WO2024092750A1 - 复合材料、微电极及其制备方法和应用 - Google Patents

复合材料、微电极及其制备方法和应用 Download PDF

Info

Publication number
WO2024092750A1
WO2024092750A1 PCT/CN2022/129991 CN2022129991W WO2024092750A1 WO 2024092750 A1 WO2024092750 A1 WO 2024092750A1 CN 2022129991 W CN2022129991 W CN 2022129991W WO 2024092750 A1 WO2024092750 A1 WO 2024092750A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
electrode
microelectrode
electrochemical
deposition
Prior art date
Application number
PCT/CN2022/129991
Other languages
English (en)
French (fr)
Inventor
曾齐
张翊
杨慧
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2022/129991 priority Critical patent/WO2024092750A1/zh
Publication of WO2024092750A1 publication Critical patent/WO2024092750A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells

Definitions

  • the invention belongs to the technical field of nano materials and bioelectronic materials, and in particular relates to a composite material, a microelectrode and a preparation method and application thereof.
  • Neural interfaces provide a window for recording biological signals and neural stimulation, which can be achieved by using microelectrodes as a bridge between tissues and external devices. They are widely used in implantable devices such as cochlear implants, artificial retinas, and brain stimulators. Although the miniaturization and integration of electrodes have met the needs of high-density portable, wearable, and implantable electronic products, their electrochemical properties such as impedance, charge storage capacity, and charge injection capacity need to be greatly improved to meet higher clinical stimulation/recording requirements. Therefore, it is necessary to modify the surface of the electrode to increase its effective area and improve the mechanical and electrochemical properties of the electrode.
  • a layer of rough or irregular platinum gray is deposited on the electrode surface to replace platinum black.
  • the coating has a certain degree of roughness, its electrochemical impedance is still high and its charge storage capacity is low, which limits its stimulation efficiency.
  • materials with Faraday pseudocapacitance properties such as iridium oxide and conductive polymers, have received a lot of attention in recent years.
  • Iridium oxide has the advantages of lower impedance and higher capacitance as a modified material, and has good biocompatibility, but the stress is large, and the adhesion performance with the electrode substrate is generally poor.
  • Conductive polymers have good conductivity and biocompatibility, and the stress matching between tissues is also good.
  • polypyrrole (PPy) and polyethylene dioxythiophene (PEDOT) are most widely used in modifying neural electrodes, but the adhesion to the substrate is also poor. Long-term electrical stimulation can cause the polymer film to rupture and fall off, so it is not suitable for neural electrode stimulation with strict biocompatibility requirements.
  • suitable bioadhesives can be added to improve the adhesion performance of conductive polymers, but it is relatively complicated.
  • the present invention aims to solve the technical problems existing in the prior art and provide a new microelectrode surface modification material, which has good adhesion to the substrate, can effectively improve the performance of neural electrodes, and can obtain excellent electrochemical detection performance and anti-biological contamination performance, and has a certain universality.
  • the present invention provides a composite material, which is a conductive polymer structure modified with a doped conductive polymer on the surface of metal nano-dendrites; the doped conductive polymer comprises polyethylene dioxythiophene and a dopant.
  • the dopant is any one of sodium dodecyl sulfate, stearic acid, sodium dodecylbenzene sulfonate, sodium polystyrene sulfonate, and amino acid;
  • the material of the metal nanodendrites is one of gold, silver, platinum, copper and titanium, or a composite of two of them.
  • the invention also provides a microelectrode, and the decorative material on the electrode is the composite material.
  • the present invention also provides a method for preparing the microelectrode as described above, comprising the following steps:
  • microelectrode array is ultrasonically cleaned in acetone or ethanol solution, and then acid-washed;
  • An electrochemical method is adopted to electrochemically deposit a layer of the doped conductive polymer on the surface of the metal nanodendrite.
  • the acid used for pickling is any one of dilute hydrochloric acid, dilute sulfuric acid, and aminosulfonic acid;
  • the electrochemical method is completed by an electrochemical workstation using a three-electrode system, with the modified electrode as the working electrode, the platinum sheet as the counter electrode, and the Ag/AgCl electrode as the reference electrode.
  • the material of the metal nanodendrites is gold nanodendrites, and the preparation method thereof is as follows:
  • Gold nanodendrites are obtained by electrochemical deposition under acidic conditions, wherein the concentration of the gold salt electrolyte is 0.05mM to 10mM, and the concentration of the acid is 0.05mM to 5mM; constant potential deposition is adopted, the voltage is -0.05V to -0.75V, or constant current deposition is adopted, the current is -0.01 ⁇ A to -1 ⁇ A, and the deposition time is 5min to 60min.
  • the gold salt is at least one of gold chloride, chloroauric acid, sodium chloroaurate, ammonium chloroaurate, and potassium chloroaurate; and the acid is any one of formic acid, sulfuric acid, nitric acid, acetic acid, hydrochloric acid, tartaric acid, and ascorbic acid.
  • the dopant is sodium dodecyl sulfate
  • an electrochemical method is used to electrochemically deposit a layer of the doped conductive polymer on the surface of the metal nanodendrite, in which a polyethylene dioxythiophene/sodium dodecyl sulfate electrolyte is mixed in a ratio of 0.01g to 10g SDS, 5 ⁇ L to 500 ⁇ L PEDOT and 50mL water; constant potential deposition is used with a voltage of 0.05V to 0.95V, or constant current deposition is used with a current of 0.01 ⁇ A to 1 ⁇ A, or cyclic voltammetry deposition is used with a voltage cycle range of 0.05V to 0.95V and a scanning speed of 5 to 500mV/s, or pulse deposition is used with a voltage of 0.05V to 0.95V and an on-off ratio of (5ms to 500ms): (1ms to 100ms); and the deposition time is 10s to 60min.
  • the present invention also provides an application of the composite material in the field of nerve electrode stimulation/recording, electrochemical sensing/catalysis, or anti-biological contamination.
  • the present invention also provides a multi-channel flexible electrode array, wherein the array units are the above-mentioned microelectrodes.
  • the composite material of the present invention is prepared into a conductive polymer by selecting a suitable dopant, and is modified and coated on the surface of a metal nanodendrite.
  • the metal nanodendrite can realize locally enhanced optical effects, electrical effects and thermal effects, so that the composite material has stable performance, a large area, low impedance, high charge storage capacity, and high charge injection capacity, and can be used to improve the electrical stimulation/recording efficiency of a neural electrode; at the same time, the composite material has good electrochemical activity and can be used for the detection of human physiological information (such as neurotransmitters such as dopamine), with a detection limit of less than 10 nM, high sensitivity, and good anti-interference and detection range; in addition, the composite material also has good antibacterial properties and can be used for anti-biological pollution and other aspects.
  • the microelectrode of the present invention adopts the composite material as the decorative material, which greatly increases the effective surface area of the electrode, improves the comprehensive performance of the electrode, and has good adhesion.
  • the preparation method of the microelectrode of the invention adopts electrochemical deposition method, has good plating uniformity and repeatability, is simple and easy to operate, and can be mass-produced.
  • FIG1 is a performance comparison diagram of a PEDOT/SDS film prepared in Example 1 of the present invention and a PEDOT/PSS film prepared in Comparative Example 1, wherein (a) and (c) correspond to PEDOT/PSS films, (b) and (d) correspond to PEDOT/PSS films, (a) and (b) are SEM images, and (c) and (d) are CV scanning test result images;
  • FIG2 is a comparison diagram of the electrochemical performance of the microelectrode of Example 2 of the present invention and the microelectrodes of Comparative Examples 2-4;
  • FIG3 is a SEM image of a PEDOT/SDS@Au composite material as a modified material in a microelectrode of Example 2 of the present invention
  • FIG4 is a graph showing the test results of the detection performance of the microelectrode of Example 2 of the present invention in a PBS solution for dopamine;
  • FIG5 is a comparison chart of the antibacterial performance test results of the microelectrodes of Example 2 of the present invention and Comparative Example 2;
  • FIG. 6 is a schematic diagram of the structure of a multi-channel flexible electrode array of the present invention.
  • the invention provides a composite material, which is a conductive polymer structure modified and doped on the surface of metal nano-dendrites; the doped conductive polymer comprises polyethylene dioxythiophene (PEDOT for short) and a dopant.
  • PEDOT polyethylene dioxythiophene
  • the dopant is any one of sodium dodecyl sulfate (SDS), stearic acid, sodium dodecylbenzene sulfonate, sodium polystyrene sulfonate, amino acid, etc., preferably SDS.
  • SDS sodium dodecyl sulfate
  • the material of the metal nanodendrites is one of gold, silver, platinum, copper, titanium, etc. or a composite of two of them, preferably gold.
  • the invention also provides a microelectrode, and the decorative material on the electrode is the composite material.
  • the present invention also provides a method for preparing the microelectrode as described above, comprising the following steps:
  • microelectrode array is ultrasonically cleaned in acetone or ethanol solution, and then acid-washed;
  • An electrochemical method is adopted to electrochemically deposit a layer of the doped conductive polymer on the surface of the metal nanodendrite.
  • the acid used for pickling is any one of dilute hydrochloric acid, dilute sulfuric acid, and aminosulfonic acid; the electrochemical method is completed by an electrochemical workstation using a three-electrode system, with the modified electrode as the working electrode, the platinum sheet as the counter electrode, and the Ag/AgCl electrode as the reference electrode.
  • the material of the metal nanodendrites is gold nanodendrites, and the preparation method thereof is as follows:
  • Gold nanodendrites are obtained by electrochemical deposition under acidic conditions, wherein the concentration of the gold salt electrolyte is 0.05mM to 10mM, and the concentration of the acid is 0.05mM to 5mM; constant potential deposition is adopted, the voltage is -0.05V to -0.75V, or constant current deposition is adopted, the current is -0.01 ⁇ A to -1 ⁇ A, and the deposition time is 5min to 60min.
  • the gold salt is at least one of gold chloride, chloroauric acid, sodium chloroaurate, ammonium chloroaurate, potassium chloroaurate, etc.
  • the acid is any one of formic acid, sulfuric acid, nitric acid, acetic acid, hydrochloric acid, tartaric acid, ascorbic acid, etc.
  • an electrochemical method is used to electrochemically deposit a layer of the doped conductive polymer on the surface of the metal nanodendrite, wherein the PEDOT/SDS electrolyte is mixed in a ratio of 0.01g to 10g SDS, 5 ⁇ L to 500 ⁇ L PEDOT and 50mL water; constant potential deposition is used with a voltage of 0.05V to 0.95V, or constant current deposition is used with a current of 0.01 ⁇ A to 1 ⁇ A, or cyclic voltammetry deposition is used with a voltage cycle range of 0.05V to 0.95V and a scanning speed of 5 to 500mV/s, or pulse deposition is used with a voltage of 0.05V to 0.95V and an on-off ratio of (5ms to 500ms): (1ms to 100ms); and the deposition time is 10s to 60 min.
  • the present invention also provides an application of the composite material in the field of nerve electrode stimulation/recording, electrochemical sensing/catalysis, or anti-biological contamination.
  • the present invention also provides a multi-channel flexible electrode array, wherein the array units are the above-mentioned microelectrodes.
  • the doped conductive polymer PEDOT/SDS film was prepared by electrochemical deposition.
  • the electrolyte composition was: 2g SDS, 80 ⁇ L PEDOT and 50mL water.
  • the deposition was carried out at a constant potential of 0.9V and the deposition time was 20min.
  • the doped conductive polymer PEDOT/PSS film was prepared by electrochemical deposition.
  • the electrolyte composition was: 2g PSS, 80 ⁇ L PEDOT and 50mL water.
  • the deposition was carried out at a constant potential of 0.9V and the deposition time was 20min.
  • FIG1 The performance comparison of the PEDOT/SDS film prepared in Example 1 and the PEDOT/PSS film prepared in Comparative Example 1 is shown in FIG1 . It can be seen from the figure that the PEDOT/PSS film is prone to cracks or even fall off during the electrochemical deposition process, while the PEDOT/SDS film is relatively intact and well bonded to the substrate under the same electrodeposition conditions. In addition, it can be seen from the CV scan that the PEDOT/SDS film has better overlap and more stable performance.
  • a self-made flexible Pt microelectrode array using MEMS technology is as follows:
  • a layer of polyimide film is spin-coated on a silicon wafer as a flexible substrate, and then a patterned metal platinum layer is prepared on the flexible substrate by magnetron sputtering and photolithography equipment as the conductive layer of the flexible microelectrode array.
  • a layer of polyimide film is spin-coated on the metal platinum layer as an electrode packaging layer, and the electrode points are exposed by plasma etching.
  • the flexible microelectrode array is peeled off from the silicon wafer and set aside.
  • a microelectrode using a composite material PEDOT/SDS@Au as an electrode modification material is as follows:
  • the flexible Pt microelectrode array prepared in Comparative Example 2 was placed in an acetone or ethanol solution for ultrasonic cleaning, and then placed in a dilute H 2 SO 4 solution for acid washing;
  • the Au nanodendrite structure was modified on the surface of the Pt electrode by electrochemical deposition process, specifically, in a mixed solution of 2 mM chloroauric acid and 0.5 mM formic acid, -0.3 V was applied to the working electrode and the deposition was carried out for 20 min;
  • PEDOT/SDS thin film was deposited on the surface of Au nanodendrites using an electrochemical deposition process.
  • the electrolyte composition was 2 g SDS, 80 ⁇ L PEDOT and 50 mL water.
  • the deposition was performed at 0.05-0.95 V cyclic voltammetry, with a scan rate of 80 mV/s and a deposition time of 20 min.
  • the flexible Pt microelectrode array prepared in Comparative Example 2 was placed in an acetone or ethanol solution for ultrasonic cleaning, and then placed in a dilute H 2 SO 4 solution for acid washing;
  • the Au nanodendrite structure was modified on the surface of the Pt electrode by electrochemical deposition process. Specifically, -0.3 V was applied to the working electrode in a mixed solution of 2 mM chloroauric acid and 0.5 mM formic acid, and the deposition was carried out for 20 minutes.
  • a microelectrode, a Pt electrode surface modified with a PEDOT/SDS film (denoted as PEDOT/SDS), is prepared as follows:
  • the flexible Pt microelectrode array prepared in Comparative Example 2 was placed in an acetone or ethanol solution for ultrasonic cleaning, and then placed in a dilute H 2 SO 4 solution for acid washing;
  • the PEDOT/SDS film was modified on the surface of the Pt electrode using an electrochemical deposition process.
  • the electrolyte composition was: 2 g SDS, 80 ⁇ L PEDOT and 50 mL water.
  • the cyclic voltammetry deposition was performed at 0.05-0.95 V, the scan rate was 80 mV/s, and the deposition time was 20 min.
  • FIG2 is a comparison diagram of the electrochemical performance of the microelectrode of Example 2 and the microelectrode of Comparative Examples 2-4. It can be seen from the figure that the microelectrode of Example 2 uses the composite material PEDOT/SDS@Au as the electrode modification material. From the CV graph, it can be seen that the charge storage capacity is the highest, much higher than other modified electrodes, and at least 20 times higher than the bare Pt electrode. From the EIS graph, it can be seen that the electrode modified with the PEDOT/SDS@Au composite material has the lowest impedance, which is more than 95% lower than the bare Pt electrode.
  • a multi-channel flexible electrode array can be prepared according to demand as shown in FIG6, combined with the above-mentioned nanomaterial modification, to achieve efficient multi-point stimulation and recording.
  • FIG3 is a SEM image of the modified material PEDOT/SDS@Au composite material in the microelectrode of Example 2. It can be seen from the figure that the microelectrode has a very large effective surface area.
  • the bacterial coverage on the surface of the microelectrode modified with the PEDOT/SDS@Au composite material is significantly lower than that of the bare Pt electrode, showing excellent antibacterial ability, and is expected to be well applied in the field of anti-biological contamination.
  • the composite material of the present invention is prepared into a conductive polymer by selecting a suitable dopant, and is modified and coated on the surface of a metal nanodendrite.
  • the metal nanodendrite can realize locally enhanced optical effects, electrical effects and thermal effects, so that the composite material has stable performance, a large area, low impedance, high charge storage capacity, and high charge injection capacity, and can be used to improve the electrical stimulation/recording efficiency of a neural electrode; at the same time, the composite material has good electrochemical activity and can be used for the detection of human physiological information (such as neurotransmitters such as dopamine), with a detection limit of less than 10 nM, high sensitivity, and good anti-interference and detection range; in addition, the composite material also has good antibacterial properties and can be used for anti-biological pollution and other aspects.
  • the microelectrode of the present invention adopts the composite material as the decorative material, which greatly increases the effective surface area of the electrode, improves the comprehensive performance of the electrode, and has good adhesion.
  • the preparation method of the microelectrode of the invention adopts electrochemical deposition method, has good plating uniformity and repeatability, is simple and easy to operate, and can be mass-produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

一种复合材料、微电极及其制备方法和应用,属于纳米材料和生物电子材料技术领域。该复合材料为金属纳米枝晶表面修饰掺杂的导电聚合物结构;所述掺杂的导电聚合物,包括聚乙烯二氧噻吩和掺杂剂。在微电极,电极材料上的装饰材料中使用该复合材料,极大地增加了电极的有效表面积,提高了电极的综合性能,且粘附力较好。所述微电极,采用电化学沉积法制备,镀层均匀性好,电化学和生物性能均较好,可重复性好,方法简单易操作,可批量生产。该复合材料在神经电极刺激/记录,或电化学传感/催化,或抗生物污染领域中具有广泛的应用。

Description

一种复合材料、微电极及其制备方法和应用 技术领域
本发明属于纳米材料和生物电子材料技术领域,尤其涉及一种复合材料、微电极及其制备方法和应用。
背景技术
神经接口为生物信号的记录和神经刺激等提供了一个窗口,这可以通过使用微电极作为组织和外部设备之间的桥梁来实现,广泛应用于人工耳蜗、人造视网膜、神脑刺激器等植入式器件。尽管电极的微型化和集成化发展,满足了高密度便携、可穿戴、可植入式电子产品的需求,但其电化学性能如阻抗、电荷存储能力和电荷注入能力等需要大幅改善,以满足临床更高的刺激/记录需求。因此,需要对电极进行表面修饰来增加其有效面积,改善电极的机械性能和电化学性能。
现有技术中,通过在电极表面沉积一层粗糙或不规则的铂灰来替换铂黑,该镀层虽然具有一定的粗糙镀,但其电化学阻抗仍较高,电荷存储能力较低,限制了其刺激效率;此外,具有法拉第赝电容性质的材料,如氧化铱和导电聚合物近年来获得许多关注,氧化铱作为修饰材料具有更低的阻抗和更高的电容优势,且生物相容性好,但应力较大,与电极衬底的粘附性能普遍不好;导电聚合物具有较好的电导率和生物相容性,与组织间的应力匹配也较好,其中聚吡咯(PPy)和聚乙烯二氧噻吩(PEDOT)在修饰神经电极中的应用最多,但与衬底的粘附力也较差,长时间的电刺激会使高分子膜发生破裂和脱落,因而不太适用于对生物兼容要求严格的神经电极刺激方面。另外,还可以添加合适的生物粘附剂,来改善导电聚合物的粘附性能,但相对较复杂。
发明内容
本发明旨在解决现有技术中存在的技术问题,提供一种新的微电极表面修 饰材料,与衬底的粘附力较好,可有效提高神经电极性能,并能获得优异的电化学检测性能和抗生物污染性能,具备一定的普适性。
为实现上述目的,本发明提供一种复合材料,为金属纳米枝晶表面修饰掺杂的导电聚合物结构;所述掺杂的导电聚合物,包括聚乙烯二氧噻吩和掺杂剂。
优选地,所述掺杂剂为十二烷基硫酸钠、硬脂酸、十二烷基苯磺酸钠、聚苯乙烯磺酸钠、氨基酸中的任意一种;
所述金属纳米枝晶的材质为金、银、铂、铜、钛中的一种或者两两相结合的复合物。
本发明还提供一种微电极,电极上的装饰材料为上述复合材料。
本发明还提供一种如上所述的微电极的制备方法,包括以下步骤:
将微电极阵列置于丙酮或乙醇溶液中超声清洗,再进行酸洗;
采用电化学方法,在所述微电极阵列上通过电化学沉积制备所述金属纳米枝晶;
采用电化学方法,在所述金属纳米枝晶表面通过电化学沉积一层所述掺杂的导电聚合物。
优选地,所述酸洗采用的酸为稀盐酸、稀硫酸、氨基磺酸中的任意一种;电化学方法均通过电化学工作站采用三电极体系完成,修饰电极作为工作电极,铂片为对电极,Ag/AgCl电极为参比电极。
优选地,所述金属纳米枝晶的材质为金纳米枝晶,其制备方法如下:
在酸性条件下通过电化学沉积得到金纳米枝晶,其中,金盐电解液的浓度为0.05mM~10mM,酸的浓度为0.05mM~5mM;采用恒电位沉积,电压为-0.05V~-0.75V,或恒电流沉积,电流为-0.01μA~-1μA,沉积时间为5min~60min。
优选地,所述金盐为氯化金、氯金酸、氯金酸钠、氯金酸铵、氯金酸钾中的至少一种;所述酸为甲酸、硫酸、硝酸、醋酸、盐酸、酒石酸、抗坏血酸中的任意一种。
优选地,所述掺杂剂为十二烷基硫酸钠,采用电化学方法在所述金属纳米枝晶表面通过电化学沉积一层所述掺杂的导电聚合物中,聚乙烯二氧噻吩/十二烷基硫酸钠电解液按0.01g~10g SDS,5μL~500μL PEDOT和50mL水的比例混合而成;采用恒电位沉积,电压为0.05V~0.95V,或恒电流沉积,电 流为0.01μA~1μA,或循环伏安沉积,电压循环范围为0.05V~0.95V,扫描速度为5~500mV/s,或脉冲沉积,电压为0.05V~0.95V,通断比为(5ms~500ms):(1ms~100ms);沉积时间为10s~60min。
本发明还提供一种上述复合材料在神经电极刺激/记录,或电化学传感/催化,或抗生物污染领域中的应用。
本发明还提供一种多通道的柔性电极阵列,所述阵列单元为上述微电极。
本发明采用上述技术方案的优点是:
本发明的复合材料,选择合适的掺杂剂制备成导电聚合物,修饰涂覆于金属纳米枝晶的表面,金属纳米枝晶能实现局域增强的光学效应、电学效应和热学效应,使得复合材料性能稳定,具有大面积、低阻抗、高电荷存储能力、高电荷注入能力,可用于提高神经电极的电刺激/记录效率;同时,该复合材料具有很好的电化学活性,可用于人体生理信息(如多巴胺等神经递质)的检测,检测限可达10nM以下,灵敏度高,并具有较好的抗干扰性和检测范围;另外,该复合材料还具有较好的抗菌性能,可用于抗生物污染等方面。
本发明的微电极,采用上述复合材料作为装饰材料,极大地增加了电极的有效表面积,提高了电极的综合性能,且粘附力较好。
本发明的微电极的制备方法,采用电化学沉积法制备,镀层均匀性好,可重复性好,方法简单易操作,可批量生产。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明的实施例1制备的PEDOT/SDS薄膜和对比例1制备的PEDOT/PSS薄膜的性能对比图,其中,(a)和(c)对应PEDOT/PSS薄膜,(b)和(d)对应PEDOT/PSS薄膜,(a)和(b)为SEM图,(c)和(d)为CV扫描测试结果图;
图2是本发明实施例2的微电极和对比例2-4的微电极的电化学性能对比图;
图3是本发明实施例2的微电极中修饰材料PEDOT/SDS@Au复合材料的SEM图;
图4是本发明实施例2的微电极在PBS溶液中多巴胺的检测性能测试结果图;
图5是本发明实施例2和对比例2的微电极的抗菌性能测试结果对比图;
图6是本发明多通道的柔性电极阵列的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明提供一种复合材料,为金属纳米枝晶表面修饰掺杂的导电聚合物结构;所述掺杂的导电聚合物,包括聚乙烯二氧噻吩(英文缩写为PEDOT)和掺杂剂。
其中,所述掺杂剂为十二烷基硫酸钠(英文缩写为SDS)、硬脂酸、十二烷基苯磺酸钠、聚苯乙烯磺酸钠、氨基酸等中的任意一种,优选为SDS。所述金属纳米枝晶的材质为金、银、铂、铜、钛等中的一种或者两两相结合的复合物,优选为金。
本发明还提供一种微电极,电极上的装饰材料为上述复合材料。
本发明还提供一种如上所述的微电极的制备方法,包括以下步骤:
将微电极阵列置于丙酮或乙醇溶液中超声清洗,再进行酸洗;
采用电化学方法,在所述微电极阵列上通过电化学沉积制备所述金属纳米枝晶;
采用电化学方法,在所述金属纳米枝晶表面通过电化学沉积一层所述掺杂的导电聚合物。
其中,所述酸洗采用的酸为稀盐酸、稀硫酸、氨基磺酸中的任意一种;电化学方法均通过电化学工作站采用三电极体系完成,修饰电极作为工作电极,铂片为对电极,Ag/AgCl电极为参比电极。
在一些优选实施例中,所述金属纳米枝晶的材质为金纳米枝晶,其制备方法如下:
在酸性条件下通过电化学沉积得到金纳米枝晶,其中,金盐电解液的浓度为0.05mM~10mM,酸的浓度为0.05mM~5mM;采用恒电位沉积,电压为-0.05V~-0.75V,或恒电流沉积,电流为-0.01μA~-1μA,沉积时间5min~60min。
其中,所述金盐为氯化金、氯金酸、氯金酸钠、氯金酸按、氯金酸钾等中的至少一种;所述酸为甲酸、硫酸、硝酸、醋酸、盐酸、酒石酸、抗坏血酸等中的任意一种。
当所述掺杂剂为SDS时,采用电化学方法在所述金属纳米枝晶表面通过电化学沉积一层所述掺杂的导电聚合物中,PEDOT/SDS电解液按0.01g~10g SDS,5μL~500μL PEDOT和50mL水的比例混合而成;采用恒电位沉积,电压为0.05V~0.95V,或恒电流沉积,电流为0.01μA~1μA,或循环伏安沉积,电压循环范围为0.05V~0.95V,扫描速度为5~500mV/s,或脉冲沉积,电压为0.05V~0.95V,通断比为(5ms~500ms):(1ms~100ms);沉积时间为10s~60 min。
本发明还提供一种上述复合材料在神经电极刺激/记录,或电化学传感/催化,或抗生物污染领域中的应用。
本发明还提供一种多通道的柔性电极阵列,所述阵列单元为上述微电极。
实施例1
掺杂的导电聚合物PEDOT/SDS薄膜,采用电化学法沉积制备,电解液组成为:2g SDS,80μL PEDOT和50mL水,0.9V恒电位沉积,沉积时间为20min。
对比例1
掺杂的导电聚合物PEDOT/PSS薄膜,采用电化学法沉积制备,电解液组成为:2g PSS,80μL PEDOT和50mL水,0.9V恒电位沉积,沉积时间为20min。
实施例1制备的PEDOT/SDS薄膜和对比例1制备的PEDOT/PSS薄膜的性能对比如图1所示,从图中可以看出,PEDOT/PSS薄膜在电化学沉积的过程中容易产生裂纹,甚至脱落,而在相同的电沉积条件下PEDOT/SDS薄膜则较为完整,与基底结合较好。另外,通过CV扫描也可以看出,PEDOT/SDS薄膜的重合性更好,性能更加稳定。
对比例2
一种利用MEMS工艺自制的柔性Pt微电极阵列,其制备过程如下:
首先在硅片上旋涂一层聚酰亚胺薄膜作为柔性基底,随后再通过磁控溅射和光刻设备在柔性基底上制备图案化的金属铂层作为柔性微电极阵列的导电层。随后,继续在金属铂层之上旋涂另外一层聚酰亚胺薄膜作为电极封装层,通过等离子刻蚀裸露出电极点。最后,将柔性微电极阵列从硅片上剥离下来,备用。
实施例2
一种微电极,采用复合材料PEDOT/SDS@Au作为电极修饰材料,制备过程如下:
将对比例2制备的柔性Pt微电极阵列置于丙酮或乙醇溶液中超声清洗,再置于稀H 2SO 4溶液中进行酸洗;
利用电化学沉积工艺在Pt电极表面修饰Au纳米枝晶结构,具体为在2mM氯金酸和0.5mM甲酸混合溶液中,对工作电极施加-0.3V,沉积20min;
利用电化学法沉积工艺在Au纳米枝晶表面沉积PEDOT/SDS薄膜,电解液组成为:2g SDS,80μL PEDOT和50mL水,0.05~0.95V循环伏安沉积,扫描速度为80mV/s,沉积时间为20min。
对比例3
一种微电极,Pt电极表面修饰Au纳米枝晶结构(记为Au nanocrystal),制备过程如下:
将对比例2制备的柔性Pt微电极阵列置于丙酮或乙醇溶液中超声清洗,再置于稀H 2SO 4溶液中进行酸洗;
利用电化学沉积工艺在Pt电极表面修饰Au纳米枝晶结构,具体为在2mM氯金酸和0.5mM甲酸混合溶液中,对工作电极施加-0.3V,沉积20min。
对比例4
一种微电极,Pt电极表面修饰PEDOT/SDS薄膜(记为PEDOT/SDS),制备过程如下:
将对比例2制备的柔性Pt微电极阵列置于丙酮或乙醇溶液中超声清洗,再置于稀H 2SO 4溶液中进行酸洗;
利用电化学沉积工艺在Pt电极表面修饰PEDOT/SDS薄膜,电解液组成为:2g SDS,80μL PEDOT和50mL水,0.05~0.95V循环伏安沉积,扫速为 80mV/s,沉积时间为20min。
图2为实施例2的微电极和对比例2-4的微电极的电化学性能对比图,从图中可以看出,实施例2的微电极采用复合材料PEDOT/SDS@Au作为电极修饰材料,从CV图可知,电荷存储能力最高,远高于其他修饰电极,相比裸Pt电极至少增大20倍。从EIS图可知,PEDOT/SDS@Au复合材料修饰的电极的阻抗最低,相比裸Pt电极降低95%以上,这得益于金纳米枝晶的大表面积和PEDOT的赝电容特性,极大地提高了电极性能,这对提高神经电极的工作效率是非常重要的。在实际应用中,可根据需求制备多通道的柔性电极阵列如图6所示,结合上述纳米材料修饰,实现高效的多点刺激与记录。
图3为实施例2的微电极中修饰材料PEDOT/SDS@Au复合材料的SEM图,从图中可以看出,微电极具有极大的有效表面积。
采用差分脉冲伏安法(DPV)测试实施例2的微电极在PBS溶液中多巴胺的检测性能,测试结果如图4所示。从图中可以看出,在0~80μM、80~500μM区间均有良好的线性关系,重复性好,灵敏度高,检测限可低至10nM以下。这主要是由于具有极大表面积的枝晶结构提供了丰富的活性位点,在检测过程中有利于放大待测物的响应信号,从而提高电极的检测能力有望广泛用于在体监测神经生理参数。
采用大肠杆菌菌株,在37℃的培养液中,以120转/分钟的转速晃动,制备新鲜的菌悬液。然后用该悬浮液接种对比例2的微电电极和实施例2的PEDOT/SDS@Au复合材料修饰微电极。在开始检测之前,需要对所有样品进行灭菌处理,具体为将样品在乙醇中浸泡至少1小时,然后用去离子水仔细冲洗。最后,把这些样品放在空气中晾干。将处理好的样品浸泡在5mL的细菌悬液中培养48h,然后在荧光显微镜下分析样品的细菌活力。检测结果如图5 所示,从图中可见,PEDOT/SDS@Au复合材料修饰微电极表面的细菌覆盖率要显著低于裸Pt电极,显示出了优异的抗菌能力,有望较好地应用于抗生物污染领域。
本发明采用上述技术方案的优点是:
本发明的复合材料,选择合适的掺杂剂制备成导电聚合物,修饰涂覆于金属纳米枝晶的表面,金属纳米枝晶能实现局域增强的光学效应、电学效应和热学效应,使得复合材料性能稳定,具有大面积、低阻抗、高电荷存储能力、高电荷注入能力,可用于提高神经电极的电刺激/记录效率;同时,该复合材料具有很好的电化学活性,可用于人体生理信息(如多巴胺等神经递质)的检测,检测限可达10nM以下,灵敏度高,并具有较好的抗干扰性和检测范围;另外,该复合材料还具有较好的抗菌性能,可用于抗生物污染等方面。
本发明的微电极,采用上述复合材料作为装饰材料,极大地增加了电极的有效表面积,提高了电极的综合性能,且粘附力较好。
本发明的微电极的制备方法,采用电化学沉积法制备,镀层均匀性好,可重复性好,方法简单易操作,可批量生产。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种复合材料,其特征在于,为金属纳米枝晶表面修饰掺杂的导电聚合物结构;所述掺杂的导电聚合物,包括聚乙烯二氧噻吩和掺杂剂。
  2. 根据权利要求1所述的复合材料,其特征在于,所述掺杂剂为十二烷基硫酸钠、硬脂酸、十二烷基苯磺酸钠、聚苯乙烯磺酸钠、氨基酸中的任意一种;
    所述金属纳米枝晶的材质为金、银、铂、铜、钛中的一种或者两两相结合的复合物。
  3. 一种微电极,其特征在于,电极材料上的装饰材料为权利要求1或2所述的复合材料。
  4. 一种权利要求3所述的微电极的制备方法,其特征在于,包括以下步骤:
    将微电极阵列置于丙酮或乙醇溶液中超声清洗,再进行酸洗;
    采用电化学方法,在所述微电极阵列上通过电化学沉积制备所述金属纳米枝晶;
    采用电化学方法,在所述金属纳米枝晶表面通过电化学沉积一层所述掺杂的导电聚合物。
  5. 根据权利要求4所述的微电极的制备方法,其特征在于,所述酸洗采用的酸为稀盐酸、稀硫酸、氨基磺酸中的任意一种;
    电化学方法均通过电化学工作站采用三电极体系完成,修饰电极作为工作电极,铂片为对电极,Ag/AgCl电极为参比电极。
  6. 根据权利要求5所述的微电极的制备方法,其特征在于,所述金属纳米枝晶的材质为金纳米枝晶,其制备方法如下:
    在酸性条件下通过电化学沉积得到金纳米枝晶,其中,金盐电解液的浓度为 0.05mM~10mM,酸的浓度为0.05mM~5mM;采用恒电位沉积,电压为-0.05V~-0.75V,或恒电流沉积,电流为-0.01μA~-1μA,沉积时间为5min~60min。
  7. 根据权利要求6所述的微电极的制备方法,其特征在于,所述金盐为氯化金、氯金酸、氯金酸钠、氯金酸铵、氯金酸钾中的至少一种;所述酸为甲酸、硫酸、硝酸、醋酸、盐酸、酒石酸、抗坏血酸中的任意一种。
  8. 根据权利要求6所述的微电极的制备方法,其特征在于,所述掺杂剂为十二烷基硫酸钠,采用电化学方法在所述金属纳米枝晶表面通过电化学沉积一层所述掺杂的导电聚合物中,聚乙烯二氧噻吩电解液按0.01g~10g SDS,5μL~500μL PEDOT和50mL水的比例混合而成;采用恒电位沉积,电压为0.05V~0.95V,或恒电流沉积,电流为0.01μA~1μA,或循环伏安沉积,电压循环范围为0.05V~0.95V,扫描速度为5~500mV/s,或脉冲沉积,电压为0.05V~0.95V,通断比为(5ms~500ms):(1ms~100ms);沉积时间为10s~60min。
  9. 一种权利要求1或2所述的复合材料在神经电极刺激/记录,或电化学传感/催化,或抗生物污染领域中的应用。
  10. 一种多通道的柔性电极阵列,其特征在于,所述阵列单元为权利要求3所述的微电极。
PCT/CN2022/129991 2022-11-04 2022-11-04 复合材料、微电极及其制备方法和应用 WO2024092750A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129991 WO2024092750A1 (zh) 2022-11-04 2022-11-04 复合材料、微电极及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129991 WO2024092750A1 (zh) 2022-11-04 2022-11-04 复合材料、微电极及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2024092750A1 true WO2024092750A1 (zh) 2024-05-10

Family

ID=90929337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129991 WO2024092750A1 (zh) 2022-11-04 2022-11-04 复合材料、微电极及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2024092750A1 (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102416269A (zh) * 2011-08-23 2012-04-18 北京航空航天大学 微/纳米界面分离网及其制备方法和用途
CN103613912A (zh) * 2013-11-15 2014-03-05 无锡中科光远生物材料有限公司 一种导电聚合物微电极阵列的制备方法
CN104328462A (zh) * 2014-09-29 2015-02-04 上海交通大学 导电聚合物-氨基酸复合镀层及其制备方法
CN106124592A (zh) * 2016-07-07 2016-11-16 上海交通大学 一种用于微电极修饰的复合材料电化学沉积制备方法
WO2017132507A1 (en) * 2016-01-29 2017-08-03 The University Of Florida Research Foundation, Inc. Pulsed sonoelectrodeposition and sonoelectropolymerization methods and structures formed therefrom
US20170342213A1 (en) * 2014-12-24 2017-11-30 Newsouth Innovations Pty Limited Electrically conductive polymeric material
CN108125677A (zh) * 2017-11-16 2018-06-08 深圳先进技术研究院 一种微电极及其制备方法
CN108492994A (zh) * 2018-03-22 2018-09-04 福州大学 一种用于染料敏化太阳能电池的硫化钨掺杂导电聚噻吩对电极的制备方法
CN108652618A (zh) * 2017-03-30 2018-10-16 深圳先进技术研究院 一种枝晶铂修饰的微电极阵列及其制备方法
US20190059772A1 (en) * 2017-08-29 2019-02-28 Northeastern University Nanomesh electrode structures and techniques for the formation thereof
US20200043628A1 (en) * 2018-08-01 2020-02-06 Industrial Technology Research Institute Conductive polymer composite material and capacitor
US20200058953A1 (en) * 2018-08-17 2020-02-20 Boston College Methods and compositions for gold dendrite-based biosensors
US20210260368A1 (en) * 2019-07-09 2021-08-26 Shenzhen Institutes Of Advanced Technology Microelectrode, preparation method thereof and neural prosthesis

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102416269A (zh) * 2011-08-23 2012-04-18 北京航空航天大学 微/纳米界面分离网及其制备方法和用途
CN103613912A (zh) * 2013-11-15 2014-03-05 无锡中科光远生物材料有限公司 一种导电聚合物微电极阵列的制备方法
CN104328462A (zh) * 2014-09-29 2015-02-04 上海交通大学 导电聚合物-氨基酸复合镀层及其制备方法
US20170342213A1 (en) * 2014-12-24 2017-11-30 Newsouth Innovations Pty Limited Electrically conductive polymeric material
WO2017132507A1 (en) * 2016-01-29 2017-08-03 The University Of Florida Research Foundation, Inc. Pulsed sonoelectrodeposition and sonoelectropolymerization methods and structures formed therefrom
CN106124592A (zh) * 2016-07-07 2016-11-16 上海交通大学 一种用于微电极修饰的复合材料电化学沉积制备方法
CN108652618A (zh) * 2017-03-30 2018-10-16 深圳先进技术研究院 一种枝晶铂修饰的微电极阵列及其制备方法
US20190059772A1 (en) * 2017-08-29 2019-02-28 Northeastern University Nanomesh electrode structures and techniques for the formation thereof
CN108125677A (zh) * 2017-11-16 2018-06-08 深圳先进技术研究院 一种微电极及其制备方法
CN108492994A (zh) * 2018-03-22 2018-09-04 福州大学 一种用于染料敏化太阳能电池的硫化钨掺杂导电聚噻吩对电极的制备方法
US20200043628A1 (en) * 2018-08-01 2020-02-06 Industrial Technology Research Institute Conductive polymer composite material and capacitor
US20200058953A1 (en) * 2018-08-17 2020-02-20 Boston College Methods and compositions for gold dendrite-based biosensors
US20210260368A1 (en) * 2019-07-09 2021-08-26 Shenzhen Institutes Of Advanced Technology Microelectrode, preparation method thereof and neural prosthesis

Similar Documents

Publication Publication Date Title
CN110618179A (zh) 一种基于纳米多孔金属膜的葡萄糖电化学微电极传感器
Cui et al. Poly (3, 4-ethylenedioxythiophene) for chronic neural stimulation
US8489202B2 (en) Adherent metal oxide coating forming a high surface area electrode
CN107422015B (zh) 金膜电极、电化学生物传感器电极、传感器及其制备方法
Petrossians et al. Surface modification of neural stimulating/recording electrodes with high surface area platinum-iridium alloy coatings
Wang et al. Protein adsorption under electrical stimulation of neural probe coated with polyaniline
CN108125677B (zh) 一种微电极及其制备方法
Lu et al. Activated iridium oxide films fabricated by asymmetric pulses for electrical neural microstimulation and recording
CN106124592A (zh) 一种用于微电极修饰的复合材料电化学沉积制备方法
Popescu et al. Poly (dopamine) assisted deposition of adherent PPy film on Ti substrate
WO2024092750A1 (zh) 复合材料、微电极及其制备方法和应用
CN212780624U (zh) 一种基于纳米多孔金属膜的葡萄糖电化学微电极传感器
CN112121237B (zh) 具备生物活性的脑深部植入复合导电涂层电极及制备方法
WO2024109839A2 (zh) 一种柔性石墨烯电极及其制备方法和应用
Yang et al. Chemical polymerization of conducting polymer poly (3, 4-ethylenedioxythiophene) onto neural microelectrodes
Li et al. Investigation of flexible electrodes modified by TiN, Pt black and IrO x
Karazehir et al. Gold nanoparticle/nickel oxide/poly (pyrrole-N-propionic acid) hybrid multilayer film: Electrochemical study and its application in biosensing
CN115627504A (zh) 一种复合材料、微电极及其制备方法和应用
EP3511706B1 (en) Microelectrode array and manufacturing method therefor
CN104328462A (zh) 导电聚合物-氨基酸复合镀层及其制备方法
US20200131655A1 (en) Procedure for the manufacturing of nanostructured platinum
CN112255302A (zh) 一种具备阴离子开关作用的仿生自组装膜的制备方法和应用
CN112626583B (zh) 一种导电基体软界面的构筑方法、微电极及应用
Zeng et al. High-performance Nanocrystal Platinum on Hierarchical Microelectrode for Biochemical Sensing
Xia et al. Surface modification of neural stimulating/recording microelectrodes with high-performance platinum-pillar coatings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964057

Country of ref document: EP

Kind code of ref document: A1