WO2024093454A1 - 除湿机 - Google Patents

除湿机 Download PDF

Info

Publication number
WO2024093454A1
WO2024093454A1 PCT/CN2023/114036 CN2023114036W WO2024093454A1 WO 2024093454 A1 WO2024093454 A1 WO 2024093454A1 CN 2023114036 W CN2023114036 W CN 2023114036W WO 2024093454 A1 WO2024093454 A1 WO 2024093454A1
Authority
WO
WIPO (PCT)
Prior art keywords
dehumidifier
guide plate
temperature
compressor
refrigerant
Prior art date
Application number
PCT/CN2023/114036
Other languages
English (en)
French (fr)
Inventor
马佩佩
陆李旺
李伟宁
杨康生
郭盛
谈裕辉
肖远富
Original Assignee
海信(广东)空调有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211347759.8A external-priority patent/CN116147086A/zh
Priority claimed from CN202211347750.7A external-priority patent/CN115493217A/zh
Priority claimed from CN202211349626.4A external-priority patent/CN115654596A/zh
Application filed by 海信(广东)空调有限公司 filed Critical 海信(广东)空调有限公司
Publication of WO2024093454A1 publication Critical patent/WO2024093454A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/74Ozone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/30Artificial light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • the present disclosure relates to the technical field of air conditioning, and in particular to a dehumidifier.
  • dehumidifiers have gradually entered people's lives and become common items in people's work and life.
  • the dehumidifier exchanges heat with the humid air through a heat exchanger, condensing the moisture in the air into condensed water to dry the air. After drying, the air is discharged from the dehumidifier, thus achieving the dehumidification effect.
  • a dehumidifier includes a housing, a compressor, an evaporator, a condenser, a throttling device, an air duct, a guide plate, a condenser and a controller.
  • the compressor, the evaporator, the condenser and the throttling device are arranged in the housing and are connected in sequence to form a refrigerant circulation loop.
  • the evaporator and the condenser are arranged at intervals to define the air duct between the evaporator and the condenser.
  • the guide plate is rotatably arranged at the entrance of the air duct and is configured to adjust the opening of the entrance of the air duct.
  • the condenser is arranged in the air duct and is configured to perform heat exchange on the air flowing through.
  • the first part of the indoor air entering the dehumidifier flows out of the dehumidifier after passing through the evaporator, the condenser and the condenser in sequence, and the second part of the indoor air entering the dehumidifier flows out of the dehumidifier after passing through the air duct, the condenser and the condenser in sequence.
  • the controller is configured to: if the current indoor ambient temperature is less than or equal to a first preset temperature threshold, and the temperature of the coil of the evaporator is less than or equal to a second preset temperature threshold, control the guide plate to rotate to close the inlet of the air duct; if the indoor ambient temperature is greater than the first preset temperature threshold, and the temperature of the coil of the evaporator is greater than the second preset temperature threshold, determine the air volume ratio according to the temperature of the coil of the evaporator, and control the guide plate to open to a corresponding angle according to the air volume ratio.
  • the air volume ratio is the ratio of the first part of the indoor air flowing through the evaporator to the second part of the indoor air flowing directly to the condenser through the inlet of the air duct.
  • FIG1 is a structural diagram of a dehumidifier according to some embodiments.
  • FIG2 is another structural diagram of a dehumidifier according to some embodiments.
  • FIG3 is another structural diagram of a dehumidifier according to some embodiments.
  • FIG4 is a partial enlarged view of circle A in FIG3 ;
  • FIG5 is a schematic diagram of a guide plate, a motor, and a wind shield according to some embodiments
  • FIG6 is a partial enlarged view of circle B in FIG5 ;
  • FIG. 7 is a structural diagram of an evaporator, a condenser, and a condenser according to some embodiments
  • FIG8 is a structural diagram of a condenser according to some embodiments.
  • FIG9 is a block diagram of a dehumidifier according to some embodiments.
  • FIG10 is a flow chart of steps performed by a controller according to some embodiments.
  • FIG11 is another flow chart of steps performed by a controller according to some embodiments.
  • FIG12 is another flow chart of steps performed by a controller according to some embodiments.
  • FIG13 is a block diagram of another dehumidifier according to some embodiments.
  • FIG14 is another flow chart of steps performed by a controller according to some embodiments.
  • FIG15 is another flow chart of steps performed by a controller according to some embodiments.
  • FIG16 is another flow chart of steps performed by a controller according to some embodiments.
  • FIG17 is another flow chart of steps performed by a controller according to some embodiments.
  • FIG18 is another flow chart of steps performed by a controller according to some embodiments.
  • FIG19 is another flow chart of steps performed by a controller according to some embodiments.
  • FIG20 is another flow chart of steps performed by a controller according to some embodiments.
  • FIG21 is another flow chart of steps performed by a controller according to some embodiments.
  • FIG22 is another flow chart of steps performed by a controller according to some embodiments.
  • FIG23 is another flow chart of steps performed by a controller according to some embodiments.
  • FIG24 is another flow chart of steps performed by a controller according to some embodiments.
  • FIG25 is another flow chart of steps performed by a controller according to some embodiments.
  • FIG26 is another flow chart of steps performed by a controller according to some embodiments.
  • 27 is yet another flow chart of steps performed by a controller according to some embodiments.
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • plural means two or more.
  • connection and its derivatives may be used.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • the fan of the dehumidifier uses a fixed-speed motor.
  • the dehumidifier cannot control the dehumidification amount because the air volume flowing through the evaporator is roughly the same under different indoor thermal and humid environments.
  • the dehumidification efficiency of the dehumidifier cannot meet the demand because the air volume flowing through the evaporator is limited and the evaporator has limited air processing capacity.
  • the dehumidification capacity of the dehumidifier can be increased by adding additional auxiliary air ducts (e.g., an air duct different from the air duct flowing through the evaporator) and corresponding components (such as a condenser).
  • additional auxiliary air duct structure will cause the dehumidifier to have excessive dehumidification and excessive energy consumption.
  • some embodiments of the present disclosure provide a dehumidifier 100 .
  • FIG. 1 is a structural diagram of a dehumidifier according to some embodiments.
  • the dehumidifier 100 includes a housing 10 , an air outlet 15 , and an air inlet 15 .
  • the air inlet is disposed on at least one side of the housing 10 .
  • FIG. 2 is another structural diagram of a dehumidifier according to some embodiments.
  • the dehumidifier 100 further includes a compressor 1, an evaporator 2, a condenser 3, and a throttling device 4.
  • the compressor 1, the condenser 3, the throttling device 4, and the evaporator 2 connected in sequence form a refrigerant circuit.
  • the refrigerant circulates in the refrigerant circuit and exchanges heat with the air through the evaporator 2 and the condenser 3, respectively, so as to adjust the humidity and temperature of the surrounding environment.
  • the compressor 1 is configured to compress the refrigerant so that the low-pressure refrigerant is compressed to form a high-pressure refrigerant.
  • the refrigerant discharged from the compressor 1 flows into the condenser 3.
  • the condenser 3 is disposed in the housing 10 and is located on a side of the evaporator 2 away from the air inlet.
  • the condenser 3 is configured to perform heat exchange between the ambient air and the refrigerant transmitted in the condenser 3.
  • the refrigerant compressed by the compressor 1 condenses by dissipating heat to the ambient air through the condenser 3, and the condensed refrigerant is discharged from the condenser 3 to the throttling device 4.
  • the throttling device 4 is connected between the condenser 3 and the evaporator 2.
  • the opening of the throttling device 4 adjusts the pressure of the refrigerant flowing through the condenser 3 and the evaporator 2 to adjust the flow rate of the refrigerant flowing between the condenser 3 and the evaporator 2.
  • the flow rate and pressure of the refrigerant flowing between the condenser 3 and the evaporator 2 will affect the heat exchange performance of the condenser 3 and the evaporator 2.
  • the opening of the throttling device 4 is adjustable to control the flow rate and pressure of the refrigerant flowing through the throttling device 4.
  • the throttling device 4 expands the liquid refrigerant condensed in the condenser 3 into a low-pressure liquid refrigerant, and the low-pressure liquid refrigerant is discharged from the throttling device 4 to the evaporator 2.
  • the evaporator 2 is disposed in the housing 10 and is close to the air inlet.
  • the evaporator 2 is configured to perform heat exchange between the ambient air and the refrigerant transmitted in the evaporator 2.
  • the refrigerant after heat dissipation by the condenser 3 absorbs the heat of the ambient air through the evaporator 2 and evaporates, and the evaporated refrigerant flows back to the compressor 1, thereby completing the circulation of the refrigerant.
  • the dehumidifier 100 includes a refrigeration cycle system.
  • the refrigeration system cycle mainly includes: the refrigerant enters the compressor 1 and is compressed into a high-temperature and high-pressure refrigerant vapor, then the high-temperature and high-pressure refrigerant vapor condenses and releases heat in the condenser 3 to become a high-temperature and high-pressure refrigerant liquid, and the high-temperature and high-pressure refrigerant liquid undergoes adiabatic throttling through the throttling device 4 to become a low-temperature and low-pressure refrigerant liquid (or refrigerant liquid and refrigerant vapor), and finally, the low-temperature and low-pressure refrigerant liquid enters the evaporator 2 to evaporate and absorb heat to become a low-temperature and low-pressure refrigerant vapor and then flows back to the compressor 1, and the cycle repeats.
  • the evaporator 2 and the condenser 3 are arranged in sequence along the flow direction of the air in the dehumidifier 100.
  • the air dehumidification process of the dehumidifier 100 mainly includes: the fan 13 (as shown in FIG. 3 ) draws the indoor air into the housing 10 through the air inlet, and the indoor air is cooled and dehumidified by the evaporator 2 to become low-temperature saturated humid air. After that, the low-temperature saturated humid air is heated and dehumidified by the condenser to become dry medium-temperature gas, and then discharged into the indoor environment.
  • indoor air can be sucked into the dehumidifier 100 and pass through the evaporator 2 and the condenser 3 in sequence.
  • the moisture in the indoor air condenses into condensed water on the surface of the evaporator 2.
  • the dried indoor air exchanges heat with the condenser 3, and the condenser 3 heats the indoor air to further dry the indoor air.
  • the indoor air is discharged from the dehumidifier 100, thereby achieving dehumidification of the indoor air.
  • Fig. 3 is another structural diagram of a dehumidifier according to some embodiments.
  • Fig. 4 is a partial enlarged diagram of circle A in Fig. 3 .
  • the dehumidifier 100 further includes an air duct 9 and a guide plate 8.
  • the evaporator 2 and the condenser 3 are arranged at intervals to define the air duct 9.
  • the guide plate 8 is arranged at the entrance of the air duct 9, and the guide plate 8 is rotatable.
  • the guide plate 8 is configured to adjust the opening of the entrance of the air duct 9.
  • the dehumidifier 100 has a main air duct, and the air duct 9 is an auxiliary air duct different from the main air duct.
  • a part of the indoor air enters the air duct 9 through the air inlet, and enters the condenser 3 through the air duct 9.
  • Another part of the indoor air enters the dehumidifier 100 through the air inlet, and then flows through the evaporator 2 and the condenser 3 in sequence.
  • the dehumidifier 100 further includes a fan 13.
  • the fan 13 is configured to suck in indoor air and make the indoor air flow through the evaporator 2 and the condenser 3 in sequence.
  • Fig. 5 is a schematic diagram of a guide plate, a motor and a wind shield according to some embodiments.
  • Fig. 6 is a partial enlarged view of circle B in Fig. 5 .
  • the dehumidifier 100 further includes a motor 11, and the motor 11 is connected to the guide plate 8.
  • the output shaft of the motor 11 is connected to the guide plate 8, and when the motor 11 rotates, the motor 11 drives the guide plate 8 to rotate.
  • the motor 11 is configured to drive the guide plate 8 to rotate to adjust the opening of the inlet of the air duct 9.
  • the motor 11 can be arranged at either end of the length direction of the guide plate 8 (such as the M end or the N end in Figure 5).
  • the length direction of the guide plate 8 is the direction in which its long side is located (i.e., the MN direction in Figure 5).
  • the motor 11 may include multiple gears. The multiple gears correspond to different rotation angles of the output shaft of the motor 11. In this way, the rotation angle of the guide plate 8 can be controlled by different gears of the motor 11, thereby adjusting the opening of the entrance of the air duct 9.
  • the motor 11 may be a stepper motor, a servo motor or other motors, which is not limited in the present disclosure.
  • the dehumidifier 100 further includes two wind shields 12.
  • the two wind shields 12 are respectively disposed on both sides of the evaporator 2 and the condenser 3 in the length direction of the guide plate 8 (e.g., the M side and the N side in the MN direction in FIG. 5 ).
  • the two wind shields 12, the evaporator 2, and the condenser 3 together define an air duct 9.
  • the guide plate 8 is located at the top of the evaporator 2 and the condenser 3.
  • the ends of the two wind shields 12 close to the guide plate 8 are respectively connected to the two ends of the guide plate 8 in the length direction, and the other ends (such as the bottom ends) of the two wind shields 12 can be connected to the end plate of the evaporator 2 or the end plate of the condenser 3 by buckles or screws to increase the installation reliability of the two wind shields 12.
  • the evaporator 2 has two end plates, which are the first end plate P and the second end plate S in Figure 4.
  • the condenser 3 has two end plates, which are the third end plate Q and the fourth end plate R in Figure 4.
  • the length of the guide plate 8 (such as the second distance D2 in FIG. 5 ) is greater than the distance between the two end plates of the evaporator 2 (such as the first end plate P and the second end plate S in FIG. 4 ) or the two end plates of the condenser 3 (such as the third end plate Q and the fourth end plate R in FIG. 4 ).
  • the width of the guide plate 8 (such as the first distance D1 in FIG. 5 ) is substantially the same as the distance between the condenser 3 and the evaporator 2.
  • the height of the wind shield 12 is greater than the height of the condenser 3 and the evaporator 2, and the width of the wind shield 12 is substantially the same as the distance between the condenser 3 and the evaporator 2.
  • the thickness of the wind shield 12 and the thickness of the guide plate 8 meet the strength requirements respectively to avoid damage to the wind shield 12 due to falling.
  • the thickness of the windshield 12 is any value between 2.0 mm and 3.0 mm.
  • the thickness of the windshield 12 is 2.0 mm, 2.5 mm or 3.0 mm.
  • the dehumidifier 100 includes a guide plate 8 and two wind shields 12, the guide plate 8 is located at the top of the evaporator 2 and the condenser 3, and the two wind shields 12 are respectively located on both sides of the evaporator 2 and the condenser 3 in the length direction of the guide plate 8.
  • the present disclosure is not limited to this.
  • the dehumidifier 100 may also include one wind shield 12 and multiple guide plates 8.
  • the wind shield 12 is located at the top of the evaporator 2 and the condenser 3.
  • the plurality of guide plates 8 are respectively located on both sides of the evaporator 2 and the condenser 3 in the length direction of the guide plates 8.
  • the wind shield 12, the evaporator 2 and the condenser 3 together define an air duct 9, and the inlet of the air duct 9 is located on both sides of the evaporator 2 and the condenser 3 in the length direction of the guide plates 8.
  • the controller 7 can adjust the opening of the inlet of the air duct 9 by controlling the rotation angle of at least one of the plurality of guide plates 8, so that the second part of the indoor air flowing into the dehumidifier 100 through the air inlet can flow to the condenser 3 from both sides of the condenser 3 to adjust the air volume directly flowing to the condenser 3.
  • Fig. 7 is a structural diagram of an evaporator, a condenser, and a condenser according to some embodiments.
  • Fig. 8 is a structural diagram of a condenser according to some embodiments.
  • the dehumidifier 100 further includes a condenser 14.
  • the condenser 14 is disposed in the air duct 9.
  • the first part of the indoor air flowing through the evaporator 2 is heat exchanged with the second part of the indoor air entering from the entrance of the air duct 9 through the condenser 14 to achieve dehumidification of the second part of the indoor air.
  • the first part of the indoor air flowing into the housing 10 through the air inlet is converted into low-temperature air after the moisture is removed by the evaporator 2 and flows to the condenser 14.
  • the low-temperature air is heat exchanged with the second part of the indoor air flowing to the condenser 14 through the entrance of the air duct 9, so that the moisture in the second part of the indoor air is condensed into condensed water. After that, all the indoor air flowing into the housing 10 through the air inlet is heated by the condenser 3 and flows out from the air outlet 15.
  • the condenser 3 can further remove moisture from the air, increase the dehumidification amount of the dehumidifier 100, and thus improve the dehumidification efficiency of the dehumidifier 100.
  • the condenser 14 includes a frame and a plurality of condenser sheets 141.
  • the plurality of condenser sheets 141 are arranged in the frame, and the plurality of condenser sheets 141 are arranged at intervals along the thickness direction of the condenser sheets 141 (such as the EF direction in FIG8 ).
  • a plurality of through holes 1411 are provided on each of the plurality of condenser sheets 141.
  • the plurality of through holes 1411 are arranged at intervals along the length direction of the condenser sheets 141 (such as the MN direction in FIG8 ).
  • An extension portion 1412 is provided at the edge of each of the plurality of through holes 1411.
  • the extension portion 1412 extends toward one side in the thickness direction of the condenser sheet 141.
  • the plurality of extension portions 1412 of the plurality of condenser sheets 141 correspond to each other in the thickness direction of the condenser sheet 141, respectively, to form a plurality of channels respectively.
  • the plurality of channels are connected to the inlet of the air duct 9 so that the second part of the indoor air flows into the plurality of channels respectively. In this way, the first part of the indoor air flowing through the evaporator 2 can perform heat exchange with the second part of the indoor air in the plurality of channels when flowing through the plurality of condensation sheets 141 .
  • each condensation sheet 141 is arranged horizontally.
  • a plurality of condensation sheets 141 are arranged at intervals along the length direction of the condensation sheets 141. At this time, each condensation sheet 141 is arranged vertically.
  • the first part of the indoor air flowing through the evaporator 2 can exchange heat with the second part of the indoor air in the plurality of channels when flowing through the plurality of condensation sheets 141 to remove moisture from the second part of the indoor air.
  • FIG. 9 is a block diagram of a dehumidifier according to some embodiments.
  • the dehumidifier 100 further includes a first temperature sensor 5, a humidity sensor 6, and a controller 7.
  • the first temperature sensor 5 is configured to detect the current indoor ambient temperature.
  • the humidity sensor 6 is configured to detect the current indoor ambient humidity.
  • the first temperature sensor 5 can be arranged on the windward side of the evaporator 2, and the airflow flowing to the evaporator 2 through the air inlet can quickly flow through the first temperature sensor 5, so that the current indoor ambient temperature can be accurately detected.
  • the first temperature sensor 5 and the humidity sensor 6 are respectively connected to the controller 7 in communication so that the controller 7 obtains the current indoor ambient temperature and the current indoor ambient humidity.
  • the controller 7 includes a processor 71 and a memory 72.
  • the memory 72 is in communication connection with the processor 71.
  • the memory 72 is configured to store the opening of the inlet of the air duct 9 corresponding to the air volume flowing through the evaporator 2 under different refrigerants, different current indoor ambient temperatures, and different current indoor ambient humidities.
  • the processor 71 is configured to obtain the current indoor ambient temperature detected by the first temperature sensor 5 and the current indoor ambient humidity detected by the humidity sensor 6, and obtain the opening of the inlet of the air duct 9 corresponding to the current indoor ambient temperature and the current indoor ambient humidity from the memory 72 according to the obtained current indoor ambient temperature and the current indoor ambient humidity, and control the guide plate 8 to open the corresponding angle according to the obtained opening of the inlet of the air duct 9, thereby adjusting the air volume flowing through the air duct 9 and adjusting the dehumidification amount of the dehumidifier 100.
  • the processor 71 obtains the current indoor environment temperature and the current indoor environment humidity from the memory 72.
  • the opening of the inlet of the air duct 9 corresponding to the indoor ambient temperature and the current indoor ambient humidity, and the current value input to the motor 11 is determined according to the opening angle of the guide plate 8.
  • the processor 71 controls the current input to the motor 11 according to the determined current value, so that the motor 11 controls the guide plate 8 to rotate the corresponding angle, thereby adjusting the opening of the inlet of the air duct 9, thereby adjusting the air volume directly flowing to the condenser 3.
  • the controller 7 controls the guide plate 8 to open to an angle corresponding to the current indoor environment temperature and the current indoor environment humidity. Since an air duct 9 is provided between the evaporator 2 and the condenser 3, the first part of the indoor air flowing into the housing 10 through the air inlet flows to the condenser 3 through the evaporator 2, and the second part of the indoor air flows directly to the condenser 3 through the entrance of the air duct 9, and the condenser 3 heats the indoor air flowing through to remove moisture from the indoor air.
  • the dehumidification amount of the dehumidifier 100 can be adjusted according to the actual conditions of the indoor environment (such as the current indoor environment temperature and the current indoor environment humidity). For example, when the air volume passing through the evaporator 2 remains unchanged, when the guide plate 8 is changed from closed to open, the air volume flowing through the air duct 9 increases, thereby increasing the air volume entering from the air inlet of the dehumidifier 100, thereby increasing the dehumidification amount of the dehumidifier 100.
  • the controller 7 includes a central processing unit, a microprocessor, and an application specific integrated circuit (ASIC), and can be configured to perform corresponding operations described in the controller 7 when the processor executes a program stored in a non-temporary computer-readable medium coupled to the controller 7.
  • ASIC application specific integrated circuit
  • FIG. 10 is a flow chart of steps performed by a controller according to some embodiments.
  • the controller 7 is configured to perform steps 101 to 108 .
  • a target correction coefficient is determined according to the refrigerant type of the dehumidifier 100 .
  • the controller 7 Before the controller 7 controls the guide plate 8 to open a corresponding angle to adjust the air volume flowing through the air duct 9 according to the current indoor ambient temperature detected by the first temperature sensor 5 and the current indoor ambient humidity detected by the humidity sensor 6, the controller 7 is configured to determine a target correction coefficient according to the refrigerant type of the dehumidifier 100. Since different refrigerants have different heat exchange efficiencies, by determining the target correction coefficient, matching air volume adjustment can be performed for different refrigerants. In this way, when the dehumidifier 100 is dehumidifying, the air volume corresponding to different types of refrigerants can be determined, so that the air volume flowing to the evaporator 2 matches the refrigerant type.
  • step 102 the opening angle of the guide plate 8 is determined according to the current indoor ambient temperature detected by the first temperature sensor 5 and the current indoor ambient humidity detected by the humidity sensor 6 .
  • step 103 the guide plate 8 is controlled to rotate to a corresponding angle.
  • the controller 7 controls the motor 11 to drive the guide plate 8 to rotate a corresponding angle.
  • the controller 7 can control the opening angle of the guide plate 8 to decrease, so as to reduce the opening of the entrance of the air duct 9, thereby reducing energy consumption while meeting the current dehumidification demand; the higher the current indoor ambient humidity, the more moisture there is in the indoor air.
  • the controller 7 can control the opening angle of the guide plate 8 to increase, so as to increase the opening of the entrance of the air duct 9, thereby increasing the dehumidification capacity of the dehumidifier 100 and meeting the dehumidification demand.
  • step 104 it is determined whether the dehumidifier 100 enters the defrosting mode. If “yes”, step 105 is executed; if "no", step 102 is executed.
  • the dehumidifier 100 entering the defrost mode may refer to the dehumidifier 100 performing defrosting.
  • step 105 the guide plate 8 is controlled to rotate to close the inlet of the air duct 9 .
  • the controller 7 controls the motor 11 to drive the guide plate 8 to rotate a corresponding angle so that the opening of the inlet of the air duct 9 is 0.
  • the dehumidifier 100 When the dehumidifier 100 is in the defrost mode, by closing the entrance of the air duct 9, all the indoor air flowing into the dehumidifier 100 through the air inlet can flow to the condenser 3 through the evaporator 2, so that the dehumidifier 100 operates in the defrost mode, and the air volume passing through the evaporator 2 is large, thereby improving the effectiveness of defrosting and achieving rapid defrosting.
  • the controller 7 When the dehumidifier 100 does not enter the defrosting mode, the controller 7 performs dehumidification according to the actual indoor environment conditions. For example, the controller 7 controls the guide plate 8 to open to a corresponding angle to adjust the air volume flowing through the air duct 9 according to the current indoor environment temperature detected by the first temperature sensor 5 and the current indoor environment humidity detected by the humidity sensor 6.
  • step 106 it is determined whether the dehumidifier 100 exits the defrosting mode. If “yes”, step 107 is executed; if "no", step 105 is executed.
  • the controller 7 is further configured to determine whether the dehumidifier 100 exits the defrost mode.
  • the controller 7 continues to control the guide plate 8 to close the entrance of the air duct 9 .
  • step 107 it is determined whether the dehumidifier 100 enters the shutdown mode. If “yes”, step 108 is executed; if "no", the process returns to step 102.
  • the controller 7 controls the guide plate 8 to open a corresponding angle to adjust the air volume flowing through the air duct 9 according to the current indoor ambient temperature detected by the first temperature sensor 5 and the current indoor ambient humidity detected by the humidity sensor 6, thereby improving the dehumidification amount and dehumidification efficiency of the dehumidifier 100.
  • step 108 the guide plate 8 is controlled to rotate to close the inlet of the air duct 9 .
  • the initial position of the guide plate 8 can be the position of the guide plate 8 when the opening of the inlet of the air duct 9 is 0.
  • FIG. 11 is another flow chart of steps performed by a controller according to some embodiments.
  • the controller 7 determines the target correction coefficient according to the refrigerant type of the dehumidifier 100 (eg, step 101 ), as shown in FIG. 11 , the controller 7 is further configured to execute step 109 .
  • step 109 it is determined whether the compressor 1 has been running continuously for a first preset time. If yes, step 102 is executed; if no, step 109 is continued until the compressor 1 has been running continuously for the first preset time.
  • the controller 7 determines that the compressor 1 has been running continuously for the first preset time, it indicates that the working state of the dehumidifier 100 has stabilized and the dehumidifier 100 has been dehumidifying the room for a period of time. At this time, the controller 7 can determine the dehumidification situation of the dehumidifier 100 within the first preset time according to the current indoor ambient temperature and the current indoor ambient humidity, and then continue the dehumidification operation according to the actual situation of the indoor environment.
  • the controller 7 determines that the compressor has not been running continuously for the first preset time, it indicates that the running time of the dehumidifier 100 is short and the dehumidification effect is not obvious.
  • the current indoor environment temperature detected by the first temperature sensor 5 and the current indoor environment humidity detected by the humidity sensor 6 cannot accurately reflect the actual condition of the indoor environment. In this case, the dehumidifier 100 still needs to continue to run for a period of time.
  • FIG. 12 is yet another flow chart of steps performed by a controller according to some embodiments.
  • the controller 7 is further configured to execute steps 110 to 118 .
  • step 110 it is determined whether the current rotation speed of the fan 13 is the first rotation speed. If “yes”, step 111 is executed; if “no”, step 113 is executed.
  • a first opening angle of the guide plate 8 is determined according to the current indoor ambient temperature detected by the first temperature sensor 5 and the current indoor ambient humidity detected by the humidity sensor 6 .
  • step 112 the guide plate 8 is controlled to rotate to a first opening angle.
  • the controller 7 determines the first opening angle of the guide plate 8 according to the current indoor ambient temperature and the current indoor ambient humidity, and controls the motor 11 to drive the guide plate 8 to rotate to the first opening angle.
  • step 113 it is determined whether the current rotation speed of the fan 13 is the second rotation speed. If “yes”, step 114 is executed; if "no”, step 116 is executed.
  • step 114 the second opening angle of the guide plate 8 is determined according to the current indoor ambient temperature detected by the first temperature sensor 5 and the current indoor ambient humidity detected by the humidity sensor 6 .
  • step 115 the guide plate 8 is controlled to rotate to a second opening angle.
  • the controller 7 determines the second opening angle of the guide plate 8 according to the current indoor ambient temperature and the current indoor ambient humidity, and controls the motor 11 to drive the guide plate 8 to rotate to the second opening angle.
  • step 116 it is determined that the current rotation speed of the fan 13 is the third rotation speed.
  • a third opening angle of the guide plate 8 is determined according to the current indoor ambient temperature detected by the first temperature sensor 5 and the current indoor ambient humidity detected by the humidity sensor 6 .
  • step 118 the guide plate 8 is controlled to rotate to a third opening angle.
  • the controller 7 determines the third opening angle of the guide plate 8 according to the current indoor ambient temperature and the current indoor ambient humidity, and controls the motor 11 to drive the guide plate 8 to rotate to the third opening angle.
  • the first speed is greater than or equal to the second speed
  • the second speed is greater than or equal to the third speed.
  • the speed is set to be positively correlated with the opening angle, such as the first opening angle is greater than the second opening angle, and the second opening angle is greater than the third opening angle.
  • different rotation angles of the guide plate 8 are determined according to different speeds of the fan 13 to adjust the inlet of the air duct 9.
  • the opening degree can more accurately control the air volume flowing through the evaporator 2 and adjust the air volume directly flowing to the condenser 3, thereby adjusting the dehumidification amount of the dehumidifier 100 and improving the dehumidification efficiency of the dehumidifier 100.
  • the controller 7 executes the above steps 104 to 108 .
  • the guide plate 8 is arranged at the entrance of the air duct 9, and the controller 7 is configured to adjust the opening angle of the guide plate 8 according to the current indoor ambient temperature and the current indoor ambient humidity. In this way, the air volume flowing through the evaporator 2 can be adjusted according to the actual conditions of the indoor environment, so that more air can flow directly to the condenser 3, thereby improving the dehumidification capacity of the dehumidifier 100.
  • controller 7 controlling the guide plate 8 to rotate a corresponding angle according to the current indoor ambient temperature and the current indoor ambient humidity to adjust the air volume flowing through the air duct 9 as an example.
  • the controller 7 can also control the guide plate 8 to rotate a corresponding angle according to the refrigerant leakage rate to adjust the air volume flowing through the air duct 9.
  • the refrigerant leakage protection mode When the refrigerant leakage rate of the dehumidifier 100 exceeds 50%, the refrigerant leakage protection mode will be triggered. If the refrigerant leakage rate of the dehumidifier 100 is between 0 and 50%, the dehumidifier 100 will still operate normally. However, as the amount of refrigerant decreases, overheating problems will occur inside the evaporator 2. For example, when the refrigerant leakage rate is 0, the superheat of the evaporator 2 is -1°C to 2°C; when the refrigerant leakage rate is 30%, the superheat of the evaporator 2 is 13°C to 18°C. In addition, as the refrigerant leakage rate increases, the exhaust temperature of the compressor 1 will also increase.
  • the exhaust temperature of the compressor 1 corresponding to the refrigerant leakage rate of 30% increases by approximately 25°C.
  • the compressor 1 When the compressor 1 is in an operating state with a high exhaust temperature for a long time, it will affect the reliability of the compressor 1, thereby affecting the reliability of the dehumidifier 100.
  • the controller 7 controls the guide plate 8 to rotate a corresponding angle to adjust the air volume flowing through the air duct 9, which can reduce the superheat of the evaporator 2 and further reduce the exhaust temperature of the compressor 1, thereby improving the reliability of the dehumidifier 100 in the refrigerant leakage state.
  • FIG. 13 is a block diagram of another dehumidifier according to some embodiments.
  • the dehumidifier 100 further includes a second temperature sensor 16 and a third temperature sensor 17.
  • the second temperature sensor 16 is configured to detect the exhaust temperature of the compressor 1.
  • the third temperature sensor 17 is configured to detect the temperature of the coil 18 (as shown in FIG7 ).
  • the coil 18 is the coil of the evaporator 2.
  • the second temperature sensor 16 and the third temperature sensor 17 are respectively connected to the controller 7 for communication so that the controller 7 obtains the exhaust temperature of the compressor 1 and the temperature of the coil 18.
  • the third temperature sensor 17 may be provided on the evaporator 2 so that the third temperature sensor 17 can accurately detect the temperature of the coil 18.
  • the memory 72 is further configured to store the rotation angle of the guide plate 8 under different refrigerant leakage rates.
  • the processor 71 is further configured to obtain the refrigerant leakage rate in the dehumidifier 100, and retrieve the corresponding rotation angle of the guide plate 8 from the memory 72 according to the obtained refrigerant leakage rate, and adjust the motor 11 according to the rotation angle so that the guide plate 8 is adjusted to the rotation angle, thereby adjusting the air volume flowing through the air duct 9.
  • FIG. 14 is yet another flow chart of steps performed by a controller according to some embodiments.
  • the controller 7 is further configured to execute steps 201 to 206 .
  • a refrigerant leakage rate is determined based on the refrigerant outflow rate from the compressor 1 and the refrigerant return flow rate flowing back to the compressor 1 .
  • the controller 7 can determine the refrigerant leakage rate when the dehumidifier 100 is running at a certain moment through step 201.
  • the refrigerant leakage rate can refer to the difference between the refrigerant outflow flow rate from the compressor 1 and the refrigerant return flow rate flowing back to the compressor 1, and the ratio of the refrigerant outflow flow rate from the compressor 1.
  • step 202 it is determined whether the refrigerant leakage rate is greater than or equal to a preset leakage rate threshold. If “yes”, step 203 is executed; if "no”, step 204 is executed.
  • the preset leakage rate threshold may be 50%.
  • step 203 the guide plate 8 is controlled to rotate to close the inlet of the air duct 9, and the dehumidifier 100 is controlled to enter the refrigerant leakage protection mode.
  • the controller 7 controls the inlet of the air duct 9 to be closed, and controls the dehumidifier 100 to enter the refrigerant leakage protection mode. After the dehumidifier 100 enters the refrigerant leakage protection mode, the controller 7 controls the operating frequency of the compressor 1 to decrease.
  • step 204 the guide plate 8 is controlled to rotate to a corresponding angle according to the refrigerant leakage rate.
  • the processor 71 obtains the refrigerant leakage rate of the dehumidifier 100, retrieves the rotation angle of the guide plate 8 corresponding to the corresponding refrigerant leakage rate from the memory 72, and adjusts the motor 11 according to the rotation angle so that the guide plate 8 is adjusted to the rotation angle, thereby adjusting the air volume flowing through the air duct 9.
  • the first part of the indoor air flowing into the housing 10 through the air inlet flows to the condenser 3 through the evaporator 2, and the second part of the indoor air flows directly to the condenser 3 through the inlet of the air duct 9.
  • the condenser 3 can heat the air to remove moisture from the air, thereby achieving the dehumidification effect of the dehumidifier 100.
  • the air volume flowing to the evaporator 2 can be adjusted to reduce the superheat of the evaporator 2, thereby reducing the exhaust temperature of the compressor 1, and improving the reliability of the operation of the dehumidifier 100 in the state of refrigerant leakage.
  • the controller 7 controls the guide plate 8 to rotate to close the entrance of the air duct 9, and controls the dehumidifier 100 to enter the refrigerant leakage protection mode (execute step 203).
  • the controller 7 can also control the guide plate 8 to rotate to the corresponding angle according to the refrigerant leakage rate (execute step 204).
  • step 205 it is determined whether the exhaust temperature of the compressor 1 is greater than or equal to a third preset temperature threshold. If “yes”, step 206 is executed; if "no", the process returns to step 201.
  • the third preset temperature threshold is pre-stored in the controller 7. By comparing the exhaust temperature of the compressor 1 with the third preset temperature threshold, it can be determined whether the exhaust temperature of the compressor 1 rises when the dehumidifier 100 operates in a refrigerant leakage state.
  • step 206 the dehumidifier 100 is controlled to start the overheat protection mode of the compressor 1 .
  • the exhaust temperature of the compressor 1 When the exhaust temperature of the compressor 1 is greater than or equal to the third preset temperature threshold, it indicates that when the dehumidifier 100 is running in a refrigerant leakage state, the exhaust temperature of the compressor 1 rises. In other words, the superheat of the evaporator 2 increases, the refrigerant leakage rate increases, and the reliability of the compressor 1 is affected. By starting the overheat protection mode of the compressor 1, the compressor 1 can be protected to avoid damage to the compressor 1.
  • the exhaust temperature of the compressor 1 When the exhaust temperature of the compressor 1 is less than the third preset temperature threshold, it indicates that when the dehumidifier 100 is running in a refrigerant leakage state, the exhaust temperature of the compressor 1 may be less than or equal to the exhaust temperature detected by the second temperature sensor 16 last time, so that the refrigerant leakage rate does not increase with the increase in the running time of the dehumidifier 100.
  • the controller 7 needs to continuously detect the refrigerant leakage rate and determine whether the refrigerant leakage rate reaches the preset leakage rate threshold, so that when the refrigerant leakage rate is greater than the preset leakage rate threshold, the dehumidifier 100 can enter the refrigerant leakage protection mode in time, or the compressor 1 can enter the overheating protection mode in time to avoid damage to the compressor 1.
  • the above text uses the example of the exhaust temperature of compressor 1 being equal to the third preset temperature threshold, and the controller 7 controlling the dehumidifier 100 to start the overheat protection mode of compressor 1 (executing step 206) for explanation.
  • the controller 7 can also determine the refrigerant leakage rate based on the refrigerant outflow rate flowing out of compressor 1 and the refrigerant return flow rate flowing back to compressor 1 (executing step 201).
  • FIG. 15 is yet another flow chart of steps performed by a controller according to some embodiments.
  • the controller 7 is further configured to execute steps 207 and 208 .
  • step 207 it is determined whether the exhaust temperature of the compressor 1 is greater than or equal to a third preset temperature threshold. If “yes”, step 208 is executed; if "no", the process returns to step 201.
  • the controller 7 After controlling the dehumidifier 100 to start the overheat protection mode of the compressor 1, the controller 7 re-determines whether the exhaust temperature of the compressor 1 reaches the third preset temperature threshold.
  • step 208 the dehumidifier 100 is controlled to sound an alarm.
  • the controller 7 can determine whether the exhaust temperature of the compressor 1 changes when the compressor 1 is running after entering the overheat protection program by judging whether the exhaust temperature of the compressor 1 is greater than or equal to the third preset temperature threshold. When the exhaust temperature of the compressor 1 rises to the third preset temperature threshold, it indicates that the refrigerant leakage rate of the compressor 1 increases. At this time, the controller 7 controls the dehumidifier 100 to alarm to remind the user to shut down the dehumidifier 100 in time and to inspect the dehumidifier 100.
  • the controller 7 needs to detect the refrigerant leakage rate so that when the refrigerant leakage rate is greater than the preset leakage rate threshold, the dehumidifier 100 can enter the refrigerant leakage protection mode in time.
  • the dehumidifier 100 can be made to dehumidify in the refrigerant leakage state, and the refrigerant leakage rate can also be monitored so that the dehumidifier 100 can enter the refrigerant leakage protection mode in time or the compressor 1 can enter the overheating protection mode.
  • controller 7 determines whether the exhaust temperature of the compressor 1 is greater than Or equal to the third preset temperature threshold (execute step 208) for explanation.
  • controller 7 can also determine the refrigerant leakage rate (execute step 201) according to the refrigerant outflow rate flowing out of compressor 1 and the refrigerant return flow rate flowing back to compressor 1.
  • FIG. 16 is yet another flow chart of steps performed by a controller according to some embodiments.
  • the controller 7 before the controller 7 determines whether the exhaust temperature of the compressor 1 reaches the third preset temperature threshold (eg, step 205 ), the controller 7 is further configured to execute step 209 .
  • step 209 it is determined whether the compressor 1 has been running continuously for a second preset time period. If yes, step 205 is executed; if no, step 209 is continued.
  • the exhaust temperature of the compressor 1 will change only after the compressor 1 has been running continuously for a period of time.
  • the controller 7 can determine whether the exhaust temperature of the compressor 1 rises after the compressor 1 has been running continuously for the second preset time, so that the controller 7 can execute steps 205 to 208 according to the exhaust temperature of the compressor 1, thereby improving the accuracy of the judgment.
  • FIG. 17 is yet another flow chart of steps performed by a controller according to some embodiments.
  • the controller 7 before determining whether the refrigerant leakage rate reaches a preset leakage rate threshold (eg, step 210 ), the controller 7 is further configured to execute step 210 .
  • step 210 it is determined whether the compressor 1 has been running continuously for a fourth preset time period. If yes, step 201 is executed; if no, step 210 is continued.
  • the dehumidifier 100 After the dehumidifier 100 is turned on and runs for a period of time (e.g., the fourth preset time length), the dehumidifier 100 runs relatively stably. At this time, the controller 7 determines the refrigerant leakage rate more accurately, which is convenient for the controller 7 to perform subsequent steps, so that the operating state of the dehumidifier 100 can be accurately determined.
  • the fourth preset time length is any value between 20 minutes and 40 minutes.
  • the fourth preset time length is 20 minutes, 30 minutes, or 40 minutes.
  • FIG. 18 is yet another flow chart of steps performed by a controller according to some embodiments.
  • the controller 7 is further configured to execute steps 211 to 213 .
  • step 211 it is determined whether the dehumidifier 100 exits the refrigerant leakage protection mode. If “yes”, step 212 is executed; if "no”, step 211 is continued.
  • step 212 it is determined whether the dehumidifier 100 enters the shutdown mode. If “yes”, step 213 is executed; if "no", step 201 is executed.
  • step 213 the guide plate 8 is controlled to rotate to close the inlet of the air duct 9 .
  • the dehumidifier 100 When the dehumidifier 100 exits the refrigerant leakage protection mode and enters the shutdown mode, the refrigerant leakage rate of the dehumidifier 100 is high and the dehumidifier 100 cannot operate normally. Turning off the dehumidifier 100 can protect the dehumidifier 100 to prevent the dehumidifier 100 from continuing to run and causing damage to the compressor 1.
  • the dehumidifier 100 When the dehumidifier 100 exits the refrigerant leakage protection mode and does not enter the shutdown mode, it indicates that the detected refrigerant leakage rate is greater than the preset leakage rate threshold and may be inaccurate, or fails to trigger the shutdown procedure of the dehumidifier 100. Therefore, it is necessary to re-compare the refrigerant leakage rate and the preset temperature threshold in order to accurately determine the refrigerant leakage rate in the dehumidifier 100.
  • FIG. 19 is yet another flow chart of steps performed by a controller according to some embodiments.
  • step 204 includes steps 2041 to 2047 .
  • step 2041 it is determined whether the current rotation speed of the fan 13 is the first rotation speed. If “yes”, step 2042 is executed; if "no”, step 2043 is executed.
  • a fourth opening angle of the guide plate 8 is determined according to the refrigerant leakage rate.
  • step 2043 it is determined whether the current rotation speed of the fan 13 is the second rotation speed. If “yes”, step 2044 is executed; if "no”, step 2045 is executed.
  • step 2044 the fifth opening angle of the guide plate 8 is determined according to the refrigerant leakage rate.
  • step 2045 it is determined that the current rotation speed of the fan 13 is the third rotation speed.
  • step 2046 the sixth opening angle of the guide plate 8 is determined according to the refrigerant leakage rate.
  • step 2047 the guide plate 8 is controlled to rotate to a corresponding angle.
  • step 2042 After step 2042 , step 2044 , and step 2046 , the controller 7 executes step 2047 .
  • the rotation angle of the guide plate 8 can be determined according to the speed of the fan 13, so that the fan 13 can be adjusted at different speeds.
  • the air volume directed to the air duct 9 is rectified, the control accuracy is improved, and the operating reliability of the dehumidifier 100 in the refrigerant leakage state is improved.
  • the fourth opening angle, the fifth opening angle and the sixth opening angle may be equal or unequal.
  • the size of the rotation speed is positively correlated with the size of the opening angle, such as the fourth opening angle is greater than the fifth opening angle, and the fifth opening angle is greater than the sixth opening angle.
  • the need for rapid defrosting can be met.
  • FIG. 20 is yet another flow chart of steps performed by a controller according to some embodiments.
  • the controller 7 is further configured to execute steps 214 to 218 .
  • step 214 a first temperature difference is obtained based on the temperature of the coil 18 detected by the third temperature sensor 17 at the first moment and the indoor environment temperature detected by the first temperature sensor 5 at the first moment.
  • the first temperature difference is the difference between the indoor ambient temperature at the first moment and the temperature of the coil 18 at the first moment.
  • step 215 it is determined whether the compressor 1 has been running continuously for a third preset time period. If yes, step 216 is executed; if no, step 215 is continued.
  • the controller 7 continues to determine whether the compressor 1 has been running continuously for the third preset time period.
  • step 216 a second temperature difference is obtained based on the temperature of the coil 18 at the second moment detected by the third temperature sensor 17 and the indoor environment temperature at the second moment detected by the first temperature sensor 5.
  • the second temperature difference is the difference between the indoor ambient temperature at the second moment and the temperature of the coil 18 at the second moment.
  • the refrigerant leakage rate is different, and the superheat of the evaporator 2 is also different.
  • step 217 it is determined whether the absolute value of the difference between the first temperature difference and the second temperature difference is less than or equal to a preset temperature difference threshold. If “yes”, step 201 is executed; if “no”, step 218 is executed.
  • step 218 the guide plate 8 is controlled to rotate to close the inlet of the air duct 9 .
  • the controller 7 can determine whether the refrigerant leakage rate reaches the preset leakage rate threshold.
  • the controller 7 controls the guide plate 8 to rotate to close the entrance of the air duct 9, thereby reducing the amount of air flowing to the condenser 3, so that the air flowing to the condenser 3 is heated to dry air as much as possible, thereby improving the dehumidification effect of the dehumidifier 100.
  • the preset temperature difference threshold is related to the refrigerant type.
  • the preset temperature difference threshold is any value between 10°C and 15°C, for example, the preset temperature difference threshold is 10°C, 12°C or 15°C.
  • the preset temperature difference threshold is any value between 5°C and 10°C (target range).
  • the preset temperature difference threshold is 5°C, 8°C or 10°C.
  • the guide plate 8 is disposed at the entrance of the air duct 9, and the controller 7 is further configured to control the rotation angle of the auxiliary guide plate 8 according to the refrigerant leakage rate.
  • the above mainly describes the controller 7 controlling the guide plate 8 to rotate to a corresponding angle according to the refrigerant leakage rate to adjust the air volume flowing through the air duct 9 as an example.
  • the controller 7 can also control the guide plate 8 to rotate to a corresponding angle according to the ratio (air volume ratio) of the first part of the indoor air flowing to the condenser 3 through the evaporator 2 and the second part of the indoor air flowing directly to the condenser 3 through the inlet of the air duct 9 to adjust the air volume flowing through the air duct 9.
  • the condenser is a sheet structure, and the water tank space of the condenser is relatively narrow. Under low temperature conditions, the condenser is prone to ice blockage. Directly thawing the condenser will cause abnormal expansion of the low-temperature water inside the condenser, which will cause the condenser sheet to burst and reduce the service life of the dehumidifier.
  • the air volume ratio is determined or the guide plate 8 is closed according to the relationship between the current indoor ambient temperature and the first preset temperature threshold, and the temperature of the coil 18 and the second preset temperature threshold, and the guide plate 8 is controlled to rotate to a corresponding angle according to the air volume ratio to adjust the air volume flowing through the air duct 9.
  • the air volume flowing through the air duct 9 can be adjusted to improve the dehumidification capacity of the dehumidifier 100 and the dehumidification efficiency. Efficiency and ice blockage of the auxiliary condenser can be avoided, thereby extending the service life of the dehumidifier.
  • the memory 72 is further configured to store the air volume ratios corresponding to different refrigerants at different current indoor ambient temperatures and different temperatures of the coil 18, and the opening angles of the guide plates 8 corresponding to the air volume ratios.
  • the processor 71 is further configured to obtain data detected by the first temperature sensor 5 and the third temperature sensor 17, determine the air volume ratio according to the obtained current indoor ambient temperature and the temperature of the coil 18, retrieve the opening angle of the guide plates 8 corresponding to the air volume ratio from the memory 72, and control the guide plates 8 to open at the corresponding angle.
  • the air volume ratio is the ratio of the first part of the indoor air flowing through the evaporator 2 to the second part of the indoor air flowing directly to the condenser 3 through the inlet of the air duct 9.
  • 21 is yet another flow chart of steps performed by a controller according to some embodiments.
  • the controller 7 is further configured to execute steps 301 to 304 .
  • step 301 the relationship between the current indoor ambient temperature and the first preset temperature threshold, and the relationship between the temperature of the coil 18 and the second preset temperature threshold are determined.
  • step 302 if the current indoor ambient temperature is less than or equal to the first preset temperature threshold, and the temperature of the coil 18 is less than or equal to the second preset temperature threshold, the guide plate 8 is controlled to rotate to close the inlet of the air duct 9 .
  • the controller 7 controls the motor 11 to drive the guide plate 8 to rotate to close the entrance of the air duct 9, so that the air in the dehumidifier 100 can flow to the condenser 3 through the evaporator 2 and the condenser 14 in sequence, avoiding the indoor air from flowing directly to the condenser 14, thereby avoiding ice blockage inside the condenser 14 and extending the service life of the dehumidifier 100.
  • step 303 if the current indoor ambient temperature is greater than the first preset temperature threshold and the temperature of the coil 18 is greater than the second preset temperature threshold, the air volume ratio corresponding to the first portion of indoor air and the second portion of indoor air is determined according to the temperature of the coil 18 .
  • the controller 7 determines the air volume ratio corresponding to the first part of the indoor air and the second part of the indoor air according to the temperature of the coil 18, and adjusts the opening angle of the guide plate 8 according to the determined air volume ratio, and increases the air volume flowing to the condenser 14, so as to maintain the balance between the air volume flowing through the evaporator 2 and the temperature of the coil 18, so as to cool the air flowing through the evaporator 2 into low-temperature saturated humid air.
  • the condenser 14 can directly remove moisture from the air, thereby increasing the dehumidification capacity of the dehumidifier 100 and improving the dehumidification effect of the dehumidifier 100.
  • step 304 the guide plate 8 is controlled to rotate to a corresponding angle according to the air volume ratio.
  • 22 is yet another flow chart of steps performed by a controller according to some embodiments.
  • step 304 also includes step 3041 and step 3042 .
  • step 3041 based on the wind volume ratio, the angle of the guide plate 8 corresponding to the wind volume ratio is determined as the target angle.
  • step 3042 the guide plate 8 is controlled to rotate to a target angle.
  • the input signal of the motor 11 is the current value corresponding to the opening angle of the guide plate 8 under different air volume ratios.
  • the motor 11 can drive the guide plate 8 to open, and the opening angle of the guide plate 8 is the opening angle of the guide plate 8 corresponding to the air volume ratio.
  • the entrance of the air duct 9 can be quickly opened, the amount of air flowing into the air duct 9 can be adjusted, and the dehumidification effect of the dehumidifier 100 can be adjusted.
  • FIG. 23 is yet another flow chart of steps performed by a controller according to some embodiments.
  • the controller 7 after controlling the guide plate 8 to rotate a corresponding angle according to the air volume ratio (e.g., step 304), or controlling the guide plate 8 to rotate to close the entrance of the air duct 9 (e.g., step 302), the controller 7 is also configured to execute steps 305 and 306.
  • step 305 it is determined whether the dehumidifier 100 has entered the refrigerant leakage protection mode. If “yes”, step 306 is executed; if “no”, the process returns to step 301 .
  • the controller 7 determines whether the dehumidifier 100 enters the refrigerant leakage protection mode. In this way, it can be determined whether there is a refrigerant leakage in the dehumidifier 100.
  • the method for determining whether the dehumidifier 100 enters the refrigerant leakage protection mode can be referred to the relevant description above, which will not be repeated here.
  • step 306 the guide plate 8 is controlled to rotate to close the inlet of the air duct 9 .
  • the controller 7 controls the motor 11 to drive the guide plate 8 to rotate to close the entrance of the air duct 9.
  • refrigerant leakage occurs in the dehumidifier 100.
  • the refrigerant flowing to the evaporator 2 can be increased. In this way, all the indoor air flowing into the dehumidifier 100 can flow to the condenser 3 through the evaporator 2 and the condenser 14, so that the refrigerant gas inside the dehumidifier 100 can be blown away as quickly as possible.
  • the dehumidifier 100 does not enter the refrigerant leakage protection mode, it indicates that the dehumidifier 100 does not have a refrigerant leakage and the dehumidifier 100 can perform a dehumidification operation normally, and the process returns to step 301 .
  • the controller 7 is further configured to execute steps 307 to 309 .
  • step 307 it is determined whether the dehumidifier 100 exits the refrigerant leakage protection mode. If “yes”, step 308 is executed; if "no”, the process returns to step 301.
  • the controller 7 After controlling the motor 11 to drive the guide plate 8 to rotate so as to close the inlet of the air duct 9, the controller 7 determines whether the dehumidifier 100 exits the refrigerant leakage protection mode.
  • step 308 it is determined whether the dehumidifier 100 enters the defrosting mode. If “yes”, step 309 is executed; if "no", the process returns to step 301.
  • step 309 the guide plate 8 is controlled to rotate to close the inlet of the air duct 9 .
  • the controller 7 controls the motor 11 to drive the guide plate 8 to rotate to close the entrance of the air duct 9.
  • the control between the refrigerant leakage protection mode and the defrost mode of the dehumidifier 100 can be achieved, so that the air volume flowing to the evaporator 2 of the dehumidifier 100 in the defrost mode is larger, and the defrost time can be shortened, thereby improving the reliability of the defrost mode.
  • the dehumidifier 100 If the dehumidifier 100 does not enter the defrost mode, it indicates that the condenser 14 is not blocked by ice and the dehumidifier 100 can perform the dehumidification operation normally. Then, the process returns to step 301 to determine the opening angle of the guide plate 8 and increase the dehumidification capacity of the dehumidifier 100.
  • 25 is yet another flow chart of steps performed by a controller according to some embodiments.
  • the controller 7 is further configured to execute steps 310 to 312 .
  • step 310 it is determined whether the dehumidifier 100 exits the defrosting mode. If “yes”, step 311 is executed; if “no”, the process returns to step 309 .
  • the controller 7 continues to control the guide plate 8 to close the entrance of the air duct 9 .
  • step 311 it is determined whether the dehumidifier 100 enters the shutdown mode. If “yes”, step 312 is executed; if "no", the process returns to step 301.
  • step 312 the guide plate 8 is controlled to rotate to close the inlet of the air duct 9 .
  • the controller 7 controls the motor 11 to drive the guide plate 8 to rotate to close the entrance of the air duct 9. At this time, the dehumidifier 100 has completed defrosting, and closing the entrance of the air duct 9 is convenient for the next operation of the dehumidifier 100. In this way, when the dehumidifier 100 adjusts the air volume next time, the guide plate 8 can be opened to a corresponding angle according to the air volume ratio to avoid the actual opening angle of the guide plate 8 not being consistent with the expected opening angle.
  • the dehumidifier 100 When the dehumidifier 100 exits the defrost mode and does not enter the shutdown mode, it indicates that the detected temperature of the coil 18 may be inaccurate, or the shutdown procedure of the dehumidifier 100 is not triggered. Therefore, it is necessary to re-detect the current indoor ambient temperature and the temperature of the coil 18 so as to accurately determine the operating state of the dehumidifier 100, so that the dehumidifier 100 can be operated correctly and avoid damage to the dehumidifier 100.
  • 26 is yet another flow chart of steps performed by a controller according to some embodiments.
  • the controller 7 is further configured to execute step 313 .
  • step 313 it is determined whether the compressor 1 has been running continuously for the target preset time. If yes, step 301 is executed; if no, step 313 is continued.
  • the temperature of the coil 18 and the current indoor ambient temperature are detected. At this time, the temperature of the coil 18 is relatively stable, which can increase the accuracy of the detected data.
  • 27 is yet another flow chart of steps performed by a controller according to some embodiments.
  • step 303 includes steps 3031 to 3036 .
  • step 3031 it is determined whether the current rotation speed of the fan 13 is the first rotation speed. If “yes”, step 3032 is executed; if "no”, step 3033 is executed.
  • step 3032 the air volume ratio corresponding to the temperature of the coil 18 at the first rotation speed is determined.
  • step 3033 it is determined whether the current speed of the fan 13 is the second speed. If yes, step 3034 is executed; if “No”, execute step 3035.
  • step 3034 the air volume ratio corresponding to the temperature of the coil 18 at the second rotation speed is determined.
  • step 3035 it is determined that the current rotation speed of the fan 13 is the third rotation speed.
  • step 3036 the air volume ratio corresponding to the temperature of the coil 18 at the third rotation speed is determined.
  • the speed of the fan 13 can be linked to the rotation angle of the guide plate 8, so that the amount of air flowing to the evaporator 2 is better at different speeds of the fan 13, thereby improving the dehumidification efficiency of the dehumidifier 100.
  • a condenser 14 is provided in the air duct 9, a rotatable guide plate 8 is provided at the entrance of the air duct 9, and the controller 7 is further configured to determine the air volume ratio and the opening angle of the guide plate 8 corresponding to the air volume ratio according to the current indoor ambient temperature and the temperature of the coil 18. In this way, the dehumidification capacity and dehumidification efficiency of the dehumidifier can be improved, and ice blockage of the auxiliary condenser can be avoided, thereby extending the service life of the dehumidifier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Drying Of Gases (AREA)

Abstract

一种除湿机(100),除湿机(100)包括壳体(10)、压缩机(1)、蒸发器(2)、冷凝器(3)、节流装置(4)、风道(9)、导流板(8)、凝液器(14)和控制器(7)。导流板(8)被配置为调节风道(9)的入口的开度。控制器(7)被配置为:若当前室内环境温度小于或等于第一预设温度阈值,且蒸发器(2)的盘管的温度小于或等于第二预设温度阈值,控制导流板(8)转动以关闭风道(9)的入口;若室内环境温度大于第一预设温度阈值,且蒸发器(2)的盘管的温度大于第二预设温度阈值,根据蒸发器(2)的盘管的温度确定风量比,并根据风量比,控制导流板打开至对应角度。

Description

除湿机
本申请要求于2022年10月31日提交的、申请号为202211349626.4的中国专利申请的优先权、于2022年10月31日提交的、申请号为202211347759.8的中国专利申请的优先权、于2022年10月31日提交的、申请号为202211347750.7的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及空气调节技术领域,尤其涉及一种除湿机。
背景技术
随着科技的进步与人们生活水平的提高,除湿机逐渐走进了人们的生活中,成为了人们工作和生活中常用的用品。通常,在潮湿空气进入除湿机后,除湿机通过换热器与潮湿空气进行热交换,使空气中的水分冷凝成冷凝水以干燥空气。空气在干燥后排出除湿机,从而实现除湿效果。
发明内容
提供一种除湿机。所述除湿机包括壳体、压缩机、蒸发器、冷凝器、节流装置、风道、导流板、凝液器和控制器。所述压缩机、所述蒸发器、所述冷凝器、和所述节流装置设置在所述壳体内,且依次连接以形成冷媒循环回路。所述蒸发器和所述冷凝器间隔设置,以在所述蒸发器和所述冷凝器之间限定出所述风道。所述导流板可转动地设在所述风道的入口处,且被配置为调节所述风道的所述入口的开度。所述凝液器设在所述风道内,且被配置为对流经的空气进行热交换,进入所述除湿机内的室内空气中的第一部分在依次流经所述蒸发器、所述凝液器和所述冷凝器后从所述除湿机内流出,进入所述除湿机内的室内空气中的第二部分在依次经过所述风道、所述凝液器和所述冷凝器后从所述除湿机流出。所述控制器被配置为:若当前室内环境温度小于或等于第一预设温度阈值,且所述蒸发器的盘管的温度小于或等于第二预设温度阈值,控制所述导流板转动以关闭所述风道的所述入口;若所述室内环境温度大于所述第一预设温度阈值,且所述蒸发器的所述盘管的温度大于所述第二预设温度阈值,根据所述蒸发器的所述盘管的温度确定风量比,并根据所述风量比,控制所述导流板打开至对应角度。所述风量比为流经所述蒸发器的第一部分室内空气与经所述风道的所述入口直接流向所述冷凝器的第二部分室内空气的比例。
附图说明
图1为根据一些实施例的除湿机的一种结构图;
图2为根据一些实施例的除湿机的另一种结构图;
图3为根据一些实施例的除湿机的又一种结构图;
图4为图3中圈A的局部放大图;
图5为根据一些实施例的导流板、电机以及挡风板的示意图;
图6为图5中圈B的局部放大图;
图7为根据一些实施例的蒸发器、凝液器和冷凝器的结构图;
图8为根据一些实施例的凝液器的结构图;
图9为根据一些实施例的除湿机的框图;
图10为根据一些实施例的控制器执行步骤的一种流程图;
图11为根据一些实施例的控制器执行步骤的另一种流程图;
图12为根据一些实施例的控制器执行步骤的又一种流程图;
图13为根据一些实施例的另一种除湿机的框图;
图14为根据一些实施例的控制器执行步骤的又一种流程图;
图15为根据一些实施例的控制器执行步骤的又一种流程图;
图16为根据一些实施例的控制器执行步骤的又一种流程图;
图17为根据一些实施例的控制器执行步骤的又一种流程图;
图18为根据一些实施例的控制器执行步骤的又一种流程图;
图19为根据一些实施例的控制器执行步骤的又一种流程图;
图20为根据一些实施例的控制器执行步骤的又一种流程图;
图21为根据一些实施例的控制器执行步骤的又一种流程图;
图22为根据一些实施例的控制器执行步骤的又一种流程图;
图23为根据一些实施例的控制器执行步骤的又一种流程图;
图24为根据一些实施例的控制器执行步骤的又一种流程图;
图25为根据一些实施例的控制器执行步骤的又一种流程图;
图26为根据一些实施例的控制器执行步骤的又一种流程图;
图27为根据一些实施例的控制器执行步骤的又一种流程图。
具体实施方式
下面将结合附图,对本公开一些实施例进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。这里所公开的实施例并不必然限制于本文内容。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
通常,除湿机的风机采用定速电机,当定速电机以固定转速运行时,由于不同室内热湿环境下流经蒸发器的风量大致相同,除湿机无法控制除湿量。当空气中的水分较多时,由于流经蒸发器的风量有限,且蒸发器对空气的处理能力有限,因此,除湿机的除湿效率无法满足需求。在一些方案中,可以通过增加额外的辅风道(如,与流经蒸发器的风道不同的风道)和对应的部件(如凝液器),以提高除湿机的除湿量。然而,在空气中的水分较小的情况下,额外的辅风道结构又会导致除湿机的除湿量过剩,除湿机能耗过大。
为了解决上述问题,本公开一些实施例提供了一种除湿机100。
图1为根据一些实施例的除湿机的一种结构图。
在一些实施例中,如图1所示,除湿机100包括壳体10、出风口15和进风口。所述进风口设于壳体10的至少一侧上。
图2为根据一些实施例的除湿机的另一种结构图。
如图2所示,除湿机100还包括压缩机1、蒸发器2、冷凝器3以及节流装置4。依序连接的压缩机1、冷凝器3、节流装置4和蒸发器2形成冷媒回路。冷媒在该冷媒回路中循环流动,并通过蒸发器2与冷凝器3分别与空气进行换热,从而调节周围环境的湿度和温度。
压缩机1被配置为压缩冷媒以使低压冷媒受压缩形成高压冷媒。压缩机1排出的冷媒流入冷凝器3。
冷凝器3设于壳体10内,且位于蒸发器2的远离所述进风口的一侧。冷凝器3被配置为将周围空气与在冷凝器3中传输的冷媒进行热交换。压缩机1压缩的冷媒通过冷凝器3将热量散发至周围空气而冷凝,冷凝后的冷媒从冷凝器3排出至节流装置4。
节流装置4连接于冷凝器3与蒸发器2之间,由节流装置4的开度大小调节流经冷凝器3与蒸发器2的冷媒压力,以调节流通于冷凝器3与蒸发器2之间的冷媒流量。流通于冷凝器3与蒸发器2之间的冷媒的流量和压力将影响冷凝器3与蒸发器2的换热性能。节流装置4的开度是可调节的,以控制流经节流装置4的冷媒的流量和压力。例如,节流装置4使在冷凝器3中冷凝的液态冷媒膨胀为低压的液态冷媒,该低压的液态冷媒从节流装置4排出至蒸发器2。
蒸发器2设于壳体10内,且靠近所述进风口。蒸发器2被配置为将周围空气与在蒸发器2中传输的冷媒进行热交换。由冷凝器3散热后的冷媒通过蒸发器2吸收周围空气的热量而蒸发,蒸发后的冷媒流回压缩机1,从而完成冷媒的循环流动。
除湿机100包括制冷循环系统。制冷系统循环主要包括:制冷剂进入压缩机1中被压缩成高温高压的制冷剂蒸汽,之后,高温高压的制冷剂蒸汽在冷凝器3中冷凝放热成为高温高压的制冷剂液体,高温高压的制冷剂液体经由节流装置4发生绝热节流后成为低温低压的制冷剂液体(或制冷剂液体和制冷剂蒸汽),最后,低温低压的制冷剂液体进入蒸发器2中蒸发吸热成为低温低压的制冷剂蒸汽后流回压缩机1,如此循环往复。
蒸发器2和冷凝器3沿除湿机100中的空气的流动方向依次排布。除湿机100的空气除湿过程主要包括:风机13(如图3所示)将室内空气经由进风口抽进壳体10内,室内空气经过蒸发器2被冷却除湿成为低温饱和湿空气,之后,低温饱和湿空气经由冷凝器被加热降湿成为干燥中温气体后,再排入室内环境中。
在冷媒循环的过程中,室内空气可被吸入除湿机100内,并依次经过蒸发器2和冷凝器3。当吸入的室内空气经过蒸发器2时,室内空气中的水分在蒸发器2的表面凝结成冷凝水。干燥后的室内空气与冷凝器3进行热交换,冷凝器3加热室内空气以进一步干燥室内空气。室内空气经过冷凝器3后从除湿机100内排出,从而实现对室内空气的除湿。
图3为根据一些实施例的除湿机的又一种结构图。图4为图3中圈A的局部放大图。
在一些实施例中,如图3和图4所示,除湿机100还包括风道9和导流板8。蒸发器2和冷凝器3间隔设置,以限定出风道9。导流板8设于风道9的入口处,且导流板8可转动。导流板8被配置为调节风道9的入口的开度。
可以理解的是,除湿机100具有主风道,风道9为与主风道不同的辅风道。一部分室内空气经进风口进入至风道9,并经风道9进入至冷凝器3。另一部分室内空气经进风口进入除湿机100内,然后依次流经蒸发器2和冷凝器3。
在一些实施例中,如图3所示,除湿机100还括风机13。风机13被配置为吸入室内空气并使所述室内空气依次流经蒸发器2和冷凝器3。
图5为根据一些实施例的导流板、电机以及挡风板的示意图。图6为图5中圈B的局部放大图。
在一些实施例中,如图5和图6所示,除湿机100还包括电机11,电机11与导流板8相连。如,电机11的输出轴与导流板8相连,当电机11转动时,电机11带动导流板8转动。电机11被配置为驱动导流板8转动,以调整风道9的入口的开度。
如图5和图6所示,电机11可以设在导流板8的长度方向的任一端(如图5中的M端或N端)。这里,导流板8的长度方向为其长边所在的方向(即图5中的MN方向)。电机11可以包括多个档位。多个档位分别对应电机11的输出轴的不同转动角度。这样,通过电机11不同的档位可以控制导流板8的转动角度,从而调节风道9的入口的开度。通过设置电机11和导流板8,不仅可以提高除湿机100的除湿量,也提升了除湿机100在不同室内环境温度和室内环境湿度下的运行能效,节约能耗。
在一些实施例中,电机11可以为步进电机、伺服电机或其他电机,本公开对此不作限定。
在一些实施例中,如图5和图6所示,除湿机100还包括两个挡风板12。两个挡风板12分别设置在蒸发器2和冷凝器3在导流板8的长度方向上的两侧(如,图5中的MN方向上的M侧和N侧)。两个挡风板12、蒸发器2和冷凝器3共同限定出风道9。
在此情况下,导流板8位于蒸发器2和冷凝器3的顶部。如图5和图6所示,两个挡风板12的靠近导流板8的一端分别连接在导流板8在长度方向上的两端,两个挡风板12的另一端(如,底端)可以通过卡扣或螺钉与蒸发器2的端板或冷凝器3的端板相连,以增加两个挡风板12的安装可靠性。这里,蒸发器2具有两个端板,该两个端板分别为图4中的第一端板P和第二端板S。冷凝器3具有两个端板,该两个端板分别为图4中的第三端板Q和第四端板R。
需要说明的是,导流板8的长度(如,图5中的第二距离D2)大于蒸发器2的两个端板(如,图4中的第一端板P和第二端板S)或冷凝器3的两个端板(如,图4中的第三端板Q和第四端板R)之间的距离。导流板8的宽度(如图5中的第一距离D1)与冷凝器3以及蒸发器2之间的距离大致相同。挡风板12的高度大于冷凝器3和蒸发器2的高度,挡风板12的宽度与冷凝器3以及蒸发器2之间的距离大致相同。挡风板12的厚度和导流板8的厚度分别满足强度要求,以避免跌落导致挡风板12损坏。 例如,挡风板12的厚度为2.0mm至3.0mm之间的任一值。如,挡风板12的厚度为2.0mm、2.5mm或3.0mm。
前文主要以除湿机100包括导流板8和两个挡风板12、导流板8位于蒸发器2和冷凝器3的顶部、两个挡风板12分别位于蒸发器2和冷凝器3在导流板8的长度方向上的两侧为例进行说明。当然,本公开不局限于此,在一些实施例中,除湿机100也可以包括一个挡风板12和多个导流板8。
在此情况下,挡风板12位于蒸发器2和冷凝器3的顶部。多个导流板8分别位于蒸发器2和冷凝器3在导流板8的长度方向上的两侧。挡风板12、蒸发器2和冷凝器3共同限定出风道9,并且风道9的入口位于蒸发器2和冷凝器3在导流板8的长度方向上的两侧。这样,当除湿机100进行除湿时,控制器7通过控制多个导流板8中的至少一个的转动角度可以调节风道9的入口的开度,从而经所述进风口流入除湿机100内的第二部分室内空气可以从冷凝器3的两侧流向冷凝器3,以调整直接流向冷凝器3的风量。
图7为根据一些实施例的蒸发器、凝液器和冷凝器的结构图。图8为根据一些实施例的凝液器的结构图。
在一些实施例中,如图7和图8所示,除湿机100还包括凝液器14。凝液器14设在风道9内。流经蒸发器2的第一部分室内空气通过凝液器14与从风道9的入口进入的第二部分室内空气进行热交换,以实现对第二部分室内空气的除湿。例如,经所述进风口流入壳体10内的第一部分室内空气,经蒸发器2去除水分后变为低温空气并流向凝液器14,该低温空气与经风道9的入口流向凝液器14的第二部分室内空气进行热交换,以使第二部分室内空气内的水分凝结成冷凝水,之后,经所述进风口流入壳体10内的全部室内空气经冷凝器3加热后从出风口15流出。冷凝器3可以进一步去除空气中的水分,提高除湿机100的除湿量,从而提高除湿机100的除湿效率。
在一些实施例中,如图8所示,凝液器14包括框架和多个凝液片141。多个凝液片141设在所述框架内,多个凝液片141沿凝液片141的厚度方向(如图8中的EF方向)间隔排布。多个凝液片141中的每个凝液片141上设有多个通孔1411。多个通孔1411沿凝液片141的长度方向(如图8中的MN方向)间隔设置。多个通孔1411中的每个通孔1411的边缘设有延伸部1412。延伸部1412朝向凝液片141的厚度方向的一侧延伸。多个凝液片141的多个延伸部1412沿凝液片141的厚度方向分别相对应,以分别构成多个通道。所述多个通道与风道9的入口连通,以使第二部分室内空气分别流入该多个通道内。这样,流经蒸发器2的第一部分室内空气在流经多个凝液片141时,可以与所述多个通道内的所述第二部分室内空气进行热交换。
在一些实施例中,当导流板8位于蒸发器2和冷凝器3的顶部时,多个凝液片141沿凝液片141的厚度方向隔排布,相邻两个凝液片141共同限定出所述通道,此时,每个凝液片141为横向布置。当导流板8位于蒸发器2和冷凝器3的侧部时,多个凝液片141沿凝液片141的长度方向间隔排布,此时,每个凝液片141为竖向布置。这样,当导流板8打开时,流经蒸发器2的第一部分室内空气在流经多个凝液片141时,可以与所述多个通道内的第二部分室内空气进行热交换,以去除第二部分室内空气中的水分。
图9为根据一些实施例的除湿机的框图。
在一些实施例中,如图9所示,除湿机100还包括第一温度传感器5、湿度传感器6以及控制器7。第一温度传感器5被配置为检测当前室内环境温度。湿度传感器6被配置为检测当前室内环境湿度。第一温度传感器5可以设在蒸发器2的迎风面上,经所述进风口流向蒸发器2的气流可以快速流经第一温度传感器5,从而可以精准地检测当前室内环境温度。第一温度传感器5和湿度传感器6分别与控制器7通信连接,以便控制器7获取当前室内环境温度和当前室内环境湿度。
如图9所示,控制器7包括处理器71和存储器72。存储器72与处理器71通信连接。存储器72被配置为存储,在不同冷媒、不同当前室内环境温度以及不同当前室内环境湿度的情况下,流经蒸发器2的风量对应的风道9的入口的开度。处理器71被配置为获取第一温度传感器5检测的当前室内环境温度和湿度传感器6检测的当前室内环境湿度,并根据获取的当前室内环境温度和当前室内环境湿度,从存储器72中获取与当前室内环境温度和当前室内环境湿度对应的风道9的入口的开度,并根据获取的风道9的入口的开度,控制导流板8打开对应角度,从而调整流经风道9的风量,调节除湿机100的除湿量。
例如,处理器71根据获取的当前室内环境温度和当前室内环境湿度,从存储器72中获取与当前 室内环境温度和当前室内环境湿度对应的风道9的入口的开度,并根据导流板8的打开角度确定向电机11输入的电流值。处理器71根据确定的电流值控制输入电机11的电流大小,以使电机11控制导流板8转动对应的角度,从而实现对风道9的入口的开度的调节,从而调整直接流向冷凝器3的风量。
当除湿机100进行除湿时,控制器7控制导流板8打开至与当前室内环境温度和当前室内环境湿度所对应的角度。由于蒸发器2和冷凝器3之间设有风道9,因此,经所述进风口流向壳体10内的第一部分室内空气经蒸发器2流向冷凝器3,第二部分室内空气经风道9的入口直接流向冷凝器3,冷凝器3对流过的室内空气进行加热,以去除该室内空气中的水分。这样,通过调节流经蒸发器2的风量和流经风道9的风量,可以根据室内环境的实际情况(如,当前室内环境温度和当前室内环境湿度)调节除湿机100的除湿量。例如,在通过蒸发器2的风量不变的情况下,当导流板8从关闭至打开时,流经风道9的风量增加,从而从除湿机100的进风口进入的风量增加,进而提高了除湿机100的除湿量。
控制器7包括中央处理器、微处理器(microprocessor)、专用集成电路(application specific integrated circuit,ASIC),并且可以被配置为当处理器执行存储在耦合到控制器7的非暂时性计算机可读介质中的程序时,执行控制器7中描述的相应操作。
以下以图10至图12为例对控制器7执行的步骤进行叙述。
图10为根据一些实施例的控制器执行步骤的一种流程图。
在一些实施例中,如图10所示,控制器7被配置为执行步骤101至步骤108。
在步骤101中,根据除湿机100的冷媒类型确定目标修正系数。
在控制器7根据第一温度传感器5检测到的当前室内环境温度和湿度传感器6检测到的当前室内环境湿度,控制导流板8打开对应角度以调整流经风道9的风量之前,控制器7被配置为根据除湿机100的冷媒类型确定目标修正系数。由于不同冷媒的换热效率不同,因此,通过确定目标修正系数,可以针对不同冷媒进行相匹配的风量调节。这样,当除湿机100在除湿时,可以确定不同类型的冷媒对应的风量,从而使流向蒸发器2的风量与冷媒类型相匹配。
在步骤102中,根据第一温度传感器5检测的当前室内环境温度和湿度传感器6检测到的当前室内环境湿度,确定导流板8的打开角度。
在步骤103中,控制导流板8转动至对应角度。
例如,控制器7控制电机11以驱动导流板8转动对应角度。
需要说明的是,当前室内环境温度越高,当前室内环境湿度越小。当前室内环境湿度越小,表明室内空气中水分越少。在此情况下,控制器7可以控制导流板8打开的角度减小,以减小风道9的入口的开度,从而在满足当前除湿需求的同时减小能耗;当前室内环境湿度越大,表明室内空气中水分越多。在此情况下,控制器7可以控制导流板8打开的角度增大,以增大风道9的入口的开度,从而提高除湿机100的除湿量,满足除湿需求。
在步骤104中,判断除湿机100是否进入化霜模式。若“是”,则执行步骤105;若“否”,则执行步骤102。
除湿机100进入化霜模式可以指除湿机100进行除霜。
在步骤105中,控制导流板8转动,以关闭风道9的入口。
例如,控制器7控制电机11以驱动导流板8转动对应角度,以使风道9的入口的开度为0。
在除湿机100处于化霜模式的情况下,通过关闭风道9的入口,可以使经所述进风口流入除湿机100内的室内空气全部经蒸发器2流向冷凝器3,从而使得除湿机100运行在化霜模式下,通过蒸发器2的风量较大,提高化霜的有效性,从而实现快速化霜。
在除湿机100未进入化霜模式的情况下,控制器7根据室内环境的实际情况进行除湿。例如,控制器7根据第一温度传感器5检测到的当前室内环境温度和湿度传感器6检测到的当前室内环境湿度,控制导流板8打开对应角度以调整流经风道9的风量。
在步骤106中,判断除湿机100是否退出化霜模式。若“是”,则执行步骤107;若“否”,则执行步骤105。
在除湿机100进入化霜模式,且风道9的入口被关闭之后,控制器7还被配置为判断除湿机100是否退出化霜模式。
若除湿机100未退出化霜模式,则控制器7继续控制导流板8关闭风道9的入口。
在步骤107中,判断除湿机100是否进入关机模式。若“是”,则执行步骤108;若“否”,则返回执行步骤102。
若除湿机100退出化霜模式,未进入关机模式,则表明除湿机100在进行除湿。在此情况下,控制器7根据第一温度传感器5检测到的当前室内环境温度和湿度传感器6检测到的当前室内环境湿度,控制导流板8打开对应角度以调整流经风道9的风量,从而提高除湿机100的除湿量和除湿效率。
在步骤108中,控制导流板8转动,以关闭风道9的入口。
若除湿机100退出化霜模式并进入关机模式时,则表明除湿机100已完成除湿工作,则控制器7控制电机11将导流板8转动至初始位置,以待进行下一次的除湿工作。所述导流板8的初始位置可以为风道9的入口的开度为0时的导流板8的位置。
图11为根据一些实施例的控制器执行步骤的另一种流程图。
在一些实施例中,在控制器7根据除湿机100的冷媒类型来确定所述目标修正系数(如,步骤101)之后,如图11所示,控制器7还被配置为执行步骤109。
在步骤109中,判断压缩机1是否连续运行第一预设时长。若“是”,则执行步骤102;若“否”,则继续执行步骤109直到压缩机1连续运行第一预设时长。
若控制器7确定压缩机1连续运行第一预设时长,则表明除湿机100的工作状态趋于稳定,且除湿机100已经对室内进行了一段时间的除湿。此时,控制器7根据当前室内环境温度和当前室内环境湿度,可以确定除湿机100在第一预设时长内的除湿情况,然后根据室内环境的实际情况继续进行除湿操作。
若控制器7确定压缩机未连续运行第一预设时长,则表明除湿机100的运行时间较短,除湿效果不明显。另外,第一温度传感器5检测的当前室内环境温度和湿度传感器6检测的当前室内环境湿度,无法准确反映室内环境的实际状况。在此情况下,除湿机100仍需继续运行一段时间。
图12为根据一些实施例的控制器执行步骤的又一种流程图。
在一些实施例中,在压缩机1连续运行第一预设时长后,如图12所示,则控制器7还被配置为执行步骤110至步骤118。
在步骤110中,判断风机13的当前转速是否为第一转速。若“是”,则执行步骤111;若“否”,则执行步骤113。
在步骤111中,根据第一温度传感器5检测到的当前室内环境温度和湿度传感器6检测到的当前室内环境湿度,确定导流板8的第一打开角度。
在步骤112中,控制导流板8转动至第一打开角度。
例如,当风机13的当前转速为第一转速时,控制器7根据当前室内环境温度和当前室内环境湿度确定导流板8的第一打开角度,并控制电机11驱动导流板8转动至第一打开角度。
在步骤113中,判断风机13的当前转速是否为第二转速。若“是”,则执行步骤114;若“否”,则执行步骤116。
在步骤114中,根据第一温度传感器5检测到的当前室内环境温度和湿度传感器6检测到的当前室内环境湿度,确定导流板8的第二打开角度。
在步骤115中,控制导流板8转动至第二打开角度。
例如,当风机13的当前转速为第二转速时,控制器7根据当前室内环境温度和当前室内环境湿度确定导流板8的第二打开角度,并控制电机11驱动导流板8转动至第二打开角度。
在步骤116中,确定风机13的当前转速为第三转速。
在步骤117中,根据第一温度传感器5检测到的当前室内环境温度和湿度传感器6检测到的当前室内环境湿度,确定导流板8的第三打开角度。
在步骤118中,控制导流板8转动至第三打开角度。
例如,当风机13的当前转速为第三转速时,控制器7根据当前室内环境温度和当前室内环境湿度确定导流板8的第三打开角度,并控制电机11驱动导流板8转动至第三打开角度。
需要说明的是,第一转速大于或等于第二转速,第二转速大于或等于第三转速。例如,设置转速的大小与打开角度的大小正相关,如,第一打开角度大于第二打开角度,第二打开角度大于第三打开角度,这样,通过采用较大转速(如,第一转速)和较大打开角度(如,第一打开角度),可以快速除霜的需要。另外,根据风机13的不同的转速确定不同的导流板8的转动角度,以调整风道9的入口 的开度,这样,可以更加精准地控制流经蒸发器2的风量,调节直接流向冷凝器3的风量,从而调节除湿机100的除湿量,提高除湿机100的除湿效率。
另外,在步骤112、115、118之后,如图11所示,控制器7执行上述步骤104至步骤108。
在本公开一些实施例提供的除湿机100中,将导流板8设置在风道9的入口处,且控制器7被配置成根据当前室内环境温度和当前室内环境湿度来调整导流板8的打开角度。这样,可以根据室内环境的实际情况来调节流经蒸发器2的风量,使得更多空气可以直接流向冷凝器3,从而可以提高除湿机100的除湿量。
前文主要以控制器7根据当前室内环境温度和当前室内环境湿度,控制导流板8转动对应角度,以调整流经风道9的风量为例进行说明。当然,本公开并不局限于此,在一些实施例中,控制器7还可以根据冷媒泄漏率控制导流板8转动对应角度,以调整流经风道9的风量。
当除湿机100的冷媒泄漏率超过50%时,会触发冷媒泄漏保护模式。若除湿机100的冷媒泄漏率处于0~50%之间时,除湿机100仍会正常运行。然而,随着冷媒量的减小,蒸发器2的内部会出现过热问题。例如,当冷媒泄漏率为0时,蒸发器2的过热度为-1℃~2℃;当冷媒泄漏率为30%时,蒸发器2的过热度为13℃~18℃。另外,随着冷媒泄漏率的升高,压缩机1的排气温度也会升高。例如,相较于冷媒泄漏率为0对应的压缩机1的排气温度,冷媒泄漏率为30%对应的压缩机1的排气温度升高了大致25℃。当压缩机1长期处于排气温度较高的运行状态下,会影响压缩机1的可靠性,从而影响除湿机100的可靠性。
在本公开一些实施例中,根据冷媒泄漏率与预设泄露阈值的大小关系,控制器7控制导流板8转动对应角度,以调整流经风道9的风量,可以降低蒸发器2的过热度,进而降低压缩机1的排气温度,提高除湿机100在冷媒泄漏状态下运行的可靠性。
图13为根据一些实施例的另一种除湿机的框图。
在一些实施例中,如图13所示,除湿机100还包括第二温度传感器16和第三温度传感器17。第二温度传感器16被配置为检测压缩机1的排气温度。第三温度传感器17被配置为检测盘管18(如图7所示)的温度。这里盘管18为蒸发器2的盘管。第二温度传感器16和第三温度传感器17分别与控制器7通信连接,以便控制器7获取压缩机1的排气温度和盘管18的温度。第三温度传感器17可设在蒸发器2上,以使第三温度传感器17可以精确地检测盘管18的温度。
在一些实施例中,存储器72还被配置为存储不同冷媒泄漏率下,导流板8的转动角度。处理器71还被配置为获取除湿机100内冷媒泄漏率,并根据获取的冷媒泄漏率从存储器72中调取所对应的导流板8的转动角度,并根据该转动角度调整电机11,以使导流板8调整至该转动角度,从而调整流经风道9的风量。
以下以图14至图20为例对控制器7执行的步骤进行叙述。
图14为根据一些实施例的控制器执行步骤的又一种流程图。
在一些实施例中,如图14所示,控制器7还被配置为执行步骤201至步骤206。
在步骤201中,根据从压缩机1流出的冷媒流出流量和流回压缩机1的冷媒流回流量,确定冷媒泄漏率。
当除湿机100启动运行时,压缩机1运行,通过步骤201,控制器7可以确定出在除湿机100在某一时刻运行时的冷媒泄漏率。冷媒泄漏率可以指从压缩机1流出的冷媒流出流量与流回压缩机1的冷媒流回流量的差值,与从压缩机1流出的冷媒流出流量的比值。
在步骤202中,判断冷媒泄漏率是否大于或等于预设泄漏率阈值。若“是”,则执行步骤203;若“否”,则执行步骤204。
例如,所述预设泄漏率阈值可以为50%。
在步骤203中,控制导流板8转动,以关闭风道9的入口,且控制除湿机100进入冷媒泄漏保护模式。
例如,当冷媒泄漏率大于或等于所述预设泄漏率阈值时,表明除湿机100的冷媒泄漏率较高,控制器7控制风道9的入口关闭,且控制除湿机100进入冷媒泄漏保护模式。在除湿机100进入冷媒泄漏保护模式后,控制器7控制压缩机1的运行频率降低。
在步骤204中,根据冷媒泄漏率,控制导流板8转动至对应角度。
例如,当冷媒泄漏率小于所述预设泄漏率阈值时,虽然除湿机100处于冷媒泄漏状态,但泄漏的 冷媒量较小,除湿机100仍可以正常运行。在此情况下,处理器71获取除湿机100的冷媒泄漏率,从存储器72中调取相应冷媒泄漏率所对应的导流板8的转动角度,并根据该转动角度调整电机11,以使导流板8调整至该转动角度,从而调整流经风道9的风量。
这样,经所述进风口流入壳体10内的第一部分室内空气经蒸发器2流向冷凝器3,第二部分室内空气经风道9入口直接流向冷凝器3,冷凝器3可以对空气进行加热,以去除空气中的水分,实现除湿机100的除湿效果。另外,通过步骤203和步骤204,可以调整流向蒸发器2的风量,降低蒸发器2的过热度,从而可以降低压缩机1的排气温度,提升除湿机100在冷媒泄漏状态下的除湿机100运行的可靠性。
前文以冷媒泄漏率等于所述预设泄漏率阈值,控制器7控制导流板8转动,以关闭风道9的入口,且控制除湿机100进入冷媒泄漏保护模式(执行步骤203)为例进行说明,当然,当冷媒泄漏率等于所述预设泄漏率阈值时,控制器7也可以根据冷媒泄漏率,控制导流板8转动至对应角度(执行步骤204)。
在步骤205中,判断压缩机1的排气温度是否大于或等于第三预设温度阈值。若“是”,则执行步骤206;若“否”,则返回执行步骤201。
第三预设温度阈值预先存储在控制器7内。通过将压缩机1的排气温度与第三预设温度阈值进行比较,可以确定除湿机100在冷媒泄漏状态下运行时,压缩机1的排气温度是否上升。
在步骤206中,控制除湿机100启动压缩机1的过热保护模式。
当压缩机1的排气温度大于或等于第三预设温度阈值时,表明除湿机100在冷媒泄漏状态下运行时,压缩机1的排气温度上升。也就是说,蒸发器2的过热度升高,冷媒泄漏率增加,压缩机1的可靠性受到影响。通过启动压缩机1的过热保护模式,可以对进行压缩机1保护,以避免压缩机1受损。
当压缩机1的排气温度小于第三预设温度阈值时,表明除湿机100在冷媒泄漏状态下运行时,压缩机1的排气温度可能小于或等于上一次的第二温度传感器16检测的排气温度,从而冷媒泄漏率并未随除湿机100的运行时间增加而增大。在此情况下,控制器7需要持续检测冷媒泄漏率,并判断冷媒泄漏率是否达到预设泄漏率阈值,以便在冷媒泄漏率大于预设泄漏率阈值时,除湿机100能够及时进入冷媒泄漏保护模式,或者压缩机1能够及时进入过热保护模式,以避免压缩机1受损。
前文以压缩机1的排气温度等于第三预设温度阈值,控制器7控制除湿机100启动压缩机1的过热保护模式为例(执行步骤206)进行说明,当然,当压缩机1的排气温度等于第三预设温度阈值时,控制器7也可以根据从压缩机1流出的冷媒流出流量和流回压缩机1的冷媒流回流量,确定冷媒泄漏率(执行步骤201)。
图15为根据一些实施例的控制器执行步骤的又一种流程图。
在一些实施例中,在控制除湿机100启动压缩机1过热保护模式(如,步骤206)之后,控制器7还被配置为执行步骤207和步骤208。
在步骤207中,判断压缩机1的排气温度是否大于或等于第三预设温度阈值。若“是”,则执行步骤208;若“否”,则返回执行步骤201。
在控制除湿机100启动压缩机1过热保护模式之后,控制器7重新判断压缩机1的排气温度是否达到所述第三预设温度阈值。
在步骤208中,控制除湿机100进行报警。
当压缩机1进入过热保护模式后,压缩机1仍处于运行状态,此时,控制器7通过判断压缩机1的排气温度是否大于或等于所述第三预设温度阈值,可以确定进入过热保护程序后的压缩机1在运行时,压缩机1的排气温度是否发生变化。当压缩机1的排气温度上升至所述第三预设温度阈值时,表明压缩机1的冷媒泄漏率增加,此时,控制器7控制除湿机100进行报警,以提醒用户及时关闭除湿机100,并对除湿机100进行检修。
当压缩机1的排气温度未达到所述第三预设温度阈值时,表明压缩机1还可以继续运行,但压缩机1的冷媒泄漏率可能会随除湿机100的运行时长增加而增大,因此,控制器7需要检测冷媒泄漏率,以便在冷媒泄漏率大于预设泄漏率阈值时,除湿机100能够及时进入冷媒泄漏保护模式。另外,通过步骤207和步骤208,可以使除湿机100在冷媒泄漏状态进行除湿,也可以监测冷媒泄漏率,以便除湿机100能够及时进入冷媒泄漏保护模式或者使压缩机1进入过热保护模式。
前文以压缩机1的排气温度等于第三预设温度阈值,控制器7判断压缩机1的排气温度是否大于 或等于第三预设温度阈值(执行步骤208)进行说明,当然,当压缩机1的排气温度等于第三预设温度阈值时,控制器7也可以根据从压缩机1流出的冷媒流出流量和流回压缩机1的冷媒流回流量,确定冷媒泄漏率(执行步骤201)。
图16为根据一些实施例的控制器执行步骤的又一种流程图。
在一些实施例中,如图16所示,在控制器7判断压缩机1的排气温度是否达到所述第三预设温度阈值(如,步骤205)之前,控制器7还被配置为执行步骤209。
在步骤209中,判断压缩机1是否连续运行第二预设时长。若“是”,则执行步骤205;若“否”,则继续执行步骤209。
当压缩机1连续运行一段时间后,压缩机1的排气温度才会有所变化。通过步骤209,控制器7可以判断压缩机1在连续运行所述第二预设时长后,压缩机1的排气温度是否上升,便于控制器7根据压缩机1的排气温度执行步骤205至208,从而提高判断的准确性。
图17为根据一些实施例的控制器执行步骤的又一种流程图。
在一些实施例中,如图17所示,在判断冷媒泄漏率是否达到预设泄漏率阈值(如,步骤210)之前,控制器7还被配置为执行步骤210。
在步骤210中,判断压缩机1是否连续运行第四预设时长。若“是”,则执行步骤201;若“否”,则继续执行步骤210。
当除湿机100开机运行一段时间(如,所述第四预设时长)后,除湿机100运行较为稳定。此时,控制器7确定冷媒泄漏率较为准确,便于控制器7执行后续步骤,从而可以准确地确定除湿机100的运行状态。例如,所述第四预设时长为20分钟至40分钟之间的任一值。如,所述第四预设时长为20分钟、30分钟或40分钟。
图18为根据一些实施例的控制器执行步骤的又一种流程图。
在一些实施例,如图18所示,在确定除湿机100进入冷媒泄漏保护模式(如,步骤203)之后,控制器7还被配置为执行步骤211至步骤213。
在步骤211中,判断除湿机100是否退出冷媒泄漏保护模式。若“是”,则执行步骤212;若“否”,则继续执行步骤211。
在步骤212中,判断除湿机100否进入关机模式。若“是”,则执行步骤213;若“否”,则执行步骤201。
在步骤213中,控制导流板8转动,以关闭风道9的入口。
当除湿机100退出冷媒泄漏保护模式并进入关机模式时,除湿机100的冷媒泄漏率较高,除湿机100无法正常运行,关闭除湿机100可以保护除湿机100,以避免除湿机100继续运行导致压缩机1损坏。
当除湿机100退出冷媒泄漏保护模式且未进入关机模式时,表明检测到的冷媒泄漏率大于预设泄漏率阈值可能不准确,或者未能触发除湿机100的关机程序,因此,需要重新比较冷媒泄漏率和预设温度阈值,以便准确确定除湿机100内的冷媒泄漏率。
图19为根据一些实施例的控制器执行步骤的又一种流程图。
在一些实施例中,如图19所示,步骤204包括步骤2041至步骤2047。
在步骤2041中,判断风机13的当前转速是否为第一转速。若“是”,则执行步骤2042;若“否”,则执行步骤2043。
在步骤2042中,根据冷媒泄漏率,确定导流板8的第四打开角度。
在步骤2043中,判断风机13的当前转速是否为第二转速。若“是”,则执行步骤2044;若“否”,则执行步骤2045。
在步骤2044中,根据冷媒泄漏率,确定导流板8的第五打开角度。
在步骤2045中,确定风机13的当前转速为第三转速。
在步骤2046中,根据冷媒泄漏率,确定导流板8的第六打开角度。
在步骤2047中,控制导流板8转动至相应角度。
在步骤2042、步骤2044、步骤2046之后,控制器7执行步骤2047。
当风机13以不同转速运行时,经所述进风口流入蒸发器2内的风量也不同,因此,通过步骤2041至步骤2046,可以根据风机13的转速,确定导流板8转动的角度,从而使得风机13在不同转速下调 整流向风道9的风量,提升控制的准确性,提升除湿机100在冷媒泄漏状态下的运行可靠性。
需要说明的是,第四打开角度、第五打开角度和第六打开角度可以分别相等或者不相等。例如,设置转速的大小与打开角度的大小正相关,如,第四打开角度大于第五打开角度,第五打开角度大于第六打开角度,这样,通过采用较大转速(如,第一转速)和较大打开角度(如,第四打开角度),可以快速除霜的需要。
图20为根据一些实施例的控制器执行步骤的又一种流程图。
在一些实施例中,如图20所示,在步骤201之前,控制器7还被配置为执行步骤214至步骤218。
在步骤214中,根据第三温度传感器17检测第一时刻的盘管18的温度,以及第一温度传感器5检测第一时刻的室内环境温度,获得第一温差。
第一温差为第一时刻的室内环境温度与第一时刻的盘管18的温度之差。
在步骤215中,判断压缩机1是否连续运行第三预设时长。若“是”,则执行步骤216;若“否”,则继续执行步骤215。
若压缩机1未连续运行第三预设时长,则控制器7继续判断压缩机1是否连续运行第三预设时长。
在步骤216中,根据第三温度传感器17检测第二时刻的盘管18的温度,以及第一温度传感器5检测第二时刻的室内环境温度,获得第二温差。
第二温差为第二时刻的室内环境温度与第二时刻的盘管18的温度之差。
当除湿机100在冷媒泄漏状态下运行时,冷媒泄漏率不同,蒸发器2的过热度也不同,冷媒泄漏率越高,蒸发器2的过热度也就越高,通过上述步骤214至步骤216,可以确定两个不同时间内盘管18的温度与当前室内环境温度的温差(如,第一温差和第二温差),从而可以确定蒸发器2的过热度,以便控制器7执行后续步骤。
在步骤217中,判断第一温差和第二温差之差的绝对值是否小于或等于预设温差阈值。若“是”,则执行步骤201;若“否”,则执行步骤218。
在步骤218中,控制导流板8转动,以关闭风道9的入口。
若第一温差和第二温差之差的绝对值小于或等于预设温差阈值,则表明蒸发器2的过热度虽然相较于无冷媒泄漏时要高,但是冷媒泄漏率较低,除湿机100可以正常工作,控制器7可以判断冷媒泄漏率是否达到所述预设泄漏率阈值。
若第一温差和第二温差之差的绝对值大于预设温差阈值,则表明蒸发器2的过热度较高,冷媒泄漏率较高。此时,冷凝器3的温度较低,冷凝器3无法将所有流向冷凝器3的空气加热成干燥空气。在此情况下,控制器7控制导流板8转动,以关闭风道9的入口,从而减少流向冷凝器3的气流量,使流向冷凝器3的空气尽可能多的被加热成干燥空气,提高除湿机100的除湿效果。
所述预设温差阈值与冷媒类型相关。例如,在冷媒为R410A冷媒(目标冷媒)的情况下,所述预设温差阈值为10℃~15℃之间的任一值,例如,所述预设温差阈值为10℃、12℃或15℃。在冷媒为R32冷媒的情况下,所述预设温差阈值为5℃~10℃(目标范围)之间的任一值。例如,所述预设温差阈值为5℃、8℃或10℃。
在本公开一些实施例提供的除湿机100中,通过将导流板8设在风道9的入口处,且控制器7还被被配置成根据冷媒泄漏率来控制辅助导流板8的转动角度。这样,当除湿机100在冷媒泄漏状态下运行时,可以有效降低蒸发器2的过热度,进而可以降低压缩机1的排气温度,提升除湿机100在冷媒泄漏状态下的整机运行的可靠性。
前文主要以控制器7根据冷媒泄漏率,控制导流板8转动对应角度,以调整流经风道9的风量为例进行说明。当然,本公开并不局限于此,在一些实施例中,控制器7还可以根据,经蒸发器2流向冷凝器3的第一部分室内空气,与经风道9的入口直接流向冷凝器3的第二部分室内空气的比例(风量比),控制导流板8转动对应角度,以调整流经风道9的风量。
通常,凝液器为片材结构,凝液器的水槽空间比较狭小,在低温情况下凝液器容易发生冰堵,直接对凝液器进行解冻会导致凝液器内部的低温水反常膨胀,从而会导致凝液器的片材胀裂,降低除湿机的使用寿命。
本公开一些实施例通过根据当前室内环境温度与第一预设温度阈值,盘管18的温度与第二预设温度阈值的大小关系,确定风量比或关闭导流板8,并根据所述风量比,控制导流板8转动对应角度,以调整流经风道9的风量。这样,可以调整流经风道9的风量可以在提高除湿机100的除湿量以及除湿 效率,且可以避免辅助凝液器发生冰堵,从而可以延长除湿机的使用寿命。
在一些实施例中,存储器72还被配置为存储,在不同当前室内环境温度和不同的盘管18的温度下,不同的冷媒对应的风量比,以及所述风量比对应的导流板8的打开角度。处理器71还被配置为获取第一温度传感器5和第三温度传感器17所检测的数据,根据获取的当前室内环境温度和盘管18的温度确定风量比,并从存储器72中调取风量比所对应的导流板8的打开角度,以及控制导流板8打开相应角度。所述风量比为流经蒸发器2的第一部分室内空气与经风道9的入口直接流向冷凝器3的第二部分室内空气的比例。
以下以图21至图27为例对控制器7执行的步骤进行叙述。
图21为根据一些实施例的控制器执行步骤的又一种流程图。
在一些实施例,如图21所示,控制器7还被配置为执行步骤301至步骤304。
在步骤301中,确定当前室内环境温度与第一预设温度阈值,盘管18的温度与第二预设温度阈值的大小关系。
在步骤302中,若当前室内环境温度小于或等于第一预设温度阈值,且盘管18的温度小于或等于第二预设温度阈值,控制导流板8转动以关闭风道9的入口。
若当前室内环境温度小于或等于第一预设温度阈值,且盘管18的温度小于或等于第二预设温度阈值,表明当前室内环境温度较低,且盘管18的温度较低。此时,室内空气的温度较低,控制器7控制电机11驱动导流板8转动以关闭风道9的入口,可以使除湿机100内的空气经蒸发器2和凝液器14依次流向冷凝器3,避免室内空气直接流向凝液器14,从而可以避免凝液器14内部发生冰堵,延长除湿机100的使用寿命。
在步骤303中,若当前室内环境温度大于第一预设温度阈值,且盘管18的温度大于第二预设温度阈值,根据盘管18的温度确定第一部分室内空气和第二部分室内空气对应的风量比。
若当前室内环境温度大于第一预设温度阈值,且盘管18的温度大于第二预设温度阈值,表明当前室内环境温度较高,且盘管18的温度较高,除湿机100可以对室内环境进行除湿。此时,控制器7根据盘管18的温度,确定第一部分室内空气和第二部分室内空气对应的风量比,并根据确定好的风量比调整导流板8的打开角度,增加流向凝液器14的风量,从而保持流经蒸发器2的风量与盘管18的温度平衡,以便将流经蒸发器2的空气冷却为低温饱和湿空气。另外,由于凝液器14的温度低,凝液器14可以直接去除空气中的水分,从而可以提高除湿机100的除湿量,提升了除湿机100的除湿效果。
在步骤304中,根据风量比,控制导流板8转动至对应的角度。
图22为根据一些实施例的控制器执行步骤的又一种流程图。
在一些实施例中,如图22所示,步骤304还包括步骤3041和步骤3042。
在步骤3041中,根据风量比,确定风量比对应的导流板8的角度为目标角度。
在步骤3042中,控制导流板8转动至目标角度。
例如,电机11的输入信号为不同风量比下,导流板8打开角度所对应的电流值。当向电机11输入某一电流值时,电机11可以驱动导流板8打开,且导流板8的打开角度为风量比所对应的导流板8的打开角度。这样,可以快速打开风道9的入口,调节流向风道9内的空气量,调节除湿机100的除湿效果。
图23为根据一些实施例的控制器执行步骤的又一种流程图。
在一些实施例中,如图23所示,在根据风量比,控制导流板8转动对应的角度(如,步骤304),或者控制导流板8转动以关闭风道9的入口(如,步骤302)之后,控制器7还被配置为执行步骤305和步骤306。
在步骤305中,判断除湿机100是否进入冷媒泄漏保护模式。若“是”,则执行步骤306;若“否”,则返回执行步骤301。
在控制导流板8打开与风量比对应的角度后,控制器7判断除湿机100是否进入冷媒泄漏保护模式。这样,可以确定除湿机100内是否出现冷媒泄漏的情况。判断除湿机100是否进入冷媒泄漏保护模式的方法可参见前文的相关描述,此处不再赘述。
在步骤306中,控制导流板8转动,以关闭风道9的入口。
例如,若除湿机100进入冷媒泄漏保护模式,则控制器7控制电机11驱动导流板8转动,以关闭风道9的入口。此时,除湿机100内出现冷媒泄漏,通过关闭风道9的入口,可以增加流向蒸发器2的 风量。这样,流入除湿机100内的室内空气全部可以经蒸发器2和凝液器14流向冷凝器3,从而可以尽快吹散位于除湿机100内部的冷媒气体。
若除湿机100未进入冷媒泄漏保护模式,表明除湿机100未出现冷媒泄漏,除湿机100可以正常进行除湿操作,则返回执行步骤301。
图24为根据一些实施例的控制器执行步骤的又一种流程图。
在一些实施例中,如图24所示,在控制导流板8转动,以关闭风道9的入口(如,步骤306)之后,控制器7还被配置为执行步骤307至步骤309。
在步骤307中,判断除湿机100是否退出冷媒泄漏保护模式。若“是”,则执行步骤308;若“否”,则返回执行步骤301。
在控制电机11驱动导流板8转动,以关闭风道9的入口之后,控制器7判断除湿机100是否退出冷媒泄漏保护模式。
在步骤308中,判断除湿机100是否进入化霜模式。若“是”,则执行步骤309;若“否”,则返回执行步骤301。
在步骤309中,控制导流板8转动,以关闭风道9的入口。
例如,若除湿机100进入化霜模式,则控制器7控制电机11驱动导流板8转动,以关闭风道9的入口。通过步骤308和步骤309可以实现除湿机100的冷媒泄漏保护模式和化霜模式之间的控制,以使得除湿机100在化霜模式流向蒸发器2的风量较大,可以缩短化霜时间,从而提升化霜模式的可靠性。
若除湿机100未进入化霜模式,则表明凝液器14未出现冰堵,除湿机100可以正常进行除湿操作,则返回执行步骤301,确定出导流板8的打开角度,提升除湿机100的除湿量。
图25为根据一些实施例的控制器执行步骤的又一种流程图。
在一些实施例中,如图25所示,在确定除湿机100进入化霜模式,并控制导流板8转动,以关闭风道9的入口(如,步骤309)之后,控制器7还被配置为执行步骤310至步骤312。
在步骤310中,判断除湿机100是否退出化霜模式。若“是”,则执行步骤311;若“否”,则返回执行步骤309。
若除湿机100未退出化霜模式,则控制器7继续控制导流板8关闭风道9的入口。
在步骤311中,判断除湿机100是否进入关机模式。若“是”,则执行步骤312;若“否”,则返回执行步骤301。
在步骤312中,控制导流板8转动,以关闭风道9的入口。
若除湿机100进入关机模式,则控制器7控制电机11驱动导流板8转动,以关闭风道9的入口。此时,除湿机100已完成化霜,关闭风道9的入口便于除湿机100下一次运行。这样,在下次除湿机100进行风量调节时,导流板8可以根据风量比打开相对应的角度,避免导流板8实际打开角度与预计打开角度不符。
当除湿机100退出化霜模式且未进入关机模式,表明检测到盘管18的温度可能不准确,或者未能触发除湿机100的关机程序。因此,需要重新检测当前室内环境温度和盘管18的温度,以便能够准确确定除湿机100的运行状态,使除湿机100能够进行正确操作,避免除湿机100损坏。
图26为根据一些实施例的控制器执行步骤的又一种流程图。
在一些实施例,如图26所示,在步骤301之前,控制器7还被配置为执行步骤313。
在步骤313中,判断压缩机1是否连续运行目标预设时长。若“是”,则执行步骤301;若“否”,则继续执行步骤313。
在压缩机1连续运行目标预设时长后,检测盘管18的温度和当前室内环境温度,此时,盘管18的温度较为稳定,可以增加检测的数据的准确性。
图27为根据一些实施例的控制器执行步骤的又一种流程图。
在一些实施例中,如图27所示,步骤303包括步骤3031至步骤3036。
在步骤3031中,判断风机13的当前转速是否为第一转速。若“是”,则执行步骤3032;若“否”,则执行步骤3033。
在步骤3032中,确定第一转速下盘管18的温度对应的风量比。
在步骤3033中,判断风机13的当前转速是否为第二转速。若“是”,则执行步骤3034;若 “否”,则执行步骤3035。
在步骤3034中,确定第二转速下盘管18的温度对应的风量比。
在步骤3035中,确定风机13的当前转速为第三转速。
在步骤3036中,确定第三转速下盘管18的温度对应的风量比。
当风机13以不同转速运行时,经所述进风口吸入蒸发器2内的风量也不同,因此,通过步骤2041至步骤2046,可以将风机13的转速与导流板8转动的角度建立联系,从而使得风机13在不同转速下,流向蒸发器2的空气量较佳,提升除湿机100的除湿效率。
在本公开一些实施例提供的除湿机100中,通过在风道9内设置凝液器14,在风道9的入口设置可转动地导流板8,且控制器7还被配置为根据当前室内环境温度和盘管18的温度确定风量比,以及风量比所对应的导流板8的打开角度。这样,可以在提高除湿机的除湿量以及除湿效率,且可以避免辅助凝液器发生冰堵,从而可以延长除湿机的使用寿命。
需要说明的是,本公开一些实施例不限于上面描述的步骤顺序,本领域技术人员可以根据实际的需要,对上面描述的步骤顺序进行改变,或者可以省略上面描述的步骤中的一个或多个步骤,或者可以在上面描述的步骤中增加一个或多个步骤。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受所附权利要求的限制。

Claims (20)

  1. 一种除湿机,包括:
    壳体;
    压缩机;
    蒸发器;
    冷凝器;
    节流装置,所述压缩机、所述蒸发器、所述冷凝器、和所述节流装置设置在所述壳体内,且依次连接以形成冷媒循环回路;
    风道,所述蒸发器和所述冷凝器间隔设置,以在所述蒸发器和所述冷凝器之间限定出所述风道;
    导流板,可转动地设在所述风道的入口处,且被配置为调节所述风道的所述入口的开度;
    凝液器,所述凝液器设在所述风道内,且被配置为对流经的空气进行热交换,进入所述除湿机内的室内空气中的第一部分在依次流经所述蒸发器、所述凝液器和所述冷凝器后从所述除湿机内流出,进入所述除湿机内的室内空气中的第二部分在依次经过所述风道、所述凝液器和所述冷凝器后从所述除湿机流出;以及
    控制器,所述控制器被配置为:
    若当前室内环境温度小于或等于第一预设温度阈值,且所述蒸发器的盘管的温度小于或等于第二预设温度阈值,控制所述导流板转动以关闭所述风道的所述入口;
    若所述室内环境温度大于所述第一预设温度阈值,且所述蒸发器的所述盘管的温度大于所述第二预设温度阈值,根据所述蒸发器的所述盘管的温度确定风量比,并根据所述风量比,控制所述导流板打开至对应角度;
    其中,所述风量比为流经所述蒸发器的第一部分室内空气与经所述风道的所述入口直接流向所述冷凝器的第二部分室内空气的比例。
  2. 根据权利要求1所述的除湿机,其中,在根据所述风量比,控制所述导流板打开至对应角度,或者控制所述导流板转动以关闭所述风道的所述入口之后,所述控制器还被配置为:
    若所述除湿机进入冷媒泄漏保护模式,控制所述导流板转动,以关闭所述风道的所述入口;
    若所述除湿机未进入冷媒泄漏保护模式,确定所述当前室内环境温度与所述第一预设温度阈值、所述蒸发器的盘管的温度与所述第二预设温度阈值的大小关系。
  3. 根据权利要求2所述的除湿机,其中,在所述除湿机进入所述冷媒泄漏保护模式,且所述风道的所述入口关闭后,所述控制器还被配置为:
    若所述除湿机退出冷媒泄漏保护模式,且进入化霜模式,控制所述导流板转动,以关闭所述风道的所述入口;
    若所述除湿机退出冷媒泄漏保护模式,且未进入化霜模式,确定所述室内环境温度与所述第一预设温度阈值、所述蒸发器的盘管的温度与所述第二预设温度阈值的大小关系;
    若所述除湿机未退出所述冷媒泄漏保护模式,确定所述室内环境温度与所述第一预设温度阈值、所述蒸发器的盘管的温度与所述第二预设温度阈值的大小关系。
  4. 根据权利要求3所述的除湿机,其中,在所述除湿机进入所述化霜模式,且所述风道的所述入口关闭后,所述控制器还被配置为:
    若所述除湿机退出化霜模式,且进入关机模式,控制所述导流板转动以关闭所述风道的所述入口;
    若所述除湿机退出化霜模式,且未进入所述关机模式,确定所述室内环境温度与所述第一预设温度阈值、所述蒸发器的盘管的温度与所述第二预设温度阈值的大小关系;
    若所述除湿机未退出化霜模式,继续控制所述导流板以关闭所述风道的所述入口。
  5. 根据权利要求1至4中任一项所述的除湿机,还包括风机,所述风机被配置为吸入室内空气并使所述室内空气依次流经所述蒸发器和所述冷凝器,其中,在根据所述风量比,控制所述导流板打开至与所述风量比对应的角度之前,所述控制器还被配置为:
    若所述风机的当前转速为第一风速,确定所述第一风速下所述蒸发器的所述盘管的温度对应的所述风量比;
    若所述风机的所述当前转速为第二风速,确定所述第二风速下所述蒸发器的所述盘管的温度 对应的所述风量比;
    若所述风机的所述当前转速为第三风速,确定所述第三风速下所述蒸发器的所述盘管的温度对应的所述风量比。
  6. 根据权利要求1至5任一项所述的除湿机,其中,在确定所述室内环境温度与所述第一预设温度阈值、所述蒸发器的盘管的温度与所述第二预设温度阈值的大小关系之前,所述控制器还被配置为:
    控制所述压缩机连续运行目标预设时长。
  7. 根据权利要求1所述的除湿机,其中,所述控制器还被配置为:
    根据从所述压缩机流出的冷媒流出流量和流回所述压缩机的冷媒流回流量,确定冷媒泄漏率;
    若所述冷媒泄漏率大于或等于预设泄漏率阈值,控制所述导流板转动,以关闭所述风道的所述入口,且控制所述除湿机进入冷媒泄漏保护模式;
    若所述冷媒泄漏率小于所述预设泄漏率阈值,根据所述冷媒泄漏率,控制所述导流板转动对应角度。
  8. 根据权利要求7所述的除湿机,其中,在根据所述冷媒泄漏率,控制所述导流板转动对应角度后,所述控制器还被配置为:
    若所述压缩机的排气温度大于或等于第三预设温度阈值,控制所述除湿机启动所述压缩机的过热保护模式;
    若所述压缩机的所述排气温度小于所述第三预设温度阈值,根据从所述压缩机流出的所述冷媒流出流量和流回所述压缩机的所述冷媒流回流量,确定所述冷媒泄漏率,并确定所述冷媒泄漏率与所述预设泄漏率阈值的关系。
  9. 根据权利要求8所述的除湿机,其中,在控制所述除湿机启动所述压缩机的所述过热保护模式后,所述控制器还被配置为:
    若所述压缩机的所述排气温度大于或等于所述第三预设温度阈值,控制所述除湿机进行报警;
    若所述压缩机的所述排气温度小于所述第三预设温度阈值,根据从所述压缩机流出的所述冷媒流出流量和流回所述压缩机的所述冷媒流回流量,确定所述冷媒泄漏率,并确定所述冷媒泄漏率与所述预设泄漏率阈值的关系。
  10. 根据权利要求9所述的除湿机,其中,在根据所述冷媒泄漏率,控制所述导流板转动对应角度后,且在确定所述压缩机的所述排气温度与所述第三预设温度阈值的大小关系之前,所述控制器还被配置为:
    控制所述压缩机连续运行第二预设时长。
  11. 根据权利要求7至10中任一项所述的除湿机,还包括风机,所述风机被配置为吸入室内空气并使所述室内空气依次流经所述蒸发器和所述冷凝器,其中,在确定所述冷媒泄漏率小于所述预设泄漏率阈值之后,所述控制器还被配置为:
    若所述风机的当前转速为第一转速,根据所述冷媒泄漏率,确定所述导流板的第四打开角度,并控制所述导流板转动至相应角度;
    若所述风机的所述当前转速为第二转速,根据所述冷媒泄漏率,确定所述导流板的第五打开角度,并控制所述导流板转动至相应角度;
    若所述风机的所述当前转速为第三转速,根据所述冷媒泄漏率,确定所述导流板的第六打开角度,并控制所述导流板转动至相应角度。
  12. 根据权利要求7至11中任一项所述的除湿机,其中,在根据从所述压缩机流出的所述冷媒流出流量和流回所述压缩机的所述冷媒流回流量,确定所述冷媒泄漏率之前,所述控制器还被配置为:
    根据第一时刻的所述蒸发器的盘管的温度,以及所述第一时刻的室内环境温度,获得第一温差;
    控制所述压缩机连续运行第三预设时长;
    根据第二时刻的所述蒸发器的所述盘管的温度,以及所述第二时刻的室内环境温度,获得第二温差;
    若所述第一温差和所述第二温差之差的绝对值小于或等于预设温差阈值,根据从所述压缩机 流出的所述冷媒流出流量和流回所述压缩机的所述冷媒流回流量,确定所述冷媒泄漏率,并确定所述冷媒泄漏率与所述预设泄漏率阈值的关系;
    若所述第一温差和所述第二温差之差的绝对值大于所述预设温差阈值,控制所述导流板转动,以关闭所述风道的所述入口。
  13. 根据权利要求12所述的除湿机,其中,预设温差阈值与所述冷媒的类型相关,在所述冷媒为目标冷媒的情况下,预设温差阈值为目标范围内的任一值。
  14. 根据权利要求7至13中任一项所述的除湿机,其中,在根据从所述压缩机流出的冷媒流出流量和流回所述压缩机的冷媒流回流量,确定所述冷媒泄漏率之前,所述控制器还被配置为:
    控制所述压缩机连续运行第四预设时长。
  15. 根据权利要求7至14中任一项所述的除湿机,其中,在控制所述除湿机进入所述冷媒泄漏保护模式后,所述控制器还被配置为:
    若所述除湿机退出所述冷媒泄漏保护模式且进入关机模式,控制所述导流板转动,以关闭所述风道的所述入口;
    若所述除湿机退出所述冷媒泄漏保护模式,且未进入所述关机模式,根据从所述压缩机流出的所述冷媒流出流量和流回所述压缩机的所述冷媒流回流量,确定所述冷媒泄漏率,并确定所述冷媒泄漏率与所述预设泄漏率阈值的关系。
  16. 根据权利要求1所述的除湿机,其中,所述控制器还被配置为:
    根据所述当前室内环境温度和当前室内环境湿度,控制所述导流板打开对应角度,以调整流经所述风道的风量;
    若所述除湿机进入化霜模式,控制所述导流板以关闭所述风道的所述入口;
    若所述除湿机未进入所述化霜模式,根据所述当前室内环境温度和所述当前室内环境湿度,控制所述导流板打开对应角度,以调整流经所述蒸发器的风量。
  17. 根据权利要求16所述的除湿机,其中,在所述除湿机进入所述化霜模式,且所述风道的所述入口关闭后,所述控制器还被配置为:
    若所述除湿机未退出所述化霜模式,继续控制所述导流板以关闭所述风道的所述入口;
    若所述除湿机退出所述化霜模式,且所述除湿机进入关机模式,控制所述导流板以关闭所述风道的所述入口;
    若所述除湿机退出所述化霜模式,且所述除湿机未进入所述关机模式,根据所述当前室内环境温度和所述当前室内环境湿度,控制所述导流板打开对应角度,以调整流经所述蒸发器的风量。
  18. 根据权利要求16或17所述的除湿机,其中,在根据所述当前室内环境温度和所述当前室内环境湿度,控制所述导流板打开对应角度之前,所述控制器还被配置为:
    根据所述除湿机的冷媒类型确定目标修正系数。
  19. 根据权利要求18所述的除湿机,其中,在根据所述除湿机的所述冷媒类型确定所述目标修正系数之后,以及在根据所述当前室内环境温度和所述当前室内环境湿度,控制所述导流板打开对应角度之前,所述控制器还被配置为:
    控制所述压缩机连续运行第一预设时长。
  20. 根据权利要求19所述的除湿机,还包括风机,所述风机被配置为吸入室内空气并使所述室内空气依次流经所述蒸发器和所述冷凝器,其中,在所述压缩机连续运行所述第一预设时长后,所述控制器还被配置为:
    若所述风机的当前转速为第一转速,根据所述当前室内环境温度和所述当前室内环境湿度,确定所述导流板的第一打开角度,并控制所述导流板转动至所述第一打开角度;
    若所述风机的所述当前转速为第二转速,根据所述当前室内环境温度和所述当前室内环境湿度,确定所述导流板的第二打开角度,并控制所述导流板转动至所述第二打开角度;
    若所述风机的所述当前转速为第三转速,根据所述当前室内环境温度和所述当前室内环境湿度,确定所述导流板的第三打开角度,并控制所述导流板转动至所述第三打开角度;
    其中,所述第一转速大于或等于所述第二转速,所述第二转速大于或等于所述第三转速,所述第一打开角度大于或等于所述第二打开角度,所述第二打开角度大于或等于所述第三打开角度。
PCT/CN2023/114036 2022-10-31 2023-08-21 除湿机 WO2024093454A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202211347750.7 2022-10-31
CN202211349626.4 2022-10-31
CN202211347759.8A CN116147086A (zh) 2022-10-31 2022-10-31 除湿机
CN202211347750.7A CN115493217A (zh) 2022-10-31 2022-10-31 除湿机
CN202211349626.4A CN115654596A (zh) 2022-10-31 2022-10-31 除湿机
CN202211347759.8 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024093454A1 true WO2024093454A1 (zh) 2024-05-10

Family

ID=90929644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114036 WO2024093454A1 (zh) 2022-10-31 2023-08-21 除湿机

Country Status (1)

Country Link
WO (1) WO2024093454A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2867179Y (zh) * 2005-12-28 2007-02-07 何建国 节能型冷却除湿机
CN104019574A (zh) * 2014-05-16 2014-09-03 上海伯涵热能科技有限公司 一种低冷凝压力深度过冷高效除湿机
CN106931552A (zh) * 2017-04-14 2017-07-07 北京金茂绿建科技有限公司 一种除湿装置及其控制方法
US20180372369A1 (en) * 2017-06-26 2018-12-27 Therma-Stor LLC Portable Stackable Dehumidifier
CN115493217A (zh) * 2022-10-31 2022-12-20 海信(广东)空调有限公司 除湿机
CN115654596A (zh) * 2022-10-31 2023-01-31 海信(广东)空调有限公司 除湿机
CN116147086A (zh) * 2022-10-31 2023-05-23 海信(广东)空调有限公司 除湿机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2867179Y (zh) * 2005-12-28 2007-02-07 何建国 节能型冷却除湿机
CN104019574A (zh) * 2014-05-16 2014-09-03 上海伯涵热能科技有限公司 一种低冷凝压力深度过冷高效除湿机
CN106931552A (zh) * 2017-04-14 2017-07-07 北京金茂绿建科技有限公司 一种除湿装置及其控制方法
US20180372369A1 (en) * 2017-06-26 2018-12-27 Therma-Stor LLC Portable Stackable Dehumidifier
CN115493217A (zh) * 2022-10-31 2022-12-20 海信(广东)空调有限公司 除湿机
CN115654596A (zh) * 2022-10-31 2023-01-31 海信(广东)空调有限公司 除湿机
CN116147086A (zh) * 2022-10-31 2023-05-23 海信(广东)空调有限公司 除湿机

Similar Documents

Publication Publication Date Title
US9487910B2 (en) Clothes dryer and control method thereof
JP5734427B2 (ja) 可変冷媒流ヒートポンプのための低周囲気温時冷房用キット
WO2011070962A1 (ja) 空気調和機、膨張弁の開度制御方法および膨張弁の開度制御プログラムを記録したコンピュータ読み取り可能な記録媒体
JP6004670B2 (ja) 空気調和装置の制御装置及び空気調和装置の制御方法並びに空気調和装置のプログラム、それを備えた空気調和装置
JPH06307705A (ja) 空気調和機の湿度制御方法
JP5472391B2 (ja) コンテナ用冷凍装置
JP3495858B2 (ja) 空気調和機
CN110332654A (zh) 空调系统及空调系统化霜控制方法
CN112377986A (zh) 空调器及空调器的控制方法
WO2014020856A1 (ja) コンテナ用冷凍装置
JP2021004724A (ja) 空調システム
JP6429022B2 (ja) 空気調和機
KR200474579Y1 (ko) 공기조화기
KR102429294B1 (ko) 인버터 제습기의 제어 방법
WO2024093454A1 (zh) 除湿机
JP5404231B2 (ja) 空気調和装置
JP2004132572A (ja) 空気調和機
CN116147086A (zh) 除湿机
JP3996321B2 (ja) 空調機とその制御方法
JP2517071B2 (ja) 冷却装置とその制御方法
KR101303239B1 (ko) 공기조화기 및 그 제어방법
JP2002061922A (ja) 空気調和機の制御方法
JPH04332331A (ja) 湿度制御方法および空調機
JP6021965B2 (ja) 除湿装置
CN114484846B (zh) 壁挂式空调器及其凝露处理方法