WO2024090829A1 - Epoxy resin and powder coating composition containing same - Google Patents

Epoxy resin and powder coating composition containing same Download PDF

Info

Publication number
WO2024090829A1
WO2024090829A1 PCT/KR2023/015185 KR2023015185W WO2024090829A1 WO 2024090829 A1 WO2024090829 A1 WO 2024090829A1 KR 2023015185 W KR2023015185 W KR 2023015185W WO 2024090829 A1 WO2024090829 A1 WO 2024090829A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin
isocyanate
powder coating
alcohol
Prior art date
Application number
PCT/KR2023/015185
Other languages
French (fr)
Korean (ko)
Inventor
조진
이송이
이주호
정혁
최종윤
김진회
박종윤
Original Assignee
주식회사 케이씨씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이씨씨 filed Critical 주식회사 케이씨씨
Publication of WO2024090829A1 publication Critical patent/WO2024090829A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/58Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins

Definitions

  • the present invention relates to an epoxy resin having a high glass transition temperature and excellent flexibility and a powder coating composition containing the same.
  • Pipelines for oil mining and transportation buried underground or under the sea are coated with paint to prevent corrosion and improve durability.
  • coating materials are applied to the inside and outside of pipes, and the long-term property management standards for coating materials required by the industry are established. It is gradually being strengthened.
  • the pipe interior and exterior coating materials require not only corrosion resistance to prevent corrosion of the material in a buried environment, but also flexibility to protect the material from impacts, scratches, etc., and heat resistance characteristics in high temperature conditions.
  • U.S. Patent No. 5,407,978 discloses a powder coating for pipes containing an aliphatic polyol-modified epoxy resin and a phenol curing agent.
  • U.S. Patent No. 5,112,932 uses an epoxy resin in which oxazolidone and isocyanurate rings are formed by adding polyisocyanate in the process of polymerizing a low amount of epoxy resin, and mixes it with dicyandiamide or phenol resin. A method for reacting is disclosed.
  • the polyisocyanate is consumed by reacting with the secondary hydroxyl group of the main epoxy resin, which reduces the functional groups that can hydrogen bond with the hydroxyl group of the iron material, resulting in a problem of reduced boiling water adhesion. there is.
  • the present invention provides an epoxy resin having a high glass transition temperature and excellent flexibility and a powder coating composition containing the same.
  • the present invention includes the steps of reacting an alcohol and an isocyanate to prepare a block isocyanate resin, reacting a multifunctional epoxy resin with the block isocyanate resin to prepare an epoxy resin containing an oxazolidone structure, and the oxazolidone structure
  • An epoxy resin prepared by a method comprising dispersing an impact modifier in the included epoxy resin is provided. Additionally, the present invention provides a powder coating composition containing the epoxy resin.
  • the present invention provides an epoxy resin having a high glass transition temperature and excellent flexibility and a powder coating composition containing the same.
  • the epoxy resin according to the present invention has a high glass transition temperature of 180°C or higher and can be used in high temperature environments.
  • the epoxy resin of the present invention has excellent flexibility, which is a physical property opposite to its high glass transition temperature, and at the same time has excellent physical properties such as adhesion and corrosion resistance. Therefore, the powder coating composition containing the epoxy resin of the present invention provides excellent high-temperature heat resistance properties and can be applied as a paint for coating pipes buried in harsh environments.
  • glass transition temperature used in this specification is measured by a common method known in the relevant technical field, and can be measured, for example, by differential scanning calorimetry (DSC).
  • Viscosity is measured by a common method known in the art, and can be measured, for example, using a Brookfield viscometer at room temperature (25°C).
  • the epoxy resin of the present invention includes the steps of reacting alcohol and isocyanate to prepare a block isocyanate resin, reacting a multifunctional epoxy resin with the block isocyanate resin to prepare an epoxy resin containing an oxazolidone structure, and the oxazolidone structure. It is manufactured by a method comprising dispersing an impact modifier in an epoxy resin containing a money structure.
  • Block isocyanate resin is produced by reacting alcohol and isocyanate.
  • it can be prepared by adding alcohol dropwise to isocyanate at 60 to 120°C for 2 to 4 hours and then reacting for 1 to 3 hours.
  • Isocyanate is a material with excellent reactivity and weather resistance. It has excellent reactivity with hydroxyl groups and can be used to produce urethane resin. However, because isocyanate has excellent reactivity, it easily reacts with other substances (e.g., amines, amides, urea, etc.) even at room temperature, so the reaction may occur even under undesirable conditions and generate by-products. To prevent this, the present invention uses a block isocyanate resin in which the ends of the isocyanate are partially blocked.
  • polyisocyanate having two or more functions, for example, two to three functions, can be used.
  • polyisocyanate having two or more functions, for example, two to three functions.
  • MDI 4,4'-methylenediphenyldiisocyanate
  • MMDI modified MDI
  • TDI toluene diisocyanate
  • MXDI metaxylene diisocyanate
  • HMDI hexamethylene Diisocyanate
  • IPDI isophorone diisocyanate
  • a low molecular weight monofunctional alcohol can be used.
  • methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, pentanol, etc. can be used, and these can be used alone or in a mixture of two or more types.
  • the isocyanate and the alcohol can react at an equivalent ratio of 1:1 to 1.1, and when the above range is satisfied, block isocyanate sufficient to satisfy the effects of the present invention can be effectively produced. If the equivalent ratio of alcohol to isocyanate is less than the above-mentioned range, the effect of preventing side reactions such as unreacted isocyanate remaining and reaction occurring at room temperature may be insufficient, and if it exceeds the above-mentioned range, the remaining alcohol will increase, making it less economical. This may deteriorate.
  • An epoxy resin containing an oxazolidone structure is prepared by reacting a multifunctional epoxy resin with the block isocyanate resin.
  • Isocyanate resin is highly reactive and can react with hydroxyl group (-OH) or cyanate group (-NCO) to produce urethane dione or isocyanurate, which increases the viscosity of the resin and affects workability. You can.
  • block isocyanate by using block isocyanate, the reactivity of isocyanate is reduced, and as a result, the generation of by-products such as uretidine dione and isocyanurate is reduced, thereby lowering the viscosity of the resin and ensuring manufacturing stability.
  • an epoxy resin containing an oxazolidone structure with a high glass transition temperature of 180 ° C. or higher can be produced.
  • the multifunctional epoxy resin is a bivalent or higher epoxy resin, for example, bisphenol A-type epoxy resin, bisphenol F-type epoxy resin, bisphenol S-type epoxy resin, phenol novolak epoxy resin, cresol novolac epoxy resin, triglycidyl It may be isocyanurate, biphenyl epoxy resin, polyglycol epoxy resin, cardanol epoxy resin, hydrogenated bisphenol A type epoxy resin, dicyclopentadiene epoxy resin, xyloc epoxy resin, rubber modified epoxy resin, etc. These can be used alone or in combination of two or more types.
  • the multifunctional epoxy resin and the block isocyanate may react at an equivalent ratio of 2.2 to 3.7:1. If the equivalence ratio of the polyfunctional epoxy resin to the block isocyanate is less than the above-mentioned range, that is, if the content of the polyfunctional epoxy resin is relatively small compared to the block isocyanate, the resin is manufactured as it becomes difficult to control the chemical reaction due to the highly reactive block isocyanate. As the molecular weight increases, the viscosity increases and gelation may occur, which may make it difficult to paint the resin.
  • the equivalence ratio of the polyfunctional epoxy resin to the block isocyanate exceeds the above-mentioned range, that is, if the content of the polyfunctional epoxy resin is relatively high compared to the block isocyanate, the molecular weight of the produced epoxy resin may decrease and the flexibility may decrease.
  • the multifunctional epoxy resin and the blocked isocyanate resin are mixed at 100 to 120° C., raised to 180 to 220° C., reacted for 2 to 6 hours, and the alcohol that blocked the isocyanate is recovered to form an oxazolidone structure.
  • An epoxy resin containing can be manufactured.
  • a catalyst may be used during the reaction, and as the catalyst, a conventional catalyst applicable to the production of an epoxy resin containing an oxazolidone structure may be used, for example, 2-ethyl-4-methylimidazole can be used.
  • an additional pressure reduction reaction may be performed.
  • the pressure is not particularly limited as long as it is lower than normal pressure and allows alcohol recovery.
  • the pressure can be reduced to 100 to 300 mmHg.
  • the pressure reduction reaction time is the time for recovering all of the alcohol and is not particularly limited.
  • the epoxy equivalent weight (EEW) of the epoxy resin containing the oxazolidone structure may be 300 to 600 g/eq, for example, 350 to 500 g/eq, and the viscosity may be 5 to 100 ps (175 ° C.). .
  • EW epoxy equivalent weight
  • the epoxy equivalent weight and viscosity of the epoxy resin containing the oxazolidone structure are within the above-mentioned range, it can exhibit a high glass transition temperature and excellent flexibility. If the epoxy equivalent weight of the epoxy resin containing the oxazolidone structure is less than the above-mentioned range, flexibility may decrease, making it difficult to implement the physical properties of the coating film, and if it exceeds the above-mentioned range, the glass transition temperature may be lowered.
  • the viscosity of the epoxy resin containing the oxazolidone structure is less than the above-mentioned range, it may be difficult to powderize the resin, and if it exceeds the above-mentioned range, dispersion of the paint components may be difficult due to the high viscosity during powder coating production. You can lose.
  • Step of dispersing an impact modifier in an epoxy resin containing an oxazolidone structure Step of dispersing an impact modifier in an epoxy resin containing an oxazolidone structure.
  • the epoxy resin containing the oxazolidone structure prepared above is a strong resin with a high glass transition temperature of 180° C. or higher, and may have insufficient flexibility to be applied to a coating agent for pipes.
  • the glass transition temperature is the temperature at which the hard, relatively brittle glass state changes into a flexible rubber state. The higher the glass transition temperature, the lower the flexibility, which may result in a lack of physical properties such as flexibility. Therefore, the epoxy containing the oxazolidone structure may lack physical properties such as flexibility. Additional measures are required to impart flexibility to the resin.
  • excellent flexibility can be imparted to a strong resin with a high glass transition temperature.
  • the shock absorber may be a core-shell resin type, a block copolymer type, a silicone powder type, a rubber modified resin type, etc., and these may be used alone or in a mixture of two or more types.
  • the shock absorber may be a core-shell resin type shock absorber in which the core is a crosslinked rubber-modified copolymer and the shell is an acrylic resin with a high glass transition temperature.
  • the shock absorber may be included in an amount of 5 to 20 parts by weight, for example, 10 to 15 parts by weight, based on 100 parts by weight of the epoxy resin containing the oxazolidone structure. If the content of the impact modifier is less than the above-mentioned range, sufficient flexibility may not be secured and the flexibility may be reduced, and if it exceeds the above-mentioned range, the glass transition temperature of the resin may be lowered, making it difficult to realize the desired physical properties.
  • the epoxy resin of the present invention can be prepared by dispersing the impact modifier in an epoxy resin containing the oxazolidone structure at high temperature and high speed.
  • the epoxy resin containing the oxazolidone structure is heated to 200 to 250° C., mixed with the shock absorber, and then dispersed at 1,500 to 2,000 rpm using a high-speed disperser (e.g., disk-type high-speed disperser) for 15 minutes.
  • the epoxy resin of the present invention can be prepared by dispersing for 60 minutes.
  • the shock absorber must be reacted to be completely dispersed in the epoxy resin containing the oxazolidone structure, and complete dispersion can be confirmed by observing with an optical microscope. For example, after spreading the epoxy resin thinly on a glass plate, it can be observed under an optical microscope (e.g., 500 to 1,000 magnification) to check whether there is any clumping. If agglomeration of the shock absorber is observed, it is not completely dispersed, and in this case, a high glass transition temperature and excellent flexibility may not be achieved.
  • an optical microscope e.g. 500 to 1,000 magnification
  • the epoxy equivalent weight (EEW) of the epoxy resin containing the oxazolidone structure in which the shock absorber is dispersed may be 300 to 600 g/eq, for example, 350 to 500 g/eq, and the viscosity may be 5 to 100 ps (175 °C).
  • EW epoxy equivalent weight
  • the epoxy equivalent weight and viscosity of the epoxy resin containing the oxazolidone structure in which the shock absorber is dispersed are within the above-mentioned range, it can exhibit a high glass transition temperature and excellent flexibility.
  • the epoxy equivalent weight of the epoxy resin containing the oxazolidone structure in which the shock absorber is dispersed is less than the above-mentioned range, flexibility may decrease, making it difficult to realize the physical properties of the coating film, and if it exceeds the above-mentioned range, the glass transition temperature may be lowered. You can.
  • the viscosity of the epoxy resin containing the oxazolidone structure in which the shock absorber is dispersed is less than the above-mentioned range, it may be difficult to powderize the resin, and if it exceeds the above-mentioned range, the paint may be difficult to powder due to the high viscosity when manufacturing the powder coating. Dispersion of ingredients may become difficult.
  • the powder coating composition of the present invention includes an epoxy resin, a curing agent, and a filler.
  • the powder coating composition of the present invention may further include additives commonly used in the relevant technical field, such as pigments and flow improvers, if necessary.
  • the powder coating composition of the present invention contains epoxy resin as the main resin.
  • the epoxy resin is prepared by reacting alcohol and isocyanate to prepare a block isocyanate resin, reacting a multifunctional epoxy resin with the block isocyanate resin to prepare an epoxy resin containing an oxazolidone structure, and the oxazolidone structure. It is manufactured by a method including the step of dispersing an impact modifier in an epoxy resin containing, and details are as described in ⁇ Epoxy Resin> above.
  • the powder coating composition of the present invention includes a curing agent.
  • the curing agent causes a curing reaction with the main resin to prevent deformation due to heat and increases the adhesion strength of the coating film.
  • the curing agent may be an isocyanate-based curing agent or an amide-based curing agent.
  • the curing agent may be dicyandiamide.
  • the epoxy resin and the curing agent may be included in an equivalent ratio of 1:0.8 to 1.2, for example, 1:0.9 to 1.1. If the equivalence ratio of the curing agent to the epoxy resin is less than the above-mentioned range, that is, if the equivalence ratio of the curing agent to the epoxy resin is small, a sufficient curing reaction may be difficult and a high crosslinking density may not be obtained. If the equivalent ratio of the hardener to the epoxy resin exceeds the above-mentioned range, that is, if the equivalent ratio of the hardener to the epoxy resin is high, the impurity content of the paint film may increase due to the remaining unreacted hardener, which may reduce water resistance, chemical resistance, etc. there is.
  • the powder coating composition of the present invention may include 1 to 10 parts by weight of the curing agent, for example, 5 to 10 parts by weight, based on 100 parts by weight of the epoxy resin. If the content of the hardener is less than the above-mentioned range, the degree of curing, corrosion resistance, and chemical resistance of the coating film may be reduced, and if it exceeds the above-mentioned range, the processability of the coating film may be reduced.
  • the powder coating composition of the present invention includes a filler.
  • the filler fills the pores in the paint film, supplements the formation of the paint film, and provides fattening or mechanical properties to the paint film. Therefore, when a filler is included, a good coating film appearance can be obtained and hardness, impact resistance, rust prevention, etc. can be improved.
  • inorganic fillers such as calcium carbonate, clay, talc, magnesium silicate, kaolin, mica, aluminum oxide, aluminum silicate, aluminum hydroxide, barium sulfate, etc. can be used.
  • the above-mentioned ingredients can be used alone or two or more types can be mixed.
  • the powder coating composition of the present invention may include 30 to 50 parts by weight of the filler based on 100 parts by weight of the epoxy resin. If the content of the filler is less than the above-mentioned range, glossiness of the exterior of the coating film, pinholes, etc. may occur, and if it exceeds the above-mentioned range, the resin content of the coating film may be lowered and adhesion, rust prevention, etc. may be reduced.
  • the powder coating composition of the present invention may further include additives commonly used in the relevant technical field, such as pigments and flow improvers, if necessary.
  • Pigments can be used to add color to powder coatings.
  • organic pigments, inorganic pigments, metallic pigments, aluminum-paste, pearl, etc. can be used without limitation, and these can be used alone or in combination of two or more types.
  • the powder coating composition of the present invention may include 1 to 10 parts by weight of the pigment based on 100 parts by weight of the epoxy resin.
  • the pigment content is within the above-mentioned range, the color expression of the coating film is excellent, and the mechanical properties, impact resistance, adhesion, etc. of the coating film can be improved.
  • Non-limiting examples of additives that can be used in the present invention include flow improvers, leveling agents, pinhole prevention agents, wax, low stress agents, dispersants, anti-cratting agents, coupling agents, gloss control agents, adhesion improvers, flame retardants, matting agents, and high reflection.
  • flow improvers leveling agents, pinhole prevention agents, wax, low stress agents, dispersants, anti-cratting agents, coupling agents, gloss control agents, adhesion improvers, flame retardants, matting agents, and high reflection.
  • polymers, etc. and these can be used alone or in a mixture of two or more types.
  • the additives may be added within a content range known in the art, and for example, they may be included in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the epoxy resin.
  • the powder coating composition according to the present invention can be manufactured by methods known in the art. For example, it can be manufactured through processes such as raw material basis weight, dry premixing, dispersion and coarse grinding, grinding and classification.
  • the raw material mixture containing an epoxy resin, hardener, filler, pigment, additive, etc. into a container mixer and mixing it uniformly, melting and mixing the mixed composition, and then pulverizing it.
  • the raw material mixture is melted and dispersed at 70 to 130° C. using a melt kneading device such as a kneader or extruder to produce chips with a predetermined thickness (e.g., 1 to 5 mm).
  • the manufactured chips can be pulverized to a size of 40 to 80 ⁇ m using a grinding device such as a high-speed mixer and classified to prepare a powder coating composition.
  • the classification process is not particularly limited, and may be filtered to, for example, 80 to 120 mesh. Accordingly, a powder coating with an average particle size in the range of 25 to 55 ⁇ m can be obtained.
  • the average particle size of the powder is not particularly limited, but if it satisfies the above-mentioned range, painting workability and appearance characteristics of the coating film can be improved.
  • the surface of the powder coating particles according to the present invention may be coated with fine powder such as silica.
  • fine powder such as silica.
  • a grinding mixing method that mixes while adding fine powder during grinding or a dry mixing method using a Henschel mixer or the like can be used.
  • a disk-type high-speed stirrer was installed, 150 g of core-shell resin (Kaneka MZ-120), a shock absorber, was added, and the mixture was stirred at high speed at 2,000 rpm for 30 minutes while maintaining 200°C. After confirming that the impact modifier was completely dispersed, the resin was cooled to obtain a solid, opaque red epoxy resin. The equivalent weight of the prepared epoxy resin was 450 g/eq.
  • Epoxy resins of each Preparation Example were prepared in the same manner as Preparation Example 1, except for the compositions shown in Tables 1 and 2 below.
  • the physical properties of the produced epoxy resin are listed in Tables 1 and 2.
  • HMDI hexamethylene diisocyanate
  • IPDI Isophorone diisocyanate
  • Epoxy resin 1 Bisphenol A type epoxy resin (Kukdo Chemical Company YD-128, epoxy equivalent 190)
  • Epoxy resin 2 Cresol novolac epoxy resin (YDCN-500-4P, epoxy equivalent 210)
  • Epoxy Resin 3 Dicyclopentadiene (KDCP-150)
  • Epoxy resin 4 Modified bisphenol A type epoxy resin (Printec VG3101L)
  • Epoxy resin 5 dicyclophendadiene (DIC HP7 200)
  • Shock Absorber 1 Core-shell resin (Kaneka MZ-120)
  • Shock absorber 2 Silicone rubber type core-shell resin (Wacker P52)
  • Shock absorber 3 Acrylic type core-shell resin (EXL-2655 from Paraloid)
  • Powder coatings for each experimental example were prepared in the same manner as in Experimental Example 1, except that the composition was in accordance with Tables 5-7 below.
  • the temperature of the specimen was set to room temperature, 0°C, and -5°C, and the cracking of the coating film was measured when the specimen was bent using a mandrel set at an angle of 3° and 2°, respectively.
  • the temperature of the specimen manufactured in the same manner as the bending resistance test was set to 10°C, and an impact of 3 J/g was applied to the specimen to check for damage caused by the impact using a holiday tester.
  • Specimens were produced in the same manner as the bending resistance test, except that steel measuring 100 mm (width) 100 mm (length) 6 mm (thickness) was used. The specimen was immersed in a water bath at 75°C, taken out after 28 days, and adhesion was evaluated. After cooling the removed specimen to room temperature for 1 hour, scrape a rectangular shape measuring 15 mm in width and 30 mm in length with a knife until the base material is exposed, and then push the knife between the coating film and the base material centered on the exposed area to demonstrate the principle of leverage. After measuring the adhesion, it was evaluated according to the peeling area, etc.
  • Specimens were produced in the same manner as the bending resistance test, except that steel measuring 100 mm (width) 100 mm (length) 6 mm (thickness) was used. After drilling a hole with a diameter of 3 mm in the center of the specimen, salt water with a concentration of 3% was applied to the surface of the coating film to make contact with it. After preventing evaporation using a container, a 1.5 V voltage was applied to the material at 130 ° C. for 28 days to make the hole. The peeling distance from was measured twice. It can be interpreted that the larger the peeling distance, the poorer the adhesion of the powder coating to the substrate.
  • the specimen production and property evaluation methods were performed according to CSA Z245.20, the Canadian standard for pipes.
  • the powder coating of Experimental Example 1-15 using the epoxy resin of Preparation Example 1-15 according to the present invention showed excellent physical properties in all measurement items.
  • the powder coating of Experimental Example 16 using the epoxy resin of Preparation Example 16 in which no impact modifier was used showed overall inferior physical properties.
  • Preparation Example 17 which was prepared using unblocked isocyanate instead of blocked isocyanate
  • Preparation Example 18 which was prepared in a one-step reaction by mixing all the corresponding components instead of sequentially reacting them in three steps, gelation was performed to prepare an epoxy resin. I could't.
  • the present invention provides an epoxy resin having a high glass transition temperature and excellent flexibility and a powder coating composition containing the same.
  • the epoxy resin according to the present invention has a high glass transition temperature of 180°C or higher and can be used in high temperature environments.
  • the epoxy resin of the present invention has excellent flexibility, which is a physical property opposite to its high glass transition temperature, and at the same time has excellent physical properties such as adhesion and corrosion resistance. Therefore, the powder coating composition containing the epoxy resin of the present invention provides excellent high-temperature heat resistance properties and can be applied as a coating material for pipes buried in harsh environments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention pertains to an epoxy resin having a high glass transition temperature and excellent flexibility. This epoxy resin is characterized by being prepared using a method comprising the steps of: reacting alcohol and isocyanate to prepare a block isocyanate resin; reacting a multifunctional epoxy resin with the block isocyanate resin to prepare an epoxy resin containing an oxazolidone structure; and dispersing an impact modifier in the epoxy resin containing an oxazolidone structure.

Description

에폭시 수지 및 이를 포함하는 분체도료 조성물Epoxy resin and powder coating composition containing it
본 발명은 높은 유리전이온도와 우수한 굴곡성을 갖는 에폭시 수지 및 이를 포함하는 분체도료 조성물에 관한 것이다.The present invention relates to an epoxy resin having a high glass transition temperature and excellent flexibility and a powder coating composition containing the same.
지하 또는 해저 등에 매설되는 석유 채굴 및 이송용 파이프 라인은 부식 방지 및 내구력 향상을 위해 도료로 코팅된다. 지상, 지하, 수중 등의 매설 환경에서 미세 전류, 수분 외 가혹 조건에 의한 파이프의 부식을 방지하기 위해, 파이프의 내외부에 코팅재가 적용되는데, 해당 산업계에서 요구되는 코팅 소재에 대한 장기 물성 관리 규격이 점차 강화되고 있다. 구체적으로, 파이프 내외부 코팅재에는 매설 환경에서의 소지의 부식을 방지하기 위한 내부식성뿐 아니라, 충격, 긁힘 등으로부터 소지를 보호하기 위한 유연성과 고온 조건에서의 내열 특성이 요구된다. 특히, 지하 자원의 고갈로 열악한 환경에서의 채굴이 빈번해지면서, 채굴 깊이가 깊어지고 매설 환경이 가혹해짐에 따라, 파이프 코팅용 도료에도 열적, 화학적, 기계적 특성의 개선이 지속적으로 요구되고 있으며, 이러한 물성을 만족하는 도료에 대한 연구도 지속되고 있다.Pipelines for oil mining and transportation buried underground or under the sea are coated with paint to prevent corrosion and improve durability. In order to prevent corrosion of pipes due to harsh conditions such as microcurrents and moisture in buried environments such as above ground, underground, and underwater, coating materials are applied to the inside and outside of pipes, and the long-term property management standards for coating materials required by the industry are established. It is gradually being strengthened. Specifically, the pipe interior and exterior coating materials require not only corrosion resistance to prevent corrosion of the material in a buried environment, but also flexibility to protect the material from impacts, scratches, etc., and heat resistance characteristics in high temperature conditions. In particular, as mining in poor environments becomes more frequent due to the depletion of underground resources, mining depths deepen and burial environments become harsher, improvements in thermal, chemical and mechanical properties of paints for pipe coating are continuously required. Research on paints that satisfy the physical properties is also continuing.
일례로, 미국 특허 제5,407,978호는 지방족 폴리올 변성 에폭시 수지와 페놀 경화제를 포함하는 파이프용 분체도료를 개시하고 있다. 다른 예로, 미국 특허 제5,112,932호는 저당량의 에폭시 수지를 중합하는 과정에 폴리이소시아네이트를 첨가하여 옥사졸리돈과 이소시아누레이트 링을 형성시킨 에폭시 수지를 사용하여, 이를 디시안디아미드 또는 페놀 수지와 반응시키는 방법을 개시하고 있다. 그러나, 이러한 방법을 사용할 경우, 폴리이소시아네이트가 주제의 에폭시 수지의 이차 수산기와 반응함으로써 소모되어, 철 소재의 수산기와 수소 결합할 수 있는 관능기가 적어지고, 결과적으로 비등수 부착성이 저하되는 문제가 있다.For example, U.S. Patent No. 5,407,978 discloses a powder coating for pipes containing an aliphatic polyol-modified epoxy resin and a phenol curing agent. As another example, U.S. Patent No. 5,112,932 uses an epoxy resin in which oxazolidone and isocyanurate rings are formed by adding polyisocyanate in the process of polymerizing a low amount of epoxy resin, and mixes it with dicyandiamide or phenol resin. A method for reacting is disclosed. However, when using this method, the polyisocyanate is consumed by reacting with the secondary hydroxyl group of the main epoxy resin, which reduces the functional groups that can hydrogen bond with the hydroxyl group of the iron material, resulting in a problem of reduced boiling water adhesion. there is.
한편, 파이프 코팅용 분체도료 조성물에 아미노 알코올 변성 에폭시 수지를 포함시켜 소지와 도막간의 부착성을 향상시키는 기술도 제안되었으나, 산업에서 요구되는 장기, 고온 시험 조건을 충족하기 위해서는 더욱 향상된 고온 내열 특성을 갖는 분체도료가 요구된다. Meanwhile, a technology to improve the adhesion between the substrate and the coating film by including amino alcohol-modified epoxy resin in the powder coating composition for pipe coating has also been proposed, but in order to meet the long-term, high-temperature test conditions required by the industry, further improved high-temperature heat resistance properties are needed. A powder coating with
본 발명은 높은 유리전이온도와 우수한 굴곡성을 갖는 에폭시 수지 및 이를 포함하는 분체도료 조성물을 제공한다.The present invention provides an epoxy resin having a high glass transition temperature and excellent flexibility and a powder coating composition containing the same.
본 발명은 알코올과 이소시아네이트를 반응시켜 블록 이소시아네이트 수지를 제조하는 단계, 다관능 에폭시 수지와 상기 블록 이소시아네이트 수지를 반응시켜 옥사졸리돈 구조가 포함된 에폭시 수지를 제조하는 단계, 및 상기 옥사졸리돈 구조가 포함된 에폭시 수지에 충격 완화제를 분산하는 단계를 포함하는 방법으로 제조되는 에폭시 수지를 제공한다. 또한, 본 발명은 상기 에폭시 수지를 포함하는 분체도료 조성물을 제공한다.The present invention includes the steps of reacting an alcohol and an isocyanate to prepare a block isocyanate resin, reacting a multifunctional epoxy resin with the block isocyanate resin to prepare an epoxy resin containing an oxazolidone structure, and the oxazolidone structure An epoxy resin prepared by a method comprising dispersing an impact modifier in the included epoxy resin is provided. Additionally, the present invention provides a powder coating composition containing the epoxy resin.
본 발명은 높은 유리전이온도와 우수한 굴곡성을 갖는 에폭시 수지 및 이를 포함하는 분체도료 조성물을 제공한다. 본 발명에 따른 에폭시 수지는 180 ℃ 이상의 높은 유리전이온도를 가지고 있어 고온의 환경에서 사용 가능하다. 또한, 본 발명의 에폭시 수지는 높은 유리전이온도와 상반되는 물성인 굴곡성이 우수하고, 동시에 부착성, 내식성 등의 물성이 우수하다. 따라서, 본 발명의 에폭시 수지를 포함하는 분체도료 조성물은 우수한 고온 내열 특성을 제공하는 바, 가혹한 환경에 매설되는 파이프의 코팅용 도료에 적용 가능하다.The present invention provides an epoxy resin having a high glass transition temperature and excellent flexibility and a powder coating composition containing the same. The epoxy resin according to the present invention has a high glass transition temperature of 180°C or higher and can be used in high temperature environments. In addition, the epoxy resin of the present invention has excellent flexibility, which is a physical property opposite to its high glass transition temperature, and at the same time has excellent physical properties such as adhesion and corrosion resistance. Therefore, the powder coating composition containing the epoxy resin of the present invention provides excellent high-temperature heat resistance properties and can be applied as a paint for coating pipes buried in harsh environments.
이하, 본 발명에 대하여 설명한다. 그러나, 하기 내용에 의해서만 한정되는 것은 아니며, 필요에 따라 각 구성요소가 다양하게 변형되거나 선택적으로 혼용될 수 있다. 따라서, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Hereinafter, the present invention will be described. However, it is not limited to the following content, and each component may be variously modified or selectively mixed as needed. Accordingly, it should be understood to include all changes, equivalents, and substitutes included in the spirit and technical scope of the present invention.
본 명세서에서 사용된 “유리전이온도”는 해당 기술분야에 알려진 통상의 방법에 의해 측정된 것이며, 예를 들어 시차주사열량분석법(differential scanning calorimetry, DSC)으로 측정할 수 있다. “점도”는 해당 기술분야에 알려진 통상의 방법에 의해 측정된 것이며, 예를 들어 상온(25 ℃)에서 브룩필드 (brookfield) 점도계를 사용하여 측정할 수 있다. The “glass transition temperature” used in this specification is measured by a common method known in the relevant technical field, and can be measured, for example, by differential scanning calorimetry (DSC). “Viscosity” is measured by a common method known in the art, and can be measured, for example, using a Brookfield viscometer at room temperature (25°C).
<에폭시 수지><Epoxy Resin>
본 발명의 에폭시 수지는 알코올과 이소시아네이트를 반응시켜 블록 이소시아네이트 수지를 제조하는 단계, 다관능 에폭시 수지와 상기 블록 이소시아네이트 수지를 반응시켜 옥사졸리돈 구조가 포함된 에폭시 수지를 제조하는 단계, 및 상기 옥사졸리돈 구조가 포함된 에폭시 수지에 충격 완화제를 분산하는 단계를 포함하는 방법으로 제조된다.The epoxy resin of the present invention includes the steps of reacting alcohol and isocyanate to prepare a block isocyanate resin, reacting a multifunctional epoxy resin with the block isocyanate resin to prepare an epoxy resin containing an oxazolidone structure, and the oxazolidone structure. It is manufactured by a method comprising dispersing an impact modifier in an epoxy resin containing a money structure.
블록 이소시아네이트 수지를 제조하는 단계Steps for producing block isocyanate resin
알코올과 이소시아네이트를 반응시켜 블록 이소시아네이트 수지를 제조한다. 일례로, 60 내지 120 ℃에서 이소시아네이트에 알코올을 2 내지 4 시간 동안 적가한 후, 1 내지 3시간 동안 반응시켜 제조할 수 있다. Block isocyanate resin is produced by reacting alcohol and isocyanate. For example, it can be prepared by adding alcohol dropwise to isocyanate at 60 to 120°C for 2 to 4 hours and then reacting for 1 to 3 hours.
이소시아네이트는 반응성 및 내후성이 우수한 물질로, 수산기와 반응성이 우수하여 우레탄 수지를 제조할 수 있다. 그러나, 이소시아네이트는 반응성이 우수한 만큼, 상온에서도 쉽게 다른 물질(예, 아민, 아마이드, 우레아 등)과 반응을 하기 때문에, 원하지 않는 조건에서도 반응이 일어나 부산물이 생길 수 있다. 이를 방지하기 위해서, 본 발명에서는 이소시아네이트의 말단을 일부 차단시킨, 블록 이소시아네이트 수지를 사용한다. Isocyanate is a material with excellent reactivity and weather resistance. It has excellent reactivity with hydroxyl groups and can be used to produce urethane resin. However, because isocyanate has excellent reactivity, it easily reacts with other substances (e.g., amines, amides, urea, etc.) even at room temperature, so the reaction may occur even under undesirable conditions and generate by-products. To prevent this, the present invention uses a block isocyanate resin in which the ends of the isocyanate are partially blocked.
상기 이소시아네이트로는 2관능 이상, 예를 들어 2 내지 3관능의 폴리이소시아네이트를 사용할 수 있다. 예를 들어, 4,4'- 메틸렌디페닐디이소시아네이트(MDI), 변성된 MDI(MMDI), 폴리머릭 MDI(polymeric MDI), 톨루엔디이소시아네이트(TDI), 메타자일렌디이소시아네이트(MXDI), 헥사메틸렌디이소시아네이트(HMDI), 이소포론디이소시아네이트(IPDI) 등을 사용할 수 있고, 이들은 단독으로 또는 2종 이상 혼합하여 사용될 수 있다.As the isocyanate, polyisocyanate having two or more functions, for example, two to three functions, can be used. For example, 4,4'-methylenediphenyldiisocyanate (MDI), modified MDI (MMDI), polymeric MDI, toluene diisocyanate (TDI), metaxylene diisocyanate (MXDI), hexamethylene Diisocyanate (HMDI), isophorone diisocyanate (IPDI), etc. can be used, and they can be used alone or in a mixture of two or more types.
상기 알코올로는 낮은 분자량의 1관능 알코올을 사용할 수 있다. 예를 들어, 메탄올, 에탄올, n-프로판올, iso-프로판올, n-부탄올, iso-부탄올, 펜탄올 등을 사용할 수 있고, 이들은 단독으로 또는 2종 이상 혼합하여 사용될 수 있다.As the alcohol, a low molecular weight monofunctional alcohol can be used. For example, methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, pentanol, etc. can be used, and these can be used alone or in a mixture of two or more types.
상기 이소시아네이트와 상기 알코올은 1 : 1 내지 1.1의 당량비로 반응할 수 있으며, 상기 범위를 만족할 경우 본 발명의 효과를 만족시키기에 충분한 블록 이소시아네이트를 효과적으로 생성할 수 있다. 이소시아네이트에 대한 알코올의 당량비가 전술한 범위 미만인 경우, 미반응의 이소시아네이트가 남아 상온에서 반응이 일어나는 등 부반응을 막는 효과가 불충분할 수 있고, 전술한 범위를 초과하는 경우, 잔류하는 알코올이 많아져 경제성이 저하될 수 있다.The isocyanate and the alcohol can react at an equivalent ratio of 1:1 to 1.1, and when the above range is satisfied, block isocyanate sufficient to satisfy the effects of the present invention can be effectively produced. If the equivalent ratio of alcohol to isocyanate is less than the above-mentioned range, the effect of preventing side reactions such as unreacted isocyanate remaining and reaction occurring at room temperature may be insufficient, and if it exceeds the above-mentioned range, the remaining alcohol will increase, making it less economical. This may deteriorate.
옥사졸리돈 구조가 포함된 에폭시 수지를 제조하는 단계Steps for preparing an epoxy resin containing an oxazolidone structure
다관능 에폭시 수지와 상기 블록 이소시아네이트 수지를 반응시켜 옥사졸리돈 구조가 포함된 에폭시 수지를 제조한다. 이소시아네이트 수지는 반응성이 높으며, 수산기(-OH) 또는 시아네이트기(-NCO)와 반응하여 우레탄디온 또는 이소시아누레이트(isocyanurate)가 만들어 질 수 있으며, 이는 수지의 점도를 높여 작업성에 영향을 줄 수 있다. 본 발명에서는 블록 이소시아네이트를 사용함으로써 이소시아네이트의 반응성을 줄이고, 그 결과 우레티딘디온, 이소시아누레이트 등의 부산물의 발생을 줄여, 수지의 점도를 낮추고 제조 안정성을 확보할 수 있다.An epoxy resin containing an oxazolidone structure is prepared by reacting a multifunctional epoxy resin with the block isocyanate resin. Isocyanate resin is highly reactive and can react with hydroxyl group (-OH) or cyanate group (-NCO) to produce urethane dione or isocyanurate, which increases the viscosity of the resin and affects workability. You can. In the present invention, by using block isocyanate, the reactivity of isocyanate is reduced, and as a result, the generation of by-products such as uretidine dione and isocyanurate is reduced, thereby lowering the viscosity of the resin and ensuring manufacturing stability.
본 발명에서는 구조적으로 안정하여 내후성이 높은 다관능 에폭시 수지를 사용함으로써, 180 ℃ 이상의 높은 유리전이온도를 갖는 옥사졸리돈 구조가 포함된 에폭시 수지를 제조할 수 있다. 상기 다관능 에폭시 수지는 2가 이상의 에폭시 수지로, 예를 들어, 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 S형 에폭시 수지, 페놀 노볼락 에폭시 수지, 크레졸 노볼락 에폭시 수지, 트리글리시딜 이소시아누레이트, 바이페닐 에폭시 수지, 폴리글리콜 에폭시 수지, 카다놀 에폭시 수지, 하이드로지네이티드 비스페놀 A형 에폭시 수지, 디사이클로펜타디엔 에폭시 수지, 자일록 에폭시 수지, 고무 변성 에폭시 수지 등일 수 있다. 이들은 단독으로 또는 2종 이상 혼합하여 사용될 수 있다.In the present invention, by using a multifunctional epoxy resin that is structurally stable and has high weather resistance, an epoxy resin containing an oxazolidone structure with a high glass transition temperature of 180 ° C. or higher can be produced. The multifunctional epoxy resin is a bivalent or higher epoxy resin, for example, bisphenol A-type epoxy resin, bisphenol F-type epoxy resin, bisphenol S-type epoxy resin, phenol novolak epoxy resin, cresol novolac epoxy resin, triglycidyl It may be isocyanurate, biphenyl epoxy resin, polyglycol epoxy resin, cardanol epoxy resin, hydrogenated bisphenol A type epoxy resin, dicyclopentadiene epoxy resin, xyloc epoxy resin, rubber modified epoxy resin, etc. These can be used alone or in combination of two or more types.
상기 다관능 에폭시 수지의 시판품으로는 국도화학社의 YD 제품군(비스페놀 A형), YDF 제품군(비스페놀 F형), YDPN 제품군(페놀 노볼락), YDCN 제품군(크레졸 노볼락), KDCP 제품군(디사이클로펜타디엔) ST 제품군(하이드로지네이티드 비스페놀 A형), KDXN 제품군(자일록), KD 제품군(다가 에폭시), KR 제품군(고무 변성 에폭시), UME 제품군(이소시아누레이트), 프린텍社의 VG 제품군(변성 비스페놀 A형), DIC社의 HP 제품군(디사이클로펜다디엔) 등이 있으나, 이들에 한정되는 것은 아니다.Commercially available products of the multifunctional epoxy resin include Kukdo Chemical's YD product line (bisphenol type A), YDF product line (bisphenol type F), YDPN product line (phenol novolak), YDCN product line (cresol novolak), and KDCP product line (dicyclo Pentadiene) ST family (hydrogenated bisphenol type A), KDXN family (Xyloc), KD family (polyhydric epoxy), KR family (rubber-modified epoxy), UME family (isocyanurate), Printec's VG family (modified bisphenol type A), DIC's HP product line (dicyclophendadiene), etc., but are not limited to these.
상기 다관능 에폭시 수지와 상기 블록 이소시아네이트는 2.2 내지 3.7 : 1의 당량비로 반응할 수 있다. 블록 이소시아네이트에 대한 다관능 에폭시 수지의 당량비가 전술한 범위 미만인 경우, 즉 다관능 에폭시 수지의 함량이 블록 이소시아네이트 대비 상대적으로 적은 경우, 반응성이 높은 블록 이소시아네이트로 인해서 화학 반응을 조절하기 어려워지면서 제조되는 수지의 분자량이 커지고 이에 따라, 점도가 높아져 겔화될 수 있으며, 그 결과 수지의 도료화가 어려워질 수 있다. 블록 이소시아네이트에 대한 다관능 에폭시 수지의 당량비가 전술한 범위를 초과하는 경우, 즉 다관능 에폭시 수지의 함량이 블록 이소시아네이트 대비 상대적으로 많은 경우, 제조되는 에폭시 수지의 분자량이 작아져 굴곡성이 저하될 수 있다.The multifunctional epoxy resin and the block isocyanate may react at an equivalent ratio of 2.2 to 3.7:1. If the equivalence ratio of the polyfunctional epoxy resin to the block isocyanate is less than the above-mentioned range, that is, if the content of the polyfunctional epoxy resin is relatively small compared to the block isocyanate, the resin is manufactured as it becomes difficult to control the chemical reaction due to the highly reactive block isocyanate. As the molecular weight increases, the viscosity increases and gelation may occur, which may make it difficult to paint the resin. If the equivalence ratio of the polyfunctional epoxy resin to the block isocyanate exceeds the above-mentioned range, that is, if the content of the polyfunctional epoxy resin is relatively high compared to the block isocyanate, the molecular weight of the produced epoxy resin may decrease and the flexibility may decrease. .
일례로, 상기 다관능 에폭시 수지와 상기 블록 이소시아네이트 수지를 100 내지 120 ℃에서 혼합하고, 180 내지 220 ℃로 승온한 후, 2 내지 6시간 동안 반응시키며 이소시아네이트를 블록하였던 알코올을 회수하여 옥사졸리돈 구조가 포함된 에폭시 수지를 제조할 수 있다. 상기 반응 시 촉매를 사용할 수 있고, 상기 촉매로는 옥사졸리돈 구조를 포함하는 에폭시 수지 제조에 적용할 수 있는 통상의 촉매를 사용할 수 있고, 예를 들어, 2-에틸-4-메틸이미다졸을 사용할 수 있다.For example, the multifunctional epoxy resin and the blocked isocyanate resin are mixed at 100 to 120° C., raised to 180 to 220° C., reacted for 2 to 6 hours, and the alcohol that blocked the isocyanate is recovered to form an oxazolidone structure. An epoxy resin containing can be manufactured. A catalyst may be used during the reaction, and as the catalyst, a conventional catalyst applicable to the production of an epoxy resin containing an oxazolidone structure may be used, for example, 2-ethyl-4-methylimidazole can be used.
상기 반응 시 이소시아네이트를 블록하였던 알코올이 충분히 회수되지 않을 경우, 감압 반응을 추가 진행할 수 있다. 압력은 상압보다 낮고 알코올 회수가 가능한 압력이면 특별히 제한하지는 않으며, 예를 들어 100 내지 300 mmHg로 감압할 수 있다. 감압 반응 시간은 알코올을 모두 회수할 수 있는 시간으로, 특별히 제한되지 않는다.If the alcohol that blocked the isocyanate is not sufficiently recovered during the above reaction, an additional pressure reduction reaction may be performed. The pressure is not particularly limited as long as it is lower than normal pressure and allows alcohol recovery. For example, the pressure can be reduced to 100 to 300 mmHg. The pressure reduction reaction time is the time for recovering all of the alcohol and is not particularly limited.
상기 옥사졸리돈 구조가 포함된 에폭시 수지의 에폭시 당량(EEW)은 300 내지 600 g/eq, 예를 들어 350 내지 500 g/eq일 수 있고, 점도는 5 내지 100 ps(175 ℃)일 수 있다. 상기 옥사졸리돈 구조가 포함된 에폭시 수지의 에폭시 당량 및 점도가 전술한 범위 내인 경우, 높은 유리전이온도 및 우수한 굴곡성을 발휘할 수 있다. 상기 옥사졸리돈 구조가 포함된 에폭시 수지의 에폭시 당량이 전술한 범위 미만인 경우 굴곡성이 저하되어 도막의 물성 구현이 어려워질 수 있고, 전술한 범위를 초과하는 경우 유리전이온도가 낮아질 수 있다. 또한, 상기 옥사졸리돈 구조가 포함된 에폭시 수지의 점도가 전술한 범위 미만인 경우 수지의 분체화가 어려워질 수 있고, 전술한 범위를 초과하는 경우 분체도료 제조 시 높은 점도로 인해 도료 성분의 분산이 어려워질 수 있다.The epoxy equivalent weight (EEW) of the epoxy resin containing the oxazolidone structure may be 300 to 600 g/eq, for example, 350 to 500 g/eq, and the viscosity may be 5 to 100 ps (175 ° C.). . When the epoxy equivalent weight and viscosity of the epoxy resin containing the oxazolidone structure are within the above-mentioned range, it can exhibit a high glass transition temperature and excellent flexibility. If the epoxy equivalent weight of the epoxy resin containing the oxazolidone structure is less than the above-mentioned range, flexibility may decrease, making it difficult to implement the physical properties of the coating film, and if it exceeds the above-mentioned range, the glass transition temperature may be lowered. In addition, if the viscosity of the epoxy resin containing the oxazolidone structure is less than the above-mentioned range, it may be difficult to powderize the resin, and if it exceeds the above-mentioned range, dispersion of the paint components may be difficult due to the high viscosity during powder coating production. You can lose.
옥사졸리돈 구조가 포함된 에폭시 수지에 충격 완화제를 분산하는 단계Step of dispersing an impact modifier in an epoxy resin containing an oxazolidone structure.
상기 제조된 옥사졸리돈 구조가 포함된 에폭시 수지는 유리전이온도가 180 ℃가 이상으로 높은 강인한 수지로, 파이프용 코팅제에 적용하기에는 굴곡성이 불충분할 수 있다. 유리전이온도란, 단단하여 상대적으로 깨지기 쉬운 유리 상태에서 유연한 고무 상태로 변하는 온도로, 유리전이온도가 높을수록 유연성이 낮아 굴곡성 등의 물성이 부족할 수 있기 때문에, 상기 옥사졸리돈 구조가 포함된 에폭시 수지에 굴곡성을 부여하기 위해서는 추가적인 조치가 필요하다. 본 발명에서는 상기 옥사졸리돈 구조가 포함된 에폭시 수지에 충격 완화제를 분산시켜, 높은 유리전이온도를 갖는 강인한 수지에 우수한 굴곡성을 부여할 수 있다.The epoxy resin containing the oxazolidone structure prepared above is a strong resin with a high glass transition temperature of 180° C. or higher, and may have insufficient flexibility to be applied to a coating agent for pipes. The glass transition temperature is the temperature at which the hard, relatively brittle glass state changes into a flexible rubber state. The higher the glass transition temperature, the lower the flexibility, which may result in a lack of physical properties such as flexibility. Therefore, the epoxy containing the oxazolidone structure may lack physical properties such as flexibility. Additional measures are required to impart flexibility to the resin. In the present invention, by dispersing an impact modifier in an epoxy resin containing the oxazolidone structure, excellent flexibility can be imparted to a strong resin with a high glass transition temperature.
상기 충격 완화제로는 코어-쉘 수지 타입, 블록 공중합체 타입, 실리콘 분말 타입, 고무 변성 수지 타입 등을 사용할 수 있고, 이들은 단독으로 또는 2종 이상 혼합하여 사용될 수 있다. 일례로, 상기 충격 완화제는 코어가 가교된 고무 변성 공중합체이고, 쉘이 높은 유리전이온도의 아크릴 수지인 코어-쉘 수지 타입의 충격 완화제일 수 있다.The shock absorber may be a core-shell resin type, a block copolymer type, a silicone powder type, a rubber modified resin type, etc., and these may be used alone or in a mixture of two or more types. For example, the shock absorber may be a core-shell resin type shock absorber in which the core is a crosslinked rubber-modified copolymer and the shell is an acrylic resin with a high glass transition temperature.
상기 충격 완화제는 상기 옥사졸리돈 구조가 포함된 에폭시 수지 100 중량부에 대하여 5 내지 20 중량부, 예를 들어 10 내지 15 중량부 포함될 수 있다. 충격 완화제의 함량이 전술한 범위 미만인 경우, 충분한 유연성을 확보하지 못하여 굴곡성이 저하될 수 있고, 전술한 범위를 초과하는 경우 수지의 유리전이온도가 낮아져 원하는 물성을 구현하기 어려워질 수 있다.The shock absorber may be included in an amount of 5 to 20 parts by weight, for example, 10 to 15 parts by weight, based on 100 parts by weight of the epoxy resin containing the oxazolidone structure. If the content of the impact modifier is less than the above-mentioned range, sufficient flexibility may not be secured and the flexibility may be reduced, and if it exceeds the above-mentioned range, the glass transition temperature of the resin may be lowered, making it difficult to realize the desired physical properties.
상기 옥사졸리돈 구조가 포함된 에폭시 수지에 상기 충격 완화제를 고온에서 고속 분산하여 본 발명의 에폭시 수지를 제조할 수 있다. 일례로, 상기 옥사졸리돈 구조가 포함된 에폭시 수지를 200 내지 250 ℃로 승온하고, 상기 충격 완화제를 혼합한 후, 고속 분산기(예, 디스크 타입의 고속 분산기)를 이용하여 1,500 내지 2,000 rpm으로 15 내지 60 분간 분산하여 본 발명의 에폭시 수지를 제조할 수 있다.The epoxy resin of the present invention can be prepared by dispersing the impact modifier in an epoxy resin containing the oxazolidone structure at high temperature and high speed. For example, the epoxy resin containing the oxazolidone structure is heated to 200 to 250° C., mixed with the shock absorber, and then dispersed at 1,500 to 2,000 rpm using a high-speed disperser (e.g., disk-type high-speed disperser) for 15 minutes. The epoxy resin of the present invention can be prepared by dispersing for 60 minutes.
상기 충격 완화제가 상기 옥사졸리돈 구조가 포함된 에폭시 수지에 완전히 분산되도록 반응시켜야 하며, 광학 현미경으로 관찰하는 등의 방법으로 완전히 분산되었는지 확인할 수 있다. 일례로, 에폭시 수지를 유리판에 얇게 펴 바른 후, 광학 현미경(예, 500 내지 1,000 배율)으로 관찰하여, 뭉침이 없는지 확인할 수 있다. 충격 완화제의 뭉침이 확인되는 경우 완전히 분산된 것이 아니고, 이 경우 높은 유리전이온도와 우수한 굴곡성을 구현하지 못할 수 있다.The shock absorber must be reacted to be completely dispersed in the epoxy resin containing the oxazolidone structure, and complete dispersion can be confirmed by observing with an optical microscope. For example, after spreading the epoxy resin thinly on a glass plate, it can be observed under an optical microscope (e.g., 500 to 1,000 magnification) to check whether there is any clumping. If agglomeration of the shock absorber is observed, it is not completely dispersed, and in this case, a high glass transition temperature and excellent flexibility may not be achieved.
상기 충격 완화제가 분산된 옥사졸리돈 구조가 포함된 에폭시 수지의 에폭시 당량(EEW)은 300 내지 600 g/eq, 예를 들어 350 내지 500 g/eq일 수 있고, 점도는 5 내지 100 ps(175 ℃)일 수 있다. 상기 충격 완화제가 분산된 옥사졸리돈 구조가 포함된 에폭시 수지의 에폭시 당량 및 점도가 전술한 범위 내인 경우, 높은 유리전이온도 및 우수한 굴곡성을 발휘할 수 있다. 상기 충격 완화제가 분산된 옥사졸리돈 구조가 포함된 에폭시 수지의 에폭시 당량이 전술한 범위 미만인 경우 굴곡성이 저하되어 도막의 물성 구현이 어려워질 수 있고, 전술한 범위를 초과하는 경우 유리전이온도가 낮아질 수 있다. 또한, 상기 충격 완화제가 분산된 옥사졸리돈 구조가 포함된 에폭시 수지의 점도가 전술한 범위 미만인 경우 수지의 분체화가 어려워질 수 있고, 전술한 범위를 초과하는 경우 분체도료 제조 시 높은 점도로 인해 도료 성분의 분산이 어려워질 수 있다.The epoxy equivalent weight (EEW) of the epoxy resin containing the oxazolidone structure in which the shock absorber is dispersed may be 300 to 600 g/eq, for example, 350 to 500 g/eq, and the viscosity may be 5 to 100 ps (175 ℃). When the epoxy equivalent weight and viscosity of the epoxy resin containing the oxazolidone structure in which the shock absorber is dispersed are within the above-mentioned range, it can exhibit a high glass transition temperature and excellent flexibility. If the epoxy equivalent weight of the epoxy resin containing the oxazolidone structure in which the shock absorber is dispersed is less than the above-mentioned range, flexibility may decrease, making it difficult to realize the physical properties of the coating film, and if it exceeds the above-mentioned range, the glass transition temperature may be lowered. You can. In addition, if the viscosity of the epoxy resin containing the oxazolidone structure in which the shock absorber is dispersed is less than the above-mentioned range, it may be difficult to powderize the resin, and if it exceeds the above-mentioned range, the paint may be difficult to powder due to the high viscosity when manufacturing the powder coating. Dispersion of ingredients may become difficult.
<분체도료 조성물><Powder coating composition>
본 발명의 분체도료 조성물은 에폭시 수지, 경화제 및 충진제를 포함한다. 본 발명의 분체도료 조성물은 필요에 따라 안료, 흐름성 향상제 등 해당 기술분야에서 통상 사용되는 첨가제를 더 포함할 수 있다. The powder coating composition of the present invention includes an epoxy resin, a curing agent, and a filler. The powder coating composition of the present invention may further include additives commonly used in the relevant technical field, such as pigments and flow improvers, if necessary.
에폭시 수지epoxy resin
본 발명의 분체도료 조성물은 주 수지로 에폭시 수지를 포함한다. 상기 에폭시 수지는 알코올과 이소시아네이트를 반응시켜 블록 이소시아네이트 수지를 제조하는 단계, 다관능 에폭시 수지와 상기 블록 이소시아네이트 수지를 반응시켜 옥사졸리돈 구조가 포함된 에폭시 수지를 제조하는 단계, 및 상기 옥사졸리돈 구조가 포함된 에폭시 수지에 충격 완화제를 분산하는 단계를 포함하는 방법으로 제조된 것이고, 상세는 상기 <에폭시 수지>에 기재한 바와 같다.The powder coating composition of the present invention contains epoxy resin as the main resin. The epoxy resin is prepared by reacting alcohol and isocyanate to prepare a block isocyanate resin, reacting a multifunctional epoxy resin with the block isocyanate resin to prepare an epoxy resin containing an oxazolidone structure, and the oxazolidone structure. It is manufactured by a method including the step of dispersing an impact modifier in an epoxy resin containing, and details are as described in <Epoxy Resin> above.
경화제hardener
본 발명의 분체도료 조성물은 경화제를 포함한다. 상기 경화제는 주 수지와 경화 반응을 일으켜 열에 의한 변형을 막고, 도막의 부착 강도를 상승시키는 역할을 한다. 상기 경화제로는 이소시아네이트계 경화제, 아마이드계 경화제 등을 사용할 수 있다. 일례로, 상기 경화제는 디시안디아마이드일 수 있다.The powder coating composition of the present invention includes a curing agent. The curing agent causes a curing reaction with the main resin to prevent deformation due to heat and increases the adhesion strength of the coating film. The curing agent may be an isocyanate-based curing agent or an amide-based curing agent. For example, the curing agent may be dicyandiamide.
상기 에폭시 수지와 상기 경화제는 1 : 0.8 내지 1.2, 예를 들어 1 : 0.9 내지 1.1의 당량비로 포함될 수 있다. 에폭시 수지에 대한 경화제의 당량비가 전술한 범위 미만인 경우, 즉 에폭시 수지 대비 경화제의 당량비가 적은 경우, 충분한 경화 반응이 어려워져 높은 가교 밀도를 얻지 못할 수 있다. 에폭시 수지에 대한 경화제의 당량비가 전술한 범위를 초과하는 경우, 즉 에폭시 수지 대비 경화제의 당량비가 많은 경우, 미반응되어 잔류하는 경화제로 인해 도막의 불순물 함량이 높아져 내수성, 내화학성 등이 저하될 수 있다.The epoxy resin and the curing agent may be included in an equivalent ratio of 1:0.8 to 1.2, for example, 1:0.9 to 1.1. If the equivalence ratio of the curing agent to the epoxy resin is less than the above-mentioned range, that is, if the equivalence ratio of the curing agent to the epoxy resin is small, a sufficient curing reaction may be difficult and a high crosslinking density may not be obtained. If the equivalent ratio of the hardener to the epoxy resin exceeds the above-mentioned range, that is, if the equivalent ratio of the hardener to the epoxy resin is high, the impurity content of the paint film may increase due to the remaining unreacted hardener, which may reduce water resistance, chemical resistance, etc. there is.
본 발명의 분체도료 조성물은 상기 에폭시 수지 100 중량부에 대하여, 상기 경화제 1 내지 10 중량부, 예를 들어 5 내지 10 중량부를 포함할 수 있다. 경화제의 함량이 전술한 범위 미만인 경우 도막의 경화도, 내식성, 내화학성 등이 저하될 수 있고, 전술한 범위를 초과하는 경우 도막의 가공성 등이 저하될 수 있다.The powder coating composition of the present invention may include 1 to 10 parts by weight of the curing agent, for example, 5 to 10 parts by weight, based on 100 parts by weight of the epoxy resin. If the content of the hardener is less than the above-mentioned range, the degree of curing, corrosion resistance, and chemical resistance of the coating film may be reduced, and if it exceeds the above-mentioned range, the processability of the coating film may be reduced.
충진제filler
본 발명의 분체도료 조성물은 충진제를 포함한다. 충진제는 도막 내의 기공을 충진하고, 도막 형성을 보완하며, 도막에 살오름성 또는 기계적 성질을 부여하는 역할을 한다. 따라서, 충진제를 포함할 경우, 양호한 도막 외관을 얻을 수 있음과 동시에 경도, 내충격성 및 방청성 등을 향상시킬 수 있다. The powder coating composition of the present invention includes a filler. The filler fills the pores in the paint film, supplements the formation of the paint film, and provides fattening or mechanical properties to the paint film. Therefore, when a filler is included, a good coating film appearance can be obtained and hardness, impact resistance, rust prevention, etc. can be improved.
상기 충진제로는 무기 충진제, 금속 충진제 등을 사용할 수 있고, 예를 들어 탄산칼슘, 클레이, 탈크, 마그네슘 실리케이트, 카올린, 마이카, 산화 알루미늄, 알루미늄 실리케이트, 알루미늄 하이드록사이드, 황산바륨 등을 사용할 수 있다. 전술한 성분을 단독으로 사용하거나 2종 이상을 혼용할 수 있다.As the filler, inorganic fillers, metal fillers, etc. can be used. For example, calcium carbonate, clay, talc, magnesium silicate, kaolin, mica, aluminum oxide, aluminum silicate, aluminum hydroxide, barium sulfate, etc. can be used. . The above-mentioned ingredients can be used alone or two or more types can be mixed.
본 발명의 분체도료 조성물은 상기 에폭시 수지 100 중량부에 대하여, 상기 충진제 30 내지 50 중량부를 포함할 수 있다. 충진제의 함량이 전술한 범위 미만인 경우 도막 외관의 광택, 핀홀 등이 발생할 수 있고, 전술한 범위를 초과하는 경우 도막의 수지 함량이 낮아져 부착성, 방청성 등이 저하될 수 있다.The powder coating composition of the present invention may include 30 to 50 parts by weight of the filler based on 100 parts by weight of the epoxy resin. If the content of the filler is less than the above-mentioned range, glossiness of the exterior of the coating film, pinholes, etc. may occur, and if it exceeds the above-mentioned range, the resin content of the coating film may be lowered and adhesion, rust prevention, etc. may be reduced.
첨가제additive
본 발명의 분체도료 조성물은 필요에 따라 안료, 흐름성 향상제 등 해당 기술분야에서 통상 사용되는 첨가제를 더 포함할 수 있다. The powder coating composition of the present invention may further include additives commonly used in the relevant technical field, such as pigments and flow improvers, if necessary.
안료는 분체도료에 색상을 발현하기 위해 사용될 수 있다. 상기 안료로는 유기 안료, 무기 안료, 메탈릭 안료, 알루미늄-페이스트(Al-paste), 펄(pearl) 등을 제한 없이 사용할 수 있으며, 이들을 단독으로 또는 2종 이상 혼용할 수 있다. Pigments can be used to add color to powder coatings. As the pigment, organic pigments, inorganic pigments, metallic pigments, aluminum-paste, pearl, etc. can be used without limitation, and these can be used alone or in combination of two or more types.
본 발명의 분체도료 조성물은 상기 에폭시 수지 100 중량부에 대하여, 상기 안료 1 내지 10 중량부를 포함할 수 있다. 안료의 함량이 전술한 범위일 경우, 도막의 색상 발현이 우수하고, 도막의 기계적 물성, 내충격성, 부착성 등이 향상될 수 있다. The powder coating composition of the present invention may include 1 to 10 parts by weight of the pigment based on 100 parts by weight of the epoxy resin. When the pigment content is within the above-mentioned range, the color expression of the coating film is excellent, and the mechanical properties, impact resistance, adhesion, etc. of the coating film can be improved.
본 발명에서 사용 가능한 첨가제의 비제한적인 예로는 흐름성 향상제, 레벨링제, 핀홀 방지제, 왁스, 저응력화제, 분산제, 크래터링 방지제, 커플링제, 광택조절제, 접착력 개선제, 난연제, 소광제, 고반사 고분자 등이 있고, 이들은 단독으로 사용되거나 2종 이상 혼합되어 사용될 수 있다.Non-limiting examples of additives that can be used in the present invention include flow improvers, leveling agents, pinhole prevention agents, wax, low stress agents, dispersants, anti-cratting agents, coupling agents, gloss control agents, adhesion improvers, flame retardants, matting agents, and high reflection. There are polymers, etc., and these can be used alone or in a mixture of two or more types.
상기 첨가제는 해당 기술분야에 공지된 함량 범위 내에서 첨가될 수 있으며, 예컨대 상기 에폭시 수지 100 중량부에 대하여, 각각 0.1 내지 10 중량부 포함될 수 있다. The additives may be added within a content range known in the art, and for example, they may be included in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the epoxy resin.
본 발명에 따른 분체도료 조성물은 해당 기술분야에 알려진 방법에 의해 제조될 수 있으며, 일례로 원료 평량, 건식 예비 혼합, 분산 및 조분쇄, 분쇄 및 분급 등의 공정을 통해 제조될 수 있다.The powder coating composition according to the present invention can be manufactured by methods known in the art. For example, it can be manufactured through processes such as raw material basis weight, dry premixing, dispersion and coarse grinding, grinding and classification.
예를 들어, 에폭시 수지, 경화제, 충진제, 안료, 첨가제 등을 함유하는 원재료 혼합물을 컨테이너 믹서에 투입하여 균일하게 혼합하고, 상기 혼합된 조성물을 용융 혼합시킨 후 이를 분쇄하여 제조될 수 있다. 일례로, 상기 원재료 혼합물을 니이더(kneader) 또는 익스트루더(extruder) 등의 용융 혼련 장치에 의해 70 내지 130 ℃로 용융 분산시켜 소정의 두께(예, 1 내지 5 mm)로 칩을 제조한 후, 제조된 칩을 고속믹서 등의 분쇄 장치를 이용하여 40 내지 80 ㎛ 범위로 분쇄한 후 분급하여 분체도료 조성물을 제조할 수 있다.For example, it can be manufactured by putting a raw material mixture containing an epoxy resin, hardener, filler, pigment, additive, etc. into a container mixer and mixing it uniformly, melting and mixing the mixed composition, and then pulverizing it. For example, the raw material mixture is melted and dispersed at 70 to 130° C. using a melt kneading device such as a kneader or extruder to produce chips with a predetermined thickness (e.g., 1 to 5 mm). Afterwards, the manufactured chips can be pulverized to a size of 40 to 80 ㎛ using a grinding device such as a high-speed mixer and classified to prepare a powder coating composition.
상기 분급 공정은 특별히 한정되지 않으며, 예컨대 80 내지 120 메쉬로 필터링할 수 있다. 이에 따라, 평균입자의 크기가 25 내지 55 ㎛ 범위인 분체도료를 얻을 수 있다. 분체의 평균 입경은 특별히 제한되지 않으나, 전술한 범위를 만족할 경우 도장 작업성 및 도막의 외관 특성이 증진될 수 있다.The classification process is not particularly limited, and may be filtered to, for example, 80 to 120 mesh. Accordingly, a powder coating with an average particle size in the range of 25 to 55 ㎛ can be obtained. The average particle size of the powder is not particularly limited, but if it satisfies the above-mentioned range, painting workability and appearance characteristics of the coating film can be improved.
분체도료의 유동성 향상을 위해 실리카 등의 미분말로 본 발명에 따른 분체도료 입자의 표면을 피복할 수도 있다. 이러한 처리를 하는 방법으로서는 분쇄 시에 미분말을 첨가하면서 혼합하는 분쇄 혼합법이나 헨셸 믹서 등에 의한 건식 혼합법을 이용할 수 있다.To improve the fluidity of the powder coating, the surface of the powder coating particles according to the present invention may be coated with fine powder such as silica. As a method of performing this treatment, a grinding mixing method that mixes while adding fine powder during grinding or a dry mixing method using a Henschel mixer or the like can be used.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 그러나, 하기 실시예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 실시예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, the following examples are only intended to aid understanding of the present invention and do not limit the scope of the present invention to the examples in any way.
[제조예 1: 에폭시 수지의 제조][Preparation Example 1: Preparation of epoxy resin]
4구 둥근 플라스크에 변성된 4,4'-메틸렌비스페닐이소시아네이트 330 g을 넣고, 질소 가스관, H형 분리관, 교반기, 온도계 및 히터를 설치했다. 75 ℃로 승온한 후, 이소프로판올 127 g을 3 시간 동안 적가하며 반응시켰다. 적가 후 3 시간을 추가로 유지하며 이소시아네이트와 알코올을 완전히 반응시켜 블록 이소시아네이트 수지를 제조하였다.330 g of denatured 4,4'-methylenebisphenyl isocyanate was placed in a four-necked round flask, and a nitrogen gas pipe, H-type separation pipe, stirrer, thermometer, and heater were installed. After raising the temperature to 75°C, 127 g of isopropanol was added dropwise for 3 hours to react. After the dropwise addition, the isocyanate and alcohol were completely reacted for an additional 3 hours to prepare a block isocyanate resin.
상기 제조된 블록 이소시아네이트 수지에 비스페놀 A 타입의 에폭시 수지(국도화학社 YD-128) 780 g, 크레졸 노볼락 수지(YDCN-500-4P) 390 g, 촉매인 2-에틸-4-메틸이미다졸 0.1 g을 투입한 후, 200 ℃로 서서히 승온하였고, 이때 이소시아네이트를 블록하였던 이소프로판올이 유출되었다. 승온 완료 후 3 시간 동안 유지하고, 150 mmHg로 감압하여 이소프로판올을 완전히 제거하여, 옥사졸리돈 구조가 포함된 에폭시 수지를 제조하였다. 제조된 수지의 에폭시 당량은 410 g/eq이고, 점도는 56 ps(175 ℃)이었다.To the block isocyanate resin prepared above, 780 g of bisphenol A type epoxy resin (YD-128, Kukdo Chemical), 390 g of cresol novolak resin (YDCN-500-4P), and 2-ethyl-4-methylimidazole as a catalyst. After adding 0.1 g, the temperature was gradually raised to 200°C, and at this time, the isopropanol that blocked the isocyanate flowed out. After completing the temperature increase, the temperature was maintained for 3 hours, and the pressure was reduced to 150 mmHg to completely remove isopropanol, thereby preparing an epoxy resin containing an oxazolidone structure. The epoxy equivalent weight of the prepared resin was 410 g/eq, and the viscosity was 56 ps (175°C).
반응 완료 후, 디스크 타입의 고속 교반기를 장치한 후, 충격 완화제인 코어-쉘 수지(Kaneka社 MZ-120) 150 g을 투입하고, 200 ℃를 유지하며 2,000 rpm으로 30 분간 고속 교반하였다. 충격 완화제가 완전히 분산된 것을 확인한 후, 수지를 냉각하여 고체상의 불투명한 적색의 에폭시 수지를 얻었다. 제조된 에폭시 수지의 당량은 450 g/eq이었다.After completion of the reaction, a disk-type high-speed stirrer was installed, 150 g of core-shell resin (Kaneka MZ-120), a shock absorber, was added, and the mixture was stirred at high speed at 2,000 rpm for 30 minutes while maintaining 200°C. After confirming that the impact modifier was completely dispersed, the resin was cooled to obtain a solid, opaque red epoxy resin. The equivalent weight of the prepared epoxy resin was 450 g/eq.
[제조예 2-16: 에폭시 수지의 제조][Preparation Example 2-16: Preparation of epoxy resin]
하기 표 1, 2의 조성에 따른 것을 제외하고는, 제조예 1과 동일한 방법으로 각 제조예의 에폭시 수지를 제조하였다. 제조된 에폭시 수지의 물성은 표 1, 2에 기재하였다.Epoxy resins of each Preparation Example were prepared in the same manner as Preparation Example 1, except for the compositions shown in Tables 1 and 2 below. The physical properties of the produced epoxy resin are listed in Tables 1 and 2.
[제조예 17: 에폭시 수지의 제조][Preparation Example 17: Preparation of epoxy resin]
4구 둥근 플라스크에 변성된 4,4'-메틸렌비스페닐이소시아네이트 330 g을 넣고, 질소 가스관, H형 분리관, 교반기, 온도계 및 히터를 설치했다. 그 후, 비스페놀 A 타입의 에폭시 수지(국도화학社 YD-128) 780 g, 크레졸 노볼락 수지(YDCN-500-4P) 390 g, 촉매인 2-에틸-4-메틸이미다졸 0.1 g을 투입한 후, 200 ℃로 서서히 승온하여 수지를 제조하였으나, 수지가 겔이 되어 반응을 더 이상 진행할 수 없었다.330 g of denatured 4,4'-methylenebisphenyl isocyanate was placed in a four-necked round flask, and a nitrogen gas pipe, H-type separation pipe, stirrer, thermometer, and heater were installed. After that, 780 g of bisphenol A type epoxy resin (Kukdo Chemical Co., Ltd. YD-128), 390 g of cresol novolak resin (YDCN-500-4P), and 0.1 g of 2-ethyl-4-methylimidazole as a catalyst were added. After that, the temperature was slowly raised to 200°C to prepare a resin, but the resin became a gel and the reaction could not proceed any further.
[제조예 18: 에폭시 수지의 제조][Preparation Example 18: Preparation of epoxy resin]
4구 둥근 플라스크에 변성된 4,4'-메틸렌비스페닐이소시아네이트 330 g를 넣고, 질소 가스관, H형 분리관, 교반기, 온도계 및 히터를 설치했다. 그 후, 이소프로판올 127 g, 비스페놀 A 타입의 에폭시 수지(국도화학社 YD-128) 780 g, 크레졸 노볼락 수지(YDCN-500-4P) 390 g, 촉매인 2-에틸-4-메틸이미다졸 0.1 g을 투입한 후, 200 ℃로 서서히 승온하여 수지를 제조하였으나, 수지가 겔이 되어 더 이상 진행할 수 없었다.330 g of denatured 4,4'-methylenebisphenyl isocyanate was placed in a four-necked round flask, and a nitrogen gas pipe, H-type separation pipe, stirrer, thermometer, and heater were installed. After that, 127 g of isopropanol, 780 g of bisphenol A type epoxy resin (YD-128, Kukdo Chemical), 390 g of cresol novolak resin (YDCN-500-4P), and 2-ethyl-4-methylimidazole as a catalyst. After adding 0.1 g, the temperature was slowly raised to 200°C to prepare a resin, but the resin became a gel and could not proceed any further.
Figure PCTKR2023015185-appb-img-000001
Figure PCTKR2023015185-appb-img-000001
Figure PCTKR2023015185-appb-img-000002
Figure PCTKR2023015185-appb-img-000002
Figure PCTKR2023015185-appb-img-000003
Figure PCTKR2023015185-appb-img-000003
Figure PCTKR2023015185-appb-img-000004
Figure PCTKR2023015185-appb-img-000004
MDI: 4,4'-메틸렌비스페닐이소시아네이트 MDI: 4,4'-methylenebisphenylisocyanate
MMDI: 변성된 MDI MMDI: Modified MDI
TDI: 톨루엔디이소시아네이트 TDI: Toluene diisocyanate
HMDI: 헥사메틸렌디이소시아네이트HMDI: hexamethylene diisocyanate
IPDI: 이소포론디이소시아네이트IPDI: Isophorone diisocyanate
에폭시 수지 1: 비스페놀 A 타입 에폭시 수지(국도화학社 YD-128, 에폭시 당량 190)Epoxy resin 1: Bisphenol A type epoxy resin (Kukdo Chemical Company YD-128, epoxy equivalent 190)
에폭시 수지 2: 크레졸 노볼락 에폭시 수지(YDCN-500-4P, 에폭시 당량 210) Epoxy resin 2: Cresol novolac epoxy resin (YDCN-500-4P, epoxy equivalent 210)
에폭시 수지 3: 디사이클로펜타디엔(KDCP-150)Epoxy Resin 3: Dicyclopentadiene (KDCP-150)
에폭시 수지 4: 변성 비스페놀 A 타입 에폭시 수지(프린텍社 VG3101L)Epoxy resin 4: Modified bisphenol A type epoxy resin (Printec VG3101L)
에폭시 수지 5: 디사이클로펜다디엔(DIC社 HP7 200)Epoxy resin 5: dicyclophendadiene (DIC HP7 200)
충격 완화제 1: 코어-쉘 수지(Kaneka社 MZ-120)Shock Absorber 1: Core-shell resin (Kaneka MZ-120)
충격 완화제 2: 실리콘 고무 타입 코어-쉘 수지(Wacker社 P52)Shock absorber 2: Silicone rubber type core-shell resin (Wacker P52)
충격 완화제 3: 아크릴 타입 코어-쉘 수지(Paraloid社 EXL-2655)Shock absorber 3: Acrylic type core-shell resin (EXL-2655 from Paraloid)
[실험예 1: 분체도료의 제조][Experimental Example 1: Preparation of powder coating]
제조예 1의 에폭시 수지 100 g에 경화제로 디시안디아마이드(DICY)를 당량비 1:0.9로 혼합하고, 무기 충진제(엠에프200, 부여소재社) 30 g, 금속 충진제(산화알루미늄, 엘케이인터社) 10 g, 유색 안료(바이페록스 130엠, 바이엘社) 5 g, 흐름성 향상제(피엘피-100, 케이에스 케미칼社) 0.5 g을 혼합한 후, 컨테이너 믹서를 이용하여 혼합하였다. 상기 혼합된 조성물을 120 ℃에서 니이더(Kneader)를 사용하여 용융 혼합시킨 후, 분쇄기를 이용하여 평균 입도 50 ㎛의 분체도료를 제조하였다.100 g of the epoxy resin of Preparation Example 1 was mixed with dicyandiamide (DICY) as a hardener at an equivalent ratio of 1:0.9, 30 g of inorganic filler (MF200, Buyeo Materials Co., Ltd.), and a metal filler (aluminum oxide, LK Inter Co., Ltd.). 10 g, 5 g of colored pigment (Viperox 130M, Bayer), and 0.5 g of flow improver (PLP-100, KS Chemical) were mixed, and then mixed using a container mixer. The mixed composition was melt-mixed at 120°C using a kneader, and then a powder coating with an average particle size of 50 ㎛ was prepared using a grinder.
[실험예 2-16: 분체도료의 제조][Experimental Example 2-16: Preparation of powder coating]
하기 표 5-7의 조성에 따른 것을 제외하고는, 실험예 1과 동일한 방법으로 각 실험예의 분체도료를 제조하였다.Powder coatings for each experimental example were prepared in the same manner as in Experimental Example 1, except that the composition was in accordance with Tables 5-7 below.
Figure PCTKR2023015185-appb-img-000005
Figure PCTKR2023015185-appb-img-000005
Figure PCTKR2023015185-appb-img-000006
Figure PCTKR2023015185-appb-img-000006
Figure PCTKR2023015185-appb-img-000007
Figure PCTKR2023015185-appb-img-000007
[물성 평가][Physical property evaluation]
각 실험예에서 제조된 분체도료 조성물의 물성을 하기와 같이 측정하였으며, 이의 결과를 하기 표 8, 9에 나타내었다.The physical properties of the powder coating composition prepared in each experimental example were measured as follows, and the results are shown in Tables 8 and 9 below.
유리전이온도glass transition temperature
시차 주사 열량 측정기(Differential Scanning Calorimeter)를 이용하여 측정하였다.It was measured using a differential scanning calorimeter.
내굴곡성 시험(Bending test)Bending test
25 ㎜(가로)Х300 ㎜(세로)Х6 ㎜(두께)의 스틸(steel)을 준비하고, 그리트 블라스팅(grit blasting) 표면 처리를 하였다. 상기 표면 처리된 스틸을 230 ℃로 예열한 다음, 각 실험예에 따른 분체도료를 사용하여 상기 스틸 표면에 정전 스프레이법으로 도막 두께가 350 ㎛가 되도록 도장하여 시편을 제작하였다.Steel of 25 mm (width) x 300 mm (length) x 6 mm (thickness) was prepared, and the surface was treated with grit blasting. The surface-treated steel was preheated to 230°C, and then the powder coating according to each experimental example was applied to the surface of the steel using an electrostatic spray method to produce a specimen with a film thickness of 350 ㎛.
시편의 온도가 상온, 0 ℃, -5 ℃가 되게 하고, 각각 3° 및 2°의 각도에 맞춘 맨드럴을 이용하여 시편을 꺾었을 때 도막의 깨짐 여부를 측정하였다.The temperature of the specimen was set to room temperature, 0°C, and -5°C, and the cracking of the coating film was measured when the specimen was bent using a mandrel set at an angle of 3° and 2°, respectively.
[평가 기준][Evaluation standard]
○: 크랙 없음, X: 크랙 발생○: No crack, X: Crack occurs
내충격성 시험(Impact resistance)Impact resistance test
상기 내굴곡성 시험과 동일한 방법으로 제조한 시편의 온도를 10 ℃가 되게 한 후, 3 J/g의 충격을 가한 후 holiday tester기를 통하여 충격에 의한 손상 여부를 확인하였다.The temperature of the specimen manufactured in the same manner as the bending resistance test was set to 10°C, and an impact of 3 J/g was applied to the specimen to check for damage caused by the impact using a holiday tester.
[평가 기준][Evaluation standard]
○: 손상 없음, X: 손상 발생○: No damage, X: Damage occurred
내비등수성 시험(Hot Water Immersion)Hot Water Immersion
100 ㎜(가로)Х100 ㎜(세로)Х6 ㎜(두께) 크기의 스틸을 사용한 것을 제외하고는, 내굴곡성 시험과 동일한 방법으로 시편을 제작하였다. 상기 시편을 75 ℃의 워터 베쓰에 침적하고, 28일 후 꺼내어 부착력을 평가하였다. 꺼내어진 시편을 1시간 동안 상온으로 식힌 후, 가로 15 ㎜, 세로 30 ㎜의 직사각형 모양을 칼로 소지가 노출될 때까지 긁고, 소지 노출 부위를 중심으로 도막과 소지 사이에 칼을 밀어 넣어 지레의 원리로 부착성을 측정한 후, 박리 면적 등에 따라 평가하였다.Specimens were produced in the same manner as the bending resistance test, except that steel measuring 100 mm (width) 100 mm (length) 6 mm (thickness) was used. The specimen was immersed in a water bath at 75°C, taken out after 28 days, and adhesion was evaluated. After cooling the removed specimen to room temperature for 1 hour, scrape a rectangular shape measuring 15 mm in width and 30 mm in length with a knife until the base material is exposed, and then push the knife between the coating film and the base material centered on the exposed area to demonstrate the principle of leverage. After measuring the adhesion, it was evaluated according to the peeling area, etc.
[평가 기준][Evaluation standard]
레이팅 1: 도막의 박리가 전혀 없음 Rating 1: No peeling of the coating film at all
레이팅 2: 도막의 박리가 50% 미만Rating 2: Peeling of the coating film is less than 50%
레이팅 3: 도막의 박리가 50% 이상Rating 3: Coating film peeling of more than 50%
레이팅 4: 도막이 큰 조각으로 쉽게 박리Rating 4: The film peels off easily into large pieces.
레이팅 5: 도막이 한번에 쉽게 한 조각으로 박리Rating 5: The film peels off easily in one piece.
내음극박리 시험(Cathodic Disbondment)Cathodic Disbondment Test
100 ㎜(가로)Х100 ㎜(세로)Х6 ㎜(두께) 크기의 스틸을 사용한 것을 제외하고는, 내굴곡성 시험과 동일한 방법으로 시편을 제작하였다. 상기 시편 중앙에 직경 3 ㎜의 구멍을 뚫은 후, 3% 농도의 소금물을 도막 표면에 가하여 맞닿게 하고, 용기를 이용하여 증발을 막은 후, 소지에 1.5 V 전압을 130 ℃에서 28일간 가하여 상기 구멍으로부터의 박리 거리를 2회 측정하였다. 박리 거리가 클수록 소지에 대한 분체도료의 부착력이 열세한 것으로 해석할 수 있다. 상기 시편 제작과 물성 평가방법은 파이프용 캐나다 규격인 CSA Z245.20에 따라 수행하였다.Specimens were produced in the same manner as the bending resistance test, except that steel measuring 100 mm (width) 100 mm (length) 6 mm (thickness) was used. After drilling a hole with a diameter of 3 mm in the center of the specimen, salt water with a concentration of 3% was applied to the surface of the coating film to make contact with it. After preventing evaporation using a container, a 1.5 V voltage was applied to the material at 130 ° C. for 28 days to make the hole. The peeling distance from was measured twice. It can be interpreted that the larger the peeling distance, the poorer the adhesion of the powder coating to the substrate. The specimen production and property evaluation methods were performed according to CSA Z245.20, the Canadian standard for pipes.
Figure PCTKR2023015185-appb-img-000008
Figure PCTKR2023015185-appb-img-000008
Figure PCTKR2023015185-appb-img-000009
Figure PCTKR2023015185-appb-img-000009
상기 표 1-9에 나타난 바와 같이, 본 발명에 따른 제조예 1-15의 에폭시 수지를 사용한 실험예 1-15의 분체도료는 측정 항목 전반에서 우수한 물성을 나타내었다. 반면, 충격 완화제가 사용되지 않은 제조예 16의 에폭시 수지를 사용한 실험예 16의 분체도료는 전반적으로 열세한 물성을 나타내었다. 한편, 블록 이소시아네이트 대신 블록화되지 않은 이소시아네이트를 사용하여 제조된 제조예 17 및 해당 성분들을 3단계로 순차 반응시키는 대신 모두 혼합하여 1단계 반응으로 제조한 제조예 18의 경우, 겔화되어 에폭시 수지를 제조할 수 없었다.As shown in Table 1-9, the powder coating of Experimental Example 1-15 using the epoxy resin of Preparation Example 1-15 according to the present invention showed excellent physical properties in all measurement items. On the other hand, the powder coating of Experimental Example 16 using the epoxy resin of Preparation Example 16 in which no impact modifier was used showed overall inferior physical properties. Meanwhile, in the case of Preparation Example 17, which was prepared using unblocked isocyanate instead of blocked isocyanate, and Preparation Example 18, which was prepared in a one-step reaction by mixing all the corresponding components instead of sequentially reacting them in three steps, gelation was performed to prepare an epoxy resin. I couldn't.
본 발명은 높은 유리전이온도와 우수한 굴곡성을 갖는 에폭시 수지 및 이를 포함하는 분체도료 조성물을 제공한다. 본 발명에 따른 에폭시 수지는 180 ℃ 이상의 높은 유리전이온도를 가지고 있어 고온의 환경에서 사용 가능하다. 또한, 본 발명의 에폭시 수지는 높은 유리전이온도와 상반되는 물성인 굴곡성이 우수하고, 동시에 부착성, 내식성 등의 물성이 우수하다. 따라서, 본 발명의 에폭시 수지를 포함하는 분체도료 조성물은 우수한 고온 내열 특성을 제공하는 바, 가혹한 환경에 매설되는 파이프의 코팅용 도료에 적용 가능하다.The present invention provides an epoxy resin having a high glass transition temperature and excellent flexibility and a powder coating composition containing the same. The epoxy resin according to the present invention has a high glass transition temperature of 180°C or higher and can be used in high temperature environments. In addition, the epoxy resin of the present invention has excellent flexibility, which is a physical property opposite to its high glass transition temperature, and at the same time has excellent physical properties such as adhesion and corrosion resistance. Therefore, the powder coating composition containing the epoxy resin of the present invention provides excellent high-temperature heat resistance properties and can be applied as a coating material for pipes buried in harsh environments.

Claims (7)

  1. 알코올과 이소시아네이트를 반응시켜 블록 이소시아네이트 수지를 제조하는 단계, Preparing block isocyanate resin by reacting alcohol and isocyanate,
    다관능 에폭시 수지와 상기 블록 이소시아네이트 수지를 반응시켜 옥사졸리돈 구조가 포함된 에폭시 수지를 제조하는 단계, 및 Preparing an epoxy resin containing an oxazolidone structure by reacting a multifunctional epoxy resin with the block isocyanate resin, and
    상기 옥사졸리돈 구조가 포함된 에폭시 수지에 충격 완화제를 분산하는 단계Dispersing an impact modifier in the epoxy resin containing the oxazolidone structure.
    를 포함하는 방법으로 제조되는 에폭시 수지.An epoxy resin manufactured by a method comprising.
  2. 제1항에 있어서, 상기 이소시아네이트가 2관능 이상의 폴리이소시아네이트이고, 상기 알코올이 1관능 알코올인 에폭시 수지.The epoxy resin according to claim 1, wherein the isocyanate is a difunctional or higher polyisocyanate, and the alcohol is a monofunctional alcohol.
  3. 제1항에 있어서, 상기 이소시아네이트와 상기 알코올의 당량비가 1 : 1 내지 1.1 인 에폭시 수지.The epoxy resin of claim 1, wherein the equivalence ratio of the isocyanate and the alcohol is 1:1 to 1.1.
  4. 제1항에 있어서, 상기 다관능 에폭시 수지와 상기 블록 이소시아네이트의 당량비가 2.2 내지 3.7 : 1 인 에폭시 수지.The epoxy resin of claim 1, wherein the equivalence ratio of the multifunctional epoxy resin and the block isocyanate is 2.2 to 3.7:1.
  5. 제1항에 있어서, 상기 옥사졸리돈 구조가 포함된 에폭시 수지의 에폭시 당량(EEW)이 300 내지 600 g/eq이고, 점도가 5 내지 100 ps(175 ℃)인 에폭시 수지.The epoxy resin of claim 1, wherein the epoxy resin containing the oxazolidone structure has an epoxy equivalent weight (EEW) of 300 to 600 g/eq and a viscosity of 5 to 100 ps (175° C.).
  6. 제1항에 있어서, 상기 충격 완화제가 코어-쉘 수지 타입, 블록 공중합체 타입, 실리콘 분말 타입 및 고무 변성 수지 타입의 충격 완화제로 이루어진 군에서 선택되는 1종 이상인 에폭시 수지.The epoxy resin of claim 1, wherein the impact modifier is at least one selected from the group consisting of core-shell resin type, block copolymer type, silicone powder type, and rubber modified resin type impact modifier.
  7. 제1항에 있어서, 상기 옥사졸리돈 구조가 포함된 에폭시 수지 100 중량부에 대하여, 상기 충격 완화제가 5 내지 20 중량부 포함되는 에폭시 수지.The epoxy resin of claim 1, wherein 5 to 20 parts by weight of the impact modifier is contained based on 100 parts by weight of the epoxy resin containing the oxazolidone structure.
PCT/KR2023/015185 2022-10-27 2023-10-04 Epoxy resin and powder coating composition containing same WO2024090829A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0140278 2022-10-27
KR1020220140278A KR20240059247A (en) 2022-10-27 2022-10-27 Epoxy resin and powder coating composition comprising the same

Publications (1)

Publication Number Publication Date
WO2024090829A1 true WO2024090829A1 (en) 2024-05-02

Family

ID=90831327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015185 WO2024090829A1 (en) 2022-10-27 2023-10-04 Epoxy resin and powder coating composition containing same

Country Status (2)

Country Link
KR (1) KR20240059247A (en)
WO (1) WO2024090829A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000047285A (en) * 1998-12-31 2000-07-25 김충세 Production process of core shell rubber modified epoxy resin with high molecular weight
US20020037975A1 (en) * 1998-10-27 2002-03-28 Shuhei Yamoto Oxazolidone ring-containing epoxy resin
JP2002308965A (en) * 2001-04-13 2002-10-23 Asahi Kasei Epoxy Kk Epoxy resin containing oxazolidone ring
KR20150073173A (en) * 2012-10-17 2015-06-30 다우 글로벌 테크놀로지스 엘엘씨 Core shell rubber modified solid epoxy resins
KR20160110048A (en) * 2015-03-13 2016-09-21 신닛테츠 수미킨 가가쿠 가부시키가이샤 Oxazolidone ring-containing epoxy resin, method for producing the thereof, epoxy resin composition and cured product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020037975A1 (en) * 1998-10-27 2002-03-28 Shuhei Yamoto Oxazolidone ring-containing epoxy resin
KR20000047285A (en) * 1998-12-31 2000-07-25 김충세 Production process of core shell rubber modified epoxy resin with high molecular weight
JP2002308965A (en) * 2001-04-13 2002-10-23 Asahi Kasei Epoxy Kk Epoxy resin containing oxazolidone ring
KR20150073173A (en) * 2012-10-17 2015-06-30 다우 글로벌 테크놀로지스 엘엘씨 Core shell rubber modified solid epoxy resins
KR20160110048A (en) * 2015-03-13 2016-09-21 신닛테츠 수미킨 가가쿠 가부시키가이샤 Oxazolidone ring-containing epoxy resin, method for producing the thereof, epoxy resin composition and cured product

Also Published As

Publication number Publication date
KR20240059247A (en) 2024-05-07

Similar Documents

Publication Publication Date Title
US11898060B2 (en) Anti-corrosive zinc primer coating compositions
WO2016010261A1 (en) Highly functional natural material-derived epoxy resin, preparation method therefor, and epoxy resin curing composition using same
WO2016182259A1 (en) Powder coating latent curing agent, and epoxy powder coating composition containing same
AU775720B2 (en) Amino-polyether-modified epoxy and cationic electrodeposition paint composition containing the same
WO2010038943A2 (en) Resin composition for cation electrodeposition paint with excellent inner permeability, containing aromatic sulfonic acid and urethane functional rheology modifier
WO2024090829A1 (en) Epoxy resin and powder coating composition containing same
WO2020175766A1 (en) Powder coating composition
WO2019156341A1 (en) Powder coating composition
WO2020111470A1 (en) Powder coating composition
CN115612247A (en) Modified epoxy resin and preparation method and application thereof
WO2021010787A2 (en) Solventless epoxy paint composition, and marine structure and ship tank which comprise coating formed therefrom
US4018739A (en) Tar-urethane composition
WO2021045363A2 (en) Powder coating composition
WO2022039422A1 (en) Solvent-free coating composition
WO2024111926A1 (en) Powder coating composition
KR102244453B1 (en) Powder coating composition
WO2024111928A1 (en) Powder paint composition
WO2019221380A1 (en) Powder coating composition
WO2020159048A1 (en) Powder coating composition
WO2020111476A1 (en) Powder paint composition
WO2023204489A1 (en) Powder coating composition
WO2024034885A1 (en) Epoxy paint composition
JP3710220B2 (en) Polyol resin composition
WO2022092365A1 (en) Eco-friendly waterproof root-proof material composition having adhesion, chemical resistance, flexibility, impact resistance and puncture resistance for artificial greening, and construction method using same
WO2023219273A1 (en) Two-coat painting system