CN103613912A - 一种导电聚合物微电极阵列的制备方法 - Google Patents

一种导电聚合物微电极阵列的制备方法 Download PDF

Info

Publication number
CN103613912A
CN103613912A CN201310586340.2A CN201310586340A CN103613912A CN 103613912 A CN103613912 A CN 103613912A CN 201310586340 A CN201310586340 A CN 201310586340A CN 103613912 A CN103613912 A CN 103613912A
Authority
CN
China
Prior art keywords
xylol
preparation
microelectrode array
deposition
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310586340.2A
Other languages
English (en)
Other versions
CN103613912B (zh
Inventor
韩志超
许杉杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Zhongke Guangyuan Biomaterials Co Ltd
Original Assignee
Wuxi Zhongke Guangyuan Biomaterials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Zhongke Guangyuan Biomaterials Co Ltd filed Critical Wuxi Zhongke Guangyuan Biomaterials Co Ltd
Priority to CN201310586340.2A priority Critical patent/CN103613912B/zh
Publication of CN103613912A publication Critical patent/CN103613912A/zh
Application granted granted Critical
Publication of CN103613912B publication Critical patent/CN103613912B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

本发明涉及了一种导电聚合物微电极阵列的制备方法。本发明的主要制备方法为将金属、对二甲苯沉积和定型,再将掺杂聚磺酸苯乙烯的聚3,4-乙烯二氧噻吩(PEDOT:PSS)的沉积和定型。本发明能够简易地制备嵌有导电聚合物的微电极阵列;得到的电极具有很低的电阻,能够产生高质量的电生理信号。本发明提供了一种可靠的、简单的且不会降低其性能的制备聚合物微电极阵列的方法,具有代替商业用微电极阵列的前景。

Description

一种导电聚合物微电极阵列的制备方法
技术领域
本发明涉及一种聚合物微电极阵列领域,尤其涉及一种导电聚合物微电极阵列的制备方法。
背景技术
生物电子学方面,尤其是神经科学领域,微电极阵列的一个很大的优势就是它们可以利用膜技术整理成平面结构,从而方便神经元培养和大脑切片的试管性的研究。微电极阵列的应用需要电极之间的尺寸和距离都减小与神经网络的尺寸相匹配,同时要保持高质量的信号。随着电极尺寸的减小,其信号质量和刺激能力都会下降因为电极/电解质界面的电阻会增加。而这种电阻的增加主要归因于界面的电容,电容又与电极的面积有直接的关系。所以,需要使用具有非常大的表面积的介孔和纳米孔状的电极,这些电极主要是基于一些金属(如金、铂、铱)和纳米结构的材料(如碳纳米管和石墨烯)。把这些材料嵌入到微电极阵列中会增加设备的复杂性从而限制其实际使用性。
导电聚合物也是比较适于构建适于试管和活体应用的下一代微电极阵列,高的导电性和离子渗透性使得导电聚合物在生理环境中具有很低的电阻,这些性能能够增加电极的有效电化学表面积,从而减小电阻,也能够消除活体的异物反应,从而增强电生理活性的稳定性。共轭高分子对传统蚀刻技术所必须的强溶剂或高能量是非常敏感的,虽然原位电致聚合已经被成功用于在预先定型的微电极阵列上制备聚合物薄膜,必须用非常复杂的定型方法才能完善活性聚合物电极。因此需要一种更可靠的简单的而不会降低其性能的制备聚合物微电极阵列的方法。
发明内容
本发明涉及一种导电聚合物微电极阵列的制备方法。这种方法能够简易地制备嵌有导电聚合物的微电极阵列,得到的电极具有很低的电阻,能够产生高质量的电生理信号。
具体制备方法如下:
(1)金属沉积和定型:玻璃片用化学和等离子体方法充分的清洗,光刻胶旋涂到玻璃片上后用紫外光照射,再用MF-26显影剂显影,用金属蒸发器沉积5nm的钛和100nm的金,剥离过程通过将样品浸入不同比例的丙酮和异丙醇的混合溶剂中3~6h实现。
(2)对二甲苯沉积和定型:用旋涂机沉积3~7μm厚的对二甲苯C层,3-(三甲氧基甲硅烷基)丙基-甲基丙烯酸盐(A-174硅烷)用作金属基底上的对二甲苯层的第一层的粘合促进剂,工业清洗剂的稀释的溶液旋涂到对二甲苯的的层间,作为对二甲苯的第二层的抗粘合剂,基底用4~6μm厚的AZ9260光刻胶和AZ显影剂进行定型,然后利用氧气等离子体通过活性离子蚀刻技术制造缺口。
(3)掺杂聚磺酸苯乙烯的聚3,4-乙烯二氧噻吩(PEDOT:PSS)的沉积和定型:30~50mL水分散液和10~15mL的乙二醇、60~80μL的十二烷基苯基磺酸、3~6wt%的3-缩水甘油基丙氧基-三甲氧基硅烷(GOPS)混合,得到的悬浊液旋涂成400~450nm厚的薄膜,将牺牲层(对二甲苯)从微电极阵列的背面剥离掉;得到的设备在150~180℃烘焙3~6h后浸入到磷酸缓冲液(PBS)中以去除多余的低分子量化合物。
具体实施方式
为了加深对本发明的理解,下面结合实例对本发明做进一步的详述。
(1)金属沉积和定型:玻璃片用化学和等离子体方法充分的清洗,光刻胶(Shipley1813)旋涂到玻璃片上然后用紫外光照射,然后用MF-26显影剂显影,然后用金属蒸发器沉积5nm的钛和100nm的金,剥离通过将样品浸入丙酮和异丙醇(3:1)的混合溶剂中5h实现。
(2)对二甲苯沉积和定型:用旋涂机沉积4μm厚的对二甲苯C层。3-(三甲氧基甲硅烷基)丙基-甲基丙烯酸盐(A-174硅烷)用作金属基底上的对二甲苯层的第一层的粘合促进剂;工业清洗剂的稀释的溶液旋涂到对二甲苯的的层间,作为对二甲苯的第二层的抗粘合剂,基底用5μm厚的AZ9260光刻胶和AZ显影剂进行定型,然后利用氧气等离子体通过活性离子蚀刻技术制造缺口。
(3)掺杂聚磺酸苯乙烯的聚3,4-乙烯二氧噻吩(PEDOT:PSS)的沉积和定型:30mL水分散液和15mL的乙二醇、65μL的十二烷基苯基磺酸、5wt%的3-缩水甘油基丙氧基-三甲氧基硅烷(GOPS)混合,得到的悬浊液旋涂成380nm后的薄膜;最后,牺牲层(对二甲苯)从微电极阵列的背面剥离掉。得到的设备在160℃烘焙5h然后浸入到磷酸缓冲液(PBS)中以去除多余的低分子量化合物。

Claims (4)

1.一种导电聚合物微电极阵列的制备方法,其步骤如下:
(1)金属沉积和定型:
玻璃片用化学和等离子体方法充分的清洗,光刻胶旋涂到玻璃片上后用紫外光照射,再用MF-26显影剂显影,用金属蒸发器沉积5nm的钛和100nm的金,剥离过程通过将样品浸入丙酮和异丙醇的混合溶剂中3~6h实现;
(2)对二甲苯沉积和定型:
用旋涂机沉积3~7μm厚的对二甲苯C层,3-(三甲氧基甲硅烷基)丙基-甲基丙烯酸盐(A-174硅烷)用作金属基底上的对二甲苯层的第一层的粘合促进剂,工业清洗剂的稀释的溶液旋涂到对二甲苯的的层间,作为对二甲苯的第二层的抗粘合剂,基底用4~6μm厚的AZ9260光刻胶和AZ显影剂进行定型,然后利用氧气等离子体通过活性离子蚀刻技术制造缺口;
(3)掺杂聚磺酸苯乙烯的聚3,4-乙烯二氧噻吩的沉积和定型:
30~50mL水分散液和10~15mL的乙二醇、60~80μL的十二烷基苯基磺酸、3~6wt%的3-缩水甘油基丙氧基-三甲氧基硅烷(GOPS)混合,得到的悬浊液旋涂成400~450nm厚的薄膜,将牺牲层(对二甲苯)从微电极阵列的背面剥离掉,得到的设备在150~180℃烘焙3~6h后浸入到磷酸缓冲液(PBS)中以去除多余的低分子量化合物。
2.如权利要求1所述的制备方法,其特征在于:所述剥离用的混合溶剂中丙酮和异丙醇的比例为1:3~4:1。
3.如权利要求2所述的制备方法,其特征在于:所述剥离用的混合溶剂中丙酮和异丙醇的比例为3:1。
4.如权利要求1所述的制备方法,其特征在于:所述悬浊液成分中的水分散液、乙二醇、十二烷基苯基磺酸的混合体积分别为:30mL、15mL、65μL。
CN201310586340.2A 2013-11-15 2013-11-15 一种导电聚合物微电极阵列的制备方法 Expired - Fee Related CN103613912B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310586340.2A CN103613912B (zh) 2013-11-15 2013-11-15 一种导电聚合物微电极阵列的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310586340.2A CN103613912B (zh) 2013-11-15 2013-11-15 一种导电聚合物微电极阵列的制备方法

Publications (2)

Publication Number Publication Date
CN103613912A true CN103613912A (zh) 2014-03-05
CN103613912B CN103613912B (zh) 2016-04-13

Family

ID=50164634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310586340.2A Expired - Fee Related CN103613912B (zh) 2013-11-15 2013-11-15 一种导电聚合物微电极阵列的制备方法

Country Status (1)

Country Link
CN (1) CN103613912B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105470392A (zh) * 2015-12-09 2016-04-06 苏州大学 一种有机无机杂化太阳能电池及其制备方法
CN114813881A (zh) * 2022-05-09 2022-07-29 西安交通大学 一种基于有机电化学晶体管的生物传感器及检测方法
US11892424B2 (en) 2020-12-23 2024-02-06 Beijing Boe Technology Development Co., Ltd. Biological detection device, biological chip, microelectrode structure and manufacturing method thereof
WO2024092750A1 (zh) * 2022-11-04 2024-05-10 深圳先进技术研究院 复合材料、微电极及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101700869A (zh) * 2009-11-12 2010-05-05 上海交通大学 基于衬底图形化的柔性衬底生物微电极阵列制备方法
US20110125001A1 (en) * 2009-11-25 2011-05-26 Weileun Fang 3d microelectrode structure and method for assembling the same
CN102092674A (zh) * 2011-01-05 2011-06-15 东南大学 一种微电极阵列的制备方法
CN102730628A (zh) * 2012-06-08 2012-10-17 华中科技大学 一种碳微电极阵列结构的制备方法
CN103179928A (zh) * 2010-06-28 2013-06-26 贾瓦哈拉尓尼赫鲁高级科学研究中心 人造视网膜设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101700869A (zh) * 2009-11-12 2010-05-05 上海交通大学 基于衬底图形化的柔性衬底生物微电极阵列制备方法
US20110125001A1 (en) * 2009-11-25 2011-05-26 Weileun Fang 3d microelectrode structure and method for assembling the same
CN103179928A (zh) * 2010-06-28 2013-06-26 贾瓦哈拉尓尼赫鲁高级科学研究中心 人造视网膜设备
CN102092674A (zh) * 2011-01-05 2011-06-15 东南大学 一种微电极阵列的制备方法
CN102730628A (zh) * 2012-06-08 2012-10-17 华中科技大学 一种碳微电极阵列结构的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105470392A (zh) * 2015-12-09 2016-04-06 苏州大学 一种有机无机杂化太阳能电池及其制备方法
CN105470392B (zh) * 2015-12-09 2018-01-09 苏州大学 一种有机无机杂化太阳能电池及其制备方法
US11892424B2 (en) 2020-12-23 2024-02-06 Beijing Boe Technology Development Co., Ltd. Biological detection device, biological chip, microelectrode structure and manufacturing method thereof
CN114813881A (zh) * 2022-05-09 2022-07-29 西安交通大学 一种基于有机电化学晶体管的生物传感器及检测方法
WO2024092750A1 (zh) * 2022-11-04 2024-05-10 深圳先进技术研究院 复合材料、微电极及其制备方法和应用

Also Published As

Publication number Publication date
CN103613912B (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
Hong et al. Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels
Shi et al. Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversion
Kim et al. Tailored nanoarchitecturing of microporous ZIF-8 to hierarchically porous double-shell carbons and their intrinsic electrochemical property
Wu et al. Biodegradable gel electrolyte suppressing water-induced issues for long-life zinc metal anodes
Moussa et al. Self-assembly and cross-linking of conducting polymers into 3D hydrogel electrodes for supercapacitor applications
Sarker et al. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors
D’Arcy et al. Vapor-phase polymerization of nanofibrillar poly (3, 4-ethylenedioxythiophene) for supercapacitors
Li et al. Metal–organic frameworks as highly active electrocatalysts for high-energy density, aqueous zinc-polyiodide redox flow batteries
Kumar et al. Flexible, large-area, all-solid-state supercapacitors using spray deposited PEDOT: PSS/reduced-graphene oxide
Xiao et al. Controlled electrochemical synthesis of conductive polymer nanotube structures
Jiang et al. Poly (vinyl alcohol) borate gel polymer electrolytes prepared by electrodeposition and their application in electrochemical supercapacitors
Yuan et al. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure
Tiwari et al. Self-assembled polypyrrole hierarchical porous networks as the cathode and porous three dimensional carbonaceous networks as the anode materials for asymmetric supercapacitor
Fu et al. Sulfur–carbon nanocomposite cathodes improved by an amphiphilic block copolymer for high-rate lithium–sulfur batteries
Fang Synthesis and electrochemical characterization of vanadium oxide/carbon nanotube composites for supercapacitors
Rajesh et al. Electrochemical polymerization of chloride doped PEDOT hierarchical porous nanostructure on graphite as a potential electrode for high performance supercapacitor
CN103613912B (zh) 一种导电聚合物微电极阵列的制备方法
Gaboriau et al. Atomic layer deposition alumina-passivated silicon nanowires: probing the transition from electrochemical double-layer capacitor to electrolytic capacitor
Kim et al. Conformal polymeric multilayer coatings on sulfur cathodes via the layer-by-layer deposition for high capacity retention in Li–S batteries
Olivetti et al. Sol− gel synthesis of vanadium oxide within a block copolymer matrix
Zhang et al. Facile In Situ Chemical Cross-Linking Gel Polymer Electrolyte, which Confines the Shuttle Effect with High Ionic Conductivity and Li-Ion Transference Number for Quasi-Solid-State Lithium–Sulfur Battery
Jiang et al. Graphene hydrogel film adsorbed with redox-active molecule toward energy storage device with improved energy density and unfading superior rate capability
CN108172739A (zh) 锂硫电池的附加自组装层的羧基化隔膜及制备方法
Yin et al. Polyoxometalate-assisted synthesis of TiO2 nanoparticles and their applications in aqueous hybrid electrochemical capacitors
Gao et al. Flexible carbon cloth based polypyrrole for an electrochemical supercapacitor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160413

Termination date: 20171115