WO2024093176A1 - 一种主链为金属元素的高分子及其制备方法和应用 - Google Patents

一种主链为金属元素的高分子及其制备方法和应用 Download PDF

Info

Publication number
WO2024093176A1
WO2024093176A1 PCT/CN2023/092389 CN2023092389W WO2024093176A1 WO 2024093176 A1 WO2024093176 A1 WO 2024093176A1 CN 2023092389 W CN2023092389 W CN 2023092389W WO 2024093176 A1 WO2024093176 A1 WO 2024093176A1
Authority
WO
WIPO (PCT)
Prior art keywords
main chain
ligand
aminopyridine
polymer
metal
Prior art date
Application number
PCT/CN2023/092389
Other languages
English (en)
French (fr)
Inventor
彭慧胜
曾凯雯
Original Assignee
复旦大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 复旦大学 filed Critical 复旦大学
Publication of WO2024093176A1 publication Critical patent/WO2024093176A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00

Definitions

  • the present invention relates to the field of polymer materials, and in particular to a polymer with a main chain of a metal element and a preparation method and application thereof.
  • Robert Bruce Merrifield proposed a solid-phase organic synthesis method for polypeptides.
  • Pierre-Gilles de Gennes successfully extended the method of studying order phenomena in simple systems to complex systems such as polymers and liquid crystals.
  • Alan J.Heeger, Alan G.MacDiarmid and Hideki Shirakawa began to study conductive polymers and made foundational work.
  • Robert H. Grubbs proposed a catalyst for olefin metathesis reaction and made important contributions to polymer synthesis.
  • organic polymers are all based on non-metallic atoms as the basic components of the main chain, and the theories of polymer physics and polymer chemistry are all built on the above foundation.
  • metal main chain polymers have not been reported so far.
  • the purpose of the present invention is to overcome the defects of the above-mentioned prior art and to provide a polymer whose main chain is a metal element and its preparation method and application.
  • the main chain is composed of metal atoms connected by chemical bonds and is prepared by a metallization reaction of a ligand. Due to the presence of metal atoms connected by chemical bonds in the main chain of the polymer, it may have unique properties in terms of light, heat, force, sound, electricity, magnetism, etc., and thus has potential applications in optoelectronic devices, energy information, biomedical materials, superconducting materials, etc.
  • a polymer with a metal element as the main chain comprising a main chain and a ligand
  • the main chain is composed of metal atoms connected by chemical bonds, and the chemical structure satisfies the following general formula:
  • n is the number of repeating units, and n is greater than 10;
  • M is a metal atom, and M is selected from one or more transition metals
  • the metal atoms on the main chain are connected to the ligands via coordination bonds.
  • the M is selected from chromium, manganese, iron, cobalt, nickel, copper, rhodium, palladium, silver, iridium, platinum or gold.
  • the M is selected from nickel, rhodium or palladium.
  • the number average molecular weight of the polymer exceeds 3,000.
  • the ligand contains one or more groups selected from the group consisting of pyridyl, naphthyridinyl, amino, hydroxyl, phenyl, thiol, carboxyl, conjugated double bond or phosphorus.
  • the ligand contains a pyridine or amino group.
  • the polymer structure is as follows:
  • n is the number of repeating units, and n is greater than 10.
  • the present invention also provides a method for preparing a polymer whose main chain is a metal element, and the specific steps are as follows:
  • step S2 Synthesis of metal main chain polymer: The ligand synthesized in step S1 is subjected to a metallization reaction with a metal salt compound while being heated to obtain a corresponding metal main chain polymer.
  • the polymerizable monomer is aminopyridine and halogenated aminopyridine.
  • the aminopyridine is 2-aminopyridine.
  • the halogenated aminopyridine is selected from 2-fluoro-6-aminopyridine, 2-bromo-6-aminopyridine, 2-chloro-6-aminopyridine, 2-iodine-6-aminopyridine, 2-bromo-4-alkyl-6-aminopyridine, 2-chloro-4-alkyl-6-aminopyridine, 2-fluoro-4-alkyl-6-aminopyridine or 2-fluoro-4-alkyl-6-aminopyridine, preferably 2-bromo-6-aminopyridine, 2-chloro-6-aminopyridine or 2-fluoro-6-aminopyridine.
  • the ratio of aminopyridine to halogenated aminopyridine is 1:(6-80), preferably 1:(8-16).
  • step S1 the specific steps of synthesizing the ligand are: dissolving the polymerization monomer in an organic solvent, and polymerizing under nitrogen protection in the presence of a palladium catalyst, an organic phosphorus ligand and a base to obtain a ligand unit;
  • the ligand moiety and the template compound are dissolved in an organic solvent, and the corresponding ligand is obtained by heating and coupling under the protection of nitrogen and the catalysis of palladium catalyst, organic phosphorus ligand and base.
  • the ligand unit is polyaminopyridine.
  • the organic solvent is selected from toluene, pyridine, picoline, dioxane, tetrahydrofuran, N,N-dimethylformamide, N-methylpyrrolidone or xylene, preferably toluene, pyridine or 4-picoline.
  • the palladium catalyst is selected from tris(dibenzylideneacetone)dipalladium, palladium acetate, (2-dicyclohexylphosphine-3,6-dimethoxy-2',4',6'-triisopropyl-1,1'-biphenyl)[2-(2-aminoethylphenyl)]palladium chloride, chloro(2-dicyclohexylphosphino-2",6"-diisopropyl-1,1"-biphenyl)[2-(2-aminoethylphenyl)]palladium(II) or dichloro[1,1'-bis(diphenylphosphino)ferrocene]palladium, preferably tris(dibenzylideneacetone)dipalladium, palladium acetate or dichloro[1,1'-bis(diphenylphosphino)ferrocene]palladium.
  • the organophosphorus ligand is selected from 1,3-bis(diphenylphospho)propane, 1,1'-binaphthyl-2,2'-bisdiphenylphosphine, 2-dicyclohexylphosphine-2',4',6'-triisopropylbiphenyl or dicyclohexyl[3,6-dimethoxy-2',4',6'-triisopropyl[1,1'-biphenyl]-2-yl]phosphine, preferably 1,3-bis(diphenylphospho)propane, 1,1'-binaphthyl-2,2'-bisdiphenylphosphine or 2-dicyclohexylphosphine-2',4',6'-triisopropylbiphenyl.
  • the base is selected from potassium tert-butoxide, cesium carbonate, potassium hydroxide, sodium tert-butoxide, diisopropylethylamine, sodium carbonate or potassium carbonate, preferably potassium tert-butoxide or cesium carbonate.
  • the calixarene is selected from calix[4]arene, 4-alkylcalix[4]arene or 4-sulfonylcalix[4]arene, preferably tert-butylcalix[4]arene.
  • the dibromopyridine is selected from 2,6-dibromopyridine, 2,6-dichloropyridine, 2-bromo-6-chloropyridine, 2,6-difluoropyridine, 2-fluoro-6-chloropyridine or 2-fluoro-6-bromopyridine.
  • the metal salt compound is selected from acetate, chloride, bromide, sulfate or trifluoroacetate of an alkali metal.
  • the mass ratio of the ligand synthesized in step S1 to the metal salt compound is 1:(1-5), preferably 1:(1-4).
  • step S2 the metallation reaction is carried out in the presence of an organic solvent, and the organic solvent is selected from dimethyl sulfoxide, naphthalene or N-methylpyrrolidone.
  • the present invention also provides an application of a polymer whose main chain is a metal element, and the polymer is applied to optoelectronic materials, biomedical materials or superconducting materials.
  • the present invention has the following beneficial effects:
  • the present invention creatively proposes and synthesizes a new polymer whose main molecular chain is composed of metal atoms connected by chemical bonds;
  • FIG1 is a matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) diagram of the metal main chain polymer in the present invention
  • FIG2 is an extended X-ray absorption spectrum fine structure diagram of the metal main chain polymer in the present invention.
  • FIG. 3 is a UV-visible absorption spectrum of the metal main chain polymer of the present invention.
  • a polymer with a metal element as the main chain and a preparation method thereof, the specific steps are as follows:
  • the mass spectrum data are as follows: mass spectrum (MALDI-TOF, m/z) theoretical value C 5n H 4n+3 N 2n [M+H] + (n): 371.1(4), 463.2(5), 555.2(6), 647.3(7), 739.3(8), 831.4(9), 923.4(10); measured value: 371.1, 463.1, 555.2, 647.2, 739.3, 831.3, 923.4.
  • the high-resolution mass spectrum data are as follows: high-resolution mass spectrum theoretical value C 64 H 64 Br 4 N 4 O 4 [M+H] + : 1273.1706; measured value: 1273.1714.
  • step a The polyaminopyridine synthesized in step a (3.41 g) and the template compound bromopyridine calixarene synthesized in step b (400 mg, 0.31 mmol) were dissolved in 4-methylpyridine (60 mL). Tridibenzylideneacetone dipalladium (14.00 mg, 0.02 mmol), 1,3-bis(diphenylphosphine)propane (13.00 mg, 0.03 mmol) and potassium tert-butoxide (278 mg, 2.48 mmol) were quickly added under nitrogen protection, and then refluxed for 12 hours.
  • Mass spectrometry (MALDI-TOF, m/z) theoretical value C 54+5n H 60+4n N 2n O 4 Na(n):[M+Na] + (n):2821.3(24),2913.3(25),3005.3(26),3097.4(27),3190.4(28),3282.5(29),3374.5(30),3466.5(31),3558.6(32),3651.1(33),3743.3(34),3835.3(35),3927.7(36); measured values:2821.8,2913.9,3005.9,3098.0,3190.1,3282.1,3374.2,3466.2,3558.3,3650.8,3743.1,3835.0,3927.4.
  • step (1) The ligand synthesized in step (1) (40 mg), nickel acetate tetrahydrate (80 mg) and naphthalene (10 g) were mixed and stirred at 200° C. for 24 h under nitrogen protection. When cooled to 80° C., petroleum ether was added to filter out the naphthalene, and the filter cake was washed with dichloromethane. After removing the solvent from the obtained filtrate, 14.4 mg of the metal main chain polymer was obtained, with a yield of 28%.
  • Mass spectrometry (MALDI-TOF, m/z) theoretical value C 64+20n+5m Cl 0-1 H 68+12n+4m Cl 0-1 N 4+8n+2m Ni 1+2n O 4 [M] + (m, n):3516.4(1,5)3609.5(2,5),3700.5(3,5),3792.5(4,5),3884.6(5,5),3976.6(6,5),3997.4(1,6),4089.5(2,6),4182.5(3,6),4274.5(4,6),4479.3(5,6),4571.4(6,6); Measured values:3515.9,3609.0,3700.0,3792.1,3884.1,3976.1,3996.9,4089.0,4182.1,4274.1,4479.0,4571.1.
  • a polymer with a metal element as the main chain and a preparation method thereof, the specific steps are as follows:
  • 2-Aminopyridine (1.00 g, 10.63 mmol) and 2-amino-6-chloropyridine (13.67 g, 106.30 mmol) were dissolved in p-xylene (80 mL); palladium acetate (129 mg, 0.39 mmol), 1,1'-binaphthyl-2,2'-bisdiphenylphosphine (485.69 mg, 0.78 mmol) and cesium carbonate (31.17 g, 127.56 mmol) were quickly added under nitrogen protection, and stirred at 150°C for 24 hours. The solvent was removed by vacuum distillation, and the mixture was filtered after adding water and ultrasonic treatment. The filter cake was washed with water and ethanol successively, and 4.87 g of dark yellow powder was obtained after drying, with a yield of 71%.
  • step (1) b synthesis of the template compound in Example 1.
  • step a The polyaminopyridine synthesized in step a (3.41 g) and the template compound bromopyridine calixarene synthesized in step b (400 mg, 0.31 mmol) were dissolved in N-methylpyrrolidone (50 mL). Palladium acetate (6.85 mg, 0.03 mmol), 1,3-bis(diphenylphosphine)propane (30.04 mg, 0.06 mmol) and potassium tert-butoxide (278 mg, 2.48 mmol) were quickly added under nitrogen protection, and then refluxed for 24 hours. After the reaction was completed, the reaction solution was poured into ice water, filtered, and then the filter cake was washed with ethanol and dichloromethane successively. After drying, 2.51 g of brown-gray crude product was obtained, which was directly used for the next step reaction.
  • Mass spectrometry (MALDI-TOF, m/z) theoretical value C 54+5n H 60+4n N 2n O 4 Na[M+Na] + (n):2913.3(25),3005.3(26),3097.4(27),3190.4(28),3282.5(29),3374.5(30),3466.5(31),3558.6(32),3651.1(33),3743.3(34),3835.3(35),3927.7(36),4019.9(37); measured values:2913.9,3005.9,3098.0,3190.1,3282.1,3374.2,3466.2,3558.3,3650.8,3743.1,3835.0,3927.4,4019.9.9.
  • the ligand (60 mg) synthesized in step (1) and nickel chloride (83 mg) were dissolved in anhydrous dimethyl sulfoxide (40 mL), and stirred at 180° C. for 12 h under nitrogen protection. After the reaction, the solvent was removed by distillation under reduced pressure, and then dissolved and filtered with dichloromethane. After removing the solvent, 27 mg of the metal main chain polymer was obtained with a yield of 35%.
  • a polymer with a metal element as the main chain and a preparation method thereof, the specific steps are as follows:
  • the preparation process is the same as the synthesis of the template compound in step (1) of Example 1.
  • step a The polyaminopyridine synthesized in step a (5.32 g) and the template compound bromopyridine calixarene synthesized in step b (400 mg, 0.31 mmol) were dissolved in p-xylene (100 mL). Palladium acetate (13.72.00 mg, 0.06 mmol), 1,3-bis(diphenylphosphine)propane (13.00 mg, 0.03 mmol) and potassium tert-butoxide (278 mg, 2.48 mmol) were quickly added under nitrogen protection, and then refluxed for 36 h. After the reaction was completed, the reaction solution was poured into ice water, filtered, and then the filter cake was washed with ethanol and dichloromethane successively. After drying, 2.35 g of brown-gray crude product was obtained, which was directly used in the next step reaction.
  • the ligand (40 mg) synthesized in step (1) and nickel acetate tetrahydrate (120 mg) were added to 20 mL of anhydrous DMSO, and stirred at 200° C. for 24 h under nitrogen protection. After the reaction, the solvent was removed by distillation under reduced pressure, and then dissolved with dichloromethane, filtered, and the metal main chain polymer 18.51 mg was obtained after removing the solvent, with a yield of 36%.
  • the structure of the synthesized metal main chain polymer is as shown in the above formula, and its molecular weight can reach more than 5000 ( Figure 1, Example 3).
  • Figure 2 in the extended X-ray absorption spectrum fine structure diagram of the metal main chain polymer, There is an absorption peak at The results are consistent, indicating that there is a Ni-Ni metal bond in the synthesized metal main chain polymer; its UV-visible absorption band in dichloromethane is in the wavelength range of 370-450nm, and the maximum absorption wavelength is 414nm ( Figure 3, Example 2).
  • the molecular structure was tested using the nuclear magnetic resonance method, with deuterated dimethyl sulfoxide as the solvent; the molecular weight was tested using a Bruker McriOTOF11 polymer mass spectrometer and an AB SCIEX 5800 matrix-assisted laser desorption ionization time-of-flight mass spectrometer (trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile as the matrix and sodium trifluoroacetate as the sodium salt); the X-ray absorption spectrum was tested using the 1W1B beamline of the Beijing Synchrotron Radiation Facility (BSRF); and the UV-visible absorption spectrum was tested using a Perkin-Elmer Lambda750 UV-visible spectrophotometer.
  • BSRF Synchrotron Radiation Facility
  • the main chain of the synthesized metal main chain polymer contains metal atoms connected by chemical bonds, which may have unique properties in terms of light, heat, force, sound, electricity, magnetism, etc., and thus will be used as optoelectronic materials, biomedical materials, superconducting materials, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

本发明涉及一种主链为金属元素的高分子及其制备方法和应用,一种主链为金属元素的高分子,包括主链和配体,所述主链为由通过化学键相连的金属原子组成,化学结构式满足以下通式:(I)式中,n为重复单元数,n大于10;M为金属原子,M选自过渡金属中的一种或多种;所述主链上的金属原子通过配位键与配体相连。所述金属主链高分子的制备步骤包含:配体的合成以及金属主链高分子的合成。本发明所制备的金属主链高分子为未来设计新的功能高分子开辟了新的途径。

Description

一种主链为金属元素的高分子及其制备方法和应用 技术领域
本发明涉及高分子材料领域,尤其是涉及一种主链为金属元素的高分子及其制备方法和应用。
背景技术
1920年,Hermann Staudinger在《德国化学会会志》上发表了一篇划时代的论文《论聚合》,提出“聚合反应是大量小分子依靠化学键结合形成大分子的过程”的假说,标志着高分子学科的建立。这个概念到30年代末逐步被学界接受,此后高分子科学得到了迅速发展,取得了一系列重要进展和突破。40年代开始,Paul J.Flory提出了高分子溶液理论,奠定了高分子物理的研究基础。50年代Karl Ziegler和Giulio Natta发展了配位聚合反应,合成等规聚乙烯和聚丙烯。60年代,Robert Bruce Merrifield提出了多肽的固相有机合成方法。Pierre-Gilles de Gennes成功地将研究简单体系中有序现象的方法推广到高分子、液晶等复杂体系。70年代开始,Alan J.Heeger、Alan G.MacDiarmid和Hideki Shirakawa开始研究导电高分子并做出了奠基性工作。Robert H.Grubbs提出了烯烃复分解反应催化剂,在高分子合成上做出了重要贡献。
通过上述高分子学科从诞生到发展的重要事件,纵观过去100年高分子科学的发展历程,有机高分子都是以非金属原子作为主链的基本组成,高分子物理和高分子化学的理论都是建立在上述基础上。但是,迄今为止,金属主链高分子尚未见报道。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种主链为金属元素的高分子及其制备方法和应用,其主链由金属原子通过化学键连接而成,并通过配体的金属化反应制备得到,由于高分子主链中存在着化学键相连的金属原子,其在光、热、力、声、电、磁等方面可能有着独特的性质,从而在光电器件、能源信息、生物医用材料、超导材料等方面具有潜在的应用。
本发明的目的可以通过以下技术方案来实现:
一种主链为金属元素的高分子,包括主链和配体,
所述主链为由通过化学键相连的金属原子组成,化学结构式满足以下通式:
式中,n为重复单元数,n大于10;
M为金属原子,M选自过渡金属中的一种或多种;
所述主链上的金属原子通过配位键与配体相连。
进一步地,主链化学结构式为
进一步地,所述M选自铬、锰、铁、钴、镍、铜、铑、钯、银、铱、铂或金。
上述更进一步地,所述M选自镍、铑或钯。
进一步地,所述高分子的数均分子量超过3000。
上述更进一步地,所述配体中含有吡啶基、萘啶基、氨基、羟基、苯基、巯基、羧基、共轭双键或磷基中的一种或多种基团。
上述更进一步地,所述配体含有吡啶或氨基基团。
上述更进一步地,所述配体含有吡啶或氨基基团时,高分子结构式如下:
式中,n为重复单元数,n大于10。
本发明还提供一种主链为金属元素的高分子的制备方法,具体步骤如下:
S1、合成配体:将聚合单体通过聚合反应相连得到配体基元,再通过偶联反应将多个配体基元与模板化合物相连接得到相应的配体;
S2、合成金属主链高分子:将步骤S1中合成的配体与金属盐化合物在加热时进行金属化反应,得到相应的金属主链高分子。
进一步地,当所述配体选自含有吡啶基基团时,步骤S1中,所述聚合单体为氨基吡啶和卤代氨基吡啶。
上述更进一步地,所述氨基吡啶为2-氨基吡啶。
上述更进一步地,所述卤代氨基吡啶选自2-氟-6-氨基吡啶、2-溴-6-氨基吡啶、2-氯-6-氨基吡啶、2-碘-6-氨基吡啶、2-溴-4-烷基-6-氨基吡啶、2-氯-4-烷基-6-氨基吡啶、2-氟-4-烷基-6-氨基吡啶或2-氟-4-烷基-6-氨基吡啶,优选为2-溴-6-氨基吡啶、2-氯-6-氨基吡啶或2-氟-6-氨基吡啶。
上述更进一步地,所述氨基吡啶和卤代氨基吡啶的比例为1:(6-80),优选为1:(8-16)。
进一步地,步骤S1中,合成配体具体步骤为,将聚合单体溶于有机溶剂中,在氮气保护下,在钯催化剂、有机磷配体和碱催化下聚合得到配体基元;
将杯芳烃、二溴吡啶和碱溶于有机溶剂中,在氮气保护下,加热偶联得到模板化合物;
将配体基元和模板化合物溶解在有机溶剂中,在氮气保护下,在钯催化剂、有机磷配体和碱催化下加热偶联得到相应的配体。
上述更进一步地,所述配体基元为聚氨基吡啶。
上述更进一步地,所述有机溶剂选自甲苯、吡啶、甲基吡啶、二氧六环、四氢呋喃、N,N-二甲基甲酰胺、N-甲基吡咯烷酮或二甲苯,优选为甲苯、吡啶或4-甲基吡啶。
上述更进一步地,所述钯催化剂选自三(二亚苄基丙酮)二钯、醋酸钯、(2-二环己基膦-3,6-二甲氧基-2',4',6'-三异丙基-1,1'-联苯)[2-(2-氨基乙基苯基)]氯化钯、氯(2-二环己基膦基2”,6”-二异丙基-1,1”-联苯)[2-(2-氨基乙基苯基)]钯(II)或二氯[1,1'-二(二苯基膦)二茂铁]钯,优选为三(二亚苄基丙酮)二钯、醋酸钯或二氯[1,1'-二(二苯基膦)二茂铁]钯。
上述更进一步地,所述有机磷配体选自1,3-双(二苯基磷)丙烷、1,1'-联萘-2,2'-双二苯膦、2-二环己基膦-2',4',6'-三异丙基联苯或二环己基[3,6-二甲氧基-2',4',6'-三异丙基[1,1'-联苯]-2-基]膦,优选为1,3-双(二苯基磷)丙烷、1,1'-联萘-2,2'-双二苯膦或2-二环己基膦-2',4',6'-三异丙基联苯。
上述更进一步地,所述碱选自叔丁醇钾、碳酸铯、酸钾、叔丁醇钠、二异丙基乙胺、碳酸钠或碳酸钾,优选为叔丁醇钾或碳酸铯。
上述更进一步地,所述杯芳烃选自杯[4]芳烃、4-烷基杯[4]芳烃或4-磺酰杯[4]芳烃,优选为叔丁基杯[4]芳烃。
上述更进一步地,所述二溴吡啶选自2,6-二溴吡啶、2,6-二氯吡啶、2-溴-6-氯吡啶、2,6-二氟吡啶、2-氟-6-氯吡啶或2-氟-6溴吡啶。
进一步地,步骤S2中,所述金属盐化合物选自碱金属的醋酸盐、氯化盐、溴化盐、硫酸盐或三氟乙酸盐。
上述更进一步地,步骤S1中合成的配体与金属盐化合物的质量比为1:(1-5),优选为1:(1-4)。
进一步地,步骤S2中,金属化反应是在有机溶剂存在下进行的,有机溶剂选自二甲基亚砜、萘或N-甲基吡咯烷酮。
此外,本发明还提供一种主链为金属元素的高分子的应用,将上述高分子应用于光电材料、生物医用材料或超导材料。
与现有技术相比,本发明有益效果如下:
(1)本发明创造性地提出并合成出一种新的聚合物,其分子主链由通过化学键连接的金属原子构成;
(2)本制备方法简便高效;通过调控氨基吡啶和卤代氨基吡啶的比例和金属原子的种类,可以获得具有不同金属和不同长度的金属主链高分子,为未来设计新的功能高分子开辟了新的途径。
附图说明
图1为本发明中金属主链高分子的基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)图;
图2为本发明中金属主链高分子的扩展X射线吸收谱精细结构图;
图3为本发明中金属主链高分子的紫外–可见吸收光谱图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
一种主链为金属元素的高分子及其制备方法,具体步骤如下:
(1)配体的合成
a.配体基元聚氨基吡啶的合成
将2-氨基吡啶(1.00g,10.63mmol)和2-氨基-6-溴吡啶(14.70g,85.04mmol)溶解在甲苯(50mL)中;氮气保护下快速加入三二亚苄基丙酮二钯(366mg,0.39mmol)、1,3-双(二苯基磷)丙烷(327mg,0.78mmol)和叔丁醇钾(14.31g,127.56mmol),并在120℃下搅拌反应8h。减压蒸馏除去溶剂,过滤并先后用水、乙醇洗涤滤饼,干燥后得深黄色粉末4.67g,产率68%。
其核磁共振氢谱和红外谱图数据分别如下:
1H NMR(400MHz,DMSO-d6,ppm):δ9.35(s,-NH-),9.11–8.96(m,-NH-),8.78(s,-NH-),8.26–8.20(m,Py-H),7.94(d,Py-H),7.69–7.59(m,Py-H),7.59–7.41(m,Py-H),7.38–7.16(m,Py-H),7.13–7.07(m,Py-H),6.99–6.94(m,Py-H),6.89–6.81(m,Py-H),5.98(d,Py-H),5.62(m,-NH2)。
FTIR(KBr,cm-1):3477,3395,3197,3021,1603,1575,1507,1422,1249,1152,987,876, 776,721,615,512。
其质谱数据如下:质谱(MALDI-TOF,m/z)理论值C5nH4n+3N2n[M+H]+(n):371.1(4),463.2(5),555.2(6),647.3(7),739.3(8),831.4(9),923.4(10);实测值:371.1,463.1,555.2,647.2,739.3,831.3,923.4。
b.模板化合物的合成
将氢化钠(3.12g,60%溶于石蜡中,0.078mol,10.00eq)分散在无水N,N-二甲基甲酰胺(150mL)中。在氮气保护下缓慢加入4-叔丁基杯[4]芳烃(5.00g,0.008mol,1.00eq),并于50℃下搅拌反应30分钟后加入2,6-二溴吡啶(29.13g,0.123mol,16.00eq),回流反应12h。待溶液冷却后,缓慢加入无水乙醇(10mL)淬灭反应,减压蒸馏除去溶剂,过滤并先后用乙醇和甲醇洗涤滤饼,再将滤饼用丙酮溶解过滤,二氯甲烷/甲醇重结晶得白色固体粉末3.41g,产率34%。其核磁共振氢谱、碳谱和红外谱图数据如下:
1H NMR(400MHz,CDCl3,ppm):δ7.60(dd,J=8.2,7.5Hz,4H),7.37(dd,J=8.2,0.7Hz,4H),7.08(dd,J=7.5,0.6Hz,4H),7.06(s,8H),3.78(d,J=13.0Hz,4H),3.16(d,J=13.0Hz,4H),1.18(s,36H)。
13C NMR(100MHz,CDCl3,ppm):δ164.2,147.2,145.6,140.8,138.5,133.9,125.6,121.1,110.4,34.2,31.4,31.1。
FTIR(KBr,cm-1):3077,3049,2962,2933,2903,2866,1577,1557,1480,1429,1405,1362,1301,1283,1261,1236,1192,1157,1137,1118,1076,983,924,892,879,871,821,785,740,724,670,641,540,442。
其高分辨质谱数据如下:高分辨质谱理论值C64H64Br4N4O4[M+H]+:1273.1706;实测值:1273.1714。
c.配体的合成
将步骤a合成的聚氨基吡啶(3.41g)和步骤b合成的模板化合物溴吡啶杯芳烃(400mg,0.31mmol)溶解于4-甲基吡啶(60mL)中。在氮气保护下快速加入三二亚苄基丙酮二钯(14.00mg,0.02mmol)、1,3-双(二苯基磷)丙烷(13.00mg,0.03mmol)和叔丁醇钾(278mg,2.48mmol),然后回流反应12h。反应结束后,将反应液倒入冰水中,过滤,然后先后用乙醇和二氯甲烷洗涤滤饼,干燥后得棕灰色粗产物2.12g,直接用于下一步反应。其质谱数据如下:
质谱(MALDI-TOF,m/z)理论值C54+5nH60+4nN2nO4Na(n):[M+Na]+(n):2821.3(24),2913.3(25),3005.3(26),3097.4(27),3190.4(28),3282.5(29),3374.5(30),3466.5(31),3558.6(32),3651.1(33),3743.3(34),3835.3(35),3927.7(36);实测值:2821.8,2913.9,3005.9,3098.0,3190.1,3282.1,3374.2,3466.2,3558.3,3650.8,3743.1,3835.0,3927.4。
(2)金属主链高分子的合成
将步骤(1)合成的配体(40mg)、四水合醋酸镍(80mg)和萘(10g)混合,并在氮气保护下,于200℃下搅拌反应24h。冷却至80℃时,加入石油醚过滤除去萘,再用二氯甲烷洗涤滤饼,所得滤液除去溶剂后得到金属主链高分子14.4mg,产率28%。
其红外谱图数据如下:
FTIR(KBr,cm-1):2953,2923,2852,1599,1583,1557,1410,1307,1257,1226,1194,1153,1126,1012,842,767,722,557。
其质谱数据如下:
质谱(MALDI-TOF,m/z)理论值C64+20n+5mCl0-1H68+12n+4mCl0-1N4+8n+2mNi1+2nO4[M]+(m, n):3516.4(1,5)3609.5(2,5),3700.5(3,5),3792.5(4,5),3884.6(5,5),3976.6(6,5),3997.4(1,6),4089.5(2,6),4182.5(3,6),4274.5(4,6),4479.3(5,6),4571.4(6,6);实测值:3515.9,3609.0,3700.0,3792.1,3884.1,3976.1,3996.9,4089.0,4182.1,4274.1,4479.0,4571.1。
实施例2
一种主链为金属元素的高分子及其制备方法,具体步骤如下:
(1)配体的合成
a.配体基元聚氨基吡啶的合成
将2-氨基吡啶(1.00g,10.63mmol)和2-氨基-6-氯吡啶(13.67g,106.30mmol)溶解在对二甲苯(80mL)中;氮气保护下快速加入醋酸钯(129mg,0.39mmol)、1,1'-联萘-2,2'-双二苯膦(485.69mg,0.78mmol)和碳酸铯(31.17g,127.56mmol),并在150℃下搅拌反应24h。减压蒸馏除去溶剂,加水超声后过滤,再先后用水、乙醇洗涤滤饼,干燥后得深黄色粉末4.87g,产率71%。
其核磁共振氢谱和红外谱图数据如下:
1H NMR(400MHz,DMSO-d6,ppm):δ9.35(s,-NH-),9.11–8.96(m,-NH-),8.78(s,-NH-),8.26–8.20(m,Py-H),7.94(d,Py-H),7.69–7.59(m,Py-H),7.59–7.41(m,Py-H),7.38–7.16(m,Py-H),7.13–7.07(m,Py-H),6.99–6.94(m,Py-H),6.89–6.81(m,Py-H),5.98(d,Py-H),5.62(m,-NH2)。
FTIR(KBr,cm-1):3477,3395,3197,3021,1603,1575,1507,1422,1249,1152,987,876,776,721,615,512.
其质谱数据如下:
质谱(MALDI-TOF,m/z)理论值C5nH4n+3N2n[M+H]+(n):463.2(5),555.2(6),647.3(7),739.3(8),831.4(9),923.4(10),1015.6(11);实测值:463.1,555.2,647.2,739.3,831.3,923.4,1015.5。
b.模板化合物的合成
制备工艺与实施例1步骤(1)中b.模板化合物的合成的相同。
c.配体的合成
将步骤a合成的聚氨基吡啶(3.41g)和步骤b合成的模板化合物溴吡啶杯芳烃(400mg,0.31mmol)溶解于N-甲基吡咯烷酮(50mL)中。在氮气保护下快速加入醋酸钯(6.85mg,0.03mmol)、1,3-双(二苯基磷)丙烷(30.04mg,0.06mmol)和叔丁醇钾(278mg,2.48mmol),然后回流反应24h。反应结束后,将反应液倒入冰水中,过滤,然后先后用乙醇和二氯甲烷洗涤滤饼,干燥后得棕灰色粗产物2.51g,直接用于下一步反应。
其质谱数据如下:
质谱(MALDI-TOF,m/z)理论值C54+5nH60+4nN2nO4Na[M+Na]+(n):2913.3(25),3005.3(26),3097.4(27),3190.4(28),3282.5(29),3374.5(30),3466.5(31),3558.6(32),3651.1(33),3743.3(34),3835.3(35),3927.7(36),4019.9(37);实测值:2913.9,3005.9,3098.0,3190.1,3282.1,3374.2,3466.2,3558.3,3650.8,3743.1,3835.0,3927.4,4019.9。
(2)金属主链高分子的合成
将步骤(1)合成的配体(60mg)和氯化镍(83mg)溶解于无水二甲基亚砜(40mL)中,并在氮气保护下,于180℃下搅拌反应12h。反应结束后,减压蒸馏除去溶剂,再用二氯甲烷溶解过滤,除去溶剂后得到金属主链高分子27mg,产率35%。
其红外谱图数据如下:
FTIR(KBr,cm-1):2953,2923,2852,1599,1583,1557,1410,1307,1257,1226,1194,1153,1126,1012,842,767,722,557。
其质谱数据如下:
质谱(MALDI-TOF,m/z)理论值C64+20n+5mCl0-1H68+12n+4mCl0-1N4+8n+2mNi1+2nO4[M]+(m,n):3218.5(3,4),3310.6(4,4),3402.6(5,4),3494.6(6,4),3516.4(1,5),3609.5(2,5),3700.5(3,5),3792.5(4,5),3884.6(5,5),3976.6(6,5),3997.4(1,6),4089.5(2,6),4182.5(3,6), 4274.5(4,6),4479.3(5,6),4571.4(6,6),4663.5(3,7),4755.5(4,7);实测值:3218.0,3310.1,3402.1,3494.2,3515.9;3609.0;3700.0,3792.1,3884.1,3976.1,3996.9,4089.0,4182.1,4274.1,4479.0,4571.1,4663.2,4755.2。
实施例3
一种主链为金属元素的高分子及其制备方法,具体步骤如下:
(1)配体的合成
a.配体基元聚氨基吡啶的合成
将2-氨基吡啶(1.00g,10.63mmol)和2-氨基-6-氟吡啶(32.44g,148.82mmol)溶解4-甲基吡啶(100mL)中;氮气保护下快速加入1,1'-双二苯基膦二茂铁二氯化钯(399mg,0.39mmol)、1,1'-联萘-2,2'-双二苯膦(679mg,1.09mmol)和碳酸铯(43.66g,133.94mmol),并在150℃下搅拌反应8h。减压蒸馏除去溶剂,过滤并先后用水、乙醇洗涤滤饼,干燥后得深黄色粉末4.67g,产率68%。
其核磁共振氢谱和红外谱图数据如下:
1H NMR(400MHz,DMSO-d6,ppm):δ9.35(s,-NH-),9.11–8.96(m,-NH-),8.78(s,-NH-),8.26–8.20(m,Py-H),7.94(d,Py-H),7.69–7.59(m,Py-H),7.59–7.41(m,Py-H),7.38–7.16(m,Py-H),7.13–7.07(m,Py-H),6.99–6.94(m,Py-H),6.89–6.81(m,Py-H),5.98(d,Py-H),5.62(m,-NH2)。
FTIR(KBr,cm-1):3477,3395,3197,3021,1603,1575,1507,1422,1249,1152,987,876,776,721,615,512。
其质谱数据如下:
质谱(MALDI-TOF,m/z)理论值C5nH4n+3N2n[M+H]+(n):463.2(5),555.2(6),647.3(7),739.3(8),831.4(9),923.4(10),1015.6(11),1107.6(12);实测值:463.1,555.2,647.2,739.3,831.3,923.4,1015.5,1107.6。
b.模板化合物的合成
制备工艺与实施例1步骤(1)中模板化合物的合成的相同。
c.配体的合成
将步骤a合成的聚氨基吡啶(5.32g)和步骤b合成的模板化合物溴吡啶杯芳烃(400mg,0.31mmol)溶解于对二甲苯(100mL)中。在氮气保护下快速加入醋酸钯(13.72.00mg,0.06mmol)、1,3-双(二苯基磷)丙烷(13.00mg,0.03mmol)和叔丁醇钾(278mg,2.48mmol),然后回流反应36h。反应结束后,将反应液倒入冰水中,过滤,然后先后用乙醇和二氯甲烷洗涤滤饼,干燥后得棕灰色粗产物2.35g,直接用于下一步反应。
其质谱数据如下:
质谱(MALDI-TOF,m/z)理论值C54+5nH60+4nN2nO4Na[M+Na]+(n):2913.3(25),3005.3(26),3097.4(27),3190.4(28),3282.5(29),3374.5(30),3466.5(31),3558.6(32),3651.1(33),3743.3(34),3835.3(35),3927.7(36),4019.9(37),4112.2(38),4202.8(39),4295.8(40);实测值:2913.9,3005.9,3098.0,3190.1,3282.1,3374.2,3466.2,3558.3,3650.8,3743.1,3835.0,3927.4,4019.9,4111.9,4202.6,4295.6。
(2)金属主链高分子的合成
将步骤(1)合成的配体(40mg)和四水合醋酸镍(120mg)加入到20mL无水DMSO中,并在氮气保护下,于200℃下搅拌反应24h。反应结束后,减压蒸馏除去溶剂,再用二氯甲烷溶解,过滤,除去溶剂后得到金属主链高分子18.51mg,产率36%。
其红外谱图数据如下:
FTIR(KBr,cm-1):2953,2923,2852,1599,1583,1557,1410,1307,1257,1226,1194,1153,1126,1012,842,767,722,557。
其质谱数据如下:
质谱(MALDI-TOF,m/z)理论值C64+20n+5mCl0-1H68+12n+4mCl0-1N4+8n+2mNi1+2nO4[M]+(m,n):3516.4(1,5),3609.5(2,5),3700.5(3,5),3792.5(4,5),3884.6(5,5),3976.6(6,5),3997.4(1,6),4089.5(2,6),4182.5(3,6),4274.5(4,6),4479.3(5,6),4571.4(6,6),4755.5(4,7),4961.4(1,8),5053.4(2,8),5145.5(3,8),5386.1(0,9);实测值:3515.9,3609.0,3700.0,3792.1,3884.1,3976.1,3996.9,4089.0,4182.1,4274.1,4479.0,4571.1,4755.2,4961.1,5053.1,5145.2,5385.8。
经检测,所合成金属主链高分子结构如上式所示,其分子量可达5000以上(图1,实施例3)。如图2所示(实施例1),在金属主链高分子的扩展X射线吸收谱精细结构图中,处有一吸收峰,和参比镍箔的吸收峰相一致,表明合成的金属主链高分子中存在Ni-Ni金属键;其在二氯甲烷中紫外可见吸收带在370-450nm波长范围内,最大吸收波长为414nm(图3,实施例2)。
其中:分子结构测试使用核磁共振法,用氘代二甲基亚砜做溶剂;分子量使用Bruker McriOTOF11高分子质谱仪和AB SCIEX 5800基质辅助激光解吸电离飞行时间质谱仪测试(反式-2-[3-(4-叔丁基苯基)-2-甲基-2-亚丙烯基]丙二腈为基质,三氟乙酸钠为钠盐);X射线吸收谱使用北京同步辐射装置(BSRF)的1W1B束线测试;紫外可见吸收光谱使用Perkin-Elmer Lambda750紫外可见分光光度计测试。
所合成金属主链高分子的主链中存在着化学键相连的金属原子,其在光、热、力、声、电、磁等方面的可能有着独特的性质,从而将作为光电材料、生物医用材料、超导材料等方面进行应用。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种主链为金属元素的高分子,其特征在于,
    包括主链和配体,
    所述主链为由通过化学键相连的金属原子组成,化学结构式满足以下通式:
    式中,n为重复单元数,n大于10;
    M为金属原子,M选自过渡金属中的一种或多种;
    所述主链上的金属原子通过配位键与配体相连。
  2. 根据权利要求1所述的一种主链为金属元素的高分子,其特征在于,所述M选自铬、锰、铁、钴、镍、铜、铑、钯、银、铱、铂或金;
    所述高分子的数均分子量超过3000;
    所述配体中含有吡啶基、萘啶基、氨基、羟基、苯基、巯基、羧基、共轭双键或磷基中的一种或多种基团。
  3. 根据权利要求2所述的一种主链为金属元素的高分子,其特征在于,所述配体含有吡啶或氨基基团。
  4. 根据权利要求3所述的一种主链为金属元素的高分子,其特征在于,所述配体含有吡啶或氨基基团时,高分子结构式如下:
    式中,n为重复单元数,n大于10。
  5. 一种如权利要求1-4中任一所述主链为金属元素的高分子的制备方法,其特征在于,具体步骤如下:
    S1、合成配体:将聚合单体通过聚合反应相连得到配体基元,再通过偶联反应将多个配体基元与模板化合物相连接得到相应的配体;
    S2、合成金属主链高分子:将步骤S1中合成的配体与金属盐化合物在加热时进行金属化反应,得到相应的金属主链高分子。
  6. 根据权利要求5所述的一种主链为金属元素的高分子的制备方法,其特征在于,
    当所述配体选自含有吡啶基基团时,
    步骤S1中,所述聚合单体为氨基吡啶和卤代氨基吡啶;
    所述氨基吡啶为2-氨基吡啶,
    所述卤代氨基吡啶选自2-氟-6-氨基吡啶、2-溴-6-氨基吡啶、2-氯-6-氨基吡啶、2-碘-6-氨基吡啶、2-溴-4-烷基-6-氨基吡啶、2-氯-4-烷基-6-氨基吡啶、2-氟-4-烷基-6-氨基吡啶或2-氟-4-烷基-6-氨基吡啶,
    所述氨基吡啶和卤代氨基吡啶的比例为1:(6-80)。
  7. 根据权利要求5所述的一种主链为金属元素的高分子的制备方法,其特征在于,步骤S1中,合成配体具体步骤为,将聚合单体溶于有机溶剂中,在氮气保护下,在钯催化剂、有机磷配体和碱催化下聚合得到配体基元,将杯芳烃、二溴吡啶和碱溶于有机溶剂中,在氮气保护下,加热偶联得到模板化合物,将配体基元和模板化合物溶解在有机溶剂中,在氮气保护下,在钯催化剂、有机磷配体和碱催化下加热偶联得到相应的配体。
  8. 根据权利要求7所述的一种主链为金属元素的高分子的制备方法,其特征在于,所述配体基元为聚氨基吡啶,
    所述有机溶剂选自甲苯、吡啶、甲基吡啶、二氧六环、四氢呋喃、N,N-二甲基甲酰胺、N-甲基吡咯烷酮或二甲苯,
    所述钯催化剂选自三(二亚苄基丙酮)二钯、醋酸钯、(2-二环己基膦-3,6-二甲氧基-2',4',6'-三异丙基-1,1'-联苯)[2-(2-氨基乙基苯基)]氯化钯、氯(2-二环己基膦基2”,6”-二异丙基-1,1”-联苯)[2-(2-氨基乙基苯基)]钯(II)或二氯[1,1'-二(二苯基膦)二茂铁]钯,
    所述有机磷配体选自1,3-双(二苯基磷)丙烷、1,1'-联萘-2,2'-双二苯膦、2-二环己基膦-2',4',6'-三异丙基联苯或二环己基[3,6-二甲氧基-2',4',6'-三异丙基[1,1'-联苯]-2-基]膦,
    所述碱选自叔丁醇钾、碳酸铯、酸钾、叔丁醇钠、二异丙基乙胺、碳酸钠或碳酸钾,
    所述杯芳烃选自杯[4]芳烃、4-烷基杯[4]芳烃或4-磺酰杯[4]芳烃,
    所述二溴吡啶选自2,6-二溴吡啶、2,6-二氯吡啶、2-溴-6-氯吡啶、2,6-二氟吡啶、2-氟-6-氯吡啶或2-氟-6溴吡啶。
  9. 根据权利要求5所述的一种主链为金属元素的高分子的制备方法,其特征在于,步骤S2中,所述金属盐化合物选自碱金属的醋酸盐、氯化盐、溴化盐、 硫酸盐或三氟乙酸盐,步骤S1中合成的配体与金属盐化合物的质量比为1:(1-5),
    金属化反应是在有机溶剂存在下进行的,有机溶剂选自二甲基亚砜、萘或N-甲基吡咯烷酮。
  10. 一种如权利要求1-4中任一所述主链为金属元素的高分子的应用,其特征在于,将所述高分子应用于光电材料、生物医用材料或超导材料。
PCT/CN2023/092389 2022-11-04 2023-05-05 一种主链为金属元素的高分子及其制备方法和应用 WO2024093176A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211377822.2A CN115746309B (zh) 2022-11-04 2022-11-04 一种主链为金属元素的高分子及其制备方法和应用
CN202211377822.2 2022-11-04

Publications (1)

Publication Number Publication Date
WO2024093176A1 true WO2024093176A1 (zh) 2024-05-10

Family

ID=85357920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092389 WO2024093176A1 (zh) 2022-11-04 2023-05-05 一种主链为金属元素的高分子及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115746309B (zh)
WO (1) WO2024093176A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115746309B (zh) * 2022-11-04 2023-08-29 复旦大学 一种主链为金属元素的高分子及其制备方法和应用
CN115894958B (zh) * 2022-12-19 2023-11-07 复旦大学 一种具有精准长度的金属主链高分子及其合成方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323675A (ja) * 2003-04-24 2004-11-18 Sumitomo Seika Chem Co Ltd ポリアミノピリジン類の製造方法
CN111971425A (zh) * 2018-03-29 2020-11-20 东丽株式会社 金属氧化物纤维的制造方法和金属氧化物纤维
WO2022202398A1 (ja) * 2021-03-22 2022-09-29 東レ株式会社 金属-酸素-金属結合を主鎖とする高分子、その組成物、固体物およびその製造方法、ならびに電子部品および繊維
CN115746309A (zh) * 2022-11-04 2023-03-07 复旦大学 一种主链为金属元素的高分子及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323675A (ja) * 2003-04-24 2004-11-18 Sumitomo Seika Chem Co Ltd ポリアミノピリジン類の製造方法
CN111971425A (zh) * 2018-03-29 2020-11-20 东丽株式会社 金属氧化物纤维的制造方法和金属氧化物纤维
WO2022202398A1 (ja) * 2021-03-22 2022-09-29 東レ株式会社 金属-酸素-金属結合を主鎖とする高分子、その組成物、固体物およびその製造方法、ならびに電子部品および繊維
CN115746309A (zh) * 2022-11-04 2023-03-07 复旦大学 一种主链为金属元素的高分子及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JITENDRA K. BERA: "Chain Compounds Based on Transition Metal Backbones: New Life for an Old Topic", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, VERLAG CHEMIE, HOBOKEN, USA, vol. 41, no. 23, 2 December 2002 (2002-12-02), Hoboken, USA, pages 4453 - 4457, XP093166516, ISSN: 1433-7851, DOI: 10.1002/1521-3773(20021202)41:23<4453::AID-ANIE4453>3.0.CO;2-1 *
KAI-WEN ZENG: "Metal-Backboned Polymer: Conception, Design and Synthesis", CHINESE JOURNAL OF POLYMER SCIENCE, CHINESE CHEMICAL SOCIETY AND INSTITUTE OF CHEMISTRY, CAS, BEIJING, vol. 41, no. 1, 1 January 2023 (2023-01-01), Beijing, pages 3 - 6, XP093166514, ISSN: 0256-7679, DOI: 10.1007/s10118-022-2887-x *

Also Published As

Publication number Publication date
CN115746309A (zh) 2023-03-07
CN115746309B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
WO2024093176A1 (zh) 一种主链为金属元素的高分子及其制备方法和应用
Liu et al. Silver (I) coordination polymers of fluorescent oligo (phenylenevinylene) with π− π Stackings: luminescence and conductivity
Evans et al. Dinitrogen reduction by Tm (II), Dy (II), and Nd (II) with simple amide and aryloxide ligands
Grosshenny et al. Construction of preorganized polytopic ligands via palladium-promoted cross-coupling reactions
Li et al. Synthesis, crystal structures, and third-order nonlinear optical properties of a series of ferrocenyl organometallics
Leandri et al. Electronic and structural effects of inner sphere coordination of chloride to a homoleptic copper (II) diimine complex
Kempe et al. Mononuclear tris (aminopyridinato) zirconium alkyl, aryl, and alkynyl complexes
Sun et al. Self-assembly molecular squares with metal complexes as bridging ligands
EP1923385A1 (en) Iridium complex, carbazole derivatives and copolymer having the same
CN109923104A (zh) 稳定的聚(咪唑鎓)氢氧化物
Zhang et al. A multifunctional colorimetric sensor originating from a cadmium naphthalene diimide-based metal–organic framework: photochromism, hydrochromism, and vapochromism
Trujillo et al. Organometallic–inorganic conjugated unsymmetrical schiff-base hybrids. Synthesis, characterization, electrochemistry and X-ray crystal structures of functionalized trinuclear iron–nickel–ruthenium dipolar chromophores
Wu et al. Using an isolation chromophore to further improve the comprehensive performance of nonlinear optical (NLO) dendrimers
Pammer et al. Metallopolymers featuring boratabenzene iron complexes
CN106000469A (zh) 含有钯配合物的催化剂及其制备方法与应用
Celedón et al. Second-order NLO active heterotrimetallic schiff base metallopolymer
Du et al. Poly (arylene ether ketone) s with pendant porphyrins: synthesis and investigation on optical limiting properties
Li et al. Two temperature-induced 1D Cu II chain enantiomeric pairs showing different magnetic properties and nonlinear optical responses
Dickie et al. A unique mechanism for base catalyzed hydrolysis of pentaaminecobalt (III) complexes containing picolyl residues
CN103992309A (zh) 侧链型磁性单体、聚合物及其可控合成方法
Churchill et al. Structural studies on ruthenium carbonyl hydrides. 15. X-ray structural analyses of symmetrically and unsymmetrically substituted. mu. 3-. eta. 3-C3R3 complexes of ruthenium:(. mu.-H) Ru3 (. mu. 3-. eta. 3-CMeCMeCMe)(CO) 9,(. mu.-H) Ru3 (. mu. 3-. eta. 3-CMeCMeCOMe)(CO) 9, and (. mu.-H) Ru3 (. mu. 3-. eta. 3-CMeCMeCSEt)(CO) 9. Influence of. pi.-donor substituents upon nido-arachno polyhedral distortion
Celedón et al. Side‐Chain Metallopolymers Containing Second‐Order NLO‐Active Bimetallic NiII and PdII Schiff‐Base Complexes: Syntheses, Structures, Electrochemical and Computational Studies
CN103724377A (zh) 2,6-二烯胺吡啶双核钴配合物催化剂及其制备方法与应用
White et al. Synthesis and characterisation of adducts of [Pt2 (μ-S) 2 (PPh3) 4] with organo-palladium and platinum-hydride substrates
Thompson et al. Anionic Fullerene-60 Complexes of Manganese (− I), Cobalt (− I), and Rhenium (− I): Thermal and Photoinduced Electron Transfer Processes between Metal Carbonylate Anions and C60

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884118

Country of ref document: EP

Kind code of ref document: A1