WO2024092847A1 - 随机接入方法及装置 - Google Patents

随机接入方法及装置 Download PDF

Info

Publication number
WO2024092847A1
WO2024092847A1 PCT/CN2022/130175 CN2022130175W WO2024092847A1 WO 2024092847 A1 WO2024092847 A1 WO 2024092847A1 CN 2022130175 W CN2022130175 W CN 2022130175W WO 2024092847 A1 WO2024092847 A1 WO 2024092847A1
Authority
WO
WIPO (PCT)
Prior art keywords
information field
transmissions
value
prach
terminal device
Prior art date
Application number
PCT/CN2022/130175
Other languages
English (en)
French (fr)
Inventor
乔雪梅
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/130175 priority Critical patent/WO2024092847A1/zh
Priority to CN202280004361.6A priority patent/CN115997468A/zh
Publication of WO2024092847A1 publication Critical patent/WO2024092847A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the field of communication technology, and in particular to a random access method and device.
  • CBRA contention-based random access
  • CFRA Non Contention or Contention Free Random Access
  • PRACH Physical Random Access Channel
  • a first aspect of the present application provides a random access method, which is performed by a terminal device and includes:
  • the number of transmissions of a physical random access channel PRACH is determined.
  • a second aspect of the present application provides a random access method, which is performed by a network device and includes:
  • the DCI is used to indicate the number of transmissions of the physical random access channel PRACH of the terminal device.
  • a third aspect of the present application provides a random access device, which is applied to a terminal device and includes:
  • a transceiver unit configured to receive downlink control information DCI sent by a network device
  • the processing unit is used to determine the number of transmissions of the physical random access channel PRACH according to the DCI.
  • a fourth aspect of the present application provides a random access device, which is applied to a network device, and includes:
  • the transceiver unit is used to send downlink control information DCI to the terminal device; the DCI is used to indicate the number of transmissions of the physical random access channel PRACH of the terminal device.
  • the fifth aspect embodiment of the present application proposes a communication device, which includes a processor and a memory, wherein the memory stores a computer program, and the processor executes the computer program stored in the memory so that the device performs the random access method described in the first aspect embodiment above.
  • the sixth aspect embodiment of the present application proposes a communication device, which includes a processor and a memory, wherein the memory stores a computer program, and the processor executes the computer program stored in the memory so that the device performs the random access method described in the second aspect embodiment.
  • the seventh aspect embodiment of the present application proposes a communication device, which includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to enable the device to execute the random access method described in the first aspect embodiment above.
  • the eighth aspect embodiment of the present application proposes a communication device, which includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to enable the device to execute the random access method described in the second aspect embodiment above.
  • the ninth aspect embodiment of the present application proposes a computer-readable storage medium for storing instructions, which, when executed, enables the random access method described in the first aspect embodiment to be implemented.
  • the tenth aspect embodiment of the present application proposes a computer-readable storage medium for storing instructions. When the instructions are executed, the random access method described in the above-mentioned second aspect embodiment is implemented.
  • the eleventh embodiment of the present application proposes a computer program, which, when executed on a computer, enables the computer to execute the random access method described in the first embodiment.
  • the twelfth aspect embodiment of the present application proposes a computer program, which, when executed on a computer, enables the computer to execute the random access method described in the second aspect embodiment.
  • a random access method and apparatus by receiving downlink control information DCI sent by a network device, determines the number of transmissions of a physical random access channel PRACH according to the DCI, so that a terminal device can determine a more reasonable number of transmissions of a physical random access channel PRACH in a random access attempt, and reasonably enhances the coverage of PRACH, thereby effectively ensuring the fairness of access opportunities, saving energy consumption of terminal devices, and improving the communication efficiency of the system.
  • FIG1 is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a flow chart of a random access method provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a flow chart of a random access method provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of a flow chart of a random access method provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a flow chart of a random access method provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of a flow chart of a random access method provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of a flow chart of a random access method provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of the structure of a random access device provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of the structure of a random access device provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the structure of another random access device provided in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the structure of a chip provided in an embodiment of the present application.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present application, these information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the words "if” and “if” as used herein may be interpreted as "at" or "when" or "in response to determination".
  • Figure 1 is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • the communication system may include but is not limited to a first network device, a second network device and a terminal device.
  • the number and form of devices shown in Figure 1 are only used for example and do not constitute a limitation on the embodiment of the present application. In actual applications, two or more network devices and two or more terminal devices may be included.
  • the communication system shown in Figure 1 includes a network device 101 and a terminal device 102 as an example.
  • LTE Long Term Evolution
  • 5G new air interface system 5G new air interface system
  • other future new mobile communication systems 5G new air interface system
  • the network device 101 in the embodiment of the present application is an entity on the network side for transmitting or receiving signals.
  • the network device 101 may be an evolved NodeB (eNB), a transmission point (TRP), a next generation NodeB (gNB) in an NR system, a base station in other future mobile communication systems, or an access node in a wireless fidelity (WiFi) system.
  • eNB evolved NodeB
  • TRP transmission point
  • gNB next generation NodeB
  • WiFi wireless fidelity
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the network device provided in the embodiment of the present application may be composed of a centralized unit (CU) and a distributed unit (DU), wherein the CU may also be referred to as a control unit (Control Unit).
  • CU centralized unit
  • DU distributed unit
  • Control Unit Control Unit
  • the CU-DU structure may be used to split the protocol layer of a network device, such as a base station, and the functions of some protocol layers are placed in the CU for centralized control, and the functions of the remaining part or all of the protocol layers are distributed in the DU, and the DU is centrally controlled by the CU.
  • a network device such as a base station
  • the terminal device 102 in the embodiment of the present application is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal device may also be referred to as a terminal device (terminal), a user equipment (UE), a mobile station (MS), a mobile terminal device (MT), etc.
  • the terminal device may be a car with communication function, a smart car, a mobile phone (Mobile Phone), a wearable device, a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal device, a wireless terminal device in industrial control (Industrial Control), a wireless terminal device in self-driving (Self-Driving), a wireless terminal device in remote medical surgery (Remote Medical Surgery), a wireless terminal device in smart grid (Smart Grid), a wireless terminal device in transportation safety (Transportation Safety), a wireless terminal device in smart city (Smart City), a wireless terminal device in smart home (Smart Home), etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • CBRA contention-based random access
  • CFRA Non Contention or Contention Free Random Access
  • the terminal device 102 can send a first random access message Msg1 (message 1) to the network device 101.
  • the network device 101 can send a second random access message Msg2 (message 2) to the terminal device 102.
  • the terminal device 102 can send a third random access message Msg3 (message 3) to the network device 101.
  • the network device 101 can send a second random access message Msg4 (message 4) to the terminal device 102.
  • PRACH Physical Random Access Channel
  • PRACH Physical Random Access Channel
  • UL TX beam uplink transmit beam
  • RO random access opportunities
  • the communication system described in the embodiment of the present application is to more clearly illustrate the technical solution of the embodiment of the present application, and does not constitute a limitation on the technical solution provided by the embodiment of the present application.
  • Ordinary technicians in this field can know that with the evolution of the system architecture and the emergence of new business scenarios, the technical solution provided by the embodiment of the present application is also applicable to similar technical problems.
  • Figure 2 is a flow chart of a random access method provided in an embodiment of the present application. It should be noted that the random access method in the embodiment of the present application is executed by a terminal device, and the terminal device supports physical random access channel PRACH retransmission. The method can be executed independently or in combination with any other embodiment of the present application. As shown in Figure 2, the method may include the following steps:
  • Step 201 Receive downlink control information DCI sent by a network device.
  • the terminal device can receive downlink control information (Downlink Control Information, DCI) sent by the network device, and the terminal device can determine the transmission number of the physical random access channel PRACH based on the DCI.
  • DCI Downlink Control Information
  • Step 202 Determine the number of transmissions of the physical random access channel PRACH according to the DCI.
  • the terminal device can determine the number of PRACH transmissions based on the received DCI.
  • the DCI is used to indicate the number of transmissions of the PRACH, or the DCI is used to indicate that the terminal device determines the number of transmissions of the PRACH based on a comparison between a measured value of a reference signal and at least one preset threshold.
  • the DCI may explicitly or implicitly indicate the number of transmissions of the PRACH.
  • Implicit indication means indicating the number of PRACH transmissions through the format of the DCI or other parameters; wherein different formats or parameters of the DCI may correspond to different numbers of PRACH transmissions.
  • Explicit indication means that the DCI has a field for indication, for example: in an embodiment of the present application, the DCI includes a first information field, the first information field is used to indicate the number of transmissions of the PRACH, and/or, the first information field is used to indicate that the terminal device determines the number of transmissions of the PRACH based on a comparison between a measured value of a reference signal and at least one preset threshold. As a possible implementation, the terminal device can determine the number of transmissions of the PRACH based on the indication of the first information field.
  • the terminal device may determine the number of transmissions of the PRACH according to the received DCI by comparing a measured value of a reference signal with at least one preset threshold.
  • the terminal device can compare the number of transmissions determined according to the indication of the first information field and the number of transmissions determined by comparing the reference signal measurement value with at least one preset threshold, and determine the number of transmissions of the PRACH based on the comparison result of the transmission numbers determined by the two methods.
  • the at least one preset threshold, and the number of PRACH transmissions corresponding to each preset threshold may be determined according to a provision of a protocol, or may be determined according to a configuration or instruction of a network device.
  • the first information field may occupy reserved bits in the DCI, or may reuse an existing information field in the DCI.
  • the terminal device can determine a set of candidate values for the number of transmission times according to the provisions of the protocol or the configuration of the network device, and the first information field is used to indicate an index of a candidate value in the set of candidate values.
  • the network device may configure the candidate value set through Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • the candidate value set may include at least one candidate value of the number of PRACH transmission times.
  • the bit width of the first information field is determined according to the number of candidate values in the candidate value set.
  • the candidate value set may include a first numerical value. If the first information field is used to indicate the index corresponding to the first numerical value, the first information field is used to indicate that the terminal device determines the number of transmissions based on a comparison between a measured value of a reference signal and at least one preset threshold.
  • the first value is a null value, such as null or none.
  • the first information field is used to indicate that the PRACH transmission number is single.
  • the first information field is used to indicate the candidate value corresponding to the smallest index in the candidate value set.
  • the first information field is used to indicate that the terminal device determines the number of transmissions based on a comparison between the measured value of the reference signal and at least one preset threshold.
  • the value of the codepoint of the first information field is used to determine the number of transmissions of the PRACH.
  • the maximum value of the code point corresponding to the first information field is greater than or equal to the maximum number of PRACH transmissions supported by the terminal device.
  • the terminal device can determine the number of transmissions of the PRACH by comparing the number of transmissions determined according to the indication of the first information field and the number of transmissions determined by comparing a reference signal measurement value with at least one preset threshold.
  • the terminal device can determine the first transmission number indicated by the first information field of the DCI, and the terminal device can also determine the second transmission number determined by comparing the measured value of the reference signal with at least one preset threshold. The terminal device can compare the first transmission number and the second transmission number, and determine that the transmission number of the PRACH is the larger value between the first transmission number and the second transmission number.
  • the terminal device determines the number of transmissions of the PRACH according to the first information field, and the random access initiated based on the number of transmissions fails, the terminal device needs to initiate PRACH retransmission, and the terminal device can select at least one of the following methods:
  • the terminal device may choose to determine the number of transmissions of the PRACH retransmission based on a comparison between a measured value of the reference signal and at least one preset threshold;
  • the terminal device may also choose to still perform PRACH retransmission based on the number of transmissions indicated by the first information field, that is, determine the number of transmissions of the PRACH retransmission to be the number of transmissions indicated by the first information field;
  • the terminal device may also choose to wait for receiving first indication information sent by a network device before performing PRACH retransmission, where the first indication information is used to indicate the number of transmissions of the PRACH retransmission, or the first indication information is used to instruct the terminal device to determine the number of transmissions of the PRACH retransmission by itself (for example, determined based on a comparison between a reference signal measurement value and at least one preset threshold, or determined based on the number of transmissions indicated by the first information field, etc.).
  • the initiated random access failure refers to a failure to receive the second random access message Msg2.
  • the terminal device determines the number of PRACH transmissions by comparing the measured value of the reference signal with at least one preset threshold value, which may specifically include: measuring the reference signal receiving power (RSRP) of the reference signal sent by the network device, comparing the RSRP with at least one preset threshold value, and determining the number of PRACH transmissions.
  • RSRP reference signal receiving power
  • the reference signal can be a secondary synchronization signal (Secondary Synchronization Signal, SSS), a synchronization signal and a physical broadcast channel block (Synchronization Signal and PBCH Block, SSB), or other reference signals, etc., which is not limited in this application.
  • SSS Secondary Synchronization Signal
  • SSB Synchronization Signal and PBCH Block
  • the DCI is further used to instruct the terminal device to initiate contention-based random access CBRA, or the DCI is used to instruct the terminal device to initiate non-contention-based random access CFRA.
  • the terminal device may also receive the RRC reconfiguration signaling sent by the network device to reconfigure the number of PRACH transmissions of the terminal device and/or the at least one preset threshold. If the terminal device does not receive the reconfigured number of PRACH transmissions and/or the at least one preset threshold in the RRC reconfiguration signaling, the terminal device can configure the number of PRACH transmissions and/or the at least one preset threshold according to the system information block (System Information Block), such as the configuration parameters of RACHConfigCommon in SIB1.
  • System Information Block system Information Block
  • the number of transmissions of the physical random access channel PRACH is determined according to the DCI, so that the terminal device can determine a more reasonable number of transmissions of the physical random access channel PRACH in a random access attempt, and perform reasonable coverage enhancement on PRACH, which effectively ensures the fairness of access opportunities, saves energy consumption of terminal equipment, and improves the communication efficiency of the system.
  • Figure 3 is a flow chart of a random access method provided in an embodiment of the present application. It should be noted that the random access method in the embodiment of the present application is executed by a terminal device, and the terminal device supports physical random access channel PRACH retransmission. The method can be executed independently or in combination with any other embodiment of the present application. As shown in Figure 3, the method may include the following steps:
  • Step 301 Determine a set of candidate values for the number of PRACH transmission times according to a communication protocol or pre-configuration information or the configuration of the network device.
  • the terminal device can determine a set of candidate values for the number of PRACH transmission times according to the provisions of the protocol or the configuration of the network device.
  • the candidate value set may be directly defined in the protocol.
  • the network device may configure the candidate value set through RRC signaling.
  • the candidate value set may include at least one candidate value of the number of PRACH transmission times.
  • the candidate value set is ⁇ 2, 4, 8 ⁇ or the candidate value set is ⁇ 2, 4 ⁇ , etc.
  • the candidate value set may also include a single transmission of PRACH, that is, the candidate value set includes the number 1, such as the candidate value set is ⁇ 1, 2, 4, 8 ⁇ or the candidate value set is ⁇ 1, 2, 4 ⁇ , etc.
  • all possible candidate values of the PRACH transmission times may be directly defined in the protocol, and the network device may be configured to all possible candidate values defined in the protocol, or a subset of all possible candidate values, through RRC signaling.
  • Step 302 Receive downlink control information DCI sent by a network device.
  • a terminal device can receive a DCI sent by a network device, and the terminal device can determine the number of transmissions of a physical random access channel PRACH based on the DCI.
  • Step 303 Determine the number of PRACH transmissions from the candidate values in the candidate value set according to the DCI.
  • Implicit indication means indicating the number of transmissions of the PRACH through the format of the DCI or the correspondence between other parameters and the candidate values in the candidate value set; wherein different formats or parameters of the DCI may correspond to different numbers of transmissions of the PRACH.
  • Explicit indication means that the DCI has a field for indication, for example: the DCI includes a first information field, and the first information field is used to indicate the index corresponding to the candidate value in the candidate value set.
  • the terminal device can determine the number of transmissions of the PRACH according to the indication of the first information field.
  • the first information field may be used to indicate the index corresponding to the candidate value in the candidate value set.
  • the candidate value set is ⁇ 2,4,8 ⁇
  • the first information field is 01, which is used to indicate index #1 in the candidate value set, that is, the first information field is used to indicate that the number of transmissions of the PRACH is candidate value 2 corresponding to index #1, that is, the number of transmissions is 2.
  • the candidate value set includes a single transmission, such as the candidate value set is ⁇ 1,2,4,8 ⁇
  • the first information field 00 can be used to indicate the index corresponding to the single transmission in the candidate value set.
  • the bit width of the first information field may be determined according to the number of candidate values in the candidate value set.
  • the number of candidate values in the candidate value set is M
  • the bit width of the first information field may be ceiling(log2(M+1)) or ceiling(log2(M)), where ceiling( ⁇ ) indicates rounding up.
  • the candidate value set may include a first numerical value. If the first information field is used to indicate an index corresponding to the first numerical value, the first information field is used to indicate that the terminal device determines the number of transmissions based on a comparison between a measured value of a reference signal and at least one preset threshold.
  • the first value is a null value, such as none or null, etc.
  • the index value set is ⁇ 1, 2, 4, 8, none ⁇ or the index value set is ⁇ 2, 4, 8, none ⁇ , etc.
  • the first information field is used to indicate that the PRACH transmission number is single.
  • the first information field is used to indicate the candidate value corresponding to the smallest index in the candidate value set.
  • the terminal device determines the number of transmissions of the PRACH according to the first information field, and the random access initiated based on the number of transmissions fails, the terminal device needs to initiate PRACH retransmission, and the terminal device can select at least one of the following methods:
  • the terminal device may choose to determine the number of transmissions of the PRACH retransmission based on a comparison between a measured value of a reference signal and at least one preset threshold;
  • the terminal device may also choose to still perform PRACH retransmission based on the number of transmissions indicated by the first information field, that is, determine the number of transmissions of the PRACH retransmission to be the number of transmissions indicated by the first information field;
  • the terminal device may also choose to wait for receiving first indication information sent by a network device before performing PRACH retransmission, where the first indication information is used to indicate the number of transmissions of the PRACH retransmission, or the first indication information is used to instruct the terminal device to determine the number of transmissions of the PRACH retransmission by itself (for example, determined based on a comparison between a reference signal measurement value and at least one preset threshold, or determined based on the number of transmissions indicated by the first information field, etc.).
  • the initiated random access failure refers to a failure to receive the second random access message Msg2.
  • the terminal device determines the number of PRACH transmissions by comparing the measured value of the reference signal with at least one preset threshold value, which may specifically include: measuring the RSRP of the reference signal sent by the network device, comparing the RSRP with at least one preset threshold value, and determining the number of PRACH transmissions.
  • the reference signal may be a secondary synchronization signal SSS, a synchronization signal and a physical broadcast channel block SSB, or other reference signals, etc., which is not limited in the present application.
  • the DCI is further used to instruct the terminal device to initiate contention-based random access CBRA, or the DCI is used to instruct the terminal device to initiate non-contention-based random access CFRA.
  • the terminal device may also receive the RRC reconfiguration signaling sent by the network device to reconfigure the number of PRACH transmissions of the terminal device and/or the at least one preset threshold. If the terminal device does not receive the reconfigured number of PRACH transmissions and/or the at least one preset threshold in the RRC reconfiguration signaling, the terminal device can configure the number of PRACH transmissions and/or the at least one preset threshold according to the system information block, such as the configuration parameters of RACHConfigCommon in SIB1.
  • the system information block such as the configuration parameters of RACHConfigCommon in SIB1.
  • the DCI includes a first information field, and the first information field is used to indicate the index corresponding to the candidate value in the candidate value set, so that the terminal device can determine a more reasonable number of transmissions of the physical random access channel PRACH in a random access attempt, and reasonably enhance the coverage of PRACH, which effectively ensures the fairness of access opportunities, saves energy consumption of terminal devices, and improves the communication efficiency of the system.
  • Figure 4 is a flow chart of a random access method provided in an embodiment of the present application. It should be noted that the random access method in the embodiment of the present application is executed by a terminal device, and the terminal device supports physical random access channel PRACH retransmission. The method can be executed independently or in combination with any other embodiment of the present application. As shown in Figure 4, the method may include the following steps:
  • Step 401 Receive downlink control information DCI sent by a network device.
  • a terminal device can receive a DCI sent by a network device, and the terminal device can determine the number of transmissions of a physical random access channel PRACH based on the DCI.
  • Step 402 The DCI includes a first information field, and the value of the code point corresponding to the first information field is used to indicate the number of PRACH transmissions.
  • the value of the codepoint of the first information field is used to determine the number of transmissions of the PRACH.
  • the first information domain may include at least one code point.
  • the at least one code point included in the first information domain means, for example, if the first information domain has 3 bits, the first information domain includes 8 code points, which are 000, 001, 010, 011, 100, 101, 110, and 111.
  • the value of the code point corresponding to the first information domain means, for example, if the first information domain is 001, the value of the code point corresponding to the first information domain is 1, and if the first information domain is 100, the value of the code point corresponding to the first information domain is 4.
  • the value of the code point of the first information field is used to indicate the number of transmissions of the PRACH. For example, if the first information field is 100, the value of the code point corresponding to the first information field is 4, indicating that the number of transmissions of the PRACH is 4 times.
  • the maximum value of the code point corresponding to the first information field should be greater than or equal to the maximum number of PRACH transmissions supported by the terminal device, so that the value of the code point corresponding to the first information field can indicate all possible transmission times of the PRACH supported by the terminal device.
  • the first information field is used to indicate that the terminal device determines the number of transmissions based on a comparison between the measured value of the reference signal and at least one preset threshold.
  • the terminal device determines the number of transmissions of the PRACH according to the first information field, and the random access initiated based on the number of transmissions fails, the terminal device needs to initiate PRACH retransmission, and the terminal device can select at least one of the following methods:
  • the terminal device may choose to determine the number of transmissions of the PRACH retransmission based on a comparison between a measured value of the reference signal and at least one preset threshold;
  • the terminal device may also choose to still perform PRACH retransmission based on the number of transmissions indicated by the first information field, that is, determine the number of transmissions of the PRACH retransmission to be the number of transmissions indicated by the first information field;
  • the terminal device may also choose to wait for receiving first indication information sent by a network device before performing PRACH retransmission, where the first indication information is used to indicate the number of transmissions of the PRACH retransmission, or the first indication information is used to instruct the terminal device to determine the number of transmissions of the PRACH retransmission by itself (for example, determined based on a comparison between a reference signal measurement value and at least one preset threshold, or determined based on the number of transmissions indicated by the first information field, etc.).
  • the initiated random access failure refers to a failure to receive the second random access message Msg2.
  • the terminal device determines the number of PRACH transmissions by comparing the measured value of the reference signal with at least one preset threshold value, which may specifically include: measuring the RSRP of the reference signal sent by the network device, comparing the RSRP with at least one preset threshold value, and determining the number of PRACH transmissions.
  • the reference signal may be a secondary synchronization signal SSS, a synchronization signal and a physical broadcast channel block SSB, or other reference signals, etc., which is not limited in the present application.
  • the DCI is further used to instruct the terminal device to initiate contention-based random access CBRA, or the DCI is used to instruct the terminal device to initiate non-contention-based random access CFRA.
  • the DCI includes a first information field, and the value of the code point corresponding to the first information field is used to indicate the number of transmissions of PRACH, so that the terminal device can determine a more reasonable number of transmissions of the physical random access channel PRACH in a random access attempt, and perform reasonable coverage enhancement on PRACH, which effectively ensures the fairness of access opportunities, saves energy consumption of terminal devices, and improves the communication efficiency of the system.
  • Figure 5 is a flow chart of a random access method provided in an embodiment of the present application. It should be noted that the random access method in the embodiment of the present application is executed by a terminal device, and the terminal device supports physical random access channel PRACH retransmission. The method can be executed independently or in combination with any other embodiment of the present application. As shown in Figure 5, the method may include the following steps:
  • Step 501 Receive downlink control information DCI sent by a network device.
  • a terminal device can receive a DCI sent by a network device, and the terminal device can determine the number of transmissions of a physical random access channel PRACH based on the DCI.
  • Step 502 The DCI includes a first information field, where the first information field is used to instruct the terminal device to determine the number of PRACH transmissions based on a comparison between a measured value of a reference signal and at least one preset threshold.
  • At least one bit in the first information field is 0, or the first information field is a multiplexed information field and the value of the first information field is still the original value of the multiplexed information field, and the first information field is used to indicate that the terminal device determines the number of transmissions based on a comparison between a measured value of a reference signal and at least one preset threshold.
  • the terminal device is capable of determining a set of candidate values for the number of PRACH transmissions, and the set of candidate values includes a first value.
  • the first information field is used to indicate an index corresponding to the first value, and the first information field is used to indicate that the terminal device determines the number of transmissions based on a comparison between a measured value of a reference signal and at least one preset threshold.
  • the first value is a null value, such as null or none.
  • Step 503 measure the RSRP of the reference signal sent by the network device.
  • the terminal device is capable of measuring the RSRP of the reference signal sent by the network device.
  • the reference signal may be a secondary synchronization signal SSS, a synchronization signal and a physical broadcast channel block SSB, or other reference signals, etc., which is not limited in the present application.
  • Step 504 compare the RSRP with at least one preset threshold to determine the number of transmissions of the PRACH.
  • the terminal device can determine the coverage of the uplink channel of the terminal device and the corresponding number of PRACH transmissions based on a comparison between the measured RSRP and at least one preset threshold.
  • the at least one preset threshold each preset threshold has a corresponding number of PRACH transmissions.
  • the at least one preset threshold, and the number of PRACH transmissions corresponding to each preset threshold are determined according to a protocol provision or a configuration/instruction of a network device.
  • the terminal device can determine four preset thresholds and the corresponding number of transmissions according to the provisions of the protocol or the configuration/instruction of the network device. It can be understood that the at least one preset threshold and the corresponding number of transmissions shown in the table are only shown as an example, and other numbers of preset thresholds and the number of transmissions corresponding to each preset threshold can also be set, which is not limited here.
  • Threshold 4
  • M ⁇ N ⁇ P ⁇ Q, and M, N, P, and Q are all natural numbers.
  • the RSRP measured by the terminal device is greater than threshold 1, no repeated transmission is performed, that is, a single PRACH transmission is performed; if the RSRP is less than threshold 1 but greater than threshold 2, M PRACH repeated transmissions are performed; if the RSRP is less than threshold 2 but greater than threshold 3, N repeated transmissions are performed; if the RSRP is less than threshold 3 but greater than threshold 4, P PRACH repeated transmissions are performed; if the RSRP is less than threshold 4, Q PRACH repeated transmissions are performed.
  • the network device may configure each of the at least one preset threshold, and the terminal device determines the at least one preset threshold by receiving the configuration of the network device.
  • the indication of the network device is used to indicate each of the at least one preset threshold, and the terminal device determines the at least one preset threshold by receiving the indication of the network device.
  • the network device may also be configured with only one of the at least one preset threshold, and the remaining preset thresholds may be determined according to a certain calculation formula.
  • the specific value of ⁇ can be agreed upon by the protocol (such as ⁇ is -3dB) or indicated by the network device.
  • the number of the at least one preset threshold may be indicated by a network device or specified by a protocol, and may also be determined by other implicit methods, such as by configuring the number of PRACH transmission times.
  • the protocol may specify each of the at least one preset threshold, and the terminal device determines the at least one preset threshold according to the protocol.
  • the protocol may also specify only one of the at least one preset threshold, and the remaining preset thresholds are determined according to a certain calculation formula.
  • the network device may configure the number of PRACH transmissions corresponding to each preset threshold, and the terminal device determines the number of PRACH transmissions corresponding to each preset threshold by receiving the configuration of the network device.
  • the indication of the network device is used to indicate the number of PRACH transmissions corresponding to each preset threshold, and the terminal device determines the number of PRACH transmissions corresponding to each preset threshold by receiving the indication of the network device.
  • the network device may also be configured with only one PRACH transmission number corresponding to a preset threshold, and the PRACH transmission numbers corresponding to other preset thresholds are determined according to a certain calculation formula.
  • the specific value of k can be agreed upon by the protocol (such as k is 2) or indicated by the network device.
  • the number of PRACH transmission times may be indicated by a network device or specified by a protocol, and may also be determined by other implicit methods, such as the number of preset thresholds.
  • the protocol may specify the number of PRACH transmissions corresponding to each preset threshold, and the terminal device determines the number of PRACH transmissions corresponding to each preset threshold according to the provisions of the protocol.
  • the protocol may also specify only the number of PRACH transmissions corresponding to one preset threshold, and the number of PRACH transmissions corresponding to the remaining preset thresholds are determined according to a certain calculation formula.
  • the DCI is further used to instruct the terminal device to initiate contention-based random access CBRA, or the DCI is used to instruct the terminal device to initiate non-contention-based random access CFRA.
  • the DCI includes a first information field, and the first information field is used to instruct the terminal device to determine the number of PRACH transmissions based on the comparison of the measured value of the reference signal and at least one preset threshold, measure the RSRP of the reference signal sent by the network device, compare the RSRP with at least one preset threshold, and determine the number of PRACH transmissions, so that the terminal device can determine a more reasonable number of physical random access channel PRACH transmissions in a random access attempt, and reasonably enhance the coverage of PRACH, which effectively ensures the fairness of access opportunities, saves energy consumption of terminal devices, and improves the communication efficiency of the system.
  • Figure 6 is a flow chart of a random access method provided in an embodiment of the present application. It should be noted that the random access method in the embodiment of the present application is executed by a terminal device, and the terminal device supports physical random access channel PRACH retransmission. The method can be executed independently or in combination with any other embodiment of the present application. As shown in Figure 6, the method may include the following steps:
  • Step 601 Receive downlink control information DCI sent by a network device.
  • a terminal device can receive a DCI sent by a network device, and the terminal device can determine the number of transmissions of a physical random access channel PRACH based on the DCI.
  • Step 602 Determine a first transmission number indicated by a first information field in the DCI.
  • the terminal device can determine the first number of transmissions indicated by the first information field in the DCI.
  • the first information field is used to indicate the first number of transmission times, and any method described in any of the aforementioned embodiments may be selected (such as indicating an index in a candidate value set, etc.), and the embodiments of the present application will not be repeated here.
  • Step 603 Determine a second transmission number determined based on a comparison between a measured value of a reference signal and at least one preset threshold.
  • the terminal device can determine a second transmission number by comparing a measured value of a reference signal with at least one preset threshold.
  • the terminal device determines the second number of transmission times based on the comparison between the measured value of the reference signal and at least one preset threshold value, and can select any method as described in any of the aforementioned embodiments, and the embodiments of the present application will not be repeated here.
  • Step 604 compare the first transmission number and the second transmission number, and determine that the PRACH transmission number is the larger value or the smaller value of the first transmission number and the second transmission number.
  • the terminal device can compare the first transmission number and the second transmission number, and select the larger value as the PRACH transmission number.
  • the smaller of the first transmission number and the second transmission number can also be used as the PRACH transmission number.
  • the terminal device determines the number of transmissions of the PRACH according to the first information field, and the random access initiated based on the number of transmissions fails, the terminal device needs to initiate PRACH retransmission, and the terminal device can select at least one of the following methods:
  • the terminal device may choose to determine the number of transmissions of the PRACH retransmission based on a comparison between a measured value of the reference signal and at least one preset threshold;
  • the terminal device may also choose to still perform PRACH retransmission based on the number of transmissions indicated by the first information field, that is, determine the number of transmissions of the PRACH retransmission to be the number of transmissions indicated by the first information field;
  • the terminal device may also choose to wait for receiving first indication information sent by a network device before performing PRACH retransmission, where the first indication information is used to indicate the number of transmissions of the PRACH retransmission, or the first indication information is used to instruct the terminal device to determine the number of transmissions of the PRACH retransmission by itself (for example, determined based on a comparison between a reference signal measurement value and at least one preset threshold, or determined based on the number of transmissions indicated by the first information field, etc.).
  • the initiated random access failure refers to a failure to receive the second random access message Msg2.
  • the terminal device determines the number of PRACH transmissions by comparing the measured value of the reference signal with at least one preset threshold value, which may specifically include: measuring the RSRP of the reference signal sent by the network device, comparing the RSRP with at least one preset threshold value, and determining the number of PRACH transmissions.
  • the reference signal may be a secondary synchronization signal SSS, a synchronization signal and a physical broadcast channel block SSB, or other reference signals, etc., which is not limited in the present application.
  • the DCI is further used to instruct the terminal device to initiate contention-based random access CBRA, or the DCI is used to instruct the terminal device to initiate non-contention-based random access CFRA.
  • the terminal device can determine a more reasonable transmission number of the physical random access channel PRACH in a random access attempt, and reasonably enhance the coverage of the PRACH, which effectively ensures the fairness of access opportunities, saves energy consumption of terminal devices, and improves the communication efficiency of the system.
  • Figure 7 is a flow chart of a random access method provided in an embodiment of the present application. It should be noted that the random access method in the embodiment of the present application is executed by a network device. The method can be executed independently or in combination with any other embodiment of the present application. As shown in Figure 7, the method may include the following steps:
  • Step 701 Send downlink control information DCI to a terminal device, where the DCI is used to indicate the number of transmissions of a physical random access channel PRACH of the terminal device.
  • the network device can send downlink control information DCI to the terminal device, and the DCI is used by the terminal device to determine the number of transmissions of the physical random access channel PRACH.
  • the terminal device can determine the number of transmissions of the PRACH based on the received DCI.
  • the DCI is used to indicate the number of transmissions of the PRACH, or the DCI is used to indicate that the terminal device determines the number of transmissions of the PRACH based on a comparison between a measured value of a reference signal and at least one preset threshold.
  • the DCI may explicitly or implicitly indicate the number of transmissions of the PRACH.
  • Implicit indication means indicating the number of PRACH transmissions through the format of the DCI or other parameters; wherein different formats or parameters of the DCI may correspond to different numbers of PRACH transmissions.
  • Explicit indication means that the DCI has a field for indication, for example: the DCI includes a first information field, the first information field is used to indicate the number of transmissions of the PRACH, and/or, the first information field is used to indicate that the terminal device determines the number of transmissions of the PRACH based on a comparison between a measured value of a reference signal and at least one preset threshold.
  • the terminal device may determine the number of transmissions of the PRACH according to an indication of the first information field.
  • the terminal device may determine the number of transmissions of the PRACH by comparing a measured value of a reference signal with at least one preset threshold value according to an indication of the first information field.
  • the terminal device can compare the number of transmissions determined according to the indication of the first information field and the number of transmissions determined by comparing the reference signal measurement value with at least one preset threshold, and determine the number of transmissions of the PRACH based on the comparison result of the transmission numbers determined by the two methods.
  • the at least one preset threshold, and the number of PRACH transmissions corresponding to each preset threshold may be determined according to a provision of a protocol, or may be determined according to a configuration or instruction of a network device.
  • the first information field may occupy reserved bits in the DCI, or may reuse an existing information field in the DCI.
  • the network device is able to send configuration information to the terminal device, where the configuration information is used to determine a set of candidate values for the number of transmissions, and the first information field is used to indicate an index of a candidate value in the set of candidate values.
  • the network device may configure the candidate value set through radio resource control RRC signaling.
  • the candidate value set may include at least one candidate value of the number of PRACH transmission times.
  • the bit width of the first information field is determined according to the number of candidate values in the candidate value set.
  • the candidate value set may include a first numerical value. If the first information field is used to indicate the index corresponding to the first numerical value, the first information field is used to indicate that the terminal device determines the number of transmissions based on a comparison between a measured value of a reference signal and at least one preset threshold.
  • the first value is a null value, such as null or none.
  • the first information field is used to indicate that the PRACH transmission number is single.
  • the first information field is used to indicate the candidate value corresponding to the smallest index in the candidate value set.
  • the first information field is used to indicate that the terminal device determines the number of transmissions based on a comparison between the measured value of the reference signal and at least one preset threshold.
  • the value of the codepoint of the first information field is used to determine the number of transmissions of the PRACH.
  • the maximum value of the code point corresponding to the first information field is greater than or equal to the maximum number of PRACH transmissions supported by the terminal device.
  • the terminal device can determine the number of transmissions of the PRACH by comparing the number of transmissions determined according to the indication of the first information field and the number of transmissions determined by comparing a reference signal measurement value with at least one preset threshold.
  • the terminal device can determine the first transmission number indicated by the first information field of the DCI, and the terminal device can also determine the second transmission number determined by comparing the measured value of the reference signal with at least one preset threshold. The terminal device can compare the first transmission number and the second transmission number, and determine that the transmission number of the PRACH is the larger value between the first transmission number and the second transmission number.
  • the terminal device determines the number of transmissions of the PRACH based on the first information field, and the random access initiated based on the number of transmissions fails, and the terminal device needs to initiate PRACH retransmission.
  • the network device may also send a first indication information to the terminal device before the terminal device performs PRACH retransmission, and the first indication information is used to indicate the number of transmissions of the PRACH retransmission, or the first indication information is used to instruct the terminal device to determine the number of transmissions of the PRACH retransmission by itself (for example, determined based on a comparison between a reference signal measurement value and at least one preset threshold, or determined based on the number of transmissions indicated by the first information field, etc.).
  • the initiated random access failure refers to a failure to receive the second random access message Msg2.
  • the DCI is further used to instruct the terminal device to initiate contention-based random access CBRA, or the DCI is used to instruct the terminal device to initiate non-contention-based random access CFRA.
  • the terminal device may also receive the RRC reconfiguration signaling sent by the network device to reconfigure the number of PRACH transmissions of the terminal device and/or the at least one preset threshold. If the terminal device does not receive the reconfigured number of PRACH transmissions and/or the at least one preset threshold in the RRC reconfiguration signaling, the terminal device can configure the number of PRACH transmissions and/or the at least one preset threshold according to the system information block, such as the configuration parameters of RACHConfigCommon in SIB1.
  • the system information block such as the configuration parameters of RACHConfigCommon in SIB1.
  • the main consideration is to indicate the number of PRACH transmissions of the terminal device through DCI when the network device can obtain a relatively accurate uplink status.
  • the network device can still obtain a relatively accurate uplink status (such as uplink desynchronization, to obtain the random access channel RACH for downlink synchronization), or when the network-side scheduling entities of the primary cell Pcell (Primary cell) and the secondary cell Scell (Secondary cell) are at the same physical node or at the same geographical location (for the case of obtaining the random access channel for uplink synchronization on the Scell), the network device can determine the number of PRACH transmissions and indicate it to the terminal; if the network device cannot obtain accurate uplink coverage, such as the uplink desynchronization time is relatively long, or the Pcell and the Scell are located in different geographical locations, in this case, the terminal device can determine the number of PRACH transmissions for a random access attempt by measuring the reference
  • the DCI is used to instruct the terminal device to determine the number of PRACH transmissions from the candidate values in the candidate value set.
  • the number of PRACH transmissions can be implicitly or explicitly indicated by the DCI.
  • Implicit indication means indicating the number of PRACH transmissions through the correspondence between the format of the DCI or other parameters and the candidate values in the candidate value set; wherein different formats or parameters of the DCI may correspond to different numbers of PRACH transmissions.
  • Explicit indication means that the DCI has a field for indication, for example: the DCI includes a first information field, and the first information field is used to indicate the index corresponding to the candidate value in the candidate value set.
  • the DCI includes a first information field, and a value of a code point corresponding to the first information field is used to indicate the number of PRACH transmissions.
  • the DCI includes a first information field, which is used to indicate that the terminal device determines the number of PRACH transmissions based on a comparison between a measured value of a reference signal and at least one preset threshold.
  • the specific determination method can refer to other embodiments of the present disclosure, and the same content will not be repeated here.
  • the DCI is used to instruct the terminal device to determine a first transmission number corresponding to the DCI and a second transmission number determined based on a comparison between a measured value of a reference signal and at least one preset threshold; and compare the first transmission number and the second transmission number to determine that the PRACH transmission number is the larger or smaller of the first transmission number and the second transmission number.
  • the specific determination method can refer to other embodiments of the present disclosure, and the same content will not be repeated here.
  • the DCI is used by the terminal device to determine the number of transmissions of the physical random access channel PRACH, so that the terminal device can determine a more reasonable number of transmissions of the physical random access channel PRACH in a random access attempt, and perform reasonable coverage enhancement on PRACH, thereby effectively ensuring the fairness of access opportunities, saving energy consumption of terminal devices, and improving the communication efficiency of the system.
  • the present application also provides a random access device. Since the random access device provided in the embodiments of the present application corresponds to the methods provided in the above-mentioned embodiments, the implementation method of the random access method is also applicable to the random access device provided in the following embodiments, and will not be described in detail in the following embodiments.
  • Figure 8 is a schematic diagram of the structure of a random access device provided in an embodiment of the present application.
  • the random access device 800 includes: a transceiver unit 810 and a processing unit 820, wherein:
  • the transceiver unit 810 is configured to receive downlink control information DCI sent by a network device;
  • the processing unit 820 is configured to determine the number of transmissions of the physical random access channel PRACH according to the DCI.
  • the DCI includes a first information field, which is used to indicate the number of transmissions; or, the DCI is used to instruct the terminal device to determine the number of transmissions based on a comparison between a measured value of a reference signal and at least one preset threshold.
  • the processing unit 820 is further used to: determine a set of candidate values for the number of transmission times according to a provision of a protocol or a configuration of the network device; and the first information field is used to indicate an index of a value in the set of candidate values.
  • bit width of the first information field is determined according to the number of candidate values in the candidate value set.
  • the first information field is used to indicate that the PRACH transmission number is single.
  • the first information field is used to indicate that the number of PRACH transmissions is the candidate value corresponding to the smallest index in the candidate value set.
  • the candidate value set includes a first numerical value; in response to the first information field being used to indicate an index corresponding to the first numerical value, the first information field is used to instruct the terminal device to determine the number of transmissions based on a comparison between a measured value of a reference signal and at least one preset threshold.
  • the first numerical value is a null value.
  • the first information field is used to indicate that the terminal device determines the number of transmissions based on a comparison between a measured value of the reference signal and at least one preset threshold.
  • the value of the code point of the first information field is used to indicate the number of transmissions.
  • the maximum value of the code point corresponding to the first information field is greater than or equal to the maximum number of transmissions of the PRACH supported by the terminal device.
  • the processing unit 820 is also used to: determine a first transmission number indicated by the first information field; determine a second transmission number determined based on a comparison of a measured value of a reference signal and at least one preset threshold; compare the first transmission number and the second transmission number, and determine that the PRACH transmission number is the larger value between the first transmission number and the second transmission number.
  • the processing unit 820 is also used for at least one of the following: determining the number of transmissions of the PRACH retransmission based on a comparison of a measured value of a reference signal and at least one preset threshold; determining the number of transmissions of the PRACH retransmission to be the number of transmissions indicated by the first information field; receiving first indication information sent by the network device, the first indication information being used to indicate the number of transmissions of the PRACH retransmission, or the first indication information being used to instruct the terminal device to determine the number of transmissions of the PRACH retransmission.
  • the initiated random access failure is a failure to receive a second random access message Msg2.
  • the processing unit 820 is further used to: measure the reference signal received power RSRP of the reference signal sent by the network device; compare the RSRP with at least one preset threshold to determine the number of transmissions of the PRACH.
  • the at least one preset threshold, and the number of transmissions corresponding to each preset threshold are determined according to the provisions of the protocol or the configuration/instructions of the network device.
  • the method further includes: initiating contention-based random access according to the DCI; or, initiating non-contention-based random access according to the DCI.
  • the random access device of this embodiment can receive the downlink control information DCI sent by the network device, and determine the number of transmissions of the physical random access channel PRACH according to the DCI, so that the terminal device can determine a more reasonable number of transmissions of the physical random access channel PRACH in a random access attempt, and reasonably enhance the coverage of PRACH, thereby effectively ensuring the fairness of access opportunities, saving energy consumption of terminal devices, and improving the communication efficiency of the system.
  • Figure 9 is a schematic diagram of the structure of a random access device provided in an embodiment of the present application.
  • the random access device 900 includes a transceiver unit 910, wherein:
  • the transceiver unit 910 is used to send downlink control information DCI to the terminal device; the DCI is used to indicate the number of transmissions of the physical random access channel PRACH of the terminal device.
  • the DCI includes a first information field, which is used to indicate the number of transmissions; or, the DCI is used to instruct the terminal device to determine the number of transmissions based on a comparison between a measured value of a reference signal and at least one preset threshold.
  • the transceiver unit 910 is further used to: send configuration information to the terminal device, where the configuration information is used to configure a set of candidate values for the number of transmission times; and the first information field is used to indicate an index of a value in the set of candidate values.
  • bit width of the first information field is determined according to the number of candidate values in the candidate value set.
  • the first information field is used to indicate that the PRACH transmission number is single.
  • the first information field is used to indicate that the number of PRACH transmissions is the candidate value corresponding to the smallest index in the candidate value set.
  • the candidate value set includes a first numerical value; in response to the first information field being used to indicate an index corresponding to the first numerical value, the first information field is used to instruct the terminal device to determine the number of transmissions based on a comparison between a measured value of a reference signal and at least one preset threshold.
  • the first numerical value is a null value.
  • the first information field is used to indicate that the terminal device determines the number of transmissions based on a comparison between a measured value of the reference signal and at least one preset threshold.
  • the value of the code point of the first information field is used to indicate the number of transmissions.
  • the maximum value of the code point corresponding to the first information field is greater than or equal to the maximum number of transmissions of the PRACH supported by the terminal device.
  • the transceiver unit 910 is also used to: send first indication information to the terminal device, the first indication information being used to indicate the number of transmissions of the PRACH retransmission, or the first indication information being used to instruct the terminal device to determine the number of transmissions of the PRACH retransmission.
  • the initiated random access failure is a failure to receive a second random access message Msg2.
  • the DCI is also used to initiate contention-based random access; or, the DCI is also used to initiate non-contention-based random access.
  • the random access device of this embodiment can send downlink control information DCI to the terminal equipment, and the DCI is used by the terminal equipment to determine the number of transmissions of the physical random access channel PRACH, so that the terminal equipment can determine a more reasonable number of transmissions of the physical random access channel PRACH in a random access attempt, and reasonably enhance the coverage of PRACH, thereby effectively ensuring the fairness of access opportunities, saving energy consumption of terminal equipment, and improving the communication efficiency of the system.
  • the embodiments of the present application also propose a communication device, including: a processor and a memory, wherein a computer program is stored in the memory, and the processor executes the computer program stored in the memory so that the device executes the method shown in the embodiments of Figures 2 to 6.
  • the embodiments of the present application also propose a communication device, including: a processor and a memory, wherein a computer program is stored in the memory, and the processor executes the computer program stored in the memory so that the device executes the method shown in the embodiment of Figure 7.
  • the embodiments of the present application also propose a communication device, including: a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to execute the methods shown in the embodiments of Figures 2 to 6.
  • the embodiments of the present application also propose a communication device, including: a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to execute the method shown in the embodiment of Figure 7.
  • the random access device 1000 can be a network device, or a terminal device, or a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a processor that supports the terminal device to implement the above method.
  • the device can be used to implement the method described in the above method embodiment, and the details can be referred to the description in the above method embodiment.
  • the random access device 1000 may include one or more processors 1001.
  • the processor 1001 may be a general-purpose processor or a dedicated processor, etc. For example, it may be a baseband processor or a central processing unit.
  • the baseband processor may be used to process the communication protocol and communication data
  • the central processing unit may be used to control the random access device (such as a base station, a baseband chip, a terminal device, a terminal device chip, a DU or a CU, etc.), execute a computer program, and process the data of the computer program.
  • the random access device 1000 may further include one or more memories 1002, on which a computer program 1003 may be stored, and the processor 1001 executes the computer program 1003 so that the random access device 1000 performs the method described in the above method embodiment.
  • the computer program 1003 may be fixed in the processor 1001, in which case the processor 1001 may be implemented by hardware.
  • data may also be stored in the memory 1002.
  • the random access device 1000 and the memory 1002 may be provided separately or integrated together.
  • the random access device 1000 may further include a transceiver 1005 and an antenna 1006.
  • the transceiver 1005 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing a transceiver function.
  • the transceiver 1005 may include a receiver and a transmitter, the receiver may be referred to as a receiver or a receiving circuit, etc., for implementing a receiving function; the transmitter may be referred to as a transmitter or a transmitting circuit, etc., for implementing a transmitting function.
  • the random access device 1000 may further include one or more interface circuits 1007.
  • the interface circuit 1007 is used to receive code instructions and transmit them to the processor 1001.
  • the processor 1001 executes the code instructions to enable the random access device 1000 to perform the method described in the above method embodiment.
  • the processor 1001 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuit, interface, or interface circuit for implementing the receiving and sending functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface, or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface, or interface circuit may be used for transmitting or delivering signals.
  • the random access device 1000 may include a circuit, which may implement the functions of sending, receiving or communicating in the aforementioned method embodiment.
  • the processor and transceiver described in the present application may be implemented in an integrated circuit (IC), an analog IC, a radio frequency integrated circuit RFIC, a mixed signal IC, an application specific integrated circuit (ASIC), a printed circuit board (PCB), an electronic device, etc.
  • the processor and transceiver may also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal oxide semiconductor (NMOS), P-type metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS N-type metal oxide semiconductor
  • PMOS P-type metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the random access device described in the above embodiments may be a network device or a terminal device, but the scope of the random access device described in the present application is not limited thereto, and the structure of the random access device may not be limited by FIG. 13-FIG. 14.
  • the random access device may be an independent device or may be part of a larger device.
  • the random access device may be:
  • the IC set may also include a storage component for storing data and computer programs;
  • ASIC such as modem
  • the random access device can be a chip or a chip system
  • the chip shown in Figure 11 includes a processor 1101 and an interface 1102.
  • the number of processors 1101 can be one or more, and the number of interfaces 1102 can be multiple.
  • Interface 1102 used for code instructions and transmission to the processor
  • the processor 1101 is used to run code instructions to execute the methods shown in FIG. 2 to FIG. 6 .
  • Interface 1102 used for code instructions and transmission to the processor
  • the processor 1101 is configured to run code instructions to execute the method shown in FIG. 7 .
  • the chip further includes a memory 1103, and the memory 1103 is used to store necessary computer programs and data.
  • An embodiment of the present application also provides a communication system, which includes the random access device as a terminal device and the random access device as a network device in the embodiments of Figures 8-9 above, or the system includes the random access device as a terminal device and the random access device as a network device in the embodiment of Figure 10 above.
  • the present application also provides a readable storage medium having instructions stored thereon, which implement the functions of any of the above method embodiments when executed by a computer.
  • the present application also provides a computer program product, which implements the functions of any of the above method embodiments when executed by a computer.
  • the computer program product includes one or more computer programs.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that contains one or more available media integrated.
  • Available media can be magnetic media (e.g., floppy disks, hard disks, tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks (SSD)), etc.
  • magnetic media e.g., floppy disks, hard disks, tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks (SSD)
  • At least one in the present application can also be described as one or more, and a plurality can be two, three, four or more, which is not limited in the present application.
  • the technical features in the technical feature are distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc., and there is no order of precedence or size between the technical features described by the "first”, “second”, “third”, “A”, “B”, “C” and “D”.
  • the corresponding relationships shown in the tables in the present application can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by the present application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables can also use other names that can be understood by the communication device, and the values or representations of the parameters can also be other values or representations that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables.
  • the predefined in the present application may be understood as defined, predefined, stored, pre-stored, pre-negotiated, pre-configured, solidified, or pre-burned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种随机接入方法及装置,通过接收网络设备发送的下行控制信息DCI,根据该DCI,确定物理随机接入信道PRACH的传输次数,使得终端设备能够在一次随机接入的尝试中,确定一个较为合理的物理随机接入信道PRACH的传输次数,对PRACH进行合理的覆盖增强,有效保证了接入机会的公平性,节约了终端设备的能耗,提高系统的通信效率。

Description

随机接入方法及装置 技术领域
本申请涉及通信技术领域,特别是指一种随机接入方法及装置。
背景技术
在5G NR(New Radio,新空口)系统的四步随机接入过程中,支持基于竞争的随机接入(Contention Based Random Access,CBRA)和基于非竞争的随机接入(Non Contention or Contention Free Random Access,CFRA)两种。
在3GPP R18中,对于PRACH(Physical Random Access Channel,物理随机接入信道)覆盖增强,提出可以在时域进行多次发送,也就是PRACH重复发送(repetition)。对于支持PRACH重复发送的终端设备,如何确定PRACH的传输次数,是需要考虑的问题。
发明内容
本申请第一方面实施例提出了一种随机接入方法,所述方法由终端设备执行,所述方法包括:
接收网络设备发送的下行控制信息DCI;
根据所述DCI,确定物理随机接入信道PRACH的传输次数。
本申请第二方面实施例提出了一种随机接入方法,所述方法由网络设备执行,所述方法包括:
向终端设备发送下行控制信息DCI;所述DCI用于指示所述终端设备的物理随机接入信道PRACH的传输次数。
本申请第三方面实施例提出了一种随机接入装置,所述装置应用于终端设备,所述装置包括:
收发单元,用于接收网络设备发送的下行控制信息DCI;
处理单元,用于根据所述DCI,确定物理随机接入信道PRACH的传输次数。
本申请第四方面实施例提出了一种随机接入装置,所述装置应用于网络设备,所述装置包括:
收发单元,用于向终端设备发送下行控制信息DCI;所述DCI用于指示所述终端设备的物理随机接入信道PRACH的传输次数。
本申请第五方面实施例提出了一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行上述第一方面实施例所述的随机接入方法。
本申请第六方面实施例提出了一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行上述第二方面实施例所述的随机接入方法。
本申请第七方面实施例提出了一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面实施例所述的随机接入方法。
本申请第八方面实施例提出了一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面实施例所述的随机接入方法。
本申请第九方面实施例提出了一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使上述第一方面实施例所述的随机接入方法被实现。
本申请第十方面实施例提出了一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使上述第二方面实施例所述的随机接入方法被实现。
本申请第十一方面实施例提出了一种计算机程序,当其在计算机上运行时,使得计算机执行第一方面实施例所述的随机接入方法。
本申请第十二方面实施例提出了一种计算机程序,当其在计算机上运行时,使得计算机执行第二方面实施例所述的随机接入方法。
本申请实施例提供的一种随机接入方法及装置,通过接收网络设备发送的下行控制信息DCI,根据该DCI,确定物理随机接入信道PRACH的传输次数,使得终端设备能够在一次随机接入的尝试中,确定一个较为合理的物理随机接入信道PRACH的传输次数,对PRACH进行合理的覆盖增强,有效保证了接入机会的公平性,节约了终端设备的能耗,提高系统的通信效率。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种随机接入方法的流程示意图;
图3是本申请实施例提供的一种随机接入方法的流程示意图;
图4是本申请实施例提供的一种随机接入方法的流程示意图;
图5是本申请实施例提供的一种随机接入方法的流程示意图;
图6是本申请实施例提供的一种随机接入方法的流程示意图;
图7是本申请实施例提供的一种随机接入方法的流程示意图;
图8是本申请实施例提供的一种随机接入装置的结构示意图;
图9是本申请实施例提供的一种随机接入装置的结构示意图;
图10是本申请实施例提供的另一种随机接入装置的结构示意图;
图11是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请实施例的一些方面相一致的装置和方法的例子。
在本申请实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
为了更好的理解本申请实施例公开的一种随机接入方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个第一网络设备、一个第二网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备和两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备101和一个终端设备102为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(Long Term Evolution,LTE)系统、第五代移动通信系统、5G新空口系统,或者其他未来的新型移动通信系统等。
本申请实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101和可以为演进型基站(Evolved NodeB,eNB)、传输点(Transmission Reception Point,TRP)、NR系统中的下一代基站(Next Generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(Wireless Fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(Central Unit,CU)与分布式单元(Distributed Unit,DU)组成的,其中,CU也可以称为控制单元(Control Unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(Mobile Station,MS)、移动终端设备(Mobile Terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(Mobile Phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(Industrial Control)中的无线终端设备、无人驾驶(Self-Driving)中的无线终端设备、远程手术(Remote Medical Surgery)中的无线终端设备、智能电网(Smart Grid)中的无线终端设备、运输安全(Transportation Safety)中的无线终端设备、智慧城市(Smart City)中的无线终端设备、智慧家庭(Smart Home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
在5G NR(New Radio,新空口)系统的四步随机接入过程中,支持基于竞争的随机接入(Contention Based Random Access,CBRA)和基于非竞争的随机接入(Non Contention or Contention Free Random Access,CFRA)两种。
在基于竞争的四步随机接入过程中,终端设备102能够向网络设备101发送第一随机接入消息Msg1(message 1),网络设备101在接收到该Msg1之后,能够向终端设备102发送第二随机接入消息Msg2(message 2)。终端设备102在接收到该Msg2之后,能够向网络设备101发送第三随机接入消息Msg3(message 3),网络设备101在接收到该Msg3之后,能够向终端设备102发送第二随机接入消息Msg4(message 4)。
在3GPP R18中,对于PRACH(Physical Random Access Channel,物理随机接入信道)覆盖增强,提出可以在时域进行多次发送,也就是PRACH重复发送(repetition)。对于支持PRACH重复发送的终端设备102,如何确定PRACH的传输次数,是需要考虑的问题。
在3GPP R18中,对于PRACH(Physical Random Access Channel,物理随机接入信道)覆盖增强,提出可以在时域进行多次发送,也就是PRACH重复发送(repetition)。对于支持PRACH重复发送的终端设备102,如何配置其发起随机接入所采用的资源,是需要考虑的问题。一种可能的方向是,终端设备102使用相同的上行发送波束(UL TX beam)在多个传输时机(也就是随机接入时机RO)上进行重复发送,该多个传输时机对应多个传输时隙,可以是连续的,也可以是离散的,在此不作限定。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并 不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提供的随机接入方法及其装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种随机接入方法的流程示意图。需要说明的是,本申请实施例的随机接入方法由终端设备执行,该终端设备支持物理随机接入信道PRACH重传。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图2所示,该方法可以包括如下步骤:
步骤201,接收网络设备发送的下行控制信息DCI。
在本申请实施例中,终端设备能够接收网络设备发送的下行控制信息(Downlink Control Information,DCI),终端设备能够根据该DCI,确定物理随机接入信道PRACH的传输次数。
步骤202,根据该DCI,确定物理随机接入信道PRACH的传输次数。
在本申请实施例中,终端设备能够根据接收到的DCI,确定PRACH的传输次数。
在本申请实施例中,该DCI用于指示该PRACH的传输次数,或,该DCI用于指示该终端设备根据参考信号的测量值和至少一个预设阈值的比较来确定该PRACH的传输次数。在一种可能的实现方式中,该DCI可以显式或隐式指示PRACH的传输次数。
隐式指示是指,通过该DCI的格式或是其他参数来指示PRACH的传输次数;其中该DCI的不同格式或参数,可以对应于不同的PRACH的传输次数。
显式指示是指,该DCI具有用于指示的字段,例如:在本申请实施例中,该DCI包括第一信息域,该第一信息域用于指示该PRACH的传输次数,和/或,该第一信息域用于指示该终端设备根据参考信号的测量值和至少一个预设阈值的比较来确定该PRACH的传输次数。作为一种可能的实现,终端设备可以根据该第一信息域的指示,确定该PRACH的传输次数。
作为另一种可能的实现,终端设备可以根据接收到的DCI,通过参考信号的测量值与至少一个预设阈值的比较,确定该PRACH的传输次数。
作为又一种可能的实现,终端设备能够比较根据该第一信息域的指示确定的传输次数,以及通过参考信号测量值与至少一个预设阈值的比较确定的传输次数,根据两种方式确定的传输次数的比较结果,确定该PRACH的传输次数。
可选地,该至少一个预设阈值,以及与每个预设阈值对应的PRACH传输次数,可以是根据协议的规定确定的,也可以根据网络设备的配置或者指示确定的。
在本申请实施例中,该第一信息域可以是占用该DCI中的保留的比特位,也可以是复用该DCI中已有的信息域。
在一些实施方式中,终端设备能够根据协议的规定或者该网络设备的配置,确定该传输次数的候选值集合,该第一信息域用于指示该候选值集合中的候选值的索引。
可选地,网络设备可以通过无线资源控制(RadioResourceControl,RRC)信令来配置该候选值集合。
可选地,该候选值集合中可以包括至少一个PRACH传输次数的候选值。
可选地,该第一信息域的位宽,也就是该第一信息域占用的比特数,是根据该候选值集合中的候选值个数确定的。
可选地,该候选值集合中可以包括第一数值,如果该第一信息域用于指示该第一数值对应的索引,该第一信息域用于指示该终端设备根据参考信号的测量值和至少一个预设阈值的比较来确定该传输次数。
可选地,该第一数值为空值,比如null或者none等等。
可选地,如果该第一信息域中的至少一个比特均为0,或者,该第一信息域是复用的信息域且该第 一信息域的取值仍为复用的信息域的原取值,该第一信息域用于指示该PRACH传输次数为单次。
可选地,如果该第一信息域中的至少一个比特均为0,或者,该第一信息域是复用的信息域且该第一信息域的取值仍为复用的信息域的原取值,该第一信息域用于指示该候选值集合中最小的索引对应的候选值。
在一些实施方式中,如果该第一信息域中的至少一个比特均为0,或者,该第一信息域是复用的信息域且该第一信息域的取值仍为复用的信息域的原取值,该第一信息域用于指示该终端设备根据参考信号的测量值和至少一个预设阈值的比较来确定该传输次数。
在一些实施方式中,该第一信息域的码点(codepoint)的取值用于确定该PRACH的传输次数。
可选地,该第一信息域对应的码点的取值的最大值大于或者等于该终端设备支持的PRACH的最大传输次数。
在一些实施方式中,终端设备能够比较根据该第一信息域的指示确定的传输次数,以及通过参考信号测量值与至少一个预设阈值的比较确定的传输次数,确定该PRACH的传输次数。
具体地,终端设备能够确定该DCI的第一信息域指示的第一传输次数,终端设备还能够确定根据该参考信号的测量值和至少一个预设阈值比较确定的第二传输次数。终端设备能够比较该第一传输次数和该第二传输次数,并确定该PRACH的传输次数为该第一传输次数与第二传输次数中的较大值。
在一些实施方式中,该终端设备根据该第一信息域确定该PRACH的传输次数,且基于该传输次数发起的随机接入失败,该终端设备需要发起PRACH重传,该终端设备能够选择以下至少一种方式:
该终端设备可以选择根据参考信号的测量值和至少一个预设阈值的比较来确定该PRACH重传的传输次数;
该终端设备也可以选择依然基于该第一信息域指示的传输次数进行PRACH重传,也就是确定该PRACH重传的传输次数为该第一信息域指示的传输次数;
该终端设备还可以选择在进行PRACH重传之前等待接收网络设备发送的第一指示信息,该第一指示信息用于指示该PRACH重传的传输次数,或者,该第一指示信息用于指示该终端设备自行确定该PRACH重传的传输次数(比如,根据参考信号测量值和至少一个预设阈值的比较确定,或者,基于该第一信息域指示的传输次数确定等等)。
可选地,该发起的随机接入失败是指第二随机接入消息Msg2接收失败。
在本申请各实施例中,终端设备通过参考信号的测量值和至少一个预设阈值的比较确定该PRACH传输次数,具体可以包括:测量网络设备发送的参考信号的参考信号接收功率(Reference Signal Receiving Power,RSRP),比较该RSRP与至少一个预设阈值,确定该PRACH的传输次数。
可选地,该参考信号可以为辅助同步信号(Secondary Synchronization Signal,SSS),也可以为同步信号和物理广播信道块(Synchronization Signal and PBCH Block,SSB),还可以为其他参考信号等等,本申请在此不进行限定。
在本申请各实施例中,该DCI还用于指示该终端设备发起基于竞争的随机接入CBRA,或者该DCI用于指示该终端设备发起基于非竞争的随机接入CFRA。
在本申请各实施例中,终端设备还可以接收网络设备发送的RRC重配置信令重新配置该终端设备的PRACH传输次数和/或该至少一个预设阈值。如果终端设备没有接收到该RRC重配置信令中的重新配置的PRACH传输次数和/或该至少一个预设阈值,则该终端设备能够根据系统信息块(System Information Block),比如SIB1中的RACHConfigCommon的配置参数来配置该PRACH传输次数和/或该至少一个预设阈值。
综上,通过接收网络设备发送的下行控制信息DCI,根据该DCI,确定物理随机接入信道PRACH的传输次数,使得终端设备能够在一次随机接入的尝试中,确定一个较为合理的物理随机接入信道PRACH的传输次数,对PRACH进行合理的覆盖增强,有效保证了接入机会的公平性,节约了终端设 备的能耗,提高系统的通信效率。
请参见图3,图3是本申请实施例提供的一种随机接入方法的流程示意图。需要说明的是,本申请实施例的随机接入方法由终端设备执行,该终端设备支持物理随机接入信道PRACH重传。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图3所示,该方法可以包括如下步骤:
步骤301,根据通信协议或预配置信息或者该网络设备的配置,确定PRACH传输次数的候选值集合。
在本申请实施例中,终端设备能够根据协议的规定或者网络设备的配置,确定PRACH传输次数的候选值集合。
可选地,协议中可以直接定义该候选值集合。
可选地,网络设备可以通过RRC信令来配置该候选值集合。
可选地,该候选值集合中可以包括至少一个PRACH传输次数的候选值。
作为一种示例,该候选值集合为{2,4,8}或者该候选值集合为{2,4}等等。该候选值集合中还可以包括PRACH的单次传输,也就是候选值集合中包括次数1,比如该候选值集合为{1,2,4,8}或者该候选值集合为{1,2,4}等等。
作为一种可能的实现,协议中可以直接定义该PRACH传输次数的全部可能的候选值,网络设备通过RRC信令配置为协议中定义的全部可能的候选值,或者全部可能的候选值的一个子集。
步骤302,接收网络设备发送的下行控制信息DCI。
在本申请实施例中,终端设备能够接收网络设备发送的DCI,终端设备能够根据该DCI,确定物理随机接入信道PRACH的传输次数。
步骤303,根据该DCI,从该候选值集合中的候选值中确定PRACH的传输次数。
如前所述的,可以通过DCI隐式或显式指示该PRACH的传输次数。隐式指示是指,通过该DCI的格式或是其他参数与候选值集合中的候选值之间的对应关系,指示PRACH的传输次数;其中该DCI的不同格式或参数,可以对应于不同的PRACH的传输次数。
显式指示是指,该DCI具有用于指示的字段,例如:该DCI包括第一信息域,该第一信息域用于指示该候选值集合中的候选值对应的索引。
在本申请实施例中,终端设备可以根据该第一信息域的指示,确定该PRACH的传输次数。
在本申请实施例中,该第一信息域可以用于指示该候选值集合中的候选值对应的索引。
比如,该候选值集合为{2,4,8},第一信息域为01,用于指示该候选值集合中索引#1,也就是该第一信息域用于指示该PRACH的传输次数为索引#1对应的候选值2,即传输次数为2次。作为一种示例,如果该候选值集合中包括单次传输,比如该候选值集合为{1,2,4,8},可以用第一信息域的00指示该候选值集合中单次传输对应的索引。
在一些实施方式中,该第一信息域的位宽,也就是该第一信息域占用的比特数,可以是根据该候选值集合中的候选值个数确定的。
比如,该候选值集合中的候选值的个数为M,该第一信息域的位宽可以为ceiling(log2(M+1))或者ceiling(log2(M))。其中,ceiling(·)表示向上取整。
在一些实施方式中,该候选值集合中可以包括第一数值,如果该第一信息域用于指示该第一数值对应的索引,该第一信息域用于指示该终端设备根据参考信号的测量值和至少一个预设阈值的比较来确定该传输次数。
可选地,该第一数值为空值,比如none或者null等等。比如,该索引值集合为{1,2,4,8,none}或者该索引值集合为{2,4,8,none}等等。
在一些实施方式中,如果该第一信息域中的至少一个比特均为0,或者,该第一信息域是复用的信 息域且该第一信息域的取值仍为复用的信息域的原取值,该第一信息域用于指示该PRACH传输次数为单次。
在一些实施方式中,如果该第一信息域中的至少一个比特均为0,或者,该第一信息域是复用的信息域且该第一信息域的取值仍为复用的信息域的原取值,该第一信息域用于指示该候选值集合中最小的索引对应的候选值。
在一些实施方式中,该终端设备根据该第一信息域确定该PRACH的传输次数,且基于该传输次数发起的随机接入失败,该终端设备需要发起PRACH重传,该终端设备能够选择以下至少一种方式:
该终端设备可以选择根据参考信号的测量值和至少一个预设阈值的比较来确定该PRACH重传的传输次数;
该终端设备也可以选择依然基于该第一信息域指示的传输次数进行PRACH重传,也就是确定该PRACH重传的传输次数为该第一信息域指示的传输次数;
该终端设备还可以选择在进行PRACH重传之前等待接收网络设备发送的第一指示信息,该第一指示信息用于指示该PRACH重传的传输次数,或者,该第一指示信息用于指示该终端设备自行确定该PRACH重传的传输次数(比如,根据参考信号测量值和至少一个预设阈值的比较确定,或者,基于该第一信息域指示的传输次数确定等等)。
可选地,该发起的随机接入失败是指第二随机接入消息Msg2接收失败。
在本申请各实施例中,终端设备通过参考信号的测量值和至少一个预设阈值的比较确定该PRACH传输次数,具体可以包括:测量网络设备发送的参考信号的RSRP,比较该RSRP与至少一个预设阈值,确定该PRACH的传输次数。
可选地,该参考信号可以为辅助同步信号SSS,也可以为同步信号和物理广播信道块SSB,还可以为其他参考信号等等,本申请在此不进行限定。
在本申请各实施例中,该DCI还用于指示该终端设备发起基于竞争的随机接入CBRA,或者该DCI用于指示该终端设备发起基于非竞争的随机接入CFRA。
在本申请各实施例中,终端设备还可以接收网络设备发送的RRC重配置信令重新配置该终端设备的PRACH传输次数和/或该至少一个预设阈值。如果终端设备没有接收到该RRC重配置信令中的重新配置的PRACH传输次数和/或该至少一个预设阈值,则该终端设备能够根据系统信息块,比如SIB1中的RACHConfigCommon的配置参数来配置该PRACH传输次数和/或该至少一个预设阈值。
综上,通过根据协议的规定或者该网络设备的配置,确定PRACH传输次数的候选值集合,接收网络设备发送的下行控制信息DCI,该DCI包括第一信息域,该第一信息域用于指示该候选值集合中的候选值对应的索引,使得终端设备能够在一次随机接入的尝试中,确定一个较为合理的物理随机接入信道PRACH的传输次数,对PRACH进行合理的覆盖增强,有效保证了接入机会的公平性,节约了终端设备的能耗,提高系统的通信效率。
请参见图4,图4是本申请实施例提供的一种随机接入方法的流程示意图。需要说明的是,本申请实施例的随机接入方法由终端设备执行,该终端设备支持物理随机接入信道PRACH重传。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图4所示,该方法可以包括如下步骤:
步骤401,接收网络设备发送的下行控制信息DCI。
在本申请实施例中,终端设备能够接收网络设备发送的DCI,终端设备能够根据该DCI,确定物理随机接入信道PRACH的传输次数。
步骤402,该DCI包括第一信息域,该第一信息域对应的码点的取值用于指示PRACH的传输次数。
在本申请实施例中,该第一信息域的码点(codepoint)的取值用于确定该PRACH的传输次数。
在本申请实施例中,该第一信息域可以包括至少一个码点。其中,该第一信息域包括的至少一个码 点是指,比如该第一信息域有3比特(bit),则该第一信息域包括8个码点,分别为000,001,010,011,100,101,110,111。该第一信息域对应的码点的取值是指,比如该第一信息域为001,则该第一信息域对应的码点的取值为1,该第一信息域为100,则该第一信息域对应的码点的取值为4。
作为一种示例,该第一信息域的码点的取值用于指示该PRACH的传输次数是指,比如该第一信息域为100,则该第一信息域对应的码点的取值为4,用于指示该PRACH的传输次数为4次。
可以理解,在本申请实施例中,该第一信息域对应的码点的取值的最大值,应该大于等于该终端设备支持的PRACH的最大传输次数,这样第一信息域对应的码点的取值能够指示该终端设备支持的该PRACH全部可能的传输次数。
在一些实施方式中,如果该第一信息域中的至少一个比特均为0,或者,该第一信息域是复用的信息域且该第一信息域的取值仍为复用的信息域的原取值,该第一信息域用于指示该终端设备根据参考信号的测量值和至少一个预设阈值的比较来确定该传输次数。
在一些实施方式中,该终端设备根据该第一信息域确定该PRACH的传输次数,且基于该传输次数发起的随机接入失败,该终端设备需要发起PRACH重传,该终端设备能够选择以下至少一种方式:
该终端设备可以选择根据参考信号的测量值和至少一个预设阈值的比较来确定该PRACH重传的传输次数;
该终端设备也可以选择依然基于该第一信息域指示的传输次数进行PRACH重传,也就是确定该PRACH重传的传输次数为该第一信息域指示的传输次数;
该终端设备还可以选择在进行PRACH重传之前等待接收网络设备发送的第一指示信息,该第一指示信息用于指示该PRACH重传的传输次数,或者,该第一指示信息用于指示该终端设备自行确定该PRACH重传的传输次数(比如,根据参考信号测量值和至少一个预设阈值的比较确定,或者,基于该第一信息域指示的传输次数确定等等)。
可选地,该发起的随机接入失败是指第二随机接入消息Msg2接收失败。
在本申请各实施例中,终端设备通过参考信号的测量值和至少一个预设阈值的比较确定该PRACH传输次数,具体可以包括:测量网络设备发送的参考信号的RSRP,比较该RSRP与至少一个预设阈值,确定该PRACH的传输次数。
可选地,该参考信号可以为辅助同步信号SSS,也可以为同步信号和物理广播信道块SSB,还可以为其他参考信号等等,本申请在此不进行限定。
在本申请各实施例中,该DCI还用于指示该终端设备发起基于竞争的随机接入CBRA,或者该DCI用于指示该终端设备发起基于非竞争的随机接入CFRA。
综上,通过接收网络设备发送的下行控制信息DCI,该DCI包括第一信息域,该第一信息域对应的码点的取值用于指示PRACH的传输次数,使得终端设备能够在一次随机接入的尝试中,确定一个较为合理的物理随机接入信道PRACH的传输次数,对PRACH进行合理的覆盖增强,有效保证了接入机会的公平性,节约了终端设备的能耗,提高系统的通信效率。
请参见图5,图5是本申请实施例提供的一种随机接入方法的流程示意图。需要说明的是,本申请实施例的随机接入方法由终端设备执行,该终端设备支持物理随机接入信道PRACH重传。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图5所示,该方法可以包括如下步骤:
步骤501,接收网络设备发送的下行控制信息DCI。
在本申请实施例中,终端设备能够接收网络设备发送的DCI,终端设备能够根据该DCI,确定物理随机接入信道PRACH的传输次数。
步骤502,该DCI包括第一信息域,该第一信息域用于指示该终端设备根据参考信号的测量值和至少一个预设阈值的比较确定PRACH的传输次数。
在一些实施方式中,该第一信息域中的至少一个比特均为0,或者,该第一信息域是复用的信息域且该第一信息域的取值仍为复用的信息域的原取值,该第一信息域用于指示该终端设备根据参考信号的测量值和至少一个预设阈值的比较来确定该传输次数。
在一些实施方式中,该终端设备能够确定PRACH传输次数的候选值集合,且该候选值集合中包括第一数值。该第一信息域用于指示该第一数值对应的索引,该第一信息域用于指示该终端设备根据参考信号的测量值和至少一个预设阈值的比较来确定该传输次数。
可选地,该第一数值为空值,比如null或者none等等。
步骤503,测量网络设备发送的参考信号的RSRP。
在本申请实施例中,终端设备能够测量网络设备发送的参考信号的RSRP。
可选地,该参考信号可以为辅助同步信号SSS,也可以为同步信号和物理广播信道块SSB,还可以为其他参考信号等等,本申请在此不进行限定。
步骤504,比较该RSRP与至少一个预设阈值,确定该PRACH的传输次数。
在本申请实施例中,终端设备能够根据该测量的RSRP与至少一个预设阈值的比较,确定该终端设备上行信道的覆盖情况,确定对应的PRACH的传输次数。
在本申请实施例中,该至少一个预设阈值,每个预设阈值有对应的PRACH传输次数。
在一些实施方式中,该至少一个预设阈值,以及每个预设阈值对应的PRACH传输次数,是根据协议的规定或者网络设备的配置/指示确定的。
作为一种示例,如下表所示,终端设备可以根据协议的规定或者网络设备的配置/指示确定4个预设阈值以及对应的传输次数。可以理解,该表格所示的至少一个预设阈值与对应的传输次数,仅作为一个示例示出,还可以设置其他个数的预设阈值,以及每个预设阈值对应的传输次数,在此不作限定。
阈值 重复发送次数
阈值1 M
阈值2 N
阈值3 P
阈值4 Q
其中,阈值1>阈值2>阈值3>阈值4,M<N<P<Q,M,N,P,Q均为自然数。
对于如该示例所示的至少一个预设阈值与对应的重复发送次数,如果终端设备测量的该RSRP大于阈值1,则不进行重复传输,也就是PRACH单次传输;若该RSRP小于阈值1大于阈值2,则进行M次PRACH重复传输;若该RSRP小于阈值2大于阈值3,则进行N次重复传输;若该RSRP小于阈值3大于阈值4,则进行P次PRACH重复传输;若该RSRP小于阈值4,则进行Q次PRACH重复传输。
在一些实施方式中,网络设备可以配置至少一个预设阈值中的每一个预设阈值,终端设备通过接收网络设备的配置来确定该至少一个预设阈值。或者网络设备的指示用于指示至少一个预设阈值中的每一个预设阈值,终端设备通过接收网络设备的指示来确定该至少一个预设阈值。
在一些实施方式中,网络设备还可以只配置至少一个预设阈值其中的一个预设阈值,其余预设阈值根据一定计算公式确定。
作为一种示例,比如,网络设备仅配置阈值1,阈值2=阈值1+Δ,阈值3=阈值1+2Δ,等等。Δ的具体取值可以由协议约定(如Δ取值为-3dB),也可以由网络设备指示。
另外,可选地,该至少一个预设阈值的个数可以由网络设备指示或协议规定,此外还可以通过其他隐式方式确定,如PRACH传输次数的个数的配置来确定。
在一些实施方式中,协议可以规定该至少一个预设阈值中的每一个预设阈值,终端设备根据协议的规定确定该至少一个预设阈值。协议也可以仅规定至少一个预设阈值其中的一个预设阈值,其余预设阈 值根据一定计算公式确定。
在一些实施方式中,网络设备可以配置每一个预设阈值对应的PRACH传输次数,终端设备通过接收网络设备的配置来确定每个预设阈值对应的PRACH传输次数。或者网络设备的指示用于指示每一个预设阈值对应的PRACH传输次数,终端设备通过接收网络设备的指示来确定每个预设阈值对应的PRACH传输次数。
在一些实施方式中,网络设备还可以只配置一个预设阈值对应的PRACH传输次数,其余预设阈值对应的PRACH传输次数根据一定计算公式确定。
作为一种示例,比如,网络设备仅配置传输次数M,传输次数N=M*k,P=M*2k,等等。其中,k的具体取值可以由协议约定(如k取值为2),也可以由网络设备指示。
另外,可选地,该PRACH传输次数的个数数可以由网络设备指示或协议规定,此外还可以通过其他隐式方式,如预设阈值的个数来确定。
在一些实施方式中,协议可以规定每一个预设阈值对应的PRACH传输次数,终端设备根据协议的规定确定每个预设阈值对应的PRACH传输次数。协议也可以仅规定一个预设阈值对应的PRACH传输次数,其余预设阈值对应的PRACH传输次数根据一定计算公式确定。
在本申请各实施例中,该DCI还用于指示该终端设备发起基于竞争的随机接入CBRA,或者该DCI用于指示该终端设备发起基于非竞争的随机接入CFRA。
综上,通过接收网络设备发送的下行控制信息DCI,该DCI包括第一信息域,该第一信息域用于指示该终端设备根据参考信号的测量值和至少一个预设阈值的比较确定PRACH的传输次数,测量网络设备发送的参考信号的RSRP,比较该RSRP与至少一个预设阈值,确定该PRACH的传输次数,使得终端设备能够在一次随机接入的尝试中,确定一个较为合理的物理随机接入信道PRACH的传输次数,对PRACH进行合理的覆盖增强,有效保证了接入机会的公平性,节约了终端设备的能耗,提高系统的通信效率。
请参见图6,图6是本申请实施例提供的一种随机接入方法的流程示意图。需要说明的是,本申请实施例的随机接入方法由终端设备执行,该终端设备支持物理随机接入信道PRACH重传。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图6所示,该方法可以包括如下步骤:
步骤601,接收网络设备发送的下行控制信息DCI。
在本申请实施例中,终端设备能够接收网络设备发送的DCI,终端设备能够根据该DCI,确定物理随机接入信道PRACH的传输次数。
步骤602,确定该DCI中的第一信息域指示的第一传输次数。
在本申请实施例中,终端设备能够确定该DCI中的第一信息域指示的第一传输次数。
在本申请实施例中,该第一信息域用于指示该第一传输次数的方式,可以选择如前述任一实施例中所述的任一方式(比如指示候选值集合中的索引等等),本申请实施例在此不再赘述。
步骤603,确定根据参考信号的测量值和至少一个预设阈值的比较确定的第二传输次数。
在本申请实施例中,终端设备能够通过参考信号的测量值和至少一个预设阈值的比较,确定一个第二传输次数。
在本申请实施例中,终端设备根据参考信号的测量值和至少一个预设阈值的比较来确定第二传输次数的方式,可以选择如前述任一实施例中所述的任一方式,本申请实施例在此不再赘述。
步骤604,比较该第一传输次数和第二传输次数,确定该PRACH的传输次数为该第一传输次数和第二传输次数中的较大值或较小者。
在本申请实施例中,终端设备能够比较该第一传输次数和该第二传输次数,选择其中的较大值作为该PRACH的传输次数。当然,基于不同的应用场景,也可以采用第一传输次数和该第二传输次数中的 较小者作为PRACH的传输次数。
在一些实施方式中,该终端设备根据该第一信息域确定该PRACH的传输次数,且基于该传输次数发起的随机接入失败,该终端设备需要发起PRACH重传,该终端设备能够选择以下至少一种方式:
该终端设备可以选择根据参考信号的测量值和至少一个预设阈值的比较来确定该PRACH重传的传输次数;
该终端设备也可以选择依然基于该第一信息域指示的传输次数进行PRACH重传,也就是确定该PRACH重传的传输次数为该第一信息域指示的传输次数;
该终端设备还可以选择在进行PRACH重传之前等待接收网络设备发送的第一指示信息,该第一指示信息用于指示该PRACH重传的传输次数,或者,该第一指示信息用于指示该终端设备自行确定该PRACH重传的传输次数(比如,根据参考信号测量值和至少一个预设阈值的比较确定,或者,基于该第一信息域指示的传输次数确定等等)。
可选地,该发起的随机接入失败是指第二随机接入消息Msg2接收失败。
在本申请各实施例中,终端设备通过参考信号的测量值和至少一个预设阈值的比较确定该PRACH传输次数,具体可以包括:测量网络设备发送的参考信号的RSRP,比较该RSRP与至少一个预设阈值,确定该PRACH的传输次数。
可选地,该参考信号可以为辅助同步信号SSS,也可以为同步信号和物理广播信道块SSB,还可以为其他参考信号等等,本申请在此不进行限定。
在本申请各实施例中,该DCI还用于指示该终端设备发起基于竞争的随机接入CBRA,或者该DCI用于指示该终端设备发起基于非竞争的随机接入CFRA。
综上,通过接收网络设备发送的下行控制信息DCI,确定该DCI中的第一信息域指示的第一传输次数,确定根据参考信号的测量值和至少一个预设阈值的比较确定的第二传输次数,比较该第一传输次数和第二传输次数,确定该PRACH的传输次数为该第一传输次数和第二传输次数中的较大值,使得终端设备能够在一次随机接入的尝试中,确定一个较为合理的物理随机接入信道PRACH的传输次数,对PRACH进行合理的覆盖增强,有效保证了接入机会的公平性,节约了终端设备的能耗,提高系统的通信效率。
请参见图7,图7是本申请实施例提供的一种随机接入方法的流程示意图。需要说明的是,本申请实施例的随机接入方法由网络设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图7所示,该方法可以包括如下步骤:
步骤701,向终端设备发送下行控制信息DCI,该DCI用于指示该终端设备的物理随机接入信道PRACH的传输次数。
在本申请实施例中,网络设备能够向终端设备发送下行控制信息DCI,该DCI用于该终端设备确定物理随机接入信道PRACH的传输次数,终端设备能够根据接收到的DCI,确定PRACH的传输次数。
在本申请实施例中,该DCI用于指示该PRACH的传输次数,或,该DCI用于指示该终端设备根据参考信号的测量值和至少一个预设阈值的比较来确定该PRACH的传输次数。在一种可能的实现方式中,该DCI可以显式或隐式指示PRACH的传输次数。
隐式指示是指,通过该DCI的格式或是其他参数来指示PRACH的传输次数;其中该DCI的不同格式或参数,可以对应于不同的PRACH的传输次数。
显式指示是指,该DCI具有用于指示的字段,例如:该DCI包括第一信息域,该第一信息域用于指示该PRACH的传输次数,和/或,该第一信息域用于指示该终端设备根据参考信号的测量值和至少一个预设阈值的比较来确定该PRACH的传输次数。
作为一种可能的实现,终端设备可以根据该第一信息域的指示,确定该PRACH的传输次数。
作为另一种可能的实现,终端设备可以根据该第一信息域的指示,通过参考信号的测量值与至少一个预设阈值的比较,确定该PRACH的传输次数。
作为又一种可能的实现,终端设备能够比较根据该第一信息域的指示确定的传输次数,以及通过参考信号测量值与至少一个预设阈值的比较确定的传输次数,根据两种方式确定的传输次数的比较结果,确定该PRACH的传输次数。
可选地,该至少一个预设阈值,以及与每个预设阈值对应的PRACH传输次数,可以是根据协议的规定确定的,也可以根据网络设备的配置或者指示确定的。
在本申请实施例中,该第一信息域可以是占用该DCI中的保留的比特位,也可以是复用该DCI中已有的信息域。
在一些实施方式中,网络设备能够向终端设备发送配置信息,该配置信息用于确定该传输次数的候选值集合,该第一信息域用于指示该候选值集合中的候选值的索引。
可选地,网络设备可以通过无线资源控制RRC信令来配置该候选值集合。
可选地,该候选值集合中可以包括至少一个PRACH传输次数的候选值。
可选地,该第一信息域的位宽,也就是该第一信息域占用的比特数,是根据该候选值集合中的候选值个数确定的。
可选地,该候选值集合中可以包括第一数值,如果该第一信息域用于指示该第一数值对应的索引,该第一信息域用于指示该终端设备根据参考信号的测量值和至少一个预设阈值的比较来确定该传输次数。
可选地,该第一数值为空值,比如null或者none等等。
可选地,如果该第一信息域中的至少一个比特均为0,或者,该第一信息域是复用的信息域且该第一信息域的取值仍为复用的信息域的原取值,该第一信息域用于指示该PRACH传输次数为单次。
可选地,如果该第一信息域中的至少一个比特均为0,或者,该第一信息域是复用的信息域且该第一信息域的取值仍为复用的信息域的原取值,该第一信息域用于指示该候选值集合中最小的索引对应的候选值。
在一些实施方式中,如果该第一信息域中的至少一个比特均为0,或者,该第一信息域是复用的信息域且该第一信息域的取值仍为复用的信息域的原取值,该第一信息域用于指示该终端设备根据参考信号的测量值和至少一个预设阈值的比较来确定该传输次数。
在一些实施方式中,该第一信息域的码点(codepoint)的取值用于确定该PRACH的传输次数。
可选地,该第一信息域对应的码点的取值的最大值大于或者等于该终端设备支持的PRACH的最大传输次数。
在一些实施方式中,终端设备能够比较根据该第一信息域的指示确定的传输次数,以及通过参考信号测量值与至少一个预设阈值的比较确定的传输次数,确定该PRACH的传输次数。
具体地,终端设备能够确定该DCI的第一信息域指示的第一传输次数,终端设备还能够确定根据该参考信号的测量值和至少一个预设阈值比较确定的第二传输次数。终端设备能够比较该第一传输次数和该第二传输次数,并确定该PRACH的传输次数为该第一传输次数与第二传输次数中的较大值。
在一些实施方式中,该终端设备根据该第一信息域确定该PRACH的传输次数,且基于该传输次数发起的随机接入失败,该终端设备需要发起PRACH重传,该网络设备还可以在该终端设备进行PRACH重传之前向该终端设备发送第一指示信息,该第一指示信息用于指示该PRACH重传的传输次数,或者,该第一指示信息用于指示该终端设备自行确定该PRACH重传的传输次数(比如,根据参考信号测量值和至少一个预设阈值的比较确定,或者,基于该第一信息域指示的传输次数确定等等)。
可选地,该发起的随机接入失败是指第二随机接入消息Msg2接收失败。
在本申请各实施例中,该DCI还用于指示该终端设备发起基于竞争的随机接入CBRA,或者该DCI 用于指示该终端设备发起基于非竞争的随机接入CFRA。
在本申请各实施例中,终端设备还可以接收网络设备发送的RRC重配置信令重新配置该终端设备的PRACH传输次数和/或该至少一个预设阈值。如果终端设备没有接收到该RRC重配置信令中的重新配置的PRACH传输次数和/或该至少一个预设阈值,则该终端设备能够根据系统信息块,比如SIB1中的RACHConfigCommon的配置参数来配置该PRACH传输次数和/或该至少一个预设阈值。
可以理解的是,在本申请实施例中,主要考虑在网络设备能够获取到较为准确的上行链路状况的情况下,通过DCI指示终端设备PRACH的传输次数。比如,当定时提前(Timing Advance,TA)失效时间比较短,网络设备还可以获取到较为准确的上行链路状况的情况下(比如上行失步,要获取下行同步的随机接入信道RACH的情况),或者主小区Pcell(Primary cell)和辅小区Scell(Secondarycell)的网络侧调度实体在同一物理节点或在同一地理位置上时(针对Scell上获取上行同步的随机接入信道的情况),可以由网络设备决定PRACH的传输次数并指示给终端;如果网络设备获取不到准确的上行覆盖情况时,比如上行失步时间比较久,或者Pcell和Scell位于不同的地理位置,这种情况下则可由终端设备通过测量参考信号来自行判断一次随机接入尝试的PRACH传输次数。
在一种可能的实现方式中,该DCI用于指示终端设备从该候选值集合中的候选值中确定PRACH的传输次数。如前所述的,可以通过DCI隐式或显式指示该PRACH的传输次数。隐式指示是指,通过该DCI的格式或是其他参数与候选值集合中的候选值之间的对应关系,指示PRACH的传输次数;其中该DCI的不同格式或参数,可以对应于不同的PRACH的传输次数。显式指示是指,该DCI具有用于指示的字段,例如:该DCI包括第一信息域,该第一信息域用于指示该候选值集合中的候选值对应的索引。
在一种可能的实现方式中,该DCI包括第一信息域,该第一信息域对应的码点的取值用于指示PRACH的传输次数。
在另一种可能的实现方式中,该DCI包括第一信息域,该第一信息域用于指示该终端设备根据参考信号的测量值和至少一个预设阈值的比较确定PRACH的传输次数。具体的确定方式可以参考本公开的其他实施例,相同的内容在此不再赘述。
在又一种可能的实现方式中,该DCI用于指示终端设备确定该DCI对应的第一传输次数以及根据参考信号的测量值和至少一个预设阈值的比较确定的第二传输次数;并比较该第一传输次数和第二传输次数,确定该PRACH的传输次数为该第一传输次数和第二传输次数中的较大值或较小者。具体的确定方式可以参考本公开的其他实施例,相同的内容在此不再赘述。
综上,通过向终端设备发送下行控制信息DCI,该DCI用于该终端设备确定物理随机接入信道PRACH的传输次数,使得终端设备能够在一次随机接入的尝试中,确定一个较为合理的物理随机接入信道PRACH的传输次数,对PRACH进行合理的覆盖增强,有效保证了接入机会的公平性,节约了终端设备的能耗,提高系统的通信效率。
与上述几种实施例提供的随机接入方法相对应,本申请还提供一种随机接入装置,由于本申请实施例提供的随机接入装置与上述几种实施例提供的方法相对应,因此在随机接入方法的实施方式也适用于下述实施例提供的随机接入装置,在下述实施例中不再详细描述。
请参见图8,图8为本申请实施例提供的一种随机接入装置的结构示意图。
如图8所示,该随机接入装置800包括:收发单元810和处理单元820,其中:
收发单元810,用于接收网络设备发送的下行控制信息DCI;
处理单元820,用于根据该DCI,确定物理随机接入信道PRACH的传输次数。
可选地,该DCI包括第一信息域,该第一信息域用于指示该传输次数;或者,该DCI用于指示该终端设备根据参考信号的测量值和至少一个预设阈值的比较确定该传输次数。
可选地,该处理单元820还用于:根据协议的规定或者该网络设备的配置,确定该传输次数的候选值集合;该第一信息域用于指示该候选值集合中的值的索引。
可选地,该第一信息域的位宽是根据该候选值集合中的候选值个数确定的。
可选地,响应于该第一信息域中包括的至少一个比特均为0,或者,该第一信息域为复用的信息域且该第一信息域的取值仍为该复用的信息域的原取值,该第一信息域用于指示该PRACH传输次数为单次。
可选地,响应于该第一信息域中包括的至少一个比特均为0,或者,该第一信息域为复用的信息域且该第一信息域的取值仍为该复用的信息域的原取值,该第一信息域用于指示该PRACH传输次数为该候选值集合中最小的索引对应的候选值。
可选地,该候选值集合中包括第一数值;响应于该第一信息域用于指示该第一数值对应的索引,该第一信息域用于指示该终端设备根据参考信号的测量值和至少一个预设阈值的比较确定该传输次数。
可选地,该第一数值为空值。
可选地,响应于该第一信息域中包括的至少一个比特均为0,或者,该第一信息域为复用的信息域且该第一信息域的取值仍为该复用的信息域的原取值,该第一信息域用于指示该终端设备根据参考信号的测量值和至少一个预设阈值的比较确定该传输次数。
可选地,该第一信息域的码点的取值用于指示该传输次数。
可选地,该第一信息域对应的码点的取值的最大值大于或等于该终端设备支持的该PRACH的最大传输次数。
可选地,该处理单元820还用于:确定该第一信息域指示的第一传输次数;确定根据参考信号的测量值和至少一个预设阈值的比较确定的第二传输次数;比较该第一传输次数和该第二传输次数,确定该PRACH的传输次数为该第一传输次数和第二传输次数中的较大值。
可选地,响应于该第一信息域用于指示该传输次数,且基于该传输次数发起的随机接入失败,该处理单元820还用于以下至少一种:根据参考信号的测量值和至少一个预设阈值的比较确定该PRACH重传的传输次数;确定该PRACH重传的传输次数为该第一信息域指示的该传输次数;接收该网络设备发送的第一指示信息,该第一指示信息用于指示该PRACH重传的传输次数,或者,该第一指示信息用于指示该终端设备确定该PRACH重传的传输次数。
可选地,该发起的随机接入失败为第二随机接入消息Msg2接收失败。
可选地,响应于该第一信息域用于指示该终端设备根据参考信号的测量值和至少一个预设阈值的比较确定该传输次数,该处理单元820还用于:测量该网络设备发送的参考信号的参考信号接收功率RSRP;比较该RSRP与至少一个预设阈值,确定该PRACH的传输次数。
可选地,该至少一个预设阈值,以及每个预设阈值对应的发送次数,是根据协议的规定或者网络设备的配置/指示确定的。
可选地,该方法还包括:根据该DCI,发起基于竞争的随机接入;或者,根据该DCI,发起基于非竞争的随机接入。
本实施例的随机接入装置,可以通过接收网络设备发送的下行控制信息DCI,根据该DCI,确定物理随机接入信道PRACH的传输次数,使得终端设备能够在一次随机接入的尝试中,确定一个较为合理的物理随机接入信道PRACH的传输次数,对PRACH进行合理的覆盖增强,有效保证了接入机会的公平性,节约了终端设备的能耗,提高系统的通信效率。
请参见图9,图9为本申请实施例提供的一种随机接入装置的结构示意图。
如图9所示,该随机接入装置900包括:收发单元910,其中:
收发单元910,用于向终端设备发送下行控制信息DCI;该DCI用于指示该终端设备的物理随机接 入信道PRACH的传输次数。
可选地,该DCI包括第一信息域,该第一信息域用于指示该传输次数;或者,该DCI用于指示该终端设备根据参考信号的测量值和至少一个预设阈值的比较确定该传输次数。
可选地,该收发单元910还用于:向该终端设备发送配置信息,该配置信息用于配置该传输次数的候选值集合;该第一信息域用于指示该候选值集合中的值的索引。
可选地,该第一信息域的位宽是根据该候选值集合中的候选值个数确定的。
可选地,响应于该第一信息域中包括的至少一个比特均为0,或者,该第一信息域为复用的信息域且该第一信息域的取值仍为该复用的信息域的原取值,该第一信息域用于指示该PRACH传输次数为单次。
可选地,响应于该第一信息域中包括的至少一个比特均为0,或者,该第一信息域为复用的信息域且该第一信息域的取值仍为该复用的信息域的原取值,该第一信息域用于指示该PRACH传输次数为该候选值集合中最小的索引对应的候选值。
可选地,该候选值集合中包括第一数值;响应于该第一信息域用于指示该第一数值对应的索引,该第一信息域用于指示该终端设备根据参考信号的测量值和至少一个预设阈值的比较确定该传输次数。
可选地,该第一数值为空值。
可选地,响应于该第一信息域中包括的至少一个比特均为0,或者,该第一信息域为复用的信息域且该第一信息域的取值仍为该复用的信息域的原取值,该第一信息域用于指示该终端设备根据参考信号的测量值和至少一个预设阈值的比较确定该传输次数。
可选地,该第一信息域的码点的取值用于指示该传输次数。
可选地,该第一信息域对应的码点的取值的最大值大于或等于该终端设备支持的该PRACH的最大传输次数。
可选地,响应于该第一信息域用于指示该传输次数,且基于该传输次数发起的随机接入失败,该收发单元910还用于:向该终端设备发送第一指示信息,该第一指示信息用于指示该PRACH重传的传输次数,或者,该第一指示信息用于指示该终端设备确定该PRACH重传的传输次数。
可选地,该发起的随机接入失败为第二随机接入消息Msg2接收失败。
可选地,该DCI还用于发起基于竞争的随机接入;或者,该DCI还用于发起基于非竞争的随机接入。
本实施例的随机接入装置,可以通过向终端设备发送下行控制信息DCI,该DCI用于该终端设备确定物理随机接入信道PRACH的传输次数,使得终端设备能够在一次随机接入的尝试中,确定一个较为合理的物理随机接入信道PRACH的传输次数,对PRACH进行合理的覆盖增强,有效保证了接入机会的公平性,节约了终端设备的能耗,提高系统的通信效率。
为了实现上述实施例,本申请实施例还提出一种通信装置,包括:处理器和存储器,存储器中存储有计算机程序,处理器执行所述存储器中存储的计算机程序,以使装置执行图2至图6实施例所示的方法。
为了实现上述实施例,本申请实施例还提出一种通信装置,包括:处理器和存储器,存储器中存储有计算机程序,处理器执行所述存储器中存储的计算机程序,以使装置执行图7实施例所示的方法。
为了实现上述实施例,本申请实施例还提出一种通信装置,包括:处理器和接口电路,接口电路,用于接收代码指令并传输至处理器,处理器,用于运行所述代码指令以执行图2至图6实施例所示的方法。
为了实现上述实施例,本申请实施例还提出一种通信装置,包括:处理器和接口电路,接口电路,用于接收代码指令并传输至处理器,处理器,用于运行所述代码指令以执行图7实施例所示的方法。
请参见图10,图10是本申请实施例提供的另一种随机接入装置的结构示意图。随机接入装置1000可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
随机接入装置1000可以包括一个或多个处理器1001。处理器1001可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对随机接入装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,随机接入装置1000中还可以包括一个或多个存储器1002,其上可以存有计算机程序1003,处理器1001执行计算机程序1003,以使得随机接入装置1000执行上述方法实施例中描述的方法。计算机程序1003可能固化在处理器1001中,该种情况下,处理器1001可能由硬件实现。
可选的,存储器1002中还可以存储有数据。随机接入装置1000和存储器1002可以单独设置,也可以集成在一起。
可选的,随机接入装置1000还可以包括收发器1005、天线1006。收发器1005可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1005可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,随机接入装置1000中还可以包括一个或多个接口电路1007。接口电路1007用于接收代码指令并传输至处理器1001。处理器1001运行代码指令以使随机接入装置1000执行上述方法实施例中描述的方法。
在一种实现方式中,处理器1001中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,随机接入装置1000可以包括电路,电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的随机接入装置可以是网络设备或者终端设备,但本申请中描述的随机接入装置的范围并不限于此,而且随机接入装置的结构可以不受图13-图14的限制。随机接入装置可以是独立的设备或者可以是较大设备的一部分。例如随机接入装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于随机接入装置可以是芯片或芯片系统的情况,可参见图11所示的芯片的结构示意图。图11所示的芯片包括处理器1101和接口1102。其中,处理器1101的数量可以是一个或多个,接口1102的数量可以是多个。
对于芯片用于实现本申请实施例中网络设备的功能的情况:
接口1102,用于代码指令并传输至处理器;
处理器1101,用于运行代码指令以执行如图2至图6的方法。
对于芯片用于实现本申请实施例中终端设备的功能的情况:
接口1102,用于代码指令并传输至处理器;
处理器1101,用于运行代码指令以执行如图7的方法。
可选的,芯片还包括存储器1103,存储器1103用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种通信系统,该系统包括前述图8-图9实施例中作为终端设备的随机接入装置和作为网络设备的随机接入装置,或者,该系统包括前述图10实施例中作为终端设备的随机接入装置和作为网络设备的随机接入装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行计算机程序时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如, 可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
应当理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本申请实施例中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本发明公开的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。

Claims (36)

  1. 一种随机接入方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    接收网络设备发送的下行控制信息DCI;
    根据所述DCI,确定物理随机接入信道PRACH的传输次数。
  2. 根据权利要求1所述的方法,其特征在于,所述DCI包括第一信息域,所述第一信息域用于指示所述传输次数;或者,所述DCI用于指示所述终端设备根据参考信号的测量值和至少一个预设阈值的比较确定所述传输次数。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    根据协议的规定或者所述网络设备的配置,确定所述传输次数的候选值集合;所述第一信息域用于指示所述候选值集合中的值的索引。
  4. 根据权利要求3所述的方法,其特征在于,所述第一信息域的位宽是根据所述候选值集合中的候选值个数确定的。
  5. 根据权利要求3所述的方法,其特征在于,响应于所述第一信息域中包括的至少一个比特均为0,或者,所述第一信息域为复用的信息域且所述第一信息域的取值仍为所述复用的信息域的原取值,所述第一信息域用于指示所述PRACH传输次数为单次。
  6. 根据权利要求3所述的方法,其特征在于,响应于所述第一信息域中包括的至少一个比特均为0,或者,所述第一信息域为复用的信息域且所述第一信息域的取值仍为所述复用的信息域的原取值,所述第一信息域用于指示所述PRACH传输次数为所述候选值集合中最小的索引对应的候选值。
  7. 根据权利要求3所述的方法,其特征在于,所述候选值集合中包括第一数值;
    响应于所述第一信息域用于指示所述第一数值对应的索引,所述第一信息域用于指示所述终端设备根据参考信号的测量值和至少一个预设阈值的比较确定所述传输次数。
  8. 根据权利要求7所述的方法,其特征在于,所述第一数值为空值。
  9. 根据权利要求2所述的方法,其特征在于,响应于所述第一信息域中包括的至少一个比特均为0,或者,所述第一信息域为复用的信息域且所述第一信息域的取值仍为所述复用的信息域的原取值,所述第一信息域用于指示所述终端设备根据参考信号的测量值和至少一个预设阈值的比较确定所述传输次数。
  10. 根据权利要求2所述的方法,其特征在于,所述第一信息域的码点的取值用于指示所述传输次数。
  11. 根据权利要求10所述的方法,其特征在于,所述第一信息域对应的码点的取值的最大值大于或等于所述终端设备支持的所述PRACH的最大传输次数。
  12. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    确定所述第一信息域指示的第一传输次数;
    确定根据参考信号的测量值和至少一个预设阈值的比较确定的第二传输次数;
    比较所述第一传输次数和所述第二传输次数,确定所述PRACH的传输次数为所述第一传输次数和第二传输次数中的较大值。
  13. 根据权利要求2所述的方法,其特征在于,响应于所述第一信息域用于指示所述传输次数,且基于所述传输次数发起的随机接入失败,所述方法还包括以下至少一种:
    根据参考信号的测量值和至少一个预设阈值的比较确定所述PRACH重传的传输次数;
    确定所述PRACH重传的传输次数为所述第一信息域指示的所述传输次数;
    接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述PRACH重传的传输次数,或者,所述第一指示信息用于指示所述终端设备确定所述PRACH重传的传输次数。
  14. 根据权利要求13所述的方法,其特征在于,所述发起的随机接入失败为第二随机接入消息Msg2接收失败。
  15. 根据权利要求2-14任一项所述的方法,其特征在于,响应于所述第一信息域用于指示所述终端设备根据参考信号的测量值和至少一个预设阈值的比较确定所述传输次数,所述方法还包括:
    测量所述网络设备发送的参考信号的参考信号接收功率RSRP;
    比较所述RSRP与至少一个预设阈值,确定所述PRACH的传输次数。
  16. 根据权利要求15所述的方法,其特征在于,所述至少一个预设阈值,以及每个预设阈值对应的发送次数,是根据协议的规定或者网络设备的配置/指示确定的。
  17. 根据权利要求1-16任一项所述的方法,其特征在于,所述方法还包括:
    根据所述DCI,发起基于竞争的随机接入;或者,
    根据所述DCI,发起基于非竞争的随机接入。
  18. 一种随机接入方法,其特征在于,所述方法由网络设备执行,所述方法包括:
    向终端设备发送下行控制信息DCI;所述DCI用于指示所述终端设备的物理随机接入信道PRACH的传输次数。
  19. 根据权利要求18所述的方法,其特征在于,所述DCI包括第一信息域,所述第一信息域用于指示所述传输次数;或者,所述DCI用于指示所述终端设备根据参考信号的测量值和至少一个预设阈值的比较确定所述传输次数。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送配置信息,所述配置信息用于配置所述传输次数的候选值集合;所述第一信息域用于指示所述候选值集合中的值的索引。
  21. 根据权利要求20所述的方法,其特征在于,所述第一信息域的位宽是根据所述候选值集合中的候选值个数确定的。
  22. 根据权利要求20所述的方法,其特征在于,响应于所述第一信息域中包括的至少一个比特均为0,或者,所述第一信息域为复用的信息域且所述第一信息域的取值仍为所述复用的信息域的原取值,所述第一信息域用于指示所述PRACH传输次数为单次。
  23. 根据权利要求20所述的方法,其特征在于,响应于所述第一信息域中包括的至少一个比特均为0,或者,所述第一信息域为复用的信息域且所述第一信息域的取值仍为所述复用的信息域的原取值,所述第一信息域用于指示所述PRACH传输次数为所述候选值集合中最小的索引对应的候选值。
  24. 根据权利要求20所述的方法,其特征在于,所述候选值集合中包括第一数值;
    响应于所述第一信息域用于指示所述第一数值对应的索引,所述第一信息域用于指示所述终端设备根据参考信号的测量值和至少一个预设阈值的比较确定所述传输次数。
  25. 根据权利要求24所述的方法,其特征在于,所述第一数值为空值。
  26. 根据权利要求19所述的方法,其特征在于,响应于所述第一信息域中包括的至少一个比特均为0,或者,所述第一信息域为复用的信息域且所述第一信息域的取值仍为所述复用的信息域的原取值,所述第一信息域用于指示所述终端设备根据参考信号的测量值和至少一个预设阈值的比较确定所述传输次数。
  27. 根据权利要求19所述的方法,其特征在于,所述第一信息域的码点的取值用于指示所述传输次数。
  28. 根据权利要求27所述的方法,其特征在于,所述第一信息域对应的码点的取值的最大值大于或等于所述终端设备支持的所述PRACH的最大传输次数。
  29. 根据权利要求19所述的方法,其特征在于,响应于所述第一信息域用于指示所述传输次数,且基于所述传输次数发起的随机接入失败,所述方法还包括:
    向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述PRACH重传的传输次数,或者,所述第一指示信息用于指示所述终端设备确定所述PRACH重传的传输次数。
  30. 根据权利要求29所述的方法,其特征在于,所述发起的随机接入失败为第二随机接入消息Msg2接收失败。
  31. 根据权利要求18-30任一项所述的方法,其特征在于,
    所述DCI还用于发起基于竞争的随机接入;或者,
    所述DCI还用于发起基于非竞争的随机接入。
  32. 一种随机接入装置,其特征在于,所述装置应用于终端设备,所述装置包括:
    收发单元,用于接收网络设备发送的下行控制信息DCI;
    处理单元,用于根据所述DCI,确定物理随机接入信道PRACH的传输次数。
  33. 一种信息上报装置,其特征在于,所述装置应用于网络设备,所述装置包括:
    收发单元,用于向终端设备发送下行控制信息DCI;所述DCI用于指示所述终端设备的物理随机接入信道PRACH的传输次数。
  34. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至17中任一项所述的方法,或者执行如权利要求18至31中任一项所述的方法。
  35. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至17中任一项所述的方法,或者执行如权利要求18至31中任一项所述的方法。
  36. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至17中任一项所述的方法被实现,或者使如权利要求18至31中任一项所述的方法被实现。
PCT/CN2022/130175 2022-11-06 2022-11-06 随机接入方法及装置 WO2024092847A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/130175 WO2024092847A1 (zh) 2022-11-06 2022-11-06 随机接入方法及装置
CN202280004361.6A CN115997468A (zh) 2022-11-06 2022-11-06 随机接入方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130175 WO2024092847A1 (zh) 2022-11-06 2022-11-06 随机接入方法及装置

Publications (1)

Publication Number Publication Date
WO2024092847A1 true WO2024092847A1 (zh) 2024-05-10

Family

ID=85993910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130175 WO2024092847A1 (zh) 2022-11-06 2022-11-06 随机接入方法及装置

Country Status (2)

Country Link
CN (1) CN115997468A (zh)
WO (1) WO2024092847A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110312319A (zh) * 2014-01-24 2019-10-08 华为技术有限公司 一种随机接入的方法及装置
CN112075046A (zh) * 2018-05-04 2020-12-11 联想(新加坡)私人有限公司 使用聚合因子的pusch传输
US20210352689A1 (en) * 2018-09-21 2021-11-11 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in wireless communication system
WO2022152275A1 (zh) * 2021-01-15 2022-07-21 维沃移动通信有限公司 Msg3传输方法、装置、设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110312319A (zh) * 2014-01-24 2019-10-08 华为技术有限公司 一种随机接入的方法及装置
CN112075046A (zh) * 2018-05-04 2020-12-11 联想(新加坡)私人有限公司 使用聚合因子的pusch传输
US20210352689A1 (en) * 2018-09-21 2021-11-11 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in wireless communication system
WO2022152275A1 (zh) * 2021-01-15 2022-07-21 维沃移动通信有限公司 Msg3传输方法、装置、设备及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Coverage enhancement for channels other than PUSCH and PUCCH", 3GPP DRAFT; R1-2008183, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 1 November 2020 (2020-11-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052349542 *
ZTE, SANECHIPS: "Considerations on initial access signals and channels for NR-U", 3GPP DRAFT; R1-1903870 CONSIDERATIONS ON INITIAL ACCESS SIGNALS AND CHANNELS FOR NR-U_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 7 April 2019 (2019-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051699306 *

Also Published As

Publication number Publication date
CN115997468A (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
WO2023206107A1 (zh) 一种终端设备调度方法及其装置
WO2021017702A1 (zh) 一种信号传输方法及装置
WO2023245521A1 (zh) 一种控制资源的位置信息的确定方法及其装置
WO2023230971A1 (zh) 一种多prach传输方法及其装置
WO2023230972A1 (zh) 资源配置方法及装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2024092847A1 (zh) 随机接入方法及装置
WO2023019410A1 (zh) 一种传输下行控制信息dci的方法及其装置
WO2024086979A1 (zh) 一种传输配置指示tci状态的确定方法及装置
WO2023050091A1 (zh) 一种上行波束的测量方法及其装置
WO2023220942A1 (zh) 随机接入方法及装置
WO2024065103A1 (zh) 一种上行功率控制方法及其装置
WO2024016188A1 (zh) 一种基于多面板传输的功率余量上报方法及装置
WO2023010475A1 (zh) 一种服务小区测量方法及其装置
WO2024098430A1 (zh) 一种处理时延的确定方法、装置、设备及存储介质
WO2024092834A1 (zh) 切换时延的确定方法和装置
WO2024065846A1 (zh) 一种多定时提前组tag和时间对齐定时器tat的配置方法及装置
WO2023077463A1 (zh) 波束的确定方法及装置
WO2024016189A1 (zh) 一种基于多面板传输的功率余量上报方法及装置
WO2024016187A1 (zh) 一种基于多面板传输的功率余量上报方法及装置
WO2024108513A1 (zh) 一种测量方法、装置、设备及存储介质
WO2023225876A1 (zh) 波束确定方法和装置
WO2024040484A1 (zh) 基于harq属性的载波选择或重选方法、装置及设备
WO2024000133A1 (zh) 一种测量配置方法、装置、设备及存储介质
WO2024065095A1 (zh) 指示方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964148

Country of ref document: EP

Kind code of ref document: A1