WO2024090694A1 - 폴리머 기반 마이크로니들 패치 제조 방법 및 이를 통해 제조된 마이크로니들 패치 - Google Patents

폴리머 기반 마이크로니들 패치 제조 방법 및 이를 통해 제조된 마이크로니들 패치 Download PDF

Info

Publication number
WO2024090694A1
WO2024090694A1 PCT/KR2023/005957 KR2023005957W WO2024090694A1 WO 2024090694 A1 WO2024090694 A1 WO 2024090694A1 KR 2023005957 W KR2023005957 W KR 2023005957W WO 2024090694 A1 WO2024090694 A1 WO 2024090694A1
Authority
WO
WIPO (PCT)
Prior art keywords
microneedle
polymer
manufacturing
coating
polymer material
Prior art date
Application number
PCT/KR2023/005957
Other languages
English (en)
French (fr)
Inventor
이상훈
정진웅
Original Assignee
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인대구경북과학기술원 filed Critical 재단법인대구경북과학기술원
Publication of WO2024090694A1 publication Critical patent/WO2024090694A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/26Moulds or cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/42Casting under special conditions, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor

Definitions

  • the present invention relates to a method of manufacturing a polymer-based microneedle patch, and more specifically, to a method of manufacturing a polymer-based microneedle patch based on microneedles using a 3D printing process.
  • Microneedling is a technology that uses microneedles measuring hundreds of micrometers to penetrate the stratum corneum of the skin to painlessly deliver drugs to the epidermis and dermis, or to manufacture electrodes with better performance than existing surface electrodes. Drug delivery using microneedles causes less pain and is easier to use than drug delivery using existing injections. In addition, compared to oral drugs, it is possible to maintain higher bioavailability by avoiding the first-pass effect, and since the drug can be administered to the desired area, it can be useful for skin care and the treatment of various diseases. You can.
  • Microneedles are mainly used for drug delivery, but can also be used as bioelectrodes.
  • the most common method used to monitor bioelectrical signals is to collect electrical signals using electrodes.
  • the electrodes can be broadly divided into two types, wet electrodes and dry electrodes, depending on the method of attachment to the skin.
  • a representative non-invasive wet electrode is an electrode based on Ag/AgCl, a commonly used commercial electrode.
  • this method of measuring signals using wet electrodes is difficult to accurately measure signals because the wet electrode cannot reach the conductive layer of the skin due to the presence of a stratum corneum that interferes with the measurement of bioelectric signals, and the conductive gel can cause inflammation or allergic reactions caused by the gel. There is also a problem that it cannot be used for a long time due to the nature of the gel, which hardens over time. In addition, in order to use it directly on the skin, the stratum corneum of the skin, which is made up of dead cells, must be removed, so there is a problem of skin damage, and it is very sensitive to movement, making it difficult to measure signals.
  • microneedles used in dry electrodes measure signals by penetrating the stratum corneum of the skin, so they are less affected by the impedance of the stratum corneum. Since they do not use gel, they can be worn for a long time and the contact with the skin is more stable, making movement more stable. It also has the advantage of being less affected.
  • microneedles are difficult to manufacture or require a complicated manufacturing process.
  • production processes using 3D printing methods have made it possible to develop microneedles of more sophisticated and complex shapes while being less expensive.
  • needle base material formation is obtained by printing on a substrate using a 3D printing method to obtain a base material forming a columnar body.
  • a microneedle patch manufacturing method having a microneedle forming process of etching the pillar-shaped body to form microneedles by immersing the base material in an etching solution was disclosed.
  • microneedles require sufficient rigidity to penetrate the skin, and at the same time, flexibility is required to reduce tissue damage and movement artifacts within the skin after insertion into the skin. Therefore, the conventional method of manufacturing microneedles using a 3D printer and an etching process has the problem that the polymer material that makes up the microneedle may be damaged by the etchant, and the process becomes complicated because an etching process is added.
  • the microneedle when inserting into the skin surface, it must penetrate the skin with minimal rigidity, and due to the nature of the microneedle, which must have the characteristics of a soft material after insertion into the skin surface, the microneedle requires both rigidity and flexibility due to the resolution limit of the 3D printer. There is a problem that production is difficult.
  • the present invention was developed to solve the problems of the prior art, and provides a microneedle manufactured by controlling the angle of the microneedle tip using a 3D printing process and a method of manufacturing a polymer-based microneedle patch using the same.
  • the polymer-based microneedle patch manufacturing method includes a microneedle structure manufacturing step of manufacturing a structure in which a plurality of microneedles are arranged using 3D printing; A microneedle mold forming step of forming a microneedle mold by adding the microneedle structure into a container containing a first polymer material; A microneedle array forming step of injecting a second polymer material into the microneedle mold and curing it to form a microneedle array; and a microneedle patch manufacturing step of manufacturing a microneedle patch by arranging the microneedle array on a substrate.
  • the microneedle tip of the microneedle array may have an asymmetric structure with an inclination of 45 to 55°.
  • the microneedle structure includes a base portion and a plurality of microneedles protruding from the base portion, and the base portion is placed on the stage of the 3D printer. It may be arranged with an inclination angle of 30 to 60°.
  • the tip of the microneedle can be finely adjusted to maximize skin penetration performance by adjusting the output inclination angle using the limitations of the output mechanism of the 3D printer.
  • polymer microneedles with maximized penetrating performance can be manufactured by manufacturing various biocompatible and functional polymer microneedles using microneedles with finely adjusted microneedle tips printed by a 3D printer.
  • Figure 1 is a flow chart of the polymer-based microneedle patch manufacturing method of the present invention.
  • Figure 2 shows the microneedle array forming step of the present invention
  • Figure 3 shows the microneedle mold forming method of the present invention.
  • 4A to 4B show the microneedle structure manufacturing steps of the present invention.
  • 5A to 5C show the shape of the microneedle tip according to the change in inclination angle ( ⁇ ) of the microneedle using the 3D printer of the present invention.
  • 6A to 6C show the shape of the tip of the microneedle structure produced by the microneedle mold of the present invention according to the change in inclination angle ( ⁇ ).
  • 7A to 7C are images of microneedles made from polyimide of the present invention.
  • 8A to 8C show the microneedle patch manufacturing steps of the present invention.
  • 9A to 9C are images of the microneedle patch manufacturing steps using the shape memory polymer of the present invention and the shape memory polymer microneedle patch manufactured using the shape memory polymer.
  • Figure 10 is a graph of the relationship between the bevel angle ( ⁇ ) of the 3D printing microneedle and the bevel angle ( ⁇ ) of the polyimide microneedle according to the adjustment of the 3D printing inclination angle ( ⁇ ) of the present invention.
  • Figure 11 is a graph of skin insertion test results according to the inclination angle ( ⁇ ) of the microneedle produced by the 3D printing inclination angle ( ⁇ ) adjustment method of the present invention.
  • Figure 12 is a mid-section of polyimide microneedles having various shapes of the present invention.
  • Figures 13a to 13c are images of shape memory polymer microneedles produced by applying shape memory polymer (SMP) and shape memory polymer microneedle electrodes with metal deposition completed.
  • SMP shape memory polymer
  • the polymer-based microneedle patch manufacturing method includes a microneedle structure manufacturing step of manufacturing a structure in which a plurality of microneedles are arranged using 3D printing; A microneedle mold forming step of forming a microneedle mold by adding the microneedle structure into a container containing a first polymer material; A microneedle array forming step of injecting a second polymer material into the microneedle mold and curing it to form a microneedle array; and a microneedle patch manufacturing step of manufacturing a microneedle patch by arranging the microneedle array on a substrate.
  • the microneedle structure includes a base portion and a plurality of microneedles protruding from the base portion.
  • the base portion may be disposed at a certain inclination angle with respect to the stage of the 3D printer. there is.
  • the inclination angle at which the base of the microneedle structure is disposed with the stage of the 3D printer may be 30 to 60°.
  • the middle cross-section of the microneedle may be one of circular, triangular, square, hexagonal, or hexagonal star shapes.
  • the first polymer material may be selected from either a silicone-based polymer or polyurethane
  • the second polymer material may be a polyimide polymer or a shape memory polymer.
  • the microneedle patch manufacturing step includes a coating solution preparation step of preparing a coating solution; A coating liquid coating step of coating the prepared coating liquid on the surface of the substrate; A metal pattern forming step of forming a metal pattern on the surface of the substrate coated with the coating solution; A microneedle array arrangement step of arranging the microneedle array on a metal pattern formed on the surface of the substrate; A microneedle forming step of forming microneedles by removing the microneedle array pattern arranged on the metal pattern; and a coating step of coating a third polymer material on the substrate and the metal pattern of the substrate.
  • the coating solution is selected from either silicone rubber or silicone resin, and can be prepared by mixing it with a certain ratio of an organic solvent and evaporating it at a certain temperature.
  • the substrate on which the coating solution is coated in the coating solution coating step may be made of a transparent plastic material.
  • the third polymer material may be selected from either silicone rubber or silicone resin.
  • the microneedle array forming step includes a second polymer material injection step of injecting a second polymer material into a microneedle mold in which a groove having the same concave shape as that of the microneedle structure is formed; A vacuum placement step in which the mold into which the second polymer material is injected is placed in a vacuum; A microneedle array curing step in which the second polymer material injected into the microneedle mold placed in the vacuum is cured; It may include a metal electrode coating step of separating the cured microneedle array from the microneedle mold into which the second polymer material is injected and coating a metal electrode on the surface of the separated microneedle array.
  • the microneedle tip of the microneedle array may have an asymmetric structure with an inclination of 45 to 55°.
  • the microneedle structure includes a base portion and a plurality of microneedles protruding from the base portion, and the base portion is placed on the stage of the 3D printer. It may be arranged with an inclination angle of 30 to 60°.
  • the present invention manufactures a mold having the same shape as the structure of the microneedle printed using a 3D printer in order to control the inclination angle of the microneedle so as to have durability and penetrating power with respect to the tip portion of the microneedle, and the manufactured mold
  • the microneedle bevel refers to the tip that first contacts the skin and is inserted into the skin when the microneedle is applied to the skin.
  • a microneedle patch can be manufactured by manufacturing a flexible and breathable substrate and combining the substrate with the manufactured microneedles.
  • Figure 1 is a flow chart of the polymer-based microneedle patch manufacturing method of the present invention.
  • the flow chart (S1000) of the polymer-based microneedle patch manufacturing method of the present invention includes a microneedle structure manufacturing step (S100), a microneedle mold forming step (S200), a microneedle array forming step (S300), It may include a microneedle patch manufacturing step (S400).
  • a microneedle structure in which a plurality of microneedles are arranged can be manufactured using 3D printing.
  • the microneedle structure may include a base portion and a plurality of microneedles protruding from the base portion.
  • the base portion may be arranged at a certain inclination angle with respect to the stage of the 3D printer.
  • the microneedle structure may include a base portion and a plurality of microneedles protruding from the base portion, and the base portion may be disposed at an inclination angle of 30 to 60° with respect to the stage of the 3D printer. You can.
  • Manufacturing the microneedle array using a 3D printing process has limitations in manufacturing a precise microneedle array due to the low resolution of the 3D printer. Therefore, in the present invention, a microneedle structure with an adjusted inclination angle is used using a 3D printer. can be manufactured.
  • a microneedle mold may be formed by adding the microneedle structure into a container containing the first polymer material.
  • the first polymer material may be selected from either a silicone-based polymer or polyurethane, and more specifically, may be polydimethylsiloxane (PDMS).
  • the microneedle array forming step (S300) may further include a second polymer material injection step (S310), a vacuum placement step (S320), a curing step (S330), and a metal thin film coating step (S340).
  • a microneedle array may be formed by injecting a second polymer material into the microneedle mold and curing it.
  • a microneedle array is formed by injecting a second polymer material into the microneedle mold having the same engraved shape as the microstructure, thereby producing a microneedle array in which the tip portion of the microneedle array is sharply formed.
  • the second polymer material may be selected from polyimide polymer or shape memory polymer.
  • the microneedle patch manufacturing step (S400) includes a coating solution manufacturing step (S410), a coating solution coating step (S420), a metal pattern forming step (S430), a microneedle array arrangement step (S440), a microneedle forming step (S450), A third polymer material coating step (S460) may be further included.
  • a microneedle patch can be manufactured by attaching the formed microneedle array to a substrate made of a third polymer material. By arranging the manufactured microneedle array in the microneedle patch, a microneedle patch with improved penetration and flexibility can be manufactured.
  • the microneedle tips of the manufactured microneedle array may be manufactured with an asymmetric structure of 45 to 55°.
  • FIG. 2 shows the microneedle array forming steps of the present invention.
  • the microneedle array forming step (S300) may include a second polymer material injection step (S310), a vacuum placement step (S320), a microneedle array curing step (S330), and a metal electrode coating step (S340).
  • the second polymer material injection step (S310) may be a step in which the second polymer material is injected into a microneedle mold in which grooves having the same concave shape as the microneedle structure are formed.
  • the second polymer material may be selected from polyimide polymer or shape memory polymer.
  • the vacuum placement step (S320) may be a step in which the mold into which the second polymer material is injected is placed in a vacuum for about 30 minutes.
  • the mold into which the second material is injected is placed in a vacuum, which has the effect of allowing the second material to easily fill the end of the mold without external pressure, thereby manufacturing a microneedle having the same shape as the microneedle structure. It can be.
  • the microneedle array curing step (S330) may further include curing the mold placed in the vacuum.
  • the microneedle array curing step (S330) includes primary curing that is cured by being placed in an oven as shown in FIG.
  • Secondary curing may be tertiary curing where the curing is placed in an oven as shown in FIG. 2(e).
  • the primary curing may be performed at 120°C for 10 minutes in an oven.
  • the secondary curing can be performed by irradiating ultraviolet rays for 1 hour to ensure better curing, and the tertiary curing can be performed at 200°C for 1 hour in an oven. Therefore, the mold into which the second material is injected can be completely cured by going through the processes of primary curing, secondary curing, and tertiary curing. Accordingly, the second material is injected into the mold.
  • Microneedles can be manufactured that are completely separated from the mold and have the same shape as the mold.
  • the microneedles of the manufactured microneedle array may have an aspect ratio of 2.5:1 to 3.5:1.
  • the metal electrode coating step (S340) may be a step in which a metal electrode is coated on the surface of a microneedle array made of a second polymer material.
  • the metal electrode may be coated with either Cr/Au or Ti/TiN/Mo using a sputtering process.
  • microneedles that can be used as bioelectrodes can be manufactured by coating the surface of the microneedle array with a metal thin film.
  • Figure 3 shows a method of forming a microneedle mold of the present invention.
  • the microneedle mold forming step (S200) may further include a second polymer material injection step and a microneedle mold manufacturing step.
  • Figure 3(a) is a microneedle mold printed with a 3D printer.
  • the microneedle structure manufactured by the 3D printer in Figure 3(b) is manufactured by removing the support from the 3D printed microneedle mold in Figure 3(a).
  • the microneedle structure input step involves injecting the microneedle structure into a container containing the first polymer material to have the same engraved shape as the microneedle structure of FIG. 3(b). This may be a step.
  • the first polymer material may be selected from either a silicone-based polymer or polyurethane, and more specifically, may be polydimethylsiloxane (PDMS).
  • PDMS polydimethylsiloxane
  • a mold in which a groove having the same concave shape as the inserted microneedle structure is formed can be manufactured.
  • Figures 4a to 4b show the manufacturing steps of the microneedle structure of the present invention.
  • the microneedle structure manufacturing step (S100) may further include a 3D modeling step and a microneedle structure output step.
  • the inclination angle of the microneedle is set by modeling the support together during 3D modeling so that the microneedle structure has a desired inclination angle and forming it on the structure when the structure is output by a 3D printer, or the microneedle structure
  • the inclination angle of the modeling stage of the 3D printer By setting the inclination angle of the modeling stage of the 3D printer to have the desired inclination angle, a microneedle structure having the desired inclination angle can be output.
  • the microneedle structure having the same shape as the microneedle to be manufactured can be printed.
  • the 3D modeling step may be a step of 3D modeling the shape of the microneedle to have an inclination angle ( ⁇ ).
  • inclination angle
  • Figures 5a to 5c show the shape of the microneedle tip according to the change in inclination angle ( ⁇ ) of the microneedle using the 3D printer of the present invention.
  • a microneedle structure can be manufactured using a 3D printer by setting the inclination angle ( ⁇ ) of the 3D printer.
  • FIG. 5A to 5C show a microneedle structure manufactured using a 3D printer.
  • the microneedle structure was manufactured by setting the inclination angle ( ⁇ ) of the microneedle structure manufactured by the 3D printer to 0 to 90°.
  • Figure 5a(1) is a microneedle modeling drawing modeled when the inclination angle of the microneedle structure is 0° by 3D modeling
  • Figure 5a(2) is a microneedle modeling diagram modeled when the inclination angle ( ⁇ ) of the microneedle structure manufactured by 3D printer is 0°. This is a schematic diagram showing when °. Comparing with Figure 5a(1), it can be seen that when the inclination angle ( ⁇ ) of the microneedle structure is 0°, the tip of the microneedle structure is formed bluntly.
  • Figure 5b(1) is a microneedle modeling drawing modeled when the inclination angle is 45° by 3D modeling
  • Figure 5b(2) is a microneedle modeling drawing when the inclination angle ( ⁇ ) of the microneedle structure manufactured by 3D printer is 45°.
  • This is a schematic diagram showing the time. Comparing with Figure 5b(1), it can be seen that the tip of the microneedle structure is sharp when the inclination angle ( ⁇ ) of the microneedle structure is 45°.
  • Figure 5c (1) is a microneedle modeling drawing modeled when the inclination angle is 90° by 3D modeling
  • Figure 5c (2) is a microneedle modeling drawing when the inclination angle ( ⁇ ) of the microneedle structure manufactured by 3D printer is 90°.
  • This is a schematic diagram showing the time. Comparing with Figure 5c(1), it can be seen that when the inclination angle ( ⁇ ) of the microneedle structure is 90°, the tip of the microneedle structure is formed bluntly.
  • the microneedle structure manufactured using the 3D printer is manufactured layer by layer as shown in FIG. 5. According to the principle of 3D printing, when the inclination angle ( ⁇ ) of the microneedle structure is 45°, the tip of the microneedle structure is sharply formed. That can be confirmed.
  • Figures 6a to 6c show the shape of the tip of the microneedle structure produced by the microneedle mold of the present invention according to the change in inclination angle ( ⁇ ).
  • Figure 6a shows 3D modeled microneedles. As shown in FIG. 6A, the tip of the 3D modeled microneedle may be designed to be sharp, and the microneedle may have an aspect ratio of 1.5:1 to 5.5:1.
  • Figure 6b shows the microneedle structure produced by using a 3D printer to manufacture the microneedle structure printed so that the microneedle has an inclination angle ( ⁇ ) into a mold, and injecting polymer into the mold having the same shape as the microneedle structure. This shows the tip shape of the microneedle according to the inclination angle.
  • FIGS. 6B and 6C it can be seen that as the inclination angle of the microneedle manufactured by the 3D printer and the microneedle mold increases, the tip of the microneedle becomes sharper. In addition, it can be observed that the tip shape of the microneedle is bent starting when the inclination angle ( ⁇ ) of the microneedle manufactured by a 3D printer and microneedle mold is 60°, which may be a phenomenon of bending under the influence of gravity. there is.
  • the tip of the microneedle is sharp when the inclination angle ( ⁇ ) of the microneedle is between 30 and 50°.
  • the tip of the microneedle made from the microneedle structure printed by a 3D printer is sharp when it has an inclination angle ( ⁇ ) of 30 to 50°.
  • the tips of the microneedles of the microneedle array may have an asymmetric structure with an inclination of 45 to 55°.
  • Figures 7a to 7c show images of microneedles made of polyimide of the present invention.
  • Figure 7a(1) is a microneedle structure with an inclination angle ( ⁇ ) of 45° printed by a 3D printer
  • Figure 7a(2) shows polyimide injected into a microneedle mold having the same shape as Figure 7a(1). This shows the shape of the tip portion of the microneedle array produced.
  • Figure 7b(1) is a microneedle structure with an inclination angle ( ⁇ ) of 40° printed by a 3D printer
  • Figure 7b(2) shows polyimide injected into a microneedle mold having the same shape as Figure 7b(1). This shows the shape of the tip portion of the microneedle array produced. As shown in FIGS.
  • Figure 7c shows the shape of the tip portion of the polyimide microneedle array of various lengths manufactured when the print angle was 45°. As shown in Figure 7c, it can be seen that not only can the inclination angle ( ⁇ ) of the microneedle structure be adjusted using the 3D printer of the present invention, but also the length of the microneedle can be adjusted.
  • FIGS 8a to 8c show the manufacturing steps of the microneedle patch of the present invention.
  • the microneedle patch manufacturing step (S400) includes a coating solution manufacturing step (S410), a coating solution coating step (S420), a metal pattern forming step (S430), a microneedle array arrangement step (S440), a microneedle forming step (S450), and 3It may include a polymer material coating step (S460).
  • the coating solution may be selected from either silicone rubber or silicone resin.
  • it may be polydimethylsiloxane (PDMS).
  • the coating solution may include polydimethylsiloxane (PDMS) mixed with an organic solvent at a certain ratio. More specifically, the mixing ratio of polydimethylsiloxane (PDMS), toluene, citric acid, and ethanol may be 20:20:10:10.
  • the mixed coating liquid can be evaporated at a certain temperature.
  • the constant temperature may be 150°C. More specifically, the coating solution mixed with the organic solvent can be evaporated at a certain temperature to produce p-polydimethylsiloxane (pPDMS).
  • pPDMS p-polydimethylsiloxane
  • the prepared p-polydimethylsiloxane coating solution may be coated on the surface of the substrate through a spin coating process.
  • the substrate coated with the p-polydimethylsiloxane coating solution may be made of a transparent plastic material.
  • the plastic material may be polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • an insulating material may be additionally coated.
  • the metal pattern forming step (S430) may be a step of forming a metal pattern on a substrate coated with a coating solution.
  • the metal pattern forming step (S430) may be formed through a semiconductor photolithography process. More specifically, an etching process and a photoresist removal process may be applied to etch the metal pattern.
  • the microneedle array arrangement step (S440) may be a step of arranging the microneedle array on the metal pattern formed on the substrate.
  • the microarray array is bonded using silicone resin or epoxy resin so that the microarray can be arranged on a metal pattern formed on a substrate.
  • the microneedle forming step (S450) may be a step in which microneedles are formed by removing the microneedle array pattern arranged on the metal pattern. After applying a developer to the microneedle array on the substrate and exposing it to a UV light source, microneedles can be formed by selectively removing the exposed and unexposed areas, and thus the microneedles finally separated from the microneedle array are A configured microneedle patch can be manufactured.
  • the third polymer material coating step (S460) may be a step in which a third polymer material is coated on the substrate and the metal pattern of the substrate.
  • the third polymer material may be selected as either silicone rubber or silicone resin. More specifically, the third polymer material may be a mixture of p-Polydimethylsiloxane (pPDMS) and silicon.
  • pPDMS p-Polydimethylsiloxane
  • the third polymer material can serve as an insulating layer that minimizes capacitance and electrical interference by being coated on the substrate and the metal pattern of the substrate.
  • Figure 8c shows a cross-sectional schematic diagram of the microneedle patch of the present invention. The microneedle patch can be manufactured using the manufacturing process shown in FIGS. 8A to 8B.
  • Microneedles can be formed by arranging a microneedle array on a metal pattern formed on a substrate coated with p-Polydimethylsiloxane (pPDMS), and removing the microneedle array pattern arranged on the metal pattern. .
  • pPDMS p-Polydimethylsiloxane
  • a third polymer material which is a mixture of p-Polydimethylsiloxane (pPDMS) and silicon, is coated on the substrate and the metal pattern of the substrate, resulting in a final polymer as shown in Figure 8c.
  • Microneedle patches can be produced.
  • Figures 9a to 9c show the microneedle patch manufacturing steps using the shape memory polymer of the present invention and images of the shape memory polymer microneedle patch manufactured using the shape memory polymer.
  • Figure 9a shows the microneedle manufacturing steps using the shape memory polymer (SMP) of the present invention.
  • SMP shape memory polymer
  • the method of manufacturing a microneedle patch using a shape memory polymer may be manufactured by applying a different process from the microneedle patch manufacturing step shown in FIGS. 8A to 8C for process efficiency.
  • a cap is placed on the microneedle electrode portion and Parylene-C coating is performed, as shown in Figure 9a (7), in order to coat the portion excluding the microneedle electrode portion with Parylene-C.
  • FIG. 9a shows the manufacturing steps of a microneedle patch using the shape memory polymer (SMP) of the present invention.
  • the microneedle patch using shape memory polymer (SMP) additionally includes a process of immersion in ethanol to remove citric acid crystals, as shown in FIG. 9b (4).
  • FIGS. 9B(5) and 9B(6) drying after immersion and coating with a silicone adhesive (Silbione) may be additionally included.
  • Figure 9c shows a shape memory polymer microneedle patch manufactured using the method of Figures 9a and 9b.
  • a second polymer material may be injected into a microneedle mold in which grooves having the same concave shape as the microneedle structure are formed.
  • Figure 9a(3) shows that the mold into which the second polymer material was injected was placed in a vacuum for about 30 minutes.
  • a microneedle having the same shape as the structure of the microneedle can be manufactured by placing the mold into which the second polymer material is injected in a vacuum.
  • Figure 9a(4) shows the process of curing by irradiation with ultraviolet rays
  • Figure 9a(5) shows the process of curing at 200°C for 1 hour
  • Figure 9a(6) shows the process of forming a metal electrode by coating Cr/Au metal on the surface of a microneedle hardened at 200°C for 1 hour through a sputtering process, followed by a wiring process.
  • Figure 9a(7) shows the final production of a microneedle using a shape memory polymer (SMP) by coating Parylene-C on the surface of a microneedle coated with a metal electrode.
  • SMP shape memory polymer
  • Figure 9a(8) shows that a cap is placed on the microneedle electrode portion, Parylene-C coating is performed, and then the cap is removed to form an additional insulating layer in the portion excluding the microneedle electrode.
  • Figure 9b(1) shows the steps in which the coating solution is prepared, in which polydimethylsiloxane (PDMS), toluene, citric acid, and ethanol are constant at 20:20:10:10.
  • a coating solution can be prepared by mixing in proportion.
  • Figure 9b(2) shows the process of producing p-polydimethylsiloxane (pPDMS) by evaporating the mixed coating solution at a constant temperature of 150°C.
  • Figure 9b (3) shows the process of coating the prepared p-polydimethylsiloxane (pPDMS) coating solution on the surface of the substrate by a spin coating process.
  • PDMS polydimethylsiloxane
  • the substrate coated with the p-polydimethylsiloxane coating solution is It may be made of a transparent plastic material of polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the substrate coated with the p-polydimethylsiloxane coating solution is immersed in ethanol to remove citric acid crystals, as shown in Figure 9b (5).
  • a drying process may be performed, and a silicone adhesive (Silbione) may be coated as shown in FIG. 9b (6).
  • a metal pattern is formed on the substrate coated with the coating solution and is bonded with silicone resin or epoxy resin to form a micro
  • the array may be arranged on a metal pattern formed on a substrate.
  • a shape memory polymer microneedle patch as shown in Figure 9c can be manufactured through the process of Figures 9a and 9b.
  • Figure 10 is a graph showing the relationship between the bevel angle ( ⁇ ) of the 3D printing microneedle and the bevel angle ( ⁇ ) of the polyimide microneedle according to the adjustment of the 3D printing inclination angle ( ⁇ ) of the present invention. Referring to Figure 10, it can be seen that there is similarity between the bevel angle ( ⁇ ) of the 3D printing microneedle and the bevel angle ( ⁇ ) of the polyimide microneedle. In addition, it can be seen that when the 3D printing inclination angle ( ⁇ ) is 40°, it has the lowest bevel angle ( ⁇ ).
  • Figure 11 shows a graph of skin insertion test results according to the inclination angle ( ⁇ ) of the microneedle produced by the 3D printing inclination angle ( ⁇ ) adjustment method of the present invention.
  • the inclination angle ( ⁇ ) of the microneedle was 40°, and a penetrating phenomenon of recessing and then popping occurred. You can. This means that the microneedles penetrated the skin, and it can be seen that the remaining microneedles at the inclination angle ( ⁇ ) failed to penetrate the skin and were pushed away.
  • Figure 12 shows a mid-section of polyimide microneedles of various shapes according to the present invention.
  • the middle cross-section of the microneedle may be one of the shapes of a circle, triangle, square, hexagon, or hexagon, but is not limited to these and can be manufactured in various shapes. Therefore, it is possible to design a microneedle array with various shapes through a microneedle structure whose inclination angle is adjusted by a 3D printer and a molding process having the same shape as the microneedle structure, and through this, the flexibility and rigidity of the microneedle can be improved.
  • the function can be optimized.
  • Figures 13a to 13c show images of shape memory polymer microneedles produced by applying shape memory polymer (SMP) and shape memory polymer microneedle electrodes on which metal deposition was completed.
  • Figure 13a shows the shape of the tip portion of a microneedle array produced by injecting polyimide into a microneedle mold having the same shape as the microneedle structure printed by a 3D printer.
  • Figure 13b shows an actual photograph of shape memory polymer microneedles produced by the method of Figure 13a.
  • Figure 13c(1) shows the shape memory polymer microneedles produced by the method of Figure 13a before the sputtering process.
  • FIG. 13c (2) shows a shape memory polymer microneedle after repeating the skin insertion test 10 times in the same manner as in Figure 10a. Referring to Figure 13c(3), you can see that the shape memory polymer microneedles are bent due to repeated insertion.
  • Figure 13c(4) shows the results of heating the curved shape memory polymer microneedle of Figure 13c(3) at 45°C for 1 minute. Referring to Figure 13c(4), it can be seen that the bent shape memory polymer microneedles are restored to their original form after heating at 45°C for 1 minute.
  • the material to which the microneedle of the present invention can be applied is not limited to polyimide, but various biocompatible polymers and functional polymers can be applied.
  • the shape memory polymer is capable of realizing desired shapes depending on temperature changes and has the property of becoming softer as the temperature increases. Therefore, the flexibility and rigidity of microneedles can be maximized by using functional polymers such as shape memory polymers.
  • the fabricated polymer microneedles can be combined with a p-polydimethylsiloxane (PDMS) substrate, a highly breathable polymer-based substrate, by depositing metal on the surface of the polymer microneedles, and are a minimally invasive material with elasticity and breathability. It may be possible to use electromyography as a microelectrode.
  • PDMS p-polydimethylsiloxane
  • the present invention relates to a method for manufacturing a polymer-based microneedle patch and a microneedle patch manufactured using the same.
  • the present invention relates to a method for manufacturing a polymer-based microneedle patch and a microneedle patch manufactured using the same, which is minimally invasive and, after insertion, uses a flexible polymer. It minimizes skin tissue damage and minimizes noise, thereby maximizing bio-signal recording characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Veterinary Medicine (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • General Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Medical Informatics (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Micromachines (AREA)
  • Electromagnetism (AREA)

Abstract

본 발명은 피부 관통 성능을 극대화할 수 있도록 하는 폴리머 기반 마이크로니들 패치 제조 방법에 관한 것으로, 본 발명의 폴리머 기반 마이크로니들 패치는 폴리머로 제조되어 강직성과 유연성을 동시에 가지는 마이크로니들과 신축성이 있고 통기성 있는 기판과 결합함으로써 관통력과 유연성이 향상된 마이크로니들 패치를 제조할 수 있다.

Description

폴리머 기반 마이크로니들 패치 제조 방법 및 이를 통해 제조된 마이크로니들 패치
본 발명은 폴리머 기반 마이크로니들 패치 제조 방법에 관한 것으로서, 보다 상세하게는 3D 프린팅 공정을 이용한 마이크로니들을 기반으로 한 폴리머 기반 마이크로니들 패치 제조 방법에 관한 것이다.
마이크로니들은 수백 마이크로미터 크기의 미세 바늘을 이용하여 피부 각질층을 관통해 표피 및 진피층으로 통증 없이 약물을 전달하거나, 기존의 표면 전극보다 더 뛰어난 성능을 가진 전극을 제조하기 위한 기술이다. 마이크로니들을 이용한 약물 전달은 기존의 주사를 이용한 약물 전달보다 통증이 적고, 간편하게 사용할 수 있다. 또한, 경구제와 비교했을 때 초회 통과 효과(first-pass effect)를 회피하여 더 높은 생체 이용률의 유지가 가능하며, 원하는 부위에 약물의 투약이 가능하므로 피부 미용 및 각종 질병 치료에도 유용하게 적용할 수 있다.
마이크로니들은 주로 약물 전달을 위해 사용되고 있지만, 생체 전극으로도 사용이 가능하다. 생체 전기 신호를 모니터링하기 위해 사용되는 가장 보편적인 방법은 전극을 사용하여 전기 신호를 수집하는 것이다. 상기 전극은 피부에 부착하는 방식에 따라 크게 습식 전극과 건식 전극 2가지로 나뉠 수 있다. 대표적인 비침습식 습식 전극은 보편적으로 사용되는 상업용 전극인 Ag/AgCl을 기반으로 한 전극이다.
하지만 이러한 습식 전극을 이용한 신호 측정 방식은 생체 전기 신호 측정을 방해하는 각질층이 존재하여 습식 전극이 피부의 전도층에 도달할 수 없어서 정확한 신호 측정이 어렵고, 전도성 젤로 인해 젤에 의한 염증이나 알러지 반응이 발생할 수 있고, 또한 시간이 지나면 굳는 젤의 특성상 오래 사용할 수 없다는 문제가 있다. 또한, 피부에 직접 사용하기 위해서 죽은 세포로 이루어져 있는 피부의 각질층을 제거해야하기 때문에 피부 손상의 문제가 있고, 움직임에 매우 민감하여 신호를 측정하기 어렵다는 문제가 있다.
이러한 습식 전극의 한계점을 보안하기 위해 제작된 것이 마이크로 니들을 이용한 건식 전극이다. 건식 전극에 사용되는 마이크로니들은 피부의 각질층을 관통하여 신호를 측정하기 때문에 피부 각질층의 임피던스에 영향을 덜 받으며, 젤을 사용하지 않음으로써 오랜 시간 착용이 가능하고 피부와의 접촉이 더 안정화되어 움직임에 의한 영향 또한 덜 받는다는 장점이 있다.
그러나 이러한 마이크로니들은 제작 난이도가 어렵거나 복잡한 제작과정을 필요로 한다. 최근에는 3D 프린팅 방식을 이용한 생산 공정을 통해 저렴하면서 더 정교하고 복잡한 형태의 마이크로니들의 개발이 가능해졌다.
종래 일본특허공개 제2019-176146호(마이크로 니들 패치 및 마이크로 니들 패치 제조 방법, 2019.09.19.로부터의 참조)에는 3D 프린트법에 의해 기재상에 인쇄해 주상체를 형성한 모재를 얻는 바늘 모재 형성 공정과 상기 모재를 식각액에 침지함으로써 상기 기둥형체를 식각해 마이크로니들을 형성하는 마이크로 니들 형성 공정을 가지는 마이크로니들 패치 제조 방법에 대하여 개시되어 있었다.
그러나 3D 프린터의 해상도 한계로 인해 설계를 통해 마이크로니들을 제작할 경우 실제 디자인되어 3D 프린터로 출력된 구조체과 상이하므로 이러한 문제점으로 인하여 마이크로니들의 피부 관통 성능이 저하된다는 단점이 있다. 또한, 피부삽입에 있어서 마이크로니들 베벨(Bevel)의 각도가 중요한데, 3D프린터를 이용하여 마이크로니들을 제작할 경우 마이크로니들 베벨의 각도를 조절하기 위한 저렴하고 효과적인 공정 기술이 필요한 상황이다.
또한, 마이크로니들의 다른 한계점은 피부를 관통할 수 있을 정도의 강직성이 요구되며, 또한 동시에 피부 삽입 후에는 경피 내에서 조직 손상과 무브먼트 아티팩트(movement artifact)를 줄이기 위한 유연성이 요구된다. 따라서 종래 기술의 3D 프린터와 식각공정를 이용한 마이크로니들 제조 방법은 식각액에 의하여 마이크로니들을 구성하는 고분자 재료가 손상될 우려가 있으며, 식각공정이 추가되므로 공정이 복잡해진다는 문제가 있다.
또한, 피부 표면 삽입 시에는 최소한의 강직성으로 피부를 관통해야하며, 피부 표면 삽입 후에는 부드러운 재질의 특성을 가져야하는 마이크로니들의 특성 상 3D 프린터의 해상도 한계로 인하여 강직성과 유연성이 동시에 요구되는 마이크로니들의 제작이 어렵다는 문제가 있다.
본 발명은 이와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 3D 프린팅 공정을 이용하여 마이크로니들 팁의 각도를 제어하여 제작한 마이크로니들과 이를 이용한 폴리머 기반 마이크로니들 패치 제조 방법을 제공함에 있다.
본 발명에 따른 폴리머 기반 마이크로니들 패치 제조 방법은 3D 프린팅을 이용하여 마이크로니들이 복수로 배열된 구조체를 제작하는 마이크로니들 구조체 제작단계; 제1 고분자 물질이 수용된 용기에 상기 마이크로니들 구조체를 투입하여 마이크로니들 몰드를 형성하는 마이크로니들 몰드 형성단계; 상기 마이크로니들 몰드에 제2 고분자 물질을 주입하고 경화시켜 마이크로니들 어레이를 형성하는 마이크로니들 어레이 형성단계; 및 상기 마이크로니들 어레이를 기판에 배열하여 마이크로니들 패치를 제조하는 마이크로니들 패치 제조단계;를 포함할 수 있다.
다음으로, 본 발명에 따른 마이크로니들 패치 제조 방법을 통해 제조된 마이크로니들 패치에 관한 것으로, 상기 마이크로니들 어레이의 마이크로니들 팁은 45~55°의 경사를 갖는 비대칭 구조일 수 있다.
다음으로, 3D 프린팅을 이용하여 마이크로니들 구조체를 제조하는 방법에 있어서, 상기 마이크로니들 구조체는 베이스부와 상기 베이스부로부터 돌출된 복수의 마이크로니들을 포함하여 구성되며, 상기 베이스부는 3D 프린터의 스테이지에 대해 30 내지 60°의 경사각을 가지고 배치될 수 있다.
본 발명에 의하면, 3D 프린터의 출력 기전의 한계를 이용하여 출력 경사각을 조정함으로써 마이크로니들의 팁을 미세하게 조절하여 피부 관통 성능을 극대화할 수 있다.
또한, 3D 프린터로 출력된 마이크로니들 팁이 미세하게 조절된 마이크로니들을 다양한 생체적합적 그리고 기능적 폴리머 마이크로니들을 제작함으로써 관통 성능이 극대화된 폴리머 마이크로니들을 제작할 수 있다.
또한, 신축성이 있고 통기성 있는 기판을 제조하여 상기 기판을 상기 제조된 마이크로니들과 결합하여 마이크로니들 패치를 제조함으로써 최소침습으로 삽입되고 삽입 후에는 유연한 폴리머 특성으로 피부조직 손상을 최소화하고 잡음을 최소화함으로써 생체신호 기록특성을 극대화 할 수 있는 최적화된 마이크로니들을 제작할 수 있다.
도 1은 본 발명의 폴리머 기반 마이크로니들 패치 제조방법 순서도
도 2는 본 발명의 마이크로니들 어레이 형성단계
도 3은 본 발명의 마이크로니들 몰드 형성방법
도 4a 내지 4b는 본 발명의 마이크로니들 구조체 제작단계
도 5a 내지 5c는 본 발명의 3D 프린터를 이용한 마이크로니들의 경사각(α) 변화에 따른 마이크로니들 팁 형상
도 6a 내지 6c는 본 발명의 마이크로니들 몰드에 의해 제작된 마이크로니들 구조체 팁의 경사각(α) 변화에 따른 형태
도 7a 내지 7c는 본 발명의 폴리이미드로 제작한 마이크로니들 이미지
도 8a 내지 8c는 본 발명의 마이크로니들 패치 제조단계
도 9a 내지 9c는 본 발명의 형상기억 폴리머를 사용한 마이크로니들 패치 제조단계와 형상기억 폴리머를 사용하여 제조된 형상기억폴리머 마이크로니들 패치 이미지
도 10은 본 발명의 3D 프린팅 경사각(α) 조절에 따른 3D 프린팅 마이크로니들의 베벨 각도(β), 폴리이미드 마이크로니들 베벨 각도(γ) 간의 관계 그래프
도 11은 본 발명의 3D 프린팅 경사각(α) 조절 방법으로 제작된 마이크로니들의 경사각(α)에 따른 피부 삽입 테스트 결과 그래프
도 12는 본 발명의 다양한 형태를 가지는 폴리이미드 마이크로니들 중간 단면
도 13a 내지 13c는 형상기억폴리머(Shape Memory Polymer, SMP)를 적용하여 제작한 형상기억폴리머 마이크로니들 및 금속 증착을 완료한 형상기억폴리머 마이크로니들 전극 이미지
본 발명에 따른 폴리머 기반 마이크로니들 패치 제조 방법은 3D 프린팅을 이용하여 마이크로니들이 복수로 배열된 구조체를 제작하는 마이크로니들 구조체 제작단계; 제1 고분자 물질이 수용된 용기에 상기 마이크로니들 구조체를 투입하여 마이크로니들 몰드를 형성하는 마이크로니들 몰드 형성단계; 상기 마이크로니들 몰드에 제2 고분자 물질을 주입하고 경화시켜 마이크로니들 어레이를 형성하는 마이크로니들 어레이 형성단계; 및 상기 마이크로니들 어레이를 기판에 배열하여 마이크로니들 패치를 제조하는 마이크로니들 패치 제조단계;를 포함할 수 있다.
또한, 상기 마이크로니들 구조체는 베이스부와 상기 베이스부로부터 돌출된 복수의 마이크로니들을 포함하여 구성되며, 상기 마이크로니들 구조체 제작단계에서, 상기 베이스부는 3D 프린터의 스테이지에 대해 일정 경사각을 가지고 배치될 수 있다.
이 때, 상기 마이크로니들 구조체의 베이스가 3D 프린터의 스테이지와 배치되는 경사각은 30 내지 60°일 수 있다.
또한, 상기 마이크로니들의 중간 단면은 원형, 삼각형, 사각형, 육각형, 또는 육각별모양 중 하나일 수 있다.
또한, 상기 제1고분자물질은 실리콘계 고분자 또는 폴리우레탄 중 어느 하나로 선택되고, 상기 제2고분자물질은 폴리이미드 고분자 또는 형상기억 고분자일 수 있다.
또한, 상기 마이크로니들 패치 제조 단계는, 코팅액을 제조하는 코팅액 제조단계; 상기 제조된 코팅액을 기판 표면에 코팅하는 코팅액 코팅단계; 상기 코팅액에 의해 코팅된 기판 표면에 금속패턴을 형성하는 금속패턴형성단계; 상기 기판 표면에 형성된 금속패턴 상에 상기 마이크로니들 어레이를 배열하는 마이크로니들 어레이 배열단계; 상기 금속패턴 상에 배열된 마이크로니들 어레이 패턴을 제거하여 마이크로니들이 형성되는 마이크로니들 형성단계; 및 상기 기판과 상기 기판의 금속 패턴 상에 제3 고분자 물질이 코팅되는 코팅단계;를 포함할 수 있다.
또한, 상기 코팅액 제조단계는 상기 코팅액은 실리콘 고무 또는 실리콘 레진 중 어느 하나로 선택되며, 일정비율의 유기용매와 혼합되어 일정온도에서 증발되어 제조될 수 있다.
또한, 상기 코팅액 코팅단계에서 상기 코팅액이 코팅되는 기판은 투명한 플라스틱 재질로 이루어질 수 있다.
또한, 상기 코팅액 코팅단계에서 제3 고분자 물질은 실리콘 고무 또는 실리콘 레진 중 어느 하나로 선택될 수 있다.
또한, 상기 마이크로니들 어레이 형성단계는, 상기 마이크로니들 구조체와 동일한 음각 형상을 가지는 홈이 형성된 마이크로니들 몰드에 제2 고분자 물질이 주입되는 제2고분자물질 주입단계; 상기 제2 고분자 물질이 주입된 몰드가 진공에 배치되는 진공배치단계; 상기 진공에 배치되는 마이크로니들 몰드 내부에 주입된 제 2고분자 물질이 경화되는 마이크로니들 어레이 경화단계; 상기 제 2고분자 물질이 주입된 마이크로니들 몰드에서 상기 경화된 마이크로니들 어레이를 분리하여 상기 분리된 마이크로니들 어레이의 표면에 금속전극이 코팅되는 금속전극코팅단계;를 포함할 수 있다.
다음으로, 본 발명에 따른 마이크로니들 패치 제조 방법을 통해 제조된 마이크로니들 패치에 관한 것으로, 상기 마이크로니들 어레이의 마이크로니들 팁은 45~55°의 경사를 갖는 비대칭 구조일 수 있다.
다음으로, 3D 프린팅을 이용하여 마이크로니들 구조체를 제조하는 방법에 있어서, 상기 마이크로니들 구조체는 베이스부와 상기 베이스부로부터 돌출된 복수의 마이크로니들을 포함하여 구성되며, 상기 베이스부는 3D 프린터의 스테이지에 대해 30 내지 60°의 경사각을 가지고 배치될 수 있다.
이하, 본 발명의 기술적 사상을 첨부된 도면을 사용하여 더욱 구체적으로 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 변형 예들이 있을 수 있음을 이해하여야 한다.
종래 3D 프린팅 기술을 이용한 마이크로니들의 제작은 3D 프린터의 해상도 한계로 인해 실제 디자인된 모형과 3D 프린터로 출력된 구조체의 형태가 상이하다는 문제가 있었다. 따라서 본 발명은 마이크로니들의 팁 부분에 대하여 내구성 및 관통력을 가지도록 마이크로니들의 경사각을 제어하기 위해 3D 프린터를 이용하여 출력된 마이크로니들의 구조체와 동일한 형상을 가지는 몰드를 제조하고, 상기 제조된 몰드에 고분자를 주입하여 뛰어난 피부 관통력과 내구성을 가진 마이크로니들을 제작할 수 있다. 여기에서, 마이크로니들 베벨은 마이크로니들이 피부에 적용될 때 피부에 가장 먼저 접촉되어 피부에 삽입되는 가장 끝부분인 팁을 의미한다. 또한, 신축성이 있고 통기성 있는 기판을 제작하여 상기 기판을 상기 제조된 마이크로니들과 결합하여 마이크로니들 패치를 제조할 수 있다.
이하에서 본 발명의 폴리머 기반 마이크로니들 패치 제조 방법에 대하여 첨부된 도면을 참조하여 상세히 설명한다.
도 1은 본 발명의 폴리머 기반 마이크로니들 패치 제조방법 순서도이다. 도 1에 도시된 바와 같이, 본 발명의 폴리머 기반 마이크로니들 패치 제조방법 순서도(S1000)는 마이크로니들 구조체 제작단계(S100), 마이크로니들 몰드 형성단계(S200), 마이크로니들 어레이 형성단계(S300), 마이크로니들 패치 제조단계(S400)를 포함할 수 있다.
상기 마이크로니들 구조체 제작단계(S100)는 3D 프린팅을 이용하여 마이크로니들이 복수로 배열된 마이크로니들 구조체가 제작될 수 있다. 상기 마이크로니들 구조체는 베이스부와 상기 베이스부로부터 돌출된 복수의 마이크로니들을 포함하여 구성될 수 있다. 상세하게는, 상기 마이크로니들 구조체 제작단계(S100)에서 상기 베이스부는 3D 프린터의 스테이지에 대해 일정 경사각을 가지고 배치될 수 있다. 더욱 상세하게는, 상기 마이크로니들 구조체는 베이스부와 상기 베이스부로부터 돌출된 복수의 마이크로니들을 포함하여 구성될 수 있으며, 상기 베이스부는 3D 프린터의 스테이지에 대해 30 내지 60°의 경사각을 가지고 배치될 수 있다. 상기 마이크로니들 어레이를 3D 프린팅 공정을 이용하여 제조하는 것은 3D 프린터의 해상도가 낮은 문제가 있어 정밀한 마이크로니들 어레이를 제조하는데 한계가 있기 때문에, 본 발명에서는 3D 프린터를 이용하여 경사각이 조절된 마이크로니들 구조체를 제조할 수 있다.
또한, 상기 마이크로니들 몰드 형성단계(S200)는 제1 고분자 물질이 수용된 용기에 상기 마이크로니들 구조체를 투입하여 마이크로니들 몰드가 형성될 수 있다. 상기 마이크로 구조체와 동일한 음각 형상을 가지는 상기 마이크로니들 몰드를 제조함으로써 마이크로니들 어레이의 형상을 더 정밀하게 제조할 수 있다. 여기에서, 상기 제1 고분자물질은 실리콘계 고분자 또는 폴리우레탄 중 어느 하나로 선택될 수 있으며, 더욱 상세하게는 폴리디메틸실록산(Polydimethylsiloxane, PDMS)일 수 있다.
또한, 마이크로니들 어레이 형성단계(S300)는 제2고분자물질 주입단계(S310), 진공배치단계(S320), 경화단계(S330), 금속박막코팅단계(S340)를 더 포함할 수 있다. 상기 마이크로니들 몰드에 제2 고분자 물질을 주입하고 경화시켜 마이크로니들 어레이가 형성될 수 있다. 상기 마이크로 구조체와 동일한 음각 형상을 가지는 상기 마이크로니들 몰드에 제2 고분자 물질이 주입되어 마이크로니들 어레이가 형성됨으로써 마이크로니들 어레이의 팁 부분이 날카롭게 형성되는 마이크로니들 어레이가 제조될 수 있다. 여기에서, 상기 제2 고분자물질은 폴리이미드 고분자 또는 형상기억 고분자 중 어느 하나로 선택될 수 있다.
또한, 마이크로니들 패치 제조단계(S400)는 코팅액 제조단계(S410), 코팅액 코팅단계(S420), 금속패턴 형성단계(S430), 마이크로니들 어레이 배열단계(S440), 마이크로니들 형성단계(S450), 제3 고분자물질 코팅단계(S460)를 더 포함할 수 있다. 상기 형성된 마이크로니들 어레이를 제3 고분자 물질로 제작된 기판에 접착하여 마이크로니들 패치가 제조될 수 있다. 상기 제조된 마이크로니들 어레이를 상기 마이크로니들 패치에 배열함으로써 관통력과 유연성이 동시에 향상된 마이크로니들 패치가 제조될 수 있게 되는 것이다. 여기에서, 상기 제조된 마이크로니들 어레이의 마이크로 니들 팁은 45 ~ 55°의 비대칭 구조로 제작될 수 있다.
도 2는 본 발명의 마이크로니들 어레이 형성단계를 도시한 것이다. 상기 마이크로니들 어레이 형성단계(S300)는 제2고분자물질 주입단계(S310), 진공배치단계(S320), 마이크로니들 어레이 경화단계(S330), 금속전극코팅단계(S340)를 포함할 수 있다.
도 2(a)에 도시된 바와 같이, 상기 제2고분자물질 주입단계(S310)는 마이크로니들 구조체와 동일한 음각 형상을 가지는 홈이 형성된 마이크로니들 몰드에 제2 고분자 물질이 주입되는 단계일 수 있다. 여기에서, 상기 제2 고분자물질은 폴리이미드 고분자 또는 형상기억 고분자 중 어느 하나로 선택될 수 있다.
또한, 도 2(b)에 도시된 바와 같이, 상기 진공배치단계(S320)는 상기 제2고분자 물질이 주입된 몰드가 약 30분간 진공에 배치되는 단계일 수 있다. 여기에서, 상기 제2재료가 주입된 몰드가 진공에 배치됨으로써 제2재료가 외부의 압력이 없어도 상기 몰드의 끝 부분에 쉽게 채워질 수 있는 효과가 있어 마이크로니들의 구조체와 동일한 형상을 가지는 마이크로니들이 제조될 수 있는 것이다. 또한, 상기 마이크로니들 어레이 경화단계(S330)는 상기 진공에 배치된 상기 몰드가 경화되는 단계를 더 포함할 수 있다. 여기에서, 상기 마이크로니들 어레이 경화단계(S330)는 도 2(c)에 도시된 바와 같이 오븐에 배치되어 경화되는 1차 경화, 도 2(d)에 도시된 바와 같이 자외선에 의해 조사되어 경화되는 2차 경화, 도 2(e)에 도시된 바와 같이 오븐에 배치되어 경화되는 3차 경화일 수 있다. 상기 1차 경화는 오븐 내에서 10분간 120℃에서 경화가 이루어질 수 있다. 또한, 상기 2차 경화는 자외선이 1시간 조사되어 경화가 더 잘 이루어질 수 있도록 할 수 있으며, 상기 3차 경화는 오븐 내에서 1시간 동안 200℃에서 경화가 이루어질 수 있다. 따라서, 상기 제2재료가 주입된 몰드는 상기 1차 경화, 2차 경화, 3차 경화의 과정을 거쳐 제2재료가 완전히 경화될 수 있으며, 이에 따라 제2재료는 상기 제2재료가 주입된 몰드와 완전히 분리되어 상기 몰드와 동일한 형상을 가지는 마이크로니들이 제작될 수 있다. 여기에서, 제조된 상기 마이크로니들 어레이의 마이크로니들은 2.5:1~3.5:1의 종횡비를 가질 수 있다.
또한, 도 2(f)에 도시된 바와 같이, 상기 금속전극코팅단계(S340)는 제2고분자 물질로 제작된 마이크로니들 어레이의 표면에 금속전극이 코팅되는 단계일 수 있다. 여기에서, 상기 금속전극은 스퍼터링 공정을 이용하여 Cr/Au 또는 Ti/TiN/Mo 중 어느 하나로 코팅될 수 있다. 여기에서, 상기 마이크로니들 어레이의 표면에 금속박막이 코팅됨으로써 생체 전극으로 사용가능한 마이크로니들이 제작될 수 있는 것이다.
도 3은 본 발명의 마이크로니들 몰드 형성방법을 도시한 것이다. 도 3에 도시된 바와 같이, 마이크로니들 몰드 형성단계(S200)는 제2 고분자물질 주입단계, 마이크로니들 몰드 제조단계를 더 포함할 수 있다. 도 3(a)는 3D 프린터로 프린팅된 마이크로 니들 몰드이다. 도 3(a)의 3D 프린팅된 마이크로 니들 몰드에서 서포트를 제거하여 도 3(b)의 3D 프린터에 의해 제조된 마이크로니들의 구조체가 제조된다. 또한 도 3(c)에 도시된 바와 같이, 상기 마이크로니들 구조체 투입단계는 상기 도 3(b)의 마이크로니들의 구조체와 동일한 음각 형상을 가지도록 제1고분자 물질이 수용된 용기에 마이크로니들 구조체를 투입하는 단계일 수 있다. 여기에서, 상기 제1 고분자물질은 실리콘계 고분자 또는 폴리우레탄 중 어느 하나로 선택될 수 있으며, 더욱 상세하게는 폴리디메틸실록산(Polydimethylsiloxane, PDMS)일 수 있다.
또한 도 3(d)에 도시된 바와 같이, 상기 마이크로니들 몰드 제조단계는 상기 투입된 마이크로니들 구조체와 동일한 음각형상을 가지는 홈이 형성되는 몰드가 제조될 수 있다.
도 4a 내지 4b는 본 발명의 마이크로니들 구조체 제작단계를 도시한 것이다. 도 4a 내지 4b에 도시된 바와 같이, 마이크로니들 구조체 제작단계(S100)는 3D 모델링단계, 마이크로니들 구조체 출력단계를 더 포함할 수 있다. 도 4a에 도시된 바와 같이, 상기 마이크로니들의 경사각 설정은 마이크로니들 구조체에 원하는 경사각을 가지도록 3D 모델링 시에 지지대를 함께 모델링하여 3D프린터에 의해 구조체가 출력될 때 구조체에 형성되거나, 마이크로니들 구조체에 원하는 경사각을 갖도록 3D 프린터의 조형스테이지의 경사각을 설정하여 원하는 경사각을 가지는 마이크로니들 구조체가 출력될 수 있다. 3D 프린터에 의해 마이크로니들의 구조체가 출력됨으로써 제작할 마이크로니들과 동일한 형상을 가지는 마이크로니들의 구조체가 출력될 수 있는 것이다. 또한, 도 4b에 도시된 바와 같이, 3D 모델링단계는 마이크로니들의 형상이 경사각(α)을 가지도록 3D 모델링하는 단계일 수 있다. 3D 프린터에 의해 마이크로니들 구조체을 제조할 경우 3D 프린터의 해상도로 인하여 정밀한 팁의 각도를 가지는 마이크로니들 구조체의 제조가 어렵기 때문에 상기 3D 모델링단계에서 마이크로니들의 형상을 경사각(α)을 가지도록 3D 모델링함으로써 마이크로니들 팁의 각도를 더 정밀하게 제조할 수 있게 되는 것이다.
도 5a 내지 5c는 본 발명의 3D 프린터를 이용한 마이크로니들의 경사각(α) 변화에 따른 마이크로니들 팁 형상을 도시한 것이다. 도 5a-5c에 도시된 바와 같이, 3D 프린트의 해상도 한계를 극복하기 위하여 3D 프린터의 경사각(α)을 설정하여 3D 프린터를 이용하여 마이크로니들 구조체를 제작할 수 있다.
상기 도 5a 내지 5c는 3D 프린터를 이용해 제작된 마이크로니들 구조체이며, 상기 3D 프린터에 의해 제조된 마이크로니들 구조체의 경사각(α)을 0 내지 90°로 설정하여 마이크로니들 구조체를 제조하였다. 도 5a(1)은 3D 모델링에 의해 마이크로니들 구조체의 경사각이 0°일 때 모델링된 마이크로니들 모델링 도면이며, 도 5a(2)는 3D 프린터에 의해 제조된 마이크로니들 구조체의 경사각(α)이 0°일 때를 도시한 모식도이다. 도 5a(1)과 비교해보면 상기 마이크로니들 구조체의 경사각(α)이 0°일 때 마이크로니들 구조체의 팁이 뭉툭하게 형성되었음을 알 수 있다.
또한, 도 5b(1)은 3D 모델링에 의해 경사각이 45°일 때 모델링된 마이크로니들 모델링 도면이며, 도 5b(2)는 3D 프린터에 의해 제조된 마이크로니들 구조체의 경사각(α)이 45°일 때를 도시한 모식도이다. 도 5b(1)과 비교해보면 상기 마이크로니들 구조체의 경사각(α)이 45°일 때 마이크로니들 구조체의 팁이 날카롭게 형성되었음을 알 수 있다.
또한, 도 5c(1)은 3D 모델링에 의해 경사각이 90°일 때 모델링된 마이크로니들 모델링 도면이며, 도 5c(2)는 3D 프린터에 의해 제조된 마이크로니들 구조체의 경사각(α)이 90°일 때를 도시한 모식도이다. 도 5c(1)과 비교해보면 상기 마이크로니들 구조체의 경사각(α)이 90°일 때 마이크로니들 구조체의 팁이 뭉툭하게 형성되었음을 알 수 있다.
따라서 상기 3D 프린터를 이용해 제조된 마이크로니들 구조체는 도 5와 같이 레이어 별로 층층이 제작되는 3D 프린트의 원리에 의해서, 마이크로니들 구조체의 경사각(α)이 45°일 때 마이크로니들 구조체의 팁이 날카롭게 형성되는 것을 확인할 수 있는 것이다.
도 6a 내지 6c는 본 발명의 마이크로니들 몰드에 의해 제작된 마이크로니들 구조체 팁의 경사각(α) 변화에 따른 형태를 도시한 것이다. 도 6a는 3D 모델링한 마이크로니들을 도시한 것이다. 도 6a에 도시된 바와 같이 3D 모델링한 마이크로니들의 팁이 날카롭게 형성되어 디자인될 수 있으며, 상기 마이크로니들은 1.5:1 ~ 5.5:1의 종횡비를 가질 수 있다. 도 6b는 3D 프린터를 이용하여 마이크로니들이 경사각(α)을 가지도록 출력된 마이크로니들의 구조체를 몰드로 제작하고, 상기 마이크로니들의 구조체와 동일한 형상을 가지는 몰드에 고분자를 주입하여 제조된 마이크로니들의 경사각에 따른 마이크로니들의 팁 형상을 도시한 것이다. 상기 도 6b 및 도 6c에 도시된 바와 같이, 3D 프린터와 마이크로니들 몰드에 의해 제조된 마이크로니들의 경사각이 증가할수록 마이크로니들의 팁이 날카로워지는 것을 확인할 수 있다. 또한, 3D 프린터와 마이크로니들 몰드에 의해 제조된 마이크로니들 의 경사각(α)이 60°일 때부터 마이크로니들의 팁 형상이 휘어지는 것을 관찰할 수 있는데, 이는 중력의 영향을 받아서 휘어지게 되는 현상일 수 있다.
또한 상기 도 6b 및 도 6c에 도시된 바와 같이, 마이크로니들의 경사각(α)이 30 내지 50°사이에서 마이크로니들의 팁이 날카롭게 형성됨을 알 수 있다.
따라서 3D 프린터에 의해 출력된 마이크로니들 구조체로 제작된 마이크로니들은 30 내지 50°의 경사각(α)을 가질 때 마이크로니들의 팁이 날카롭게 형성됨을 알 수 있다. 상세하게는, 상기 마이크로니들 어레이의 마이크로니들의 팁은 45~55°의 경사를 갖는 비대칭 구조일 수 있다.
도 7a 내지 7c은 본 발명의 폴리이미드로 제작한 마이크로니들 이미지를 도시한 것이다. 도 7a(1)은 3D 프린터에 의해 출력된 경사각(α)이 45°를 가지는 마이크로니들 구조체이며 도 7a(2)는 상기 도 7a(1)과 동일한 형상을 가지는 마이크로니들 몰드에 폴리이미드를 주입하여 제작된 마이크로니들 어레이의 팁 부분의 형상을 도시한 것이다. 도 7a(1)와 도 7a(2)에 도시된 바와 같이 본 발명의 3D 프린터를 이용한 마이크로니들 구조체의 경사각을 조절하는 방법 및 상기 경사각이 조절된 마이크로니들 구조체로 제작된 몰딩 방법을 적용하여 제조된 마이크로니들 구조체와 폴리이미드로 제작된 마이크로니들 어레이 팁의 각도와 경사각(90-α=β=46.38°)이 거의 동일한 것을 확인할 수 있다.
도 7b(1)은 3D 프린터에 의해 출력된 경사각(α)이 40°를 가지는 마이크로니들 구조체이며 도 7b(2)는 상기 도 7b(1)과 동일한 형상을 가지는 마이크로니들 몰드에 폴리이미드를 주입하여 제작된 마이크로니들 어레이의 팁 부분의 형상을 도시한 것이다. 도 7b(1)와 도 7b(2)에 도시된 바와 같이 본 발명의 3D 프린터를 이용한 마이크로니들 구조체의 경사각(α)을 조절하는 방법 및 상기 경사각이 조절된 마이크로니들 구조체로 제작된 몰딩 방법을 적용하여 제조된 마이크로니들 구조체와 폴리이미드로 제작된 마이크로니들 어레이 팁의 각도와 경사각(90-α=β=50.84°)이 거의 동일한 것을 확인할 수 있다.
또한, 도 7c는 프린트 각도 45°일 때 제작된 다양한 길이의 폴리이미드 마이크로니들 어레이 팁 부분의 형상을 도시한 것이다. 도 7c에 도시된 바와 같이 본 발명의 3D 프린터를 이용하여 마이크로니들 구조체의 경사각(α)을 조절할 수 있을 뿐만 아니라 마이크로니들의 길이도 조절이 가능함을 알 수 있다.
이는 본 발명에서 제안된 3D 프린터로 출력된 경사각(α)이 조절된 마이크로니들 구조체와 상기 마이크로니들 구조체로 제조한 마이크로니들 몰드 및 상기 마이크로니들 몰드로 제조된 마이크로니들 어레이를 통해 마이크로니들 팁의 각도 및 형상 뿐만 아니라 길이도 조절할 수 있으며 이를 폴리이미드 마이크로니들 제작에 반영할 수 있음을 확인할 수 있다.
도 8a 내지 8c는 본 발명의 마이크로니들 패치 제조단계를 도시한 것이다. 상기 마이크로니들 패치 제조단계(S400)는 코팅액 제조단계(S410), 코팅액 코팅단계(S420), 금속패턴 형성단계(S430), 마이크로니들 어레이 배열단계(S440), 마이크로니들 형성단계(S450), 제3고분자물질 코팅단계(S460)를 포함할 수 있다.
여기에서, 도 8a(1)에 도시된 바와 같이, 상기 코팅액 제조단계(S410)에서 상기 코팅액은 실리콘 고무 또는 실리콘 레진 중 어느 하나로 선택될 수 있다. 상세하게는 폴리디메틸실록산(Polydimethylsiloxane, PDMS)일 수 있다. 또한, 상기 코팅액은 폴리디메틸실록산(Polydimethylsiloxane, PDMS)이 유기용매와 일정비율로 혼합될 수 있다. 더욱 상세하게는 폴리디메틸실록산(Polydimethylsiloxane, PDMS), 톨루엔(Toluene), 시트르산(Citric acid), 에탄올(Ethanol)의 혼합 비율은 20:20:10:10일 수 있다.
또한, 도 8a(2)에 도시된 바와 같이, 상기 혼합된 코팅액은 일정온도에서에서 증발될 수 있다. 상세하게는, 상기 일정온도는 150℃일 수 있다. 더욱 상세하게는, 상기 유기용매와 혼합된 코팅액은 일정온도에서 증발되어 p-폴리디메틸실록산(pourus Polydimethylsiloxane, pPDMS)로 제조될 수 있다.
또한, 도 8a(3)에 도시된 바와 같이 상기 코팅액 코팅단계(S420)는 상기 제조된 p-폴리디메틸실록산 코팅액이 기판 표면에 스핀코팅 공정으로 코팅될 수 있다. 또한, p-폴리디메틸실록산 코팅액에 의해 코팅되는 상기 기판은 투명한 플라스틱 재질로 이루어질 수 있다. 여기에서, 상기 플라스틱 재질은 폴리에틸렌 테레프탈레이트(Polyethylene Terephthalate, PET)일 수 있다. 또한, 여기에서, 상기 p-폴리디메틸실록산 코팅액에 의해 코팅된 후 절연물질이 추가로 코팅될 수 있다.
또한, 도 8b(1)에 도시된 바와 같이 상기 금속패턴 형성단계(S430)는 코팅액이 코팅된 기판 상에 금속패턴을 형성하는 단계일 수 있다. 상기 금속패턴 형성단계(S430)는 반도체의 포토 리소그래피 공정으로 형성될 수 있다. 더욱 자세하게는, 금속 패턴을 식각하기 위해여 에칭 공정 및 포토 레지스트 제거 공정이 적용될 수 있다.
또한, 도 8b(2)에 도시된 바와 같이 상기 마이크로니들 어레이 배열단계(S440)는 상기 기판 상에 형성된 금속패턴 상에 마이크로니들 어레이를 배열하는 단계일 수 있다. 상기 마이크로 어레이 배열은 실리콘 레진 또는 에폭시 레진에 의해 접착되어 마이크로 어레이가 기판 상에 형성된 금속패턴 상에 배열될 수 있는 것이다.
또한, 도 8b(3)에 도시된 바와 같이 상기 마이크로니들 형성단계(S450)는 상기 금속 패턴상에 배열된 마이크로니들 어레이 패턴을 제거하여 마이크로니들이 형성되는 단계일 수 있다. 상기 기판 상에 마이크로니들 어레이에 현상액을 도포하여 UV 광원에 노광시킨 후, 노광된 영역과 노광 되지 않은 영역을 선택적으로 제거해 마이크로니들을 형성할 수 있고, 따라서 최종적으로 마이크로니들어레이로부터 분리된 마이크로니들이 구성되는 마이크로니들 패치가 제조될 수 있다.
또한, 도 8b(4)에 도시된 바와 같이 상기 제3고분자물질 코팅단계(S460)는 상기 기판과 상기 기판의 금속 패턴 상에 제3고분자 물질이 코팅되는 단계일 수 있다. 여기에서, 제3 고분자 물질이 실리콘 고무 또는 실리콘 레진 중 어느 하나로 선택될 수 있다. 더욱 자세하게는, 제 3고분자물질은 p-폴리디메틸실록산(p-Polydimethylsiloxane, pPDMS)과 실리콘의 혼합물일 수 있다. 상기 제3 고분자물질이 상기 기판과 상기 기판의 금속 패턴 상에 코팅됨으로써 캐피시턴스 및 전기적 간섭을 최소화하는 절연층 역할을 할 수 있다. 도 8c는 본 발명의 마이크로니들 패치의 단면 모식도를 도시한 것이다. 상기 마이크로니들 패치는 도 8a 내지 도 8b의 제조과정으로 제작될 수 있다. 도 도 8a 내지 도 8b의 제조과정에 의해 형성된 마이크로 니들 패치에 대하여 다시한번 설명하면 다음과 같다. p-폴리디메틸실록산(p-Polydimethylsiloxane, pPDMS)이 코팅된 기판상에 형성된 금속패턴 상에 마이크로니들 어레이가 배열되고, 상기 금속패턴상에 배열된 마이크로니들 어레이 패턴이 제거됨으로써 마이크로 니들이 형성될 수 있다. 상기 기판과 상기 기판의 금속 패턴상에 p-폴리디메틸실록산(p-Polydimethylsiloxane, pPDMS)과 실리콘의 혼합물인 제3고분자물질이 상기 기판과 상기 기판의 금속 패턴 상에 코팅됨으로써 최종적으로 도 8c와 같은 마이크로니들 패치가 제작될 수 있는 것이다.
도 9a 내지 9c는 본 발명의 형상기억 폴리머를 사용한 마이크로니들 패치 제조단계와 형상기억 폴리머를 사용하여 제조된 형상기억폴리머 마이크로니들 패치 이미지를 도시한 것이다. 도 9a는 본 발명의 형상기억 폴리머(Shape Memory Polymer, SMP)를 사용한 마이크로니들 제조단계를 도시한 것이다. 형상기억 폴리머를 사용한 마이크로니들 패치의 제조 방법은 공정의 효율성을 위해 도 8a 내지 8c에 도시된 마이크로니들 패치 제조단계와는 다른 방식의 공정을 적용하여 제조될 수 있다. 형상기억 폴리머 마이크로니들 패치는 마이크로니들 전극 부분을 제외한 부분에 Parylene-C 코팅을 위하여 도 9a(7)에 도시된 바와 같이 마이크로니들 전극부분에 캡(cap)을 씌우고 Parylene-C 코팅을 진행한 후에 캡을 제거함으로써 도 9a(8)에 도시된 바와 같이 마이크로니들 전극을 제외한 부분에 절연층을 추가로 형성하였다. 도 9b는 본 발명의 형상기억 폴리머(Shape Memory Polymer, SMP)를 사용한 마이크로니들 패치 제조단계를 도시한 것이다. 형상기억 폴리머(Shape Memory Polymer, SMP)를 사용한 마이크로니들 패치는 도 9b(4)에 도시된 바와 같이 시트르산(Citric acid) 결정을 제거하기 위해 에탄올에 침지하는 과정을 추가로 포함한다. 또한, 도 9b(5) 및 도 9b(6)에 도시된 바와 같이 침지 후 건조와 실리콘 접착제(Silbione)를 코팅하는 과정을 추가로 포함할 수 있다. 또한, 도 9c는 도 9a 및 도 9b의 방식으로 제조한 형상 기억 폴리머 마이크로니들 패치이다. 도 9(a)를 참조하여 본 발명의 형상기억 폴리머(Shape Memory Polymer, SMP)를 사용한 마이크로니들 제조단계를 설명하도록 한다. 도 9 a(1)와 도 9a(2)를 참조하면 마이크로니들 구조체와 동일한 음각 형상을 가지는 홈이 형성된 마이크로니들 몰드에 제2 고분자 물질이 주입될 수 있다. 또한, 도 9 a(3)은 상기 제2고분자 물질이 주입된 몰드가 약 30분 간 진공에 배치되는 것을 나타낸 것이다. 상기 제2고분자 물질이 주입된 몰드가 진공에 배치됨으로써 마이크로니들의 구조체와 동일한 형상을 가지는 마이크로니들이 제조될 수 있다. 다음으로, 도 9a(4)는 자외선에 의해 조사되어 경화되는 과정을 도시한 것이며, 도 9a(5)는 200℃에서 1시간 동안 경화되는 과정을 도시한 것이다. 도 9a(6)은 200℃에서 1시간 동안 경화된 마이크로니들의 표면에 Cr/Au 금속이 스퍼터링 공정에 의해 코팅되어 금속전극을 형성하고, 와이어링 공정을 거치는 과정을 도시한 것이다. 도 9a(7)은 금속전극이 코팅된 마이크로니들의 표면에 Parylene-C를 코팅하여 최종적으로 형상기억 폴리머(Shape Memory Polymer, SMP)를 사용한 마이크로니들이 제조되는 것을 도시한 것이다. 또한, 도 9a(8)은 마이크로니들 전극부분에 캡(cap)을 씌우고 Parylene-C 코팅을 진행한 후 캡을 제거하여 마이크로니들 전극을 제외한 부분에 절연층이 추가로 형성되는 것을 도시한 것이다.
다음으로, 도 9b를 참조하여 본 발명의 형상기억 폴리머(Shape Memory Polymer, SMP)를 사용한 마이크로니들 패치 제조단계를 설명하도록 한다.
도 9b(1)은 코팅액이 제조되는 단계를 도시한 것으로, 폴리디메틸실록산(Polydimethylsiloxane, PDMS), 톨루엔(Toluene), 시트르산(Citric acid), 에탄올(Ethanol)가 20:20:10:10으로 일정 비율 혼합되어 코팅액이 제조될 수 있다. 또한, 도 9b(2)는 상기 혼합된 코팅액을 150℃의 일정온도에서 증발하여 p-폴리디메틸실록산(pourus Polydimethylsiloxane, pPDMS)을 제조하는 과정을 도시한 것이다. 도 9b(3)은 제조된 p-폴리디메틸실록산(pourus Polydimethylsiloxa ne, pPDMS)코팅액을 기판 표면에 스핀코팅 공정으로 코하는 과정을 도시한 것으로, p-폴리디메틸실록산 코팅액에 의해 코팅되는 상기 기판은 폴리에틸렌 테레프탈레이트(Polyethylene Terephthalate, PET)의 투명한 플라스틱 재질로 이루어질 수 있다. 또한, 도 9b(4)에 도시된 바와 같이 p-폴리디메틸실록산 코팅액이 코팅된 기판은 시트르산(Citric acid) 결정의 제거를 위해 에탄올에 침지되는 과정을 거쳐 도 9b(5)에 도시된 바와 같이 건조과정을 거칠 수 있으며, 도 9b(6)에 도시된 바와 같이 실리콘 접착제(Silbione)가 코팅될 수 있다. 또한, 도 9b(7) 및 도 9b(8)에 도시된 바와 같이, 실리콘 접착제(Silbione)가 코팅된 후 코팅액이 코팅된 기판 상에 금속패턴이 형성되고 실리콘 레진 또는 에폭시 레진에 의해 접착되어 마이크로 어레이가 기판 상에 형성된 금속패턴 상에 배열될 수 있다.
따라서, 도 9a 및 도 9b의 과정을 거쳐 도 9c와 같은 형상 기억 폴리머 마이크로니들 패치가 제조될 수 있다.
도 10은 본 발명의 3D 프린팅 경사각(α) 조절에 따른 3D 프린팅 마이크로니들의 베벨 각도(β), 폴리이미드 마이크로니들 베벨 각도(γ) 간의 관계를 그래프로 도시한 것이다. 도 10을 참조하면, 3D 프린팅 마이크로니들의 베벨 각도(β)과 폴리이미드 마이크로니들 베벨 각도(γ) 사이에는 유사성을 보이는 것을 알 수 있다. 또한, 3D 프린팅 경사각(α)이 40°일 때, 가장 낮은 베벨 각도(β)를 가지는 것을 알 수 있다.
도 11은 본 발명의 3D 프린팅 경사각(α) 조절 방법으로 제작된 마이크로니들의 경사각(α)에 따른 피부 삽입 테스트 결과 그래프를 도시한 것이다. 본 발명을 통해 제작된 폴리이미드 마이크로니들을 돼지 피부를 대상으로 삽입 테스트를 진행했을 때, 3D 프린터와 몰딩 공정으로 제작된 마이크로니들의 팁의 각도가 증가될수록 마이크로니들에 가해지는 압력이 줄어드는 경향이 보인다. 이는 마이크로니들의 팁의 각도가 증가될수록 상기 마이크로니들의 내구성이 향상되는 효과가 있음을 알 수 있다. 상세하게는, 3D 프린터와 몰딩 공정을 이용해 제작된 마이크로니들 경사각(α)이 40°일 때 제작된 폴리이미드 마이크로니들(β=50.84°)의 그래프에서 움푹 들어갔다가 툭 튀는 관통 현상이 발생했음을 알 수 있다. 이는 마이크로니들이 피부를 관통했다는 의미이며, 나머지 경사각(α)의 마이크로니들은 피부를 관통하지 못하고 밀리는 현상이 발생하였음을 알 수 있다. 따라서 마이크로니들 경사각(α)이 40°일 때 제작된 폴리이미드 마이크로니들(β=50.84°) 유일하게 돼지 피부를 관통하였으며, 따라서 마이크로니들 경사각(α)이 40°일 때 폴리이미드로 제조된 마이크로니들이 피부 관통 성능에 효과가 있음을 확인하였다.
도 12는 본 발명의 다양한 형태를 가지는 폴리이미드 마이크로니들 중간 단면을 도시한 것이다. 도 12에 도시된 바와 같이 다양한 형태를 가지는 마이크로니들 중간 단면을 디자인하여 제작이 가능할 수 있다. 상세하게는, 상기 마이크로니들의 중간 단면은 원형, 삼각형, 사각형, 육각형, 또는 육각별 모양 중 하나일 수 있으며, 이에 한정되지 않고 다양한 형태로 제작이 가능하다. 따라서, 3D 프린터에 의해 경사각이 조절된 마이크로니들 구조체와 상기 마이크로니들 구조체와 동일한 형상을 가지는 몰딩공정을 통해 다양한 형태를 가지는 마이크로니들 어레이를 디자인 할 수 있으며, 이를 통해 마이크로니들의 유연성 및 강직성 등의 기능을 최적화 할 수 있는 것이다.
도 13a 내지 13c는 형상기억폴리머(Shape Memory Polymer, SMP)를 적용하여 제작한 형상기억폴리머 마이크로니들 및 금속 증착을 완료한 형상기억폴리머 마이크로니들 전극 이미지를 도시한 것이다. 도 13a는 3D 프린터에 의해 출력된 마이크로니들 구조체와 동일한 형상을 가지는 마이크로니들 몰드에 폴리이미드를 주입하여 제작된 마이크로니들 어레이의 팁 부분의 형상을 도시한 것이다. 도 13b는 도 13a의 방법으로 제작된 형상기억폴리머 마이크로니들의 실제 사진을 도시한 것이다. 도 13c(1)은 도 13a의 방법으로 제작된 형상기억폴리머 마이크로니들의 스퍼터링 공정 전의 모습이다. Cr/Au 스퍼터링 공정 후에, 도 13c(2)와 같이 금속 박막이 형성된 형상기억폴리머 마이크로니들을 제작할 수 있다. 도 13c(3)는 도 10a와 같은 방법으로 피부 삽입 테스트 10회 반복 후의 형상기억폴리머 마이크로니들을 도시한 것이다. 도 13c(3)을 참조하면, 반복된 삽입으로 인해 형상기억폴리머 마이크로니들이 휘어지는 결과를 볼 수 있다. 도 13c(4)는 도 13c(3)의 휘어진 형상기억폴리머 마이크로니들을 45℃에서 1분 가열한 결과를 도시한 것이다. 도 13c(4)를 참조하면, 휘어진 형상기억폴리머 마이크로니들은 45℃에서 1분 가열하는 과정을 거치면 다시 원래의 형태로 복구되는 것을 확인 할 수 있다. 따라서, 도 13c에 도시된 바와 같이, 본 발명의 마이크로니들은 적용될 수 있는 재료가 폴리이미드에 한정되는 것이 아닌, 다양한 생체적합적 폴리머와 기능성 폴리머가 적용 가능하다. 상기 형상기억폴리머는 온도 변화에 따라 원하는 형상의 구현이 가능하며, 온도가 높아짐에 따라 부드러워지는 특성이 있다. 따라서 이러한 형상기억폴리머와 같은 기능성 폴리머를 활용하여 마이크로니들의 유연성 및 강직성이 최대화될 수 있다.
또한, 제작된 폴리머 마이크로니들은 상기 폴리머 마이크로니들의 표면에 금속을 증착하여 통기성 높은 폴리머 기반 기판인 p-폴리디메틸실록산(Polydimethylsiloxane, PDMS) 기판과 결합이 가능할 수 있으며, 신축성 및 통기성을 가지는 최소침습 근전도 마이크로 전극으로 활용이 가능할 수 있다.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능한 것은 물론이다.
본 발명은 폴리머 기반 마이크로니들 패치 제조 방법 및 이를 통해 제조된 마이크로니들 패치에 관한 것으로, 폴리머 기반 마이크로니들 패치 제조 방법 및 이를 통해 제조된 마이크로니들 패치를 이용하여 최소침습으로 삽입되고 삽입 후에는 유연한 폴리머 특성으로 피부조직 손상을 최소화하고 잡음을 최소화함으로써 생체신호 기록특성을 극대화 할 수 있도록 한다.

Claims (12)

  1. 3D 프린팅을 이용하여 마이크로니들이 복수로 배열된 구조체를 제작하는 마이크로니들 구조체 제작단계;
    제1 고분자 물질이 수용된 용기에 상기 마이크로니들 구조체를 투입하여 마이크로니들 몰드를 형성하는 마이크로니들 몰드 형성단계;
    상기 마이크로니들 몰드에 제2 고분자 물질을 주입하고 경화시켜 마이크로니들 어레이를 형성하는 마이크로니들 어레이 형성단계; 및
    상기 마이크로니들 어레이를 기판에 배열하여 마이크로니들 패치를 제조하는 마이크로니들 패치 제조단계;를 포함하는, 폴리머 기반 마이크로니들 패치 제조 방법.
  2. 제 1항에 있어서,
    상기 마이크로니들 구조체는 베이스부와 상기 베이스부로부터 돌출된 복수의 마이크로니들을 포함하여 구성되며,
    상기 마이크로니들 구조체 제작단계에서, 상기 베이스부는 3D 프린터의 스테이지에 대해 일정 경사각을 가지고 배치되는 것을 특징으로 하는, 폴리머 기반 마이크로니들 패치 제조 방법.
  3. 제 2항에 있어서,
    상기 마이크로니들 구조체의 베이스가 3D 프린터의 스테이지와 배치되는 경사각은 30 내지 60°인 것을 특징으로 하는, 폴리머 기반 마이크로니들 패치 제조 방법.
  4. 제 2항에 있어서,
    상기 마이크로니들의 중간 단면은, 원형, 삼각형, 사각형, 육각형, 또는 육각별모양 중 하나인 것을 특징으로 하는, 폴리머 기반 마이크로니들 패치 제조 방법.
  5. 제 1항에 있어서,
    상기 제1고분자물질은 실리콘계 고분자 또는 폴리우레탄 중 어느 하나로 선택되고,
    상기 제2고분자물질은 폴리이미드 고분자 또는 형상기억 고분자인 것을 특징으로 하는 폴리머 기반 마이크로니들 패치 제조 방법.
  6. 제 1항 내지 제 5항 중 어느 한 항에 있어서,
    상기 마이크로니들 패치 제조 단계는,
    코팅액을 제조하는 코팅액 제조단계;
    상기 제조된 코팅액을 기판 표면에 코팅하는 코팅액 코팅단계;
    상기 코팅액에 의해 코팅된 기판 표면에 금속패턴을 형성하는 금속패턴형성단계;
    상기 기판 표면에 형성된 금속패턴 상에 상기 마이크로니들 어레이를 배열하는 마이크로니들 어레이 배열단계;
    상기 금속패턴 상에 배열된 마이크로니들 어레이 패턴을 제거하여 마이크로니들이 형성되는 마이크로니들 형성단계; 및
    상기 기판과 상기 기판의 금속 패턴 상에 제3 고분자 물질이 코팅되는 제3고분자물질 코팅단계;
    를 포함하는 것을 특징으로 하는, 폴리머 기반 마이크로니들 패치 제조 방법.
  7. 제 6항에 있어서, 상기 코팅액 제조단계는,
    상기 코팅액은 실리콘 고무 또는 실리콘 레진 중 어느 하나로 선택되며, 일정비율의 유기용매와 혼합되어 일정온도에서 증발되어 제조되는 것을 특징으로 하는 폴리머 기반 마이크로니들 패치 제조 방법.
  8. 제 6항에 있어서, 상기 코팅액 코팅단계에서 상기 코팅액이 코팅되는 기판은 투명한 플라스틱 재질로 이루어지는 것을 특징으로 하는 폴리머 기반 마이크로니들 패치 제조 방법.
  9. 제 6항에 있어서, 상기 코팅액 코팅단계에서 제3 고분자 물질은 실리콘 고무 또는 실리콘 레진 중 어느 하나로 선택되는 것을 특징으로 하는 폴리머 기반 마이크로니들 패치 제조 방법.
  10. 제 1항 내지 제 5항 중 어느 한 항에 있어서,
    상기 마이크로니들 어레이 형성단계는,
    상기 마이크로니들 구조체와 동일한 음각 형상을 가지는 홈이 형성된 마이크로니들 몰드에 제2 고분자 물질이 주입되는 제2 고분자물질 주입단계;
    상기 제2 고분자 물질이 주입된 몰드가 진공에 배치되는 진공배치단계;
    상기 진공에 배치되는 마이크로니들 몰드 내부에 주입된 제2 고분자 물질이 경화되는 마이크로니들 어레이 경화단계;
    상기 제 2고분자 물질이 주입된 마이크로니들 몰드에서 상기 경화된 마이크로니들 어레이를 분리하여 상기 분리된 마이크로니들 어레이의 표면에 금속전극이 코팅되는 금속전극코팅단계;
    를 포함하는 것을 특징으로 하는 폴리머 기반 마이크로니들 패치 제조 방법.
  11. 제 1항 내지 제 5항 중 어느 한 항의 마이크로니들 패치 제조 방법을 통해 제조된 마이크로니들 패치에 관한 것으로,
    상기 마이크로니들 어레이의 마이크로니들 팁은 45~55°의 경사를 갖는 비대칭 구조인 것을 특징으로 하는, 폴리머 기반 마이크로니들 패치.
  12. 3D 프린팅을 이용하여 마이크로니들 구조체를 제조하는 방법에 있어서,
    상기 마이크로니들 구조체는 베이스부와 상기 베이스부로부터 돌출된 복수의 마이크로니들을 포함하여 구성되며,
    상기 베이스부는 3D 프린터의 스테이지에 대해 30 내지 60°의 경사각을 가지고 배치되는 것을 특징으로 하는, 마이크로니들 구조체 제조 방법.
PCT/KR2023/005957 2022-10-26 2023-05-02 폴리머 기반 마이크로니들 패치 제조 방법 및 이를 통해 제조된 마이크로니들 패치 WO2024090694A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220139509A KR20240059023A (ko) 2022-10-26 2022-10-26 폴리머 기반 마이크로니들 패치 제조 방법 및 이를 통해 제조된 마이크로니들 패치
KR10-2022-0139509 2022-10-26

Publications (1)

Publication Number Publication Date
WO2024090694A1 true WO2024090694A1 (ko) 2024-05-02

Family

ID=90831168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005957 WO2024090694A1 (ko) 2022-10-26 2023-05-02 폴리머 기반 마이크로니들 패치 제조 방법 및 이를 통해 제조된 마이크로니들 패치

Country Status (2)

Country Link
KR (1) KR20240059023A (ko)
WO (1) WO2024090694A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101779393B1 (ko) * 2016-07-22 2017-09-19 주식회사 파마리서치프로덕트 핵산을 포함하는 마이크로니들 어레이 및 이의 제조방법
JP2019195903A (ja) * 2013-06-13 2019-11-14 マイクロダーミクス インコーポレイテッドMicrodermics Inc. マイクロニードルの作製方法
JP2020513899A (ja) * 2016-12-22 2020-05-21 ジョンソン・アンド・ジョンソン・コンシューマー・インコーポレイテッドJohnson & Johnson Consumer Inc. マイクロニードルアレイ及び製造方法及び使用方法
KR102263615B1 (ko) * 2019-08-29 2021-06-14 서울과학기술대학교 산학협력단 마이크로니들 어레이 제조용 주형과 이를 이용한 마이크로니들 어레이의 제조방법
JP6943517B2 (ja) * 2020-03-02 2021-10-06 株式会社北の達人コーポレーション マイクロニードル及びマイクロニードルアレイ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019176146A (ja) 2018-03-26 2019-10-10 大日本印刷株式会社 部品内蔵基板の製造方法、部品内蔵基板、接着シート、および樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019195903A (ja) * 2013-06-13 2019-11-14 マイクロダーミクス インコーポレイテッドMicrodermics Inc. マイクロニードルの作製方法
KR101779393B1 (ko) * 2016-07-22 2017-09-19 주식회사 파마리서치프로덕트 핵산을 포함하는 마이크로니들 어레이 및 이의 제조방법
JP2020513899A (ja) * 2016-12-22 2020-05-21 ジョンソン・アンド・ジョンソン・コンシューマー・インコーポレイテッドJohnson & Johnson Consumer Inc. マイクロニードルアレイ及び製造方法及び使用方法
KR102263615B1 (ko) * 2019-08-29 2021-06-14 서울과학기술대학교 산학협력단 마이크로니들 어레이 제조용 주형과 이를 이용한 마이크로니들 어레이의 제조방법
JP6943517B2 (ja) * 2020-03-02 2021-10-06 株式会社北の達人コーポレーション マイクロニードル及びマイクロニードルアレイ

Also Published As

Publication number Publication date
KR20240059023A (ko) 2024-05-07

Similar Documents

Publication Publication Date Title
Zhang et al. Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording
Tringides et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues
Khodagholy et al. Highly conformable conducting polymer electrodes for in vivo recordings
Jeong et al. Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer
Llerena Zambrano et al. Soft electronics based on stretchable and conductive nanocomposites for biomedical applications
US6961603B2 (en) Unitary multi-electrode biopotential signal sensor and method for making same
CN110604566B (zh) 柔性可变形降解脑检测治疗装置、系统及制造、使用方法
WO2019119045A1 (en) Anisotropically conductive material for use with a biological surface
KR20020035130A (ko) 스크리닝 장치 및 방법, 스크리닝 방법에 의해 얻어지는후점막 자극 화합물, 및, 치료 장치, 측정 전극부
WO2023103255A1 (zh) 柔性肌电电极阵列及其制备方法和应用
KR101785287B1 (ko) 마이크로니들 전극 패치 및 이의 제조 방법
WO2024090694A1 (ko) 폴리머 기반 마이크로니들 패치 제조 방법 및 이를 통해 제조된 마이크로니들 패치
KR101501283B1 (ko) 미세 바늘 어레이 기판의 제조 방법
Chatterjee et al. A flexible implantable microelectrode array for recording electrocorticography signals from rodents
CN111337168A (zh) 一种石墨基压阻式柔性压力传感器及其制作方法
Pothof et al. Fabrication and characterization of a high-resolution neural probe for stereoelectroencephalography and single neuron recording
CN113133770B (zh) 一种柔性电极及其制备方法和应用
Kim et al. An electroplating-free and minimal noise polyimide microelectrode for recording auditory evoked potentials from the epicranius
Kang et al. A conformable microneedle sensor with photopatternable skin adhesive and gel electrolyte for continuous glucose monitoring
CN112618946A (zh) 一种金字塔型柔性微针阵列及其制备方法
Hasegawa et al. Fabrication method with high-density, high-height microneedle using microindentation method for drug delivery system
Wang et al. Multi-Channel flexible microneedle electrode array (MNEA) for high-density surface EMG recording
Castagnola et al. Flexible and soft materials and devices for neural interface
Kassegne et al. Glassy Carbon Microelectrodes for Neural Signal Sensing and Stimulation
CN111562040A (zh) 一种石墨基压阻式柔性压力传感器及其制作方法