WO2024092773A1 - 时频同步的调整方法及装置 - Google Patents

时频同步的调整方法及装置 Download PDF

Info

Publication number
WO2024092773A1
WO2024092773A1 PCT/CN2022/130042 CN2022130042W WO2024092773A1 WO 2024092773 A1 WO2024092773 A1 WO 2024092773A1 CN 2022130042 W CN2022130042 W CN 2022130042W WO 2024092773 A1 WO2024092773 A1 WO 2024092773A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
information
frequency
configuration information
adjustment
Prior art date
Application number
PCT/CN2022/130042
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/130042 priority Critical patent/WO2024092773A1/zh
Priority to CN202280004046.3A priority patent/CN116034609A/zh
Publication of WO2024092773A1 publication Critical patent/WO2024092773A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the technical field of wireless communications, and in particular to a method and device for adjusting time-frequency synchronization.
  • Satellite communication refers to the communication conducted by radio communication equipment on the ground using satellites as relays.
  • the characteristics of satellite communication are: large communication range; communication can be carried out between any two points as long as they are within the range covered by the radio waves emitted by the satellite; not easily affected by land disasters (high reliability).
  • the satellite communication system and the terrestrial cellular communication system will gradually achieve deep integration and truly realize the intelligent connection of all things.
  • the terminal In the case of satellite communications, the data transmission has a large delay due to the long signal transmission distance between the transmitter and the receiver.
  • the terminal For transmission with uplink and downlink relationships, the terminal needs to maintain uplink synchronization based on Global Navigation Satellite System (GNSS) measurements and some auxiliary information.
  • GNSS Global Navigation Satellite System
  • time-frequency synchronization can be maintained by measuring the reference signal (RS).
  • RS reference signal
  • the present disclosure provides a method and device for adjusting time-frequency synchronization, which can ensure that the synchronization error of the time domain or frequency domain of a terminal device is maintained within a reasonable range, thereby improving the accuracy of the time domain or frequency domain synchronization.
  • a first aspect of the present disclosure provides a method for adjusting time-frequency synchronization, the method being executed by a terminal device, the method comprising:
  • time-frequency adjustment information sent by the base station according to the configuration information, where the time-frequency adjustment information is adjustment information related to time domain and/or frequency domain synchronization;
  • the time domain and/or frequency domain synchronization is adjusted according to the time-frequency adjustment information.
  • the detecting, according to the configuration information, the time-frequency adjustment information sent by the base station includes:
  • time-frequency adjustment signaling is detected within an uplink time interval, the time-frequency adjustment signaling including time-frequency adjustment information, the configuration information including a first format, a time domain resource position to be detected, and a frequency domain resource position to be detected, the first format being the signaling format of the time-frequency adjustment signaling.
  • the detecting, according to the configuration information, the time-frequency adjustment information sent by the base station includes:
  • time-frequency adjustment signaling is detected on a preset time domain unit within an uplink time interval, the time-frequency adjustment signaling includes time-frequency adjustment information, the configuration information includes a first format and a frequency domain resource location to be detected, the first format is the signaling format of the time-frequency adjustment signaling.
  • the method further includes:
  • the detecting, according to the configuration information, the time-frequency adjustment information sent by the base station includes:
  • a control instruction is detected, the information domain of the control instruction carries time-frequency adjustment information, the configuration information includes a second format, a time domain resource position to be tested, and a frequency domain resource position to be tested, the second format is the instruction format of the control instruction; based on the position information of the information domain, the time-frequency adjustment information is detected on the control instruction.
  • the method further includes:
  • the location information of the information field includes at least one of the location and length of the information field.
  • the time-frequency adjustment information includes a preset adjustment value, or an offset adjustment value of a current time-frequency, and adjusting the time domain and/or frequency domain synchronization according to the time-frequency adjustment information includes:
  • the time domain and/or frequency domain synchronization is adjusted.
  • the method further includes:
  • GNSS global navigation satellite system
  • GNSS Global Navigation Satellite System
  • the method further includes:
  • the effective time of the current GNSS information is updated according to the extended time configuration information.
  • adjusting time domain and/or frequency domain synchronization according to the time-frequency adjustment information includes:
  • time-frequency adjustment information adjustment of time domain synchronization and/or frequency domain synchronization is performed within the effective time of the current GNSS information.
  • the method further includes:
  • Adjustment of time domain synchronization and/or frequency domain synchronization is performed at the adjustment time.
  • the method further includes:
  • An application time indication of the time-frequency adjustment information sent by a receiving base station is an application time indication of the time-frequency adjustment information sent by a receiving base station.
  • a second aspect of the present disclosure provides a method for adjusting time-frequency synchronization, the method being executed by a base station, and the method comprising:
  • the sending of configuration information to the terminal device includes:
  • Configuration information including a first format, a time domain resource position to be checked, and a frequency domain resource position to be checked is sent to a terminal device, wherein the configuration information is used to detect time-frequency adjustment signaling within an uplink time interval, and the first format is the signaling format of the time-frequency adjustment signaling.
  • the sending of configuration information to the terminal device includes:
  • Configuration information including a first format and a location of frequency domain resources to be detected is sent to a terminal device, wherein the configuration information is used to detect time-frequency adjustment signaling on a preset time domain unit within an uplink time interval, and the first format is the signaling format of the time-frequency adjustment signaling.
  • the sending of configuration information to the terminal device includes:
  • Configuration information including a second format, a time domain resource position to be checked, and a frequency domain resource position to be checked is sent to a terminal device, wherein the configuration information is used to detect a control instruction, and the information domain of the control instruction carries time-frequency adjustment information, and the second format is the instruction format of the control instruction.
  • the method further includes:
  • Time interval for sending uplink messages to terminal devices is a time interval for sending uplink messages to terminal devices.
  • the method further includes:
  • the location information of the information field includes at least one of the location and length of the information field.
  • the method further includes:
  • Extended time configuration information of global navigation satellite system (GNSS) information is sent to a terminal device, where the extended time configuration information is used to update the effective time of the current GNSS information.
  • GNSS global navigation satellite system
  • the method further includes:
  • An application time indication of the time-frequency adjustment information is sent to the terminal device, where the application time indication is used to determine the adjustment time of the time-frequency synchronization.
  • a third aspect of the present disclosure provides a terminal device, the terminal device comprising:
  • a receiving module used for receiving configuration information sent by a base station
  • a processing module configured to detect time-frequency adjustment information sent by a base station according to the configuration information, wherein the time-frequency adjustment information is adjustment information related to time domain and/or frequency domain synchronization;
  • the processing module is further used to adjust time domain and/or frequency domain synchronization according to the time-frequency adjustment information.
  • a fourth aspect of the present disclosure provides a base station, the base station comprising:
  • the sending module is used to send configuration information to the terminal device, where the configuration information is used to detect time-frequency adjustment information.
  • the fifth aspect embodiment of the present disclosure provides a communication device, which includes: a transceiver; a memory; a processor, which is connected to the transceiver and the memory respectively, and is configured to control the wireless signal reception and transmission of the transceiver by executing computer-executable instructions on the memory, and can implement the method of the first aspect embodiment or the second aspect embodiment of the present disclosure.
  • the sixth aspect embodiment of the present disclosure provides a computer storage medium, wherein the computer storage medium stores computer executable instructions; after the computer executable instructions are executed by a processor, the method of the first aspect embodiment or the second aspect embodiment of the present disclosure can be implemented.
  • the sixth aspect embodiment of the present disclosure provides a communication system, including a terminal device and a base station, the terminal device is used to execute the time-frequency synchronization adjustment method of the first aspect embodiment, and the base station is used to execute the time-frequency synchronization adjustment method of the second aspect embodiment.
  • the disclosed embodiments provide a method and device for adjusting time-frequency synchronization, which can detect adjustment information related to time domain and/or frequency domain synchronization sent by a base station according to configuration information sent by a base station, and adjust time domain and/or frequency domain synchronization according to the adjustment information related to time domain and/or frequency domain synchronization. It can effectively ensure that the synchronization error of the terminal in the time domain or frequency domain is maintained within a reasonable range, and improve the accuracy of time domain or frequency domain synchronization.
  • FIG1 is a schematic flow chart of a method for adjusting time-frequency synchronization according to an embodiment of the present disclosure
  • FIG2 is a schematic diagram of an example of determining the effective time of current GNSS information according to an embodiment of the present disclosure
  • FIG3 is a schematic diagram of an example of determining the effective time of current GNSS information according to an embodiment of the present disclosure
  • FIG4 is a schematic flow chart of a method for adjusting time-frequency synchronization according to an embodiment of the present disclosure
  • FIG5 is a schematic flow chart of a method for adjusting time-frequency synchronization according to an embodiment of the present disclosure
  • FIG6 is a schematic flow chart of a method for adjusting time-frequency synchronization according to an embodiment of the present disclosure
  • FIG7 is a schematic flow chart of a method for adjusting time-frequency synchronization according to an embodiment of the present disclosure
  • FIG8 is a schematic flow chart of a method for adjusting time-frequency synchronization according to an embodiment of the present disclosure
  • FIG9 is a schematic flow chart of a method for adjusting time-frequency synchronization according to an embodiment of the present disclosure
  • FIG10 is a timing diagram of a method for adjusting time-frequency synchronization according to an embodiment of the present disclosure
  • FIG11 is a block diagram of a device for adjusting time-frequency synchronization according to an embodiment of the present disclosure
  • FIG12 is a block diagram of a device for adjusting time-frequency synchronization according to an embodiment of the present disclosure
  • FIG13 is a schematic diagram of the structure of a communication device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of the structure of a chip provided in an embodiment of the present disclosure.
  • the terminal In the case of satellite communications, the data transmission has a large delay due to the long signal transmission distance between the transmitter and the receiver.
  • the terminal For transmissions with uplink and downlink relationships, the terminal needs to maintain uplink synchronization based on Global Navigation Satellite System (GNSS) measurements and some auxiliary information.
  • GNSS Global Navigation Satellite System
  • time-frequency synchronization can be maintained by measuring the reference signal (RS).
  • RS reference signal
  • the present disclosure proposes a method and device for adjusting time-frequency synchronization, which can ensure that the synchronization error of the time domain or frequency domain of the terminal device is maintained within a reasonable range, thereby improving the accuracy of time domain or frequency domain synchronization.
  • Fig. 1 shows a schematic flow chart of a method for adjusting time-frequency synchronization according to an embodiment of the present disclosure. As shown in Fig. 1, the method should be executed by a terminal device and may include the following steps.
  • Step 101 Receive configuration information sent by a base station.
  • the configuration information may include information related to the time and frequency adjustment information sent by the base station.
  • the configuration information is sent by the base station through high-layer signaling or physical layer signaling, where the high-layer signaling may include system information, Radio Resource Control (RRC) signaling, or Media Access Control (MAC) control elements (CE).
  • RRC Radio Resource Control
  • MAC Media Access Control
  • Step 102 Detect the time-frequency adjustment information sent by the base station according to the configuration information.
  • the time-frequency adjustment information is adjustment information related to time domain and/or frequency domain synchronization
  • the time-frequency adjustment information can be an absolute adjustment value, such as a preset adjustment value, which may include a time domain preset adjustment value and a frequency domain preset adjustment value; in addition, the time-frequency adjustment information can also be an adjustment value relative to a reference value, such as a reference value can be an offset value relative to the current terminal time domain or frequency domain adjustment value, that is, equivalent to the offset adjustment value of the current time frequency, which may include a time domain offset adjustment value and a frequency domain offset adjustment value.
  • the adjustment information related to time domain and/or frequency domain synchronization sent by the base station can be detected and obtained at a specific location according to the configuration information.
  • Step 103 Adjust time domain and/or frequency domain synchronization according to the time-frequency adjustment information.
  • the embodiment steps may include: adjusting the time domain and/or frequency domain synchronization according to a preset adjustment value or an offset adjustment value.
  • the current time domain synchronization value may be adjusted to the preset time domain adjustment value and/or the current frequency domain synchronization value may be adjusted to the preset frequency domain adjustment value; or, the offset value of the current time domain synchronization may be adjusted according to the time domain offset adjustment value and/or the offset value of the current frequency domain synchronization may be adjusted according to the frequency domain offset adjustment value.
  • the terminal For transmissions with uplink and downlink relationships, the terminal needs to maintain uplink synchronization based on Global Navigation Satellite System (GNSS) measurements and some auxiliary information.
  • GNSS Global Navigation Satellite System
  • 3GPP 3rd Generation Partnership Project
  • the terminal when supporting services with longer transmission times, if the GNSS information expires, the terminal needs to disconnect the communication connection with the network side, enter the idle state, and re-execute the GNSS information measurement process.
  • this method will not be able to keep the GNSS information in an effective state, and thus cannot support continuous communication between the terminal and the network side, which is likely to lead to a certain amount of energy consumption.
  • the configuration information may also include the global navigation satellite system (GNSS) information of the terminal device itself, and accordingly, the terminal device may perform time domain synchronization and/or frequency domain synchronization adjustment within the effective time of the current GNSS information according to the time-frequency adjustment information.
  • the terminal device may timely obtain the available duration of the current GNSS information, and when the current GNSS information fails, determine the effective time of the GNSS information by extending or re-measuring the GNSS available duration, so that the GNSS information remains in an effective state.
  • GNSS global navigation satellite system
  • the embodiment steps may include: receiving effective time configuration information of the global navigation satellite system GNSS information; and/or, receiving extended time configuration information of the global navigation satellite system GNSS information; determining the effective time of the current GNSS information according to the effective time configuration information; and/or, updating the effective time of the current GNSS information according to the extended time configuration information.
  • the length information of the available time of the current GNSS information can be carried in the effective time configuration information of the GNSS information, and the terminal device can determine the available time of its own GNSS information based on the length information, that is, update the expiration time of the GNSS information according to the available time of its own GNSS information.
  • the effective time configuration information of the GNSS information is received at point A before the expiration of the current GNSS information, and the length information indicating the available time of the current GNSS information in the effective time configuration information of the GNSS information is 10s, then the new GNSS expiration time point A′ can be re-determined according to the length information of the available time.
  • the terminal device During the effective time of the current GNSS information between point A and point A′, the terminal device maintains a communication connection with the base station (does not enter the IDLE state), and does not perform the measurement operation of the GNSS information.
  • the terminal device can also receive the extended time configuration information of the GNSS information sent by the base station before the expiration of the current GNSS information or after the expiration of the current GNSS information.
  • the extended time configuration information of the GNSS information may include information related to whether to extend the effective time of the current GNSS information and the extended duration, wherein the information related to the extended duration may include at least one of the time length of the current GNSS information extension and the extended start time point.
  • the terminal device may extend the effective time of the current GNSS information at the expiration time point and/or the extension start time point of the current GNSS information, and the extension length of the effective time is the time length.
  • the terminal device may receive the extended time configuration information of the GNSS information sent by the base station when it is determined that the current GNSS information is about to expire or has expired.
  • the extended time configuration information of the GNSS information of the base station indicates that the extended start time point (such as the expiration time point of the current GNSS information) is B, and the length of the effective time extension is b (such as 10s).
  • the terminal may further extend the effective time with a length of b at the extended start time point B indicated by the configuration information, and further extend to obtain a new GNSS expiration time point B′.
  • the terminal device maintains a communication connection with the base station (does not enter the IDLE state), and does not perform the measurement operation of the GNSS information.
  • the terminal device when adjusting the time domain and/or frequency domain synchronization according to the time-frequency adjustment information, may perform the adjustment of the time domain synchronization and/or frequency domain synchronization at the indicated time.
  • the embodiment steps may include: determining the adjustment time of the time-frequency synchronization according to the application time indication of the time-frequency adjustment information; and performing the adjustment of the time domain synchronization and/or frequency domain synchronization at the adjustment time.
  • the embodiment steps may also include: receiving the application time indication of the time-frequency adjustment information sent by the base station.
  • the adjustment time of the time-frequency synchronization is determined to be a slot 10 slots after the current time domain unit, then the terminal device may start to perform the adjustment of the time domain synchronization and/or frequency domain synchronization at a slot 10 slots after the current time domain unit.
  • the application time setting of the time domain synchronization and/or frequency domain synchronization adjustment can be realized, which can meet the user's personalized needs for the adjustment of the time domain synchronization and/or frequency domain synchronization.
  • the embodiments of the present disclosure may select a combination of any one or more of the above-mentioned optional implementation steps to adjust the time domain and/or frequency domain synchronization.
  • the time domain and/or frequency domain synchronization may be adjusted according to a preset adjustment value or an offset adjustment value at the original effective time of the current GNSS information, or the time domain and/or frequency domain synchronization may be adjusted according to a preset adjustment value or an offset adjustment value within the extended effective time of the current GNSS information, or the time domain and/or frequency domain synchronization may be adjusted according to a preset adjustment value or an offset adjustment value at the adjustment time within the extended effective time of the current GNSS information, and so on. No specific limitation is made here.
  • the adjustment information related to the time domain and/or frequency domain synchronization sent by the base station can be detected according to the configuration information sent by the base station, and the time domain and/or frequency domain synchronization can be adjusted according to the adjustment information related to the time domain and/or frequency domain synchronization. It can effectively ensure that the synchronization error of the terminal in the time domain or frequency domain is maintained within a reasonable range, and improve the accuracy of the time domain or frequency domain synchronization. At the same time, it can also reduce the frequency of the terminal device performing GNSS information measurement, reduce the energy consumption of the terminal device, and meet the user's personalized needs for time domain synchronization and/or frequency domain synchronization adjustment.
  • Fig. 4 shows a schematic flow chart of a method for adjusting time-frequency synchronization according to an embodiment of the present disclosure. The method is executed by a terminal device, based on the embodiment shown in Fig. 1, as shown in Fig. 4, and may include the following steps.
  • Step 201 Receive configuration information including a first format, a time domain resource position to be detected, and a frequency domain resource position to be detected, sent by a base station.
  • the first format is a signaling format of a time-frequency adjustment signaling.
  • the configuration information may also include the number of detections, the aggregation level, etc., which are not specifically limited here.
  • Step 202 According to the configuration information, detect the time-frequency adjustment signaling in the uplink time interval, where the time-frequency adjustment signaling includes the time-frequency adjustment information.
  • the time-frequency adjustment signaling can be high-level signaling such as Radio Resource Control (RRC) signaling, Media Access Control (MAC) control element (CE) or physical layer signaling such as downlink control signaling (DCI);
  • RRC Radio Resource Control
  • MAC Media Access Control
  • CE control element
  • DCI downlink control signaling
  • the time-frequency adjustment information is adjustment information related to time domain and/or frequency domain synchronization
  • the time-frequency adjustment information can be an absolute adjustment value, such as a set preset adjustment value, which may include a time domain preset adjustment value and a frequency domain preset adjustment value
  • the time-frequency adjustment information can also be an adjustment value relative to a reference value, for example, the reference value can be an offset value relative to the time domain or frequency domain adjustment value of the current terminal, that is, equivalent to the offset adjustment value of the current time-frequency, which may include a time domain offset adjustment value and a frequency domain offset adjustment value.
  • the steps of the embodiment also include: determining the uplink time interval configured by the base station.
  • the configuration information includes the time domain resource position to be detected and the frequency domain resource position to be detected
  • the time-frequency adjustment signaling can be detected at the specific time domain resource and/or specific frequency domain resource position within the uplink time interval, and then the time-frequency adjustment information contained in the time-frequency adjustment signaling can be obtained.
  • Step 203 Adjust time domain and/or frequency domain synchronization according to the time-frequency adjustment information.
  • step 103 of the embodiment please refer to the relevant description in step 103 of the embodiment for details, which will not be repeated here.
  • the configuration information including the first format, the time domain resource position to be tested, and the frequency domain resource position to be tested sent by the base station can be used to detect the adjustment information related to the time domain and/or frequency domain synchronization sent by the base station within the uplink time interval, and the time domain and/or frequency domain synchronization can be adjusted according to the adjustment information related to the time domain and/or frequency domain synchronization. It can effectively ensure that the synchronization error of the terminal in the time domain or frequency domain is maintained within a reasonable range, and improve the accuracy of the time domain or frequency domain synchronization. At the same time, it can also reduce the frequency of the terminal device performing GNSS information measurement, reduce the energy consumption of the terminal device, and meet the user's personalized needs for time domain synchronization and/or frequency domain synchronization adjustment.
  • Fig. 5 shows a schematic flow chart of a method for adjusting time-frequency synchronization according to an embodiment of the present disclosure. The method is executed by a terminal device, based on the embodiment shown in Fig. 1, as shown in Fig. 5, and may include the following steps.
  • Step 301 Receive configuration information including a first format and a location of a frequency domain resource to be detected, sent by a base station.
  • the first format is a signaling format of a time-frequency adjustment signaling.
  • the configuration information may also include the number of detections, the aggregation level, etc., which are not specifically limited here.
  • Step 302 According to the configuration information, detect the time-frequency adjustment signaling on the preset time domain unit within the uplink time interval, where the time-frequency adjustment signaling includes the time-frequency adjustment information.
  • the time-frequency adjustment signaling can be high-level signaling such as Radio Resource Control (RRC) signaling, Media Access Control (MAC) control element (CE) or physical layer signaling such as downlink control signaling (DCI);
  • the preset time domain unit can be each time domain unit (such as subframe) within the uplink time interval;
  • the time-frequency adjustment information is adjustment information related to time domain and/or frequency domain synchronization, and the time-frequency adjustment information can be an absolute adjustment value, such as a set preset adjustment value, which may include a time domain preset adjustment value and a frequency domain preset adjustment value;
  • the time-frequency adjustment information can also be an adjustment value relative to a reference value, for example, the reference value can be an offset value relative to the current terminal time domain or frequency domain adjustment value, that is, equivalent to the offset adjustment value of the current time and frequency, which may include a time domain offset adjustment value and a frequency domain offset adjustment value.
  • the steps of the embodiment also include: determining the uplink time interval configured by the base station.
  • the detection of the time domain adjustment signaling can be implemented on a preset time domain unit within the uplink time interval, such as each time domain unit, to obtain the time-frequency adjustment information contained in the signaling carrying the time-frequency adjustment information. Since the frequency domain resource position to be detected is included in the configuration information, the detection of the time-frequency adjustment signaling can be implemented at a specific frequency domain resource position on the preset time domain unit of the uplink time interval, to obtain the frequency domain adjustment information contained in the time-frequency adjustment signaling.
  • Step 303 Adjust time domain and/or frequency domain synchronization according to the time-frequency adjustment information.
  • step 103 of the embodiment please refer to the relevant description in step 103 of the embodiment for details, which will not be repeated here.
  • the adjustment information related to time domain and/or frequency domain synchronization sent by the base station can be detected on the preset time domain unit within the uplink time interval according to the configuration information including the first format and the location of the frequency domain resources to be detected sent by the base station, and the time domain and/or frequency domain synchronization can be adjusted according to the adjustment information related to time domain and/or frequency domain synchronization. It can effectively ensure that the synchronization error of the terminal in the time domain or frequency domain is maintained within a reasonable range, and improve the accuracy of the time domain or frequency domain synchronization. At the same time, it can also reduce the frequency of the terminal device performing GNSS information measurement, reduce the energy consumption of the terminal device, and meet the user's personalized needs for time domain synchronization and/or frequency domain synchronization adjustment.
  • Fig. 6 shows a flow chart of a method for adjusting time-frequency synchronization according to an embodiment of the present disclosure. The method is executed by a terminal device, based on the embodiment shown in Fig. 1, as shown in Fig. 6, and may include the following steps.
  • Step 401 Receive configuration information including a second format, a time domain resource position to be detected, and a frequency domain resource position to be detected, sent by a base station.
  • the second format is the instruction format of the control instruction.
  • the configuration information may also include the number of detections, the aggregation level, etc., which are not specifically limited here.
  • Step 402 Detect the control instruction according to the configuration information, and the information field of the control instruction carries the time-frequency adjustment information.
  • the control instruction is an instruction for scheduling data transmission; the position and length information of the information field are predefined or determined by the configuration information sent by the receiving base station.
  • Step 403 Based on the position information of the information field, detect the time-frequency adjustment information on the control instruction.
  • the steps of the embodiment also include: determining the location information of a predefined information domain; or, receiving the location configuration of the information domain sent by the base station, the location configuration is used to configure the location information of the information domain; wherein the location information of the information domain includes at least one of the location and length of the information domain.
  • Step 404 Adjust time domain and/or frequency domain synchronization according to the time-frequency adjustment information.
  • step 103 of the embodiment please refer to the relevant description in step 103 of the embodiment for details, which will not be repeated here.
  • the adjustment information related to the time domain and/or frequency domain synchronization sent by the base station can be detected in the information domain of the control instruction according to the configuration information including the second format, the time domain resource position to be tested, and the frequency domain resource position to be tested sent by the base station, and the time domain and/or frequency domain synchronization can be adjusted according to the adjustment information related to the time domain and/or frequency domain synchronization. It can effectively ensure that the synchronization error of the terminal in the time domain or frequency domain is maintained within a reasonable range, and improve the accuracy of the time domain or frequency domain synchronization. At the same time, it can also reduce the frequency of the terminal device performing GNSS information measurement, reduce the energy consumption of the terminal device, and meet the user's personalized needs for time domain synchronization and/or frequency domain synchronization adjustment.
  • Fig. 7 is a flow chart of a method for adjusting time-frequency synchronization according to an embodiment of the present disclosure. The method is executed by a base station, and the method may include the following steps.
  • Step 501 Send configuration information to a terminal device, where the configuration information is used to detect time-frequency adjustment information.
  • the configuration information may include information related to the terminal device detecting the time-frequency adjustment information.
  • the configuration information is sent by the base station to the terminal device through high-level signaling or physical layer signaling, wherein the high-level signaling may include system information, Radio Resource Control (RRC) signaling, or Media Access Control (MAC) control element (CE).
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the terminal device can detect the time-frequency adjustment information sent by the base station according to the configuration information, and further implement the synchronization adjustment of the time domain and/or frequency domain based on the time-frequency adjustment information.
  • the embodiment steps may include: sending configuration information including a first format, a time domain resource position to be checked, and a frequency domain resource position to be checked to a terminal device, the configuration information is used to detect time-frequency adjustment signaling within an uplink time interval, and the first format is a signaling format of the time-frequency adjustment signaling.
  • the embodiment steps also include: sending an uplink time interval to the terminal device.
  • the terminal device can detect the time-frequency adjustment information sent by the base station within the uplink time interval according to the configuration information, and further implement synchronous adjustment of the time domain and/or frequency domain based on the time-frequency adjustment information.
  • the embodiment steps may include: sending configuration information including a first format and a frequency domain resource position to be detected to a terminal device, the configuration information is used to detect time-frequency adjustment signaling on a preset time domain unit within an uplink time interval, and the first format is a signaling format of the time-frequency adjustment signaling.
  • the embodiment steps also include: sending an uplink time interval to the terminal device.
  • the terminal device can detect the time-frequency adjustment information sent by the base station on a preset time domain unit within the uplink time interval according to the configuration information, and further implement synchronous adjustment of the time domain and/or frequency domain based on the time-frequency adjustment information.
  • the embodiment steps may include: sending configuration information including the second format, the location of the time domain resources to be checked, and the location of the frequency domain resources to be checked to the terminal device, the configuration information is used to detect the control instruction, the information field of the control instruction carries the time-frequency adjustment information, and the second format is the instruction format of the control instruction.
  • the embodiment steps also include: sending the location configuration of the information field to the terminal device, the location configuration is used to configure the location information of the information field; wherein the location information of the information field includes at least one of the location and length of the information field.
  • the terminal device can detect the time-frequency adjustment information sent by the base station in the information field of the control instruction according to the configuration information, and further implement the synchronization adjustment of the time domain and/or frequency domain based on the time-frequency adjustment information.
  • the base station can send configuration information to the terminal device, so that the terminal device detects the time-frequency adjustment information sent by the base station according to the configuration information, and further implements synchronization adjustment of the time domain and/or frequency domain based on the time-frequency adjustment information. It can effectively ensure that the synchronization error of the terminal in the time domain or frequency domain is maintained within a reasonable range, and improve the accuracy of the time domain or frequency domain synchronization.
  • Fig. 8 shows a schematic flow chart of a method for adjusting time-frequency synchronization according to an embodiment of the present disclosure. The method is executed by a base station, based on the embodiment shown in Fig. 7, as shown in Fig. 8, and may include the following steps.
  • Step 601 Sending effective time configuration information of global navigation satellite system (GNSS) information to a terminal device, and/or sending extended time configuration information of global navigation satellite system (GNSS) information to a terminal device.
  • GNSS global navigation satellite system
  • the effective time configuration information is used to determine the effective time of the current GNSS information, and the extended time configuration information is used to update the effective time of the current GNSS information.
  • the terminal device can perform time domain synchronization and/or frequency domain synchronization adjustment within the effective time of the current GNSS information according to the time and frequency adjustment information.
  • the effective time configuration information of the GNSS information may carry the length information of the available time of the current GNSS information. Furthermore, after receiving the effective time configuration information of the GNSS information sent by the base station, the terminal device may determine the available time of its own GNSS information based on the length information, that is, update the new GNSS information expiration time according to the available time of its own GNSS information, so as to ensure that the terminal device does not perform the measurement operation of the GNSS information while maintaining a communication connection with the base station (not entering the IDLE state) before the new GNSS information expiration time.
  • the extended time configuration information of the GNSS information may include information related to whether to extend the effective time of the current GNSS information and the extended duration, wherein the information related to the extended duration may include at least one of the time length of the current GNSS information extension and the extended start time point. Furthermore, after receiving the extended time configuration information of the GNSS information sent by the base station, the terminal device can extend the effective time of the current GNSS information at the expiration time point and/or the extension start time point of the current GNSS information, and the extension length of the effective time is the time length, so as to ensure that the terminal device does not perform the GNSS information measurement operation in the state of maintaining a communication connection with the base station (not entering the IDLE state) before the new GNSS information expiration time. Through this implementation, the frequency of the terminal device performing GNSS information measurement can be reduced, and the energy consumption of the terminal device can be reduced.
  • the effective time configuration information of the global navigation satellite system GNSS information can be sent to the terminal device, and/or the extended time configuration information of the global navigation satellite system GNSS information can be sent to the terminal device, so that the terminal device can perform time domain synchronization and/or frequency domain synchronization adjustment within the effective time of the current GNSS information according to the time-frequency adjustment information.
  • the frequency of the terminal device performing GNSS information measurement can be reduced, and the energy consumption of the terminal device can be reduced.
  • Fig. 9 shows a schematic flow chart of a method for adjusting time-frequency synchronization according to an embodiment of the present disclosure. The method is executed by a base station, based on the embodiment shown in Fig. 7, as shown in Fig. 9, and may include the following steps.
  • Step 701 Send an application time indication of time-frequency adjustment information to a terminal device, where the application time indication is used to determine an adjustment time for time-frequency synchronization.
  • the terminal device may perform the adjustment of the time domain synchronization and/or the frequency domain synchronization at the indicated time.
  • the base station may send the application time indication of the time-frequency adjustment information to the terminal device, and the application time indication indicates that the adjustment time of the time-frequency synchronization is a slot that is 10 slots after the current time domain unit.
  • the terminal device may start to perform the adjustment of the time domain synchronization and/or the frequency domain synchronization at a slot that is 10 slots after the current time domain unit.
  • the base station can send an application time indication of the time-frequency adjustment information to the terminal device, so that the terminal device can determine the adjustment time of the time-frequency synchronization according to the application time indication of the time-frequency adjustment information; and perform the adjustment of the time domain synchronization and/or the frequency domain synchronization at the adjustment time.
  • the application time setting of the time domain synchronization and/or the frequency domain synchronization adjustment of the terminal device can be realized, which can meet the user's personalized needs for the time domain synchronization and/or the frequency domain synchronization adjustment.
  • Figure 10 is a timing diagram of a method for adjusting time-frequency synchronization according to an embodiment of the present disclosure.
  • the method is applied to a communication system for adjusting time-frequency synchronization, the system comprising: a terminal device, a base station, the base station sends configuration information to the terminal device, the configuration information is used to detect time-frequency adjustment information; the terminal device detects the time-frequency adjustment information sent by the base station according to the configuration information, the time-frequency adjustment information is adjustment information related to time domain and/or frequency domain synchronization; the terminal device adjusts time domain and/or frequency domain synchronization according to the time-frequency adjustment information.
  • the method comprises the following steps:
  • Step 801 The base station sends configuration information to the terminal device.
  • the configuration information may include information related to the time and frequency adjustment information sent by the base station.
  • the configuration information is sent by the base station through high-layer signaling or physical layer signaling, where the high-layer signaling may include system information, Radio Resource Control (RRC) signaling, or Media Access Control (MAC) control elements (CE).
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the base station may send configuration information including a first format, a time domain resource position to be tested, and a frequency domain resource position to be tested to a terminal device.
  • the configuration information is used to detect time-frequency adjustment signaling within an uplink time interval.
  • the first format is the signaling format of the time-frequency adjustment signaling.
  • the base station may send configuration information including a first format and the location of frequency domain resources to be detected to the terminal device, where the configuration information is used to detect time-frequency adjustment signaling on a preset time domain unit within an uplink time interval, and the first format is the signaling format of the time-frequency adjustment signaling.
  • the base station may send configuration information including a second format, a time domain resource location to be tested, and a frequency domain resource location to be tested to the terminal device.
  • the configuration information is used to detect control instructions.
  • the information domain of the control instructions carries time-frequency adjustment information.
  • the second format is the instruction format of the control instructions.
  • Step 802 The terminal device detects the time-frequency adjustment information sent by the base station according to the configuration information, where the time-frequency adjustment information is adjustment information related to time domain and/or frequency domain synchronization.
  • the time-frequency adjustment information is adjustment information related to time domain and/or frequency domain synchronization
  • the time-frequency adjustment information can be an absolute adjustment value, such as a preset adjustment value, which may include a time domain preset adjustment value and a frequency domain preset adjustment value; in addition, the time-frequency adjustment information can also be an adjustment value relative to a reference value, such as a reference value can be an offset value relative to the current terminal time domain or frequency domain adjustment value, that is, equivalent to the offset adjustment value of the current time frequency, which may include a time domain offset adjustment value and a frequency domain offset adjustment value.
  • the adjustment information related to time domain and/or frequency domain synchronization sent by the base station can be detected and obtained at a specific location according to the configuration information.
  • the terminal device can detect the time-frequency adjustment signaling within the uplink time interval, and the time-frequency adjustment signaling includes the time-frequency adjustment information. That is, the time-frequency adjustment signaling can be detected at a specific time domain resource and/or a specific frequency domain resource position within the uplink time interval, and then the time-frequency adjustment information included in the time-frequency adjustment signaling can be obtained.
  • the time-frequency adjustment signaling can be a high-level signaling such as a Radio Resource Control (RRC) signaling, a control element (CE) of a Media Access Control (MAC), or a physical layer signaling such as a downlink control signaling (DCI).
  • RRC Radio Resource Control
  • CE control element
  • DCI downlink control signaling
  • the terminal device may detect the time-frequency adjustment signaling on a preset time domain unit within the uplink time interval, and the time-frequency adjustment signaling includes the time-frequency adjustment information. That is, the detection of the time domain adjustment signaling can be implemented on a preset time domain unit within the uplink time interval, such as each time domain unit, to obtain the time-frequency adjustment information contained in the signaling carrying the time-frequency adjustment information.
  • the detection of the time-frequency adjustment signaling can be implemented at a specific frequency domain resource position on the preset time domain unit of the uplink time interval, to obtain the frequency domain adjustment information contained in the time-frequency adjustment signaling.
  • the time-frequency adjustment signaling may be a high-level signaling such as RRC signaling, MAC CE or a physical layer signaling such as DCI;
  • the preset time domain unit may be each time domain unit (such as a subframe) within the uplink time interval.
  • the terminal device can detect the time-frequency adjustment information sent by the base station in the information field of the control instruction.
  • the control instruction is an instruction for scheduling data transmission; the position and length information of the information field are predefined or determined by receiving the configuration information sent by the base station.
  • Step 803 The terminal device adjusts time domain and/or frequency domain synchronization according to the time-frequency adjustment information.
  • the embodiment steps may include: adjusting the time domain and/or frequency domain synchronization according to a preset adjustment value or an offset adjustment value.
  • the current time domain synchronization value may be adjusted to the preset time domain adjustment value and/or the current frequency domain synchronization value may be adjusted to the preset frequency domain adjustment value; or, the offset value of the current time domain synchronization may be adjusted according to the time domain offset adjustment value and/or the offset value of the current frequency domain synchronization may be adjusted according to the frequency domain offset adjustment value.
  • the terminal For transmissions with uplink and downlink relationships, the terminal needs to maintain uplink synchronization based on Global Navigation Satellite System (GNSS) measurements and some auxiliary information.
  • GNSS Global Navigation Satellite System
  • 3GPP 3rd Generation Partnership Project
  • the terminal when supporting services with longer transmission times, if the GNSS information expires, the terminal needs to disconnect the communication connection with the network side, enter the idle (IDLE) state, and re-execute the GNSS information measurement process.
  • this method will not be able to keep the GNSS information in an effective state, and thus cannot support continuous communication between the terminal and the network side, which is likely to lead to a certain amount of energy consumption.
  • the configuration information may also include the terminal device's own Global Navigation Satellite System (GNSS) information, and accordingly, the terminal device may perform time domain synchronization and/or frequency domain synchronization adjustment within the effective time of the current GNSS information according to the time-frequency adjustment information.
  • the terminal device may timely obtain the available duration of the current GNSS information, and when the current GNSS information fails, determine the effective time of the GNSS information by extending or re-measuring the GNSS available duration, so that the GNSS information remains in an effective state.
  • GNSS Global Navigation Satellite System
  • the embodiment steps may include: receiving effective time configuration information of the global navigation satellite system GNSS information; and/or, receiving extended time configuration information of the global navigation satellite system GNSS information; determining the effective time of the current GNSS information according to the effective time configuration information; and/or, updating the effective time of the current GNSS information according to the extended time configuration information.
  • the effective time configuration information of the GNSS information may carry the length information of the available time of the current GNSS information. Furthermore, after receiving the effective time configuration information of the GNSS information sent by the base station, the terminal device may determine the available time of its own GNSS information based on the length information, that is, update the new GNSS information expiration time according to the available time of its own GNSS information, so as to ensure that the terminal device does not perform the measurement operation of the GNSS information while maintaining a communication connection with the base station (not entering the IDLE state) before the new GNSS information expiration time.
  • the extended time configuration information of the GNSS information may include information related to whether to extend the effective time of the current GNSS information and the extended duration, wherein the information related to the extended duration may include at least one of the time length of the current GNSS information extension and the extended start time point. Furthermore, after receiving the extended time configuration information of the GNSS information sent by the base station, the terminal device can extend the effective time of the current GNSS information at the expiration time point and/or the extension start time point of the current GNSS information, and the extension length of the effective time is the time length, thereby ensuring that the terminal device does not perform the GNSS information measurement operation in a state of maintaining a communication connection with the base station (not entering the IDLE state) before the new GNSS information expiration time. Through this implementation, the frequency of the terminal device performing GNSS information measurement can be reduced, and the energy consumption of the terminal device can be reduced.
  • the terminal device when adjusting the time domain and/or frequency domain synchronization according to the time-frequency adjustment information, may perform the adjustment of the time domain synchronization and/or frequency domain synchronization at the indicated time.
  • the embodiment steps may include: determining the adjustment time of the time-frequency synchronization according to the application time indication of the time-frequency adjustment information; and performing the adjustment of the time domain synchronization and/or frequency domain synchronization at the adjustment time.
  • the embodiment steps may also include: receiving the application time indication of the time-frequency adjustment information sent by the base station.
  • the adjustment time of the time-frequency synchronization is determined to be a slot 10 slots after the current time domain unit, then the terminal device may start to perform the adjustment of the time domain synchronization and/or frequency domain synchronization at a slot 10 slots after the current time domain unit.
  • the application time setting of the time domain synchronization and/or frequency domain synchronization adjustment can be realized, which can meet the user's personalized needs for the adjustment of the time domain synchronization and/or frequency domain synchronization.
  • the embodiments of the present disclosure may select a combination of any one or more of the above-mentioned optional implementation steps to adjust the time domain and/or frequency domain synchronization.
  • the time domain and/or frequency domain synchronization may be adjusted according to a preset adjustment value or an offset adjustment value at the original effective time of the current GNSS information, or the time domain and/or frequency domain synchronization may be adjusted according to a preset adjustment value or an offset adjustment value within the extended effective time of the current GNSS information, or the time domain and/or frequency domain synchronization may be adjusted according to a preset adjustment value or an offset adjustment value at the adjustment time within the extended effective time of the current GNSS information, and so on. No specific limitation is made here.
  • the adjustment information related to time domain and/or frequency domain synchronization sent by the base station can be detected according to the configuration information sent by the base station, and the time domain and/or frequency domain synchronization can be adjusted according to the adjustment information related to time domain and/or frequency domain synchronization. It can effectively ensure that the synchronization error of the terminal in the time domain or frequency domain is maintained within a reasonable range, and improve the accuracy of time domain or frequency domain synchronization. At the same time, it can also reduce the frequency of the terminal device performing GNSS information measurement, reduce the energy consumption of the terminal device, and meet the user's personalized needs for time domain synchronization and/or frequency domain synchronization adjustment.
  • the methods provided by the embodiments of the present application are introduced from the perspectives of the terminal device and the base station.
  • the terminal device and the base station may include a hardware structure and a software module, and implement the functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a function of the functions may be performed in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the present disclosure also provides a time-frequency synchronization adjustment device. Since the time-frequency synchronization adjustment device provided in the embodiment of the present disclosure corresponds to the time-frequency synchronization adjustment method provided in the above-mentioned embodiments, the implementation method of the time-frequency synchronization adjustment method is also applicable to the time-frequency synchronization adjustment device provided in this embodiment, and will not be described in detail in this embodiment.
  • FIG11 is a schematic structural diagram of a time-frequency synchronization adjustment device 800 provided according to an embodiment of the present disclosure.
  • the time-frequency synchronization adjustment device 800 may be a terminal device.
  • the device 800 may include:
  • the receiving module 810 may be configured to receive configuration information sent by a base station
  • the processing module 820 may be configured to detect time-frequency adjustment information sent by the base station according to the configuration information, where the time-frequency adjustment information is adjustment information related to time domain and/or frequency domain synchronization;
  • the processing module 820 may also be configured to adjust time domain and/or frequency domain synchronization according to the time-frequency adjustment information.
  • the processing module 820 can be used to detect time-frequency adjustment signaling within an uplink time interval based on configuration information, where the time-frequency adjustment signaling includes time-frequency adjustment information, and the configuration information includes a first format, a time domain resource location to be detected, and a frequency domain resource location to be detected, and the first format is a signaling format of the time-frequency adjustment signaling.
  • the receiving module 810 can be used to detect time-frequency adjustment signaling on a preset time domain unit within an uplink time interval according to configuration information, the time-frequency adjustment signaling including time-frequency adjustment information, the configuration information including a first format and a frequency domain resource location to be detected, the first format being a signaling format of the time-frequency adjustment signaling.
  • the processing module 820 may also be used to determine an uplink time interval configured by the base station.
  • the processing module 820 detects a control instruction according to configuration information, the information domain of the control instruction carries time-frequency adjustment information, the configuration information includes a second format, a time domain resource position to be tested, and a frequency domain resource position to be tested, the second format is the instruction format of the control instruction; based on the position information in the information domain, the time-frequency adjustment information is detected on the control instruction.
  • the processing module 820 may also be used to determine the location information of a predefined information domain; or, the receiving module 810 may also be used to receive the location configuration of the information domain sent by the base station, and the location configuration is used to configure the location information of the information domain; wherein the location information of the information domain includes at least one of the location and length of the information domain.
  • the time-frequency adjustment information includes a preset adjustment value or an offset adjustment value of the current time-frequency
  • the processing module 820 can be used to adjust the time domain and/or frequency domain synchronization according to the preset adjustment value or the offset adjustment value.
  • the receiving module 810 may also be used to receive effective time configuration information of global navigation satellite system GNSS information; and/or receive extended time configuration information of global navigation satellite system GNSS information.
  • the processing module 820 may also be used to determine the effective time of the current GNSS information according to the effective time configuration information; and/or update the effective time of the current GNSS information according to the extended time configuration information.
  • the processing module 820 may be configured to perform adjustment of time domain synchronization and/or frequency domain synchronization within the effective time of the current GNSS information according to the time-frequency adjustment information.
  • the processing module 820 may also be used to determine the adjustment time of the time-frequency synchronization according to the application time indication of the time-frequency adjustment information; and perform adjustment of the time domain synchronization and/or frequency domain synchronization at the adjustment time.
  • the receiving module 810 may also be used to receive an application time indication of the time-frequency adjustment information sent by the base station.
  • FIG12 is a schematic structural diagram of a time-frequency synchronization adjustment device 900 provided according to an embodiment of the present disclosure.
  • the time-frequency synchronization adjustment device 900 may be a base station.
  • the device 900 may include:
  • the sending module 910 may be used to send configuration information to the terminal device, where the configuration information is used to detect time-frequency adjustment information.
  • the sending module 910 can be used to send configuration information including a first format, a time domain resource position to be checked, and a frequency domain resource position to be checked to a terminal device, wherein the configuration information is used to detect time-frequency adjustment signaling within an uplink time interval, and the first format is a signaling format of the time-frequency adjustment signaling.
  • the sending module 910 can be used to send configuration information including a first format and the location of frequency domain resources to be detected to a terminal device, where the configuration information is used to detect time-frequency adjustment signaling on a preset time domain unit within an uplink time interval, and the first format is a signaling format of the time-frequency adjustment signaling.
  • the sending module 910 can be used to send configuration information including a second format, a time domain resource location to be checked, and a frequency domain resource location to be checked to a terminal device, the configuration information is used to detect a control instruction, and the information domain of the control instruction carries time-frequency adjustment information, and the second format is the instruction format of the control instruction.
  • the sending module 910 may be used to send an uplink time interval to a terminal device.
  • the sending module 910 may be used to send a location configuration of an information domain to a terminal device, where the location configuration is used to configure location information of the information domain; wherein the location information of the information domain includes at least one of the location and length of the information domain.
  • the sending module 910 can be used to send effective time configuration information of the global navigation satellite system GNSS information to the terminal device, and the effective time configuration information is used to determine the effective time of the current GNSS information; and/or, send extended time configuration information of the global navigation satellite system GNSS information to the terminal device, and the extended time configuration information is used to update the effective time of the current GNSS information.
  • the sending module 910 may be used to send an application time indication of time-frequency adjustment information to a terminal device, where the application time indication is used to determine the adjustment time of time-frequency synchronization.
  • FIG 13 is a schematic diagram of the structure of a communication device 1000 provided in an embodiment of the present application.
  • the communication device 1000 can be a network device, or a user device, or a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a processor that supports the user device to implement the above method.
  • the device can be used to implement the method described in the above method embodiment, and the details can be referred to the description in the above method embodiment.
  • the communication device 1000 may include one or more processors 1001.
  • the processor 1001 may be a general-purpose processor or a dedicated processor, etc. For example, it may be a baseband processor or a central processing unit.
  • the baseband processor may be used to process the communication protocol and communication data
  • the central processing unit may be used to control the communication device (such as a base station, a baseband chip, a terminal device, a terminal device chip, a DU or a CU, etc.), execute a computer program, and process the data of the computer program.
  • the communication device 1000 may further include one or more memories 1002, on which a computer program 1004 may be stored, and the processor 1001 executes the computer program 1004 so that the communication device 1000 performs the method described in the above method embodiment.
  • data may also be stored in the memory 1002.
  • the communication device 1000 and the memory 1002 may be provided separately or integrated together.
  • the communication device 1000 may further include a transceiver 1005 and an antenna 1006.
  • the transceiver 1005 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1005 may include a receiver and a transmitter, the receiver may be referred to as a receiver or a receiving circuit, etc., and is used to implement a receiving function; the transmitter may be referred to as a transmitter or a transmitting circuit, etc., and is used to implement a transmitting function.
  • the communication device 1000 may further include one or more interface circuits 1007.
  • the interface circuit 1007 is used to receive code instructions and transmit them to the processor 1001.
  • the processor 1001 executes the code instructions to enable the communication device 1000 to execute the method described in the above method embodiment.
  • the processor 1001 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuit, interface, or interface circuit for implementing the receiving and sending functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface, or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface, or interface circuit may be used for transmitting or delivering signals.
  • the processor 1001 may store a computer program 1003, which runs on the processor 1001 and enables the communication device 1000 to perform the method described in the above method embodiment.
  • the computer program 1003 may be fixed in the processor 1001, in which case the processor 1001 may be implemented by hardware.
  • the communication device 1000 may include a circuit that can implement the functions of sending or receiving or communicating in the aforementioned method embodiment.
  • the processor and transceiver described in the present application can be implemented in an integrated circuit (IC), an analog IC, a radio frequency integrated circuit RFIC, a mixed signal IC, an application specific integrated circuit (ASIC), a printed circuit board (PCB), an electronic device, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal oxide semiconductor (nMetal-oxide-semiconductor, NMOS), P-type metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • N-type metal oxide semiconductor nMetal-oxide-semiconductor
  • PMOS bipolar junction transistor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a user device, but the scope of the communication device described in the present application is not limited thereto, and the structure of the communication device may not be limited by FIG. 13.
  • the communication device may be an independent device or may be part of a larger device.
  • the communication device may be:
  • the IC set may also include a storage component for storing data and computer programs;
  • ASIC such as modem
  • the communication device can be a chip or a chip system
  • the communication device can be a chip or a chip system
  • the schematic diagram of the chip structure shown in Figure 14 includes a processor 1101 and an interface 1102.
  • the number of processors 1101 can be one or more, and the number of interfaces 1102 can be multiple.
  • the chip further includes a memory 1103, and the memory 1103 is used to store necessary computer programs and data.
  • the present application also provides a readable storage medium having instructions stored thereon, which implement the functions of any of the above method embodiments when executed by a computer.
  • the present application also provides a computer program product, which implements the functions of any of the above method embodiments when executed by a computer.
  • the computer program product includes one or more computer programs.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that a computer can access or a data storage device such as a server or data center that contains one or more available media integrated. Available media can be magnetic media (e.g., floppy disks, hard disks, tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks (SSD)), etc.
  • At least one in the present application can also be described as one or more, and a plurality can be two, three, four or more, which is not limited in the present application.
  • the technical features in the technical feature are distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc., and there is no order of precedence or size between the technical features described by the "first”, “second”, “third”, “A”, “B”, “C” and “D”.
  • machine-readable medium and “computer-readable medium” refer to any computer program product, apparatus, and/or device (e.g., disk, optical disk, memory, programmable logic device (PLD)) for providing machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions as a machine-readable signal.
  • machine-readable signal refers to any signal for providing machine instructions and/or data to a programmable processor.
  • the systems and techniques described herein may be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., a user computer with a graphical user interface or a web browser through which a user can interact with implementations of the systems and techniques described herein), or a computing system that includes any combination of such back-end components, middleware components, or front-end components.
  • the components of the system may be interconnected by any form or medium of digital data communication (e.g., a communications network). Examples of communications networks include: a local area network (LAN), a wide area network (WAN), and the Internet.
  • a computer system may include clients and servers.
  • Clients and servers are generally remote from each other and usually interact through a communication network.
  • the relationship of client and server is generated by computer programs running on respective computers and having a client-server relationship to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出了一种时频同步的调整方法及装置,根据本公开提供了的时频同步的调整方法及装置,其中终端设备可接收基站发送的配置信息;根据所述配置信息检测基站发送的时频调整信息,所述时频调整信息为时域和/或频域同步相关的调整信息;根据所述时频调整信息调整时域和/或频域同步。本公开能够保证终端设备的时域或是频域的同步误差维持在合理的范围内,提高时域或是频域同步的精准性。

Description

时频同步的调整方法及装置 技术领域
本公开涉及无线通信技术领域,特别涉及一种时频同步的调整方法及装置。
背景技术
在无线通信技术的研究中,卫星通信被认为是未来无线通信技术发展的一个重要方面。卫星通信是指地面上的无线电通信设备利用卫星作为中继而进行的通信。卫星通信的特点是:通信范围大;只要在卫星发射的电波所覆盖的范围内,从任何两点之间都可进行通信;不易受陆地灾害的影响(可靠性高)。卫星通信作为目前地面的蜂窝通信系统的补充,可以预见,在未来的无线通信系统中,卫星通信系统和陆地上的蜂窝通信系统会逐步的实现深度的融合,真正的实现万物智联。
对于卫星通信的场景下,由于发送端与接收端存在较长的信号传输距离,导致数据传输有较大的时延。对于存在有上下行关系的传输,终端需要基于全球导航卫星系统(Global Navigation Satellite System,GNSS)测量以及一些辅助信息来维持上行的同步。目前可通过做参考信号(Reference Signal,RS)的测量来维持时频同步,然而,仅仅依靠RS的测量无法保证时域或是频域同步的精准性。
发明内容
本公开提供了一种时频同步的调整方法及装置,能够保证终端设备的时域或是频域的同步误差维持在合理的范围内,提高时域或是频域同步的精准性。
本公开的第一方面实施例提供了一种时频同步的调整方法,所述方法由终端设备执行,所述方法包括:
接收基站发送的配置信息;
根据所述配置信息检测基站发送的时频调整信息,所述时频调整信息为时域和/或频域同步相关的调整信息;
根据所述时频调整信息调整时域和/或频域同步。
在本公开的一些实施例中,所述根据所述配置信息检测基站发送的时频调整信息,包括:
根据所述配置信息,在上行时间间隔内检测时频调整信令,所述时频调整信令中包含时频调整信息,所述配置信息包括第一格式、待检时域资源位置以及待检频域资源位置,所述第一格式为所述时频调整信令的信令格式。
在本公开的一些实施例中,所述根据所述配置信息检测基站发送的时频调整信息,包括:
根据所述配置信息,在上行时间间隔内的预设时域单元上检测时频调整信令,所述时频调整信令中包含时频调整信息,所述配置信息包括第一格式以及待检频域资源位置,所述第一格式为所述时频调整信令的信令格式。
在本公开的一些实施例中,所述方法还包括:
确定基站配置的上行时间间隔。
在本公开的一些实施例中,所述根据所述配置信息检测基站发送的时频调整信息,包括:
根据所述配置信息,检测控制指令,所述控制指令的信息域上携带有时频调整信息,所述配置信息包括第二格式、待检时域资源位置以及待检频域资源位置,所述第二格式为所述控制指令的指令格式;基于所述信息域的位置信息,在所述控制指令上检测时频调整信息。
在本公开的一些实施例中,所述方法还包括:
确定预先定义的所述信息域的位置信息;或,
接收基站发送的所述信息域的位置配置,所述位置配置用于配置所述信息域的位置信息;
其中,所述信息域的位置信息包括所述信息域的位置和长度中的至少一项。
在本公开的一些实施例中,所述时频调整信息包括预设调整值,或当前时频的偏移调整值,所述根 据所述时频调整信息调整时域和/或频域同步,包括:
根据所述预设调整值或所述偏移调整值,调整时域和/或频域同步。
在本公开的一些实施例中,所述方法还包括:
接收全球导航卫星系统GNSS信息的生效时间配置信息;和/或,
接收全球导航卫星系统GNSS信息的扩展时间配置信息。
在本公开的一些实施例中,所述方法还包括:
根据所述生效时间配置信息,确定当前GNSS信息的生效时间;和/或,
根据所述扩展时间配置信息,更新当前GNSS信息的生效时间。
在本公开的一些实施例中,所述根据所述时频调整信息调整时域和/或频域同步,包括:
根据所述时频调整信息,在所述当前GNSS信息的生效时间内执行时域同步和/或频域同步的调整。
在本公开的一些实施例中,所述方法还包括:
根据所述时频调整信息的应用时间指示,确定时频同步的调整时间;
在所述调整时间上执行时域同步和/或频域同步的调整。
在本公开的一些实施例中,所述方法还包括:
接收基站发送的所述时频调整信息的应用时间指示。
本公开的第二方面实施例提供了一种时频同步的调整方法,所述方法由基站执行,所述方法包括:
向终端设备发送配置信息,所述配置信息用于检测时频调整信息。
在本公开的一些实施例中,所述向终端设备发送配置信息,包括:
向终端设备发送包括第一格式、待检时域资源位置以及待检频域资源位置的配置信息,所述配置信息用于在上行时间间隔内检测时频调整信令,所述第一格式为所述时频调整信令的信令格式。
在本公开的一些实施例中,所述向终端设备发送配置信息,包括:
向终端设备发送包括第一格式以及待检频域资源位置的配置信息,所述配置信息用于在上行时间间隔内的预设时域单元上检测时频调整信令,所述第一格式为所述时频调整信令的信令格式。
在本公开的一些实施例中,所述向终端设备发送配置信息,包括:
向终端设备发送包括第二格式、待检时域资源位置以及待检频域资源位置的配置信息,所述配置信息用于检测控制指令,所述控制指令的信息域上携带有时频调整信息,所述第二格式为所述控制指令的指令格式。
在本公开的一些实施例中,所述方法还包括:
向终端设备发送上行时间间隔。
在本公开的一些实施例中,所述方法还包括:
向终端设备发送所述信息域的位置配置,所述位置配置用于配置所述信息域的位置信息;
其中,所述信息域的位置信息包括所述信息域的位置和长度中的至少一项。
在本公开的一些实施例中,所述方法还包括:
向终端设备发送全球导航卫星系统GNSS信息的生效时间配置信息,所述生效时间配置信息用于确定当前GNSS信息的生效时间;和/或,
向终端设备发送全球导航卫星系统GNSS信息的扩展时间配置信息,所述扩展时间配置信息用于更新当前GNSS信息的生效时间。
在本公开的一些实施例中,所述方法还包括:
向终端设备发送所述时频调整信息的应用时间指示,所述应用时间指示用于确定时频同步的调整时间。
本公开的第三方面实施例提供了一种终端设备,所述终端设备包括:
接收模块,用于接收基站发送的配置信息;
处理模块,用于根据所述配置信息检测基站发送的时频调整信息,所述时频调整信息为时域和/或频域同步相关的调整信息;
所述处理模块,还用于根据所述时频调整信息调整时域和/或频域同步。
本公开的第四方面实施例提供了一种基站,所述基站包括:
发送模块,用于向终端设备发送配置信息,所述配置信息用于检测时频调整信息。
本公开的第五方面实施例提供了一种通信设备,该通信设备包括:收发器;存储器;处理器,分别与收发器及存储器连接,配置为通过执行存储器上的计算机可执行指令,控制收发器的无线信号收发,并能够实现如本公开第一方面实施例或第二方面实施例的方法。
本公开的第六方面实施例提供了一种计算机存储介质,其中,计算机存储介质存储有计算机可执行指令;计算机可执行指令被处理器执行后,能够实现如本公开第一方面实施例或第二方面实施例的方法。
本公开的第六方面实施例提供了一种通信系统,包括终端设备以及基站,终端设备用于执行第一方面实施例的时频同步的调整方法,所述基站用于执行第二方面实施例的时频同步的调整方法。
本公开实施例提供了一种时频同步的调整方法及装置,可根据基站发送的配置信息检测基站发送的时域和/或频域同步相关的调整信息,根据时域和/或频域同步相关的调整信息调整时域和/或频域同步。可以有效的保证终端的时域或是频域的同步误差维持在合理的范围内,提高时域或是频域同步的精准性。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本公开实施例的一种时频同步的调整方法的流程示意图;
图2为根据本公开实施例的一种根据确定当前GNSS信息生效时间的实例示意图;
图3为根据本公开实施例的一种根据确定当前GNSS信息生效时间的实例示意图;
图4为根据本公开实施例的一种时频同步的调整方法的流程示意图;
图5为根据本公开实施例的一种时频同步的调整方法的流程示意图;
图6为根据本公开实施例的一种时频同步的调整方法的流程示意图;
图7为根据本公开实施例的一种时频同步的调整方法的流程示意图;
图8为根据本公开实施例的一种时频同步的调整方法的流程示意图;
图9为根据本公开实施例的一种时频同步的调整方法的流程示意图;
图10为根据本公开实施例的一种时频同步的调整方法的时序图;
图11为根据本公开实施例的一种时频同步的调整装置的框图;
图12为根据本公开实施例的一种时频同步的调整装置的框图;
图13为根据本公开实施例的一种通信装置的结构示意图;
图14为本公开实施例提供的一种芯片的结构示意图。
具体实施方式
下面详细描述本公开的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
对于卫星通信的场景下,由于发送端与接收端存在较长的信号传输距离,导致数据传输有较大的时延。对于存在有上下行关系的传输,终端需要基于全球导航卫星系统(Global Navigation Satellite System,GNSS)测量以及一些辅助信息来维持上行的同步。目前可通过做参考信号(Reference Signal,RS)的测量来维持时频同步,然而,仅仅依靠RS的测量无法保证时域或是频域同步的精准性。
为此,本公开提出了一种时频同步的调整方法及装置,能够保证终端设备的时域或是频域的同步误差维持在合理的范围内,提高时域或是频域同步的精准性。
图1示出了根据本公开实施例的一种时频同步的调整方法的流程示意图。如图1所示,该方法应由终端设备执行,且可以包括以下步骤。
步骤101、接收基站发送的配置信息。
其中,配置信息中可包括用于检测基站发送的时频调整信息相关的信息。配置信息为基站通过高层信令或物理层信令承载发送的,其中高层信令可包括系统信息,无线资源控制(Radio Resource Control,RRC)信令,或是媒体访问控制(Media Access Control,MAC)的控制元素(Control Element,CE)。
步骤102、根据配置信息检测基站发送的时频调整信息。
其中,时频调整信息为时域和/或频域同步相关的调整信息,时频调整信息可以是一个绝对的调整值,如设定的预设调整值,其可包括时域预设调整值和频域预设调整值;此外,时频调整信息也可以为相对于某个参考值的调整值,比如参考值可以是相对于当前终端时域或是频域调整值的偏移值,即相当于当前时频的偏移调整值,其可包括时域偏移调整值和频域偏移调整值。对于本公开实施例,可根据配置信息在特定位置检测获取基站发送的时域和/或频域同步相关的调整信息。
步骤103、根据时频调整信息调整时域和/或频域同步。
对于本公开实施例,作为一种可选方式,实施例步骤可包括:根据预设调整值或偏移调整值,调整时域和/或频域同步。具体的,可将当前时域同步值调整至时域预设调整值和/或将当前频域同步值调整至频域预设调整值;或者,可按照时域偏移调整值调整当前时域同步的偏移值和/或按照频域偏移调整值调整当前频域同步的偏移值。通过上述基于时频调整信息对时域和/或频域的同步值调整,可以有效的保证终端的时域和/或频域的同步误差维持在合理的范围内,有效维持上行时频的同步。
在具体的应用场景中,对于存在有上下行关系的传输,终端需要基于全球导航卫星系统(Global Navigation Satellite System,GNSS)测量以及一些辅助信息来维持上行的同步。然而在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)R18标准中,当支持了传输时间比较长的业务时,GNSS信息过期的情况下,终端需要断开与网络侧的通信连接,进入到空闲(IDLE)状态,重新执行GNSS信息的测量过程。然而此种方式将无法使GNSS信息保持在生效状态,进而不能够支持终端与网络侧的持续通信,容易导致存在一定能量消耗。
有鉴于此,对于本公开实施例,作为一种可选方式,在配置信息中还可包括终端设备自身的全球导航卫星系统(Global Navigation Satellite System,GNSS)信息,相应的,终端设备可根据时频调整信息,在当前GNSS信息的生效时间内执行时域同步和/或频域同步的调整。并且,为保证终端与网络侧的持续通信,实现对时域和/或频域的闭环同步调整,终端设备可及时获取当前GNSS信息的可用时长,并在当前GNSS信息失效时,通过GNSS可用时长扩展或重新测量,确定GNSS信息的生效时间,从而使GNSS信息保持在生效状态。在具体的应用场景中,作为一种可选方式,实施例步骤可包括:接收全球导航卫星系统GNSS信息的生效时间配置信息;和/或,接收全球导航卫星系统GNSS信息的扩展时间配置信息;根据生效时间配置信息,确定当前GNSS信息的生效时间;和/或,根据扩展时间配置信息,更新当前GNSS信息的生效时间。通过此种实施方式,可降低终端设备执行GNSS信息测量的频率,降低终端设备的能量消耗。
相应的,在GNSS信息的生效时间配置信息中,可携带当前GNSS信息的可用时间的长度信息,终端设备可以基于长度信息确定自身GNSS信息的可用时间,即根据自身GNSS信息的可用时间更新GNSS信息过期时间。如图2所示,若在当前GNSS信息过期前A点处接收到GNSS信息的生效时间配置信息,GNSS信息的生效时间配置信息中指示当前GNSS信息的可用时间的长度信息为10s,则可根据该可用时间的长度信息重新确定新的GNSS过期时间点A′,在A点到A′点之间当前GNSS信息的生效时间内,终端设备与基站保持通信连接的状态(不进入IDLE状态)下,不执行GNSS信息的测量操作。此外,终端设备 还可在当前GNSS信息过期前或当前GNSS信息过期后,接收基站发送的GNSS信息的扩展时间配置信息。在GNSS信息的扩展时间配置信息中可包括是否扩展当前GNSS信息的生效时间和扩展的时长相关的信息,其中,扩展的时长相关的信息可包括当前GNSS信息扩展生效的时间长度和扩展起始时间点中的至少一项。进一步的,终端设备可在当前GNSS信息的过期时间点和/或扩展起始时间点,扩展当前GNSS信息的生效时间,生效时间的扩展长度为该时间长度。如图3所示,终端设备可在确定当前GNSS信息即将过期或已经过期的情况下,接收到基站发送的GNSS信息的扩展时间配置信息,基站的GNSS信息的扩展时间配置信息中指示了扩展起始时间点(如当前GNSS信息的过期时间点)为B,生效时间拓展的长度为b(如10s),因此终端可在配置信息所指示的扩展起始时间点B处,进一步扩展长度为b的生效时间,进一步扩展得到新的GNSS过期时间点B′,在B点到B′点之间当前GNSS信息的生效时间内,终端设备与基站保持通信连接的状态(不进入IDLE状态)下,不执行GNSS信息的测量操作。
对于本公开实施例,作为一种可选方式,在根据时频调整信息调整时域和/或频域同步时,终端设备可在指示的时间上执行时域同步和/或频域同步的调整。相应的,实施例步骤可包括:根据时频调整信息的应用时间指示,确定时频同步的调整时间;在调整时间上执行时域同步和/或频域同步的调整。相应的,实施例步骤还可包括:接收基站发送的时频调整信息的应用时间指示。例如,根据时频调整信息的应用时间指示,确定时频同步的调整时间为距离当前在所在时域单元之后10个slot后的slot上,则终端设备可在距离当前在所在时域单元之后10个slot后的slot上开始执行时域同步和/或频域同步的调整。通过此种方式,可实现对时域同步和/或频域同步调整的应用时间设置,能够满足用户对时域同步和/或频域同步调整的个性化需求。
需要说明的是,本公开实施例可选用上述可选实施步骤的任意一种或多种可选实施步骤的组合,来调整时域和/或频域同步,例如,可根据预设调整值或偏移调整值,在当前GNSS信息的原有生效时间调整时域和/或频域同步,或者可在当前GNSS信息的扩展生效时间内,根据预设调整值或偏移调整值,调整时域和/或频域同步,或者可在当前GNSS信息的扩展生效时间内的调整时间上,根据预设调整值或偏移调整值,调整时域和/或频域同步,等等,在此不进行具体限定。
综上,根据本公开实施例提供的时频同步的调整方法,可根据基站发送的配置信息检测基站发送的时域和/或频域同步相关的调整信息,根据时域和/或频域同步相关的调整信息调整时域和/或频域同步。可以有效的保证终端的时域或是频域的同步误差维持在合理的范围内,提高时域或是频域同步的精准性。同时还可降低终端设备执行GNSS信息测量的频率,降低终端设备的能量消耗,并且满足用户对时域同步和/或频域同步调整的个性化需求。
图4示出了根据本公开实施例的一种时频同步的调整方法的流程示意图。该方法由终端设备执行,基于图1所示实施例,如图4所示,且可以包括以下步骤。
步骤201、接收基站发送的包括第一格式、待检时域资源位置以及待检频域资源位置的配置信息。
其中,第一格式为时频调整信令的信令格式。此外,配置信息还可包括检测次数、聚合度等级等,在此不进行具体限定。
步骤202、根据配置信息,在上行时间间隔内检测时频调整信令,时频调整信令中包含时频调整信息。
其中,时频调整信令可以是高层信令如无线资源控制(Radio Resource Control,RRC)信令,媒体访问控制(Media Access Control,MAC)的控制元素(Control Element,CE)或是物理层信令如下行控制信令(Downlink Control Information,DCI);时频调整信息为时域和/或频域同步相关的调整信息,时频调整信息可以是一个绝对的调整值,如设定的预设调整值,其可包括时域预设调整值和频域预 设调整值;此外,时频调整信息也可以为相对于某个参考值的调整值,比如参考值可以是相对于当前终端时域或是频域调整值的偏移值,即相当于当前时频的偏移调整值,其可包括时域偏移调整值和频域偏移调整值。
在具体的应用场景中,在执行本实施例步骤之前,实施例步骤还包括:确定基站配置的上行时间间隔。对于本公开实施例,鉴于在该配置信息中包含待检时域资源位置以及待检频域资源位置,故可在上行时间间隔内的特定时域资源和/或特定频域资源位置处,实现对时频调整信令的检测,进而获取到时频调整信令中包含的时频调整信息。
步骤203、根据时频调整信息调整时域和/或频域同步。
对于本公开实施例,具体可参见实施例步骤103中的相关描述,在此不再赘述。
综上,根据本公开实施例提供的时频同步的调整方法,可根据基站发送包括第一格式、待检时域资源位置以及待检频域资源位置的配置信息,在上行时间间隔内检测基站发送的时域和/或频域同步相关的调整信息,根据时域和/或频域同步相关的调整信息调整时域和/或频域同步。可以有效的保证终端的时域或是频域的同步误差维持在合理的范围内,提高时域或是频域同步的精准性。同时还可降低终端设备执行GNSS信息测量的频率,降低终端设备的能量消耗,并且满足用户对时域同步和/或频域同步调整的个性化需求。
图5示出了根据本公开实施例的一种时频同步的调整方法的流程示意图。该方法由终端设备执行,基于图1所示实施例,如图5所示,且可以包括以下步骤。
步骤301、接收基站发送的包括第一格式以及待检频域资源位置的配置信息。
其中,第一格式为时频调整信令的信令格式。此外,配置信息还可包括检测次数、聚合度等级等,在此不进行具体限定。
步骤302、根据配置信息,在上行时间间隔内的预设时域单元上检测时频调整信令,时频调整信令中包含时频调整信息。
其中,时频调整信令可以是高层信令如无线资源控制(Radio Resource Control,RRC)信令,媒体访问控制(Media Access Control,MAC)的控制元素(Control Element,CE)或是物理层信令如下行控制信令(Downlink Control Information,DCI);预设时域单元可以是上行时间间隔内的每一个时域单元(如子帧);时频调整信息为时域和/或频域同步相关的调整信息,时频调整信息可以是一个绝对的调整值,如设定的预设调整值,其可包括时域预设调整值和频域预设调整值;此外,时频调整信息也可以为相对于某个参考值的调整值,比如参考值可以是相对于当前终端时域或是频域调整值的偏移值,即相当于当前时频的偏移调整值,其可包括时域偏移调整值和频域偏移调整值。
在具体的应用场景中,在执行本实施例步骤之前,作为一种可能的实现方式,实施例步骤还包括:确定基站配置的上行时间间隔。对于本公开实施例,可在上行时间间隔内的预设时域单元上如每个时域单元上实现对时域调整信令的检测,进而获取到携带时频调整信息的信令中包含的时频调整信息。鉴于在该配置信息中包含待检频域资源位置,故可在上行时间间隔的预设时域单元上的特定频域资源位置处,实现对时频调整信令的检测,进而获取到时频调整信令中包含的频域调整信息。
步骤303、根据时频调整信息调整时域和/或频域同步。
对于本公开实施例,具体可参见实施例步骤103中的相关描述,在此不再赘述。
综上,根据本公开实施例提供的时频同步的调整方法,可根据基站发送的包括第一格式以及待检频域资源位置的配置信息,在上行时间间隔内的预设时域单元上检测基站发送的时域和/或频域同步相关的调整信息,根据时域和/或频域同步相关的调整信息调整时域和/或频域同步。可以有效的保证终端的时域或是频域的同步误差维持在合理的范围内,提高时域或是频域同步的精准性。同时还可降低终端设备执行GNSS信息测量的频率,降低终端设备的能量消耗,并且满足用户对时域同步和/或频域同步调整的个性化需求。
图6示出了根据本公开实施例的一种时频同步的调整方法的流程示意图。该方法由终端设备执行,基于图1所示实施例,如图6所示,且可以包括以下步骤。
步骤401、接收基站发送的包括第二格式、待检时域资源位置以及待检频域资源位置的配置信息。
其中,第二格式为控制指令的指令格式。此外,配置信息还可包括检测次数、聚合度等级等,在此不进行具体限定。
步骤402、根据配置信息,检测控制指令,控制指令的信息域上携带有时频调整信息。
其中,控制指令为调度数据传输的指令;信息域的位置和长度信息是预先定义的或是接收基站发送的配置信息确定的。
步骤403、基于信息域的位置信息,在控制指令上检测时频调整信息。
在具体的应用场景中,在执行本实施例步骤之前,作为一种可能的实现方式,实施例步骤还包括:确定预先定义的信息域的位置信息;或,接收基站发送的信息域的位置配置,位置配置用于配置信息域的位置信息;其中,信息域的位置信息包括信息域的位置和长度中的至少一项。
步骤404、根据时频调整信息调整时域和/或频域同步。
对于本公开实施例,具体可参见实施例步骤103中的相关描述,在此不再赘述。
综上,根据本公开实施例提供的时频同步的调整方法,可根据基站发送的包括第二格式、待检时域资源位置以及待检频域资源位置的配置信息,在控制指令的信息域上检测基站发送的时域和/或频域同步相关的调整信息,根据时域和/或频域同步相关的调整信息调整时域和/或频域同步。可以有效的保证终端的时域或是频域的同步误差维持在合理的范围内,提高时域或是频域同步的精准性。同时还可降低终端设备执行GNSS信息测量的频率,降低终端设备的能量消耗,并且满足用户对时域同步和/或频域同步调整的个性化需求。
图7为根据本公开实施例的一种时频同步的调整方法的流程示意图。该方法由基站执行,且该方法可以包括以下步骤。
步骤501、向终端设备发送配置信息,配置信息用于检测时频调整信息。
其中,配置信息中可包括终端设备检测时频调整信息相关的信息。配置信息为基站通过高层信令或物理层信令向终端设备承载发送的,其中高层信令可包括系统信息,无线资源控制(Radio Resource Control,RRC)信令,或是媒体访问控制(Media Access Control,MAC)的控制元素(Control Element,CE)。对于本公开实施例,通过向终端设备发送配置信息,可使终端设备根据配置信息检测基站发送的时频调整信息,进一步基于时频调整信息实现对时域和/或频域的同步调整。
对于本公开实施例,作为一种可能的实现方式,实施例步骤可包括:向终端设备发送包括第一格式、待检时域资源位置以及待检频域资源位置的配置信息,配置信息用于在上行时间间隔内检测时频调整信令,第一格式为时频调整信令的信令格式。相应的,实施例步骤还包括:向终端设备发送上行时间间隔。通过向终端设备发送包括第一格式、待检时域资源位置以及待检频域资源位置的配置信息,可使终端设备根据该配置信息在上行时间间隔内检测基站发送的时频调整信息,进一步基于时频调整信息实现对时域和/或频域的同步调整。
对于本公开实施例,作为一种可能的实现方式,实施例步骤可包括:向终端设备发送包括第一格式以及待检频域资源位置的配置信息,配置信息用于在上行时间间隔内的预设时域单元上检测时频调整信令,第一格式为时频调整信令的信令格式。相应的,实施例步骤还包括:向终端设备发送上行时间间隔。通过向终端设备发送包括第一格式以及待检频域资源位置的配置信息,可使终端设备根据该配置信息在上行时间间隔内的预设时域单元上检测基站发送的时频调整信息,进一步基于时频调整信息实现对时域和/或频域的同步调整。
对于本公开实施例,作为一种可能的实现方式,实施例步骤可包括:向终端设备发送包括第二格式、待检时域资源位置以及待检频域资源位置的配置信息,配置信息用于检测控制指令,控制指令的信息域上携带有时频调整信息,第二格式为控制指令的指令格式。相应的,实施例步骤还包括:向终端设备发送信息域的位置配置,位置配置用于配置信息域的位置信息;其中,信息域的位置信息包括信息域的位置和长度中的至少一项。通过向终端设备发送包括第二格式、待检时域资源位置以及待检频域资源位置的配置信息,可使终端设备根据该配置信息在控制指令的信息域上检测基站发送的时频调整信息,进一步基于时频调整信息实现对时域和/或频域的同步调整。
综上,根据本公开实施例提供的时频同步的调整方法,基站可通过向终端设备发送配置信息,使终端设备根据配置信息检测基站发送的时频调整信息,进一步基于时频调整信息实现对时域和/或频域的同步调整。可以有效的保证终端的时域或是频域的同步误差维持在合理的范围内,提高时域或是频域同步的精准性。
图8示出了根据本公开实施例的一种时频同步的调整方法的流程示意图。该方法由基站执行,基于图7所示实施例,如图8所示,且可以包括以下步骤。
步骤601、向终端设备发送全球导航卫星系统GNSS信息的生效时间配置信息,和/或,向终端设备发送全球导航卫星系统GNSS信息的扩展时间配置信息。
其中,生效时间配置信息用于确定当前GNSS信息的生效时间,扩展时间配置信息用于更新当前GNSS信息的生效时间。
对于本公开实施,基站在向终端设备发送全球导航卫星系统GNSS信息的生效时间配置信息,和/或,基站在向终端设备发送全球导航卫星系统GNSS信息的扩展时间配置信息后,终端设备可根据时频调整信息,在当前GNSS信息的生效时间内执行时域同步和/或频域同步的调整。
在具体的应用场景中,GNSS信息的生效时间配置信息里可携带当前GNSS信息的可用时间的长度信息,进一步的,终端设备在接收到基站发送的GNSS信息的生效时间配置信息后,可以基于长度信息确定自身GNSS信息的可用时间,即根据自身GNSS信息的可用时间更新新的GNSS信息过期时间,以此保证终端设备在新的GNSS信息过期时间之前,与基站保持通信连接的状态(不进入IDLE状态)下,不执行GNSS信息的测量操作。在GNSS信息的扩展时间配置信息中可包括是否扩展当前GNSS信息的生效时间和扩展的时长相关的信息,其中,扩展的时长相关的信息可包括当前GNSS信息扩展生效的时间长度和扩展起始时间点中的至少一项。进一步的,终端设备在接收到基站发送的GNSS信息的扩展时间配置 信息后,可在当前GNSS信息的过期时间点和/或扩展起始时间点,扩展当前GNSS信息的生效时间,生效时间的扩展长度为该时间长度,以此保证终端设备在新的GNSS信息过期时间之前,与基站保持通信连接的状态(不进入IDLE状态)下,不执行GNSS信息的测量操作。通过此种实施方式,可降低终端设备执行GNSS信息测量的频率,降低终端设备的能量消耗。
综上,根据本公开实施例提供的时频同步的调整方法,可向终端设备发送全球导航卫星系统GNSS信息的生效时间配置信息,和/或,向终端设备发送全球导航卫星系统GNSS信息的扩展时间配置信息,以使终端设备可根据时频调整信息,在当前GNSS信息的生效时间内执行时域同步和/或频域同步的调整。通过此种实施方式,可降低终端设备执行GNSS信息测量的频率,降低终端设备的能量消耗。
图9示出了根据本公开实施例的一种时频同步的调整方法的流程示意图。该方法由基站执行,基于图7所示实施例,如图9所示,且可以包括以下步骤。
步骤701、向终端设备发送时频调整信息的应用时间指示,应用时间指示用于确定时频同步的调整时间。
对于本公开实施,基站在向终端设备发送时频调整信息的应用时间指示后,终端设备可在指示的时间上执行时域同步和/或频域同步的调整。例如,基站可向终端设备发送时频调整信息的应用时间指示,在应用时间指示中指示有时频同步的调整时间为距离当前在所在时域单元之后10个slot后的slot上,进一步的,终端设备在接收到时频调整信息的应用时间指示后,可在距离当前在所在时域单元之后10个slot后的slot上开始执行时域同步和/或频域同步的调整。
综上,根据本公开实施例提供的时频同步的调整方法,基站可向终端设备发送时频调整信息的应用时间指示,以使终端设备可根据时频调整信息的应用时间指示,确定时频同步的调整时间;在调整时间上执行时域同步和/或频域同步的调整。通过此种方式,可实现对终端设备进行时域同步和/或频域同步调整的应用时间设置,能够满足用户对时域同步和/或频域同步调整的个性化需求。
图10为根据本公开实施例的一种时频同步的调整方法的时序图。该方法应用于一种时频同步的调整的通信系统,该系统包括:终端设备、基站,基站向终端设备发送配置信息,配置信息用于检测时频调整信息;终端设备根据配置信息检测基站发送的时频调整信息,时频调整信息为时域和/或频域同步相关的调整信息;终端设备根据时频调整信息调整时域和/或频域同步。
参见图10,该方法包括如下步骤:
步骤801、基站向终端设备发送配置信息。
其中,配置信息中可包括用于检测基站发送的时频调整信息相关的信息。配置信息为基站通过高层信令或物理层信令承载发送的,其中高层信令可包括系统信息,无线资源控制(Radio Resource Control,RRC)信令,或是媒体访问控制(Media Access Control,MAC)的控制元素(Control Element,CE)。
在具体的应用场景中,作为一种可能的实现方式,基站可向终端设备发送包括第一格式、待检时域资源位置以及待检频域资源位置的配置信息,该配置信息用于在上行时间间隔内检测时频调整信令,第一格式为时频调整信令的信令格式。
作为一种可能的实现方式,基站可向终端设备发送包括第一格式以及待检频域资源位置的配置信息,该配置信息用于在上行时间间隔内的预设时域单元上检测时频调整信令,第一格式为时频调整信令的信令格式。
作为一种可能的实现方式,基站可向终端设备发送包括第二格式、待检时域资源位置以及待检频域资源位置的配置信息,该配置信息用于检测控制指令,控制指令的信息域上携带有时频调整信息,第二格式为控制指令的指令格式。
步骤802、终端设备根据配置信息检测基站发送的时频调整信息,时频调整信息为时域和/或频域同步相关的调整信息。
其中,时频调整信息为时域和/或频域同步相关的调整信息,时频调整信息可以是一个绝对的调整值,如设定的预设调整值,其可包括时域预设调整值和频域预设调整值;此外,时频调整信息也可以为相对于某个参考值的调整值,比如参考值可以是相对于当前终端时域或是频域调整值的偏移值,即相当于当前时频的偏移调整值,其可包括时域偏移调整值和频域偏移调整值。对于本公开实施例,可根据配置信息在特定位置检测获取基站发送的时域和/或频域同步相关的调整信息。
在具体的应用场景中,作为一种可选实施例,当配置信息为包括第一格式、待检时域资源位置以及待检频域资源位置的配置信息时,终端设备可在上行时间间隔内检测时频调整信令,时频调整信令中包含时频调整信息。即可在上行时间间隔内的特定时域资源和/或特定频域资源位置处,实现对时频调整信令的检测,进而获取到时频调整信令中包含的时频调整信息。其中,时频调整信令可以是高层信令如无线资源控制(Radio Resource Control,RRC)信令,媒体访问控制(Media Access Control,MAC)的控制元素(Control Element,CE)或是物理层信令如下行控制信令(Downlink Control Information,DCI)。
在具体的应用场景中,作为一种可选实施例,当配置信息为包括第一格式以及待检频域资源位置的配置信息时,终端设备可在上行时间间隔内的预设时域单元上检测时频调整信令,时频调整信令中包含时频调整信息。即可在上行时间间隔内的预设时域单元上如每个时域单元上实现对时域调整信令的检测,进而获取到携带时频调整信息的信令中包含的时频调整信息。鉴于在该配置信息中可包含待检频域资源位置,故可在上行时间间隔的预设时域单元上的特定频域资源位置处,实现对时频调整信令的检测,进而获取到时频调整信令中包含的频域调整信息。其中,时频调整信令可以是高层信令如RRC信令,MAC CE或是物理层信令如DCI;预设时域单元可以是上行时间间隔内的每一个时域单元(如子帧)。
在具体的应用场景中,作为一种可选实施例,当配置信息为包括第二格式、待检时域资源位置以及待检频域资源位置的配置信息时,终端设备可在控制指令的信息域上检测基站发送的时频调整信息。其中,控制指令为调度数据传输的指令;信息域的位置和长度信息是预先定义的或是接收基站发送的配置信息确定的。
步骤803、终端设备根据时频调整信息调整时域和/或频域同步。
对于本公开实施例,作为一种可选方式,实施例步骤可包括:根据预设调整值或偏移调整值,调整时域和/或频域同步。具体的,可将当前时域同步值调整至时域预设调整值和/或将当前频域同步值调整至频域预设调整值;或者,可按照时域偏移调整值调整当前时域同步的偏移值和/或按照频域偏移调整值调整当前频域同步的偏移值。通过上述基于时频调整信息对时域和/或频域的同步值调整,可以有效的保证终端的时域和/或频域的同步误差维持在合理的范围内,有效维持上行时频的同步。
在具体的应用场景中,对于存在有上下行关系的传输,终端需要基于全球导航卫星系统(Global Navigation Satellite System,GNSS)测量以及一些辅助信息来维持上行的同步。然而在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)R18标准中,当支持了传输时间比较长的业务时,GNSS信息过期的情况下,终端需要断开与网络侧的通信连接,进入到空闲(IDLE)状态,重新执行GNSS信息的测量过程。然而此种方式将无法使GNSS信息保持在生效状态,进而不能够支持终端与网络侧的持续通信,容易导致存在一定能量消耗。
有鉴于此,对于本公开实施例,作为一种可选方式,在配置信息中还可包括终端设备自身的全球导航卫星系统(Global Navigation Satellite System,GNSS)信息,相应的,终端设备可根据时频调整信息,在当前GNSS信息的生效时间内执行时域同步和/或频域同步的调整。并且,为保证终端与网络侧的持续通信,实现对时域和/或频域的闭环同步调整,终端设备可及时获取当前GNSS信息的可用时长,并在当前GNSS信息失效时,通过GNSS可用时长扩展或重新测量,确定GNSS信息的生效时间,从而使GNSS信息保持在生效状态。在具体的应用场景中,作为一种可选方式,实施例步骤可包括:接收全球导航卫星系统GNSS信息的生效时间配置信息;和/或,接收全球导航卫星系统GNSS信息的扩展时间配置信息;根据生效时间配置信息,确定当前GNSS信息的生效时间;和/或,根据扩展时间配置信息,更新当前GNSS信息的生效时间。
在具体的应用场景中,GNSS信息的生效时间配置信息里可携带当前GNSS信息的可用时间的长度信息,进一步的,终端设备在接收到基站发送的GNSS信息的生效时间配置信息后,可以基于长度信息确定自身GNSS信息的可用时间,即根据自身GNSS信息的可用时间更新新的GNSS信息过期时间,以此保证终端设备在新的GNSS信息过期时间之前,与基站保持通信连接的状态(不进入IDLE状态)下,不执行GNSS信息的测量操作。在GNSS信息的扩展时间配置信息中可包括是否扩展当前GNSS信息的生效时间和扩展的时长相关的信息,其中,扩展的时长相关的信息可包括当前GNSS信息扩展生效的时间长度和扩展起始时间点中的至少一项。进一步的,终端设备在接收到基站发送的GNSS信息的扩展时间配置信息后,可在当前GNSS信息的过期时间点和/或扩展起始时间点,扩展当前GNSS信息的生效时间,生效时间的扩展长度为该时间长度,以此保证终端设备在新的GNSS信息过期时间之前,与基站保持通信连接的状态(不进入IDLE状态)下,不执行GNSS信息的测量操作。通过此种实施方式,可降低终端设备执行GNSS信息测量的频率,降低终端设备的能量消耗。
对于本公开实施例,作为一种可选方式,在根据时频调整信息调整时域和/或频域同步时,终端设备可在指示的时间上执行时域同步和/或频域同步的调整。相应的,实施例步骤可包括:根据时频调整信息的应用时间指示,确定时频同步的调整时间;在调整时间上执行时域同步和/或频域同步的调整。相应的,实施例步骤还可包括:接收基站发送的时频调整信息的应用时间指示。例如,根据时频调整信息的应用时间指示,确定时频同步的调整时间为距离当前在所在时域单元之后10个slot后的slot上,则终端设备可在距离当前在所在时域单元之后10个slot后的slot上开始执行时域同步和/或频域同步的调整。通过此种方式,可实现对时域同步和/或频域同步调整的应用时间设置,能够满足用户对时域同步和/或频域同步调整的个性化需求。
需要说明的是,本公开实施例可选用上述可选实施步骤的任意一种或多种可选实施步骤的组合,来调整时域和/或频域同步,例如,可根据预设调整值或偏移调整值,在当前GNSS信息的原有生效时间调整时域和/或频域同步,或者可在当前GNSS信息的扩展生效时间内,根据预设调整值或偏移调整值,调整时域和/或频域同步,或者可在当前GNSS信息的扩展生效时间内的调整时间上,根据预设调整值或偏移调整值,调整时域和/或频域同步,等等,在此不进行具体限定。
通过应用本实施例提供的时频同步的调整方法,可根据基站发送的配置信息检测基站发送的时域和/或频域同步相关的调整信息,根据时域和/或频域同步相关的调整信息调整时域和/或频域同步。可以有效的保证终端的时域或是频域的同步误差维持在合理的范围内,提高时域或是频域同步的精准性。同时还可降低终端设备执行GNSS信息测量的频率,降低终端设备的能量消耗,并且满足用户对时域同步和/或频域同步调整的个性化需求。
上述本申请提供的实施例中,分别从终端设备、基站的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端设备、基站可以包括硬件结构、软件模块,以 硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
与上述几种实施例提供的时频同步的调整方法相对应,本公开还提供一种时频同步的调整装置,由于本公开实施例提供的时频同步的调整装置与上述几种实施例提供的时频同步的调整方法相对应,因此时频同步的调整方法的实施方式也适用于本实施例提供的时频同步的调整装置,在本实施例中不再详细描述。
图11为根据本公开实施例提供的一种时频同步的调整装置800的结构示意图,该时频同步的调整装置800可为终端设备。
如图11所示,该装置800可包括:
接收模块810,可用于接收基站发送的配置信息;
处理模块820,可用于根据配置信息检测基站发送的时频调整信息,时频调整信息为时域和/或频域同步相关的调整信息;
处理模块820,还可用于根据时频调整信息调整时域和/或频域同步。
在本公开的一些实施例中,处理模块820,可用于根据配置信息,在上行时间间隔内检测时频调整信令,时频调整信令中包含时频调整信息,配置信息包括第一格式、待检时域资源位置以及待检频域资源位置,第一格式为时频调整信令的信令格式。
在本公开的一些实施例中,接收模块810,可用于根据配置信息,在上行时间间隔内的预设时域单元上检测时频调整信令,时频调整信令中包含时频调整信息,配置信息包括第一格式以及待检频域资源位置,第一格式为时频调整信令的信令格式。
在本公开的一些实施例中,处理模块820,还可用于确定基站配置的上行时间间隔。
在本公开的一些实施例中,处理模块820,根据配置信息,检测控制指令,控制指令的信息域上携带有时频调整信息,配置信息包括第二格式、待检时域资源位置以及待检频域资源位置,第二格式为控制指令的指令格式;基于信息域的位置信息,在控制指令上检测时频调整信息。
在本公开的一些实施例中,处理模块820,还可用于确定预先定义的信息域的位置信息;或,接收模块810,还可用于接收基站发送的信息域的位置配置,位置配置用于配置信息域的位置信息;其中,信息域的位置信息包括信息域的位置和长度中的至少一项。
在本公开的一些实施例中,时频调整信息包括预设调整值,或当前时频的偏移调整值,处理模块820,可用于根据预设调整值或偏移调整值,调整时域和/或频域同步。
在本公开的一些实施例中,接收模块810,还可用于接收全球导航卫星系统GNSS信息的生效时间配置信息;和/或,接收全球导航卫星系统GNSS信息的扩展时间配置信息。
在本公开的一些实施例中,处理模块820,还可用于根据生效时间配置信息,确定当前GNSS信息的生效时间;和/或,根据扩展时间配置信息,更新当前GNSS信息的生效时间。
在本公开的一些实施例中,处理模块820,可用于根据时频调整信息,在当前GNSS信息的生效时间内执行时域同步和/或频域同步的调整。
在本公开的一些实施例中,处理模块820,还可用于根据时频调整信息的应用时间指示,确定时频同步的调整时间;在调整时间上执行时域同步和/或频域同步的调整。
在本公开的一些实施例中,接收模块810,还可用于接收基站发送的时频调整信息的应用时间指示。
图12为根据本公开实施例提供的一种时频同步的调整装置900的结构示意图,该时频同步的调整装置900可为基站。
如图12所示,该装置900可包括:
发送模块910,可用于向终端设备发送配置信息,配置信息用于检测时频调整信息。
在本公开的一些实施例中,发送模块910,可用于向终端设备发送包括第一格式、待检时域资源位置以及待检频域资源位置的配置信息,配置信息用于在上行时间间隔内检测时频调整信令,第一格式为时频调整信令的信令格式。
在本公开的一些实施例中,发送模块910,可用于向终端设备发送包括第一格式以及待检频域资源位置的配置信息,配置信息用于在上行时间间隔内的预设时域单元上检测时频调整信令,第一格式为时频调整信令的信令格式。
在本公开的一些实施例中,发送模块910,可用于向终端设备发送包括第二格式、待检时域资源位置以及待检频域资源位置的配置信息,配置信息用于检测控制指令,控制指令的信息域上携带有时频调整信息,第二格式为控制指令的指令格式。
在本公开的一些实施例中,发送模块910,可用于向终端设备发送上行时间间隔。
在本公开的一些实施例中,发送模块910,可用于向终端设备发送信息域的位置配置,位置配置用于配置信息域的位置信息;其中,信息域的位置信息包括信息域的位置和长度中的至少一项。
在本公开的一些实施例中,发送模块910,可用于向终端设备发送全球导航卫星系统GNSS信息的生效时间配置信息,生效时间配置信息用于确定当前GNSS信息的生效时间;和/或,向终端设备发送全球导航卫星系统GNSS信息的扩展时间配置信息,扩展时间配置信息用于更新当前GNSS信息的生效时间。
在本公开的一些实施例中,发送模块910,可用于向终端设备发送时频调整信息的应用时间指示,应用时间指示用于确定时频同步的调整时间。
请参见图13,图13是本申请实施例提供的一种通信装置1000的结构示意图。通信装置1000可以是网络设备,也可以是用户设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持用户设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1000可以包括一个或多个处理器1001。处理器1001可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1000中还可以包括一个或多个存储器1002,其上可以存有计算机程序1004,处理器1001执行计算机程序1004,以使得通信装置1000执行上述方法实施例中描述的方法。可选的,存储器1002中还可以存储有数据。通信装置1000和存储器1002可以单独设置,也可以集成在一起。
可选的,通信装置1000还可以包括收发器1005、天线1006。收发器1005可以称为收发单元、收 发机、或收发电路等,用于实现收发功能。收发器1005可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1000中还可以包括一个或多个接口电路1007。接口电路1007用于接收代码指令并传输至处理器1001。处理器1001运行代码指令以使通信装置1000执行上述方法实施例中描述的方法。
在一种实现方式中,处理器1001中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1001可以存有计算机程序1003,计算机程序1003在处理器1001上运行,可使得通信装置1000执行上述方法实施例中描述的方法。计算机程序1003可能固化在处理器1001中,该种情况下,处理器1001可能由硬件实现。
在一种实现方式中,通信装置1000可以包括电路,该电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者用户设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图13的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如该通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图14所示的芯片的结构示意图。图14所示的芯片包括处理器1101和接口1102。其中,处理器1101的数量可以是一个或多个,接口1102的数量可以是多个。
可选的,芯片还包括存储器1103,存储器1103用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical  block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行计算机程序时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。
此外,应该理解,本申请的各种实施例可以单独实施,也可以在方案允许的情况下与其他实施例组合实施。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (25)

  1. 一种时频同步的调整方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    接收基站发送的配置信息;
    根据所述配置信息检测基站发送的时频调整信息,所述时频调整信息为时域和/或频域同步相关的调整信息;
    根据所述时频调整信息调整时域和/或频域同步。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述配置信息检测基站发送的时频调整信息,包括:
    根据所述配置信息,在上行时间间隔内检测时频调整信令,所述时频调整信令中包含时频调整信息,所述配置信息包括第一格式、待检时域资源位置以及待检频域资源位置,所述第一格式为所述时频调整信令的信令格式。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述配置信息检测基站发送的时频调整信息,包括:
    根据所述配置信息,在上行时间间隔内的预设时域单元上检测时频调整信令,所述时频调整信令中包含时频调整信息,所述配置信息包括第一格式以及待检频域资源位置,所述第一格式为所述时频调整信令的信令格式。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    确定基站配置的上行时间间隔。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述配置信息检测基站发送的时频调整信息,包括:
    根据所述配置信息,检测控制指令,所述控制指令的信息域上携带有时频调整信息,所述配置信息包括第二格式、待检时域资源位置以及待检频域资源位置,所述第二格式为所述控制指令的指令格式;
    基于所述信息域的位置信息,在所述控制指令上检测时频调整信息。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    确定预先定义的所述信息域的位置信息;或,
    接收基站发送的所述信息域的位置配置,所述位置配置用于配置所述信息域的位置信息;
    其中,所述信息域的位置信息包括所述信息域的位置和长度中的至少一项。
  7. 根据权利要求1所述的方法,其特征在于,所述时频调整信息包括预设调整值,或当前时频的偏移调整值,所述根据所述时频调整信息调整时域和/或频域同步,包括:
    根据所述预设调整值或所述偏移调整值,调整时域和/或频域同步。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    接收全球导航卫星系统GNSS信息的生效时间配置信息;和/或,
    接收全球导航卫星系统GNSS信息的扩展时间配置信息。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    根据所述生效时间配置信息,确定当前GNSS信息的生效时间;和/或,
    根据所述扩展时间配置信息,更新当前GNSS信息的生效时间。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述时频调整信息调整时域和/或频域同步,包括:
    根据所述时频调整信息,在所述当前GNSS信息的生效时间内执行时域同步和/或频域同步的调整。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述时频调整信息的应用时间指示,确定时频同步的调整时间;
    在所述调整时间上执行时域同步和/或频域同步的调整。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    接收基站发送的所述时频调整信息的应用时间指示。
  13. 一种时频同步的调整方法,其特征在于,所述方法由基站执行,所述方法包括:
    向终端设备发送配置信息,所述配置信息用于检测时频调整信息。
  14. 根据权利要求13所述的方法,其特征在于,所述向终端设备发送配置信息,包括:
    向终端设备发送包括第一格式、待检时域资源位置以及待检频域资源位置的配置信息,所述配置信息用于在上行时间间隔内检测时频调整信令,所述第一格式为所述时频调整信令的信令格式。
  15. 根据权利要求13所述的方法,其特征在于,所述向终端设备发送配置信息,包括:
    向终端设备发送包括第一格式以及待检频域资源位置的配置信息,所述配置信息用于在上行时间间隔内的预设时域单元上检测时频调整信令,所述第一格式为所述时频调整信令的信令格式。
  16. 根据权利要求13所述的方法,其特征在于,所述向终端设备发送配置信息,包括:
    向终端设备发送包括第二格式、待检时域资源位置以及待检频域资源位置的配置信息,所述配置信息用于检测控制指令,所述控制指令的信息域上携带有时频调整信息,所述第二格式为所述控制指令的指令格式。
  17. 根据权利要求14或15所述的方法,其特征在于,所述方法还包括:
    向终端设备发送上行时间间隔。
  18. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    向终端设备发送所述信息域的位置配置,所述位置配置用于配置所述信息域的位置信息;
    其中,所述信息域的位置信息包括所述信息域的位置和长度中的至少一项。
  19. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    向终端设备发送全球导航卫星系统GNSS信息的生效时间配置信息,所述生效时间配置信息用于确定当前GNSS信息的生效时间;和/或,
    向终端设备发送全球导航卫星系统GNSS信息的扩展时间配置信息,所述扩展时间配置信息用于更新当前GNSS信息的生效时间。
  20. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    向终端设备发送所述时频调整信息的应用时间指示,所述应用时间指示用于确定时频同步的调整时间。
  21. 一种终端设备,其特征在于,所述终端设备包括:
    接收模块,用于接收基站发送的配置信息;
    处理模块,用于根据所述配置信息检测基站发送的时频调整信息,所述时频调整信息为时域和/或频域同步相关的调整信息;
    所述处理模块,还用于根据所述时频调整信息调整时域和/或频域同步。
  22. 一种基站,其特征在于,所述基站包括:
    发送模块,用于向终端设备发送配置信息,所述配置信息用于检测时频调整信息。
  23. 一种通信设备,其中,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现权利要求1-20中任一项所述的方法。
  24. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现权利要求1-20中任一项所述的方法。
  25. 一种通信系统,包括终端以及基站,其中,
    所述终端设备用于执行如权利要求1-12中任一项所述的方法,
    所述基站用于执行如权利要求13-20中任一项所述的方法。
PCT/CN2022/130042 2022-11-04 2022-11-04 时频同步的调整方法及装置 WO2024092773A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/130042 WO2024092773A1 (zh) 2022-11-04 2022-11-04 时频同步的调整方法及装置
CN202280004046.3A CN116034609A (zh) 2022-11-04 2022-11-04 时频同步的调整方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130042 WO2024092773A1 (zh) 2022-11-04 2022-11-04 时频同步的调整方法及装置

Publications (1)

Publication Number Publication Date
WO2024092773A1 true WO2024092773A1 (zh) 2024-05-10

Family

ID=86091412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130042 WO2024092773A1 (zh) 2022-11-04 2022-11-04 时频同步的调整方法及装置

Country Status (2)

Country Link
CN (1) CN116034609A (zh)
WO (1) WO2024092773A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018028554A1 (zh) * 2016-08-08 2018-02-15 中国移动通信有限公司研究院 一种信号发送方法、接收方法、基站及终端
CN111165045A (zh) * 2017-11-02 2020-05-15 Oppo广东移动通信有限公司 用于配置资源的方法、终端设备和网络设备
WO2020221055A1 (zh) * 2019-04-30 2020-11-05 华为技术有限公司 接收数据和发送数据的方法、通信装置
WO2021062680A1 (zh) * 2019-09-30 2021-04-08 Oppo广东移动通信有限公司 数据传输方法及相关设备
CN113395713A (zh) * 2020-03-12 2021-09-14 中国电信股份有限公司 时隙间的跳频方法、终端设备、基站和跳频系统
WO2022151502A1 (zh) * 2021-01-18 2022-07-21 Oppo广东移动通信有限公司 配置srs传输资源的方法、终端设备及网络设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018028554A1 (zh) * 2016-08-08 2018-02-15 中国移动通信有限公司研究院 一种信号发送方法、接收方法、基站及终端
CN111165045A (zh) * 2017-11-02 2020-05-15 Oppo广东移动通信有限公司 用于配置资源的方法、终端设备和网络设备
WO2020221055A1 (zh) * 2019-04-30 2020-11-05 华为技术有限公司 接收数据和发送数据的方法、通信装置
WO2021062680A1 (zh) * 2019-09-30 2021-04-08 Oppo广东移动通信有限公司 数据传输方法及相关设备
CN113395713A (zh) * 2020-03-12 2021-09-14 中国电信股份有限公司 时隙间的跳频方法、终端设备、基站和跳频系统
WO2022151502A1 (zh) * 2021-01-18 2022-07-21 Oppo广东移动通信有限公司 配置srs传输资源的方法、终端设备及网络设备

Also Published As

Publication number Publication date
CN116034609A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
WO2023184457A1 (zh) 生效时间确定方法及装置
WO2023216080A1 (zh) 一种用于触发位置信息上报的方法及其装置
WO2024092773A1 (zh) 时频同步的调整方法及装置
WO2023245684A1 (zh) 全球导航卫星系统gnss定位测量方法及装置
CN116157706A (zh) 全球导航卫星系统gnss定位测量方法及装置
WO2024065197A1 (zh) 全球导航卫星系统gnss信息的生效时间确定方法及装置
WO2024065223A1 (zh) 全球导航卫星系统gnss信息的测量方法及装置
WO2022027370A1 (zh) 一种移动性测量方法及装置
WO2024092775A1 (zh) 定位测量方法、装置、通信设备及存储介质
WO2024092662A1 (zh) 时间信息上报方法、装置、通信设备及存储介质
WO2024124434A1 (zh) 载波测量方法、装置及通信设备
WO2023023904A1 (zh) 用于ntn网络中的ta有效时间的确定方法及其装置
WO2024060144A1 (zh) 终端位置信息的验证方法、装置、通信设备及存储介质
WO2024098308A1 (zh) 一种确定定位卫星的方法及装置
WO2024050784A1 (zh) Ta调整的生效时间确定方法及装置
WO2024016362A1 (zh) 网络感知服务的处理方法及装置
WO2023240417A1 (zh) 一种指示全球导航卫星系统gnss测量的方法及其装置
WO2024007344A1 (zh) 测量间隔配置方法及装置
WO2023123474A1 (zh) 一种非地面网络中无随机接入信道切换的方法及其装置
WO2023077471A1 (zh) 位置信息更新方法和装置
WO2024065132A1 (zh) 非地面网络通信方法, 装置, 通信设备及存储介质
WO2024092825A1 (zh) 终端设备位置验证方法及装置
US20240172015A1 (en) Start control method for measurement for non-serving cell, communication device, and storage medium
WO2024011637A1 (zh) 一种轨道角动量oam模态切换方法、装置、设备及存储介质
WO2023173380A1 (zh) 一种指示无线资源管理rrm要求增强的方法及其装置