WO2023077463A1 - 波束的确定方法及装置 - Google Patents

波束的确定方法及装置 Download PDF

Info

Publication number
WO2023077463A1
WO2023077463A1 PCT/CN2021/129109 CN2021129109W WO2023077463A1 WO 2023077463 A1 WO2023077463 A1 WO 2023077463A1 CN 2021129109 W CN2021129109 W CN 2021129109W WO 2023077463 A1 WO2023077463 A1 WO 2023077463A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
pusch
dci
puschs
beam corresponding
Prior art date
Application number
PCT/CN2021/129109
Other languages
English (en)
French (fr)
Inventor
罗星熠
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/129109 priority Critical patent/WO2023077463A1/zh
Priority to CN202180003415.2A priority patent/CN116420316A/zh
Priority to EP21962976.3A priority patent/EP4429303A1/en
Publication of WO2023077463A1 publication Critical patent/WO2023077463A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method and device for determining a beam.
  • one DCI (downlink control information, downlink control information) is supported to schedule multiple PDSCH (physical downlink shared channel, physical downlink shared channel)/PUSCH (physical uplink shared channel, physical layer uplink shared channel), to reduce PDCCH (physical downlink control channel, physical layer downlink control channel) blind detection overhead. How to determine the transmission beam corresponding to each PDSCH/PUSCH is very important.
  • the embodiment of the first aspect of the present disclosure provides a method for determining a beam, the method is executed by a terminal device, and the method includes: when one downlink control information DCI schedules multiple physical downlink shared channels PDSCH or physical uplink shared channel PUSCH , determining transmission beams corresponding to the multiple PDSCHs or the PUSCHs, where the multiple PDSCHs or PUSCHs transmit different transport blocks TB.
  • the terminal device can determine the receiving beam corresponding to each PDSCH scheduled by a DCI, or determine the sending beam corresponding to each PUSCH scheduled by a DCI, so that the terminal device can communicate with the network device based on the determined beam.
  • the determining the transmission beams corresponding to the multiple PDSCHs or PUSCHs includes: determining the first PDSCH or the first PUSCH among the multiple PDSCHs or the PUSCHs, where the The scheduling offset of the first PDSCH or the first PUSCH is less than a predefined quasi-co-location time length timeDurationForQCL; and the default transmission beam corresponding to the first PDSCH or the first PUSCH is determined.
  • the determining the default transmission beam corresponding to the first PDSCH or the first PUSCH includes: when the DCI is a single DCI in a single TRP scenario, acquiring Or the time slot of the reference PDCCH before the first PUSCH; obtain the beam corresponding to the CORESET with the minimum control resource set CORESET ID detected in the time slot of the reference PDCCH, and use it as the first PDSCH or the first PUSCH Corresponding default transmit beam.
  • the determining the default transmission beam corresponding to the first PDSCH or the first PUSCH includes: when the DCI is multi-DCI in a multi-DCI-based multi-TRP scenario, acquiring the The time slot of the reference PDCCH before the first PDSCH or the first PUSCH; obtain the minimum CORESET ID among the multiple CORESETs with the index CORESET PoolIndex of the same control resource set pool detected in the time slot of the reference PDCCH The beam corresponding to the CORESET is used as the default transmission beam corresponding to the first PDSCH or the first PUSCH.
  • the determining the default transmission beam corresponding to the first PDSCH or the first PUSCH includes: when the DCI is a single DCI in a multi-TRP scenario based on a single DCI, then judging that the Whether the terminal device is configured with the enabling flag EnableTwoDefaultTCIStates, the enabling flag is used to identify that the terminal device is allowed to adopt two default TCI states; if the terminal device is configured with the EnableTwoDefaultTCIStates, then obtain the code corresponding to the TCI field The beam associated with the smallest code point of the two TCI states is contained in the point, and is used as the default transmission beam corresponding to the first PDSCH or the first PUSCH; if the terminal device is not configured with the EnableTwoDefaultTCIStates, obtain the reference PDCCH The beam corresponding to the CORESET with the smallest CORESET ID in the time slot is used as the default transmission beam corresponding to the first PDSCH or the first PUSCH.
  • the reference PDCCH is a PDCCH that needs to be detected latest before the first PDSCH or the first PUSCH.
  • the method further includes: determining a second PDSCH or a second PUSCH among the plurality of PDSCHs or PUSCHs, where the scheduling offset of the second PDSCH or the second PUSCH is greater than or equal to the The Time DurationForQCL; determine the transmission beam corresponding to the second PDSCH or the second PUSCH.
  • the transmission beam corresponding to the second PDSCH or the second PUSCH is determined according to any of the following methods:
  • Way 1 In the case that the DCI has a transmission indication to configure the TCI field, use the beam indicated by the TCI field as the transmission beam corresponding to the second PDSCH or the second PUSCH;
  • Mode 2 In the case that the DCI does not have the TCI field, the beam of the physical lower layer control channel PDCCH that schedules the second PDSCH or the second PUSCH is used as the beam corresponding to the second PDSCH or the second PUSCH transmission beam;
  • Mode 3 In the case that the DCI does not have the TCI field, determine the default transmission beam of the second PDSCH or the second PUSCH in the same manner as the first PDSCH or the first PUSCH.
  • it also includes: acquiring the number of the second PDSCH or the second PUSCH, or the ratio of the second PDSCH or the second PUSCH among multiple PDSCHs or PUSCHs; when the second PDSCH Or when the number of the second PUSCH is greater than or equal to the quantity threshold, or the ratio of the second PDSCH or the second PUSCH among the multiple PDSCHs or PUSCHs is greater than or equal to the ratio threshold, use method 1 or method 2 to determine the second PDSCH or The transmission beam corresponding to the second PUSCH; when the number of the second PDSCH or the second PUSCH is less than the number threshold, or the ratio of the second PDSCH or the second PUSCH among multiple PDSCHs or PUSCHs is less than the ratio threshold , using a third method to determine the transmission beam corresponding to the second PDSCH or the second PUSCH.
  • the embodiment of the second aspect of the present disclosure provides a device for determining a beam.
  • the device for determining a beam has part or all of the functions of the terminal device in the method described in the first aspect above.
  • the function of the device for determining a beam may have this
  • the functions in some or all of the embodiments in the disclosure may also have the function of implementing any one of the embodiments in the present disclosure independently.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the embodiment of the third aspect of the present disclosure provides an apparatus for determining a beam, the apparatus includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the first aspect above.
  • the embodiment of the fourth aspect of the present disclosure provides another apparatus for determining a beam.
  • the apparatus includes a processor and a memory, and a computer program is stored in the memory.
  • the computer program is executed by the processor , executing the method described in the first aspect above.
  • the embodiment of the fifth aspect of the present disclosure provides another device for determining a beam, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions so that the device executes the method described in the first aspect above.
  • the embodiment of the sixth aspect of the present disclosure provides a communication system, the system includes the beam determining device described in the second aspect, or the system includes the beam determining device described in the third aspect, or the system includes the beam determining device described in the third aspect.
  • the embodiment of the seventh aspect of the present disclosure provides a computer-readable storage medium for storing instructions used by the above-mentioned terminal device, and when the instructions are executed, the terminal device executes the method described in the above-mentioned first aspect .
  • the embodiment of the eighth aspect of the present disclosure provides a computer program product including a computer program, which, when running on a computer, causes the computer to execute the method described in the first aspect above.
  • the embodiment of the ninth aspect of the present disclosure provides a chip system, the chip system includes at least one processor and an interface, used to support the network device to implement the functions involved in the first aspect, for example, determine or process the At least one of data and information.
  • the chip system further includes a memory, and the memory is used for saving necessary computer programs and data of the network device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the embodiment of the tenth aspect of the present disclosure provides a computer program that, when running on a computer, causes the computer to execute the method described in the first aspect above.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a scheduling offset with PDSCH less than timeDurationForQCL;
  • FIG. 3 is a schematic flowchart of a method for determining a beam provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of another method for determining a beam provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of another method for determining a beam provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of another method for determining a beam provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of another method for determining a beam provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of another method for determining a beam provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of another method for determining a beam provided by an embodiment of the present disclosure.
  • FIG. 10 is another schematic diagram of a PDSCH with a scheduling offset less than timeDurationForQCL;
  • FIG. 11 is a schematic structural diagram of an apparatus for determining a beam provided by an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of an apparatus for determining a beam provided by an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and shape of the devices shown in Figure 1 are for example only and do not constitute a limitation to the embodiments of the present disclosure. In practical applications, two or more network equipment, two or more terminal equipment.
  • the communication system shown in FIG. 1 includes one network device 101 and one terminal device 102 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • 5G new radio new radio, NR
  • other future new mobile communication systems etc.
  • the network device 101 in the embodiment of the present disclosure is an entity on the network side for transmitting or receiving signals.
  • the network device 101 may be an evolved base station (evolved NodeB, eNB), a transmission reception point (transmission reception point or transmit receive point, TRP), a next generation base station (next generation NodeB, gNB) in the NR system, or other future mobile A base station in a communication system or an access node in a wireless fidelity (Wireless Fidelity, WiFi) system, etc.
  • eNB evolved base station
  • TRP transmission reception point or transmit receive point
  • next generation NodeB next generation NodeB
  • gNB next generation NodeB
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the network device.
  • the network device provided by the embodiment of the present disclosure may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), wherein the CU may also be called a control unit (control unit), and the CU-DU
  • the structure of the network device such as the protocol layer of the base station, can be separated, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal device.
  • one DCI is supported to schedule multiple PDSCH/PUSCH, so as to reduce the overhead of blind detection of PDCCH (physical downlink control channel, physical layer downlink control channel).
  • PDCCH physical downlink control channel
  • each PDSCH/PUSCH transmits a different TB (Transport Block, transport block).
  • each PDSCH/PUSCH is limited to one slot.
  • the beam confirmation method of the above PDSCH/PUSCH that is, because the high-frequency transmission introduces the concept of multi-beam, compared with the low-frequency transmission, the high-frequency transmission has resource positions in the time domain and frequency domain, There are also airspace resource locations, where different airspace resource locations are distinguished through different beam orientations).
  • timeDurationForQCL QCL (Quasi co-location, quasi-co-location) time length
  • the terminal device can wait for the period of silence to send service data, but there are also cases where the configured time for sending service data falls within the period of silence, such as in Figure 2
  • the Physical Downlink Shared Channel 1 (PDSCH1), which beam the PDSCH1 uses to transmit is currently uncertain.
  • the beam corresponding to each PDSCH/PUSCH can be determined according to the beam indicated by the TCI (transmission configuration indicator, transmission indication configuration) field in the DCI.
  • the receiving beam/transmitting beam and in the case that there is no TCI field in the DCI, the receiving beam/transmitting beam corresponding to each PDSCH/PUSCH can be determined according to the beam of the PDCCH that schedules the PDSCH/PUSCH.
  • PDSCH aggregation for PDSCH aggregation (aggregation) in Rel15: if there is a PDSCH whose scheduling offset is less than timeDurationForQCL, all PDSCHs use default beams. That is, the beam of the CORESET with the smallest CORESET (control resource set, control resource set) ID in the slot that needs to detect the PDCCH recently is used.
  • enableTwoDefaultTCIStates-r16 then from all the code points (codepoints) corresponding to the TCI domain, determine the smallest codepoint that includes the two TCI states, and set the smallest codepoint The associated beam is used as the default beam corresponding to PDSCH; if the terminal device is not configured with enableTwoDefaultTCIStates-r16, the beam corresponding to the CORESET with the smallest CORESET ID in the nearest slot that needs to detect PDCCH is used.
  • the scheduling offset of PDSCH is less than timeDurationForQCL
  • all PDSCHs use beams determined by default. This default method determines The beam of is not the best beam.
  • each PDSCH/PUSCH transmits a different TB, so there is no repetition gain. If the same default beam determination method is used as the multi-slot PDSCH in the current protocol, there will be a large performance loss.
  • the present disclosure provides a beam determining method and device.
  • FIG. 3 is a schematic flowchart of a method for determining a beam provided by an embodiment of the present disclosure.
  • the method for determining the beam can be executed by a terminal device in the communication system shown in FIG. 1 .
  • the method for determining the beam may include but not limited to the following steps:
  • Step 301 when one DCI schedules multiple PDSCHs or PUSCHs, determine the transmission beams corresponding to the multiple PDSCHs or PUSCHs, wherein the multiple PDSCHs or PUSCHs transmit different TBs.
  • the transmission beam may include a reception beam and a transmission beam.
  • the transmission beam may be a reception beam.
  • the transmission beam may be a transmission beam.
  • a receiving beam corresponding to each PDSCH in the multiple PDSCHs may be determined, where each PDSCH in the multiple PDSCHs is used to transmit a different TB.
  • a transmission beam corresponding to each PUSCH in the multiple PUSCHs may be determined, where each PUSCH in the multiple PUSCHs is used to transmit a different TB.
  • the method for determining beams in the embodiments of the present disclosure determines transmission beams corresponding to multiple PDSCHs or PUSCHs when one DCI schedules multiple PDSCHs or PUSCHs, where the multiple PDSCHs or PUSCHs transmit different TBs.
  • the terminal device can determine the receiving beam corresponding to each PDSCH scheduled by a DCI, or determine the sending beam corresponding to each PUSCH scheduled by a DCI, so that the terminal device can communicate with the network device based on the determined beam.
  • FIG. 4 is a schematic flowchart of another method for determining a beam provided by an embodiment of the present disclosure.
  • the method for determining the beam can be executed by a terminal device in the communication system shown in FIG. 1 .
  • the method for determining the beam can be executed alone, or in combination with any embodiment in the present disclosure or a possible implementation in the embodiment, or in combination with any technical solution in related technologies .
  • the method for determining the beam may include but not limited to the following steps:
  • Step 401 When one DCI schedules multiple PDSCHs or PUSCHs, determine the first PDSCH or the first PUSCH among the multiple PDSCHs or PUSCHs, wherein the scheduling offset of the first PDSCH or the first PUSCH is smaller than timeDurationForQCL.
  • the first PDSCH whose scheduling offset is less than the predefined timeDurationForQCL may be determined from the multiple PDSCHs, where the number of the first PDSCHs may be at least one .
  • the first PUSCH whose scheduling offset is smaller than the predefined timeDurationForQCL may be determined from the multiple PUSCHs, where the number of the first PUSCH may be at least one.
  • the first PDSCH may be physical downlink shared channel 1 in FIG. 2 , that is, PDSCH1.
  • Step 402 determine a default transmission beam corresponding to the first PDSCH or the first PUSCH.
  • the default transmission beam may include a default reception beam and a default transmission beam.
  • the default transmission beam may be the default reception beam.
  • the default transmission beam may be the default transmission beam.
  • the default receiving beam corresponding to each first PDSCH can be determined, or, when one DCI schedules multiple PUSCHs, the default sending beam corresponding to each first PUSCH can be determined .
  • the method for determining the beam in the embodiment of the present disclosure determines the first PDSCH or the first PUSCH among the multiple PDSCHs or PUSCHs when one DCI schedules multiple PDSCHs or PUSCHs, wherein the scheduling of the first PDSCH or the first PUSCH The offset is less than timeDurationForQCL; determine the default transmission beam corresponding to the first PDSCH or the first PUSCH. In this way, the terminal device can determine the default transmission beam corresponding to the first PDSCH or the first PUSCH whose scheduling offset is smaller than timeDurationForQCL.
  • FIG. 5 is a schematic flowchart of another method for determining a beam provided by an embodiment of the present disclosure.
  • the method for determining the beam can be executed by a terminal device in the communication system shown in FIG. 1 .
  • the method for determining the beam can be executed alone, or in combination with any embodiment in the present disclosure or a possible implementation in the embodiment, or in combination with any technical solution in related technologies .
  • the method for determining the beam may include but not limited to the following steps:
  • Step 501 when one DCI schedules multiple PDSCHs or PUSCHs, determine the first PDSCH or the first PUSCH among the multiple PDSCHs or PUSCHs, wherein the scheduling offset of the first PDSCH or the first PUSCH is smaller than timeDurationForQCL.
  • step 501 may be implemented in any one of the embodiments of the present disclosure, which is not limited in the embodiments of the present disclosure, and will not be repeated here.
  • Step 502 when the DCI is a single DCI in a single TRP scenario, obtain a reference PDCCH time slot before the first PDSCH or the first PUSCH.
  • the time slot of the reference PDCCH before the first PDSCH can be obtained.
  • the reference PDCCH may be the PDCCH that needs to be detected most recently before the first PDSCH.
  • the time slot of the reference PDCCH before the first PUSCH can be obtained.
  • the reference PDCCH may be the PDCCH that needs to be detected most recently before the first PUSCH.
  • Step 503 acquire the beam corresponding to the CORESET with the smallest CORESET ID detected in the time slot of the reference PDCCH, and use it as the default transmission beam corresponding to the first PDSCH or the first PUSCH.
  • the beam corresponding to the CORESET with the smallest CORESET ID detected in the time slot of the reference PDCCH can be obtained and used as the default receiving beam corresponding to the first PDSCH.
  • the reference PDCCH is the latest PDCCH that needs to be detected before the first PDSCH.
  • the beam corresponding to the CORESET with the smallest CORESET ID detected in the time slot of the reference PDCCH can be obtained and used as the default transmission beam corresponding to the first PUSCH.
  • the reference PDCCH is the latest PDCCH that needs to be detected before the first PUSCH.
  • the method for determining the beam in the embodiment of the present disclosure determines the first PDSCH or the first PUSCH among the multiple PDSCHs or PUSCHs when one DCI schedules multiple PDSCHs or PUSCHs, wherein the scheduling of the first PDSCH or the first PUSCH The offset is less than timeDurationForQCL; when the DCI is a single DCI in a single TRP scenario, obtain the reference PDCCH time slot before the first PDSCH or the first PUSCH; obtain the minimum CORESET ID detected in the reference PDCCH time slot The beam corresponding to the CORESET is used as the default transmission beam corresponding to the first PDSCH or the first PUSCH. In this way, the terminal device can determine the default transmission beam corresponding to the first PDSCH or the first PUSCH whose scheduling offset is smaller than timeDurationForQCL.
  • FIG. 6 is a schematic flowchart of another method for determining a beam provided by an embodiment of the present disclosure.
  • the method for determining the beam can be executed by a terminal device in the communication system shown in FIG. 1 .
  • the method for determining the beam can be executed alone, or in combination with any embodiment in the present disclosure or a possible implementation in the embodiment, or in combination with any technical solution in related technologies .
  • the method for determining the beam may include but not limited to the following steps:
  • Step 601 when one DCI schedules multiple PDSCHs or PUSCHs, determine the first PDSCH or the first PUSCH among the multiple PDSCHs or PUSCHs, wherein the scheduling offset of the first PDSCH or the first PUSCH is smaller than timeDurationForQCL.
  • step 601 may be implemented in any manner in the embodiments of the present disclosure, which is not limited in the embodiments of the present disclosure, and will not be repeated here.
  • Step 602 when the DCI is multi-DCI in a multi-TRP scenario based on multi-DCI, obtain a time slot of a reference PDCCH before the first PDSCH or the first PUSCH.
  • the reference PDCCH may be the PDCCH that needs to be detected most recently before the first PDSCH.
  • the time slot of the reference PDCCH before the first PUSCH can be obtained .
  • the reference PDCCH may be the PDCCH that needs to be detected most recently before the first PUSCH.
  • Step 603 Obtain the beam corresponding to the CORESET with the smallest CORESET ID among multiple CORESETs with the index CORESET PoolIndex of the same control resource set pool detected in the time slot of the reference PDCCH, and use it as the first PDSCH or the first The default transmission beam corresponding to PUSCH.
  • the beam corresponding to the CORESET with the smallest CORESET ID among the multiple CORESETs detected in the time slot of the reference PDCCH with the same CORESET PoolIndex can be obtained, And as the default receiving beam corresponding to the first PDSCH.
  • the reference PDCCH is the latest PDCCH that needs to be detected before the first PDSCH.
  • the beam corresponding to the CORESET with the smallest CORESET ID among multiple CORESETs with the same CORESET PoolIndex detected in the time slot of the reference PDCCH can be obtained and used as the first The default transmit beam corresponding to PUSCH.
  • the reference PDCCH is the latest PDCCH that needs to be detected before the first PUSCH.
  • the method for determining the beam in the embodiment of the present disclosure determines the first PDSCH or the first PUSCH among the multiple PDSCHs or PUSCHs when one DCI schedules multiple PDSCHs or PUSCHs, wherein the scheduling of the first PDSCH or the first PUSCH The offset is less than timeDurationForQCL; when the DCI is multi-DCI in a multi-TRP scenario based on multi-DCI, obtain the time slot of the reference PDCCH before the first PDSCH or the first PUSCH; obtain the time slot detected in the time slot of the reference PDCCH
  • the beam corresponding to the CORESET with the smallest CORESET ID among multiple CORESETs with the same CORESET PoolIndex is used as the default transmission beam corresponding to the first PDSCH or the first PUSCH. In this way, the terminal device can determine the default transmission beam corresponding to the first PDSCH or the first PUSCH whose scheduling offset is smaller than timeDurationForQCL.
  • FIG. 7 is a schematic flowchart of another method for determining a beam provided by an embodiment of the present disclosure.
  • the method for determining the beam can be executed by a terminal device in the communication system shown in FIG. 1 .
  • the method for determining the beam can be executed alone, or in combination with any embodiment in the present disclosure or a possible implementation in the embodiment, or in combination with any technical solution in related technologies .
  • the method for determining the beam may include but not limited to the following steps:
  • Step 701 when one DCI schedules multiple PDSCHs or PUSCHs, determine the first PDSCH or the first PUSCH among the multiple PDSCHs or PUSCHs, wherein the scheduling offset of the first PDSCH or the first PUSCH is smaller than timeDurationForQCL.
  • step 701 may be implemented in any one of the embodiments of the present disclosure, which is not limited in the embodiments of the present disclosure, and will not be repeated here.
  • step 702 when the DCI is a single DCI in a multi-TRP scenario based on a single DCI, it is judged whether the terminal device is configured with the enabling flag EnableTwoDefaultTCIStates, if yes, execute step 703, and if not, execute step 704.
  • the enabling flag EnableTwoDefaultTCIStates is used to identify that the terminal device is allowed to adopt two default TCI states.
  • the enable flag may be enableTwoDefaultTCIStates-r16, where the enable flag is used to identify that the terminal device is allowed to adopt two default TCI states.
  • Step 703 Acquire the beam associated with the smallest code point that includes two TCI states among the code points corresponding to the TCI domain, and use it as the default transmission beam corresponding to the first PDSCH or the first PUSCH.
  • the beam associated with the smallest code point that contains two TCI states in the code point corresponding to the TCI field is obtained, and used as the default beam corresponding to the first PDSCH or the first PUSCH transmit beam.
  • Step 704 acquire the beam corresponding to the CORESET with the smallest CORESET ID among the time slots of the reference PDCCH, and use it as the default transmission beam corresponding to the first PDSCH or the first PUSCH.
  • the terminal device in response to the fact that the terminal device is not configured with EnableTwoDefaultTCIStates, obtain the beam corresponding to the CORESET with the smallest CORESET ID in the time slot of the reference PDCCH, and use it as the default transmission beam corresponding to the first PDSCH or the first PUSCH.
  • the above reference PDCCH is the latest PDCCH that needs to be detected before the first PDSCH
  • the above reference PDCCH is the latest one that needs to be detected before the first PUSCH PDCCH.
  • the method for determining the beam in the embodiment of the present disclosure determines the first PDSCH or the first PUSCH among the multiple PDSCHs or PUSCHs when one DCI schedules multiple PDSCHs or PUSCHs, wherein the scheduling of the first PDSCH or the first PUSCH The offset is less than timeDurationForQCL; when the DCI is a single DCI in a multi-TRP scenario based on a single DCI, it is judged whether the terminal device is configured with the enabling flag EnableTwoDefaultTCIStates, where the enabling flag is used to identify that the terminal device is allowed to use two default TCI state; in response to the configuration of EnableTwoDefaultTCIStates on the terminal device, obtain the beam associated with the smallest code point that contains two TCI states in the code point corresponding to the TCI domain, and use it as the default transmission beam corresponding to the first PDSCH or the first PUSCH; response If the terminal device is not configured with EnableTwoDefaultTCIStates, obtain the
  • the default transmission beam corresponding to the first PDSCH or the first PUSCH can be determined in the following manner:
  • the PDCCH that needs to be detected recently before the first PDSCH or the first PUSCH can be determined, which is recorded as the reference PDCCH time slot in this disclosure
  • the beam corresponding to the detected CORESET with the smallest CORESET ID is used as the default transmission beam corresponding to the first PDSCH or the first PUSCH.
  • the above-mentioned DCI is multi-DCI under the multi-DCI based multi-TRP scenario (multi-DCI based mTRP)
  • the beam corresponding to the CORESET with the smallest CORESET ID is used as the default transmission beam corresponding to the first PDSCH or the first PUSCH.
  • the enable flag may be enableTwoDefaultTCIStates-r16, where the enable flag is used to identify that the terminal device is allowed to adopt two default TCI states.
  • the beam associated with the smallest code point including the two TCI states in the code points corresponding to the TCI field is used as the default transmission beam corresponding to the first PDSCH or the first PUSCH.
  • the corresponding relationship (or mapping relationship) between the two TCI states corresponding to the above-mentioned code points and the first PDSCH is the same as FDMSchemeA (Frequency Division Multiplexing SchemeA, Frequency Division Multiplexing Scheme A) and FDMSchemeB (Frequency Division Multiplexing Scheme A) in the existing protocol.
  • Multiplexing scheme B) and TDMSchemeA Time Division Multiplexing SchemeA, time division multiplexing scheme A
  • the mapping relationship of the repetition transmission scheme is not considered.
  • the beam corresponding to the CORESET with the smallest CORESET ID in the time slot of the reference PDCCH is used as the default transmission beam corresponding to the first PDSCH or the first PUSCH.
  • FIG. 8 is a schematic flowchart of another beam determining method provided by an embodiment of the present disclosure.
  • the method for determining the beam can be executed by a terminal device in the communication system shown in FIG. 1 .
  • the method for determining the beam can be executed alone, or in combination with any embodiment in the present disclosure or a possible implementation in the embodiment, or in combination with any technical solution in related technologies .
  • the method for determining the beam may include but not limited to the following steps:
  • Step 801 when one DCI schedules multiple PDSCHs or PUSCHs, determine the second PDSCH or the second PUSCH among the multiple PDSCHs or PUSCHs, wherein the scheduling offset of the second PDSCH or the second PUSCH is greater than or equal to timeDurationForQCL.
  • the second PDSCH whose scheduling offset is greater than or equal to the predefined timeDurationForQCL can be determined from the multiple PDSCHs, where the number of the second PDSCHs can be for at least one.
  • the second PUSCH whose scheduling offset is greater than or equal to the predefined timeDurationForQCL may be determined from the multiple PUSCHs, where the number of the second PUSCHs may be at least one.
  • a DCI is used to schedule multiple PDSCHs for exemplary illustration.
  • physical downlink shared channel 4 ie PDSCH4.
  • Step 802 determine the transmission beam corresponding to the second PDSCH or the second PUSCH.
  • the receiving beams corresponding to the second PDSCHs may be determined, or, when one DCI schedules multiple PUSCHs, the sending beams corresponding to the second PUSCHs may be determined.
  • the beam indicated by the TCI field in the above-mentioned DCI may be used as the transmission corresponding to the second PDSCH or the second PUSCH beam.
  • the beam of the PDCCH that schedules the second PDSCH may be used as the second The receive beam corresponding to the PDSCH.
  • the beam of the PDCCH that schedules the second PUSCH may be used as the transmission beam corresponding to the second PUSCH.
  • the second PDSCH or the second PUSCH in the case that there is no TCI field in the DCI, can be determined in the same manner as the first PDSCH or the first PUSCH.
  • the default transmission beam, that is, the second PDSCH may use the same beam as the first PDSCH beam, and the second PUSCH may use the same beam as the first PUSCH.
  • the method for determining a beam in an embodiment of the present disclosure determines the second PDSCH or the second PUSCH among the multiple PDSCHs or PUSCHs when one DCI schedules multiple PDSCHs or PUSCHs, wherein the scheduling of the second PDSCH or the second PUSCH is The displacement is greater than or equal to Time DurationForQCL; determine the transmission beam corresponding to the second PDSCH or the second PUSCH.
  • the terminal device may determine the default receiving beam corresponding to the second PDSCH whose scheduling offset is greater than or equal to timeDurationForQCL, or determine the default transmitting beam corresponding to the second PUSCH whose scheduling offset is greater than or equal to timeDurationForQCL.
  • the following methods can be used to determine the transmission beam corresponding to the second PDSCH or the second PUSCH:
  • Way 1 Use the beam indicated by the TCI field in the DCI as the transmission beam corresponding to the second PDSCH or the second PUSCH.
  • Mode 2 In the case that there is no TCI field in the above DCI, the beam of the PDCCH that schedules the second PDSCH is used as the receiving beam corresponding to the second PDSCH, or the beam of the PDCCH that is scheduled for the second PUSCH is used as the second beam.
  • the transmit beam corresponding to the PUSCH In the case that there is no TCI field in the above DCI, the beam of the PDCCH that schedules the second PDSCH is used as the receiving beam corresponding to the second PDSCH, or the beam of the PDCCH that is scheduled for the second PUSCH is used as the second beam.
  • the transmit beam corresponding to the PUSCH In the case that there is no TCI field in the above DCI, the beam of the PDCCH that schedules the second PDSCH is used as the receiving beam corresponding to the second PDSCH, or the beam of the PDCCH that is scheduled for the second PUSCH is used as the second beam.
  • the transmit beam corresponding to the PUSCH In the case that there is
  • Mode 3 Determine the default transmission beam of the second PDSCH or the second PUSCH in the same manner as the first PDSCH or the first PUSCH.
  • FIG. 9 is a schematic flowchart of another method for determining a beam provided by an embodiment of the present disclosure.
  • the method for determining the beam can be executed by a terminal device in the communication system shown in FIG. 1 .
  • the method for determining the beam can be executed alone, or in combination with any embodiment in the present disclosure or a possible implementation in the embodiment, or in combination with any technical solution in related technologies .
  • the method for determining the beam may include but not limited to the following steps:
  • Step 901 When one DCI schedules multiple PDSCHs or PUSCHs, determine the second PDSCH or the second PUSCH among the multiple PDSCHs or PUSCHs, wherein the scheduling offset of the second PDSCH or the second PUSCH is greater than or equal to time DurationForQCL.
  • step 901 may be implemented in any one of the embodiments of the present disclosure, which is not limited in the embodiments of the present disclosure, and will not be repeated here.
  • Step 902 acquire the quantity of the second PDSCH or the second PUSCH, or the ratio of the second PDSCH or the second PUSCH among the multiple PDSCHs or PUSCHs.
  • the number of the second PDSCHs may be determined, or the proportion of the second PDSCHs among the multiple PDSCHs may be determined.
  • the number of second PUSCHs may be determined, or the proportion of the second PUSCH among the multiple PUSCHs may be determined.
  • Step 903 when the number of the second PDSCH or the second PUSCH is greater than or equal to the number threshold, or the ratio of the second PDSCH or the second PUSCH among multiple PDSCHs or PUSCHs is greater than or equal to the ratio threshold, adopt method 1 or method 2 A transmission beam corresponding to the second PDSCH or the second PUSCH is determined.
  • the quantity threshold and the ratio threshold may be preset, for example, may be stipulated through an agreement, or may be configured through a network device and sent to the terminal device.
  • the Manner 1 or Manner 2 Determine the receiving beam corresponding to the second PDSCH.
  • the beam indicated by the TCI field in the DCI may be used as the receiving beam corresponding to the second PDSCH.
  • the beam of the PDCCH that schedules the second PDSCH may be used as the receiving beam corresponding to the second PDSCH.
  • method 1 or method can be adopted 2. Determine the sending beam corresponding to the second PUSCH.
  • the beam indicated by the TCI field in the DCI may be used as the transmission beam corresponding to the second PUSCH.
  • the beam of the PDCCH that schedules the second PUSCH may be used as the transmission beam corresponding to the second PUSCH.
  • Step 904 when the number of the second PDSCH or the second PUSCH is less than the number threshold, or the ratio of the second PDSCH or the second PUSCH among the multiple PDSCHs or PUSCHs is less than the ratio threshold, adopt the third method to determine the second PDSCH or the second The transmission beam corresponding to the PUSCH.
  • the third method can be used to determine The receiving beam corresponding to the second PDSCH. That is, if there is no TCI field in the DCI, the default receiving beam of the second PDSCH can be determined in the same manner as the first PDSCH.
  • the second PDSCH can be the Physical Downlink Shared Channel 4 in Figure 10, that is, PDSCH4, the number of the second PDSCH is 1, and the second PDSCH is in multiple
  • the above DCI is a single DCI under a single TRP scenario (single TRP)
  • the beam corresponding to the CORESET with the smallest CORESET ID is used as the default receiving beam corresponding to the second PDSCH.
  • the PDCCH that needs to be detected recently before the second PDSCH can be determined, that is, the time slot of the reference PDCCH Among the detected multiple CORESETs with the same CORESET PoolIndex, the beam corresponding to the CORESET with the smallest CORESET ID is used as the default receiving beam corresponding to the second PDSCH.
  • the above DCI is a single DCI in a single DCI based Multi-TRP scenario (Single DCI based Multi-TRP)
  • the beam associated with the smallest code point including two TCI states in the code points corresponding to the TCI field is used as the default receiving beam corresponding to the second PDSCH.
  • the terminal device In response to the fact that the terminal device is not configured with the enabling flag EnableTwoDefaultTCIStates, refer to the beam corresponding to the CORESET with the smallest CORESET ID in the time slot of the reference PDCCH as the default receiving beam corresponding to the second PDSCH.
  • method 3 can be used to determine the corresponding the transmit beam. That is, in the case that there is no TCI field in the DCI, the default transmission beam of the second PUSCH can be determined in the same manner as that of the first PUSCH.
  • the above DCI is a single DCI under a single TRP scenario (single TRP)
  • the beam corresponding to the CORESET with the smallest CORESET ID is used as the default transmission beam corresponding to the second PUSCH.
  • the PDCCH that needs to be detected recently before the second PUSCH can be determined, that is, the time slot of the reference PDCCH Among the detected multiple CORESETs with the same CORESET PoolIndex, the beam corresponding to the CORESET with the smallest CORESET ID is used as the default transmission beam corresponding to the second PUSCH.
  • the above DCI is a single DCI in a single DCI based Multi-TRP scenario (Single DCI based Multi-TRP)
  • the beam associated with the smallest code point including two TCI states in the code points corresponding to the TCI domain is used as the default transmission beam corresponding to the second PUSCH.
  • the terminal device In response to the fact that the terminal device is not configured with the enabling flag EnableTwoDefaultTCIStates, refer to the beam corresponding to the CORESET with the smallest CORESET ID in the time slot of the reference PDCCH as the default transmission beam corresponding to the second PUSCH.
  • one DCI schedules multiple PDSCH/PUSCH when it schedules multiple PDSCH/PUSCH, it can also be determined according to the number or ratio of the second PDSCH/second PUSCH to use the single quasi-co-location assumption (Single QCL assumption ), determine the beams corresponding to each PDSCH/PUSCH, or use the Multiple QCL assumption (Multiple QCL assumption) to determine the beams corresponding to each PDSCH/PUSCH.
  • Single QCL assumption single quasi-co-location assumption
  • Multiple QCL assumption Multiple QCL assumption
  • the above-mentioned Single QCL assumption means that the second PDSCH adopts the same beam as the first PDSCH, or the second PUSCH adopts the same beam as the first PDSCH, that is, the beam adopted by the second PDSCH/second PUSCH, and is determined through the third method;
  • Multiple QCL assumption refers to the beam used by the second PDSCH/second PUSCH, which is determined by method 1 or method 2.
  • the number of the second PDSCH is greater than or equal to the number threshold, or when the ratio of the second PDSCH among multiple PDSCHs is greater than or equal to the ratio threshold, Multiple QCL assumption may be used to determine the beam corresponding to the second PDSCH , on the contrary, the Single QCL assumption is used to determine the beam corresponding to the second PDSCH.
  • the Multiple QCL assumption is used to determine the beam corresponding to the second PUSCH, otherwise, Using Single QCL assumption, determine the beam corresponding to the second PUSCH.
  • the method of determining the default sending beam or the default receiving beam can be determined by method 1 or method 2.
  • the method for determining the default sending beam or the default receiving beam can be determined in method three.
  • the PDSCH/PUSCH of the slot is classified as a PDSCH whose scheduling offset value is less than timeDurationForQCL /PUSCH, that is, the PDSCH/PUSCH in this time slot belongs to the first PDSCH or the first PUSCH in this disclosure.
  • the best performance can be obtained by using the indicated beam.
  • the method for determining the beam in the embodiment of the present disclosure obtains the number of the second PDSCH or the second PUSCH, or the ratio of the second PDSCH or the second PUSCH among multiple PDSCHs or PUSCHs; when the number of the second PDSCH or the second PUSCH When the number is greater than or equal to the number threshold, or the ratio of the second PDSCH or the second PUSCH among multiple PDSCHs or PUSCHs is greater than or equal to the ratio threshold, use method 1 or method 2 to determine the transmission beam corresponding to the second PDSCH or the second PUSCH ; When the number of the second PDSCH or the second PUSCH is less than the number threshold, or the ratio of the second PDSCH or the second PUSCH among the multiple PDSCHs or PUSCHs is less than the ratio threshold, use method 3 to determine the second PDSCH or the second PUSCH corresponds to transmission beam. In this way, the terminal device can determine the default transmission beam corresponding to the second PDSCH or the second PUSCH
  • method 1 or method 2 may be used to determine the transmission beams corresponding to each PDSCH or PUSCH.
  • the beam indicated by the TCI field is used as the receiving beam corresponding to each PDSCH or the transmitting beam corresponding to each PUSCH; and if there is no TCI field in the above-mentioned DCI, The beam of the PDCCH scheduling the PDSCH is used as the receiving beam corresponding to the PDSCH, or the beam of the PDCCH scheduling the PUSCH is used as the transmitting beam corresponding to the PUSCH.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspective of a terminal device.
  • the terminal device may include a hardware structure and a software module, and realize the above various functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 11 is a schematic structural diagram of an apparatus 110 for determining a beam provided by an embodiment of the present disclosure.
  • the apparatus 110 for determining a beam shown in FIG. 11 may include a processing unit 1101 .
  • the beam determining device 110 may also include a transceiver unit, the transceiver unit may include a sending unit and/or a receiving unit, the sending unit is used to realize the sending function, the receiving unit is used to realize the receiving function, and the sending and receiving unit can realize sending function and/or receive function.
  • the beam determining device 110 may be a terminal device, may also be a device in the terminal device, and may also be a device that can be matched and used with the terminal device.
  • the beam determining device 130 is a terminal device: a processing unit 1101, configured to determine transmission beams corresponding to multiple PDSCHs or PUSCHs when one downlink control information DCI schedules multiple physical downlink shared channels PDSCH or physical uplink shared channels PUSCH, wherein, Multiple PDSCHs or PUSCHs transmit different transport blocks TB.
  • a processing unit 1101 configured to determine transmission beams corresponding to multiple PDSCHs or PUSCHs when one downlink control information DCI schedules multiple physical downlink shared channels PDSCH or physical uplink shared channels PUSCH, wherein, Multiple PDSCHs or PUSCHs transmit different transport blocks TB.
  • the above-mentioned processing unit 1101 is specifically configured to: determine the first PDSCH or the first PUSCH among the multiple PDSCHs or PUSCHs, where the scheduling offset of the first PDSCH or the first PUSCH is less than the quasi-co-location Time length timeDurationForQCL; determine the default transmission beam corresponding to the first PDSCH or the first PUSCH.
  • the above-mentioned processing unit 1101 is specifically configured to: acquire a reference PDCCH time slot before the first PDSCH or the first PUSCH when the DCI is a single DCI in a single TRP scenario; acquire a reference PDCCH time slot Among them, the beam corresponding to the CORESET with the smallest control resource set CORESET ID detected is used as the default transmission beam corresponding to the first PDSCH or the first PUSCH.
  • the above-mentioned processing unit 1101 is specifically configured to: when the DCI is multi-DCI in a multi-DCI-based multi-TRP scenario, obtain the time slot of the reference PDCCH before the first PDSCH or the first PUSCH; obtain the reference The beam corresponding to the CORESET with the smallest CORESET ID among multiple CORESETs with the index CORESET PoolIndex of the same control resource set pool detected in the time slot of the PDCCH, and used as the default transmission corresponding to the first PDSCH or the first PUSCH beam.
  • the above-mentioned processing unit 1101 is specifically configured to: when the DCI is a single DCI in a multi-TRP scenario based on a single DCI, then determine whether the terminal device is configured with the enabling flag EnableTwoDefaultTCIStates, and the enabling flag is used to identify the allowed
  • the terminal device adopts two default TCI states; in response to the configuration of EnableTwoDefaultTCIStates, the terminal device obtains the beam associated with the smallest code point that contains two TCI states in the code point corresponding to the TCI field, and uses it as the first PDSCH or the first The default transmission beam corresponding to the PUSCH; in response to the fact that the terminal device is not configured with EnableTwoDefaultTCIStates, obtain the beam corresponding to the CORESET with the smallest CORESET ID in the time slot of the reference PDCCH, and use it as the default transmission beam corresponding to the first PDSCH or the first PUSCH.
  • the processing unit 1101 is specifically configured to: refer to the PDCCH as the PDCCH that needs to be detected most recently before the first PDSCH or the first PUSCH.
  • the above-mentioned processing unit 1101 is specifically configured to: determine a second PDSCH or a second PUSCH among a plurality of PDSCHs or PUSCHs, wherein the scheduling offset of the second PDSCH or the second PUSCH is greater than or equal to Time DurationForQCL ; Determine the transmission beam corresponding to the second PDSCH or the second PUSCH.
  • the above-mentioned processing unit 1101 is specifically configured to: determine the transmission beam corresponding to the second PDSCH or the second PUSCH according to any of the following methods:
  • Method 1 In the case of configuring the TCI field with a transmission indication in the DCI, use the beam indicated by the TCI field as the transmission beam corresponding to the second PDSCH or the second PUSCH;
  • Mode 2 In the case that there is no TCI field in the DCI, the beam of the physical lower layer control channel PDCCH that schedules the second PDSCH or the second PUSCH is used as the transmission beam corresponding to the second PDSCH or the second PUSCH;
  • Mode 3 In the case that there is no TCI field in the DCI, the default transmission beam of the second PDSCH or the second PUSCH is determined in the same manner as that of the first PDSCH or the first PUSCH.
  • the above-mentioned processing unit 1101 is specifically configured to: obtain the number of the second PDSCH or the second PUSCH, or the ratio of the second PDSCH or the second PUSCH among multiple PDSCHs or PUSCHs; when the second PDSCH or the second PUSCH When the number of the second PUSCH is greater than or equal to the quantity threshold, or the ratio of the second PDSCH or the second PUSCH among the multiple PDSCHs or PUSCHs is greater than or equal to the ratio threshold, adopt method 1 or method 2 to determine the second PDSCH or the second PUSCH Corresponding transmission beam; when the number of the second PDSCH or the second PUSCH is less than the number threshold, or the ratio of the second PDSCH or the second PUSCH among the multiple PDSCHs or PUSCHs is less than the ratio threshold, adopt method 3 to determine the second PDSCH or A transmission beam corresponding to the second PUSCH.
  • FIG. 12 is a schematic structural diagram of another apparatus for determining a beam provided by an embodiment of the present disclosure.
  • the beam determining device 120 may be a terminal device, and may also be a chip, a chip system, or a processor that supports the terminal device to implement the above method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • the beam determining device 120 may include one or more processors 1201 .
  • the processor 1201 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process the communication protocol and communication data
  • the central processor can be used to control the beam determination device (such as base station, baseband chip, terminal equipment, terminal equipment chip, DU or CU, etc.), execute A computer program that processes data for a computer program.
  • the beam determining device 120 may further include one or more memories 1202, on which a computer program 1203 may be stored, and the processor 1201 executes the computer program 1203, so that the beam determining device 120 executes the above-mentioned method embodiment described method.
  • the computer program 1203 may be solidified in the processor 1201, and in this case, the processor 1201 may be implemented by hardware.
  • data may also be stored in the memory 1202 .
  • the beam determining device 120 and the memory 1202 can be set separately or integrated together.
  • the beam determining device 120 may further include a transceiver 1205 and an antenna 1206 .
  • the transceiver 1205 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1205 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the apparatus 120 for determining a beam may further include one or more interface circuits 1207 .
  • the interface circuit 1207 is used to receive code instructions and transmit them to the processor 1201 .
  • the processor 1201 executes code instructions to enable the beam determining apparatus 120 to execute the methods described in the foregoing method embodiments.
  • the beam determining apparatus 120 is a terminal device: a processor 1201 configured to execute any one of the foregoing method embodiments of the present disclosure.
  • the processor 1201 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the beam determining device 120 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the apparatus for determining a beam in the above embodiments may be a terminal device, but the scope of the apparatus for determining a beam described in this disclosure is not limited thereto, and the structure of the apparatus for determining a beam may not be limited by FIG. 12 .
  • the beam determining means may be a stand-alone device or may be part of a larger device.
  • beam determining means may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the device for determining the beam may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 13 refers to the schematic structural diagram of the chip shown in FIG. 13 .
  • the chip shown in FIG. 13 includes a processor 1301 and an interface 1302 .
  • the number of processors 1301 may be one or more, and the number of interfaces 1302 may be more than one.
  • Interface 1302 used to transmit code instructions to the processor
  • the processor 1301 is configured to run code instructions to execute the methods shown in FIG. 3 to FIG. 9 .
  • the chip further includes a memory 1303 for storing necessary computer programs and data.
  • An embodiment of the present disclosure further provides a communication system, the system includes the apparatus for determining a beam as a terminal device in the foregoing embodiment in FIG. 12 , or the system includes the apparatus for determining a beam as a terminal device in the foregoing embodiment in FIG. 13 .
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when the computer program product is executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • the word “if” may be construed as “at” or “when” or “in response to a determination.”
  • each table in the present disclosure may be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in the present disclosure.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also use other names that the communication device can understand, and the values or representations of the parameters may also be other values or representations that the communication device can understand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种波束的确定方法及装置,可以应用于移动通信技术中,方法包括:在一个DCI调度多个PDSCH或PUSCH时,确定多个PDSCH或PUSCH对应的传输波束,其中,多个PDSCH或PUSCH传输不同的TB。由此,可以实现由终端设备确定一个DCI调度的各PDSCH对应的接收波束,或者,确定一个DCI调度的各PUSCH对应的发送波束,从而可以基于确定的波束与网络设备进行通信。

Description

波束的确定方法及装置 技术领域
本公开涉及通信技术领域,尤其涉及一种波束的确定方法及装置。
背景技术
在52.6-71GHz中,支持一个DCI(downlink control information,下行控制信息)调度多个PDSCH(physical downlink shared channel,物理下行共享信道)/PUSCH(physical uplink shared channel,物理层上行共享信道),以减少PDCCH(physical downlink control channel,物理层下行控制信道)盲检的开销。如何确定各PDSCH/PUSCH对应的传输波束是非常重要的。
发明内容
本公开第一方面实施例提供了一种波束的确定方法,所述方法由终端设备执行,所述方法包括:当一个下行控制信息DCI调度多个物理下行共享信道PDSCH或物理上行共享信道PUSCH时,确定所述多个PDSCH或所述PUSCH对应的传输波束,其中,所述多个PDSCH或PUSCH传输不同的传输块TB。
在该技术方案中,在一个DCI调度多个PDSCH或PUSCH时,确定多个PDSCH或PUSCH对应的传输波束,其中,多个PDSCH或PUSCH传输不同的TB。由此,可以实现由终端设备确定一个DCI调度的各PDSCH对应的接收波束,或者,确定一个DCI调度的各PUSCH对应的发送波束,从而可以基于确定的波束与网络设备进行通信。
在一种可能的实现方式中,所述确定所述多个PDSCH或PUSCH对应的传输波束,包括:确定所述多个PDSCH或所述PUSCH之中的第一PDSCH或第一PUSCH,其中,所述第一PDSCH或第一PUSCH的调度偏移量小于预定义的准共址时间长度timeDurationForQCL;确定所述第一PDSCH或第一PUSCH对应的默认传输波束。
在一种可能的实现方式中,所述确定所述第一PDSCH或第一PUSCH对应的默认传输波束,包括:当所述DCI为单TRP场景下的单DCI时,获取在所述第一PDSCH或第一PUSCH之前的参考PDCCH的时隙;获取所述参考PDCCH的时隙之中探测到的具有最小控制资源集合CORESET ID的CORESET所对应的波束,并作为所述第一PDSCH或第一PUSCH对应的默认传输波束。
在一种可能的实现方式中,所述确定所述第一PDSCH或第一PUSCH对应的默认传输波束,包括:当所述DCI为基于多DCI的多TRP场景下的多DCI时,获取在所述第一PDSCH或第一PUSCH之前的参考PDCCH的时隙;获取所述参考PDCCH的时隙之中探测到的具有相同的控制资源集合池的索引CORESET PoolIndex的多个CORESET之中具有最小CORESET ID的CORESET所对应的波束,并作为所述第一PDSCH或第一PUSCH对应的默认传输波束。
在一种可能的实现方式中,所述确定所述第一PDSCH或第一PUSCH对应的默认传输波束,包括:当所述DCI为基于单DCI的多TRP场景下的单DCI时,则判断所述终端设备是否配置了使能标识EnableTwoDefaultTCIStates,所述使能标识用于标识允许所述终端设备采用两个默认的TCI状态;如果所述终端设备配置了所述EnableTwoDefaultTCIStates,则获取TCI域对应的码点中包含了两个TCI状态的最小的码点关联的波束,并作为所述第一PDSCH或第一PUSCH对应的默认传输波束;如果所述终端设备未配置所述EnableTwoDefaultTCIStates,则获取参考PDCCH的时隙之中最小CORESET ID的CORESET 对应的波束,并作为所述第一PDSCH或第一PUSCH对应的默认传输波束。
在一种可能的实现方式中,所述参考PDCCH为在所述第一PDSCH或第一PUSCH之前的最近需要检测的PDCCH。
在一种可能的实现方式中,还包括:确定所述多个PDSCH或PUSCH之中的第二PDSCH或第二PUSCH,其中,所述第二PDSCH或第二PUSCH调度偏移量大于或等于所述Time DurationForQCL;确定所述第二PDSCH或第二PUSCH对应的传输波束。
在一种可能的实现方式中,根据以下任一种方式确定所述第二PDSCH或第二PUSCH对应的传输波束:
方式一:在所述DCI之中具有传输指示配置TCI域的情况下,将所述TCI域所指示的波束作为所述第二PDSCH或第二PUSCH对应的传输波束;
方式二:在所述DCI之中未具有所述TCI域的情况下,将调度所述第二PDSCH或第二PUSCH的物理下层控制信道PDCCH的波束作为所述第二PDSCH或第二PUSCH对应的传输波束;
方式三:在所述DCI之中未具有所述TCI域的情况下,按照与所述第一PDSCH或第一PUSCH相同的方式确定所述第二PDSCH或第二PUSCH的默认传输波束。
在一种可能的实现方式中,还包括:获取所述第二PDSCH或第二PUSCH的数量,或者第二PDSCH或第二PUSCH在多个PDSCH或PUSCH之中的比例;当所述第二PDSCH或第二PUSCH的数量大于或等于数量阈值,或者第二PDSCH或第二PUSCH在多个PDSCH或PUSCH之中的比例大于或等于比例阈值时,采用方式一或方式二确定所述第二PDSCH或第二PUSCH对应的传输波束;当所述第二PDSCH或第二PUSCH的数量小于所述数量阈值,或者第二PDSCH或第二PUSCH在多个PDSCH或PUSCH之中的比例小于所述比例阈值时,采用方式三确定所述第二PDSCH或第二PUSCH对应的传输波束。
本公开第二方面实施例提供了一种波束的确定装置,该波束的确定装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如波束的确定装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
本公开第三方面实施例提供了一种波束的确定装置,该装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
本公开第四方面实施例提供了另一种波束的确定装置,该装置包所述装置包括处理器和存储器,所述存储器中存储有计算机程序,当所述计算机程序被所述处理器执行时,执行上述第一方面所述的方法。
本公开第五方面实施例提供了另一种波束的确定装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
本公开第六方面实施例提供了一种通信系统,该系统包括第二方面所述的波束的确定装置,或者,该系统包括第三方面所述的波束的确定装置,或者,该系统包括第四方面所述的波束的确定装置,或者,该系统包括第五方面所述的波束的确定装置。
本公开第七方面实施例提供了一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
本公开第八方面实施例提供了一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
本公开第九方面实施例提供了一种芯片系统,该芯片系统包括至少一个处理器和接口, 用于支持网络设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
本公开第十方面实施例提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1是本公开实施例提供的一种通信系统的架构示意图;
图2是一种存在有PDSCH的调度偏移量小于timeDurationForQCL的示意图;
图3是本公开实施例提供的一种波束的确定方法的流程示意图;
图4是本公开实施例提供的另一种波束的确定方法的流程示意图;
图5是本公开实施例提供的另一种波束的确定方法的流程示意图;
图6是本公开实施例提供的另一种波束的确定方法的流程示意图;
图7是本公开实施例提供的另一种波束的确定方法的流程示意图;
图8是本公开实施例提供的另一种波束的确定方法的流程示意图;
图9是本公开实施例提供的另一种波束的确定方法的流程示意图;
图10是另一种存在PDSCH的调度偏移量小于timeDurationForQCL的示意图;
图11是本公开实施例提供的一种波束的确定装置的结构示意图;
图12是本公开实施例提供的一种波束的确定装置的结构示意图;
图13是本公开实施例提供的一种芯片的结构示意图。
具体实施方式
为了更好的理解本公开实施例公开的一种波束的确定方法,下面首先对本公开实施例适用的通信系统进行描述。
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
请参见图1,图1为本公开实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备101、一个终端设备102为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本公开实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输接收点(transmission reception  point或transmit receive point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
上述通信系统中,在52.6-71GHz中,支持一个DCI调度多个PDSCH/PUSCH,以减少PDCCH(physical downlink control channel,物理层下行控制信道)盲检的开销。和传统的PDSCH聚合(aggregation)/重复(repetition)不同的是,每个PDSCH/PUSCH传输不同的TB(Transport Block,传输块)。另外,限制每个PDSCH/PUSCH在一个时隙(slot)内。
对于上述情况,需要规定上述PDSCH/PUSCH的波束确认方式(即,由于高频段传输引入了多波束的概念,与低频段传输相比,高频段传输除了具有时域、频域资源位置之外,还具有空域资源位置,其中,通过不同波束指向实现区别不同空域资源位置)。
当存在有PDSCH/PUSCH的调度偏移量小于QCL(Quasi co-location,准共址)时间长度(即timeDurationForQCL)的情况,如图2所示,其中timeDurationForQCL为终端设备接收PDCCH并利用DCI中的QCL信息进行PDSCH接收所需要的最小时间开销。此时需要确定这些PDSCH的默认波束。也就是说,当DCI发出后有一段时间静默期,终端设备可以等待该静默期之后发送业务数据,但是,也存在配置的发送业务数据的时间处于该静默期之类的情况,比如图2中的物理下行共享信道1(PDSCH1),该PDSCH1使用哪个波束发射的,目前是不确定的。
当一个DCI调度的所有PDSCH/PUSCH的调度偏移量均大于或者等于timeDurationForQCL时,可以根据DCI之中的TCI(transmission configuration indicator,传输指示配置)域所指示的波束,确定各PDSCH/PUSCH对应的接收波束/发送波束,而在DCI之中未具有TCI域的情况下,可以根据调度PDSCH/PUSCH的PDCCH的波束,确定各PDSCH/PUSCH对应的接收波束/发送波束。
相关技术中,对于Rel15中的PDSCH聚合(aggregation):如果存在有PDSCH的调度偏移量小于timeDurationForQCL,则所有的PDSCH均采用默认波束。即采用最近需要检测PDCCH的slot中,具有最小CORESET(control resource set,控制资源集)ID的CORESET的波束。
对于Rel16中mTRP(即Multi-TRP,多传输接收点)的重复(repetition)传输策略:如果存在有PDSCH的调度偏移量小于timeDurationForQCL,则所有的PDSCH均采用默认波束。即,如果终端设备配置了使能两个默认TCI状态(即enableTwoDefaultTCIStates-r16), 则从TCI域对应的所有码点(codepoint)中,确定包含了两个TCI状态的最小的codepoint,将最小codepoint所关联的波束,作为PDSCH对应的默认波束;如果终端设备没有配置enableTwoDefaultTCIStates-r16,则采用最近的需要检测PDCCH的slot中,最小CORESET ID的CORESET对应的波束。
但是现有协议中的multi-slot(multiple slot,多时隙)PDSCH调度,对于存在有PDSCH的调度偏移量小于timeDurationForQCL的情况,所有的PDSCH均采用按默认方式确定的波束,这种默认方式确定的波束并不是最佳波束。
因为现有协议中多时隙的PDSCH传输的是相同的TB,虽然不是采用最佳波束传输,但这些多时隙的重复传输会使整体的传输性能可以接受。但是对于52.6-71GHz中最新提出的一个DCI调度多个PDSCH/PUSCH的情况而言,每个PDSCH/PUSCH传输的是不同的TB,也就不存在重复的增益。如果与当前协议中多时隙PDSCH采用相同的默认波束确定方式,会存在较大的性能损失。
针对上述问题,本公开提供了波束的确定方法及装置。
可以理解的是,本公开实施例描述的通信系统是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本公开所提供的波束的确定方法及装置进行详细地介绍。
请参见图3,图3是本公开实施例提供的一种波束的确定方法的流程示意图。该波束的确定方法可以由图1所示的通信系统中的终端设备执行。
如图3所示,该波束的确定方法可以包括但不限于如下步骤:
步骤301,当一个DCI调度多个PDSCH或PUSCH时,确定多个PDSCH或PUSCH对应的传输波束,其中,多个PDSCH或PUSCH传输不同的TB。
在本公开实施例中,传输波束可以包括接收波束、传输波束,当一个DCI调度多个PDSCH时,传输波束可以为接收波束,当一个DCI调度多个PUSCH时,传输波束可以为发送波束。
在本公开实施例中,当一个DCI调度多个PDSCH时,可以确定多个PDSCH中各PDSCH对应的接收波束,其中,多个PDSCH中的每个PDSCH用于传输不同的TB。或者,当一个DCI调度多个PUSCH时,可以确定多个PUSCH中各PUSCH对应的发送波束,其中,多个PUSCH中的每个PUSCH用于传输不同的TB。
本公开实施例的波束的确定方法,通过在一个DCI调度多个PDSCH或PUSCH时,确定多个PDSCH或PUSCH对应的传输波束,其中,多个PDSCH或PUSCH传输不同的TB。由此,可以实现由终端设备确定一个DCI调度的各PDSCH对应的接收波束,或者,确定一个DCI调度的各PUSCH对应的发送波束,从而可以基于确定的波束与网络设备进行通信。
请参见图4,图4是本公开实施例提供的另一种波束的确定方法的流程示意图。该波束的确定方法可以由图1所示的通信系统中的终端设备执行。该波束的确定方法可以单独被执行,也可以结合本公开中的任一个实施例或是实施例中的可能的实现方式一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
如图4所示,该波束的确定方法可以包括但不限于如下步骤:
步骤401,当一个DCI调度多个PDSCH或PUSCH时,确定多个PDSCH或PUSCH之中的第一PDSCH或第一PUSCH,其中,第一PDSCH或第一PUSCH的调度偏移量小于timeDurationForQCL。
在本公开实施例中,当一个DCI调度多个PDSCH时,可以从多个PDSCH中,确定调度偏移量小于预定义的timeDurationForQCL的第一PDSCH,其中,第一PDSCH的个数可以为至少一个。或者,当一个DCI调度多个PUSCH时,可以从多个PUSCH中,确定调度偏移量小于预定义的timeDurationForQCL的第一PUSCH,其中,第一PUSCH的个数可以为至少一个。
作为一种示例,以一个DCI调度多个PDSCH进行示例性说明,如图2所示,第一PDSCH可以为图2中的物理下行共享信道1,即PDSCH1。
步骤402,确定第一PDSCH或第一PUSCH对应的默认传输波束。
其中,默认传输波束可以包括默认接收波束、默认传输波束,当一个DCI调度多个PDSCH时,默认传输波束可以为默认接收波束,当一个DCI调度多个PUSCH时,默认传输波束可以为默认发送波束。
在本公开实施例中,在一个DCI调度多个PDSCH时,可以确定各第一PDSCH对应的默认接收波束,或者,在一个DCI调度多个PUSCH时,可以确定各第一PUSCH对应的默认发送波束。
本公开实施例的波束的确定方法,通过当一个DCI调度多个PDSCH或PUSCH时,确定多个PDSCH或PUSCH之中的第一PDSCH或第一PUSCH,其中,第一PDSCH或第一PUSCH的调度偏移量小于timeDurationForQCL;确定第一PDSCH或第一PUSCH对应的默认传输波束。由此,可以实现由终端设备确定调度偏移量小于timeDurationForQCL的第一PDSCH或第一PUSCH所对应的默认传输波束。
需要说明的是,上述的这些可能的实现方式可以单独被执行,也可以结合在一起被执行,本公开实施例并不对此作出限定。
请参见图5,图5是本公开实施例提供的另一种波束的确定方法的流程示意图。该波束的确定方法可以由图1所示的通信系统中的终端设备执行。该波束的确定方法可以单独被执行,也可以结合本公开中的任一个实施例或是实施例中的可能的实现方式一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
如图5所示,该波束的确定方法可以包括但不限于如下步骤:
步骤501,当一个DCI调度多个PDSCH或PUSCH时,确定多个PDSCH或PUSCH之中的第一PDSCH或第一PUSCH,其中,第一PDSCH或第一PUSCH的调度偏移量小于timeDurationForQCL。
在本公开的实施例中,步骤501可以采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤502,当DCI为单TRP场景下的单DCI时,获取在第一PDSCH或第一PUSCH之前的参考PDCCH的时隙。
在本公开实施例中,在一个DCI调度多个PDSCH时,响应于上述DCI为单TRP场景(single TRP)下的单DCI,可以获取在第一PDSCH之前的参考PDCCH的时隙。其中,参考PDCCH可以为在第一PDSCH之前的最近需要检测的PDCCH。
同理,在一个DCI调度多个PUSCH时,响应于上述DCI为单TRP(single TRP)场景下的单DCI时,可以获取在第一PUSCH之前的参考PDCCH的时隙。其中,参考PDCCH可以为在第一PUSCH之前的最近需要检测的PDCCH。
步骤503,获取参考PDCCH的时隙之中探测到的具有最小CORESET ID的CORESET所对应的波束,并作为第一PDSCH或第一PUSCH对应的默认传输波束。
在本公开实施例,在一个DCI调度多个PDSCH时,可以获取参考PDCCH的时隙之中探测到的具有最小CORESET ID的CORESET所对应的波束,并作为第一PDSCH对应 的默认接收波束。其中,参考PDCCH为在第一PDSCH之前的最近需要检测的PDCCH。
同理,在一个DCI调度多个PUSCH时,可以获取参考PDCCH的时隙之中探测到的具有最小CORESET ID的CORESET所对应的波束,并作为第一PUSCH对应的默认发送波束。其中,参考PDCCH为在第一PUSCH之前的最近需要检测的PDCCH。
本公开实施例的波束的确定方法,通过当一个DCI调度多个PDSCH或PUSCH时,确定多个PDSCH或PUSCH之中的第一PDSCH或第一PUSCH,其中,第一PDSCH或第一PUSCH的调度偏移量小于timeDurationForQCL;当DCI为单TRP场景下的单DCI时,获取在第一PDSCH或第一PUSCH之前的参考PDCCH的时隙;获取参考PDCCH的时隙之中探测到的具有最小CORESET ID的CORESET所对应的波束,并作为第一PDSCH或第一PUSCH对应的默认传输波束。由此,可以实现由终端设备确定调度偏移量小于timeDurationForQCL的第一PDSCH或第一PUSCH所对应的默认传输波束。
需要说明的是,上述的这些可能的实现方式可以单独被执行,也可以结合在一起被执行,本公开实施例并不对此作出限定。
请参见图6,图6是本公开实施例提供的另一种波束的确定方法的流程示意图。该波束的确定方法可以由图1所示的通信系统中的终端设备执行。该波束的确定方法可以单独被执行,也可以结合本公开中的任一个实施例或是实施例中的可能的实现方式一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
如图6所示,该波束的确定方法可以包括但不限于如下步骤:
步骤601,当一个DCI调度多个PDSCH或PUSCH时,确定多个PDSCH或PUSCH之中的第一PDSCH或第一PUSCH,其中,第一PDSCH或第一PUSCH的调度偏移量小于timeDurationForQCL。
在本公开的实施例中,步骤601可以采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤602,当DCI为基于多DCI的多TRP场景下的多DCI时,获取在第一PDSCH或第一PUSCH之前的参考PDCCH的时隙。
在本公开实施例中,在一个DCI调度多个PDSCH时,响应于上述DCI为基于多DCI的多TRP场景(multi-DCI based mTRP)下的多DCI中的一个DCI时,可以获取在第一PDSCH之前的参考PDCCH的时隙。其中,参考PDCCH可以为在第一PDSCH之前的最近需要检测的PDCCH。
同理,在一个DCI调度多个PUSCH时,响应于上述DCI为基于多DCI的多TRP场景(multi-DCI based mTRP)下的多DCI时,可以获取在第一PUSCH之前的参考PDCCH的时隙。其中,参考PDCCH可以为在第一PUSCH之前的最近需要检测的PDCCH。
步骤603,获取参考PDCCH的时隙之中探测到的具有相同的控制资源集合池的索引CORESET PoolIndex的多个CORESET之中具有最小CORESET ID的CORESET所对应的波束,并作为第一PDSCH或第一PUSCH对应的默认传输波束。
在本公开实施例中,在一个DCI调度多个PDSCH时,可以获取参考PDCCH的时隙之中探测到的具有相同的CORESET PoolIndex的多个CORESET之中具有最小CORESET ID的CORESET所对应的波束,并作为第一PDSCH对应的默认接收波束。其中,参考PDCCH为在第一PDSCH之前的最近需要检测的PDCCH。
同理,在一个DCI调度多个PUSCH时,可以获取参考PDCCH的时隙之中探测到的具有相同的CORESET PoolIndex的多个CORESET之中具有最小CORESET ID的CORESET所对应的波束,并作为第一PUSCH对应的默认发送波束。其中,参考PDCCH为在第一PUSCH之前的最近需要检测的PDCCH。
本公开实施例的波束的确定方法,通过当一个DCI调度多个PDSCH或PUSCH时,确定多个PDSCH或PUSCH之中的第一PDSCH或第一PUSCH,其中,第一PDSCH或第一PUSCH的调度偏移量小于timeDurationForQCL;当DCI为基于多DCI的多TRP场景下的多DCI时,获取在第一PDSCH或第一PUSCH之前的参考PDCCH的时隙;获取参考PDCCH的时隙之中探测到的具有相同的CORESET PoolIndex的多个CORESET之中具有最小CORESET ID的CORESET所对应的波束,并作为第一PDSCH或第一PUSCH对应的默认传输波束。由此,可以实现由终端设备确定调度偏移量小于timeDurationForQCL的第一PDSCH或第一PUSCH所对应的默认传输波束。
需要说明的是,上述的这些可能的实现方式可以单独被执行,也可以结合在一起被执行,本公开实施例并不对此作出限定。
请参见图7,图7是本公开实施例提供的另一种波束的确定方法的流程示意图。该波束的确定方法可以由图1所示的通信系统中的终端设备执行。该波束的确定方法可以单独被执行,也可以结合本公开中的任一个实施例或是实施例中的可能的实现方式一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
如图7所示,该波束的确定方法可以包括但不限于如下步骤:
步骤701,当一个DCI调度多个PDSCH或PUSCH时,确定多个PDSCH或PUSCH之中的第一PDSCH或第一PUSCH,其中,第一PDSCH或第一PUSCH的调度偏移量小于timeDurationForQCL。
在本公开的实施例中,步骤701可以采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤702,当DCI为基于单DCI的多TRP场景下的单DCI时,则判断终端设备是否配置了使能标识EnableTwoDefaultTCIStates,若是,则执行步骤703,若否,则执行步骤704。
其中,使能标识EnableTwoDefaultTCIStates,用于标识允许终端设备采用两个默认的TCI状态。
在本公开实施例中,当上述DCI为基于单DCI的多TRP场景下(Single DCI based Multi-TRP)的单DCI时,可以判断终端设备是否配置了使能标识EnableTwoDefaultTCIStates,比如,以终端设备为符合R16标准的终端设备进行示例,使能标识可以为enableTwoDefaultTCIStates-r16,其中,使能标识用于标识允许终端设备采用两个默认的TCI状态。
步骤703,获取TCI域对应的码点中包含了两个TCI状态的最小的码点关联的波束,并作为第一PDSCH或第一PUSCH对应的默认传输波束。
在本公开实施例中,响应于终端设备配置了EnableTwoDefaultTCIStates,获取TCI域对应的码点中包含了两个TCI状态的最小的码点关联的波束,并作为第一PDSCH或第一PUSCH对应的默认传输波束。
步骤704,获取参考PDCCH的时隙之中最小CORESET ID的CORESET对应的波束,并作为第一PDSCH或第一PUSCH对应的默认传输波束。
在本公开实施例中,响应于终端设备未配置EnableTwoDefaultTCIStates,获取参考PDCCH的时隙之中最小CORESET ID的CORESET对应的波束,并作为第一PDSCH或第一PUSCH对应的默认传输波束。其中,在一个DCI调度多个PDSCH时,上述参考PDCCH为在第一PDSCH之前的最近需要检测的PDCCH,在一个DCI调度多个PUSCH时,上述参考PDCCH为在第一PUSCH之前的最近需要检测的PDCCH。
本公开实施例的波束的确定方法,通过当一个DCI调度多个PDSCH或PUSCH时,确 定多个PDSCH或PUSCH之中的第一PDSCH或第一PUSCH,其中,第一PDSCH或第一PUSCH的调度偏移量小于timeDurationForQCL;当DCI为基于单DCI的多TRP场景下的单DCI时,则判断终端设备是否配置了使能标识EnableTwoDefaultTCIStates,其中,使能标识用于标识允许终端设备采用两个默认的TCI状态;响应于终端设备配置了EnableTwoDefaultTCIStates,获取TCI域对应的码点中包含了两个TCI状态的最小的码点关联的波束,并作为第一PDSCH或第一PUSCH对应的默认传输波束;响应于终端设备未配置EnableTwoDefaultTCIStates,获取参考PDCCH的时隙之中最小CORESET ID的CORESET对应的波束,并作为第一PDSCH或第一PUSCH对应的默认传输波束。由此,可以实现由终端设备确定调度偏移量小于timeDurationForQCL的第一PDSCH或第一PUSCH所对应的默认传输波束。
需要说明的是,上述的这些可能的实现方式可以单独被执行,也可以结合在一起被执行,本公开实施例并不对此作出限定。
在本公开的任意一个实施例之中,当一个DCI调度多个PDSCH/PUSCH时,对于调度偏移值小于timeDurationForQCL的第一PDSCH或第一PUSCH(如图2中的物理下行共享信道1,即PDSCH1),可以采用下方式,确定第一PDSCH或第一PUSCH对应的默认传输波束:
即存在以下几种情况:
第一,当上述DCI为单TRP场景(single TRP)下的单DCI时,可以确定在第一PDSCH或第一PUSCH之前的最近需要检测的PDCCH,本公开中记为参考PDCCH的时隙之中探测到的具有最小CORESET ID的CORESET所对应的波束,并作为第一PDSCH或第一PUSCH对应的默认传输波束。
第二,当上述DCI为基于多DCI的多TRP场景(multi-DCI based mTRP)下的多DCI时,可以确定参考PDCCH的时隙之中探测到的具有相同的CORESET PoolIndex的多个CORESET之中具有最小CORESET ID的CORESET所对应的波束,并作为第一PDSCH或第一PUSCH对应的默认传输波束。
第三,当上述DCI为基于单DCI的多TRP场景下(Single DCI based Multi-TRP)的单DCI时,可以判断终端设备是否配置了使能标识EnableTwoDefaultTCIStates,比如,以终端设备为符合R16标准的终端设备进行示例,使能标识可以为enableTwoDefaultTCIStates-r16,其中,使能标识用于标识允许终端设备采用两个默认的TCI状态。
响应于终端设备配置了EnableTwoDefaultTCIStates,将TCI域对应的码点中包含了两个TCI状态的最小的码点关联的波束,作为第一PDSCH或第一PUSCH对应的默认传输波束。其中,上述码点对应的两个TCI状态和第一PDSCH的对应关系(或称为映射关系),与现有协议中FDMSchemeA(Frequency Division Multiplexing SchemeA,频分复用方案A),FDMSchemeB(频分复用方案B),TDMSchemeA(Time Division Multiplexing SchemeA,时分复用方案A)的对应关系相同,不考虑采用repetition传输方案的映射关系。
响应于终端设备未配置使能标识EnableTwoDefaultTCIStates,将参考PDCCH的时隙之中最小CORESET ID的CORESET对应的波束,作为第一PDSCH或第一PUSCH对应的默认传输波束。
请参见图8,图8是本公开实施例提供的另一种波束的确定方法的流程示意图。该波束的确定方法可以由图1所示的通信系统中的终端设备执行。该波束的确定方法可以单独被执行,也可以结合本公开中的任一个实施例或是实施例中的可能的实现方式一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
如图8所示,该波束的确定方法可以包括但不限于如下步骤:
步骤801,当一个DCI调度多个PDSCH或PUSCH时,确定多个PDSCH或PUSCH之中的第二PDSCH或第二PUSCH,其中,第二PDSCH或第二PUSCH调度偏移量大于或等于timeDurationForQCL。
在本公开的实施例中,当一个DCI调度多个PDSCH时,可以从多个PDSCH中,确定调度偏移量大于或者等于预定义的timeDurationForQCL的第二PDSCH,其中,第二PDSCH的个数可以为至少一个。或者,当第一DCI调度多个PUSCH时,可以从多个PUSCH中,确定调度偏移量大于或者等于预定义的timeDurationForQCL的第二PUSCH,其中,第二PUSCH的个数可以为至少一个。
作为一种示例,以一个DCI调度多个PDSCH进行示例性说明,如图2所示,第二PDSCH可以为图2中的物理下行共享信道2(即PDSCH2)、物理下行共享信道3(即PDSCH3)、物理下行共享信道4(即PDSCH4)。
步骤802,确定第二PDSCH或第二PUSCH对应的传输波束。
在本公开实施例中,在一个DCI调度多个PDSCH时,可以确定各第二PDSCH对应的接收波束,或者,在一个DCI调度多个PUSCH时,可以确定各第二PUSCH对应的发送波束。
在本公开实施例的一种可能的实现方式中,在上述DCI之中具有TCI域的情况下,可以将上述DCI之中TCI域所指示的波束,作为第二PDSCH或第二PUSCH对应的传输波束。
在本公开实施例的另一种可能的实现方式中,在上述DCI之中未具有TCI域的情况下,在DCI调度多个PDSCH时,可以将调度第二PDSCH的PDCCH的波束,作为第二PDSCH对应的接收波束。同理,在DCI调度多个PUSCH时,可以将调度第二PUSCH的PDCCH的波束,作为第二PUSCH对应的发送波束。
在本公开实施例的又一种可能的实现方式中,在DCI之中未具有TCI域的情况下,可以按照与第一PDSCH或第一PUSCH相同的方式,确定第二PDSCH或第二PUSCH的默认传输波束,即第二PDSCH可以采用和第一PDSCH波束相同的波束,第二PUSCH可以采用和第一PUSCH相同的波束。
本公开实施例的波束的确定方法,通过当一个DCI调度多个PDSCH或PUSCH时,确定多个PDSCH或PUSCH之中的第二PDSCH或第二PUSCH,其中,第二PDSCH或第二PUSCH调度偏移量大于或等于Time DurationForQCL;确定第二PDSCH或第二PUSCH对应的传输波束。由此,可以实现由终端设备确定调度偏移量大于或者等于timeDurationForQCL的第二PDSCH所对应的默认接收波束,或者,确定调度偏移量大于或者等于timeDurationForQCL的第二PUSCH所对应的默认发送波束。
需要说明的是,上述的这些可能的实现方式可以单独被执行,也可以结合在一起被执行,本公开实施例并不对此作出限定。
在本公开的任意一个实施例之中,当一个DCI调度多个PDSCH/PUSCH时,对于调度偏移值大于或者等于timeDurationForQCL的第二PDSCH或第二PUSCH(如图2中的物理下行共享信道2、3和4,即PDSCH2、3和4),可以采用以下方式,确定第二PDSCH或第二PUSCH对应的传输波束:
方式一,将上述DCI之中TCI域所指示的波束,作为第二PDSCH或第二PUSCH对应的传输波束。
方式二:在上述DCI之中没有TCI域的情况下,则将调度第二PDSCH的PDCCH的波束,作为第二PDSCH对应的接收波束,或者,将调度第二PUSCH的PDCCH的波束, 作为第二PUSCH对应的发送波束。
方式三:按照与第一PDSCH或第一PUSCH相同的方式,确定第二PDSCH或第二PUSCH的默认传输波束。
请参见图9,图9是本公开实施例提供的另一种波束的确定方法的流程示意图。该波束的确定方法可以由图1所示的通信系统中的终端设备执行。该波束的确定方法可以单独被执行,也可以结合本公开中的任一个实施例或是实施例中的可能的实现方式一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
如图9所示,该波束的确定方法可以包括但不限于如下步骤:
步骤901,当一个DCI调度多个PDSCH或PUSCH时,确定多个PDSCH或PUSCH之中的第二PDSCH或第二PUSCH,其中,第二PDSCH或第二PUSCH调度偏移量大于或等于time DurationForQCL。
在本公开的实施例中,步骤901可以采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤902,获取第二PDSCH或第二PUSCH的数量,或者第二PDSCH或第二PUSCH在多个PDSCH或PUSCH之中的比例。
在本公开实施例中,当一个DCI调度多个PDSCH时,可以确定第二PDSCH的数量,或者,确定第二PDSCH在多个PDSCH中的比例。以一个DCI调度4个PDSCH进行示例,如图2所示,第二PDSCH的数量为3,第二PDSCH在多个PDSCH之中的比例为3/4=75%。
同理,当一个DCI调度多个PUSCH时,可以确定第二PUSCH的数量,或者,确定第二PUSCH在多个PUSCH之中的比例。
步骤903,当第二PDSCH或第二PUSCH的数量大于或等于数量阈值,或者第二PDSCH或第二PUSCH在多个PDSCH或PUSCH之中的比例大于或等于比例阈值时,采用方式一或方式二确定第二PDSCH或第二PUSCH对应的传输波束。
其中,数量阈值和比例阈值可以为预先设置的,比如可以通过协议约定,或者,可以通过网络设备配置,并发送至终端设备的。
在本公开实施例中,当一个DCI调度多个PDSCH时,响应于第二PDSCH的数量大于或等于数量阈值,或者,第二PDSCH在多个PDSCH之中的比例大于或等于比例阈值,可以采用方式一或方式二,确定第二PDSCH对应的接收波束。
即在DCI之中具有TCI域的情况下,可以将DCI之中TCI域所指示的波束,作为第二PDSCH对应的接收波束。而在上述DCI之中没有TCI域的情况下,可以将调度第二PDSCH的PDCCH的波束,作为第二PDSCH对应的接收波束。
同理,当一个DCI调度多个PUSCH时,响应于第二PUSCH的数量大于或等于数量阈值,或者,第二PUSCH在多个PUSCH之中的比例大于或等于比例阈值,可以采用方式一或方式二确定第二PUSCH对应的发送波束。
即在DCI之中具有TCI域的情况下,可以将DCI之中TCI域所指示的波束,作为第二PUSCH对应的发送波束。而在上述DCI之中没有TCI域的情况下,可以将调度第二PUSCH的PDCCH的波束,作为第二PUSCH对应的发送波束。
步骤904,当第二PDSCH或第二PUSCH的数量小于数量阈值,或者第二PDSCH或第二PUSCH在多个PDSCH或PUSCH之中的比例小于比例阈值时,采用方式三确定第二PDSCH或第二PUSCH对应的传输波束。
在本公开实施例中,当一个DCI调度多个PDSCH时,响应于第二PDSCH的数量小于数量阈值,或者,第二PDSCH在多个PDSCH之中的比例小于比例阈值,可以采用方式三,确定第二PDSCH对应的接收波束。即在DCI之中未具有TCI域的情况下,可以按照与第 一PDSCH相同的方式,确定第二PDSCH的默认接收波束。
以一个DCI调度多个PDSCH进行示例性说明,如图10所示,第二PDSCH可以为图10中的物理下行共享信道4,即PDSCH4,第二PDSCH的数量为1,第二PDSCH在多个PDSCH之中的比例为1/4=25%,假设数量阈值为2,比例阈值为50%,则可以采用方式三,确定第二PDSCH对应的接收波束。
作为一种示例,当上述DCI为单TRP场景(single TRP)下的单DCI时,可以确定在第二PDSCH之前的最近需要检测的PDCCH,本公开中记为参考PDCCH的时隙之中探测到的具有最小CORESET ID的CORESET所对应的波束,并作为第二PDSCH对应的默认接收波束。
作为另一种示例,当上述DCI为基于多DCI的多TRP场景(multi-DCI based mTRP)下的多DCI时,可以确定在第二PDSCH之前的最近需要检测的PDCCH,即参考PDCCH的时隙之中探测到的具有相同的CORESET PoolIndex的多个CORESET之中具有最小CORESET ID的CORESET所对应的波束,并作为第二PDSCH对应的默认接收波束。
作为又一种示例,当上述DCI为基于单DCI的多TRP场景下(Single DCI based Multi-TRP)的单DCI时,可以判断终端设备是否配置了使能标识EnableTwoDefaultTCIStates。响应于终端设备配置了EnableTwoDefaultTCIStates,将TCI域对应的码点中包含了两个TCI状态的最小的码点关联的波束,作为第二PDSCH对应的默认接收波束。响应于终端设备未配置使能标识EnableTwoDefaultTCIStates,将参考PDCCH的时隙之中最小CORESET ID的CORESET对应的波束,作为第二PDSCH对应的默认接收波束。
同理,当一个DCI调度多个PUSCH时,响应于第二PUSCH的数量小于数量阈值,或者,第二PUSCH在多个PUSCH之中的比例小于比例阈值,可以采用方式三,确定第二PUSCH对应的发送波束。即在DCI之中未具有TCI域的情况下,可以按照与第一PUSCH相同的方式,确定第二PUSCH的默认发送波束。
作为一种示例,当上述DCI为单TRP场景(single TRP)下的单DCI时,可以确定在第二PUSCH之前的最近需要检测的PDCCH,本公开中记为参考PDCCH的时隙之中探测到的具有最小CORESET ID的CORESET所对应的波束,并作为第二PUSCH对应的默认发送波束。
作为另一种示例,当上述DCI为基于多DCI的多TRP场景(multi-DCI based mTRP)下的多DCI时,可以确定在第二PUSCH之前的最近需要检测的PDCCH,即参考PDCCH的时隙之中探测到的具有相同的CORESET PoolIndex的多个CORESET之中具有最小CORESET ID的CORESET所对应的波束,并作为第二PUSCH对应的默认发送波束。
作为又一种示例,当上述DCI为基于单DCI的多TRP场景下(Single DCI based Multi-TRP)的单DCI时,可以判断终端设备是否配置了使能标识EnableTwoDefaultTCIStates。响应于终端设备配置了EnableTwoDefaultTCIStates,将TCI域对应的码点中包含了两个TCI状态的最小的码点关联的波束,作为第二PUSCH对应的默认发送波束。响应于终端设备未配置使能标识EnableTwoDefaultTCIStates,将参考PDCCH的时隙之中最小CORESET ID的CORESET对应的波束,作为第二PUSCH对应的默认发送波束。
在本公开的任意一个实施例之中,当一个DCI调度多个PDSCH/PUSCH时,还可以根据第二PDSCH/第二PUSCH的数量或者比例,来确定是采用单准共址假设(Single QCL assumption),确定各PDSCH/PUSCH对应的波束,还是采用多准共址假设(Multiple QCL assumption),确定各PDSCH/PUSCH对应的波束。
其中,上述Single QCL assumption是指第二PDSCH采用和第一PDSCH相同的波束,或第二PUSCH采用和第一PDSCH相同的波束,即第二PDSCH/第二PUSCH采用的波束, 通过方式三确定;Multiple QCL assumption是指第二PDSCH/第二PUSCH采用的波束,通过方式一或方式二确定。
作为一种示例,当第二PDSCH的数量大于或等于数量阈值,或者,第二PDSCH在多个PDSCH之中的比例大于或等于比例阈值时,可以采用Multiple QCL assumption,确定第二PDSCH对应的波束,相反,则采用Single QCL assumption,确定第二PDSCH对应的波束。
同理,当第二PUSCH的数量大于或等于数量阈值,或者第二PUSCH在多个PUSCH之中的比例大于或等于比例阈值时,采用Multiple QCL assumption,确定第二PUSCH对应的波束,相反,则采用Single QCL assumption,确定第二PUSCH对应的波束。
其中,采用Multiple QCL assumption时,默认发送波束或默认接收波束的确定方式,可以采用方式一或方式二确定。
采用Single QCL assumption时,默认发送波束或默认接收波束的确定方式,可以采用方式三确定。
在本公开的任意一个实施例之中,当timeDurationForQCL的边界值(即截止时刻)处于某个时隙(slot)之内,则该时隙的PDSCH/PUSCH归为调度偏移值小于timeDurationForQCL的PDSCH/PUSCH,即该时隙内的PDSCH/PUSCH属于本公开中的第一PDSCH或第一PUSCH。
综上,引入multiple QCL assumption,确定默认发送波束或默认接收波束,对于调度偏移值大于或等于timeDurationForQCL的第二PDSCH而言,采用指示的波束,可以获得最佳的性能。
本公开实施例的波束的确定方法,通过获取第二PDSCH或第二PUSCH的数量,或者第二PDSCH或第二PUSCH在多个PDSCH或PUSCH之中的比例;当第二PDSCH或第二PUSCH的数量大于或等于数量阈值,或者第二PDSCH或第二PUSCH在多个PDSCH或PUSCH之中的比例大于或等于比例阈值时,采用方式一或方式二确定第二PDSCH或第二PUSCH对应的传输波束;当第二PDSCH或第二PUSCH的数量小于数量阈值,或者第二PDSCH或第二PUSCH在多个PDSCH或PUSCH之中的比例小于比例阈值时,采用方式三确定第二PDSCH或第二PUSCH对应的传输波束。由此,可以实现由终端设备确定调度偏移量大于或者等于timeDurationForQCL的第二PDSCH或第二PUSCH所对应的默认传输波束。
需要说明的是,上述的这些可能的实现方式可以单独被执行,也可以结合在一起被执行,本公开实施例并不对此作出限定。
在本公开的任意一个实施例之中,当一个DCI调度多个PDSCH或PUSCH的调度偏移量均大于timeDurationForQCL时,可以采用方式一或方式二,确定各PDSCH或PUSCH对应的传输波束。即,在上述DCI之中具有TCI域的情况下,将TCI域所指示的波束作为各PDSCH对应的接收波束或各PUSCH对应的发送波束;而在上述DCI之中未具有TCI域的情况下,将调度PDSCH的PDCCH的波束,作为PDSCH对应的接收波束,或将调度PUSCH的PDCCH的波束,作为PUSCH对应的发送波束。
上述本公开提供的实施例中,从终端设备的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图11,为本公开实施例提供的一种波束的确定装置110的结构示意图。图11所示的波束的确定装置110可包括处理单元1101。可选地,该波束的确定装置110也可以 包括收发单元,该收发单元可包括发送单元和/或接收单元,发送单元用于实现发送功能,接收单元用于实现接收功能,收发单元可以实现发送功能和/或接收功能。
波束的确定装置110可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
波束的确定装置130为终端设备:处理单元1101,用于当一个下行控制信息DCI调度多个物理下行共享信道PDSCH或物理上行共享信道PUSCH时,确定多个PDSCH或PUSCH对应的传输波束,其中,多个PDSCH或PUSCH传输不同的传输块TB。
在一些实施例中,上述处理单元1101,具体用于:确定多个PDSCH或PUSCH之中的第一PDSCH或第一PUSCH,其中,第一PDSCH或第一PUSCH的调度偏移量小于准共址时间长度timeDurationForQCL;确定第一PDSCH或第一PUSCH对应的默认传输波束。
在一些实施例中,上述处理单元1101,具体用于:当DCI为单TRP场景下的单DCI时,获取在第一PDSCH或第一PUSCH之前的参考PDCCH的时隙;获取参考PDCCH的时隙之中探测到的具有最小控制资源集合CORESET ID的CORESET所对应的波束,并作为第一PDSCH或第一PUSCH对应的默认传输波束。
在一些实施例中,上述处理单元1101,具体用于:当DCI为基于多DCI的多TRP场景下的多DCI时,获取在第一PDSCH或第一PUSCH之前的参考PDCCH的时隙;获取参考PDCCH的时隙之中探测到的具有相同的控制资源集合池的索引CORESET PoolIndex的多个CORESET之中具有最小CORESET ID的CORESET所对应的波束,并作为第一PDSCH或第一PUSCH对应的默认传输波束。
在一些实施例中,上述处理单元1101,具体用于:当DCI为基于单DCI的多TRP场景下的单DCI时,则判断终端设备是否配置了使能标识EnableTwoDefaultTCIStates,使能标识用于标识允许终端设备采用两个默认的TCI状态;响应于终端设备配置了EnableTwoDefaultTCIStates,则获取TCI域对应的码点中包含了两个TCI状态的最小的码点关联的波束,并作为第一PDSCH或第一PUSCH对应的默认传输波束;响应于终端设备未配置EnableTwoDefaultTCIStates,则获取参考PDCCH的时隙之中最小CORESET ID的CORESET对应的波束,并作为第一PDSCH或第一PUSCH对应的默认传输波束。
在一些实施例中,上述处理单元1101,具体用于:参考PDCCH为在第一PDSCH或第一PUSCH之前的最近需要检测的PDCCH。
在一些实施例中,上述处理单元1101,具体用于:确定多个PDSCH或PUSCH之中的第二PDSCH或第二PUSCH,其中,第二PDSCH或第二PUSCH调度偏移量大于或等于Time DurationForQCL;确定第二PDSCH或第二PUSCH对应的传输波束。
在一些实施例中,上述处理单元1101,具体用于:根据以下任一种方式确定第二PDSCH或第二PUSCH对应的传输波束:
方式一:在DCI之中具有传输指示配置TCI域的情况下,将TCI域所指示的波束作为第二PDSCH或第二PUSCH对应的传输波束;
方式二:在DCI之中未具有TCI域的情况下,将调度第二PDSCH或第二PUSCH的物理下层控制信道PDCCH的波束作为第二PDSCH或第二PUSCH对应的传输波束;
方式三:在DCI之中未具有TCI域的情况下,按照与第一PDSCH或第一PUSCH相同的方式确定第二PDSCH或第二PUSCH的默认传输波束。
在一些实施例中,上述处理单元1101,具体用于:获取第二PDSCH或第二PUSCH的数量,或者第二PDSCH或第二PUSCH在多个PDSCH或PUSCH之中的比例;当第二PDSCH或第二PUSCH的数量大于或等于数量阈值,或者第二PDSCH或第二PUSCH在多个PDSCH或PUSCH之中的比例大于或等于比例阈值时,采用方式一或方式二确定第二 PDSCH或第二PUSCH对应的传输波束;当第二PDSCH或第二PUSCH的数量小于数量阈值,或者第二PDSCH或第二PUSCH在多个PDSCH或PUSCH之中的比例小于比例阈值时,采用方式三确定第二PDSCH或第二PUSCH对应的传输波束。
需要说明的是,前述图3至图9任一实施例中对终端设备侧执行的方法的解释说明,也适用于该实施例的波束的确定装置130,其实现原理类似,此处不做赘述。
请参见图12,图12是本公开实施例提供的另一种波束的确定装置的结构示意图。波束的确定装置120可以是终端设备,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
波束的确定装置120可以包括一个或多个处理器1201。处理器1201可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对波束的确定装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,波束的确定装置120中还可以包括一个或多个存储器1202,其上可以存有计算机程序1203,处理器1201执行计算机程序1203,以使得波束的确定装置120执行上述方法实施例中描述的方法。计算机程序1203可能固化在处理器1201中,该种情况下,处理器1201可能由硬件实现。
可选的,存储器1202中还可以存储有数据。波束的确定装置120和存储器1202可以单独设置,也可以集成在一起。
可选的,波束的确定装置120还可以包括收发器1205、天线1206。收发器1205可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1205可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,波束的确定装置120中还可以包括一个或多个接口电路1207。接口电路1207用于接收代码指令并传输至处理器1201。处理器1201运行代码指令以使波束的确定装置120执行上述方法实施例中描述的方法。
波束的确定装置120为终端设备:处理器1201,用于执行本公开上述任一方法实施例。
需要说明的是,前述图3至图9任一实施例中对波束的确定方法的解释说明,也适用于该实施例的波束的确定装置120,其实现原理类似,此处不做赘述。
在一种实现方式中,处理器1201中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,波束的确定装置120可以包括电路,电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS (BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的波束的确定装置可以是终端设备,但本公开中描述的波束的确定装置的范围并不限于此,而且波束的确定装置的结构可以不受图12的限制。波束的确定装置可以是独立的设备或者可以是较大设备的一部分。例如波束的确定装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于波束的确定装置可以是芯片或芯片系统的情况,可参见图13所示的芯片的结构示意图。图13所示的芯片包括处理器1301和接口1302。其中,处理器1301的数量可以是一个或多个,接口1302的数量可以是多个。
对于芯片用于实现本公开实施例中终端设备的功能的情况:
接口1302,用于代码指令并传输至处理器;
处理器1301,用于运行代码指令以执行如图3至图9的方法。
可选的,芯片还包括存储器1303,存储器1303用于存储必要的计算机程序和数据。
需要说明的是,前述图3至图9任一实施例中对波束的确定方法的解释说明,也适用于该实施例的芯片,其实现原理类似,此处不做赘述。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种通信系统,该系统包括前述图12实施例中作为终端设备的波束的确定装置,或者,该系统包括前述图13实施例中作为终端设备的波束的确定装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如, 高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种波束的确定方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    当一个下行控制信息DCI调度多个物理下行共享信道PDSCH或物理上行共享信道PUSCH时,确定所述多个PDSCH或PUSCH对应的传输波束,其中,所述多个PDSCH或PUSCH传输不同的传输块TB。
  2. 如权利要求1所述的方法,其特征在于,所述确定所述多个PDSCH或PUSCH对应的传输波束,包括:
    确定所述多个PDSCH或PUSCH之中的第一PDSCH或第一PUSCH,其中,所述第一PDSCH或第一PUSCH的调度偏移量小于准共址时间长度timeDurationForQCL;
    确定所述第一PDSCH或第一PUSCH对应的默认传输波束。
  3. 如权利要求2所述的方法,其特征在于,所述确定所述第一PDSCH或第一PUSCH对应的默认传输波束,包括:
    当所述DCI为单传输接收点TRP场景下的单DCI时,获取在所述第一PDSCH或第一PUSCH之前的参考PDCCH的时隙;
    获取所述参考PDCCH的时隙之中探测到的具有最小控制资源集合CORESET ID的CORESET所对应的波束,并作为所述第一PDSCH或第一PUSCH对应的默认传输波束。
  4. 如权利要求2所述的方法,其特征在于,所述确定所述第一PDSCH或第一PUSCH对应的默认传输波束,包括:
    当所述DCI为基于多DCI的多TRP场景下的多DCI时,获取在所述第一PDSCH或第一PUSCH之前的参考PDCCH的时隙;
    获取所述参考PDCCH的时隙之中探测到的具有相同的控制资源集合池的索引CORESET PoolIndex的多个CORESET之中具有最小CORESET ID的CORESET所对应的波束,并作为所述第一PDSCH或第一PUSCH对应的默认传输波束。
  5. 如权利要求2所述的方法,其特征在于,所述确定所述第一PDSCH或第一PUSCH对应的默认传输波束,包括:
    当所述DCI为基于单DCI的多TRP场景下的单DCI时,则判断所述终端设备是否配置了使能标识EnableTwoDefaultTCIStates,所述使能标识用于标识允许所述终端设备采用两个默认的TCI状态;
    响应于所述终端设备配置了所述EnableTwoDefaultTCIStates,则获取TCI域对应的码点中包含了两个TCI状态的最小的码点关联的波束,并作为所述第一PDSCH或第一PUSCH对应的默认传输波束;
    响应于所述终端设备未配置所述EnableTwoDefaultTCIStates,则获取参考PDCCH的时隙之中最小CORESET ID的CORESET对应的波束,并作为所述第一PDSCH或第一PUSCH对应的默认传输波束。
  6. 如权利要求3-5任一项所述的方法,其特征在于,所述参考PDCCH为在所述第一PDSCH或第一PUSCH之前的最近需要检测的PDCCH。
  7. 如权利要求1-6任一项所述的方法,其特征在于,还包括:
    确定所述多个PDSCH或PUSCH之中的第二PDSCH或第二PUSCH,其中,所述第二PDSCH或第二PUSCH调度偏移量大于或等于准共址时间长度Time DurationForQCL;
    确定所述第二PDSCH或第二PUSCH对应的传输波束。
  8. 如权利要求7所述的方法,其特征在于,根据以下任一种方式确定所述第二PDSCH或第二PUSCH对应的传输波束:
    方式一:在所述DCI之中具有传输指示配置TCI域的情况下,将所述TCI域所指示的 波束作为所述第二PDSCH或第二PUSCH对应的传输波束;
    方式二:在所述DCI之中未具有所述TCI域的情况下,将调度所述第二PDSCH或第二PUSCH的物理下层控制信道PDCCH的波束作为所述第二PDSCH或第二PUSCH对应的传输波束;
    方式三:在所述DCI之中未具有所述TCI域的情况下,按照与第一PDSCH或第一PUSCH相同的方式确定所述第二PDSCH或第二PUSCH的默认传输波束。
  9. 如权利要求8所述的方法,其特征在于,还包括:
    获取所述第二PDSCH或第二PUSCH的数量,或者第二PDSCH或第二PUSCH在多个PDSCH或PUSCH之中的比例;
    当所述第二PDSCH或第二PUSCH的数量大于或等于数量阈值,或者第二PDSCH或第二PUSCH在多个PDSCH或PUSCH之中的比例大于或等于比例阈值时,采用方式一或方式二确定所述第二PDSCH或第二PUSCH对应的传输波束;
    当所述第二PDSCH或第二PUSCH的数量小于所述数量阈值,或者第二PDSCH或第二PUSCH在多个PDSCH或PUSCH之中的比例小于所述比例阈值时,采用方式三确定所述第二PDSCH或第二PUSCH对应的传输波束。
  10. 一种波束的确定装置,其特征在于,应用于终端设备,包括:
    处理单元,用于当一个下行控制信息DCI调度多个物理下行共享信道PDSCH或物理上行共享信道PUSCH时,确定所述多个PDSCH或PUSCH对应的传输波束,其中,所述多个PDSCH或PUSCH传输不同的传输块TB。
  11. 一种波束的确定装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,当所述计算机程序被所述处理器执行时,执行如权利要求1至9中任一项所述的方法。
  12. 一种波束的确定装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至9中任一项所述的方法。
  13. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至9中任一项所述的方法被实现。
PCT/CN2021/129109 2021-11-05 2021-11-05 波束的确定方法及装置 WO2023077463A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/129109 WO2023077463A1 (zh) 2021-11-05 2021-11-05 波束的确定方法及装置
CN202180003415.2A CN116420316A (zh) 2021-11-05 2021-11-05 波束的确定方法及装置
EP21962976.3A EP4429303A1 (en) 2021-11-05 2021-11-05 Beam determination method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/129109 WO2023077463A1 (zh) 2021-11-05 2021-11-05 波束的确定方法及装置

Publications (1)

Publication Number Publication Date
WO2023077463A1 true WO2023077463A1 (zh) 2023-05-11

Family

ID=86240496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129109 WO2023077463A1 (zh) 2021-11-05 2021-11-05 波束的确定方法及装置

Country Status (3)

Country Link
EP (1) EP4429303A1 (zh)
CN (1) CN116420316A (zh)
WO (1) WO2023077463A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020146377A1 (en) * 2019-01-08 2020-07-16 Apple Inc. Systems and methods for mapping transmission configuration indication (tci) state and demodulation reference signal (dmrs) ports groups
WO2021007854A1 (en) * 2019-07-18 2021-01-21 Nec Corporation Methods, devices and computer storage media for multi-trp communication
US20210235284A1 (en) * 2020-01-29 2021-07-29 Qualcomm Incorporated Dynamically enabling dual default beams

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020146377A1 (en) * 2019-01-08 2020-07-16 Apple Inc. Systems and methods for mapping transmission configuration indication (tci) state and demodulation reference signal (dmrs) ports groups
WO2021007854A1 (en) * 2019-07-18 2021-01-21 Nec Corporation Methods, devices and computer storage media for multi-trp communication
US20210235284A1 (en) * 2020-01-29 2021-07-29 Qualcomm Incorporated Dynamically enabling dual default beams

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
VIVO: "Enhancements on Multi-TRP for PDCCH, PUCCH and PUSCH", 3GPP TSG RAN WG1 #104-E R1-2100422, 19 January 2021 (2021-01-19), XP051971011 *
XIAOMI: "Enhancements on HST-SFN operation for multi-TRP PDCCH transmission", 3GPP TSG RAN WG1 #105-E R1-2105543, 12 May 2021 (2021-05-12), XP052011513 *

Also Published As

Publication number Publication date
EP4429303A1 (en) 2024-09-11
CN116420316A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
WO2023010471A1 (zh) 一种传输配置指示tci状态配置的方法及其装置
WO2023206107A1 (zh) 一种终端设备调度方法及其装置
WO2023206106A1 (zh) 一种终端设备调度方法及其装置
WO2023206179A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023206180A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2022266957A1 (zh) 一种跨载波的波束使用时间的确定方法及其装置
US20220183029A1 (en) Method for sending and receiving control information, apparatus, and system
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023044620A1 (zh) 一种传输配置指示状态的确定方法及其装置
WO2023206034A1 (zh) 混合自动重传请求harq反馈的处理方法及其装置
WO2022261915A1 (zh) 一种通信方法及其装置
WO2023077463A1 (zh) 波束的确定方法及装置
WO2023050091A1 (zh) 一种上行波束的测量方法及其装置
WO2024016187A1 (zh) 一种基于多面板传输的功率余量上报方法及装置
WO2024000201A1 (zh) 一种指示方法及装置
WO2023283782A1 (zh) 一种信道状态反馈的方法及其装置
WO2024016188A1 (zh) 一种基于多面板传输的功率余量上报方法及装置
WO2023029058A1 (zh) 一种时间偏移量的确定方法及其装置
WO2024168918A1 (zh) 定位参考信号prs处理窗口的激活方法和装置
WO2024077619A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023044804A1 (zh) 载波切换方法及装置
WO2024050774A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2024016189A1 (zh) 一种基于多面板传输的功率余量上报方法及装置
WO2023123475A1 (zh) 一种fbe的cot的共享方法及其装置
WO2023010474A1 (zh) 一种多播广播服务mbs的半持续调度方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962976

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202427043084

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2021962976

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021962976

Country of ref document: EP

Effective date: 20240605