WO2024092859A1 - 一种数字化矿山巡检系统及实现方法 - Google Patents

一种数字化矿山巡检系统及实现方法 Download PDF

Info

Publication number
WO2024092859A1
WO2024092859A1 PCT/CN2022/130713 CN2022130713W WO2024092859A1 WO 2024092859 A1 WO2024092859 A1 WO 2024092859A1 CN 2022130713 W CN2022130713 W CN 2022130713W WO 2024092859 A1 WO2024092859 A1 WO 2024092859A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
digital
mine
unmanned aerial
aerial vehicle
Prior art date
Application number
PCT/CN2022/130713
Other languages
English (en)
French (fr)
Inventor
张立川
王振堂
石剑峰
钟传刚
刘林红
桑冬一
Original Assignee
万宝矿产有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万宝矿产有限公司 filed Critical 万宝矿产有限公司
Publication of WO2024092859A1 publication Critical patent/WO2024092859A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/451Execution arrangements for user interfaces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/047Optimisation of routes or paths, e.g. travelling salesman problem
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Administration of product repair or maintenance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Definitions

  • the invention belongs to the technical field of digital mine management, and in particular relates to a digital mine inspection system and an implementation method thereof.
  • a heap leaching site often has dozens or hundreds of such ore piles, with a total area of several square kilometers or even more than ten square kilometers), and the terrain is undulating, it is often very difficult for workers to stand on the surface of the ore pile and want to observe the uniformity and intensity of the distribution of the entire ore pile.
  • the uniformity and strength of the liquid distribution network on the heap surface are key factors affecting the leaching effect. For example, if the liquid distribution network on the surface of a heap is blocked, resulting in 10% of the heap surface having no leaching liquid, if it is not discovered through inspection in a short period of time, it will cause a loss of about 10% of the resource recovery rate. For permanent heap leaching production with layer-by-layer heap building, this loss cannot be recovered in subsequent production, thus affecting production efficiency.
  • the technical problem to be solved by the present invention is: to provide a digital mine inspection system, which includes: a portable terminal, an unmanned aerial vehicle, a mine positioning system, and a dispatching digital platform;
  • the portable terminal communicates with the dispatching digital platform through the mine positioning system, and instantly uploads the inspection real-time information and dispatching instructions to the on-site inspection personnel;
  • the unmanned aerial vehicle is equipped with an imaging device for acquiring and transmitting data on the mine site, and uploading the location and fault status information of the fault point on the mine site to the dispatching digital platform;
  • the digital scheduling platform includes an analysis module and an inspection scheduling module
  • the inspection scheduling module customizes the inspection information of the unmanned aerial vehicle and loads it to the unmanned aerial vehicle.
  • the unmanned aerial vehicle receives the inspection information.
  • the analysis module determines the inspection personnel closest to the fault point location based on the received mine site fault point location and outputs the fault status information to the portable terminal of the corresponding inspection personnel.
  • the digital mine inspection system also includes an on-site industrial network
  • the unmanned aerial vehicle carries an imaging device and combines with the mine positioning system to scan the entire geographic information of the stockpile area, and transmits it to the dispatching digital platform.
  • the dispatching digital platform generates a virtual reality human-machine interface digital model, combines the overall map coding of the mine stockpile production equipment to grid the stockpile area, and loads it into the analysis module and the inspection dispatching module;
  • the inspection scheduling module uploads the inspection information to the unmanned aerial vehicle through the industrial network.
  • the unmanned aerial vehicle performs automatic inspection tasks and transmits the inspection data back to the scheduling digital platform in real time through the imaging device.
  • the data is displayed on the virtual reality human-computer interface.
  • the analysis module identifies and locates the fault point and generates a task package.
  • the on-site inspection personnel confirm receipt of the task package through the portable terminal, and reach the fault point along the optimized path given by the analysis module to complete the repair of the fault point.
  • the task completion status is uploaded through the portable terminal.
  • the unmanned aerial vehicle also obtains relevant repair completion information and then obtains imaging at a fixed point to confirm the completion of the repair task.
  • the dispatching digital platform also includes a database and a data communication module
  • the database is used to aggregate and store various types of acquired data
  • the data communication module is used for acquiring data transmission and downloading from portable terminals and unmanned aerial vehicles, and for networking and communication with on-site industrial networks.
  • the task package includes the yard unit pile number, the geographical coordinates of the fault point, the fault type, the fault level, and the work table information for repairing the fault problem.
  • the unmanned aerial vehicle After the unmanned aerial vehicle confirms that the maintenance task is completed, it will feed back the information to the inspection scheduling module, and the inspection module will dispatch the next fault point task package.
  • the analysis module sends the task package to the inspection personnel according to the inspection personnel's current working status, the distance to the operation point, and whether the next task package exists.
  • the yard area is updated locally or globally, and the original data and digital model of the yard are archived on the database platform.
  • a method for implementing mine inspection The method is implemented based on the digital mine inspection system, and comprises the following steps:
  • Step 1 The unmanned aerial vehicle carries an imaging device to scan the entire geographic information of the storage area through the mine positioning system, and the scanned information is transmitted to the database;
  • Step 2 Generate a virtual reality human-machine interface digital model in the scheduling digital platform through the unmanned aerial vehicle scanning information in step 1, and grid-position the yard area in combination with the general map coding of the mine yard production equipment;
  • Step 3 The inspection scheduling module uploads the inspection information to the unmanned aerial vehicle through the industrial network.
  • the unmanned aerial vehicle receives the inspection information and performs automatic inspection tasks.
  • the inspection data is transmitted back to the scheduling digital platform in real time through the imaging device and displayed on the virtual reality human-machine interface.
  • the analysis module identifies and locates the fault point and generates a task package and outputs it to the portable terminal.
  • Step 4 The on-site inspection personnel confirm receipt of the task package through the portable terminal, and reach the fault point along the optimized path given by the analysis module to complete the fault point repair.
  • the task completion status is uploaded through the portable terminal.
  • the unmanned aerial vehicle also obtains relevant repair completion information and obtains imaging at a fixed point to confirm the completion of the repair task.
  • step 2 when the landform of the yard changes due to the construction of a new layer, the yard area is locally or globally updated on the scheduling digital platform, and the original data and digital model of the yard are archived on the database platform.
  • the present invention has the following beneficial effects:
  • the inspection method is changed from ground to air, achieving a height and breadth that cannot be obtained by conventional manual inspections.
  • the various imaging devices carried by them information that cannot be observed by the human eye is obtained and digitally processed and analyzed.
  • image analysis technology more abundant inspection information is obtained, and fault judgment is more accurate.
  • FIG1 is a flow chart of the method of the present invention.
  • this embodiment provides a digital mine inspection system, which includes: a portable terminal, an unmanned aerial vehicle, a mine positioning system, and a dispatching digital platform;
  • the portable terminal communicates with the dispatching digital platform through the mine positioning system, and instantly uploads the inspection real-time information and dispatching instructions to the on-site inspection personnel;
  • the unmanned aerial vehicle is equipped with an imaging device for acquiring and transmitting data on the mine site, and uploading the location and fault status information of the fault point on the mine site to the dispatching digital platform;
  • the digital scheduling platform includes an analysis module and an inspection scheduling module
  • the inspection scheduling module customizes the inspection information of the unmanned aerial vehicle and loads it to the unmanned aerial vehicle.
  • the unmanned aerial vehicle receives the inspection information.
  • the analysis module determines the inspection personnel closest to the fault point location based on the received mine site fault point location and outputs the fault status information to the portable terminal of the corresponding inspection personnel.
  • the digital mine inspection system also includes an on-site industrial network
  • the unmanned aerial vehicle carries an imaging device and combines with the mine positioning system to scan the entire geographic information of the stockpile area, and transmits it to the dispatching digital platform.
  • the dispatching digital platform generates a virtual reality human-machine interface digital model, combines the overall map coding of the mine stockpile production equipment to grid the stockpile area, and loads it into the analysis module and the inspection dispatching module;
  • the inspection scheduling module uploads the inspection information to the unmanned aerial vehicle through the industrial network.
  • the unmanned aerial vehicle performs automatic inspection tasks and transmits the inspection data back to the scheduling digital platform in real time through the imaging device.
  • the data is displayed on the virtual reality human-computer interface.
  • the analysis module identifies and locates the fault point and generates a task package.
  • the on-site inspection personnel confirm receipt of the task package through the portable terminal, and reach the fault point along the optimized path given by the analysis module to complete the repair of the fault point.
  • the task completion status is uploaded through the portable terminal.
  • the unmanned aerial vehicle also obtains relevant repair completion information and obtains imaging at a fixed point to confirm the completion of the repair task.
  • the dispatching digital platform also includes a database and a data communication module
  • the database is used to aggregate and store various types of acquired data
  • the data communication module is used for acquiring data transmission and downloading from portable terminals and unmanned aerial vehicles, and for networking and communication with on-site industrial networks.
  • the task package includes the yard unit pile number, the geographical coordinates of the fault point, the fault type, the fault level, and the work table information for repairing the fault problem.
  • the unmanned aerial vehicle After the unmanned aerial vehicle confirms that the maintenance task is completed, it will feed back the information to the inspection scheduling module, and the inspection module will dispatch the next fault point task package.
  • the analysis module sends the task package to the inspection personnel according to the inspection personnel's current working status, the distance to the operation point, and whether the next task package exists.
  • the yard area is updated locally or globally, and the original data and digital model of the yard are archived on the database platform.
  • a method for implementing mine inspection The implementation method is implemented based on the digital mine inspection system, and includes the following steps:
  • Step 1 The unmanned aerial vehicle carries an imaging device to scan the entire geographic information of the storage area through the mine positioning system, and the scanned information is transmitted to the database;
  • Step 2 Generate a virtual reality human-machine interface digital model in the scheduling digital platform through the unmanned aerial vehicle scanning information in step 1, and grid-position the yard area in combination with the general map coding of the mine yard production equipment;
  • Step 3 The inspection scheduling module uploads the inspection information to the unmanned aerial vehicle through the industrial network.
  • the unmanned aerial vehicle receives the inspection information and performs automatic inspection tasks.
  • the inspection data is transmitted back to the scheduling digital platform in real time through the imaging device and displayed on the virtual reality human-machine interface.
  • the analysis module identifies and locates the fault point and generates a task package and outputs it to the portable terminal.
  • Step 4 The on-site inspection personnel confirm receipt of the task package through the portable terminal, and reach the fault point along the optimized path given by the analysis module to complete the fault point repair.
  • the task completion status is uploaded through the portable terminal.
  • the unmanned aerial vehicle also obtains relevant repair completion information and obtains imaging at a fixed point to confirm the completion of the repair task.
  • step 2 when the landform of the yard changes due to the construction of a new layer, the yard area is locally or globally updated on the scheduling digital platform, and the original data and digital model of the yard are archived on the database platform.
  • a large-scale hydrometallurgical copper smelting mine project is a typical integrated mining-ore dressing-smelting process device. Its core technology is open-air permanent layer-by-layer pile leaching production. The core area is an open-air permanent stockpile, covering an area of more than 20 square kilometers. More than 60 relatively independent ore piles of varying heights are built according to the terrain, called unit piles. The average size of each unit pile is 700-1000 meters long, 100-300 meters wide, and covers an area of 70,000-300,000 square meters.
  • the terrain is complex, and the ore on the stockpile surface is undulating, vehicles cannot reach most areas.
  • the project is located in the subtropical area with an annual temperature of about 30-40 degrees.
  • the conventional inspection method relies on workers walking on the stockpile surface, which is not only inefficient, labor-intensive, and has a harsh working environment. The workers are exposed to high temperature and harmful solutions for a long time and are very likely to be in danger.
  • due to the limitations of the terrain, the height of the human eye, and the visible spectrum range it is impossible to obtain a comprehensive picture of the liquid distribution and production of the unit pile, and it is difficult to obtain an objective evaluation of the leaching effect.
  • the unmanned aerial vehicle is equipped with a high-resolution visible light imaging device or an oblique photography imaging device to scan the entire geographic information of the yard area and transmit it back to the scheduling digital platform.
  • a virtual reality human-machine interface digital model is generated, and the yard area is grid-basedly positioned and managed in combination with the on-site production equipment general map coding, and the online analysis and inspection scheduling module is loaded.
  • the above method can be used for local or global updates, and the original data and models are archived on the database platform.
  • the high-resolution visible light, infrared/far infrared, hyperspectral/multi-spectral imaging device and positioning system carried by the UAV will transmit the inspection data back to the server in real time, and display it on the virtual reality human-machine interface of the dispatching digital platform.
  • the fault point is automatically identified and located through the analysis module, and a task package is generated, which mainly includes the unit pile number, geographic coordinates, fault type, fault level, and operation table.
  • the task package distribution strategy is reasonably optimized, including the current fault point and the next fault point action route, to ensure that the nearest inspection personnel obtain the task package and clarify the human and material resource requirements.
  • On-site inspection personnel confirm receipt of the task package through the portable terminal, quickly reach the fault point along the optimized path, complete the fault point repair according to the standard operating procedures, and upload the task completion status through the portable terminal.
  • the unmanned aerial vehicle also obtains relevant information and obtains images at a fixed point to confirm the completion of the maintenance task, and then dispatches the next fault point task package.
  • the inspection personnel continue to work through the same response method. The entire process realizes the optimization mode that the inspection personnel complete the most task packages with the least walking distance.
  • faults include personnel and equipment safety, environmental accidents, incidents, faults, and hidden dangers;
  • task packages include routine maintenance, emergency accident handling, and emergency rescue of personnel and equipment.
  • the system sends different task packages based on the fault type and priority. All fault types and task packages are preset, added, and revised on the scheduling digital platform to achieve standardization and process-based management.
  • the uniformity and intensity of liquid distribution on the surface of each unit pile are digitally processed and analyzed, and the temperature distribution and/or multi-spectral analysis software is used to obtain the quantitative analysis results of the global liquid distribution morphology on the surface of the unit pile.
  • the changes in the liquid distribution effect before and after troubleshooting are analyzed and coupled with the improvement effects of leaching yield and resource recovery rate, thereby evaluating the improvement effect of economic benefits.
  • the portable terminal monitors and uploads the personnel's physical condition data in real time, and gives early warnings, alarms and rescue instructions based on this data.
  • the safety and environmental protection status of on-site inspection personnel, equipment and facilities are also monitored in real time through visualization and digitalization, and early warnings, alarms and rescue instructions are given based on this, and emergency response and rescue are assisted.
  • the digital scheduling platform Based on the inspection scope, flight frequency, and flight time, the digital scheduling platform enables multiple sets of unmanned aerial vehicles to operate simultaneously and return in an orderly manner to the on-site fixed unmanned aerial vehicle workstation or the mobile unmanned aerial vehicle vehicle workstation for flight capacity recovery, maintenance, and go-around.
  • the resource recovery rate of the yard increased by 1-5%
  • the output increased by about 3,000 tons of copper/year
  • the annual output value increased by about 30 million US dollars, with obvious economic benefits; at the same time, no personnel suffered from heat stroke or injury accidents on site, and the safety and environmental protection risks of equipment and facilities were mostly discovered and contacted at the hidden danger stage, with obvious safety, environmental protection and social benefits.
  • the portable terminal is equipped by on-site inspection personnel and has functions such as physical feature monitoring, positioning, task sending and receiving, instant communication, and alarm. It is easy to carry and operate. It is used for personal safety monitoring, emergency rescue, inspection and maintenance task reception, execution, and reporting.
  • the portable terminal communicates with the dispatching digital platform through the on-site industrial network and the mine positioning system, uploads real-time information of on-site personnel and inspections, and receives dispatching instructions.
  • the portable terminal is equipped by on-site inspection personnel and has functions such as physical feature monitoring, positioning, task sending and receiving, instant communication, and alarm. It is easy to carry and operate. It is used for personal safety monitoring, emergency rescue, inspection and maintenance task reception, execution, and reporting.
  • the portable terminal communicates with the dispatching digital platform through the on-site industrial network and the mine positioning system, uploads real-time information of on-site personnel and inspections, and receives dispatching instructions.
  • the unmanned aerial vehicle-mounted imaging device consists of a flight device, a control system, a high-resolution imaging device, and an image transmission system. It is controlled by a control room dispatching digital platform and can also be controlled by an on-site unmanned aerial vehicle operator to achieve on-site data acquisition and transmission. It utilizes the advantages of intelligent control, altitude, speed, and high resolution to achieve automation, efficiency, and precision in the inspection process by uploading information such as the on-site fault point location and fault status to the dispatching digital platform.
  • the unmanned aerial vehicle can set the inspection flight mission package, including the flight route trajectory, altitude, flight attitude, imaging device working parameters, etc., which can be preset indoors through a controller, or by real-time recording and reproducing the actual flight process. All of the above settings can be adjusted, revised and saved in real time.
  • the unmanned aerial vehicle supports the BeiDou system (BDS), GLONASS system (GLONASS), and global positioning system (GPS); has automatic take-off and landing functions, obstacle avoidance and self-protection functions; contains dual RTK functions; the effective flight operation time when there is a load is more than 120 minutes; the maximum take-off and landing speed is >4m/s; the normal cruising speed is 25m/s; the fastest flight speed is >35m/s; the maximum control radius of telemetry is >10km; the maximum range is >20km; the maximum altitude ceiling is >5000m; positioning accuracy: 1cm ⁇ 1ppm; hovering accuracy: vertical ⁇ 1m, horizontal ⁇ 1.5m; maximum wind resistance is >level 6.
  • BDS BeiDou system
  • GLONASS GLONASS
  • GPS global positioning system
  • the mine site can use a fixed UAV workstation or a mobile UAV vehicle-mounted workstation according to the inspection area scope, inspection flight route, and on-site traffic or public auxiliary conditions. It has the functions of UAV endurance recovery, communication relay, high-precision positioning and on-site flight control, real-time image transmission and analysis, etc.
  • the unmanned aerial vehicle can carry one or more imaging devices at the same time, or a combination of imaging devices.
  • Optional high-resolution visible light imaging device more than 40 times zoom, more than 30 million pixels; optional infrared far-infrared imaging device, spectral band 7.5-13.5 ⁇ m; optional multi-spectral/hyperspectral imaging device, spectral bands include blue, green, red, near visible light (Edge), near infrared (Near-IR); optional oblique photography imaging device, CCD number 5, size Aps-c, single pixel 24 million, angle 45 degrees.
  • the imaging device has the functions of portrait capture, positioning, and tracking, can communicate with the portable terminal by handshake, and can obtain and transmit temperature and light information to the dispatching digital platform in real time for personal safety monitoring and emergency rescue.
  • all imaging devices can be equipped with a quick disassembly and assembly interface for unmanned aerial vehicles, are compatible with positioning functions, and have real-time imaging and feedback functions.
  • the industrial network can be a private network or a public network.
  • the industrial network provides a networking communication platform between portable terminals, imaging devices carried by aircraft and scheduling digital platforms.
  • the industrial network is a 4G and above private network with better transmission performance, stability and security.
  • the mine positioning system can select the Beidou system (BDS), the GLONASS system (GLONASS), and the Global Positioning System (GPS).
  • BDS Beidou system
  • GLONASS GLONASS
  • GPS Global Positioning System
  • the mine positioning system can select absolute coordinates, relative coordinates and custom coordinates, and can provide the inspection system with the so-called industrial device coordinates such as the mine production device code, name, location, etc., and can also provide various geographic coordinates.
  • the dispatching digital platform includes an analysis module, an inspection dispatching module, a virtual reality human-computer interaction interface, and an emergency response function module.
  • the dispatching digital platform is used to transmit, summarize and store data, realize data sharing, reduce data redundancy, realize centralized management and control of data, and ensure the security and reliability of data;
  • the dispatching digital platform includes a database, a data communication module, and an analysis module.
  • the data communication module is used for positioning, networking and communication between each module, the dispatching digital platform and on-site portable terminals, on-site unmanned aerial vehicles and their onboard imaging devices, including data feedback and downloading.
  • the analysis module and inspection scheduling module are capable of online analysis and manual + intelligent judgment of the image information returned by the inspection, providing accurate fault level, fault type, fault description, and location, evaluating and generating a list of manpower and material resources required for the maintenance work, and determining the nearest maintenance personnel based on the positioning information returned by the on-site portable terminal equipment and the real-time image information of the unmanned aerial vehicle, sending task packages to them in a targeted manner, receiving and feeding back the responses of the on-site inspection personnel, and after the work is completed, receiving the task package completion report sent by the on-site inspection personnel through the writing terminal.
  • the digital dispatching platform can perform data analysis on key information such as historical inspections, task package issuance, on-site maintenance completion status, and records of manpower and material resource consumption to form accurate quantified, standardized, and process-based common faults and job forms, which can be transmitted to the intelligent online analysis and inspection scheduling module to reduce the workload of manual analysis, improve the process automation rate and efficiency, and improve the controllability and predictability of inspection tasks; at the same time, the newly added task package issuance and completion status are promptly fed back to the database platform, and the platform expert diagnosis function and database machine learning function are used to dynamically optimize standard faults and job forms, thereby continuously improving on-site inspection efficiency.
  • key information such as historical inspections, task package issuance, on-site maintenance completion status, and records of manpower and material resource consumption to form accurate quantified, standardized, and process-based common faults and job forms, which can be transmitted to the intelligent online analysis and inspection scheduling module to reduce the workload of manual analysis, improve the process automation rate and efficiency, and improve the controllability and predictability of inspection tasks; at the
  • the scheduling digital platform is equipped with geographic information and image processing software, which can model and calculate the geographic information and images sent back by the imaging device carried by the unmanned aerial vehicle, generate a 3D mine model, and based on this, generate the underlying digital model platform of the virtual reality human-computer interface.
  • the portable terminal held by the on-site patrol personnel automatically dispatches, receives and responds to the task packages sent by the server system through the on-site industrial network to generate the patrol personnel's real-time working status, such as standby, patrolling, and maintenance work.
  • the patrol scheduling module automatically optimizes and selects patrol personnel to send task packages based on the patrol personnel's current working status, distance from the target work point and traffic access, and whether there is a conflict in time, priority, and location for the next task package. If the response is successfully received, the next-level optimal patrol personnel is automatically found and the task package is sent.
  • the calculation principle is that each on-site patrol personnel completes the most task packages within the same travel range. At the same time, the reason for the failure to receive the task package of the previous level patrol personnel is determined and fed back through the communication handshake, which is convenient for timely disposal.
  • the task package information includes information such as the task number, the process unit number where the fault is located, coordinates, optimized route, work content, requirements and contact person in charge.
  • the task package definition includes routine inspection tasks and emergency response tasks such as alarm and repair, search and rescue in emergency situations, especially those involving safety, environmental protection and the health status and personal safety of operators. It is defined as the highest level in the system and requires rapid response and timely disposal.
  • the virtual reality human-computer interaction interface is based on a server system and a database platform, and uses unmanned aerial vehicles and various imaging systems carried by them, combined with a mine positioning system, to obtain on-site geographic information, generate a 3D virtual mine through a digital method, and use geographic information technology methods to analyze various on-site production device information, portable terminal real-time information to characterize the inspection personnel's positioning and their current physical characteristic parameters and task package execution status, and unmanned aerial vehicles and their on-board imaging device real-time information including flight parameters, working status, to achieve digitization, gridding and layering, and can be loaded into a virtual mine as needed to form a virtual reality mine model, and on this basis, a human-computer interaction interface is provided.
  • it can realize on-site remote control right switching, retrieval and display of real-time images of unmanned aerial vehicle-mounted imaging devices, flight inspection task customization, adjustment, upload, termination, automatic return of aircraft, current progress of each inspection task package completion, and real-time display and query of mine on-site devices, portable terminals, and unmanned aerial vehicle locations.
  • unmanned aerial vehicles and onboard imaging devices can be used to collect and digitize geographic information of the changed area or the entire area, and transmit it to the virtual reality interactive system to update the data of the changed area or the entire area.
  • the original data can be archived on the server system and database platform, and can be back-queried based on characteristic values such as time points and regional coordinates, and cross-compared with existing data.
  • the emergency response function module is aimed at personnel and equipment production safety and environmental protection accidents, incidents and hidden dangers that occur on site, and has alarm, search and rescue and on-site rescue organization functions, and has the highest priority in the server and scheduling platform task sequence.
  • the human characteristics monitoring function of the portable terminal can obtain the physical health data of the patrol personnel in real time and upload it to the dispatching digital platform through the on-site industrial network and the mine positioning system.
  • Both the portable terminal and the dispatching digital platform have health monitoring and alarm functions, which automatically trigger terminal self-reminders, on-site and remote alarms according to the level of abnormal conditions. For example, if the heart rate or body temperature exceeds the normal range, or the terminal holder has no natural movement within a reasonable time period, the portable terminal will manually or automatically switch to the emergency hotspot mode and broadcast the alarm signal to the outside.
  • the remote dispatching data platform also triggers the alarm and rescue function.
  • the nearby unmanned aerial vehicle After receiving the on-site or remote alarm signal, the nearby unmanned aerial vehicle on duty automatically navigates to the rescue hotspot location according to the positioning information, and transmits the real-time imaging information back to the virtual reality human-computer interface of the dispatching data platform, providing accurate basic personnel information, positioning information, optimal rescue route and estimated time for on-site search and rescue, facilitating rapid rescue and helping on-site personnel out of danger in the shortest time.
  • the general diagram of on-site production equipment is coded with the names and numbers of the on-site production equipment and areas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Software Systems (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Primary Health Care (AREA)
  • Educational Administration (AREA)
  • Human Computer Interaction (AREA)
  • Agronomy & Crop Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种数字化矿山巡检系统及实现方法,属于数字化矿山管理技术领域;系统包括:便携终端、无人飞行器、矿山定位系统、调度数字平台,便携终端通过矿山定位系统与调度数字平台进行联网通讯,并将巡检实时信息与调度指令即时上传至现场巡检人员,无人飞行器搭载成像装置用于矿山现场数据的获取与传输,将矿山现场故障点位置及故障状态信息上传调度数字平台,调度数字平台包括分析模块、巡检调度模块,巡检调度模块订制无人飞行器巡检信息,加载至无人飞行器,无人飞行器接收巡检信息,分析模块用于判定无人飞行器巡检传输的数据,确定距离故障点位置最近的巡检人员,将判定数据输出至便携终端。

Description

一种数字化矿山巡检系统及实现方法 技术领域
本发明属于数字化矿山管理技术领域,具体涉及一种数字化矿山巡检系统及实现方法。
背景技术
数字化矿山建设是现代矿山冶金工业发展的主导方向,也是我国重要的发展战略。受常规开采和冶炼技术的制约,目前许多矿山生产管理仍然处于传统技术水平,且较难以实现数字化改造。以露天堆浸生产工艺为例,由于占地面积广、生产周期长、生产设施安装分散、现场交通条件较差,现场安全环保巡检、设备管网巡检、矿堆表面浸出溶液布液情况巡检等等重要工作大多仍完全依赖人工,特别是布液矿堆表面,由于车辆无法通行,只能靠人行走完成上述工作,不仅劳动强度大、效率低下、作业环境恶劣、亦因为浸出液往往还有有毒有害物质,在矿堆表面行走巡检不啻于野外环境作业,容易产生职业健康危害甚至安全生产事故;同时,由于露天堆浸矿堆面积较大(通常一个矿堆长500-1000米,宽100-200米,表面积50000到200000平米,一个堆浸场往往有几十上百个这个样的矿堆,总面积可达几平方公里甚至十几平方公里),且地势高低起伏,工人站在矿堆表面想要通过观察整个矿堆的布液均匀度和强度往往非常困难。而堆面管网布液的均匀度和强度是影响浸出效果的关键因素,举例来说:如果一个矿堆表面布液管网发生堵塞,造成10%的矿堆表面没有浸出液,如果未能在短时间内通过巡检发现,将会造成10%左右的资源回收率损失,对于逐层筑堆的永久堆浸生产,这一损失在后续生产中将无法追回,从而影响生产效益。
与此同时,对于较为分散的矿山生产系统,局部存在的安全环保隐患或事故通过人工巡检难以及时发现,从而有可能造成更为严重的后果;与此同时,巡检人员分散在较大面积的恶劣作业环境中,当发生危险时通过行走搜救将大大延迟救援速度。
发明内容
本发明要解决的技术问题是:提供一种数字化矿山巡检系统,其包括:便携终端、无人飞行器、矿山定位系统、调度数字平台;
所述便携终端通过矿山定位系统与调度数字平台进行联网通讯,并将巡检实时信息与调度指令即时上传至现场巡检人员;
所述无人飞行器搭载成像装置用于矿山现场数据的获取与传输,将矿山现场故障点位置及故障状态信息上传调度数字平台;
所述调度数字平台包括分析模块、巡检调度模块;
所述巡检调度模块订制无人飞行器巡检信息,加载至无人飞行器,无人飞行器接收巡检信息,所述分析模块根据接收到的矿山现场故障点位置确定距离故障点位置最近的巡检人员,将故障状态信息输出至对应巡检人员的便携终端。
所述数字化矿山巡检系统还包括现场工业网络;
所述无人飞行器搭载成像装置结合矿山定位系统对堆场区域进行全域地理信息扫描,传输至调度数字平台,所述调度数字平台生成虚拟现实人机界面数字化模型,结合矿山堆场生产装置总图编码对堆场区域进行网格化定位,并加载至分析模块和巡检调度模块;
所述巡检调度模块将巡检信息通过工业网络上传加载至无人飞行器,无人飞行器执行自动巡检任务,通过成像装置实时将巡检数据回传调度数字平台,在虚拟现实人机界面显示,所述分析模块识别和定位故障点,并生成任务包,现场巡检人员通过便携终端确认接收任务包,并沿分析模块给出的优化路径到达故障点完成故障点修复,通过便携终端上传任务完成状态,无人飞行器同时获得相关修复完成信息后定点获取成像确认修复任务结束。
所述调度数字平台还包括数据库、数据通讯模块;
所述数据库用于汇总存储获取的各类数据;
所述数据通讯模块用于与便携终端、无人飞行器获取数据传输与下载,与现场工业网络的联网与通讯。
其中,所述任务包包括堆场单元堆编号、故障点位地理坐标、故障类型、故障等级、修复故障问题的作业表信息。
其中,所述无人飞行器确认检修任务结束后将信息反馈至巡检调度模块,巡检模块派发下一个故障点任务包。
其中,所述分析模块根据巡检人员当前工作状态、距离作业点位距离、下一项任务包是否存在的情况向巡检人员发送任务包。
其中,当堆场地貌因为新层筑堆发生变化时,对堆场区域局部或全局更新,堆场原有数据和数字化模型在数据库平台进行存档。
一种矿山巡检实现方法所述实现方法基于所述的数字化矿山巡检系统实施,其包括以下步骤:
步骤1:无人飞行器搭载成像装置通过矿山定位系统对堆场区域进行全域地理信息扫描,扫描信息传输至数据库中;
步骤2:通过步骤1中无人飞行器扫描信息在调度数字平台中生成虚拟现实人机界面数字化模型,结合矿山堆场生产装置总图编码对堆场区域进行网格化定位;
步骤3:巡检调度模块将巡检信息通过工业网络上传加载至无人飞行器,无人飞行器接受巡检信息执行自动巡检任务,通过成像装置实时将巡检数据回传调度数字平台并在虚拟现实人机界面显示,分析模块识别和定位故障点,并生成任务包输出至便携终端;
步骤4:现场巡检人员通过便携终端确认接收任务包,并沿分析模块给出的优化路径到达故障点完成故障点修复,通过便携终端上传任务完成状态,无人飞行器同时获得相关修复完成信息后定点获取成像确认修复任务结束。
所述步骤2中当堆场地貌因为新层筑堆发生变化时,在调度数字平台对堆场区域局部或全局更新,堆场原有数据和数字化模型在数据库平台进行存档。
与现有技术相比较,本发明具备如下有益效果:
1)数字化巡检代替常规人工巡检,有效提高作业效率,降低生产装置故障率,保障生产稳定性,从而提高运营绩效和经济效益;
2)通过无人飞行器将巡检方式从地面改为空中,获得常规人工巡检无法获得的高度和广度,通过其搭载的各种成像装置,获得人眼无法观测到的信息并加以数字化处理和分析,通过图像分析技术,获得更为丰富的巡检信息,故障的判断更为准确。
3)通过便携终端、空中无人飞行器、现场工业网络、矿山定位系统和调度数字平台,对数字矿山系统进行集中管理,设备、软件进行统一管控,信息共 享、资源整合,集中调配,提高巡检效率,提升数字化矿山管理水平。
4)提供了完善的人员设备生产安全和环保事故、事件和隐患报警、应急处置和救援系统,保障人员和设备的安全与及时救援,提升安全环保效益。附图说明
图1为本发明方法流程图。
具体实施方式
为使本发明的目的、内容和优点更加清楚,下面对本发明的具体实施方式作进一步详细描述。
为解决上述技术问题,本实施例提供一种数字化矿山巡检系统,其包括:便携终端、无人飞行器、矿山定位系统、调度数字平台;
所述便携终端通过矿山定位系统与调度数字平台进行联网通讯,并将巡检实时信息与调度指令即时上传至现场巡检人员;
所述无人飞行器搭载成像装置用于矿山现场数据的获取与传输,将矿山现场故障点位置及故障状态信息上传调度数字平台;
所述调度数字平台包括分析模块、巡检调度模块;
所述巡检调度模块订制无人飞行器巡检信息,加载至无人飞行器,无人飞行器接收巡检信息,所述分析模块根据接收到的矿山现场故障点位置确定距离故障点位置最近的巡检人员,将故障状态信息输出至对应巡检人员的便携终端。
所述数字化矿山巡检系统还包括现场工业网络;
所述无人飞行器搭载成像装置结合矿山定位系统对堆场区域进行全域地理信息扫描,传输至调度数字平台,所述调度数字平台生成虚拟现实人机界面数字化模型,结合矿山堆场生产装置总图编码对堆场区域进行网格化定位,并加载至分析模块和巡检调度模块;
所述巡检调度模块将巡检信息通过工业网络上传加载至无人飞行器,无人飞行器执行自动巡检任务,通过成像装置实时将巡检数据回传调度数字平台,在虚拟现实人机界面显示,所述分析模块识别和定位故障点,并生成任务包,现场巡检人员通过便携终端确认接收任务包,并沿分析模块给出的优化路径到达故障点完成故障点修复,通过便携终端上传任务完成状态,无人飞行器同时 获得相关修复完成信息后定点获取成像确认修复任务结束。
所述调度数字平台还包括数据库、数据通讯模块;
所述数据库用于汇总存储获取的各类数据;
所述数据通讯模块用于与便携终端、无人飞行器获取数据传输与下载,与现场工业网络的联网与通讯。
其中,所述任务包包括堆场单元堆编号、故障点位地理坐标、故障类型、故障等级、修复故障问题的作业表信息。
其中,所述无人飞行器确认检修任务结束后将信息反馈至巡检调度模块,巡检模块派发下一个故障点任务包。
其中,所述分析模块根据巡检人员当前工作状态、距离作业点位距离、下一项任务包是否存在的情况向巡检人员发送任务包。
其中,当堆场地貌因为新层筑堆发生变化时,对堆场区域局部或全局更新,堆场原有数据和数字化模型在数据库平台进行存档。
一种矿山巡检实现方法所述实现方法基于所述的数字化矿山巡检系统实施,其包括以下步骤:
步骤1:无人飞行器搭载成像装置通过矿山定位系统对堆场区域进行全域地理信息扫描,扫描信息传输至数据库中;
步骤2:通过步骤1中无人飞行器扫描信息在调度数字平台中生成虚拟现实人机界面数字化模型,结合矿山堆场生产装置总图编码对堆场区域进行网格化定位;
步骤3:巡检调度模块将巡检信息通过工业网络上传加载至无人飞行器,无人飞行器接受巡检信息执行自动巡检任务,通过成像装置实时将巡检数据回传调度数字平台并在虚拟现实人机界面显示,分析模块识别和定位故障点,并生成任务包输出至便携终端;
步骤4:现场巡检人员通过便携终端确认接收任务包,并沿分析模块给出的优化路径到达故障点完成故障点修复,通过便携终端上传任务完成状态,无人飞行器同时获得相关修复完成信息后定点获取成像确认修复任务结束。
所述步骤2中当堆场地貌因为新层筑堆发生变化时,在调度数字平台对堆场区域局部或全局更新,堆场原有数据和数字化模型在数据库平台进行存档。
实施例2
某大型湿法炼铜矿山项目系典型的采矿-选矿-冶炼一体化过程装置,其核心工艺是露天永久逐层筑堆浸出生产,核心区域是露天永久堆场,占地面积20余平方公里,依地势建有60余个高低不等、相对独立的矿堆称为单元堆,每个单元堆平均尺寸为长700-1000米,宽100-300米,面积为70000-300000平米。
由于堆场占地面积广,地形地势复杂,堆面矿石起伏,大部分区域车辆无法行驶及至,加之项目所处地为亚热带,常年温度在30-40度左右,常规巡检方法靠工人在堆面行走,不仅效率低下、劳动强度大、作业环境恶劣,作业人员长时间暴露于高温和有害溶液环境下极易发生危险,而且受地形地势和人眼高度及可视光谱范围限制,无法获得单元堆全面的布液和生产情况,难以获得客观的浸出效果评价;同时在较为广阔的单元堆表面,通过人员行走摸排故障点,大部分时间属于无用功,实践中往往发生故障点难以被发现的情况,在发现故障点后,如何将准确位置报给维修人员也非常困难,造成故障排除效率低下;同时由于人员分散作业,当发生危险时,难以及时发现并实施救援。
借助现场工业网络和矿山定位系统,通过无人飞行器搭载高分辨率可见光成像装置或者倾斜摄影成像装置对堆场区域进行全域地理信息扫描,回传至调度数字平台,通过调度数字平台以及专业软件,生成虚拟现实人机界面数字化模型,结合现场生产装置总图编码对堆场区域进行网格化定位管理,并加载在线分析和巡检调度模块,当堆场地貌因为新层筑堆等生产过程发生变化时,可以采用上述方法进行局部或全局更新,原有数据和模型在数据库平台进行存档。
在巡检调度功能平台下订制无人飞行器巡检任务,通过工业网络上传加载至无人飞行器,确认无误后无人飞行器执行自动巡检任务。无人飞行器搭载的高分辨率可见光、红外/远红外、高光谱/多光谱成像装置和定位系统四位一体实时将巡检数据回传服务器,在调度数字平台虚拟现实人机界面显示,通过分析模块自动识别和定位故障点,并生成任务包,主要包括单元堆编号、地理坐标、故障类型、故障等级、作业表,结合现场巡检人员持有的便携终端反馈实时信息,合理优化任务包派发策略,包括当前故障点和下一个故障点行动路线,确保最近的巡检人员获取任务包并明确人力物力需求。
现场巡检人员通过便携终端确认接收任务包,并沿优化路径快速到达故障 点,按照标准作业流程规范完成故障点修复,通过便携终端上传任务完成状态,无人飞行器亦同时获得相关信息后定点获取成像予以确认检修任务结束,然后派发下一个故障点任务包,巡检人员通过同样的响应方法继续作业,整个过程中实现巡检人员以最少行走距离完成最多任务包的优化模式。
所述“故障”包括人员设备安全、环保事故、事件、故障、隐患;所述“任务包”包括常规检修、事故紧急处置、人员设备应急救援,系统根据故障类型和优先级发送不同任务包,所有故障类型和任务包在调度数字平台进行预设和新增以及修订,实现标准化、流程化。
通过上述四位一体成像和定位,对各单元堆表面布液均匀度和强度进行数字化处理分析,利用温度分布和/或多光谱分析软件获得单元堆表面全局布液形态定量分析结果,研判故障排除前后布液效果变化,将之与浸出产率和资源回收率提升效果进行耦合分析,进而评价经济效益提升效果。
根据故障分布区域、频次,适当调整无人飞行器巡检飞行路线和姿态控制参数,不断优化巡检效率和效果。
作业过程中便携终端实时监测和上传人员身体状态数据,据此给出预警、报警和救援指令。
无人飞行器巡检过程中亦对现场巡检人员、设备设施安全环保状态进行实时可视化和数字化监测,据此给出预警、报警和救援指令,并辅助参与应急处置和紧急救援。
根据巡检范围、飞行频次、续航时长,通过调度数字平台实现多台套无人飞行器同时作业、有序返航至现场固定式无人飞行器工作站或移动式无人飞行器车载工作站进行续航能力恢复、维保和复飞。
经过测算,采用本发明巡检技术方案后,堆场资源回收率提升1-5%,产量提升约3000吨铜/年,每年产值增加约3000万美金,经济效益明显;同时现场无人员发生中暑、受伤大亨事故,设备设施安全环保风险多控制在隐患阶段便得以发现和接触,安全环保和社会效益明显。
便携终端由现场巡检人员配备,具备身体特征监测、定位、任务收发、即时通讯、报警等功能,携带方便,易于操作。用于人身安全监护、应急救援、巡检维护任务接收、执行、报告等目的。便携终端通过现场工业网络和矿山定 位系统与调度数字平台进行联网通讯,上传现场人员、巡检实时信息,接收调度指令。
所述便携终端由现场巡检人员配备,具备身体特征监测、定位、任务收发、即时通讯、报警等功能,携带方便,易于操作。用于人身安全监护、应急救援、巡检维护任务接收、执行、报告等目的。便携终端通过现场工业网络和矿山定位系统与调度数字平台进行联网通讯,上传现场人员、巡检实时信息,接收调度指令。
所述无人飞行器搭载成像装置由飞行装置、控制系统、高分辨率成像装置、影像传输系统组成,由控制室调度数字平台进行控制,亦可由现场无人飞行器操作员进行控制,用于实现现场数据的获取和传输,利用智能控制、高度、速度、高分辨率优势,实现巡检过程的自动化、高效化、精确化,通过将现场故障点位置、故障状态等信息上传调度数字平台。
优选的,由于矿山所处位置一般不会发生改变,所述无人飞行器可以通过设定巡检飞行任务包,包括飞行路线轨迹、高度、飞行姿态、成像装置工作参数等,可以在室内通过控制器预设,也可以通过实时记录实地飞行过程并再现的方式,上述所有设置项均可以实现实时调整修订和保存。
优选的,所述无人飞行器支持北斗系统(BDS)、格洛纳斯系统(GLONASS)、全球定位系统(GPS);带自动起降功能,避障和自我保护功能;含双RTK功能;有载荷时有效飞行作业时间超过120分钟;最大起降速度>4m/s;正常巡航速度25m/s;最快飞行速度>35m/s;遥测最大控制半径>10km;最大航程>20km;最大海拔升限>5000m;定位精度:1cm±1ppm;悬停精度:垂直±1m,水平±1.5m;最大抗风能力>6级。
优选的,矿山现场可以根据巡检区域范围、巡检飞行路线和现场交通或公辅条件,可采用固定式无人飞行器工作站或移动式无人飞行器车载工作站,具备无人飞行器的续航能力恢复、通讯中继、高精度定位和现场飞行控制、实时图像传输和分析等功能。
优选的,所述无人飞行器可同时搭载一种或多种成像装置,亦或是组合成像装置。可选高分辨率可见光成像装置,40倍以上变焦、3000万以上像素;可选红外远红外成像装置,光谱带7.5–13.5μm;可选多光谱/高光谱成像装置, 光谱带包括蓝、绿、红、近可见光(Edge)、近红外(Near-IR);可选倾斜摄影成像装置,CCD数量5,尺寸Aps-c,单像素2400万,角度45度。
优选的,成像装置具备人像捕捉、定位、跟踪功能,与便携式终端握手通讯,并能实时获取并回传温感、光感信息给调度数字平台,用于人身安全监护、应急救援。
优选的,所有成像装置可通配无人飞行器快速拆装接口,兼容定位功能,并具备实时成像和回传功能。
所述工业网络可以是私有网络,也可以是公共网络。工业网络为便携终端、飞行器搭载成像装置和调度数字平台之间提供联网通讯平台。所述工业网络为4G及以上私有网络,具备更好传输性能,以及稳定性和安全性。
所述矿山定位系统可选北斗系统(BDS)、格洛纳斯系统(GLONASS)、全球定位系统(GPS),作为本发明一种优选方案,所述矿山定位系统可选绝对坐标、相对坐标和自定义坐标,可以为巡检系统提供矿区生产装置编码、名称、位置等所谓工业装置坐标,也可以提供各类地理坐标。
所述调度数字平台包括分析模块和巡检调度模块、虚拟现实人机交互界面、应急处置功能模块。
所述调度数字平台用于传输汇总存储数据、实现数据共享,减少数据冗余度,数据实现集中管理和控制,亦可保证数据的安全性和可靠性;调度数字平台包括数据库、数据通讯模块、分析模块,所述数据通讯模块用于各模块、调度数字平台与现场便携终端、现场无人飞行器及其搭载成像装置的定位、联网与通讯,包括数据回传和下载。
所述分析模块和巡检调度模块具备巡检回传图像信息的在线分析和人工+智能研判,提供准确的故障等级、故障类型、故障描述、所处位置,评估并生成维修工作所需人力物力清单,根据现场便携终端设备返回定位信息和无人飞行器实时图像信息,确定最近的检修人员,向其定向发送任务包,接收并反馈现场巡检人员响应情况,作业完成后,接收现场巡检人员通过编写终端发送的任务包完成报告。
优选的,调度数字平台可以通过对历史巡检、任务包发包、现场检修完成情况、人力物力消耗记录等关键信息进行数据分析,形成准确量化、标准化、 流程化的常见故障及作业表单,将其传输至智能在线分析和巡检调度模块,减少人工分析工作量,提高过程自动化率和效率,提高巡检任务的可控性和可预测性;同时新增任务包发包和完成情况及时反馈数据库平台,利用平台专家诊断功能和数据库机器学习功能,对标准故障及作业表单形成动态优化,从而不断提高现场的巡检效率。
优选的,调度数字平台搭载地理信息和图像处理软件,可以对无人飞行器搭载成像装置回传的地理信息和图像进行建模计算,生成3D矿山模型,基于此生成虚拟现实人机界面底层数字化模型平台。
优选的,现场巡检人员持有的便携式终端自动对服务器系统通过现场工业网络发送的任务包排遣接收和响应情况生成巡检人员实时工作状态,如待命、巡查中、检修作业中,由巡检调度模块根据巡检人员当前工作状态、距离目标作业点位距离和交通可进入、下一项任务包是否存在时间、优先级、地点上的冲突,自动优化选择巡检人员发送任务包,如为成功相应接收,则自动寻找次一级最优巡检人员并发送任务包,计算原则是现场每一名巡检人员在同样的行程范围内完成最多任务包,同时通过通讯握手确定和反馈上一级巡检人员任务包接收失败原因,便于及时处置。
优选的,任务包信息包括任务编号、故障所处工艺装置编号、坐标、优化路线、作业内容、要求和主管联系人等信息,任务包定义包括常规巡检任务和紧急情况下的报警和抢修、搜救等应急处置任务,特别涉及安全、环保和作业人员健康状态和人身安全,在系统中级别定义为最高,要求能够快速响应,及时处置。
所述虚拟现实人机交互界面基于服务器系统和数据库平台,利用无人飞行器及其搭载各类成像系统,结合矿山定位系统,获取现场地理信息,通过数字化方法生成3D虚拟矿山,通过地理信息技术方法对现场各类生产装置信息、便携终端实时信息用于表征巡检人员定位及其当前身体特征参数和任务包执行状态、无人飞行器及其搭载成像装置实时信息包括飞行参数、工作状态、实现数字化、网格化和图层化,并能根据需要加载到虚拟矿山,形成虚拟现实矿山模型,在此基础上配有人机交互界面。优选的,可以实现现场远程控制权切换、调取和显示无人飞行器搭载成像装置实时画面、飞行巡检任务订制、调整、上 传、终止、飞行器自动返航、当前各巡检任务包完成进度情况,矿山现场装置、便携终端、无人飞行器位置实时显示和查询。
优选的,由于开采过程、生产规模、工艺过程等发生变化导致矿山现场设施、生产布局等总图或地表特征发生变化时,可以利用无人飞行器及搭载成像装置对变化区域或者全域进行地理信息搜集和数字化处理,传入虚拟现实交互系统,对变化区域或者全域数据进行更新,原有数据可以在服务器系统和数据库平台进行存档,可以以时间点、区域坐标等特征值进行回溯查询,并与现有数据进行交叉对比。
所述应急处置功能模块是针对现场出现的人员设备生产安全和环保事故、事件和隐患,具备报警、搜救和现场救援组织功能,在服务器和调度平台任务序列中优先级别最高。
优选的,便携终端具有的人体特征监测功能可以实时获取巡检人员身体健康状况数据并通过现场工业网络和矿山定位系统上传至调度数字平台,便携终端和调度数字平台均有健康监测和报警功能,根据异常情况等级自动触发终端自提醒、现场和远程报警,如心率或体温超出正常范围,或者终端持有者在合理时间段内无自然移动动作,便携终端便会通过手动或自动切换进入紧急求救热点模式,向外广播报警信号,同时远程调度数据平台亦触发报警和救援功能,附近值飞无人飞行器在接收到现场或远程报警信号后根据定位信息自动导航至求救热点位置,并将实时成像信息回传至调度数据平台的虚拟现实人机界面,为现场搜救提供准确的人员基本信息、定位信息和最优救援路线和预估时间,便于迅速开展救援,最短时间内帮助现场人员脱离危险。
其中现场生产装置总图编码为现场生产装置及区域的名称及编号。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (9)

  1. 一种数字化矿山巡检系统,其特征在于,其包括:便携终端、无人飞行器、矿山定位系统、调度数字平台;
    所述便携终端通过矿山定位系统与调度数字平台进行联网通讯,并将巡检实时信息与调度指令即时上传至现场巡检人员;
    所述无人飞行器搭载成像装置用于矿山现场数据的获取与传输,将矿山现场故障点位置及故障状态信息上传调度数字平台;
    所述调度数字平台包括分析模块、巡检调度模块;
    所述巡检调度模块订制无人飞行器巡检信息,加载至无人飞行器,无人飞行器接收巡检信息,所述分析模块根据接收到的矿山现场故障点位置确定距离故障点位置最近的巡检人员,将故障状态信息输出至对应巡检人员的便携终端。
  2. 如权利要求1所述的数字化矿山巡检系统,其特征在于,所述调度数字平台还包括现场工业网络;
    所述无人飞行器搭载成像装置结合矿山定位系统对堆场区域进行全域地理信息扫描,传输至调度数字平台,所述调度数字平台生成虚拟现实人机界面数字化模型,结合矿山堆场生产装置总图编码对堆场区域进行网格化定位,并加载至分析模块和巡检调度模块;
    所述巡检调度模块将巡检信息通过工业网络上传加载至无人飞行器,无人飞行器执行自动巡检任务,通过成像装置实时将巡检数据回传调度数字平台,在虚拟现实人机界面显示,所述分析模块识别和定位故障点,并生成任务包,现场巡检人员通过便携终端确认接收任务包,并沿分析模块给出的优化路径到达故障点完成故障点修复,通过便携终端上传任务完成状态,无人飞行器同时获得相关修复完成信息后定点获取成像确认修复任务结束。
  3. 如权利要求2所述的数字化矿山巡检系统,其特征在于,所述调度数字平台还包括数据库、数据通讯模块;
    所述数据库用于汇总存储获取的各类数据;
    所述数据通讯模块用于与便携终端、无人飞行器获取数据传输与下载,与现场工业网络的联网与通讯。
  4. 如权利要求3所述的数字化矿山巡检系统,其特征在于,所述任务包包 括堆场单元堆编号、故障点位地理坐标、故障类型、故障等级、修复故障问题的作业表信息。
  5. 如权利要求4所述的数字化矿山巡检系统,其特征在于,所述无人飞行器确认检修任务结束后将信息反馈至巡检调度模块,巡检模块派发下一个故障点任务包。
  6. 如权利要求5所述的数字化矿山巡检系统,其特征在于,所述分析模块根据巡检人员当前工作状态、距离作业点位距离、下一项任务包是否存在的情况向巡检人员发送任务包。
  7. 如权利要求6所述的数字化矿山巡检系统,其特征在于,当堆场地貌因为新层筑堆发生变化时,对堆场区域局部或全局更新,堆场原有数据和数字化模型在数据库平台进行存档。
  8. 一种矿山巡检实现方法,其特征在于,所述实现方法基于权利要求中1-7任意一项所述的数字化矿山巡检系统实施,其包括以下步骤:
    步骤1:无人飞行器搭载成像装置通过矿山定位系统对堆场区域进行全域地理信息扫描,扫描信息传输至数据库中;
    步骤2:通过步骤1中无人飞行器扫描信息在调度数字平台中生成虚拟现实人机界面数字化模型,结合矿山堆场生产装置总图编码对堆场区域进行网格化定位;
    步骤3:巡检调度模块将巡检信息通过工业网络上传加载至无人飞行器,无人飞行器接受巡检信息执行自动巡检任务,通过成像装置实时将巡检数据回传调度数字平台并在虚拟现实人机界面显示,分析模块识别和定位故障点,并生成任务包输出至便携终端;
    步骤4:现场巡检人员通过便携终端确认接收任务包,并沿分析模块给出的优化路径到达故障点完成故障点修复,通过便携终端上传任务完成状态,无人飞行器同时获得相关修复完成信息后定点获取成像确认修复任务结束。
  9. 如权利要求8所述的数字化矿山巡检方法,其特征在于,所述步骤2中当堆场地貌因为新层筑堆发生变化时,在调度数字平台对堆场区域局部或全局更新,堆场原有数据和数字化模型在数据库平台进行存档。
PCT/CN2022/130713 2022-10-31 2022-11-08 一种数字化矿山巡检系统及实现方法 WO2024092859A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211350797.9A CN115660241A (zh) 2022-10-31 2022-10-31 一种数字化矿山巡检系统及实现方法
CN202211350797.9 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024092859A1 true WO2024092859A1 (zh) 2024-05-10

Family

ID=84995251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130713 WO2024092859A1 (zh) 2022-10-31 2022-11-08 一种数字化矿山巡检系统及实现方法

Country Status (2)

Country Link
CN (1) CN115660241A (zh)
WO (1) WO2024092859A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115793093B (zh) * 2023-02-02 2023-05-16 水利部交通运输部国家能源局南京水利科学研究院 堤坝隐伏病险诊断空地一体化装备
CN116485367A (zh) * 2023-04-12 2023-07-25 江苏鑫昇腾科技发展股份有限公司 基于物联网的建筑安全用巡检系统及其方法
CN117172542B (zh) * 2023-09-05 2024-02-20 广州机施建设集团有限公司 一种基于大数据的施工现场巡查管理系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8788119B2 (en) * 2010-12-09 2014-07-22 The Boeing Company Unmanned vehicle and system
CN105700544A (zh) * 2016-04-08 2016-06-22 暨南大学 一种无人机光伏电站电气设备巡检系统及实现方法
CN110033103A (zh) * 2019-04-12 2019-07-19 合肥佳讯科技有限公司 一种光伏板巡检系统及巡检方法
CN110834728A (zh) * 2019-09-23 2020-02-25 国网辽宁省电力有限公司丹东供电公司 一种智能型输电线路山火预警无人飞行器及其控制系统
CN111582697A (zh) * 2020-04-29 2020-08-25 西安交通大学 一种配电网故障的评估与调度方法及系统
CN114020000A (zh) * 2021-12-16 2022-02-08 辽宁工程技术大学 一种煤矿地表隐蔽火灾巡检无人机控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8788119B2 (en) * 2010-12-09 2014-07-22 The Boeing Company Unmanned vehicle and system
CN105700544A (zh) * 2016-04-08 2016-06-22 暨南大学 一种无人机光伏电站电气设备巡检系统及实现方法
CN110033103A (zh) * 2019-04-12 2019-07-19 合肥佳讯科技有限公司 一种光伏板巡检系统及巡检方法
CN110834728A (zh) * 2019-09-23 2020-02-25 国网辽宁省电力有限公司丹东供电公司 一种智能型输电线路山火预警无人飞行器及其控制系统
CN111582697A (zh) * 2020-04-29 2020-08-25 西安交通大学 一种配电网故障的评估与调度方法及系统
CN114020000A (zh) * 2021-12-16 2022-02-08 辽宁工程技术大学 一种煤矿地表隐蔽火灾巡检无人机控制系统

Also Published As

Publication number Publication date
CN115660241A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
CN111537515B (zh) 基于三维实景模型的铁塔螺栓缺陷展示方法和系统
WO2024092859A1 (zh) 一种数字化矿山巡检系统及实现方法
CN109334543B (zh) 一种电力巡检车与无人机相协同的电力巡线系统及方法
CN111246083B (zh) 一种5g无人机工地巡检实时直播系统
JP2013134663A (ja) 災害活動支援システム及び方法
EP2437515B1 (en) Movable information collection device
CN104808610A (zh) 基于bim建筑信息模型的机械控制系统及方法
CN113362487A (zh) 配电线路无人机智能自主巡检统一管控系统
CN209231777U (zh) 智慧工地管理系统
CN113077561A (zh) 一种无人机智能巡检系统
CN113359842A (zh) 10kV配电网无线充电无人机的智能巡检控制分析系统
CN113988647A (zh) 一种基于bim的市政工程智慧工地管理系统
CN112907389A (zh) 一种地陆空天一体化智能工地系统及管理方法
CN108171291A (zh) 一种基于无人机的巡检作业方法和系统
CN112684806A (zh) 一种基于双重避障和智能识别的电力巡检无人机系统
EP2813914A1 (de) Überwachung von technischen Anlagen mit einem unbemannten Flugobjekt
CN111258331A (zh) 无人机电力线路运维检修系统及方法
CN112960132A (zh) 分布式共享机巢及其电力线路无人机巡检方法
CN111506102A (zh) 一种基于热成像图片的太阳能光伏板故障识别方法
CN114723388A (zh) 一种智慧工地综合安全运行信息化监管系统
CN113556377B (zh) 一种船舶外场涂装环境监测系统
CN114115317A (zh) 一种基于人工智能的变电站无人机巡检方法
CN211904214U (zh) 一种通信铁塔在线监测和调度系统
CN113111714A (zh) 一种应用于输电现场作业的风险防控系统
CN112802287A (zh) 一种输电线路山火监测预警和定位系统及其方法