WO2024092609A1 - 一种智能驾驶车辆的esc激活方法和装置 - Google Patents

一种智能驾驶车辆的esc激活方法和装置 Download PDF

Info

Publication number
WO2024092609A1
WO2024092609A1 PCT/CN2022/129495 CN2022129495W WO2024092609A1 WO 2024092609 A1 WO2024092609 A1 WO 2024092609A1 CN 2022129495 W CN2022129495 W CN 2022129495W WO 2024092609 A1 WO2024092609 A1 WO 2024092609A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
esc
activation
ads
stability
Prior art date
Application number
PCT/CN2022/129495
Other languages
English (en)
French (fr)
Inventor
余慨
周勇有
王广义
凌铭泽
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/129495 priority Critical patent/WO2024092609A1/zh
Publication of WO2024092609A1 publication Critical patent/WO2024092609A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability

Definitions

  • the present application relates to the field of intelligent driving technology, and in particular to an ESC activation method and device for an intelligent driving vehicle.
  • the safe and stable boundaries of steering are calculated based on current information, and the steering/brake actuators are controlled within the actual stable boundaries.
  • ESC is not triggered or the probability of triggering is low.
  • the intelligent driving function exits directly, and the driver does not have time to react to the emergency situation of direct exit of ADS or take over the vehicle when the vehicle is unstable, which poses a safety risk.
  • the present application provides a method and device for activating the ESC function of a chassis stability control function of an intelligent driving vehicle, which is used to control the driving state of the vehicle before the vehicle activates the ESC and reduce the safety risk of the driver taking over the vehicle.
  • the present application provides an ESC activation method for an intelligent driving vehicle, wherein a vehicle management module for activating the ESC of the intelligent driving vehicle is used as an execution subject, and the method includes:
  • the vehicle management module When the vehicle turns on the intelligent driving function, the vehicle management module obtains the ESC activation probability; when the ESC activation probability is greater than the preset latching interval, the vehicle management module outputs the pre-exit signal and warning signal of the automatic driving system ADS; wherein the pre-exit signal is used to instruct the ADS to maintain the stability of the vehicle's driving state; the warning signal is used to prompt the driver to take over the vehicle. Then, the vehicle management module obtains the vehicle's stability parameters, which are used to characterize the stability characteristics of the vehicle's driving state; when the stability parameters meet the ESC activation conditions, the vehicle management module activates the ESC.
  • the vehicle management module obtains the ESC activation probability, and determines whether the ESC activation probability is greater than the latching interval; when the ESC activation probability is greater than the latching interval, the vehicle management module outputs a pre-exit signal, instructing the ADS to maintain the stability of the vehicle's driving state while outputting a warning signal to prompt the driver to take over the vehicle and give the driver time to react; and when it is determined that the acquired vehicle stability parameters meet the ESC activation conditions, the ESC is activated, so that the driver can safely take over the vehicle after the ESC is activated, reducing the safety risk of the driver taking over the vehicle when the vehicle mode is switched.
  • the vehicle management module obtains driving data of the vehicle and determines the ESC activation probability based on the driving data.
  • the vehicle management module can accurately determine the activation probability of ESC based on driving data.
  • the vehicle management module determines an activation factor based on driving data; wherein the activation factor includes at least one parameter of concentration, vehicle state parameters, and road adhesion coefficient, and the concentration is used to characterize the driver's ability to take over the vehicle after ADS exits; then, the vehicle management module determines the ESC activation probability based on the activation factor.
  • the vehicle management module can accurately determine the ESC activation probability based on at least one parameter among concentration, vehicle state parameters and road adhesion coefficient.
  • the vehicle management module normalizes the weights of the activation factors to obtain the ESC activation probability.
  • the vehicle management module sends a pre-exit signal to the ADS to determine that the vehicle enters the ADS pre-exit stage, and adjusts the steering, driving force and braking force of the vehicle through the ADS to control the driving state of the vehicle to be in a stable deceleration state.
  • the vehicle management module adjusts the vehicle's steering, driving force and braking force through ADS during the ADS pre-exit stage, controls the vehicle's driving state to be in a stable deceleration state, thereby controlling the vehicle's stability and providing a safety guarantee for the subsequent driver to take over the vehicle.
  • the vehicle management module determines whether the ESC activation probability is less than the latching interval; and when the ESC activation probability is greater than the latching interval, or when the ESC activation probability is within the latching interval, the vehicle management module acquires the stability parameter.
  • the vehicle management module counts the duration of the ESC activation probability being less than the latching interval, and when the duration is greater than a time threshold, stops outputting the pre-exit signal and the warning signal.
  • the vehicle management module After the vehicle management module outputs the pre-exit signal and the warning signal, the vehicle enters the ADS pre-exit stage, and controls the vehicle in a stable deceleration state during this stage to determine whether the ESC activation probability in the pre-exit stage is less than the latching interval; when the vehicle management module determines that the ESC activation probability is not less than the latching interval, the stability parameter is obtained to determine whether to activate the ESC to maintain the stability of the vehicle. When the vehicle management module determines that the ESC activation probability is less than the latching interval, it is determined that the vehicle is gradually stabilizing under the control of the ADS. At this time, the duration of the ESC activation probability being less than the latching interval is counted. When it is determined that the duration is greater than the time threshold, it is determined that the ADS controls the vehicle to regain stability, stops outputting the pre-exit signal and the warning signal, and the vehicle resumes the intelligent driving mode.
  • the vehicle management module activates ESC, determines that the vehicle enters the ESC activation stage, and exits ADS at the same time; during the ESC activation stage, the vehicle management module adjusts the steering, driving force and braking force of the vehicle through ESC to control the vehicle's driving state to be in a stable deceleration state; at the same time, the vehicle management module obtains stability parameters and determines whether the stability parameters meet the stability conditions; when it is determined that the stability parameters meet the stability conditions, the vehicle management module exits ESC.
  • the vehicle management module adjusts the vehicle's steering, driving force and braking force through ESC to control the vehicle's driving state to a stable deceleration state so that the vehicle can regain stability and provide a safe driving environment for the driver to take over the vehicle.
  • the vehicle management module after exiting ESC, the vehicle management module adjusts the vehicle's speed, driving force and braking force, controls the vehicle's driving state to be in a stable deceleration state, and determines whether the driver takes over the vehicle within the warning time period after the warning signal is output; and when it is determined that the driver has not taken over the vehicle within the warning time period, the vehicle management module controls the vehicle to brake.
  • the vehicle management module controls the vehicle to be in a stable deceleration state, providing safety protection for the driver to take over the vehicle. After determining that the driver has not taken over the vehicle within the warning time period, the vehicle is controlled to brake to a stop, which can ensure driving safety and avoid accidents.
  • the present application provides an ESC activation device for an intelligent driving vehicle, the device comprising:
  • a first acquisition unit is used to acquire the ESC activation probability when the vehicle turns on the intelligent driving function
  • an output unit configured to output a pre-exit signal and a warning signal of an automatic driving system ADS when the ESC activation probability is greater than a preset latching interval; wherein the pre-exit signal is used to instruct the ADS to maintain the stability of the vehicle driving state; and the warning signal is used to prompt the driver to take over the vehicle;
  • a second acquisition unit configured to acquire a stability parameter of the vehicle, wherein the stability parameter is used to characterize a stability characteristic of a driving state of the vehicle;
  • An activation unit is used to activate the ESC when the stability parameter meets the ESC activation condition.
  • the first acquiring unit is specifically configured to:
  • the ESC activation probability is determined according to the driving data.
  • the first acquiring unit is specifically configured to:
  • the activation factor comprising at least one parameter of concentration, a vehicle state parameter, and a road adhesion coefficient; the concentration is used to characterize the driver's ability to take over the vehicle after the ADS exits;
  • the ESC activation probability is determined according to the activation factor.
  • the first acquiring unit is specifically configured to:
  • the activation factors are weighted normalized to obtain the ESC activation probability.
  • the output unit is specifically used for:
  • the ADS is used to adjust the steering, driving force and braking force of the vehicle, so as to control the driving state of the vehicle to be in a stable deceleration state.
  • the second acquisition unit is further used to:
  • the duration of the ESC activation probability being less than the latching interval is counted; when the duration is greater than a time threshold, the output of the pre-exit signal and the warning signal is stopped.
  • the activation unit is specifically used for:
  • the steering, driving force and braking force of the vehicle are adjusted by the ESC to control the driving state of the vehicle to be in the stable deceleration state;
  • the stability parameter is obtained, and it is determined whether the stability parameter satisfies a stability condition; if the stability parameter satisfies the stability condition, the ESC is exited.
  • the activation unit is further configured to:
  • the vehicle is braked to a stop.
  • the present application provides an electronic device for use in an intelligent driving vehicle, the electronic device comprising a processor and a memory, wherein the memory stores one or more computer programs, the one or more computer programs comprising instructions, and when the processor calls the instructions, the communication device executes the ESC activation method for the intelligent driving vehicle of the first aspect mentioned above.
  • the present application provides an intelligent driving vehicle, which includes ESC, ADS and the ESC activation device described in the second aspect above.
  • the ESC activation device executes the method in the first aspect or any possible implementation of the first aspect.
  • the present application provides a computer-readable storage medium having a computer program or instructions stored thereon.
  • the computer program or instructions When executed, the computer executes the method in the above-mentioned first aspect or any possible implementation of the first aspect.
  • the present application provides a computer program product.
  • the computer executes the computer program product, the computer executes the method in the above-mentioned first aspect or any possible implementation manner of the first aspect.
  • FIG1 is a schematic flow chart of a possible ESC activation method for an intelligent driving vehicle according to a solution provided in an embodiment of the present application;
  • FIG2 is a schematic diagram of a possible vehicle driving state of the solution provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of another possible vehicle driving state of the solution provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of another possible vehicle driving state of the solution provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a complete process of a possible ESC activation method for an intelligent driving vehicle according to a solution provided in an embodiment of the present application;
  • FIG6 is a schematic diagram of a possible ESC activation system of the solution provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of the structure of an ESC activation device for an intelligent driving vehicle according to a solution provided in an embodiment of the present application;
  • FIG8 is a schematic diagram of the structure of an electronic device according to an embodiment of the present application.
  • FIG9 is a schematic diagram of the structure of an intelligent driving vehicle according to the solution provided in an embodiment of the present application.
  • the embodiment of the present application provides an ESC activation method and device for an intelligent driving vehicle.
  • the method and the device are based on the same concept. Since the method and the device solve the problem in a similar way, the implementation of the device and the method can refer to each other, and the repeated parts will not be repeated.
  • Chassis stability control function is a new type of active safety system of the vehicle. It is a further extension of the vehicle's antilock brake system (ABS) and traction control system (TCS). On this basis, it adds a yaw rate sensor, lateral acceleration sensor and steering wheel angle sensor when the vehicle is turning.
  • the electronic control unit controls the driving force and braking force of the front and rear wheels and the left and right wheels to ensure the lateral stability of the vehicle.
  • Road adhesion coefficient refers to the ratio of adhesion to wheel normal pressure (direction perpendicular to the road surface). In rough calculation, it can be regarded as the static friction coefficient between the tire and the road surface. It is determined by the road surface and the tire. The larger this coefficient is, the greater the available adhesion is, and the less likely the vehicle is to slip.
  • the safe and stable boundaries of steering are calculated based on current information, and the steering/brake actuators are controlled within the actual stable boundaries.
  • ESC is not triggered or the probability of triggering is low.
  • the intelligent driving function exits directly, and the driver does not have time to react to the emergency situation of direct exit of ADS or take over the vehicle when the vehicle is unstable, which poses a safety risk.
  • the embodiment of the present application provides an ESC activation method for an intelligent driving vehicle.
  • the vehicle management module obtains the ESC activation probability after the vehicle turns on the intelligent driving function; and when the ESC activation probability is greater than the preset latch interval, the vehicle management module outputs the pre-exit signal and warning signal of the autonomous driving system (ADS); wherein the pre-exit signal is used to instruct the ADS to maintain the stability of the vehicle's driving state, and the warning signal is used to prompt the driver to take over the vehicle; then, the vehicle management module obtains the stability parameters of the vehicle, wherein the stability parameters are used to characterize the stability characteristics of the vehicle's driving state; when the stability parameters meet the ESC activation conditions, the vehicle management module activates the ESC.
  • ADS autonomous driving system
  • FIG1 is a schematic diagram of an ESC activation method for an intelligent driving vehicle provided in an embodiment of the present application. The following description is made with a vehicle management module for activating the ESC of an intelligent driving vehicle as the execution subject. As shown in FIG1 , the method includes:
  • the vehicle management module obtains the vehicle's driving data and determines the ESC activation probability based on the acquired driving data.
  • the driving data includes but is not limited to: the driver's operation input information, the vehicle status information acquired by the vehicle sensor, the driver's image acquired by the in-vehicle camera, and the road surface image and environment image acquired by the out-vehicle camera.
  • the driver's operation input information includes but is not limited to: steering wheel angle, accelerator pedal travel, brake pedal travel;
  • the vehicle status information acquired by the sensor includes but is not limited to: lateral and longitudinal acceleration, wheel speed, vehicle speed, yaw angular velocity, sideslip angle, wheel slip rate.
  • the vehicle management module may perform S201 by the following steps:
  • the vehicle management module determines the activation factor based on the driving data.
  • the activation factor includes at least one parameter of concentration, vehicle state parameter, and road adhesion coefficient; the concentration is used to characterize the driver's ability to take over the vehicle after the ADS exits.
  • the vehicle management module can determine the activation factor in the following ways:
  • the vehicle management module determines the driver's concentration based on the driver image in the driving data.
  • the vehicle management module can input the acquired driver image into a trained image recognition model, extract features from the image based on the trained image recognition model, obtain facial feature parameters, and determine the concentration based on the facial feature parameters.
  • the vehicle management module can determine the driver's concentration based on the correspondence between the facial feature parameters and the concentration.
  • the sum of the concentrations corresponding to the multiple facial feature parameters is used as the driver's current concentration.
  • the vehicle management module determines a vehicle state parameter based on the vehicle state information in the driving data, wherein the vehicle state parameter includes at least one parameter of slip rate, sideslip angle deviation, yaw rate deviation, and lateral acceleration.
  • the vehicle management module can determine the vehicle status parameters in the following ways:
  • the vehicle management module may determine the slip rate of each wheel based on the wheel speed and vehicle speed in the vehicle status information, and take the maximum value of the slip rates of each wheel as the first slip rate; the vehicle management module takes the maximum value of the wheel slip rate in the vehicle status information as the second slip rate; the vehicle management module takes the slip rate obtained by fusing the first slip rate and the second slip rate through the Kalman filtering method as the vehicle status parameter.
  • the vehicle management module may use the lateral acceleration in the vehicle status information as a vehicle status parameter.
  • the vehicle management module can determine the lateral speed and longitudinal speed of the vehicle according to the vehicle state information, and determine the actual sideslip angle of the vehicle in the current state according to the determined longitudinal speed and lateral speed.
  • the vehicle management module can also input the vehicle state information into a linear 2-DOF vehicle model, and obtain an ideal sideslip angle based on the linear 2-DOF vehicle model.
  • the vehicle management module uses the difference between the actual sideslip angle and the ideal sideslip angle as the sideslip angle deviation.
  • the vehicle management module may select a linear 2-DOF vehicle model as a reference model, and take the center of mass sideslip angle ⁇ when the vehicle enters a stable state as a reference value; in order to ensure vehicle driving stability, the vehicle model limits the upper limit of the center of mass sideslip angle to
  • ⁇ g(b/u 2 +ma/k 2 L); and take the minimum value min ⁇ ,
  • represents the road adhesion coefficient in the vehicle status information
  • a represents the distance from the front axle to the center of mass
  • b represents the distance from the rear axle to the center of mass
  • k2 represents the rear wheel cornering stiffness
  • g represents the acceleration of gravity
  • m represents the vehicle weight
  • L represents the distance between the rear wheels.
  • the vehicle management module uses the yaw rate in the vehicle status information as the actual yaw rate; the vehicle management module inputs the vehicle status information into a vehicle model, and determines the ideal yaw rate based on the vehicle model; the vehicle management module uses the difference between the actual yaw rate and the ideal yaw rate as the yaw rate deviation.
  • the vehicle management module can input the vehicle state information into the linear 2-DOF vehicle model, take the yaw rate ⁇ when the vehicle enters a stable state as a reference value, and limit the yaw rate upper limit value
  • 0.85 ⁇ g/V x according to the vehicle model; wherein ⁇ represents the road adhesion coefficient in the vehicle state information, V x represents the longitudinal vehicle speed, and g represents the acceleration of gravity.
  • the vehicle model outputs the minimum value min ⁇ ,
  • the vehicle management module determines the road adhesion parameters based on the road image and the vehicle status information.
  • the vehicle management module can input the road surface image into the convolutional neural network, extract features of the road surface image based on the convolutional neural network, and obtain road surface features; and determine the first road surface adhesion coefficient according to the road surface features.
  • the convolutional neural network is pre-trained based on historical road surface images and historical road surface adhesion coefficients corresponding to the historical road surface images.
  • the vehicle management module can determine the second road adhesion coefficient according to the vehicle state information through the vehicle three-degree-of-freedom dynamic equation.
  • the vehicle management module may normalize the tire force based on the Dugoff tire model according to the vehicle state information, and determine the second road adhesion coefficient based on the three-degree-of-freedom dynamic equation using an EKF method.
  • the vehicle management module determines a road adhesion coefficient as a vehicle state parameter according to the first road adhesion coefficient and the second road adhesion coefficient.
  • the vehicle management module may adopt fuzzy theory to merge the first road adhesion number and the second road adhesion coefficient into a road adhesion coefficient.
  • the vehicle management module determines the ESC activation probability based on the activation factor.
  • the vehicle management module can normalize the weights of the activation factors to obtain the ESC activation probability.
  • the vehicle management module may determine the ESC activation probability by the following formula:
  • P act (ESC) represents the ESC activation probability
  • ⁇ 0 , ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 represent weight parameters
  • f 0 ( ⁇ ) represents the normalized slip rate
  • f 1 (a y ) represents the normalized lateral acceleration
  • f 2 ( ⁇ ) represents the normalized sideslip angle deviation
  • f 3 ( ⁇ ) represents the normalized yaw rate deviation
  • f 4 ( ⁇ ) represents the normalized road adhesion parameter
  • f 5 (x 1 , x 2 ...) represents the normalized concentration
  • x 1 and x 2 represent the facial feature parameters of the driver.
  • the vehicle management module When the ESC activation probability is greater than the preset latching interval, the vehicle management module outputs a pre-exit signal and a warning signal of the ADS.
  • the pre-exit signal is used to instruct the ADS to maintain the stability of the vehicle's driving state; the warning signal is used to prompt the driver to take over the vehicle.
  • the vehicle management module After determining the ESC activation probability, the vehicle management module determines whether the ESC activation probability is greater than a preset latching interval.
  • the vehicle management module determines that the possibility of activating the ESC in the current state of the vehicle is not high, and continues to obtain driving data to determine the ESC activation probability.
  • the vehicle management module determines that the vehicle may activate the ESC in the current state, keeps the output of the pre-exit signal enabled, and continues to acquire driving data to determine the ESC activation probability.
  • the output of the pre-exit signal is kept enabled, which can avoid the oscillation of the enable position of the pre-exit signal when the ESC activation probability fluctuates near the threshold of the latching interval.
  • the pre-exit signal can be output in time.
  • the vehicle management module if the ESC activation probability is greater than the latching interval, the vehicle management module outputs a pre-exit signal and a warning signal.
  • the warning signal output by the vehicle management module includes but is not limited to: a seat shaking signal, a voice prompt signal, and an image prompt signal.
  • the vehicle management module outputs a seat shaking signal to control the seat shaking to prompt the driver to take over the vehicle; the vehicle management module can output a voice prompt signal to prompt the driver to take over the vehicle; the vehicle management module can also output an image prompt signal on the vehicle's display interface to prompt the driver to take over the vehicle.
  • the vehicle management module may increase the intensity and frequency of the warning signal as the warning signal output time increases, so as to achieve a better effect of prompting the driver to take over the vehicle.
  • the vehicle management module determines that the ESC activation probability is greater than the latching interval, it outputs a seat shaking signal to remind the driver to take over the vehicle by shaking the seat. If the driver does not take over the vehicle within 30 seconds after the seat shaking signal is output, the vehicle management module adjusts the seat shaking signal to increase the frequency of the seat shaking to remind the driver to take over the vehicle as soon as possible.
  • the vehicle management module may output the pre-exit signal in S202 by the following steps:
  • the vehicle management module sends a pre-exit signal to the ADS to determine that the vehicle enters the ADS pre-exit stage.
  • the vehicle management module sends a pre-exit signal to the ADS to inform the ADS that the vehicle is about to activate ESC.
  • the ADS can maintain the stability of the vehicle's driving state to prevent the vehicle management module from activating ESC.
  • the vehicle management module adjusts the steering, driving force and braking force of the vehicle through the ADS to control the driving state of the vehicle to be in a stable deceleration state.
  • the vehicle management module when it sends the pre-exit signal to the ADS, it can also send ESC activation information to the ADS.
  • the ADS can adjust the steering, driving force and braking force of the vehicle according to the ESC activation information to control the driving state of the vehicle to be in a stable deceleration state.
  • the vehicle management mode can adjust the steering, driving force and braking force of the vehicle through ADS to control the vehicle's driving state to a stable deceleration state, so as to maintain the stability of the vehicle's driving state, thereby preventing the vehicle management module from activating ESC to maintain vehicle stability.
  • the vehicle management module may also determine whether the ESC activation probability is less than the latching interval.
  • the vehicle management module continues to determine the ESC activation probability during the ADS pre-exit phase, and determines whether the ESC activation probability is less than the latching interval.
  • the vehicle management module stops outputting the pre-exit signal and the warning signal.
  • the vehicle management module determines that the driving state of the vehicle is gradually becoming stable; the vehicle management module continues to determine the ESC activation probability, and counts the duration of the ESC activation probability being less than the latching interval.
  • the vehicle management module determines that the ESC activation probability is less than the duration of the latching interval is greater than the time threshold, it determines that the vehicle driving state has stabilized and stops outputting the pre-exit signal and the warning signal. At this time, the vehicle management module determines that the vehicle continues to use the intelligent driving function.
  • an embodiment of the present application provides a schematic diagram of the driving status of a vehicle.
  • the vehicle is in the intelligent driving stage, and the ADS takes over the vehicle normally.
  • the vehicle management module does not impose any restrictions on the ADS, and the vehicle management module does not output the enable flag of the pre-exit signal; and, under the control of the ADS in the intelligent driving stage, no braking force is applied to the vehicle, and the driving force and wheel angle of the vehicle show a gradual increasing trend.
  • the vehicle management module determines that the ESC activation probability is greater than the latch interval, it outputs the enable flag of the pre-exit signal to determine that the vehicle enters the ADS pre-exit stage.
  • the vehicle management module restricts the ADS from taking over the vehicle, and the ADS executes restriction measures after receiving the pre-exit signal; wherein, the restriction measures include but are not limited to: limiting the further increase of the wheel angle, limiting the further increase of the driving force, gradually increasing the braking torque, and slowly decelerating.
  • ADS implements restrictive measures, so that the wheel angle and driving force change from the previous current value greater than the target value to the current value and the target value are not much different, so that at time t2, the vehicle management module determines that the ESC activation probability is less than the latching interval; after time t2, ADS still implements restrictive measures, so that at time t3, the ESC activation probability determined by the vehicle management module is still less than the latching interval; that is, at time t2-t3, the ESC activation probability is always less than the latching interval.
  • restrictive measures so that at time t3, the ESC activation probability determined by the vehicle management module is still less than the latching interval; that is, at time t2-t3, the ESC activation probability is always less than the latching interval.
  • the vehicle management module acquires the stability parameter if the ESC activation probability is greater than the latching interval, or the ESC activation probability is within the latching interval.
  • the vehicle management module determines that the ESC activation probability is greater than the latching interval, or the ESC activation probability is within the latching interval, it determines that the vehicle is still in an unstable state after the ADS maintains the vehicle's driving state stable; the vehicle management module obtains stability parameters to determine whether it is necessary to activate the ESC to maintain the stability of the vehicle's driving state.
  • the vehicle management module obtains stability parameters of the vehicle; wherein the stability parameters are used to characterize the stability characteristics of the driving state of the vehicle.
  • the stability parameters include but are not limited to: yaw rate and center of mass sideslip angle.
  • the vehicle management module can obtain the stability parameters through existing stability parameter acquisition methods, or can obtain the stability parameters through other methods, which is not limited in the embodiments of the present application.
  • the vehicle management module determines whether the obtained stability parameters meet the ESC activation condition.
  • the ESC activation condition may be a condition that the vehicle is in an unstable state.
  • the ESC activation condition may be that the vehicle motion trajectory does not match the trajectory expected by the intelligent driving function, or the vehicle has an understeering trend, or the vehicle has an oversteering trend.
  • the vehicle management module determines the ESC activation probability and determines whether it is less than the latching interval.
  • the vehicle management module activates ESC.
  • the vehicle management module when the vehicle management module determines that the stability parameters meet the ESC activation conditions, it activates the ESC, determines that the vehicle enters the ESC activation phase, and exits the ADS.
  • the vehicle management module determines that the stability parameters meet the ESC activation conditions, it determines that the driving state of the vehicle is in an unstable state, activates the ESC, and controls the driving state of the vehicle to return to a stable state through the ESC.
  • the vehicle management module adjusts the steering, driving force and braking force of the vehicle through ESC to control the driving state of the vehicle to be in a stable deceleration state.
  • the vehicle management module obtains the stability parameters during the ESC activation phase and determines whether the stability parameters meet the stability conditions. If the stability parameters meet the stability conditions, the vehicle management module exits the ESC.
  • the vehicle management module after exiting the ESC, the vehicle management module adjusts the steering, driving force and braking force of the vehicle to control the vehicle's driving state to be in a stable deceleration state.
  • the vehicle management module determines whether the driver takes over the vehicle within the warning time period after the warning signal is output.
  • the vehicle management module controls the vehicle to brake to a stop.
  • the vehicle management module obtains driving data, determines the distance between the vehicle and the obstacle ahead, and determines the brake pressure value required to maintain the vehicle stable and stop according to the distance.
  • the vehicle management module sends the brake pressure value to the hydraulic unit so that the hydraulic unit adjusts the brake pressure to the brake pressure value to control the vehicle to stop.
  • an embodiment of the present application provides another schematic diagram of vehicle driving status.
  • the vehicle is in the intelligent driving stage, and the ADS takes over the vehicle normally.
  • the vehicle management module does not impose any restrictions on the ADS, and the vehicle management module does not output the enable flag of the pre-exit signal; and, under the control of the ADS in the intelligent driving stage, the vehicle is not braked, and the driving force and wheel angle of the vehicle are gradually increasing.
  • the vehicle management module determines that the ESC activation probability is greater than the latch interval, it outputs the enable flag of the pre-exit signal to determine that the vehicle enters the ADS pre-exit stage.
  • the vehicle management module restricts the ADS from taking over the vehicle, and the ADS executes restriction measures after receiving the pre-exit signal; wherein, the restriction measures include but are not limited to: limiting the further increase of the wheel angle, limiting the further increase of the driving force, gradually increasing the braking torque, and slowly decelerating.
  • the vehicle management module After entering the ADS pre-exit stage at time t1, it means that a series of measures executed by ADS in the ADS pre-exit stage have failed to restore vehicle stability in time, so that the current value of the wheel angle has been higher than the target value and continues to increase, the current value of the driving force has been higher than the target value and continues to increase, and the current value of the braking force is lower than the target value, so that at time t2, the vehicle's stability parameters meet the ESC activation conditions, and the vehicle management module outputs the ESC trigger flag, activates ESC, and exits ADS at the same time.
  • the vehicle management module determines that the vehicle's stability parameters meet the stability conditions, and exits ESC, at which time the ESC activation stage ends.
  • the vehicle management module determines that the vehicle enters the ESC exit phase and continues to reduce the wheel angle and driving torque while maintaining or reducing the brake pressure until the driver takes over the vehicle at t4, at which point the ESC exit phase ends.
  • the vehicle management module determines that the vehicle enters the human driver takeover mode.
  • an embodiment of the present application provides another schematic diagram of vehicle driving status.
  • the vehicle is in the intelligent driving stage.
  • the execution process of the ADS and the vehicle management module is the same as the execution process corresponding to the moment t0-t1 in FIG3.
  • the vehicle is in the ADS pre-exit stage.
  • the execution process of the ADS and the vehicle management module is the same as the execution process corresponding to the moment t1-t2 in FIG3.
  • the vehicle is in the ESC activation stage.
  • the execution process of the ESC and the vehicle management module is the same as the execution process corresponding to the moment t2-t3 in FIG3.
  • the vehicle management module determines that the stability parameters of the vehicle meet the stability conditions, and exits the ESC, and the ESC activation stage ends.
  • the vehicle management module determines that the vehicle has entered the ESC exit phase, and continues to reduce the wheel angle and driving torque, while maintaining or reducing the brake pressure.
  • the vehicle management module determines that the driver has not taken over the vehicle within the warning time corresponding to the warning signal, it maintains or reduces the braking force while reducing the wheel angle and driving force to 0.
  • the vehicle management module controls the vehicle to stop. After t4, the vehicle is in a braked state, and the vehicle management module controls the braking force to decrease.
  • the vehicle management module after determining that the vehicle has activated the intelligent driving function, the vehicle management module obtains the ESC activation probability, and determines whether the vehicle's driving state is stable based on whether the ESC activation probability is greater than the latching interval.
  • the vehicle management module outputs the ADS pre-exit signal, maintains the stability of the vehicle's driving state through ADS, and outputs a warning signal to prompt the driver to take over the vehicle; and when the vehicle management module determines that the vehicle's stability parameters meet the ESC activation conditions, it activates ESC, providing the driver with reaction time, reducing the safety risk of the driver taking over the vehicle after ADS exits.
  • FIG5 is a flow chart of an ESC activation method for an intelligent driving vehicle provided in an embodiment of the present application, and the specific flow of the method is described below with reference to FIG5 .
  • S501 The vehicle management module determines that the vehicle has activated the intelligent driving function.
  • the vehicle management module obtains the vehicle's driving data.
  • the driving data includes, but is not limited to, the driver's input information, the vehicle status information acquired by the vehicle sensor, the driver's image acquired by the in-vehicle camera, and the road surface image and environment image acquired by the out-vehicle camera.
  • the driver's input information includes, but is not limited to, the steering wheel angle, the accelerator pedal travel, and the brake pedal travel;
  • the vehicle status information acquired by the sensor includes, but is not limited to, the lateral and longitudinal acceleration, the wheel speed, the vehicle speed, the yaw rate, the sideslip angle, and the wheel slip rate.
  • the vehicle management module determines an activation factor according to the driving data, wherein the activation factor includes at least one parameter of concentration, vehicle state parameter, and road adhesion coefficient; the concentration is used to characterize the driver's ability to take over the vehicle after the ADS exits.
  • the process of the vehicle management module determining the activation factor according to the driving data is the same as the process described in the embodiment corresponding to A1 in S202 in FIG. 2 , and is not described again here.
  • the vehicle management module determines the ESC activation probability according to the activation factor.
  • the vehicle management module can normalize the weights of the activation factors to obtain the ESC activation probability.
  • the vehicle management module determines whether the ESC activation probability is greater than the latching interval; if so, execute step S506; if not, execute step S502.
  • the vehicle management module outputs a pre-exit signal and a warning signal of the ADS, wherein the pre-exit signal is used to instruct the ADS to maintain the stability of the vehicle's driving state; and the warning signal is used to prompt the driver to take over the vehicle.
  • the vehicle management module sends a pre-exit signal to the ADS to determine that the vehicle enters the ADS pre-exit stage.
  • the vehicle management module adjusts the steering, driving force and braking force of the vehicle through the ADS to control the driving state of the vehicle to be in a stable deceleration state.
  • the vehicle management module determines whether the ESC activation probability is less than the latching interval; if so, execute step S509; if not, execute step S513.
  • the vehicle management module counts the duration of the ESC activation probability being less than the latching interval.
  • the vehicle management module determines whether the duration is greater than a time threshold; if so, execute step S511; if not, execute step S508.
  • S511 The vehicle management module stops outputting the pre-exit signal and the warning signal.
  • the vehicle management module determines that the vehicle is traveling based on the intelligent driving function.
  • the vehicle management module obtains stability parameters.
  • step S514 The vehicle management module determines whether the stability parameters meet the ESC activation conditions; if so, execute step S515; if not, execute step S508.
  • the vehicle management module activates ESC, determines that the vehicle enters the ESC activation phase, and exits ADS.
  • the vehicle management module adjusts the steering, driving force and braking force of the vehicle through ESC to control the vehicle's driving state to be in a stable deceleration state.
  • S517 The vehicle management module obtains stability parameters.
  • the vehicle management module determines whether the stability parameters meet the stability conditions; if so, execute step S517; if so, execute step S519.
  • the vehicle management module adjusts the steering, driving force and braking force of the vehicle to control the vehicle's driving state to be in a stable deceleration state.
  • the vehicle management module determines whether the driver takes over the vehicle within the warning time period after the warning signal is output; if not, execute step S522; if yes, execute step S523.
  • the vehicle management module controls the vehicle to stop.
  • the vehicle management module determines that the vehicle is in human driving mode.
  • the embodiment of the present application also provides an ESC activation system, wherein the ESC activation system can be located in a vehicle management module or in other processing modules, and is applied to intelligent driving vehicles.
  • the ESC activation system includes: a detection unit, a decision unit, a switching control unit, and an execution unit.
  • the detection unit can be used to sense the vehicle's surrounding environment, detect the vehicle status and monitor the driver's status.
  • the detection unit may further include a signal acquisition unit, a data processing unit and an information storage unit, as shown in Figure 6.
  • the information acquisition unit is used to acquire signals on the vehicle bus in real time.
  • the data processing unit determines the current state parameters of the vehicle based on the acquired signals combined with the vehicle historical state information in the information storage unit.
  • the detection unit can also determine and output the driver's concentration and road adhesion coefficient based on the sensor data through the data processing unit.
  • the detection unit can fuse the sensor data collected by sensors such as visual cameras, millimeter wave radars, and lidars, and output parameters such as concentration and road adhesion coefficient through neural network algorithms and state estimation.
  • the information storage unit is used to store the signals acquired by the signal acquisition unit and the parameters processed by the data processing unit.
  • the decision unit is used to determine the ESC activation probability and output an ADS pre-exit signal according to the ESC activation probability.
  • the decision unit may further include a probability calculation unit and a judgment unit, as shown in FIG6 .
  • the probability calculation unit is used to calculate the ESC activation probability in the current state according to the parameters output by the detection unit.
  • the judgment unit is used to determine whether the ESC activation probability output by the ESC activation probability calculation unit is greater than a preset latch interval. When the judgment unit determines that the ESC activation probability is greater than the latch interval, the ADS pre-exit signal is output so that the ADS receives the pre-exit signal to maintain the stability of the vehicle's driving state.
  • the ESC activation system believes that the possibility of ESC activation is very high, and the output warning signal can pre-warn the driver to take over before the ADS exits, thereby reducing the safety risk of the driver taking over the vehicle.
  • the switching control unit is used to switch vehicle modes, maintain the stability of the vehicle's driving state, and control the vehicle's braking.
  • the switching control unit may further include an early warning unit, as shown in FIG6 .
  • the early warning unit receives the pre-exit signal output by the judgment unit, it outputs a early warning signal for pre-warning the driver before the ADS exits, prompting the driver to take over the vehicle.
  • the forms of issuing early warning signals to the driver to prompt the driver to take over the vehicle include but are not limited to: seat shaking, voice prompts, image prompts, etc.
  • the early warning unit may also increase the warning intensity as the warning time increases until the driver completely takes over the vehicle, or the enable of the pre-exit signal is automatically eliminated after the enable of the pre-exit signal is eliminated, or the driver manually eliminates the warning signal.
  • the switching control unit may further include a coordination control unit, as shown in FIG6 .
  • the coordination control unit maintains the stability of the vehicle's driving state through the ADS before the ADS exits.
  • the coordination control unit may send internal information triggered by the ESC to the ADS before the ADS exits, as input for the ADS to plan and control the vehicle's driving state, so that the ADS maintains the stability of the vehicle's driving state by limiting the vehicle's steering, driving force, and braking force.
  • the probability calculation unit calculates the ESC activation probability in real time, and the judgment unit determines in real time whether the ESC activation probability is greater than the latch interval.
  • the detection unit obtains the vehicle's stability parameters and determines whether the stability parameters meet the ESC activation conditions.
  • the judgment unit activates ESC and exits ADS.
  • the coordination control unit in the switching control unit maintains the stability of the vehicle's driving state through ESC after ESC is activated and ADS is exited.
  • ESC can slowly brake to reduce the vehicle speed by reducing the wheel angle, reducing the longitudinal driving force, and increasing the lateral force to maintain the stability of the vehicle's driving state.
  • the switching control unit can maintain the stability of the vehicle's driving state until the driver takes over the vehicle, or the switching control unit controls the vehicle to stop.
  • the execution unit adjusts the vehicle according to the restriction information output by the switching control unit.
  • the execution unit includes but is not limited to the ESP steering assist motor, the drive motor control unit and the brake hydraulic control unit; the ESP steering motor adjusts the current vehicle's steering angle according to the steering angle requirements in the restriction information; the drive motor control unit adjusts the current vehicle's driving force according to the driving requirements in the restriction information; the brake hydraulic control unit adjusts the current vehicle's braking force according to the braking requirements in the restriction information.
  • the execution unit can also display the restriction information in the display interface to prompt the driver of the current restrictions on the vehicle and other content.
  • the signal acquisition unit acquires the driving data of the vehicle and transmits the driving data to the data processing unit.
  • the data processing unit determines the activation factor according to the received driving data.
  • the probability calculation unit in the decision unit determines the ESC activation probability according to the received activation factor, and sends the determined ESC activation probability to the judgment unit; when the judgment unit determines that the ESC activation probability is greater than the latch interval, it sends a warning signal to the warning unit in the switching control unit, and sends a pre-exit signal to the coordination control unit in the switching control unit.
  • the warning unit warns the driver according to the received warning signal; the coordination control unit maintains the stability of the vehicle driving state through ADS according to the received pre-exit signal.
  • the probability calculation unit calculates the ESC activation probability in real time, and when the judgment unit determines that the ESC activation probability is still greater than the latch interval, the judgment unit receives the stability parameters of the vehicle acquired by the detection unit.
  • the judgment unit activates ESC and exits ADS.
  • the judgment unit determines that the stability parameters meet the stability conditions, the judgment unit exits ESC.
  • the coordination control unit sends restriction information to the execution unit to maintain the stability of the vehicle's driving state until the driver takes over the vehicle, or controls the vehicle's braking when it is determined that the driver has not taken over the vehicle.
  • the embodiment of the present application also provides an ESC activation device for an intelligent driving vehicle.
  • the ESC activation device 700 may include:
  • the first acquisition unit 701 is used to acquire the ESC activation probability when the vehicle turns on the intelligent driving function
  • the output unit 702 is used to output a pre-exit signal and a warning signal of the automatic driving system ADS when the ESC activation probability is greater than a preset latching interval; wherein the pre-exit signal is used to instruct the ADS to maintain the stability of the vehicle driving state; and the warning signal is used to prompt the driver to take over the vehicle;
  • a second acquisition unit 703 is used to acquire a stability parameter of the vehicle, where the stability parameter is used to characterize a stability characteristic of a driving state of the vehicle;
  • the activation unit 704 is configured to activate the ESC when the stability parameter satisfies an ESC activation condition.
  • the first acquiring unit 701 is specifically configured to:
  • the ESC activation probability is determined according to the driving data.
  • the first acquiring unit 701 is specifically configured to:
  • the activation factor comprising at least one parameter of concentration, a vehicle state parameter, and a road adhesion coefficient; the concentration is used to characterize the driver's ability to take over the vehicle after the ADS exits;
  • the ESC activation probability is determined according to the activation factor.
  • the first acquiring unit 701 is specifically configured to:
  • the activation factors are weighted normalized to obtain the ESC activation probability.
  • the output unit 702 is specifically used for:
  • the steering, driving force and braking force of the vehicle are adjusted by the ADS to control the driving state of the vehicle to be in a stable deceleration state.
  • the second acquisition unit 703 is further used to:
  • the duration of the ESC activation probability being less than the latching interval is counted; when the duration is greater than a time threshold, the output of the pre-exit signal and the warning signal is stopped.
  • the activation unit 704 is specifically used to:
  • the steering, driving force and braking force of the vehicle are adjusted by the ESC to control the driving state of the vehicle to be in the stable deceleration state;
  • the stability parameter is obtained, and it is determined whether the stability parameter satisfies a stability condition; if the stability parameter satisfies the stability condition, the ESC is exited.
  • the activation unit 704 is further configured to:
  • the vehicle is braked to a stop.
  • an embodiment of the present application provides a schematic diagram of the structure of a possible electronic device; wherein the electronic device is applied to an intelligent driving vehicle.
  • the structure of the electronic device is shown in FIG8 , and includes a processor 801 and a memory 802.
  • the memory stores one or more computer programs, and the one or more computer programs include instructions; when the processor calls the instructions, the electronic device executes the above embodiments and the ESC activation method for the intelligent driving vehicle provided in the embodiments.
  • an embodiment of the present application provides a possible structural schematic diagram of an intelligent driving vehicle.
  • the intelligent driving vehicle includes ESC 901, ADS 902 and ESC activation device 903.
  • ADS 902 is activated
  • the ESC activation device 903 executes the ESC activation method of the intelligent driving vehicle provided in the above embodiment and the embodiment.
  • the present application provides a computer-readable storage medium having a computer program or instructions stored thereon.
  • the computing device executes the method in the above method embodiment.
  • the present application provides a computer program product.
  • the computing device executes the method in the above method embodiment.
  • each functional module in each embodiment of the present application may be integrated into a processor, or may exist physically separately, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules may be implemented in the form of hardware or in the form of software functional modules.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment in combination with software and hardware. Moreover, the present application may adopt the form of a computer program product implemented in one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) that contain computer-usable program code.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

本申请公开了一种智能驾驶车辆的ESC激活方法和装置。在该方法中,当车辆开启智能驾驶功能后,获取ESC激活概率;当ESC激活概率大于预设的锁存区间时,输出ADS的预退出信号和预警信号;预退出信号用于指示ADS维持车辆行驶状态的稳定;预警信号用于提示驾驶员接管车辆;获取车辆的稳定参数,稳定参数用于表征所述车辆的行驶状态的稳定特性;当稳定参数满足ESC激活条件时,激活ESC。由于本申请在确定ESC激活概率大于锁存区间时,输出预退出信号和预警信号,提前向驾驶员预警,提示驾驶员接管车辆;并且在通过ADS维持车辆行驶状态的稳定时,确定稳定参数满足ESC激活条件时,激活ESC,能够给驾驶员一定的反应时间,降低后续驾驶员接管车辆的安全风险。

Description

一种智能驾驶车辆的ESC激活方法和装置 技术领域
本申请涉及智能驾驶技术领域,尤其涉及一种智能驾驶车辆的ESC激活方法和装置。
背景技术
智能驾驶技术的发展使得具备智能驾驶能力的车辆越来越普及,由于雨、雪等天气原因在湿滑路面下行驶的开启智能驾驶功能的车辆,可能由于转向时自动驾驶系统(autonomous driving solution,ADS)请求的驱动力矩与路面附着条件不符等原因,造成车辆推头或者甩尾等危险工况,激活底盘稳定性控制功能(electronic stability controller,ESC)。
在现有技术中,基于当前信息计算转向的安全稳定边界,在实际稳定边界内控制转向/制动执行器,默认ESC不触发或者触发的概率低;但是,在ESC激活之后智能驾驶功能直接退出,驾驶员在应对ADS直接退出的突发情况时来不及反应或者在车辆不稳定的情况下接管车辆,存在安全风险。
发明内容
本申请提供一种智能驾驶车辆的底盘稳定性控制功能ESC激活方法和装置,用以在车辆激活ESC之前,控制车辆的行驶状态,降低驾驶员接管车辆的安全风险。
第一方面,本申请提供一种智能驾驶车辆的ESC激活方法,下面以对智能驾驶车辆的ESC进行激活管理的车辆管理模块为执行主体,所述方法包括:
当车辆开启智能驾驶功能后,车辆管理模块获取ESC激活概率;当ESC激活概率大于预设的锁存区间时,车辆管理模块输出自动驾驶系统ADS的预退出信号和预警信号;其中,预退出信号用于指示ADS维持车辆行驶状态的稳定;预警信号用于提示驾驶员接管车辆。然后,车辆管理模块获取车辆的稳定参数,所述稳定参数用于表征所述车辆的行驶状态的稳定特性;当所述稳定参数满足ESC激活条件时,车辆管理模块激活所述ESC。
在该方法中,车辆管理模块在车辆开启智能驾驶后,获取ESC激活概率,并通过确定ESC激活概率是否大于锁存区间;当ESC激活概率大于锁存区间时,车辆管理模块输出预退出信号,指示ADS维持车辆行驶状态的稳定的同时,输出预警信号,提示驾驶员接管车辆,给与驾驶员反应时间;并且在确定获取到的车辆的稳定参数满足ESC激活条件时,激活ESC,使得驾驶员能够在ESC激活后安全接管车辆,降低车辆模式切换时驾驶员接管车辆的安全风险。
在一种可能的设计中,车辆管理模块获取车辆的行驶数据,并根据所述行驶数据确定ESC激活概率。
在该设计中,车辆管理模块根据行驶数据能够准确地确定出ESC的激活概率。
在一种可能的设计中,车辆管理模块根据行驶数据,确定激活因子;其中,激活因子包括专注度、车辆状态参数、路面附着系数中的至少一个参数,所述专注度用于表征驾驶员在ADS退出后接管车辆的能力;然后,车辆管理模块根据激活因子,确定ESC激活概 率。
在该设计中,车辆管理模块根据专注度、车辆状态参数和路面附着系数中的至少一种参数,能够准确地确定出ESC激活概率。
在一种可能的设计中,车辆管理模块对激活因子进行权重归一化,得到ESC激活概率。
在一种可能的设计中,车辆管理模块向ADS发送预退出信号,确定车辆进入ADS预退出阶段,并通过ADS对车辆的转向、驱动力和制动力进行调节,控制所述车辆的行驶状态处于稳定减速状态。
在该设计中,车辆管理模块在ADS预退出阶段,通过ADS对车辆的转向、驱动力和制动力进行调节,控制车辆的行驶状态处于稳定减速状态,来控制车辆稳定,为后续驾驶员接管车辆提供一份安全保障。
在一种可能的设计中,在输出预退出信号和预警信号之后,车辆管理模块确定ESC激活概率是否小于锁存区间;并且,在ESC激活概率大于锁存区间,或ESC激活概率处于所述锁存区间时,车辆管理模块获取稳定参数。在确定ESC激活概率小于锁存区间时,车辆管理模块统计ESC激活概率小于锁存区间的持续时间,并且当所述持续时间大于时间阈值时,停止输出预退出信号和预警信号。
在该设计中,车辆管理模块在输出预退出信号和预警信号之后,车辆进入ADS预退出阶段,并在该阶段控制车辆处于稳定减速状态,确定在预退出阶段内的ESC激活概率是否小于锁存区间;当车辆管理模块确定ESC激活概率不小于该锁存区间时,获取稳定参数,来确定是否激活ESC来维持车辆的稳定。当车辆管理模块确定ESC激活概率小于锁存区间时,确定车辆在ADS的控制下逐渐趋于稳定,此时统计ESC激活概率小于所述锁存区间的持续时间,当确定所述持续时间大于时间阈值时,确定ADS控制车辆重新恢复稳定,停止输出预退出信号和预警信号,车辆恢复智能驾驶模式。
在一种可能的设计中,车辆管理模块激活ESC,确定车辆进入ESC激活阶段,同时退出ADS;车辆管理模块在ESC激活阶段,通过ESC对车辆的转向、驱动力和制动力进行调节,控制车辆的行驶状态处于稳定减速状态;同时,车辆管理模块获取稳定参数,并确定所述稳定参数是否满足稳定条件;当确定稳定参数满足稳定条件后,车辆管理模块退出ESC。
在该设计中,车辆管理模块在ESC激活阶段,通过ESC对车辆转向、驱动力和制动力进行调节,控制车辆的行驶状态处于稳定减速状态,以使车辆能够恢复稳定,为驾驶员接管车辆提供安全的行驶环境。
在一种可能的设计中,车辆管理模块在退出ESC后,对车辆的转速、驱动力和制动力进行调节,控制所述车辆的行驶状态处于稳定减速状态,并确定驾驶员是否在输出预警信号后的预警时间段内接管车辆;并在确定驾驶员未在预警时间段内接管所述车辆时,车辆管理模块控制所述车辆刹停。
在该设计中,车辆管理模块在退出ESC后,控制车辆处于稳定减速状态,为驾驶员接管车辆提供安全保障,并在确定驾驶员未在预警时间段内接管车辆后,控制车辆刹停,能够保障行车安全,避免发生事故。
第二方面,本申请提供一种智能驾驶车辆的ESC激活装置,所述装置包括:
第一获取单元,用于当车辆开启智能驾驶功能后,获取ESC激活概率;
输出单元,用于当所述ESC激活概率大于预设的锁存区间时,输出自动驾驶系统ADS的预退出信号和预警信号;其中,所述预退出信号用于指示所述ADS维持车辆行驶状态的稳定;所述预警信号用于提示驾驶员接管所述车辆;
第二获取单元,用于获取所述车辆的稳定参数,所述稳定参数用于表征所述车辆的行驶状态的稳定特性;
激活单元,用于当所述稳定参数满足ESC激活条件时,激活所述ESC。
在一种可能的设计中,所述第一获取单元具体用于:
获取所述车辆的行驶数据;
根据所述行驶数据,确定所述ESC激活概率。
在一种可能的设计中,所述第一获取单元具体用于:
根据所述行驶数据,确定激活因子;所述激活因子包括专注度、车辆状态参数、路面附着系数中的至少一个参数;所述专注度用于表征所述驾驶员在所述ADS退出后接管所述车辆的能力;
根据所述激活因子,确定所述ESC激活概率。
在一种可能的设计中,所述第一获取单元具体用于:
对所述激活因子进行权重归一化,得到所述ESC激活概率。
在一种可能的设计中,所述输出单元具体用于:
向所述ADS发送所述预退出信号,确定所述车辆进入ADS预退出阶段;
通过所述ADS对所述车辆的转向、驱动力和制动力进行调节,控制所述车辆的行驶状态处于稳定减速状态。
在一种可能的设计中,在输出自动驾驶系统ADS的预退出信号和预警信号之后,所述第二获取单元还用于:
确定所述ESC激活概率是否小于所述锁存区间;
若所述ESC激活概率大于所述锁存区间,或所述ESC激活概率处于所述锁存区间内,则获取所述稳定参数;
若所述ESC激活概率小于所述锁存区间,则统计所述ESC激活概率小于所述锁存区间的持续时间;当所述持续时间大于时间阈值时,停止输出所述预退出信号和预警信号。
在一种可能的设计中,所述激活单元具体用于:
激活所述ESC,确定所述车辆进入ESC激活阶段,并退出所述ADS;
在所述ESC激活阶段,通过所述ESC对所述车辆的转向、驱动力和制动力进行调节,控制所述车辆的行驶状态处于所述稳定减速状态;
获取所述稳定参数,确定所述稳定参数是否满足稳定条件;若所述稳定参数满足所述稳定条件,则退出所述ESC。
在一种可能的设计中,在退出所述ESC之后,所述激活单元还用于:
对所述车辆的转向、驱动力和制动力进行调节,控制所述车辆的行驶状态处于所述稳定减速状态;
确定所述驾驶员是否在输出所述预警信号后的预警时间段内接管所述车辆;
若所述驾驶员未在所述预警时间段内接管所述车辆,则控制所述车辆刹停。
第三方面,本申请提供一种电子设备,应用于智能驾驶车辆,该电子设备包括处理器 和存储器,所述存储器中存储有一个或多个计算机程序,所述一个或多个计算机程序包括指令,当所述处理器调用所述指令时,使得所述通信装置执行上述第一方面的智能驾驶车辆的ESC激活方法。
第四方面,本申请提供一种智能驾驶车辆,该智能驾驶车辆包括ESC、ADS和上述第二方面所述的ESC激活装置,当所述ADS激活时,所述ESC激活装置执行上述第一方面或第一方面的任一种可能的实现方式中的方法。
第五方面,本申请提供一种计算机可读存储介质,其上存储有计算机程序或指令,当该计算机程序或指令被执行时,使得计算机执行上述第一方面或第一方面的任一种可能的实现方式中的方法。
第六方面,本申请提供一种计算机程序产品,当计算机执行计算机程序产品时,使得计算机执行上述第一方面或第一方面的任一种可能的实现方式中的方法。
上述第二方面至第四方面的有益效果,请参见上述第一方面的有益效果的描述,这里不再重复赘述。
附图说明
图1为本申请实施例提供的方案的一种可能的智能驾驶车辆的ESC激活方法的流程示意图;
图2为本申请实施例提供的方案的一种可能的车辆行驶状态示意图;
图3为本申请实施例提供的方案的另一种可能的车辆行驶状态示意图;
图4为本申请实施例提供的方案的又一种可能的车辆行驶状态示意图;
图5为本申请实施例提供的方案的一种可能的智能驾驶车辆的ESC激活方法的完整流程示意图;
图6为本申请实施例提供的方案的一种可能的ESC激活系统的结构示意图;
图7为本申请实施例提供的方案的一种智能驾驶车辆的ESC激活装置的结构示意图;
图8为本申请实施例提供的方案的一种电子设备的结构示意图;
图9为本申请实施例提供的方案的一种智能驾驶车辆的结构示意图。
具体实施方式
本申请实施例提供一种智能驾驶车辆的ESC激活方法和装置。其中,方法和装置是基于同一构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。其中,在本申请实施例的描述中,以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特 征。
为了便于理解,示例性的给出了与本申请相关概念的说明以供参考。
1)底盘稳定性控制功能(electronic stability controller,ESC),是车辆新型的主动安全系统,是车辆防抱死制动系统(antilock brake system,ABS)和牵引力控制系统(traction control system,TCS)功能的进一步扩展,并在此基础上,增加了车辆转向行驶时横摆率传感器、侧向加速度传感器和方向盘转角传感器,通过电子控制单元控制前后、左右车轮的驱动力和制动力,确保车辆行驶的侧向稳定性。
2)路面附着系数,是指附着力与车轮法向(与路面垂直的方向)压力的比值。粗略计算中,它可以看成是轮胎和路面之间的静摩擦系数。它是由路面和轮胎决定的,这个系数越大,可利用的附着力就越大,车辆就越不容易打滑。
本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的至少一个是指一个或多个;多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。下面将结合附图,对本申请实施例进行详细描述。
在现有技术中,基于当前信息计算转向的安全稳定边界,在实际稳定边界内控制转向/制动执行器,默认ESC不触发或者触发的概率低;但是,在ESC激活之后智能驾驶功能直接退出,驾驶员在应对ADS直接退出的突发情况时来不及反应或者在车辆不稳定的情况下接管车辆,存在安全风险。
为了降低ESC激活后,驾驶员接管车辆的安全风险,本申请实施例提供了一种智能驾驶车辆的ESC激活方法。下面以对智能驾驶车辆的ESC进行激活管理的车辆管理模块为执行主体进行说明:在该方法中,车辆管理模块在车辆开启智能驾驶功能后,获取ESC激活概率;并在ESC激活概率大于预设的锁存区间时,车辆管理模块输出自动驾驶系统(autonomous driving solution,ADS)的预退出信号和预警信号;其中,预退出信号用于指示所述ADS维持车辆行驶状态的稳定,所述预警信号用于提示驾驶员接管车辆;然后,车辆管理模块获取所述车辆的稳定参数,其中,稳定参数用于表征所述车辆的行驶状态的稳定特性;当所述稳定参数满足ESC激活条件时,车辆管理模块激活所述ESC。
下面结合附图和具体实施例对本申请提供的方案进行介绍。
图1为本申请实施例提供的一种智能驾驶车辆的ESC激活方法的示意图。下面以对智能驾驶车辆的ESC进行激活管理的车辆管理模块为执行主体进行说明。如图1所示,该方法包括:
S101:当车辆开启智能驾驶功能后,车辆管理模块获取ESC激活概率。
实施中,车辆管理模块在确定车辆开启智能驾驶功能后,获取车辆的行驶数据,根据获取到的行驶数据确定ESC激活概率。
在一些可选的实施方式中,行驶数据包括但不限于:驾驶员的操作输入信息、车辆传感器获取到的车辆状态信息、车内摄像头采集到的驾驶员图像、车外摄像头采集到的路面 图像和环境图像。其中,驾驶员的操作输入信息包括但不限于:方向盘转角、油门踏板行程、制动踏板行程;传感器获取到的车辆状态信息包括但不限于:横纵向加速度、轮速、车速、横摆角速度、侧偏角、车轮滑移率。
在一种实施方式中,所述车辆管理模块,可以通过以下步骤,执行S201:
A1:车辆管理模块根据行驶数据,确定激活因子。
其中,激活因子包括专注度、车辆状态参数、路面附着系数中的至少一个参数;所述专注度用于表征驾驶员在ADS退出后接管车辆的能力。
车辆管理模块可以通过下列方式确定激活因子:
在一些可选的实施方式中,车辆管理模块根据行驶数据中的驾驶员图像,确定驾驶员的专注度。
实施中,车辆管理模块可以将获取到的驾驶员图像输入到已训练的图像识别模型中,基于已训练的图像识别模型对图像进行特征提取,得到面部特征参数,并根据面部特征参数,确定专注度。
可选地,车辆管理模块可以跟面部特征参数与专注度的对应关系,确定驾驶员的专注度。其中,当面部特征参数为多个时,将多个面部特征参数对应的专注度之和作为驾驶员当前的专注度。
在一些可选的实施方式中,车辆管理模块根据行驶数据中的车辆状态信息,确定车辆状态参数。其中,车辆状态参数包括滑移率、侧偏角偏差、横摆角速度偏差、侧向加速度中的至少一个参数。
实施中,车辆管理模块可通过下列方式确定车辆状态参数:
在一些可选的实施方式中,车辆管理模块可以根据车辆状态信息中的轮速和车速确定各个车轮的滑移率,将各个车轮的滑移率中的最大值作为第一滑移率;车辆管理模块将车辆状态信息中的车轮滑移率的最大值作为第二滑移率;车辆管理模块将通过卡尔曼滤波的方法融合第一滑移率和第二滑移率得到的滑移率,作为车辆状态参数。
在一些可选的实施方式中,车辆管理模块可以将车辆状态信息中的侧向加速度作为车辆状态参数。
在一些可选的实施方式中,车辆管理模块可以根据车辆状态信息,确定车辆的侧向车速和纵向车速,并根据确定出的纵向车速和侧向车速,确定车辆在当前状态下的实际侧偏角。车辆管理模块还可以将车辆状态信息输入到线性2自由度车辆模型中,基于线性2自由度车辆模型,得到理想侧偏角。车辆管理模块将实际侧偏角和理想侧偏角的差值,作为侧偏角偏差。
可选地,在本申请实施例中,车辆管理模块可以选取线性2自由度车辆模型作为参考模型,以车辆进入稳定状态时的质心侧偏角β作为参考值;为了保证车辆行驶稳定,车辆模型限定质心侧偏角的上限值为|β max|=μg(b/u 2+ma/k 2L);将β和|β max|中的最小值min{β,|β max|})作为理想侧偏角。
其中,μ表示车辆状态信息中的路面附着系数;a表示前轴到质心的距离;b表示后轴到质心的距离;k 2表示后轮侧偏刚度;g表示重力加速度;m表示车辆重量;L表示后轮之间的距离。
在一些可选的实施方式中,车辆管理模块将车辆状态信息中的横摆角速度作为实际横摆角速度;车辆管理模块将车辆状态信息输入到车辆模型中,根据所述车辆模型,确定理 想横摆角速度;车辆管理模块将实际横摆角速度和理想横摆角速度的差值作为横摆角速度偏差。
可选地,车辆管理模块可以将车辆状态信息输入到线性2自由度车辆模型,以车辆进入稳定状态时的横摆角速度ω作为参考值,根据车辆模型限定横摆角速度上限值|ω max|=0.85μg/V x;其中,μ表示车辆状态信息中的路面附着系数,V x表示纵向车速,g表示重力加速度。车辆模型将ω和|ω max|之间的最小值min{ω,|ω max|}作为理想横摆角速度输出。
在一些可选的实施方式中,车辆管理模块根据路面图像和车辆状态信息,确定路面附着参数。
实施中,车辆管理模块可以将路面图像输入到卷积神经网络,基于卷积神经网络对路面图像进行特征提取,获得路面特征;根据路面特征,确定第一路面附着系数。其中,卷积神经网络是预先基于历史路面图像和历史路面图像对应的历史路面附着系数,训练得到的。
车辆管理模块可以根据车辆状态信息,通过车辆三自由度动力学方程确定第二路面附着系数。
可选地,车辆管理模块可以根据车辆状态信息,基于dugoff轮胎模型将轮胎力进行归一化,并采用EKF方法,基于三自由度动力学方程确定第二路面附着系数。
车辆管理模块根据第一路面附着系数和第二路面附着系数,确定路面附着系数,作为车辆状态参数。
可选地,车辆管理模块可以采用模糊理论,将第一路面附着次数和第二路面附着系数融合为路面附着系数。
A2:车辆管理模块根据激活因子,确定ESC激活概率。
在A2中,车辆管理模块可以对激活因子进行权重归一化,得到ESC激活概率。
在一些可选实施方式中,车辆管理模块可通过下列公式确定ESC激活概率:
Figure PCTCN2022129495-appb-000001
其中,P act(ESC)表示ESC激活概率,P act(ESC)∈[0,1];α 0、α 1、α 2、α 3、α 4、α 5表示权重参数;f 0(λ)表示归一化后的滑移率;f 1(a y)表示归一化后的侧向加速度;f 2(Δβ)表示归一化后的侧偏角偏差;f 3(Δω)表示归一化后的横摆角速度偏差;f 4(μ)表示归一化后的路面附着参数;f 5(x 1、x 2…)表示归一化的专注度;x 1、x 2表示驾驶员的面部特征参数。
S102:当ESC激活概率大于预设的锁存区间时,车辆管理模块输出ADS的预退出信号和预警信号。其中,预退出信号用于指示所述ADS维持车辆行驶状态的稳定;预警信号用于提示驾驶员接管车辆。
车辆管理模块在确定出ESC激活概率之后,确定ESC激活概率是否大于预设的锁存区间。
在一些可选的实施方式中,若ESC激活概率小于锁存区间,则车辆管理模块确定车辆在当前状态下激活ESC的可能性不高,继续获取行驶数据,确定ESC激活概率。
在另一些可选的实施方式中,若ESC激活概率处于所述锁存区间,则车辆管理模块确定车辆在当前状态下有可能激活ESC,保持预退出信号的输出使能,并继续获取行驶数据, 确定ESC激活概率。
车辆管理模块在确定ESC激活概率处于锁存区间时,保持预退出信号的输出使能,能够避免ESC激活概率在锁存区间的阈值附近波动时导致预退出信号的使能波动位震荡,并且,在车辆管理模块确定ESC激活概率大于锁存区间时,能够及时输出预退出信号。
在另一些可选的实施方式中,若ESC激活概率大于锁存区间,则车辆管理模块输出预退出信号和预警信号。
在一种实施方式中,车辆管理模块输出的预警信号包括但不限于:座椅抖动信号、语音提示信号、图像提示信号。例如,车辆管理模块输出座椅抖动信号,控制座椅抖动来提示驾驶员接管车辆;车辆管理模块可以输出语音提示信号,提示驾驶员接管车辆;车辆管理模块还可以在车辆的显示界面上输出图像提示信号,提示驾驶员接管车辆。
可选地,车辆管理模块可以随着预警信号输出时间的增加,增强预警信号的强度和频率,以达到更好的提示驾驶员接管车辆的效果。
例如,车辆管理模块在确定ESC激活概率大于锁存区间时,输出座椅抖动信号,通过抖动座椅来提示驾驶员接管车辆。在座椅抖动信号输出的30秒内,驾驶员未接管车辆时,车辆管理模块通过调整座椅抖动信号,来增强座椅抖动的频率,以提示驾驶员尽快接管车辆。
在一种实施方式中,所述车辆管理模块,可以通过以下步骤,执行S202中的输出预退出信号:
B1:车辆管理模块向ADS发送预退出信号,确定车辆进入ADS预退出阶段。
在一些可选的实施方式中,车辆管理模块向ADS发送预退出信号,用以告知ADS车辆即将激活ESC。ADS在接收到预退出信号后,可以维持车辆行驶状态的稳定,来阻止车辆管理模块激活ESC。
B2:车辆管理模块通过ADS对车辆的转向、驱动力和制动力进行调节,控制所述车辆的行驶状态处于稳定减速状态。
可选地,车辆管理模块在向ADS发送预退出信号时,还可以向ADS发送ESC激活信息。ADS可以根据ESC激活信息,对车辆的转向、驱动力和制动力进行调节,控制车辆的行驶状态处于稳定减速状态。
在一些可选的实施方式中,车辆管理模式可以通过ADS对车辆的转向、驱动力和制动力进行调节,控制车辆的行驶状态处于稳定减速状态,以此来维持车辆行驶状态的稳定,从而阻止车辆管理模块为了维持车辆的稳定而激活ESC。
在一些可选的实施方式中,车辆管理模块在输出预退出信号和预警信号之后,还可以确定ESC激活概率是否小于锁存区间。
车辆管理模块在ADS预退出阶段,继续确定ESC激活概率,并确定ESC激活概率是否小于锁存区间。
在一些可选的实施方式中,若ESC激活概率小于锁存区间,则统计ESC激活概率小于所述锁存区间的持续时间。当所述持续时间大于时间阈值时,车辆管理模块停止输出预退出信号和预警信号。
当ESC激活概率小于锁存区间时,车辆管理模块确定车辆的行驶状态逐渐趋于稳定;车辆管理模块继续确定ESC激活概率,并统计ESC激活概率小于锁存区间的持续时间。
可选地,车辆管理模块在确定ESC激活概率小于锁存区间的持续时间大于时间阈值时, 确定车辆行驶状态已经趋于稳定,并停止输出预退出信号和预警信号。此时,车辆管理模块确定车辆继续使用智能驾驶功能。
例如,如图2所示,本申请实施例提供一种车辆行驶状态示意图。其中,t0时刻,车辆处于智驾阶段,由ADS正常接管车辆,车辆管理模块对ADS不作任何限制,且车辆管理模块不输出预退出信号的使能标志位;并且,在智驾阶段的ADS的控制下,车辆未被施加制动力,且车辆的驱动力和车轮转角呈逐渐增加趋势。在t1时刻,车辆管理模块确定ESC激活概率大于锁存区间后,输出预退出信号的使能标志位,确定车辆进入ADS预退出阶段。在ADS预退出阶段,车辆管理模块对ADS接管车辆进行限制,ADS在接收到预退出信号后,执行限制措施;其中,限制措施包括但不限于:限制车轮转角的进一步增加,限制驱动力的进一步增加,逐渐增加制动力矩,缓慢减速。在ADS预退出阶段,ADS执行限制措施,使得车轮转角和驱动力由之前的现状值大于目标值,转变为现状值与目标值相差不大,以至于在t2时刻车辆管理模块确定ESC激活概率小于锁存区间;在t2时刻之后,ADS仍旧执行限制措施,以至于到t3时刻,车辆管理模块确定出的ESC激活概率仍旧小于锁存区间;即,在t2-t3时刻,ESC激活概率一直小于锁存区间。其中,当t2-t3之间的时间段达到ESC激活概率小于锁存区间的持续时间时,车辆管理模块在t3时刻停止输出预退出信号,车辆重新进入智驾阶段。
在另一些可选的实施方式中,若ESC激活概率大于锁存区间,或ESC激活概率处于锁存区间内,则车辆管理模块获取稳定参数。
车辆管理模块在ADS预退出阶段,确定ESC激活概率大于锁存区间,或ESC激活概率处于锁存区间内时,确定ADS在维持车辆行驶状态稳定后,车辆仍旧处于不稳定状态;车辆管理模块获取稳定参数,确定是否需要激活ESC来维持车辆行驶状态的稳定。
S103:车辆管理模块获取车辆的稳定参数;其中,稳定参数用于表征车辆的行驶状态的稳定特性。
在一些可选的实施方式中,稳定参数包括但不限于:横摆角速度和质心侧偏角。其中,车辆管理模块可以通过现有的稳定参数获取方法,获取稳定参数,还可以通过其他方式获取稳定参数,本申请实施例对此并不作限。
S104:当稳定参数满足ESC激活条件时,车辆管理模块激活ESC。
在一些可选的实施方式中,车辆管理模块确定获取到的稳定参数是否满足ESC激活条件。其中,ESC激活条件可以为车辆处于不稳定状态的条件。例如,ESC激活条件可以为车辆运动轨迹与智能驾驶功能预期的轨迹不符,或车辆出现不足转向趋势,或车辆出现过度转向趋势。
可选地,若稳定参数不满足ESC激活条件,则车辆管理模块确定ESC激活概率,确定其是否小于锁存区间。
可选地,若稳定参数满足ESC激活条件,则车辆管理模块激活ESC。
在一些可选的实施例中,车辆管理模块在确定稳定参数满足ESC激活条件时,激活ESC,确定车辆进入ESC激活阶段,并退出ADS。
车辆管理模块在确定稳定参数满足ESC激活条件时,确定车辆的行驶状态处于不稳定状态,激活ESC,来通过ESC控制车辆的行驶状态恢复稳定状态。
在一些可选的实施方式中,车辆管理模块在ESC激活阶段,通过ESC对车辆的转向、驱动力和制动力进行调节,控制所述车辆的行驶状态处于稳定减速状态。
车辆管理模块在ESC激活阶段,获取稳定参数,确定稳定参数是否满足稳定条件。若稳定参数满足稳定条件,则车辆管理模块退出ESC。
在一些可选的实施方式中,在退出ESC后,车辆管理模块对车辆的转向、驱动力和制动力进行调节,控制车辆的行驶状态处于稳定减速状态。
车辆管理模块在车辆处于稳定减速状态时,确定驾驶员是否在输出预警信号后的预警时间段内接管车辆。
在一些可选的实施方式中,若驾驶员未在预警时间段内接管车辆,则车辆管理模块控制所述车辆刹停。
当驾驶员未在预警时间段内接管车辆时,车辆管理模块获取行驶数据,确定车辆与前方障碍物之间的距离,并根据所述距离确定维持车辆稳定刹停所需的制动压力值。车辆管理模块向液压单元发送所述制动压力值,以使液压单元将制动压力调节至所述制动压力值,来控制车辆刹停。
例如,如图3所示,本申请实施例提供另一种车辆行驶状态示意图。其中,t0时刻,车辆处于智驾阶段,由ADS正常接管车辆,车辆管理模块对ADS不作任何限制,且车辆管理模块不输出预退出信号的使能标志位;并且,在智驾阶段的ADS的控制下,车辆未被施加制动力,且车辆的驱动力和车轮转角呈逐渐增加趋势。在t1时刻,车辆管理模块确定ESC激活概率大于锁存区间后,输出预退出信号的使能标志位,确定车辆进入ADS预退出阶段。在ADS预退出阶段,车辆管理模块对ADS接管车辆进行限制,ADS在接收到预退出信号后,执行限制措施;其中,限制措施包括但不限于:限制车轮转角的进一步增加,限制驱动力的进一步增加,逐渐增加制动力矩,缓慢减速。在t1时刻进入ADS预退出阶段后,表示ADS在ADS预退出阶段内执行的一系列措施未能及时恢复车辆稳定,使得车轮转角的现状值一直高于目标值且持续增大,驱动力的现状值一直高于目标值且持续增大,且制动力的现状值低于目标值,以至于在t2时刻使得车辆的稳定参数满足了ESC激活条件,车辆管理模块输出ESC触发标志,激活ESC,同时退出ADS。即t1-t2时刻,车辆处于ADS预退出阶段,在t2时刻后,车辆处于ESC激活阶段,在ESC激活阶段,ADS已经退出。在t2时刻,ESC持续减小车轮转角和驱动力矩,以及激活对应轮岗增压来控制车辆恢复稳定。在t3时刻,车轮转角的现状值小于目标值,驱动力的现状值小于目标值,制动力的现状值与目标值相差不大时,车辆管理模块确定车辆的稳定参数满足稳定条件时,退出ESC,此时ESC激活阶段结束。t3时刻,ESC退出后,车辆管理模块确定车辆进入ESC退出阶段,并持续减小车轮转角和驱动力矩,同时维持或减小制动压力,直至t4时刻驾驶员接管车辆,此时ESC退出阶段结束。在t4时刻,车辆管理模块确定车辆进入人驾接管模式。
又例如,如图4所示,本申请实施例提供又一种车辆行驶状态示意图。其中,图4中的t0-t1时刻,车辆处于智驾阶段,在智驾阶段下,ADS和车辆管理模块的执行过程与图3中的t0-t1时刻对应的执行过程相同。图4中的t1-t2时刻,车辆处于ADS预退出阶段,在ADS预退出阶段下,ADS和车辆管理模块的执行过程与图3中的t1-t2时刻对应的执行过程相同。图4中的t2-t3时刻,车辆处于ESC激活阶段,在ESC激活阶段下,ESC和车辆管理模块的执行过程与图3中的t2-t3时刻对应的执行过程相同。在t3时刻,图4中的车轮转角的现状值小于目标值,驱动力的现状值小于目标值,制动力的现状值与目标值相差不大时,车辆管理模块确定车辆的稳定参数满足稳定条件时,退出ESC,此时ESC激活阶 段结束。t3时刻,ESC退出后,车辆管理模块确定车辆进入ESC退出阶段,并持续减小车轮转角和驱动力矩,同时维持或减小制动压力。车辆管理模块确定在预警信号对应的预警时间内驾驶员始终未接管车辆后,维持或减小制动力的同时,将车轮转角和驱动力减小至0,在t4时刻车辆管理模块控制车辆刹停。在t4时刻之后,车辆处于刹停状态,车辆管理模块控制制动力减小。
在上述实施例中,车辆管理模块在确定车辆开启智能驾驶功能后,获取ESC激活概率,并根据ESC激活概率是否大于锁存区间,来判断车辆的行驶状态是否稳定。当ESC激活概率大于锁存区间时,车辆管理模块在输出ADS的预退出信号,通过ADS维持车辆行驶状态的稳定的同时,输出预警信号提示驾驶员接管车辆;并且,车辆管理模块在确定车辆的稳定参数满足ESC激活条件时,激活ESC,为驾驶员在提供了反应时间,降低了驾驶员在ADS退出后接管车辆的安全风险。
基于图1所示的智能驾驶车辆的ESC激活方案,下面继续以车辆管理模块执行ESC激活过程为例,对该方案进行具体介绍。图5为本申请实施例提供的一种智能驾驶车辆的ESC激活方法的流程示意图,下面参阅图5对该方法的具体流程进行说明。
S501:车辆管理模块确定车辆开启智能驾驶功能。
S502:车辆管理模块获取车辆的行驶数据。
其中,行驶数据包括但不限于:驾驶员的操作输入信息、车辆传感器获取到的车辆状态信息、车内摄像头采集到的驾驶员图像、车外摄像头采集到的路面图像和环境图像。其中,驾驶员的操作输入信息包括但不限于:方向盘转角、油门踏板行程、制动踏板行程;传感器获取到的车辆状态信息包括但不限于:横纵向加速度、轮速、车速、横摆角速度、侧偏角、车轮滑移率。
S503:车辆管理模块根据所述行驶数据,确定激活因子。其中,激活因子包括专注度、车辆状态参数、路面附着系数中的至少一个参数;所述专注度用于表征驾驶员在ADS退出后接管车辆的能力。
可选地,车辆管理模块根据行驶数据,确定激活因子的过程与图2中的S202中的A1对应的实施例描述的过程相同,在此不再赘述。
S504:车辆管理模块根据激活因子,确定ESC激活概率。
实施中,车辆管理模块可以对激活因子进行权重归一化,得到ESC激活概率。
S505:车辆管理模块确定ESC激活概率是否大于锁存区间;若是,则执行步骤S506;若否,则执行步骤S502。
S506:车辆管理模块输出ADS的预退出信号和预警信号。其中,预退出信号用于指示所述ADS维持车辆行驶状态的稳定;所述预警信号用于提示驾驶员接管所述车辆。
在一些可选的实施方式中,车辆管理模块向ADS发送预退出信号,确定车辆进入ADS预退出阶段。
S507:车辆管理模块在ADS预退出阶段,通过ADS对车辆的转向、驱动力和制动力进行调节,控制所述车辆的行驶状态处于稳定减速状态。
S508:车辆管理模块确定ESC激活概率是否小于锁存区间;若是,则执行步骤S509;若否,则执行步骤S513。
S509:车辆管理模块统计ESC激活概率小于锁存区间的持续时间。
S510:车辆管理模块确定持续时间是否大于时间阈值;若是,则执行步骤S511;若否,则执行步骤S508。
S511:车辆管理模块停止输出预退出信号和预警信号。
S512:车辆管理模块确定车辆基于智能驾驶功能行驶。
S513:车辆管理模块获取稳定参数。
S514:车辆管理模块确定稳定参数是否满足ESC激活条件;若是,则执行步骤S515;若否,则执行步骤S508。
S515:车辆管理模块激活ESC,确定车辆进入ESC激活阶段,并退出ADS。
S516:车辆管理模块在ESC激活阶段,通过ESC对车辆的转向、驱动力和制动力进行调节,控制车辆的行驶状态处于稳定减速状态。
S517:车辆管理模块获取稳定参数。
S518:车辆管理模块确定稳定参数是否满足稳定条件;若是,则执行步骤S517;若是,则执行步骤S519。
S519:车辆管理模块退出ESC,进入ESC退出阶段。
S520:车辆管理模块在ESC退出阶段,对车辆的转向、驱动力和制动力进行调节,控制车辆的行驶状态处于稳定减速状态。
S521:车辆管理模块确定驾驶员是否在输出预警信号后的预警时间段内接管车辆;若否,则执行步骤S522;若是,则执行步骤S523。
S522:车辆管理模块控制车辆刹停。
S523:车辆管理模块确定车辆处于人驾模式。
基于相同的发明构思,本申请实施例还提供一种ESC激活系统,其中,该ESC激活系统可以位于车辆管理模块中,也可位于其他处理模块,应用于智能驾驶车辆。如图6所示,该ESC激活系统包括:检测单元、决策单元、切换控制单元、执行单元。
其中,检测单元可以用于感知车辆周围环境,检测车辆状态以及对驾驶员状态进行监控。
在一种可选的实施方式中,该检测单元可以进一步包括信号采集单元、数据处理单元和信息存储单元,如图6所示。信息采集单元用于实时获取车辆总线上的信号。数据处理单元基于获取的信号结合信息存储单元中的车辆历史状态信息,确定车辆当前的状态参数。检测单元还可以通过数据处理单元基于传感器数据,确定输出驾驶员的专注度和路面附着系数。例如,检测单元可以融合视觉摄像头、毫米波雷达、激光雷达等传感器采集到的传感器数据,通过神经网络算法和状态估计输出专注度和路面附着系数等参数。信息存储单元用于存储信号采集单元获取到的信号,以及数据处理单元处理得到的参数。
决策单元用于确定ESC激活概率,以及根据ESC激活概率,输出ADS预退出信号。
在一种实施方式中,该决策单元可以进一步包括概率计算单元和判断单元,如图6所示。其中,概率计算单元用于根据检测单元输出的参数,计算当前状态下的ESC激活概率。判断单元用于确定ESC激活概率计算单元输出的ESC激活概率是否大于预设的锁存区间。当判断单元确定ESC激活概率大于锁存区间时,输出ADS的预退出信号,以使ADS接收到预退出信号,维持车辆行驶状态的稳定。和预警信号,此时,ESC激活系统认为ESC激活的可能性很大,输出预警信号可以在ADS退出之前预先向驾驶员预警提示接管,降低 驾驶员接管车辆的安全风险。
切换控制单元用于切换车辆模式,维持车辆行驶状态的稳定,以及控制车辆刹停。
在一种实施方式中,该切换控制单元可以进一步地包括预警单元,如图6所示。当预警单元接收到判断单元输出预退出信号之后,输出预警信号,用于在ADS退出之前预先向驾驶员预警,提示驾驶员接管车辆。实施中,在预警单元在工作过程中,向驾驶员发出预警信号提示驾驶员接管车辆的形式包括但不限于:座椅抖动、语音提示、图像提示等。并且,预警单元还可以随着预警时间的增加,增加预警强度,直至驾驶员完全接管车辆,或预退出信号的使能消除后自动消除预警信号的使能,或驾驶员手动消除预警信号。
在一种实施方式中,切换控制单元还可以进一步地包括协调控制单元,如图6所示。当决策单元向协调控制单元输出预退出信号之后,协调控制单元在ADS退出之前,通过ADS维持车辆行驶状态的稳定。例如,协调控制单元可以在ADS退出之前向ADS发送ESC触发的内部信息,作为ADS规划控制车辆行驶状态的输入,使ADS通过限制车辆的转向、驱动力、制动力来维持车辆行驶状态的稳定。
决策单元在输出预退出信号的过程中,概率计算单元实时计算ESC激活概率,判断单元实时确定ESC激活概率是否大于锁存区间。当判断单元确定ESC激活概率仍旧大于锁存区间,则通过检测单元获取车辆的稳定参数,并确定稳定参数是否满足ESC激活条件。当稳定参数满足ESC激活条件之后,判断单元激活ESC,退出ADS。
在一种实施方式中,切换控制单元中的协调控制单元在ESC激活和ADS退出之后,通过ESC维持车辆行驶状态的稳定。例如,ESC可通过减小车轮转角、减小纵向驱动力、提高侧向力,来缓慢制动降低车速,维持车辆行驶状态的稳定。当车辆的行驶状态区域稳定后,ESC退出之后,切换控制单元可以维持车辆行驶状态的稳定直至驾驶员接管车辆,或切换控制单元控制车辆刹停。
执行单元根据切换控制单元输出的限制信息,对车辆进行调整。例如,执行单元包括但不限于ESP转向助力电机,驱动电机控制单元和制动液压控制单元;ESP转向电机根据限制信息中的转角需求,调节当前车辆的转角;驱动电机控制单元根据限制信息中的驱动需求调节当前的车辆驱动力;制动液压控制单元根据限制信息中的制动需求调节当前的车辆的制动力。并且,执行单元还可以在显示界面中显示限制信息,向驾驶员提示当前对车辆的限制等内容。
在一些可选的实施方式中,信号采集单元获取车辆的行驶数据,并将所述行驶数据传输给数据处理单元。数据处理单元根据接收到的行驶数据,确定激活因子。决策单元中的概率计算单元根据接收到的激活因子,确定ESC激活概率,并将确定出的ESC激活概率发送给判断单元;判断单元确定ESC激活概率大于锁存区间时,向切换控制单元中的预警单元发出预警信号,以及向切换控制单元中的协调控制单元发送预退出信号。预警单元根据接收到的预警信号向驾驶员预警;协调控制单元根据接收到的预退出信号,通过ADS维持车辆行驶状态的稳定。此时,决策单元在输出预退出信号的过程中,概率计算单元实时计算ESC激活概率,当判断单元确定ESC激活概率仍旧大于锁存区间时,判断单元接收检测单元获取到的车辆的稳定参数。当稳定参数满足ESC激活条件时,判断单元激活ESC,退出ADS。当判断单元确定稳定参数满足稳定条件时,判断单元退出ESC。并且,协调控制单元在确定ESC退出后,通过向执行单元发送限制信息,来维持车辆行驶状态的稳定直至驾驶员接管车辆,或直至确定驾驶员未接管车辆时,控制车辆刹车。
基于相同的技术构思,本申请实施例还提供了一种智能驾驶车辆的ESC激活装置,如图7所示,该ESC激活装置700可以包括:
第一获取单元701,用于当车辆开启智能驾驶功能后,获取ESC激活概率;
输出单元702,用于当所述ESC激活概率大于预设的锁存区间时,输出自动驾驶系统ADS的预退出信号和预警信号;其中,所述预退出信号用于指示所述ADS维持车辆行驶状态的稳定;所述预警信号用于提示驾驶员接管所述车辆;
第二获取单元703,用于获取所述车辆的稳定参数,所述稳定参数用于表征所述车辆的行驶状态的稳定特性;
激活单元704,用于当所述稳定参数满足ESC激活条件时,激活所述ESC。
在一种可能的设计中,所述第一获取单元701具体用于:
获取所述车辆的行驶数据;
根据所述行驶数据,确定所述ESC激活概率。
在一种可能的设计中,所述第一获取单元701具体用于:
根据所述行驶数据,确定激活因子;所述激活因子包括专注度、车辆状态参数、路面附着系数中的至少一个参数;所述专注度用于表征所述驾驶员在所述ADS退出后接管所述车辆的能力;
根据所述激活因子,确定所述ESC激活概率。
在一种可能的设计中,所述第一获取单元701具体用于:
对所述激活因子进行权重归一化,得到所述ESC激活概率。
在一种可能的设计中,所述输出单元702具体用于:
向所述ADS发送所述预退出信号,确定所述车辆进入ADS预退出阶段;
通过所述ADS对所述车辆的转向、驱动力和制动力进行调节,控制所述车辆的行驶状态处于稳定减速状态。
在一种可能的设计中,在输出自动驾驶系统ADS的预退出信号和预警信号之后,所述第二获取单元703还用于:
确定所述ESC激活概率是否小于所述锁存区间;
若所述ESC激活概率大于所述锁存区间,或所述ESC激活概率处于所述锁存区间内,则获取所述稳定参数;
若所述ESC激活概率小于所述锁存区间,则统计所述ESC激活概率小于所述锁存区间的持续时间;当所述持续时间大于时间阈值时,停止输出所述预退出信号和预警信号。
在一种可能的设计中,所述激活单元704具体用于:
激活所述ESC,确定所述车辆进入ESC激活阶段,并退出所述ADS;
在所述ESC激活阶段,通过所述ESC对所述车辆的转向、驱动力和制动力进行调节,控制所述车辆的行驶状态处于所述稳定减速状态;
获取所述稳定参数,确定所述稳定参数是否满足稳定条件;若所述稳定参数满足所述稳定条件,则退出所述ESC。
在一种可能的设计中,在退出所述ESC之后,所述激活单元704还用于:
对所述车辆的转向、驱动力和制动力进行调节,控制所述车辆的行驶状态处于所述稳定减速状态;
确定所述驾驶员是否在输出所述预警信号后的预警时间段内接管所述车辆;
若所述驾驶员未在所述预警时间段内接管所述车辆,则控制所述车辆刹停。
如图8所示,本申请实施例提供一种可能的电子设备的结构示意图;其中,该电子设备应用于智能驾驶车辆。该电子设备的结构如图8所示,包括处理器801、存储器802。所述存储器中存储有一个或多个计算机程序,所述一个或多个计算机程序包括指令;当所述处理器调用所述指令时,使得所述电子设备执行以上实施例以及实施例提供的智能驾驶车辆的ESC激活方法。
如图9所示,本申请实施例提供一种可能的智能驾驶车辆的结构示意图。其中,该智能驾驶车辆包括ESC901、ADS902和ESC激活装置903。当ADS902激活时,所述ESC激活装置903执行以上实施例以及实施例提供的智能驾驶车辆的ESC激活方法。
基于上述内容和相同构思,本申请提供一种计算机可读存储介质,其上存储有计算机程序或指令,当该计算机程序或指令被执行时,以使得计算设备执行上述方法实施例中的方法。
基于上述内容和相同构思,本申请提供一种计算机程序产品,当计算机执行计算机程序产品时,以使得计算设备执行上述方法实施例中的方法。
应理解,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (19)

  1. 一种智能驾驶车辆的底盘稳定性控制功能ESC激活方法,其特征在于,包括:
    当车辆开启智能驾驶功能后,获取ESC激活概率;
    当所述ESC激活概率大于预设的锁存区间时,输出自动驾驶系统ADS的预退出信号和预警信号;其中,所述预退出信号用于指示所述ADS维持车辆行驶状态的稳定;所述预警信号用于提示驾驶员接管所述车辆;
    获取所述车辆的稳定参数,所述稳定参数用于表征所述车辆的行驶状态的稳定特性;
    当所述稳定参数满足ESC激活条件时,激活所述ESC。
  2. 根据权利要求1所述的方法,其特征在于,获取ESC激活概率,包括:
    获取所述车辆的行驶数据;
    根据所述行驶数据,确定所述ESC激活概率。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述行驶数据,确定所述ESC激活概率,包括:
    根据所述行驶数据,确定激活因子;所述激活因子包括专注度、车辆状态参数、路面附着系数中的至少一个参数;所述专注度用于表征所述驾驶员在所述ADS退出后接管所述车辆的能力;
    根据所述激活因子,确定所述ESC激活概率。
  4. 根据权利要求2或3所述的方法,其特征在于,所述根据所述激活因子,确定所述ESC激活概率,包括:
    对所述激活因子进行权重归一化,得到所述ESC激活概率。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述输出自动驾驶系统ADS的预退出信号,包括:
    向所述ADS发送所述预退出信号,确定所述车辆进入ADS预退出阶段;
    通过所述ADS对所述车辆的转向、驱动力和制动力进行调节,控制所述车辆的行驶状态处于稳定减速状态。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,在输出自动驾驶系统ADS的预退出信号和预警信号之后,所述方法还包括:
    确定所述ESC激活概率是否小于所述锁存区间;
    若所述ESC激活概率大于所述锁存区间,或所述ESC激活概率处于所述锁存区间内,则获取所述稳定参数;
    若所述ESC激活概率小于所述锁存区间,则统计所述ESC激活概率小于所述锁存区间的持续时间;当所述持续时间大于时间阈值时,停止输出所述预退出信号和预警信号。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述激活所述ESC,包括:
    激活所述ESC,确定所述车辆进入ESC激活阶段,并退出所述ADS;
    在所述ESC激活阶段,通过所述ESC对所述车辆的转向、驱动力和制动力进行调节,控制所述车辆的行驶状态处于所述稳定减速状态;
    获取所述稳定参数,确定所述稳定参数是否满足稳定条件;若所述稳定参数满足所述稳定条件,则退出所述ESC。
  8. 根据权利要求7所述的方法,其特征在于,在退出所述ESC之后,所述方法还包括:
    对所述车辆的转向、驱动力和制动力进行调节,控制所述车辆的行驶状态处于所述稳定减速状态;
    确定所述驾驶员是否在输出所述预警信号后的预警时间段内接管所述车辆;
    若所述驾驶员未在所述预警时间段内接管所述车辆,则控制所述车辆刹停。
  9. 一种智能驾驶车辆的底盘稳定性控制功能ESC激活装置,其特征在于,包括:
    第一获取单元,用于当车辆开启智能驾驶功能后,获取ESC激活概率;
    输出单元,用于当所述ESC激活概率大于预设的锁存区间时,输出自动驾驶系统ADS的预退出信号和预警信号;其中,所述预退出信号用于指示所述ADS维持车辆行驶状态的稳定;所述预警信号用于提示驾驶员接管所述车辆;
    第二获取单元,用于获取所述车辆的稳定参数,所述稳定参数用于表征所述车辆的行驶状态的稳定特性;
    激活单元,用于当所述稳定参数满足ESC激活条件时,激活所述ESC。
  10. 根据权利要求9所述的装置,其特征在于,所述第一获取单元具体用于:
    获取所述车辆的行驶数据;
    根据所述行驶数据,确定所述ESC激活概率。
  11. 根据权利要求10所述的装置,其特征在于,所述第一获取单元具体用于:
    根据所述行驶数据,确定激活因子;所述激活因子包括专注度、车辆状态参数、路面附着系数中的至少一个参数;所述专注度用于表征所述驾驶员在所述ADS退出后接管所述车辆的能力;
    根据所述激活因子,确定所述ESC激活概率。
  12. 根据权利要求10或11所述的装置,其特征在于,所述第一获取单元具体用于:
    对所述激活因子进行权重归一化,得到所述ESC激活概率。
  13. 根据权利要求9-12任一项所述的装置,其特征在于,所述输出单元具体用于:
    向所述ADS发送所述预退出信号,确定所述车辆进入ADS预退出阶段;
    通过所述ADS对所述车辆的转向、驱动力和制动力进行调节,控制所述车辆的行驶状态处于稳定减速状态。
  14. 根据权利要求9-13任一项所述的装置,其特征在于,在输出自动驾驶系统ADS的预退出信号和预警信号之后,所述第二获取单元还用于:
    确定所述ESC激活概率是否小于所述锁存区间;
    若所述ESC激活概率大于所述锁存区间,或所述ESC激活概率处于所述锁存区间内,则获取所述稳定参数;
    若所述ESC激活概率小于所述锁存区间,则统计所述ESC激活概率小于所述锁存区间的持续时间;当所述持续时间大于时间阈值时,停止输出所述预退出信号和预警信号。
  15. 根据权利要求9-14任一项所述的装置,其特征在于,所述激活单元具体用于:
    激活所述ESC,确定所述车辆进入ESC激活阶段,并退出所述ADS;
    在所述ESC激活阶段,通过所述ESC对所述车辆的转向、驱动力和制动力进行调节,控制所述车辆的行驶状态处于所述稳定减速状态;
    获取所述稳定参数,确定所述稳定参数是否满足稳定条件;若所述稳定参数满足所述稳定条件,则退出所述ESC。
  16. 根据权利要求15所述的装置,其特征在于,在退出所述ESC之后,所述激活单元 还用于:
    对所述车辆的转向、驱动力和制动力进行调节,控制所述车辆的行驶状态处于所述稳定减速状态;
    确定所述驾驶员是否在输出所述预警信号后的预警时间段内接管所述车辆;
    若所述驾驶员未在所述预警时间段内接管所述车辆,则控制所述车辆刹停。
  17. 一种智能驾驶车辆,其特征在于,包括底盘稳定性控制功能ESC、自动驾驶系统ADS和如权利要求9-16任一项所述的ESC激活装置,当所述ADS激活时,所述ESC激活装置执行如权利要求1-8任一项所述的方法。
  18. 一种包含指令的计算机程序产品,其特征在于,当所述指令被处理器运行时,使得所述计算机执行如权利要求1-8任一项所述的方法。
  19. 一种计算机可读存储介质,其特征在于,包括计算机程序指令,当所述计算机程序指令由计算机执行时,所述处理器执行如权利要求1-8任一项所述的方法。
PCT/CN2022/129495 2022-11-03 2022-11-03 一种智能驾驶车辆的esc激活方法和装置 WO2024092609A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129495 WO2024092609A1 (zh) 2022-11-03 2022-11-03 一种智能驾驶车辆的esc激活方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129495 WO2024092609A1 (zh) 2022-11-03 2022-11-03 一种智能驾驶车辆的esc激活方法和装置

Publications (1)

Publication Number Publication Date
WO2024092609A1 true WO2024092609A1 (zh) 2024-05-10

Family

ID=90929227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129495 WO2024092609A1 (zh) 2022-11-03 2022-11-03 一种智能驾驶车辆的esc激活方法和装置

Country Status (1)

Country Link
WO (1) WO2024092609A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103010294A (zh) * 2011-09-26 2013-04-03 现代摩比斯株式会社 Esc-mdps综合控制装置及其方法
DE102012112802A1 (de) * 2012-12-20 2014-06-26 Conti Temic Microelectronic Gmbh Verfahren zur Steuerung eines Fahrzeugs mit einem ein automatisiertes, teilautomatisiertes und ein manuelles Fahren ermöglichenden Fahrerassistenzsystem
CN108621804A (zh) * 2018-05-14 2018-10-09 浙江吉利控股集团有限公司 四轮独立电驱动车辆再生制动稳定控制方法、装置及车辆
CN111216740A (zh) * 2018-11-08 2020-06-02 株式会社万都 驾驶员辅助设备及其控制方法以及驾驶员辅助系统
US20200247393A1 (en) * 2019-01-31 2020-08-06 Gm Cruise Holdings Llc Preemptive chassis control intervention for autonomous vehicle
JP2020132007A (ja) * 2019-02-21 2020-08-31 日産自動車株式会社 車両の走行支援方法及び走行支援装置
CN113508070A (zh) * 2018-12-27 2021-10-15 C.R.F.财团股份公司 用于自动驾驶机动车辆的汽车电子横向动力学控制系统
CN113525346A (zh) * 2020-04-21 2021-10-22 丰田自动车株式会社 车辆控制系统以及车辆控制方法
CN114261403A (zh) * 2022-03-03 2022-04-01 宁波均联智行科技股份有限公司 退出自动驾驶时的方向盘信息预警方法及系统
CN114940151A (zh) * 2021-02-16 2022-08-26 现代自动车株式会社 控制车辆的制动的系统和方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103010294A (zh) * 2011-09-26 2013-04-03 现代摩比斯株式会社 Esc-mdps综合控制装置及其方法
DE102012112802A1 (de) * 2012-12-20 2014-06-26 Conti Temic Microelectronic Gmbh Verfahren zur Steuerung eines Fahrzeugs mit einem ein automatisiertes, teilautomatisiertes und ein manuelles Fahren ermöglichenden Fahrerassistenzsystem
CN108621804A (zh) * 2018-05-14 2018-10-09 浙江吉利控股集团有限公司 四轮独立电驱动车辆再生制动稳定控制方法、装置及车辆
CN111216740A (zh) * 2018-11-08 2020-06-02 株式会社万都 驾驶员辅助设备及其控制方法以及驾驶员辅助系统
CN113508070A (zh) * 2018-12-27 2021-10-15 C.R.F.财团股份公司 用于自动驾驶机动车辆的汽车电子横向动力学控制系统
US20200247393A1 (en) * 2019-01-31 2020-08-06 Gm Cruise Holdings Llc Preemptive chassis control intervention for autonomous vehicle
JP2020132007A (ja) * 2019-02-21 2020-08-31 日産自動車株式会社 車両の走行支援方法及び走行支援装置
CN113525346A (zh) * 2020-04-21 2021-10-22 丰田自动车株式会社 车辆控制系统以及车辆控制方法
CN114940151A (zh) * 2021-02-16 2022-08-26 现代自动车株式会社 控制车辆的制动的系统和方法
CN114261403A (zh) * 2022-03-03 2022-04-01 宁波均联智行科技股份有限公司 退出自动驾驶时的方向盘信息预警方法及系统

Similar Documents

Publication Publication Date Title
JP6670901B2 (ja) 車両の運転補助を行うための方法及び装置
JP6333655B2 (ja) 車両の運転補助を行うための方法及び装置
JP7256982B2 (ja) 車両の走行制御装置
US8155879B2 (en) Apparatus and process for vehicle driving assistance
US9108600B2 (en) Method and device for performing closed-loop or open-loop control of the driving stability of a vehicle
KR101977997B1 (ko) 운전 안전성을 조절하는 방법 및 시스템
JP3870911B2 (ja) 車線逸脱防止装置
JP4953628B2 (ja) カー・トレイラー連結車を安定化する方法と装置
JP4596459B2 (ja) 自動車における非常制動プロセスを自動的に開始する方法および装置
US9840242B2 (en) Method for regulating driving stability
US20040193374A1 (en) Collision avoidance with active steering and braking
EP2885173B1 (en) Vehicle speed control system
WO2018007079A1 (en) Improvements in vehicle speed control
JP2000142281A (ja) 車両の走行安全装置
GB2524912A (en) Vehicle speed control system
JP6986463B2 (ja) 運転支援装置、運転支援方法及び運転支援システム
WO2014139703A1 (en) Vehicle speed control system
JP2020128165A (ja) 車両の走行制御装置
WO2024092609A1 (zh) 一种智能驾驶车辆的esc激活方法和装置
JP2020163966A (ja) 車両制御装置
KR102562411B1 (ko) 전방에 위치한 커브를 통과할 시 자기차량의 차량운전자를 지원하기 위한 방법
JP6591273B2 (ja) 車両操舵支援装置
CN109649327B (zh) 基于自适应巡航的安全带预紧方法、系统、设备和介质
JP2001080491A (ja) 車両のヨーイング運動量制御装置
WO2022064236A1 (ja) 車両運動制御方法及び車両運動制御装置