device 100 for navigation.
  • the electronic device 100 recognizes that the current state of the electronic device 100 is the vehicle-mounted state and enters the geographic fence of the garage, the electronic device 100 can turn on the navigation positioning module and use the fusion positioning of GNSS and VDR to continuously measure the position of the electronic device 100.
  • the electronic device 100 enters the garage, due to the poor GNSS signal, GNSS positioning cannot be performed, and the electronic device 100 can continuously measure the position of the electronic device 100 through VDR positioning.
  • the electronic device 100 recognizes that the state of the vehicle is the parking state, the electronic device 100 can record the current position of the electronic device 100 as the parking position of the vehicle.
  • FIG3 shows a schematic diagram of another positioning scenario provided in an embodiment of the present application.
  • the user can carry the electronic device 100 and ride a bicycle to the garage.
  • the user can hold the electronic device 100, or fix the electronic device 100 on the bicycle through a bracket, etc.
  • the user does not actively open the navigation application on the electronic device 100 for navigation.
  • the electronic device 100 When the electronic device 100 recognizes that the current state of the electronic device 100 is the riding state and enters the geographic fence of the garage, the electronic device 100 can turn on the navigation and positioning module and continuously measure the position of the electronic device 100 using GNSS and DR fusion positioning. When the electronic device 100 enters the garage, due to the poor GNSS signal, GNSS positioning cannot be performed. The electronic device 100 can continuously measure the position of the electronic device 100 through DR positioning. When the electronic device 100 recognizes that the user stops riding, the electronic device 100 can record the current position of the electronic device 100. The parking location of the bicycle is recorded.
  • the positioning method provided in the embodiment of the present application is not limited to the above-mentioned vehicle scene or bicycle riding scene, but can also be other scenes, which will not be repeated here.
  • the following uses a vehicle driving scenario as an example to introduce the principle of a positioning method provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram showing the principle of a positioning method provided in an embodiment of the present application.
  • the electronic device 100 may pre-store fence data including the geographic fence of the garage.
  • the electronic device 100 may turn on the navigation and positioning module, and perform GNSS and VDR fusion positioning through the navigation and positioning module to continuously obtain the position of the electronic device 100. Since the electronic device 100 can still obtain GNSS signals when entering the geographic fence of the garage and not entering the garage, the electronic device 100 can perform GNSS and VDR fusion positioning through GNSS signals and IMU data. However, when the electronic device 100 enters the garage, due to the poor GNSS signal, GNSS positioning cannot be performed.
  • the electronic device 100 can perform VDR positioning through IMU data, combined with the position obtained by the electronic device 100 before entering the garage, and continuously obtain the position of the electronic device 100 in the garage.
  • the electronic device 100 detects that the vehicle is parked, the electronic device 100 can record the current position of the electronic device 100 as the parking position of the vehicle.
  • the electronic device 100 can output prompt information, which is used to prompt the parking position of the vehicle in the garage. In this way, the user can automatically start the navigation and positioning module when the electronic device recognizes that it is about to enter the garage without starting the navigation and positioning module through the navigation application in advance, so as to obtain the real-time position of the electronic device entering the garage.
  • FIG5 shows a schematic diagram of the division principle of a geographic fence provided in an embodiment of the present application.
  • the city where the electronic device 100 is located can be divided into n hotspot activity areas, where n is a positive integer.
  • Each hotspot activity area can include a geographic fence with m garages, where m is a positive integer.
  • the geo-fence database may store fence data of multiple geo-fences in multiple cities.
  • the geo-fence data may include: cellular cell information, Wi-Fi fingerprint library data, GNSS location and other information.
  • the cellular cell information may include the cellular cell where the geo-fence is located.
  • the Wi-Fi fingerprint library data includes the MAC address, IP address, Wi-Fi signal strength, etc. of the Wi-Fi access point that sends Wi-Fi signals at the location of the geo-fence.
  • the GNSS location is the positioning result obtained by the GNSS module through ordinary positioning solution based on the GNSS observation information.
  • the electronic device 100 in order to avoid the electronic device 100 injecting the entire geo-fence database into the geo-fence detection module, which causes excessive memory overhead, the electronic device 100 can detect the hotspot activity area where the electronic device 100 is located, and inject the geo-fence data of multiple geo-fences in the hotspot activity area where the electronic device 100 is located into the geo-fence detection module.
  • the geo-fence detection module is used to detect whether the electronic device 100 enters the geo-fence of a certain garage.
  • the electronic device 100 can measure the cellular cell information, Wi-Fi fingerprint library data, GNSS position and other information of the location of the garage where the user frequently (for example, more than 3 times a week) is located.
  • the electronic device 100 can set a geo-fence around the garage where the user frequently visits, and save the cellular cell information, Wi-Fi fingerprint library data, GNSS position and other information of the location of the geo-fence as the geo-fence data of the geo-fence in the geo-fence database.
  • the geo-fence data can be stored locally on the electronic device 100 or stored on a cloud server.
  • the electronic device 100 can query the geo-fence data from the cloud server.
  • multiple measurement terminals can each measure the geo-fence data of multiple garages.
  • Multiple measurement terminals can report the geo-fence data of multiple garages measured by each measurement terminal to a cloud server.
  • the cloud server can save the geo-fence data reported by multiple measurement terminals to a geo-fence database.
  • the electronic device 100 requests the cloud server for the geo-fence data in the hotspot activity area where the electronic device 100 is located, the cloud server can send the geo-fence data of the hotspot activity area where the electronic device 100 is located to the electronic device 100.
  • the electronic device 100 can inject the geo-fence data of the hotspot activity area where the electronic device 100 is located into the geo-fence detection module.
  • the following introduces a module device of an electronic device 100 provided in an embodiment of the present application.
  • FIG. 6 shows a schematic diagram of module components of an electronic device 100 in an embodiment of the present application.
  • the electronic device 100 may include a processor 610, a sensor hub module 620, an inertial measurement unit (IMU) 631, a cellular communication module 632, a Wi-Fi module 633, and a GNSS module 634.
  • the processor 610 may include a navigation and positioning module 611.
  • the navigation and positioning module 611 may include a VDR positioning module 612 and a GNSS positioning module 613.
  • the sensor hub module 620 may include an activity recognition (AR) module 621 and a geo-fence detection module 622.
  • AR activity recognition
  • the IMU 631 may include sensors such as a gyroscope and an accelerometer, and the IMU data may include gyroscope data and acceleration data, etc. After acquiring the IMU data, the IMU 631 may send the IMU data to the sensor hub module 620 .
  • the cellular communication module 632 can be used to detect the target cellular cell where the electronic device 100 is located among the multiple cellular cells divided by the cellular network, and send the cellular cell information of the target cellular cell to the sensor hub module 620.
  • the cellular communication module 632 can also be used to perform cellular communication with the cellular network, wherein the cellular communication includes but is not limited to 2G/3G/4G/5G communication.
  • the Wi-Fi module 633 can be used to obtain Wi-Fi data such as signal identification and signal strength information of the Wi-Fi signal.
  • the Wi-Fi module 633 can send the Wi-Fi data to the sensor hub module 620.
  • the Wi-Fi module 633 can also realize wireless communication with other devices based on Wi-Fi technology.
  • the GNSS module 634 can be used to receive satellite signals and obtain GNSS observation information for positioning solution.
  • the GNSS observation information can include information such as pseudorange, carrier phase and Doppler frequency.
  • the GNSS module 634 can also complete the solution of ordinary positioning results according to the GNSS observation information to obtain the GNSS position.
  • the electronic device 100 since the GNSS position output by the GNSS module 634 is not accurate (for example, accurate to 10 meters), the electronic device 100 cannot accurately identify which parking space the electronic device 100 is in.
  • the GNSS module 634 needs to send the GNSS data to the navigation positioning module 611, and the GNSS positioning module 613 in the navigation positioning module 611 performs high-precision positioning solution (for example, real-time kinematic (RTK) carrier phase differential positioning solution, etc.) to obtain high-precision position information, wherein the positioning accuracy of the high-precision position information is more accurate than the positioning accuracy of the GNSS position.
  • the GNSS module 634 may also send GNSS data to the sensor hub module 620.
  • the GNSS data may include GNSS observation information, or the GNSS data may include GNSS observation information and GNSS position.
  • the GNSS module 634 may not send the GNSS data directly to the processor 610, but the sensor hub module 620 may report the GNSS data to the processor 610.
  • the sensor hub module 620 can determine the activity state of the electronic device 100 based on the IMU data through the AR module 621, wherein the activity state of the electronic device 100 may include a vehicle-mounted state, a parking state, a riding state, etc.
  • the IMU data may include gyroscope data and acceleration data.
  • the sensor hub module 620 can detect whether the electronic device 100 enters the geo-fence of a garage through the geo-fence detection module 622.
  • the sensor hub module 620 can send the activity status of the electronic device 100, the geo-fence detection results (for example, entering the geo-fence of the garage), and the IMU data to the processor 610.
  • the navigation and positioning module 611 can be called up for continuous positioning.
  • the VDR positioning module 612 and the GNSS positioning module 613 can be turned on at the same time.
  • the VDR positioning module 612 is used to determine the displacement information of the electronic device 100 based on the IMU data, wherein the displacement information includes the moving direction and the moving distance, etc.
  • the GNSS positioning module 613 can be used to perform high-precision positioning solution based on the GNSS data to obtain high-precision position information.
  • the navigation and positioning module 611 can obtain the GNSS data sent by the GNSS module 634, the navigation and positioning module 611 can perform fusion positioning through the VDR positioning module 612 and the GNSS positioning module 613 to continuously obtain the position of the electronic device 100.
  • the navigation and positioning module 611 cannot obtain the GNSS data sent by the GNSS module 634, the navigation and positioning module 611 can perform positioning through the VDR positioning module 612.
  • the navigation positioning module 611 when the navigation positioning module 611 cannot obtain the GNSS data sent by the GNSS module 634, the navigation positioning module 611 can obtain the high-precision position information last calculated by the GNSS positioning module 613.
  • the VDR positioning module 612 can calculate the displacement information of the electronic device 100 within the target time period based on the IMU data, wherein the target time period is from the moment when the GNSS positioning module 613 last calculated the high-precision position information to the current moment.
  • the navigation positioning module 611 can determine the position of the electronic device 100 at the current moment based on the high-precision position information calculated last time and the displacement information of the electronic device 100 within the target time period.
  • the navigation and positioning module 611 calculates the position of the electronic device 100 at the first moment based on the GNSS data; when the navigation and positioning module 611 does not obtain the GNSS data sent by the GNSS module 634 at the second moment, the navigation and positioning module 611 determines the displacement information of the electronic device 100 between the first moment and the second moment based on the IMU data through the VDR positioning module 612; the navigation and positioning module 611 determines the position of the electronic device 100 at the second moment based on the position of the electronic device 100 at the first moment and the displacement information between the first moment and the second moment.
  • GNSS data may include GNSS observation information, or GNSS data may include GNSS observation information and GNSS position.
  • processor 610 may be an application processor (AP).
  • AP application processor
  • the AR module 621 is not limited to being set in the sensor hub module 620, but can be set in other devices.
  • the AR module 621 can be placed in the processor 610, etc., which is not limited here.
  • the geo-fence detection module 622 is not limited to being set in the sensor hub module 620, but can also be set in other devices.
  • the geo-fence detection module 622 can be placed in the processor 610, etc., This is not limited here.
  • FIG. 7 shows a schematic diagram of module components of an electronic device 100 provided in another embodiment of the present application.
  • the electronic device 100 may include a processor 710 , a sensor hub module 720 , an inertial measurement unit (IMU) 731 , a cellular communication module 732 , a Wi-Fi module 733 , and a GNSS module 734 .
  • IMU inertial measurement unit
  • the processor 710 may include a prompt module 711, a location service module 712, a navigation positioning module 713, a call module 716, and a geo-fence injection module 717.
  • the navigation positioning module 713 may include a VDR positioning module 714 and a GNSS positioning module 715.
  • the sensor hub module 720 may include an activity recognition (AR) module 721 and a geo-fence detection module 722.
  • the IMU 731 may include sensors such as a gyroscope and an accelerometer, and the IMU data may include gyroscope data and acceleration data, etc. After acquiring the IMU data, the IMU 731 may send the IMU data to the sensor hub module 620 .
  • the cellular communication module 732 can be used to detect the target cellular cell where the electronic device 100 is located among the multiple cellular cells divided by the cellular network, and send the cellular cell information of the target cellular cell to the sensor hub module 720.
  • the cellular communication module 732 can also be used to perform cellular communication with the cellular network, wherein the cellular communication includes but is not limited to 2G/3G/4G/5G communication.
  • the Wi-Fi module 733 can be used to obtain Wi-Fi data such as signal identification and signal strength information of the Wi-Fi signal.
  • the Wi-Fi module 733 can send the Wi-Fi data to the sensor hub module 720.
  • the Wi-Fi module 733 can also realize wireless communication with other devices based on Wi-Fi technology.
  • the GNSS module 734 can be used to receive satellite signals and obtain GNSS observation information for positioning solution.
  • the GNSS observation information can include information such as pseudorange, carrier phase and Doppler frequency.
  • the GNSS module 734 can also complete the solution of ordinary positioning results according to the observation information to obtain the GNSS position.
  • the electronic device 100 since the GNSS position output by the GNSS module 734 is not accurate (for example, accurate to 10 meters), the electronic device 100 cannot accurately identify which parking space the electronic device 100 is in.
  • the GNSS module 734 needs to send the GNSS data to the navigation positioning module 713, and the GNSS positioning module 715 in the navigation positioning module 713 performs high-precision positioning solution (for example, real-time kinematic (RTK) carrier phase differential positioning solution, etc.) to obtain high-precision position information, wherein the positioning accuracy of the high-precision position information is more accurate than the positioning accuracy of the GNSS position.
  • the GNSS module 734 may also send GNSS data to the sensor hub module 720.
  • the GNSS data may include GNSS observation information, or the GNSS data may include GNSS observation information and GNSS position.
  • the GNSS module 734 may not send the GNSS data directly to the processor 710, but the sensor hub module 720 may report the GNSS position data to the processor 710.
  • the sensor hub module 720 can determine the activity state of the electronic device 100 based on the IMU data through the AR module 721, wherein the activity state of the electronic device 100 may include a vehicle-mounted state, a parking state, a riding state, etc.
  • the IMU data may include gyroscope data and acceleration data.
  • the sensor hub module 720 can detect whether the electronic device 100 enters the geo-fence of a garage through the geo-fence detection module 722.
  • the sensor hub module 720 can send the activity status of the electronic device 100, the geo-fence detection results (for example, entering the geo-fence of the garage), and the IMU data to the processor 710.
  • the geo-fence injection module 717 can determine the hotspot activity area (which can be referred to as the target activity area) where the electronic device 100 is currently located based on one or more of the cellular cell information, Wi-Fi data, GNSS location, and observation information.
  • the geo-fence injection module 717 can match one or more geo-fence data corresponding to the target activity area from the geo-fence database, and send the one or more geo-fence data corresponding to the target activity area to the geo-fence detection module 722.
  • the geo-fence detection module 722 can detect whether the electronic device 100 enters the geo-fence of the garage based on the one or more geo-fence data corresponding to the target activity area.
  • one or more geo-fence data corresponding to the hot spot activity area where the electronic device 100 is currently located are injected into the geo-fence detection module 722, avoiding injecting all geo-fence data in the geo-fence database into the geo-fence detection module 722. This can reduce the data storage overhead of the geo-fence detection module 722 and shorten the time for the geo-fence detection module 722 to detect the electronic device 100 entering and exiting the geo-fence.
  • the calling module 716 can determine whether the AR state of the electronic device 100 is a vehicle-mounted state or a riding state, and the geo-fence detection result is that the electronic device 100 has entered the geo-fence of a certain garage.
  • the electronic device 100 can call up the navigation and positioning module 713 for continuous positioning.
  • the navigation positioning module 713 can simultaneously start the VDR positioning module 714 and the GNSS positioning module 715 when performing continuous positioning.
  • the VDR positioning module 714 is used to determine the displacement information of the electronic device 100 based on the IMU data, wherein the displacement information includes the movement direction and moving distance, etc.
  • the GNSS positioning module 715 can be used to perform high-precision positioning solutions based on GNSS data to obtain high-precision location information.
  • the navigation positioning module 713 can obtain the GNSS data sent by the GNSS module 734
  • the navigation positioning module 713 can continuously obtain the position of the electronic device 100 through fusion positioning of the VDR positioning module 714 and the GNSS positioning module 715.
  • the navigation positioning module 713 cannot obtain the GNSS data sent by the GNSS module 734, the navigation positioning module 713 can perform positioning through the VDR positioning module 714.
  • the navigation positioning module 713 can obtain the high-precision position information last calculated by the GNSS positioning module 715.
  • the VDR positioning module 714 can calculate the displacement information of the electronic device 100 within the target time period based on the IMU data, wherein the target time period is from the moment when the GNSS positioning module 715 last calculated the high-precision position information to the current moment.
  • the navigation positioning module 713 can determine the position of the electronic device 100 at the current moment based on the high-precision position information calculated last time and the displacement information of the electronic device 100 within the target time period.
  • GNSS data may include GNSS observation information, or GNSS data may include GNSS observation information and GNSS position.
  • GNSS data may include GNSS observation information, or GNSS data may include GNSS observation information and GNSS position.
  • the navigation positioning module 713 can continuously send the positioning position of the electronic device 100 to the location service module 712.
  • the location service module 712 can determine whether the electronic device 100 is in a parking state based on the AR state. When the electronic device 100 is in a parking state, the location service module 712 can determine the positioning position of the electronic device 100 obtained as the parking position, and send the parking position to the prompt module 711.
  • the prompt module 711 is used to output prompt information, which is used to prompt the user of the parking position determined by the electronic device 100.
  • the activity state of the electronic device 100 is not limited to being determined by IMU data, and the AR state of the electronic device 100 can also be determined by the connection information of the Bluetooth module (not shown in FIG. 7 ) on the electronic device 100.
  • the AR module 721 determines that the Bluetooth module has established a Bluetooth connection with the vehicle through the connection information of the Bluetooth module, the electronic device 100 can determine that the electronic device 100 is in a vehicle-mounted state.
  • the AR module 721 determines that the Bluetooth connection between the electronic device 100 and the vehicle is disconnected based on the connection information of the Bluetooth module, the AR module 721 can determine that the vehicle is in a parking state.
  • the AR module 721 and the geo-fence detection module 722 may be placed in the sensor hub module 720 or in the processor 710. When the AR module 721 and the geo-fence detection module 722 are placed in the processor 710, the electronic device 100 may not include the sensor hub module 720.
  • the AR module 721 and the geo-fence detection module 722 are placed in the processor 710.
  • the electronic device 100 can establish a Bluetooth connection with the vehicle.
  • the vehicle can send vehicle status information 1 to the electronic device 100 via the Bluetooth connection, and the vehicle status information 1 is used to indicate that the vehicle has been started.
  • the vehicle is parked and turned off, the vehicle can send vehicle status information 2 to the electronic device 100 via the Bluetooth connection, and the vehicle status information 2 is used to indicate that the vehicle has been parked.
  • the AR module 721 can determine that the AR status of the electronic device 100 is the vehicle-mounted status.
  • the AR module 721 can determine that the vehicle is in a parking state.
  • processor 710 may be an application processor (AP).
  • AP application processor
  • the geo-fence detection module 722 may first detect whether the electronic device 100 has entered the geo-fence of the basement. When the geo-fence detection module 722 enters the geo-fence of the basement, the geo-fence detection module 722 may start the AR module 721 and the IMU 731. After the AR module 721 and the IMU 731 are started, the IMU 731 may measure the IMU data and send the IMU data to the AR module 721. After obtaining the IMU data, the AR module 721 may identify the AR state of the electronic device 100 based on the IMU data and send the AR state to the calling module 716. In this way, the IMU 731 and the AR module 721 may be started only after the electronic device 100 enters the geo-fence of the basement, thereby saving the power consumption of the electronic device 100.
  • IMU731 can continuously measure IMU data and send the IMU data to AR module 721.
  • AR module 721 can identify the AR state of electronic device 100 based on the IMU data.
  • AR module 721 can start the geo-fence detection module 722.
  • the geo-fence detection module 722 can detect whether the electronic device 100 enters the geo-fence of the basement. In this way, the geo-fence detection module 722 can be started only when the AR module 721 recognizes that the electronic device 100 is in the vehicle state, thereby saving the power consumption of the electronic device 100.
  • the electronic device 100 can record the positioning behavior data of the user in daily activities.
  • the positioning data may include one or more of the following: the location of the user's navigation positioning, the location of the user's search, the frequency of the location's visit, the frequency of the location's search, etc.
  • the electronic device 100 can determine one or more hotspot activity areas where the electronic device 100 often moves based on the positioning data, and generate geo-fence data of the garage in one or more hotspot activity areas.
  • the electronic device 100 can save the geo-fence data of the garage into the geo-fence database according to the city where the electronic device 100 is located and the hotspot activity area.
  • the data storage structure in the geo-fence database may be as shown in Table 1 below:
  • city A may include hotspot activity area 1, hotspot activity area 2 and hotspot activity area 3.
  • hotspot activity area 1 may have geo-fence data of 3 geo-fences: geo-fence data 1, geo-fence data 2 and geo-fence data 3.
  • Hotspot activity area 2 may have geo-fence data of 3 geo-fences: geo-fence data 4, geo-fence data 5 and geo-fence data 6.
  • Hotspot activity area 3 may have geo-fence data of 3 geo-fences: geo-fence data 7, geo-fence data 8 and geo-fence data 9.
  • City A may include hotspot activity area 4 and hotspot activity area 5.
  • hotspot activity area 4 may have geo-fence data of 2 geo-fences: geo-fence data 10 and geo-fence data 11.
  • Hotspot activity area 5 may have geo-fence data of 2 geo-fences: geo-fence data 12 and geo-fence data 13. Table 1 above is only used to explain the present application and should not be construed as a limitation.
  • the GNSS module 734 may be in a closed state, and the geo-fence detection module 722 may determine whether the electronic device 100 enters the geo-fence of the basement through the cellular cell information and/or Wi-Fi data.
  • the processor 710 turns on the GNSS module 734 and obtains GNSS data through the GNSS module 734, wherein the GNSS data includes GNSS observations, or the GNSS data includes GNSS observations and GNSS positions.
  • the vehicle status of the electronic device 100 and the results of entering and exiting the geographic fence can be identified without the user turning on the GNSS module on the electronic device 100 in advance.
  • the GNSS module is automatically turned on, and navigation and positioning are continuously performed through the GNSS data obtained by the GNSS module and the IMU data obtained by the IMU to obtain the real-time position of the electronic device 100 in the garage.
  • the navigation and positioning module 713 may also include a dead reckoning (DR) positioning module.
  • the DR positioning module may be applicable to the inertial navigation of the user during riding. Therefore, when it is detected that the AR state of the electronic device 100 is the riding state and the electronic device 100 enters a certain geographic fence, the electronic device 100 may call up the DR positioning module and the GNSS positioning module in the navigation and positioning module for continuous positioning. When the electronic device 100 detects parking, it may record and output the parking location.
  • DR dead reckoning
  • a positioning method provided in an embodiment of the present application is introduced below.
  • FIG8 exemplarily shows a flow chart of a positioning method provided in an embodiment of the present application.
  • the method may include the following steps:
  • S801 The navigation and positioning module of the electronic device 100 is in a non-working state.
  • the navigation and positioning module may include a VDR module and a GNSS positioning module.
  • the VDR module and the GNSS positioning module do not work, and the electronic device 100 cannot obtain high-precision location information and cannot perform navigation.
  • S802 The electronic device 100 obtains IMU data through an IMU sensor.
  • the IMU sensor may include a gyroscope and an accelerometer.
  • the IMU data may include gyroscope data and/or acceleration data.
  • the electronic device 100 determines an activity recognition (AR) state of the electronic device 100 based on the IMU data.
  • AR activity recognition
  • the activity recognition (AR) state may include vehicle-mounted state, riding state, walking state, stationary state, and the like.
  • the electronic device 100 can determine the moving speed and moving acceleration of the electronic device 100 from the IMU data. When the moving speed and/or the moving acceleration meet the first preset condition, the electronic device 100 can determine that the electronic device 100 is in a vehicle-mounted state.
  • the first preset condition includes that the moving speed of the electronic device 100 is between the first preset speed and the second preset speed and/or the moving acceleration of the electronic device is greater than the preset acceleration, wherein the first preset speed is less than the second preset speed.
  • the electronic device 100 can determine that the AR state of the electronic device 100 is a vehicle-mounted state.
  • the electronic device 100 can determine that the AR state of the electronic device 100 is the vehicle-mounted state, etc.
  • the AR state of the electronic device 100 can also be determined based on the IMU data through other conditions, which are not limited here.
  • the electronic device 100 when the electronic device 100 determines that the Bluetooth module has established a Bluetooth connection with the vehicle, the electronic device 100 can determine that the AR state of the electronic device 100 is the vehicle state. When the electronic device 100 establishes a Bluetooth connection with other devices, the device type of the other device can be obtained. Therefore, when the electronic device 100 establishes a Bluetooth connection with the vehicle, the electronic device 100 can obtain the device type of the vehicle as the car type. When the electronic device 100 determines that the Bluetooth connection between the electronic device 100 and the vehicle is disconnected, the electronic device 100 can determine that the vehicle is in a parking state.
  • the electronic device 100 can establish a Bluetooth connection with the vehicle.
  • the vehicle can send vehicle status information 1 to the electronic device 100 via the Bluetooth connection, and the status information 1 is used to indicate that the vehicle has been started.
  • the vehicle can send vehicle status information 2 to the electronic device 100 via the Bluetooth connection, and the vehicle status information 2 is used to indicate that the vehicle has been parked.
  • the electronic device 100 receives the vehicle status information 1, the electronic device 100 can determine that the electronic device 100 is in a vehicle-mounted state.
  • the electronic device 100 receives the vehicle status information 2
  • the electronic device 100 can determine that the vehicle is in a parked state.
  • S804 The electronic device 100 obtains the first activity area where the electronic device 100 is currently located.
  • the electronic device 100 can obtain the cellular cell where the electronic device 100 is currently located through the cellular module, and determine the first activity area where the electronic device 100 is located from multiple hotspot activity areas based on the cellular cell where the electronic device 100 is located. There is a corresponding relationship between the cellular cell information and the hotspot activity area. For example, one cellular cell can correspond to one hotspot activity area, and for another example, multiple cellular cells can correspond to one hotspot activity area.
  • the electronic device 100 can obtain Wi-Fi data through the Wi-Fi module, wherein the Wi-Fi data may include the MAC address, IP address, Wi-Fi signal strength, etc. of the Wi-Fi access point that sends the Wi-Fi signal. Since the location of the Wi-Fi access point is generally fixed, the MAC addresses and/or IP addresses of some Wi-Fi access points and the locations of these Wi-Fi access points can be stored in a server on the Internet.
  • the electronic device 100 After the electronic device 100 obtains the MAC address and/or IP address of the Wi-Fi signal, the electronic device 100 can query the location area of the Wi-Fi access point from the server through the MAC address and/or IP address of the Wi-Fi access point, and determine the location area of the Wi-Fi access point as the first activity area where the electronic device 100 is currently located.
  • the electronic device 100 can obtain the GNSS position and observation information through the GNSS module.
  • the positioning accuracy of the GNSS position is poor (for example, the positioning range is greater than 10m), and cannot be used for navigation positioning of the electronic device 100.
  • After the electronic device 100 obtains the GNSS position it can determine the first activity area where the electronic device 100 is located from multiple hot spots based on the GNSS position.
  • the electronic device 100 may also receive location information pre-input by the user, and the electronic device 100 may determine the first activity area where the electronic device 100 is located from multiple hotspot activity areas based on the location information pre-input by the user.
  • the first activity area where the electronic device 100 is located is not limited to being determined by the above-mentioned methods.
  • the first activity area of the electronic device 100 may also be determined by other methods, which are not limited here.
  • the electronic device 100 determines a first activity area in the first activity area from the geo-fence database based on the first activity area where the user is currently located.
  • the geofence data for one or more geofences.
  • the geo-fence database may include geo-fence data in multiple hotspot activity areas.
  • the geo-fence database is stored locally on the electronic device 100 or on a cloud server.
  • S806 The electronic device 100 determines whether the AR state of the electronic device 100 is the vehicle-mounted state and the electronic device 100 enters the geographic fence of the garage in the first activity area.
  • the electronic device 100 may determine whether the electronic device 100 has entered the geofence of the garage in the first activity area based on the cellular cell information and/or Wi-Fi data and/or GNSS location detected by the electronic device 100, and the geofence data of one or more geofences in the first activity area.
  • the geofence data may include information such as cellular cell information, Wi-Fi fingerprint library data, and GNSS location.
  • the cellular cell information may include the cellular cell where the geofence is located.
  • the Wi-Fi fingerprint library data includes identification information and signal strength information of the Wi-Fi signal detected at the location of the geofence.
  • the electronic device 100 can determine that the electronic device 100 has entered the geo-fence of the garage within the first activity area.
  • the GNSS module on the electronic device 100 is in a turned-off state. After the electronic device 100 determines through cellular cell information and/or Wi-Fi data that the electronic device 100 has entered the geographic fence of the garage and the electronic device 100 is in a vehicle-mounted state, the electronic device 100 turns on the GNSS module to obtain GNSS data. Then, the electronic device 100 continues to perform navigation and positioning based on the GNSS data and IMU data obtained by the GNSS module to obtain the real-time position of the electronic device 100.
  • the GNSS data includes GNSS observations, or the GNSS data includes GNSS observations and GNSS positions.
  • the IMU when the electronic device 100 determines whether the electronic device is in a vehicle-mounted state based on the IMU data, the IMU can be turned on before determining whether the electronic device is in a vehicle-mounted state.
  • the IMU can be turned on before determining whether the electronic device is in a vehicle-mounted state, or it can be turned on when it is determined that the electronic device 100 has entered the geographic fence of the garage and the electronic device 100 is in a vehicle-mounted state. In this way, the power consumption of the electronic device 100 is saved.
  • the electronic device 100 may first identify the AR state of the electronic device 100 and determine whether the AR state of the electronic device 100 is a vehicle-mounted state. After determining that the AR state of the electronic device 100 is a vehicle-mounted state, it is then determined whether the electronic device 100 has entered the geographic fence of the garage in the first activity area. In this way, it is possible to detect whether the electronic device 100 has entered the geographic fence of the garage only when it is identified that the electronic device 100 is in a vehicle-mounted state, thereby saving power consumption of the electronic device 100.
  • the electronic device 100 may first determine whether the electronic device 100 has entered the geographic fence of the garage in the first activity area. After the electronic device 100 determines that it has entered the geographic fence of the garage in the first activity area, the electronic device 100 then identifies the AR state of the electronic device 100 and determines whether the AR state of the electronic device 100 is the vehicle-mounted state. In this way, the AR state of the electronic device 100 can be identified and determined only after the electronic device 100 has entered the geographic fence of the basement, thereby saving power consumption of the electronic device 100.
  • the VDR module in the navigation and positioning module can determine the displacement information of the electronic device 100 based on the IMU data, and the GNSS positioning module can perform high-precision positioning and calculation through the GNSS position and observation information obtained by the GNSS module to obtain high-precision position information.
  • the navigation and positioning module can fuse the mobile displacement and high-precision position information to continuously obtain the real-time position of the electronic device 100.
  • the navigation and positioning module can obtain the high-precision position information calculated by the GNSS positioning module last time.
  • the VDR positioning module can calculate the displacement information of the electronic device 100 within the target time period based on the IMU data, wherein the target time period is from the moment when the GNSS positioning module last calculated the high-precision position information to the current moment.
  • the navigation and positioning module can determine the position of the electronic device 100 at the current moment based on the high-precision position information calculated last time and the displacement information of the electronic device 100 within the target time period.
  • the electronic device calculates the position of the electronic device at the first moment based on the GNSS data; when the electronic device does not obtain GNSS data through the GNSS module at a second moment, the electronic device determines the displacement information of the electronic device between the first moment and the second moment based on the IMU data; the electronic device determines the position of the electronic device at the second moment based on the position of the electronic device at the first moment and the displacement information between the first moment and the second moment.
  • the electronic device 100 can determine the moving speed of the electronic device 100 from the IMU data. When the moving speed meets the second preset condition, the electronic device 100 can determine that the electronic device 100 is in a parking state.
  • the second preset condition can include that the moving speed of the electronic device 100 is 0.
  • the vehicle when the vehicle is parked and turned off, the vehicle can send vehicle status information 2 to the electronic device 100 via Bluetooth connection, and the vehicle status information 2 is used to indicate that the vehicle has stopped.
  • the electronic device 100 receives the vehicle status information 2, the electronic device 100 can determine that the vehicle is in a parked state.
  • the electronic device 100 when the electronic device 100 detects that the Bluetooth connection between the electronic device 100 and the vehicle is disconnected, the electronic device 100 can detect that the vehicle is in a parked state.
  • the electronic device 100 may output prompt information, where the prompt information is used to prompt the user of the parking position of the vehicle.
  • the electronic device 100 may mark the parking location of the electronic device 100 on a map.
  • the electronic device 100 can display the leftmost page 910 of all pages on the desktop.
  • the page 910 may include multiple application icons (e.g., weather application icon, stock application icon, calculator application icon, settings application icon, mail application icon, gallery application icon, music application icon, video application icon, browser application icon).
  • a page indicator 911 is also included below the multiple application icons, and the page indicator 911 indicates the positional relationship of the currently displayed page 910 to other pages.
  • There are multiple tray icons e.g., dialing application icon, information application icon, contact application icon, camera application icon) below the page indicator 911, and the tray icon remains displayed when the page switches.
  • the page indicator may not be part of the page and exists separately.
  • the above-mentioned tray icon is also optional, and the embodiment of the present application does not limit this.
  • the electronic device 100 may receive a right swipe input from the user on the page 910 .
  • the electronic device 100 may display a negative one screen interface 920 as shown in FIG. 9B .
  • the negative first screen interface 920 may include a parking card 921 and one or more quick function controls (e.g., a search control, a scan function control, a payment code function control, a mobile phone recharge function control, more function controls, etc.).
  • the parking card 921 may display a map 922, a parking location name (e.g., an underground parking lot in shopping mall A), a parking time (e.g., about 1 minute), the distance between the parking location and the current location (e.g., within 50 meters), etc.
  • the map 922 may display a mark 923 corresponding to the parking location of the vehicle and a mark 924 corresponding to the current location of the electronic device 100.
  • the parking card 921 may also display a navigation control 925, which may be used to trigger the electronic device 100 to display a route guide from the current location to the parking location.
  • the above examples are only used to explain the present application.
  • the way in which the electronic device 100 displays the parking location is not limited to the negative one screen interface and can also be displayed in other interfaces, such as the interface of the car application, which will not be repeated here.
  • the navigation and positioning module may also include a dead reckoning (DR) positioning module.
  • DR positioning module can be applied to the inertial navigation of the user during riding. Therefore, when it is detected that the AR state of the electronic device 100 is the riding state and the electronic device 100 enters a certain geographic fence, the electronic device 100 can call up the DR positioning module and the GNSS positioning module in the navigation and positioning module for continuous positioning. When the electronic device 100 detects parking, it can record and output the parking position.
  • DR dead reckoning
  • a positioning method is provided in an embodiment of the present application, which can realize the configuration of geographic fences for multiple indoor areas (for example, garages, tunnels, caves, etc.).
  • the navigation and positioning module on the electronic device is not turned on, if the electronic device detects that it has entered the geographic fence of the designated indoor area and the electronic device is in a vehicle-mounted state, the electronic device can start the navigation and positioning module, initiate continuous positioning, and obtain the parking position when the electronic device detects parking.
  • the navigation and positioning module includes a GNSS positioning module and a VDR positioning module/DR positioning module. In this way, the electronic device can automatically turn on the navigation and positioning module when it recognizes that it is about to enter the indoor area, so as to obtain the real-time position of the electronic device when it enters the indoor area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)

Abstract

本申请公开了一种定位方法及相关装置,可以实现给多个室内区域(例如,车库、隧道、山洞,等等)配置地理围栏,在电子设备上的导航定位模块没有被开启的情况下,若电子设备检测到进入指定室内区域的地理围栏且电子设备处于车载状态后,电子设备可以启动导航定位,发起持续定位,当电子设备检测到停车时,获取到停车位置。这样,电子设备可以在识别到将要进入到室内区域的地理围栏时,自动开启导航定位,以获取电子设备进入到室内区域内的实时位置。

Description

一种定位方法及相关装置
本申请要求于2022年10月31日提交中国国家知识产权局、申请号为202211366276.2、申请名称为“一种定位方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及定位技术领域,尤其涉及一种定位方法及相关装置。
背景技术
在以智能手机为代表的电子设备中,基于位置的服务(location based service,LBS)已成为电子设备上一项必不可少的基础服务。
目前,用户对室内定位的需求日益迫切。例如,车库找车、隧道定位,等等。特别是对于大型的商场、机场和火车站等地方的车库面积大、车位多、路线复杂,使得用户通过室内定位在车库找车的需求更加强烈。由于在室内时,电子设备上的全球卫星导航卫星系统(global nagvigation satellite system,GNSS)模块通常接收不到卫星信号,无法通过卫星信号进行定位。因此,需要借助电子设备上的惯性测量单元(inertial measurement unit,IMU)等硬件以及导航模块等软件模块实现室内定位。这就需要用户在进入室内时主动开启电子设备上的导航应用,在开启导航应用后,导航应用会启动电子设备的导航模块和IMU等硬件,持续发起连续定位。
但是,当用户忘了提前打开电子设备上的导航应用时,电子设备无法获取到室内中用户的位置。
发明内容
本申请提供了一种定位方法及相关装置,实现了电子设备可以在识别到将要进入到室内区域的地理围栏时,自动开启导航定位,以获取电子设备进入到室内区域内的实时位置。
第一方面,本申请提供了一种定位方法,应用于电子设备,该电子设备包括惯性测量单元IMU、全球导航卫星系统GNSS模块,该IMU用于检测该电子设备的IMU数据,该GNSS模块用于在开启时获取GNSS数据;该方法包括:该GNSS模块处于关闭状态;当该电子设备检测到该电子设备处于车载状态且该电子设备进入到车库的地理围栏时,该电子设备开启该GNSS模块,并通过GNSS模块获取该GNSS数据;该电子设备基于该GNSS数据和该IMU数据确定该电子设备的实时位置;当该电子设备检测到车辆停车时,该电子设备将基于该GNSS数据和该IMU数据确定出的第一位置,确定为停车位置;该电子设备显示该停车位置。
通过本申请提供的一种定位方法,在电子设备上的GNSS模块没有被开启的情况下,若电子设备检测到进入指定室内区域的地理围栏且电子设备处于车载状态后,电子设备可以启动GNSS模块,通过GNSS模块获取到的GNSS数据以及IMU数据,发起持续导航定位,当电子设备检测到停车时,获取到停车位置。这样,即使用户在未提前开启电子设备上的GNSS模块时,电子设备也可以在进入到室内区域后持续获取到用户的实时位置,例如,停车位置。
在一种可能的实现方式中,该电子设备检测到该电子设备处于车载状态,具体包括:若该电子设备检测到该IMU数据满足第一预设条件,该电子设备确定该电子设备的处于车载状态。
其中,该第一预设条件包括该电子设备的移动速度在第一预设速度与第二预设速度之间和/或该电子设备的移动加速度大于预设加速度,其中,该第一预设速度小于该第二预设速度。
这样,由于一般情况下,电子设备上的IMU长期处于开启状态,因此,电子设备可以通过IMU测量的IMU数据,确定电子设备是否处于车载状态,充分利用了IMU。
在一种可能的实现方式中,该电子设备检测到该电子设备处于车载状态,具体包括:若该电子设备检测到与该车辆之间建立了蓝牙连接,该电子设备确定该电子设备处于车载状态。
这样,电子设备可以准确识别电子设备处于车载状态。
在一种可能的实现方式中,该电子设备检测到车辆停车,具体包括:若该电子设备检测到该IMU数据满足第二预设条件,该电子设备确定该车辆停车。
其中,该第二预设条件包括该电子设备的移动速度为0。
这样,由于一般情况下,电子设备上的IMU长期处于开启状态,因此,电子设备可以通过IMU测量的IMU数据,确定车辆是否处于停车,充分利用了IMU。
在一种可能的实现方式中,该电子设备检测到车辆停车,具体包括:若该电子设备检测到与该车辆之间的该蓝牙连接断开,该电子设备确定该车辆停车。
这样,电子设备可以准确识别电子设备停车。
在一种可能的实现方式中,该电子设备检测到该电子设备进入到车库的地理围栏,具体包括:若该电子设备检测到该电子设备所处位置的蜂窝小区信息与该车库的地理围栏数据中的蜂窝小区信息匹配,且/或,该电子设备检测到该电子设备所处位置的Wi-Fi数据与该车库的地理围栏数据中的Wi-Fi数据匹配,该电子设备确定进入到车库的地理围栏;其中,该Wi-Fi数据包括以下一项或多项:发送Wi-Fi信号的Wi-Fi接入点的MAC地址、IP地址、Wi-Fi信号强度。
这样,由于一般情况下,电子设备的蜂窝模块和/或Wi-Fi模块长时间处于开启状态,因此,通过蜂窝模块获取到的蜂窝小区信息和/或Wi-Fi模块获取到的Wi-Fi数据判断电子设备是否进入车库的地理围栏,可以节省电子设备的功耗。
在一种可能的实现方式中,在该电子设备检测到该电子设备进入到车库的地理围栏之前,该方法还包括:该电子设备基于该电子设备检测到的蜂窝小区信息,和/或,Wi-Fi数据,从地理围栏数据库中确定出该电子设备所处目标活动区域内的一个或多个地理围栏数据;该电子设备基于该目标活动区域内的一个多个地理围栏数据,以及该电子设备检测到的蜂窝小区信息,和/或,Wi-Fi数据,判断该电子设备是否进入到车库的地理围栏。
这样,由于地理围栏数据比较多,因此,可以对地理围栏数据进行分区域存储。电子设备可以先从地理围栏数据库中检测电子设备所处的目标活动区域对应的一个或多个地理围栏数据,再检测电子设备是否进入车库的地理围栏,可以节省数据的运算量,也减少了运算器件中数据的存储量。
在一种可能的实现方式中,该电子设备基于该GNSS数据和该IMU数据,确定出该电子设备的实时位置,具体包括:当该电子设备在第一时刻通过该GNSS模块获取到该GNSS数据时,该电子设备基于该GNSS数据,解算出该电子设备在第一时刻的位置;当该电子设备在第二时刻未通过该GNSS模块获取到该GNSS数据时,该电子设备基于该IMU数据,确定该电子设备在该第一时刻到该第二时刻之间的位移信息;该电子设备基于该电子设备在该第一时刻的位置和该第一时刻到该第二时刻之间的位移信息,确定出该电子设备在该第二时刻的位置。
这样,可以在车库等室内区域,GNSS信号比较弱,无法获取到GNSS数据时,也可以持续获取到电子设备在室内区域的实时位置,获取到停车位置。
第二方面,本申请提供了一种电子设备,包括:IMU、GNSS模块、处理器和显示屏;其中,该IMU,用于检测该电子设备的IMU数据,该IMU数据包括陀螺仪数据和加速度数据,并将该IMU数据发送给该处理器;该GNSS模块处于关闭状态;该处理器,用于在检测到该电子设备处于车载状态且该电子设备进入到车库的地理围栏时,开启该GNSS模块;该GNSS模块,用于在开启时获取该GNSS数据,并将该GNSS数据发送给该处理器;该处理器,用于基于该GNSS数据和该IMU数据,确定出该电子设备的实时位置;该处理器,还用于在检测到停车时,将基于该GNSS数据和该IMU确定出的第一位置,确定为停车位置;该处理器,还用于指示该显示屏显示该停车位置。
在一种可能的实现方式中,若该IMU数据满足第一预设条件,该电子设备处于车载状态。
其中,该第一预设条件包括该电子设备的移动速度在第一预设速度与第二预设速度之间和/或该电子设备的移动加速度大于预设加速度,其中,该第一预设速度小于该第二预设速度。
在一种可能的实现方式中,该电子设备还包括传感集线器sensor hub模块;其中,该sensor hub模块,用于从该IMU获取该IMU数据,在该IMU数据满足该第一预设条件时,确定该电子设备处于车载状态;该sensor hub模块,还用于通知该处理器该电子设备处于车载状态。
在一种可能的实现方式中,该处理器,还用于在检测到与该车辆之间建立了蓝牙连接时,确定该电子设备处于车载状态。
在一种可能的实现方式中,若该IMU数据满足第二预设条件,该电子设备确定该车辆停车。
其中,该第二预设条件包括该电子设备的移动速度为0。
在一种可能的实现方式中,该电子设备还包括sensor hub模块;其中,该sensor hub模块,用于从该IMU获取该IMU数据,在该IMU数据满足该第二预设条件时,确定该车辆停车;该sensor hub模块,还用于通知该处理器该车辆停车。
在一种可能的实现方式中,该处理器,还用于在检测到与该车辆之间的该蓝牙连接断开时,该电子设备确定该车辆停车。
在一种可能的实现方式中,该电子设备还包括:蜂窝模块和/或Wi-Fi模块,该蜂窝模块用于检测该电子设备所处位置的蜂窝小区信息,该Wi-Fi模块用于检测该电子设备所处位置的Wi-Fi数据;若该蜂窝模块检测到该电子设备所处位置的蜂窝小区信息与该车库的地理围栏数据中的蜂窝小区信息匹配,且/或,该Wi-Fi模块检测到该电子设备所处位置的Wi-Fi数据与该车库的地理围栏数据中的Wi-Fi数据匹配,则该电子设备进入到车库的地理围栏;其中,该Wi-Fi数据包括以下一项或多项:发送Wi-Fi信号的Wi-Fi接入点的MAC地址、IP地址、Wi-Fi信号强度。
在一种可能的实现方式中,该电子设备还包括sensor hub模块;该蜂窝模块,还用于将该电子设备所处位置的蜂窝小区信息发送给该sensor hub模块;该Wi-Fi模块,还用于将该电子设备所处位置的Wi-Fi数据发送给该sensor hub模块;该sensor hub模块,还用于基于该电子设备所处位置的蜂窝小区信息,和/或,该Wi-Fi模块的Wi-Fi数据,判断该电子设备是否进入到车库的地理围栏;该sensor hub模块,还用于通知该处理器,该电子设备是否进入到车库的地理围栏。
在一种可能的实现方式中,该处理器,还用于基于该电子设备检测到的蜂窝小区信息,和/或,Wi-Fi数据,从地理围栏数据库中确定出该电子设备所处目标活动区域内的一个或多个地理围栏数据;该处理器,还用于将该电子设备所处目标活动区域内的一个或多个地理围栏数据发送给该sensor hub模块;该sensor hub模块,具体用于基于该目标活动区域内的一个多个地理围栏数据,以及该电子设备检测到的蜂窝小区信息,和/或,Wi-Fi数据,判断该电子设备是否进入到车库的地理围栏。
在一种可能的实现方式中,该基于该GNSS数据和该IMU数据,确定出该电子设备的实时位置,具体包括:当在第一时刻获取到该GNSS模块发送的该GNSS数据时,基于该GNSS数据,解算出该电子设备在第一时刻的位置;当在第二时刻未获取到该GNSS模块发送的该GNSS数据时,基于该IMU数据,确定该电子设备该第一时刻到该第二时刻之间的位移信息;基于该电子设备在该第一时刻的位置和该第一时刻到该第二时刻之间的位移信息,确定出该电子设备在该第二时刻的位置。
第三方面,本申请提供了一种电子设备,包括IMU、GNSS模块、显示屏、一个或多个处理器和一个或多个存储器。该一个或多个存储器与一个或多个处理器耦合,一个或多个存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,当一个或多个处理器执行计算机指令时,使得电子设备执行上述任一方面任一项可能的实现方式中的定位方法。
第四方面,本申请实施例提供了一种计算机存储介质,包括计算机指令,当计算机指令在电子设备上运行时,使得电子设备执行上述任一方面任一项可能的实现方式中的定位方法。
第五方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述任一方面任一项可能的实现方式中的定位方法。
其中,第二方面至第五方面的有益效果,可以参考第一方面及第一方面的任一项可能的实现方式,在此不再赘述。
附图说明
图1为本申请实施例提供的一种电子设备的结构示意图;
图2为本申请实施例提供的一种定位场景的示意图;
图3为本申请实施例提供的另一种定位场景的示意图;
图4为本申请实施例提供的一种定位方法的原理示意图;
图5为本申请实施例提供的一种地理围栏的划分原理示意图;
图6为本申请实施例提供的一种电子设备的模块器件示意图;
图7为本申请实施例提供的另一种电子设备的模块器件示意图;
图8为本申请实施例提供的一种定位方法的流程示意图;
图9A-图9B为本申请实施例提供的一组显示停车位置的界面示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行清楚、详尽地描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;文本中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面介绍本申请实施例中提供的在车库中找车的实现方式。
由于用户对室内定位的需求日益迫切,例如,车库找车、隧道定位,等等。特别是对于大型的商场、机场和火车站等地方的车库面积大、车位多、路线复杂,使得用户通过室内定位在车库找车的需求更加强烈。
方式1:为了实现车库找车,可以在车库部署专用的停车检测设备或器件(例如,摄像头、感应器,等等)。该停车检测设备或器件可以检测车库中车辆的停车位置并将车辆的停车位置发送给与该停车检测设备配套的应用程序。用户就可以在该应用程序上查看该车辆的停车位置。但是,通过这种方式实现车库的找车,需要在车库部署相关的硬件设备或器件,还需要用户在手机等电子设备上下载相应的应用程序,导致部署成本和维护成本较高,难以大规模推广。
方式2:手机等导航设备可以通过IMU传感器、GNSS模块和摄像头等等,进行自主导航定位,获得车库停车位置。但是,这种方式需要用户在进入车库前手动打开导航应用,通过导航应用启动导航定位模块进行导航定位,当手机等导航设备进入车库后,由于GNSS模块通常接收不到卫星信号,无法通过卫星信号进行定位,因此,可以通过IMU传感器和/或摄像头等器件完成航位推算,实现定位。如果用户没有提前通过导航应用启动导航定位模块,用户在停车时手机等导航设备通常无法获得停车位置。如果导航定位模块一直开启,手机等导航设备的功耗大。
因此,本申请实施例中提供了一种定位方法,可以实现给多个室内区域(例如,车库、隧道、山洞,等等)配置地理围栏。在电子设备上的导航定位模块没有被开启的情况下,若电子设备检测到进入指定室内区域的地理围栏且电子设备处于车载状态后,电子设备可以启动导航定位模块,发起持续定位,当电子设备检测到停车时,获取到停车位置。其中,导航定位模块包括GNSS定位模块和车载航位推算(vehicle dead reckoning,VDR)定位模块/航位推算(dead reckoning,DR)定位模块。这样,电子设备可以在识别到将要进入到室内区域时,自动开启导航定位模块,以获取电子设备进入到室内区域内的实时位置。
在本申请实施例中,室内区域不限于车库、隧道、山洞,等等类型的区域,还可以有其他类型的室内区域。为了叙述方便,本申请实施例中以室内区域为车库进行示例性说明。
图1示出了电子设备100的结构示意图。
下面以电子设备100为例对实施例进行具体说明。应该理解的是,图1所示电子设备100仅是一个范例,并且电子设备100可以具有比图1中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
电子设备100可以包括:处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是电子设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(serial clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现电子设备100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信 模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现电子设备100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现电子设备100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备100充电,也可以用于电子设备100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如增强现实设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处 理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD)。显示屏面板还可以采用有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),miniled,microled,micro-oled,量子点发光二极管(quantum dot light emitting diodes,QLED)等制造。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行电子设备100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备100可以设置至少一个麦克风170C。在另一些实施例中,电子设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备100根据压力传感器180A检测所述触摸操作强度。电子设备100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测电子设备100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子设备100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,电子设备100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。电子设备100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当电子设备100是翻盖机时,电子设备100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。电子设备100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红外光。电子设备100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备100附近有物体。当检测到不充分的反射光时,电子设备100可以确定电子设备100附近没有物体。电子设备100可以利用接近光传感器180G检测用户手持电子设备100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。电子设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测电子设备100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。电子设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,电子设备100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,电子设备100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,电子设备100对电池142加热,以避免低温导致电子设备100异常关机。在其他一些实施例中,当温度低于又一阈值时,电子设备100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和电子设备100的接触和分离。电子设备100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。电子设备100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,电子设备100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备100中,不能和电子设备100分离。
下面介绍本申请实施例提供的定位场景。
图2示出了本申请实施例中提供一种定位场景的示意图。
如图2所示,用户可以携带电子设备100,驾驶车辆前往车库。其中,用户未主动在电子设备100上开启导航应用进行导航。在电子设备100识别到电子设备100当前的状态为车载状态且进入到车库的地理围栏时,电子设备100可以开启导航定位模块,利用GNSS和VDR融合定位持续测量电子设备100的位置。当电子设备100进入到车库内时,由于GNSS信号差,无法进行GNSS定位,电子设备100可以通过VDR定位持续测量电子设备100的位置。当电子设备100识别到车辆的状态为停车状态时,电子设备100可以将当前电子设备100的位置记录为车辆的停车位置。
图3示出了本申请实施例中提供另一种定位场景的示意图。
如图3所示,用户可以携带电子设备100,骑行自行车前往车库。用户可以手持电子设备100,也可以将电子设备100通过支架固定在自行车上,等等。其中,用户未主动在电子设备100上开启导航应用进行导航。
在电子设备100识别到电子设备100当前的状态为骑行状态且进入到车库的地理围栏时,电子设备100可以开启导航定位模块,利用GNSS和DR融合定位持续测量电子设备100的位置。当电子设备100进入到车库内时,由于GNSS信号差,无法进行GNSS定位,电子设备100可以通过DR定位持续测量电子设备100的位置。当电子设备100识别到用户停止骑行时,电子设备100可以将当前电子设备100的位置记 录为自行车的停车位置。
本申请实施例提供的定位方法,不限于上述车辆场景或骑行自行车场景,还可以是其他场景,在此不再赘述。
下面以车辆行驶场景为示例,介绍本申请实施例中提供一种定位方法的原理。
图4示出了本申请实施例中提供的一种定位方法的原理示意图。
如图4所示,电子设备100可以预先存储包括有车库的地理围栏的围栏数据。当电子设备100检测到当前状态为车载状态且电子设备100驶入到车库的地理围栏时,电子设备100可以开启导航定位模块,通过导航定位模块进行GNSS和VDR融合定位,持续获取电子设备100的位置。由于在进入车库的地理围栏且未进入车库时,电子设备100还能够获取到GNSS信号,因此,电子设备100可以通过GNSS信号和IMU数据,进行GNSS和VDR融合定位。但是,当电子设备100进入车库后,由于GNSS信号差,无法进行GNSS定位,电子设备100可以通过IMU数据,结合电子设备100在进入车库前获取到的位置,进行VDR定位,持续获取电子设备100在车库内的位置。当电子设备100检测到车辆停车时,电子设备100可以将当前电子设备100的位置记录为车辆的停车位置。电子设备100可以输出提示信息,该提示信息用于提示车辆在车库中的停车位置。这样,可以让用户在预先没有通过导航应用启动导航定位模块的情况下,电子设备可以在识别到将要进入到车库时,自动开启导航定位模块,以获取电子设备进入到车库内的实时位置。
下面介绍本申请实施例中提供的一种地理围栏的划分原理。
图5示出了本申请实施例中提供的一种地理围栏的划分原理示意图。
如图5所示,电子设备100所在的城市可以被划分为n个热点活动区域,其中,n为正整数。每个热点活动区域中可以包括有m个车库的地理围栏,m为正整数。
地理围栏数据库中可以存储有多个城市中多个地理围栏的围栏数据。其中,地理围栏数据可以包括:蜂窝小区信息、Wi-Fi指纹库数据、GNSS位置等信息。其中,该蜂窝小区信息可以包括该地理围栏所在位置的蜂窝小区。Wi-Fi指纹库数据包括该地理围栏所在位置检测到发送Wi-Fi信号的Wi-Fi接入点的MAC地址、IP地址、Wi-Fi信号强度,等等。GNSS位置为GNSS模块根据GNSS观测量信息进行普通定位解算,得到的定位结果。
在一种可能的实现方式中,为了避免电子设备100将整个地理围栏数据库全部注入到地理围栏检测模块,造成过多的内存开销。电子设备100可以检测电子设备100所在的热点活动区域,将电子设备100所在热点活动区域中的多个地理围栏的地理围栏数据注入到地理围栏检测模块。该地理围栏检测模块用于检测电子设备100是否进入到某一个车库的地理围栏。
在本申请实施例中,电子设备100可以测量用户经常(例如,每周大于3次)到达的车库所在位置的蜂窝小区信息、Wi-Fi指纹库数据、GNSS位置等信息。电子设备100可以为用户经常到达的车库周围设置地理围栏,并将该地理围栏所在位置的蜂窝小区信息、Wi-Fi指纹库数据、GNSS位置等信息作为该地理围栏的地理围栏数据保存至地理围栏的数据库中。
其中,该地理围栏数据可以保存至电子设备100本地,也保存至云服务器上。电子设备100可以从云服务器上查询到该地理围栏数据。
在一种可能的实现方式中,多个测量终端可以各自测量多个车库的地理围栏数据。多个测量终端可以将各自测量的多个车库的地理围栏数据上报给云服务器。云服务器可以将多个测量终端上报地理围栏数据保存至地理围栏数据库。当电子设备100向云服务器请求电子设备100所在热点活动区域中的地理围栏数据时,云服务器可以将电子设备100所在热点活动区域的地理围栏数据发送给电子设备100。电子设备100可以将电子设备100所在热点活动区域的地理围栏数据注入到地理围栏检测模块中。
下面介绍本申请实施例中提供的一种电子设备100的模块器件。
图6示出了本申请实施例中的一种电子设备100的模块器件示意图。
如图6所示,电子设备100可以包括处理器610、传感集线器(sensor hub)模块620、惯性测量单元(IMU)631、蜂窝通信模块632、Wi-Fi模块633、GNSS模块634。其中,处理器610中可以包括导航定位模块611。导航定位模块611可以包括VDR定位模块612和GNSS定位模块613。sensor hub模块620可以包括活动识别(activity recognition,AR)模块621和地理围栏检测模块622。
其中,IMU631中可以包括陀螺仪、加速度计等传感器,IMU数据可以包括陀螺仪数据和加速度数据等等。IMU631在获取到IMU数据可以将IMU数据发送给传感集线器模块620。
蜂窝通信模块632可以用于检测电子设备100在蜂窝网络划分的多个蜂窝小区中所处的目标蜂窝小区,并将该目标蜂窝小区的蜂窝小区信息发送给sensor hub模块620。蜂窝通信模块632还可以用于与蜂窝网络进行蜂窝通信,其中,该蜂窝通信包括但不限于2G/3G/4G/5G通信。
Wi-Fi模块633可以用于获取Wi-Fi信号的信号标识和信号强度信息等等Wi-Fi数据。Wi-Fi模块633可以将Wi-Fi数据发送给sensor hub模块620。Wi-Fi模块633还可以基于Wi-Fi技术与其他设备之间实现无线通信。
GNSS模块634可以用于接收卫星信号,获取到用于定位解算的GNSS观测量信息。其中,GNSS观测量信息可以包括伪距、载波相位和多普勒频率等信息。该GNSS模块634还可以根据GNSS观测量信息完成普通定位结果的解算,得到GNSS位置。其中,由于GNSS模块634输出的GNSS位置不精准(例如,精确在10米),导致电子设备100无法精准识别电子设备100处于哪个车位。因此,当电子设备100需要进行导航定位以获取电子设备100的精确位置时,GNSS模块634需要将GNSS数据发送给到导航定位模块611,通过导航定位模块611中的GNSS定位模块613进行高精度定位解算(例如,实时动态(real-time kinematic,RTK)载波相位差分定位解算,等等),得到高精度位置信息,其中,该高精度位置信息的定位精度比该GNSS位置的定位精度更加精准。GNSS模块634还可以将GNSS数据发送给sensor hub模块620。GNSS数据可以包括GNSS观测量信息,或者,GNSS数据可以包括GNSS观测量信息和GNSS位置。
在一种示例中,GNSS模块634也可以不直接将GNSS数据发送给处理器610,而是由sensor hub模块620将GNSS数据上报给处理器610。
sensor hub模块620在获取到IMU数据后,可以通过AR模块621基于该IMU数据确定出电子设备100的活动状态,其中,电子设备100的活动状态可以包括车载状态、停车状态、骑行状态,等等。IMU数据可以包括陀螺仪数据和加速度数据。
sensor hub模块620在获取到蜂窝小区信息、Wi-Fi数据、GNSS位置后,可以通过地理围栏检测模块622检测电子设备100是否进入某个车库的地理围栏。
sensor hub模块620可以将电子设备100的活动状态、地理围栏检测结果(例如,进入了车库的地理围栏)和IMU数据发送给处理器610。
处理器610可以在检测到电子设备100的活动状态为车载状态时且地理围栏检测结果为进入了车库的地理围栏时,调起导航定位模块611进行持续定位。其中,导航定位模块611在进行持续定位时,可以同时开启VDR定位模块612和GNSS定位模块613。其中,VDR定位模块612用于基于IMU数据确定出电子设备100的位移信息,其中,位移信息包括移动方向和移动距离,等等。GNSS定位模块613可用于基于GNSS数据进行高精度定位解算,获取到高精度位置信息。当导航定位模块611能够获取到GNSS模块634发送的GNSS数据时,导航定位模块611可以通过VDR定位模块612和GNSS定位模块613进行融合定位持续获取电子设备100的位置,当导航定位模块611无法获取到GNSS模块634发送的GNSS数据时,导航定位模块611可以通过VDR定位模块612进行定位。
其中,当导航定位模块611无法获取到GNSS模块634发送的GNSS数据时,导航定位模块611可以获取到GNSS定位模块613上一次解算出的高精度位置信息。VDR定位模块612可以基于IMU数据解算出目标时间段内电子设备100的位移信息,其中,目标时间段为GNSS定位模块613上一次解算出高精度位置信息的时刻到当前时刻。导航定位模块611可以基于上一次解算出的高精度位置信息和目标时间段内电子设备100的位移信息,确定出电子设备100在当前时刻的位置。
例如,当导航定位模块611在第一时刻获取到GNSS模块634发送的GNSS数据时,导航定位模块611基于GNSS数据,解算出电子设备100在第一时刻的位置;当导航定位模块611在第二时刻未获取到GNSS模块634发送的GNSS数据时,导航定位模块611通过VDR定位模块612基于IMU数据,确定电子设备100在第一时刻到第二时刻之间的位移信息;导航定位模块611基于电子设备100在第一时刻的位置和第一时刻到第二时刻之间的位移信息,确定出电子设备100在第二时刻的位置。GNSS数据可以包括GNSS观测量信息,或者,GNSS数据可以包括GNSS观测量信息和GNSS位置。
在一种示例中,处理器610可以是应用处理器(application processor,AP)。
在本申请实施例中,AR模块621不限于设置在sensor hub模块620中,可以设置在其他器件内,例如,AR模块621可以置于处理器610中,等等,在此不作限定。地理围栏检测模块622不限于设置在sensor hub模块620中,还可以设置在其他器件内,例如,地理围栏检测模块622可以置于处理器610中,等等, 在此不作限定。
图7示出了本申请另一实施例中提供的一种电子设备100的模块器件示意图。
如图7所示,电子设备100可以包括处理器710、sensor hub模块720、惯性测量单元(IMU)731、蜂窝通信模块732、Wi-Fi模块733、GNSS模块734。
其中,处理器710中可以包括提示模块711、位置服务模块712、导航定位模块713、调用模块716和地理围栏注入模块717。导航定位模块713可以包括VDR定位模块714和GNSS定位模块715。sensor hub模块720可以包括活动识别(AR)模块721和地理围栏检测模块722。
其中,IMU731中可以包括陀螺仪、加速度计等传感器,IMU数据可以包括陀螺仪数据和加速度数据等等。IMU731在获取到IMU数据可以将IMU数据发送给传感集线器模块620。
蜂窝通信模块732可以用于检测电子设备100在蜂窝网络划分的多个蜂窝小区中所处的目标蜂窝小区,并将该目标蜂窝小区的蜂窝小区信息发送给sensor hub模块720。蜂窝通信模块732还可以用于与蜂窝网络进行蜂窝通信,其中,该蜂窝通信包括但不限于2G/3G/4G/5G通信。
Wi-Fi模块733可以用于获取Wi-Fi信号的信号标识和信号强度信息等等Wi-Fi数据。Wi-Fi模块733可以将Wi-Fi数据发送给sensor hub模块720。Wi-Fi模块733还可以基于Wi-Fi技术与其他设备之间实现无线通信。
GNSS模块734可以用于接收卫星信号,获取到用于定位解算的GNSS观测量信息。其中,GNSS观测量信息可以包括伪距、载波相位和多普勒频率等信息。该GNSS模块734还可以根据观测量信息完成普通定位结果的解算,得到GNSS位置。其中,由于GNSS模块734输出的GNSS位置不精准(例如,精确在10米),导致电子设备100无法精准识别电子设备100处于哪个车位。因此,当电子设备100需要进行导航定位以获取电子设备100的精确位置时,GNSS模块734需要将GNSS数据发送给到导航定位模块713,通过导航定位模块713中的GNSS定位模块715进行高精度定位解算(例如,实时动态(real-time kinematic,RTK)载波相位差分定位解算,等等),得到高精度位置信息,其中,该高精度位置信息的定位精度比该GNSS位置的定位精度更加精准。GNSS模块734还可以将GNSS数据发送给sensor hub模块720。GNSS数据可以包括GNSS观测量信息,或者,GNSS数据可以包括GNSS观测量信息和GNSS位置。
在一种示例中,GNSS模块734也可以不直接将GNSS数据发送给处理器710,而是由sensor hub模块720将GNSS位置数据上报给处理器710。
sensor hub模块720在获取到IMU数据后,可以通过AR模块721基于该IMU数据确定出电子设备100的活动状态,其中,电子设备100的活动状态可以包括车载状态、停车状态、骑行状态,等等。IMU数据可以包括陀螺仪数据和加速度数据。
sensor hub模块720在获取到蜂窝小区信息、Wi-Fi数据、GNSS数据等信息后,可以通过地理围栏检测模块722检测电子设备100是否进入某个车库的地理围栏。
sensor hub模块720可以将电子设备100的活动状态、地理围栏检测结果(例如,进入了车库的地理围栏)和IMU数据发送给处理器710。
地理围栏注入模块717可以基于蜂窝小区信息、Wi-Fi数据、GNSS位置和观测量信息中的一个或多个,确定出电子设备100当前所处的热点活动区域(可以称为目标活动区域)。地理围栏注入模块717可以从地理围栏数据库中匹配出该目标活动区域对应的一个或多个地理围栏数据,并将该目标活动区域对应的一个或多个地理围栏数据发送给地理围栏检测模块722。地理围栏检测模块722可以基于该目标活动区域对应的一个或多个地理围栏数据,检测电子设备100是否进入到车库的地理围栏中。
这样,将电子设备100当前所处的热点活动区域对应的一个或多个地理围栏数据注入到地理围栏检测模块722中,避免将地理围栏数据库中的所有地理围栏数据都注入到地理围栏检测模块722中,可以减少地理围栏检测模块722的数据存储开销,也缩短了地理围栏检测模块722检测电子设备100进出地理围栏的时间。
调用模块716可以在获取到电子设备100的AR状态和地理围栏检测结果后,可以判断是否电子设备100的AR状态为车载状态或骑行状态,且地理围栏检测结果为电子设备100进入到某一车库的地理围栏内。当电子设备100的AR状态为车载状态或骑行状态,且电子设备100进入到某一车库的地理围栏时,电子设备100可以调起导航定位模块713进行持续定位。
其中,导航定位模块713在进行持续定位时,可以同时开启VDR定位模块714和GNSS定位模块715。其中,VDR定位模块714用于基于IMU数据确定出电子设备100的位移信息,其中,位移信息包括移动 方向和移动距离,等等。GNSS定位模块715可用于基于GNSS数据进行高精度定位解算,获取到高精度位置信息。当导航定位模块713能够获取到GNSS模块734发送的GNSS数据时,导航定位模块713可以通过VDR定位模块714和GNSS定位模块715进行融合定位持续获取电子设备100的位置,当导航定位模块713无法获取到GNSS模块734发送的GNSS数据时,导航定位模块713可以通过VDR定位模块714进行定位。
其中,当导航定位模块713无法获取到GNSS模块734发送的GNSS数据时,导航定位模块713可以获取到GNSS定位模块715上一次解算出的高精度位置信息。VDR定位模块714可以基于IMU数据解算出目标时间段内电子设备100的位移信息,其中,目标时间段为GNSS定位模块715上一次解算出高精度位置信息的时刻到当前时刻。导航定位模块713可以基于上一次解算出的高精度位置信息和目标时间段内电子设备100的位移信息,确定出电子设备100在当前时刻的位置。
例如,当导航定位模块713在第一时刻获取到GNSS模块734发送的GNSS数据时,导航定位模块713基于GNSS数据,解算出电子设备100在第一时刻的位置;当导航定位模块713在第二时刻未获取到GNSS模块734发送的GNSS数据时,导航定位模块713通过VDR定位模块714基于IMU数据,确定电子设备100在第一时刻到第二时刻之间的位移信息;导航定位模块713基于电子设备100在第一时刻的位置和第一时刻到第二时刻之间的位移信息,确定出电子设备100在第二时刻的位置。GNSS数据可以包括GNSS观测量信息,或者,GNSS数据可以包括GNSS观测量信息和GNSS位置。GNSS数据可以包括GNSS观测量信息,或者,GNSS数据可以包括GNSS观测量信息和GNSS位置。
导航定位模块713可以持续将电子设备100的定位位置发送给位置服务模块712。位置服务模块712可以基于AR状态判断电子设备100是否处于停车状态。当电子设备100处于停车状态时,位置服务模块712可以将获取到电子设备100的定位位置确定为停车位置,并将停车位置发送给提示模块711。其中,提示模块711用于输出提示信息,该提示信息用于提示用户电子设备100确定出的停车位置。
在一种示例中,不限于通过IMU数据确定出电子设备100的活动状态,还可以通过电子设备100上蓝牙模块(图7中未示出)的连接信息,确定出电子设备100的AR状态。当AR模块721通过蓝牙模块的连接信息,确定出蓝牙模块已经与车辆建立了蓝牙连接时,电子设备100可以确定电子设备100处于车载状态。当AR模块721基于蓝牙模块的连接信息,确定出电子设备100与车辆的蓝牙连接断开时,AR模块721可以确定车辆处于停车状态。
其中,AR模块721和地理围栏检测模块722可以置于sensor hub模块720中,也可以置于处理器710中。当AR模块721和地理围栏检测模块722置于处理器710中时,电子设备100也可以不包括sensor hub模块720。
在一种示例中,AR模块721和地理围栏检测模块722置于处理器710中。电子设备100可以与车辆建立蓝牙连接,当车辆启动时,车辆可以通过蓝牙连接向电子设备100发送车辆状态信息1,该车辆状态信息1用于指示车辆已启动。当车辆停车熄火时,车辆可以通过蓝牙连接向电子设备100发送车辆状态信息2,该车辆状态信息2用于指示车辆已停车。当电子设备100接收到车辆状态信息1时,AR模块721可以确定电子设备100的AR状态为车载状态。当电子设备100接收到车辆状态信息2时,AR模块721可以确定车辆处于停车状态。
在一种示例中,处理器710可以是应用处理器(application processor,AP)。
在一种示例中,地理围栏检测模块722可以先检测电子设备100是否进入到了地库的地理围栏。其中,当地理围栏检测模块722进入到地库的地理围栏中时,地理围栏检测模块722可以启动AR模块721和IMU731,当AR模块721和IMU731启动后,IMU731可以测量IMU数据,并将IMU数据发送给AR模块721。AR模块721在获取到IMU数据后,可以基于IMU数据识别电子设备100的AR状态,并将AR状态发送给调用模块716。这样,可以在电子设备100进入到了地库的地理围栏后,才启动IMU731和AR模块721工作,节约了电子设备100的功耗。
在一种示例中,IMU731可以持续测量IMU数据,并将IMU数据发送给AR模块721。AR模块721在获取到IMU数据后,可以基于IMU数据识别电子设备100的AR状态。在AR状态为车载状态时,AR模块721可以启动地理围栏检测模块722工作。地理围栏检测模块722可以检测电子设备100是否进入到地库的地理围栏。这样,可以在AR模块721识别到电子设备100处于车载状态时,才启动地理围栏检测模块722工作,节约了电子设备100的功耗。
在一些实施例中,在用户授权电子设备100记录并使用用户在电子设备100的定位行为数据后,电子 设备100可以记录用户日常活动中的定位行为数据。其中,定位数据可以包括以下一项或多项:用户导航定位的位置、用户搜索的位置、位置的访问频率、位置的搜索频率,等等。电子设备100可以基于定位数据确定出电子设备100经常活动的一个或多个热点活动区域,并生成一个或多个热点活动区域内车库的地理围栏数据。电子设备100可以车库的地理围栏数据按照电子设备100所在的城市以及热点活动区域分类保存至地理围栏数据库中。
其中,地理围栏数据库中数据存储结构可以如下表1所示:
表1
如上述表1所示,城市A内可以包括有热点活动区域1、热点活动区域2和热点活动区域3。其中,热点活动区域1中可以有3个地理围栏的地理围栏数据:地理围栏数据1、地理围栏数据2和地理围栏数据3。热点活动区域2中可以有3个地理围栏的地理围栏数据:地理围栏数据4、地理围栏数据5和地理围栏数据6。热点活动区域3中可以有3个地理围栏的地理围栏数据:地理围栏数据7、地理围栏数据8和地理围栏数据9。城市A内可以包括有热点活动区域4和热点活动区域5。其中,热点活动区域4中可以有2个地理围栏的地理围栏数据:地理围栏数据10和地理围栏数据11。热点活动区域5中可以有2个地理围栏的地理围栏数据:地理围栏数据12和地理围栏数据13。上述表1仅仅用于解释本申请,不应构成限定。
在一些实施例中,在电子设备100进入地理围栏之前,GNSS模块734可以处于关闭状态,地理围栏检测模块722可以通过蜂窝小区信息和/或Wi-Fi数据,判断电子设备100是否进入地库的地理围栏。当地理围栏检测模块722检测到基于蜂窝小区信息和/或Wi-Fi数据,确定电子设备100进入到车库的地理围栏,且电子设备100处于车载状态时,处理器710才开启GNSS模块734,通过GNSS模块734获取GNSS数据,其中,GNSS数据包括GNSS观测量,或者,GNSS数据包括GNSS观测量和GNSS位置。
这样,可以在用户预先未开启电子设备100上的GNSS模块的情况下,识别电子设备100的车载状态和地理围栏进出结果,当识别到电子设备100处于车载状态且进入到车库的地理围栏时,自动开启GNSS模块,并通过GNSS模块获取到的GNSS数据和通过IMU获取到的IMU数据,持续进行导航定位,获取电子设备100在车库内的实时位置。
在一些实施例中,导航定位模块713中还可以包括有航位推算(dead reckoning,DR定位模块。其中,DR定位模块可以适用于用户在骑车过程中的惯性导航。因此,当检测到电子设备100的AR状态为骑行状态且电子设备100进入到某个地理围栏中时,电子设备100可以调起导航定位模块中的DR定位模块和GNSS定位模块,持续定位。电子设备100在检测到停车时,可以记录并输出停车位置。
下面介绍本申请实施例中提供的一种定位方法。
图8示例性的示出了本申请实施例中提供的一种定位方法的流程示意图。
如图8所示,该方法可以包括如下步骤:
S801、电子设备100的导航定位模块处于未工作状态。
其中,导航定位模块可以包括VDR模块和GNSS定位模块。当电子设备100处于未工作状态时,VDR模块和GNSS定位模块不工作,电子设备100无法获取到高精度位置信息,无法进行导航。
S802、电子设备100通过IMU传感器获取IMU数据。
其中,IMU传感器可以包括陀螺仪和加速度计。IMU数据可以包括陀螺仪数据和/或加速度数据。
S803、电子设备100基于IMU数据确定电子设备100的活动识别(AR)状态。
其中,活动识别(AR)状态可以包括车载状态、骑行状态、步行状态、静止状态,等等。
在一种示例中,电子设备100可以从IMU数据中确定出电子设备100的移动速度和移动加速度。当移动速度和/或移动加速度满足第一预设条件时,电子设备100可以确定电子设备100处于车载状态。其中,第一预设条件包括电子设备100的移动速度在第一预设速度与第二预设速度之间和/或电子设备的移动加速度大于预设加速度,其中,第一预设速度小于所述第二预设速度。例如,当电子设备100的移动速度大于40公里每小时(km/h)且小于180km/h时,电子设备100可以确定电子设备100的AR状态为车载状态。又例如,当电子设备100的移动加速度大于0.2g时,其中,g为标准重力加速度,g=9.8m/s2。又例如,当电子设备100的移动速度大于40km/h且小于180km/h,且电子设备100的移动加速度大于0.2g时,电子设备100可以确定电子设备100的AR状态为车载状态,等等。上述示例仅仅用于解释本申请,具体实现中,还可以基于IMU数据通过其他条件判断出电子设备100的AR状态,在此不作限定。
在一些示例中,当电子设备100确定出蓝牙模块已经与车辆建立了蓝牙连接时,电子设备100可以确定电子设备100的AR状态为车载状态。其中,电子设备100与其他设备建立蓝牙连接时,可以获取到其他设备的设备类型,因此,当电子设备100车辆建立蓝牙连接时,电子设备100可以获取到车辆的设备类型为车类型。当电子设备100确定出电子设备100与车辆之间蓝牙连接断开时,电子设备100可以确定车辆处于停车状态。
在一些示例中,电子设备100可以与车辆建立蓝牙连接,当车辆启动时,车辆可以通过蓝牙连接向电子设备100发送车辆状态信息1,该状态信息1用于指示车辆已启动。当车辆停车熄火时,车辆可以通过蓝牙连接向电子设备100发送车辆状态信息2,该车辆状态信息2用于指示车辆已停车。当电子设备100接收到车辆状态信息1时,电子设备100可以确定电子设备100处于车载状态。当电子设备100接收到车辆状态信息2时,电子设备100可以确定车辆处于停车状态。
S804、电子设备100获取电子设备100当前所在的第一活动区域。
方式1:电子设备100可以通过蜂窝模块获取到电子设备100当前所处的蜂窝小区,并基于电子设备100所处的蜂窝小区从多个热点活动区域中确定出电子设备100所处的第一活动区域。其中,蜂窝小区信息与热点活动区域存在对应关系,例如,一个蜂窝小区可以对应一个热点活动区域,又例如,多个蜂窝小区可以对应一个热点活动区域。
方式2:电子设备100可以通过Wi-Fi模块获取到Wi-Fi数据,其中,Wi-Fi数据可以包括发送Wi-Fi信号的Wi-Fi接入点的MAC地址、IP地址、Wi-Fi信号强度,等等。由于Wi-Fi接入点的位置一般是固定的,一些Wi-Fi接入点的MAC地址和/或IP地址以及这些Wi-Fi接入点的位置可以存储在互联网的服务器中。当电子设备100获取到Wi-Fi信号的MAC地址和/或IP地址后,电子设备100可以通过Wi-Fi接入点的MAC地址和/或IP地址,从服务器上查询该Wi-Fi接入点的位置区域,并将该Wi-Fi接入点的位置区域确定为电子设备100当前所在的第一活动区域。
方式3:电子设备100可以通过GNSS模块获取到GNSS位置和观测量信息。其中,该GNSS位置的定位精度较差(例如定位范围大于10m),无法用于电子设备100的导航定位。电子设备100获取到GNSS位置后,可以基于该GNSS位置,从多个热点区域中确定出电子设备100所处的第一活动区域。
方式4:电子设备100还可以接收用户预先输入的位置信息,电子设备100可以基于用户预先输入的位置信息,从多个热点活动区域中确定出电子设备100所处的第一活动区域。
本申请实施例中,不限于通过上述几种方式确定电子设备100所在的第一活动区域,还可以通过其他方式确定出电子设备100的第一活动区域,在此不作限定。
S805、电子设备100基于用户当前所在的第一活动区域从地理围栏数据库中确定出第一活动区域内一 个或多个地理围栏的地理围栏数据。
其中,地理围栏数据库中可以包括有多个热点活动区域内的地理围栏数据。该地理围栏数据库保存在电子设备100本地,也可以保存在云服务器上。
S806、电子设备100判断是否电子设备100的AR状态为车载状态且电子设备100进入到第一活动区域内车库的地理围栏。
其中,电子设备100可以基于电子设备100检测到的蜂窝小区信息和/或Wi-Fi数据和/或GNSS位置,以及第一活动区域内一个或多个地理围栏的地理围栏数据,判断电子设备100是否进入到第一活动区域内车库的地理围栏。其中,地理围栏数据中可以包括有蜂窝小区信息、Wi-Fi指纹库数据、GNSS位置等信息。其中,该蜂窝小区信息可以包括该地理围栏所在位置的蜂窝小区。Wi-Fi指纹库数据包括该地理围栏所在位置检测到的Wi-Fi信号的标识信息和信号强度信息。
当电子设备100检测到的蜂窝小区信息与第一车库的第一地理围栏数据中蜂窝小区信息相同,且/或,电子设备100检测到的Wi-Fi数据与第一地理围栏数据中Wi-Fi数据匹配,且/或,电子设备100检测到的GNSS位置与第一地理围栏数据中GNSS位置匹配时,电子设备100可以确定电子设备100进入到第一活动区域内车库的地理围栏。
在一种示例中,电子设备100上的GNSS模块处于关闭状态,在电子设备100通过蜂窝小区信息和/或Wi-Fi数据,确定电子设备100进入到车库的地理围栏且电子设备100处于车载状态后,电子设备100才开启GNSS模块,获取GNSS数据。然后,电子设备100基于GNSS模块获取到的GNSS数据和IMU数据,持续进行导航定位,获取电子设备100的实时位置。GNSS数据包括GNSS观测量,或者,GNSS数据包括GNSS观测量和GNSS位置。
其中,当电子设备100基于IMU数据判断电子设备是否处于车载状态时,IMU可以在判断电子设备是否处于车载状态之前就开启。当电子设备100基于其他方式(例如,电子设备100是否与车辆建立了蓝牙连接)判断电子设备100是否处于车载状态时,IMU可以在判断电子设备是否处于车载状态之前就开启,也可以在确定电子设备100进入到车库的地理围栏且电子设备100处于车载状态时,才开启。这样,节约电子设备100的功耗。
在一种示例中,电子设备100可以先识别电子设备100的AR状态,并判断电子设备100的AR状态是否为车载状态。当确定出电子设备100的AR状态为车载状态后,再判断电子设备100是否进入到第一活动区域内车库的地理围栏。这样,可以在识别到电子设备100处于车载状态时,才检测电子设备100是否进入到车库的地理围栏,节约了电子设备100的功耗。
在另一种示例中,电子设备100可以先判断电子设备100是否进入到第一活动区域内车库的地理围栏。当电子设备100确定进入到第一活动区域内车库的地理围栏后,电子设备100再识别电子设备100的AR状态,并判断电子设备100的AR状态是否为车载状态。这样,可以在电子设备100进入到了地库的地理围栏后,才识别并判断电子设备100的AR状态,节约了电子设备100的功耗。
S807、当电子设备100的AR状态为车载状态且电子设备100进入到第一活动区域内的地理围栏时,电子设备100可以通过导航定位模块持续定位,获取电子设备100的实时位置。
其中,导航定位模块中的VDR模块可以基于IMU数据确定出电子设备100的位移信息,GNSS定位模块可以通过GNSS模块获取到的GNSS位置和观测量信息,进行高精度定位解算,得到高精度位置信息。导航定位模块可以融合移动位移和高精度位置信息,持续获取电子设备100的实时位置。当导航定位模块无法获取到GNSS模块发送的GNSS位置和观测量信息时,导航定位模块可以获取到GNSS定位模块上一次解算出的高精度位置信息。VDR定位模块可以基于IMU数据解算出目标时间段内电子设备100的位移信息,其中,目标时间段为GNSS定位模块上一次解算出高精度位置信息的时刻到当前时刻。导航定位模块可以基于上一次解算出的高精度位置信息和目标时间段内电子设备100的位移信息,确定出电子设备100在当前时刻的位置。
例如,当电子设备在第一时刻到通过GNSS模块获取到GNSS数据时,电子设备基于该GNSS数据,解算出电子设备在第一时刻的位置;当电子设备在第二时刻未通过GNSS模块获取到GNSS数据时,电子设备基于IMU数据,确定电子设备在第一时刻到第二时刻之间的位移信息;该电子设备基于该电子设备在该第一时刻的位置和第一时刻到第二时刻之间的位移信息,确定出电子设备在第二时刻的位置。
S808、当电子设备100检测到车辆处于停车状态时,将电子设备100当前的位置记录为停车位置。
在一种示例中,电子设备100可以从IMU数据中确定出电子设备100的移动速度。当移动速度满足第二预设条件时,电子设备100可以确定电子设备100处于停车状态。例如,第二预设条件可以包括电子设备100的移动速度为0。
在一种示例中,当车辆停车熄火时,车辆可以通过蓝牙连接向电子设备100发送车辆状态信息2,该车辆状态信息2用于指示车辆已停车。当电子设备100接收到车辆状态信息2时,电子设备100可以确定车辆处于停车状态。
在一种示例中,当电子设备100检测到电子设备100与车辆之间的蓝牙连接断开时,电子设备100可以检测到车辆处于停车状态。
在电子设备100获取到停车位置后,电子设备100可以输出提示信息,该提示信息用于给用户提示车辆的停车位置。
在一种示例中,电子设备100可以在获取到停车位置后,在地图中标记出电子设备100的停车位置。
示例性的,如图9A所示,电子设备100可以显示出桌面上所有页面中最左边的一个页面910。该页面910可以包括多个应用图标(例如,天气应用图标、股票应用图标、计算器应用图标、设置应用图标、邮件应用图标、图库应用图标、音乐应用图标、视频应用图标、浏览器应用图标)。多个应用图标下方还包括页面指示符911,该页面指示符911表明当前显示的页面910其他页面的位置关系,页面指示符911的下方有多个托盘图标(例如,拨号应用图标、信息应用图标、联系人应用图标、相机应用图标),托盘图标在页面切换时保持显示。页面指示符也可以不是页面的一部分,单独存在。上述的托盘图标也是可选的,本申请实施例对此不做限制。
电子设备100在获取到停车位置后,可以接收用户对该页面910的右滑输入,响应于该输入,电子设备100可以显示如图9B所示的负一屏界面920。
如图9B所示,该负一屏界面920可以包括停车卡片921和一个或多个快捷功能控件(例如,搜索控件、扫一扫功能控件、付款码功能控件、手机充值功能控件、更多功能控件,等等)。其中,该停车卡片921中可以显示有地图922、停车地点名称(例如商场A的地下停车场)、停车时长(例如,约1分钟)、停车位置与当前位置的距离(例如,50米内),等等。地图922中可以显示有车辆的停车位置对应的标记923、电子设备100当前的位置对应的标记924。可选的,该停车卡片921还可以显示有导航控件925,该导航控件925可以用于触发电子设备100显示出当前位置到停车位置的路线指引。
上述示例仅仅用于解释本申请,电子设备100显示停车位置的方式不限于在负一屏界面还可以在其他界面,例如车应用的界面中,在此不再赘述。
在一些实施例中,导航定位模块中还可以包括有航位推算(DR)定位模块。其中,DR定位模块可以适用于用户在骑车过程中的惯性导航。因此,当检测到电子设备100的AR状态为骑行状态时且电子设备100进入到某个地理围栏中时,电子设备100可以调起导航定位模块中的DR定位模块和GNSS定位模块,持续定位。电子设备100在检测到停车时,可以记录并输出停车位置。
本申请实施例中提供了一种定位方法,可以实现给多个室内区域(例如,车库、隧道、山洞,等等)配置地理围栏。在电子设备上的导航定位模块没有被开启的情况下,若电子设备检测到进入指定室内区域的地理围栏且电子设备处于车载状态后,电子设备可以启动导航定位模块,发起持续定位,当电子设备检测到停车时,获取到停车位置。其中,导航定位模块包括GNSS定位模块和VDR定位模块/DR定位模块。这样,电子设备可以在识别到将要进入到室内区域时,自动开启导航定位模块,以获取电子设备进入到室内区域内的实时位置。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (24)

  1. 一种定位方法,应用于电子设备,其特征在于,所述电子设备包括惯性测量单元IMU、全球导航卫星系统GNSS模块,所述IMU用于检测所述电子设备的IMU数据,所述GNSS模块用于在开启时获取GNSS数据;所述方法包括:
    所述GNSS模块处于关闭状态;
    当所述电子设备检测到所述电子设备处于车载状态且所述电子设备进入到车库的地理围栏时,所述电子设备开启所述GNSS模块,并通过GNSS模块获取所述GNSS数据;
    所述电子设备基于所述GNSS数据和所述IMU数据确定所述电子设备的实时位置;
    当所述电子设备检测到车辆停车时,所述电子设备将基于所述GNSS数据和所述IMU数据确定出的第一位置,确定为停车位置;
    所述电子设备显示所述停车位置。
  2. 根据权利要求1所述的方法,其特征在于,所述电子设备检测到所述电子设备处于车载状态,具体包括:
    若所述电子设备检测到所述IMU数据满足第一预设条件,所述电子设备确定所述电子设备的处于车载状态。
  3. 根据权利要求1所述的方法,其特征在于,所述电子设备检测到所述电子设备处于车载状态,具体包括:
    若所述电子设备检测到与所述车辆之间建立了蓝牙连接,所述电子设备确定所述电子设备处于车载状态。
  4. 根据权利要求2所述的方法,其特征在于,所述电子设备检测到车辆停车,具体包括:
    若所述电子设备检测到所述IMU数据满足第二预设条件,所述电子设备确定所述车辆停车。
  5. 根据权利要求3所述的方法,其特征在于,所述电子设备检测到车辆停车,具体包括:
    若所述电子设备检测到与所述车辆之间的所述蓝牙连接断开,所述电子设备确定所述车辆停车。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述电子设备检测到所述电子设备进入到车库的地理围栏,具体包括:
    若所述电子设备检测到所述电子设备所处位置的蜂窝小区信息与所述车库的地理围栏数据中的蜂窝小区信息匹配,且/或,所述电子设备检测到所述电子设备所处位置的Wi-Fi数据与所述车库的地理围栏数据中的Wi-Fi数据匹配,所述电子设备确定进入到车库的地理围栏;其中,所述Wi-Fi数据包括以下一项或多项:发送Wi-Fi信号的Wi-Fi接入点的MAC地址、IP地址、Wi-Fi信号强度。
  7. 根据权利要求2所述的方法,其特征在于,所述第一预设条件包括所述电子设备的移动速度在第一预设速度与第二预设速度之间和/或所述电子设备的移动加速度大于预设加速度,其中,所述第一预设速度小于所述第二预设速度。
  8. 根据权利要求4所述的方法,其特征在于,所述第二预设条件包括所述电子设备的移动速度为0。
  9. 根据权利要求6所述的方法,其特征在于,在所述电子设备检测到所述电子设备进入到车库的地理围栏之前,所述方法还包括:
    所述电子设备基于所述电子设备检测到的蜂窝小区信息,和/或,Wi-Fi数据,从地理围栏数据库中确定出所述电子设备所处目标活动区域内的一个或多个地理围栏数据;
    所述电子设备基于所述目标活动区域内的一个多个地理围栏数据,以及所述电子设备检测到的蜂窝小区信息,和/或,Wi-Fi数据,判断所述电子设备是否进入到车库的地理围栏。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述电子设备基于所述GNSS数据和所述IMU 数据,确定出所述电子设备的实时位置,具体包括:
    当所述电子设备在第一时刻通过所述GNSS模块获取到所述GNSS数据时,所述电子设备基于所述GNSS数据,解算出所述电子设备在第一时刻的位置;
    当所述电子设备在第二时刻未通过所述GNSS模块获取到所述GNSS数据时,所述电子设备基于所述IMU数据,确定所述电子设备所述第一时刻到所述第二时刻之间的位移信息;
    所述电子设备基于所述电子设备在所述第一时刻的位置和所述第一时刻到所述第二时刻之间的位移信息,确定出所述电子设备在所述第二时刻的位置。
  11. 一种电子设备,其特征在于,包括:IMU、GNSS模块、处理器和显示屏;其中,
    所述IMU,用于检测所述电子设备的IMU数据,所述IMU数据包括陀螺仪数据和加速度数据,并将所述IMU数据发送给所述处理器;
    所述GNSS模块处于关闭状态;
    所述处理器,用于在检测到所述电子设备处于车载状态且所述电子设备进入到车库的地理围栏时,开启所述GNSS模块;
    所述GNSS模块,用于在开启时获取所述GNSS数据,并将所述GNSS数据发送给所述处理器;
    所述处理器,用于基于所述GNSS数据和所述IMU数据,确定出所述电子设备的实时位置;
    所述处理器,还用于在检测到停车时,将基于所述GNSS数据和所述IMU确定出的第一位置,确定为停车位置;
    所述处理器,还用于指示所述显示屏显示所述停车位置。
  12. 根据权利要求11所述的电子设备,其特征在于,若所述IMU数据满足第一预设条件,所述电子设备处于车载状态。
  13. 根据权利要求12所述的电子设备,其特征在于,所述电子设备还包括传感集线器sensor hub模块;其中,
    所述sensor hub模块,用于从所述IMU获取所述IMU数据,在所述IMU数据满足所述第一预设条件时,确定所述电子设备处于车载状态;
    所述sensor hub模块,还用于通知所述处理器所述电子设备处于车载状态。
  14. 根据权利要求11所述的电子设备,其特征在于,所述处理器,还用于在检测到与所述车辆之间建立了蓝牙连接时,确定所述电子设备处于车载状态。
  15. 根据权利要求11或12所述的电子设备,其特征在于,若所述IMU数据满足第二预设条件,所述电子设备确定所述车辆停车。
  16. 根据权利要求15所述的电子设备,其特征在于,所述电子设备还包括sensor hub模块;其中,
    所述sensor hub模块,用于从所述IMU获取所述IMU数据,在所述IMU数据满足所述第二预设条件时,确定所述车辆停车;
    所述sensor hub模块,还用于通知所述处理器所述车辆停车。
  17. 根据权利要求14所述的电子设备,其特征在于,所述处理器,还用于在检测到与所述车辆之间的所述蓝牙连接断开时,所述电子设备确定所述车辆停车。
  18. 根据权利要求11-17中任一项所述的电子设备,其特征在于,所述电子设备还包括:蜂窝模块和/或Wi-Fi模块,所述蜂窝模块用于检测所述电子设备所处位置的蜂窝小区信息,所述Wi-Fi模块用于检测所述电子设备所处位置的Wi-Fi数据;
    若所述蜂窝模块检测到所述电子设备所处位置的蜂窝小区信息与所述车库的地理围栏数据中的蜂窝小区信息匹配,且/或,所述Wi-Fi模块检测到所述电子设备所处位置的Wi-Fi数据与所述车库的地理围栏数据中的Wi-Fi数据匹配,则所述电子设备进入到车库的地理围栏;其中,所述Wi-Fi数据包括以下一项 或多项:发送Wi-Fi信号的Wi-Fi接入点的MAC地址、IP地址、Wi-Fi信号强度。
  19. 根据权利要求18所述的电子设备,其特征在于,所述电子设备还包括sensor hub模块;
    所述蜂窝模块,还用于将所述电子设备所处位置的蜂窝小区信息发送给所述sensor hub模块;
    所述Wi-Fi模块,还用于将所述电子设备所处位置的Wi-Fi数据发送给所述sensor hub模块;
    所述sensor hub模块,还用于基于所述电子设备所处位置的蜂窝小区信息,和/或,所述Wi-Fi模块的Wi-Fi数据,判断所述电子设备是否进入到车库的地理围栏;
    所述sensor hub模块,还用于通知所述处理器,所述电子设备是否进入到车库的地理围栏。
  20. 根据权利要求19所述的电子设备,其特征在于,所述处理器,还用于基于所述电子设备检测到的蜂窝小区信息,和/或,Wi-Fi数据,从地理围栏数据库中确定出所述电子设备所处目标活动区域内的一个或多个地理围栏数据;
    所述处理器,还用于将所述电子设备所处目标活动区域内的一个或多个地理围栏数据发送给所述sensor hub模块;
    所述sensor hub模块,具体用于基于所述目标活动区域内的一个多个地理围栏数据,以及所述电子设备检测到的蜂窝小区信息,和/或,Wi-Fi数据,判断所述电子设备是否进入到车库的地理围栏。
  21. 根据权利要求12或13所述的电子设备,其特征在于,所述第一预设条件包括所述电子设备的移动速度在第一预设速度与第二预设速度之间和/或所述电子设备的移动加速度大于预设加速度,其中,所述第一预设速度小于所述第二预设速度。
  22. 根据权利要求15或16所述的电子设备,其特征在于,所述第二预设条件包括所述电子设备的移动速度为0。
  23. 根据权利要求11-22中任一项所述的电子设备,其特征在于,所述基于所述GNSS数据和所述IMU数据,确定出所述电子设备的实时位置,具体包括:
    当在第一时刻获取到所述GNSS模块发送的所述GNSS数据时,基于所述GNSS数据,解算出所述电子设备在第一时刻的位置;
    当在第二时刻未获取到所述GNSS模块发送的所述GNSS数据时,基于所述IMU数据,确定所述电子设备所述第一时刻到所述第二时刻之间的位移信息;
    基于所述电子设备在所述第一时刻的位置和所述第一时刻到所述第二时刻之间的位移信息,确定出所述电子设备在所述第二时刻的位置。
  24. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机指令,所述计算机指令被处理器执行时,实现如权利要求1-10中任一项所述的方法。
PCT/CN2023/127413 2022-10-31 2023-10-28 一种定位方法及相关装置 WO2024093857A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211366276.2 2022-10-31
CN202211366276.2A CN117956401A (zh) 2022-10-31 2022-10-31 一种定位方法及相关装置

Publications (1)

Publication Number Publication Date
WO2024093857A1 true WO2024093857A1 (zh) 2024-05-10

Family

ID=90794970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127413 WO2024093857A1 (zh) 2022-10-31 2023-10-28 一种定位方法及相关装置

Country Status (2)

Country Link
CN (1) CN117956401A (zh)
WO (1) WO2024093857A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130072226A1 (en) * 2011-09-21 2013-03-21 Jeff Thramann Systems and Methods for Tracking Mobile Devices
CN107592615A (zh) * 2017-09-22 2018-01-16 青岛海信移动通信技术股份有限公司 定位方法和装置
CN110599717A (zh) * 2019-07-30 2019-12-20 华为技术有限公司 电子围栏检测方法及电子设备
CN113615217A (zh) * 2019-03-25 2021-11-05 华为技术有限公司 一种确定终端设备位于地理围栏内部的方法和终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130072226A1 (en) * 2011-09-21 2013-03-21 Jeff Thramann Systems and Methods for Tracking Mobile Devices
CN107592615A (zh) * 2017-09-22 2018-01-16 青岛海信移动通信技术股份有限公司 定位方法和装置
CN113615217A (zh) * 2019-03-25 2021-11-05 华为技术有限公司 一种确定终端设备位于地理围栏内部的方法和终端设备
CN110599717A (zh) * 2019-07-30 2019-12-20 华为技术有限公司 电子围栏检测方法及电子设备

Also Published As

Publication number Publication date
CN117956401A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
CN113436461B (zh) 发送停车位信息的方法、车机设备及计算机可读存储介质
JP5871952B2 (ja) ナビゲーションのためのカメラ対応ヘッドセット
CN111368765A (zh) 车辆位置的确定方法、装置、电子设备和车载设备
CN111222836B (zh) 一种到站提醒方法及相关装置
CN116233300B (zh) 控制通信服务状态的方法、终端设备和可读存储介质
EP4114045A1 (en) Device positioning method and relevant apparatus
EP4191287A1 (en) Low-power consumption positioning method and related apparatus
CN114691064B (zh) 一种双路投屏的方法及电子设备
WO2024093857A1 (zh) 一种定位方法及相关装置
WO2023071940A1 (zh) 跨设备的导航任务的同步方法、装置、设备及存储介质
CN118872298A (zh) 一种消息传输的方法及相应终端
CN114765768B (zh) 一种网络选择方法及设备
WO2024001906A1 (zh) 终端场景识别方法、装置、终端、存储介质及程序产品
CN116844375B (zh) 停车信息的显示方法和电子设备
CN111323042A (zh) 目标物体的预警方法、装置和电子设备
WO2023104075A1 (zh) 一种分享导航信息的方法、电子设备和系统
EP4429224A1 (en) Video generation system and method, and related apparatus
CN115700508A (zh) 一种语义地图的构建方法及相关装置
WO2021135659A1 (zh) 车辆信息的推送方法、装置、用户账号服务器和用户设备
WO2020077738A1 (zh) 一种定位方法和装置
CN118554993A (zh) 一种限制使用卫星通信的方法和电子设备
CN116669009A (zh) 一种终端设备的通信方法及相应设备
CN116266088A (zh) 应用卡片显示方法、装置、终端设备及可读存储介质
CN116634360A (zh) 挪车提示方法、装置、终端设备、车辆及存储介质
CN115705565A (zh) 缴费方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884789

Country of ref document: EP

Kind code of ref document: A1