WO2024090579A1 - 植物性タンパク質及び油脂を含む液状組成物の乳化性向上剤及び起泡性向上剤 - Google Patents

植物性タンパク質及び油脂を含む液状組成物の乳化性向上剤及び起泡性向上剤 Download PDF

Info

Publication number
WO2024090579A1
WO2024090579A1 PCT/JP2023/038988 JP2023038988W WO2024090579A1 WO 2024090579 A1 WO2024090579 A1 WO 2024090579A1 JP 2023038988 W JP2023038988 W JP 2023038988W WO 2024090579 A1 WO2024090579 A1 WO 2024090579A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
liquid composition
enzyme
composition containing
lipase
Prior art date
Application number
PCT/JP2023/038988
Other languages
English (en)
French (fr)
Inventor
啓太 奥田
ニコラス ブローチェス
Original Assignee
天野エンザイム株式会社
アマノ エンザイム ユーエスエー カンパニー,リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天野エンザイム株式会社, アマノ エンザイム ユーエスエー カンパニー,リミテッド filed Critical 天野エンザイム株式会社
Publication of WO2024090579A1 publication Critical patent/WO2024090579A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/40Effervescence-generating compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/66Proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes

Definitions

  • the present invention relates to a processing technology that can improve the emulsifying and/or foaming properties of a liquid composition containing vegetable protein.
  • the present invention relates to an emulsifying or foaming enhancer for a liquid composition containing vegetable protein and fats and oils, a method for improving the emulsifying or foaming properties of a liquid composition containing vegetable protein and fats and oils, a method for producing an emulsion of a liquid composition containing vegetable protein and fats and oils, and an emulsion of a liquid composition containing vegetable protein and fats and oils.
  • plant-based beverages have a fundamentally different composition from milk, they essentially require processing to approximate the characteristics of animal milk. For this reason, various processing technologies for plant-based beverages are being investigated.
  • An example of the characteristics of animal milk that plant-based beverages mimic is emulsification characteristics.
  • beverages containing plant protein are blended with emulsifiers to maintain the emulsion state well.
  • emulsifiers include glycerin fatty acid esters, sorbitan fatty acid esters, propylene glycol fatty acid esters, sucrose fatty acid esters, polyglycerin fatty acid esters, gum arabic, and lecithin, as described in Patent Document 1.
  • processing techniques that use methods other than emulsifiers for emulsification are also being considered.
  • Patent Document 2 describes a method that uses a plant protein material that meets certain requirements as a technology that can produce a plant-based liquid nutritional composition that has satisfactory emulsion stability even without blending milk protein.
  • Patent Document 3 describes how heat-treating reduced-fat soy milk gives the soy milk good foaming properties.
  • JP 2021-176284 A JP 2021-52655 A International Publication No. 2014/092157
  • Plant-based beverages are attracting attention, particularly from health-conscious users, and so there is a trend toward beverages that do not contain emulsifiers as additives.
  • emulsifiers as additives.
  • Patent Document 2 a method has been proposed that uses a plant protein material that meets certain requirements, but the requirements for the material are that not only the protein content but also the NSI, molecular weight distribution, and gelling properties must all fall within certain ranges. Considering that materials that meet such strict conditions are not easily available, a method that can improve emulsifying properties using more easily available materials is desired.
  • the present invention aims to provide a processing technology that can improve the emulsifying and/or foaming properties of a liquid composition containing vegetable protein.
  • the inventors have found that emulsifying and/or foaming properties can be improved by blending oils and fats with a liquid composition containing vegetable protein and treating it with protein deamidating enzyme and lipase. Furthermore, they have found that emulsifying and/or foaming properties can be further improved when treating with protease in addition to protein deamidating enzyme and lipase.
  • the present invention was completed based on these findings and through further investigations.
  • Item 1 An emulsification enhancer for a liquid composition containing a vegetable protein and an oil or fat, comprising a protein deamidase and a lipase.
  • Item 2. The emulsification improver according to Item 1, wherein the amount of the lipase relative to 1 U of the protein deamidase is 1 U or more.
  • Item 3. The emulsification enhancer according to Item 1 or 2, further comprising a protease.
  • Item 4. A foaming enhancer for a liquid composition containing a vegetable protein and an oil or fat, comprising a protein deamidase and a lipase.
  • Item 5. The foaming enhancer according to Item 4, further comprising a protease.
  • Item 6 The foaming improver according to Item 5, wherein the amount of the protease relative to 1 U of the protein deamidase is 1 U or more.
  • Item 7. A method for improving emulsifiability of a liquid composition containing a vegetable protein and an oil or fat, the method comprising an enzyme treatment step of treating the liquid composition with a protein deamidating enzyme and a lipase.
  • Item 8. The method according to Item 7, wherein the protein deamidase is used in an amount of 0.05 U or more per 1 g of the vegetable protein.
  • Item 9 The method according to Item 7 or 8, wherein 1 U or more of the lipase is used per 1 g of the fat or oil.
  • a method for improving the foaming property of a liquid composition containing a vegetable protein and an oil or fat comprising an enzyme treatment step of treating the liquid composition with a protein deamidating enzyme and a lipase.
  • Item 11 A method for producing an emulsion of a liquid composition containing a vegetable protein and an oil, comprising an enzyme treatment step of treating the liquid composition containing a vegetable protein and an oil with a protein deamidating enzyme and a lipase.
  • Item 14 An emulsion of a liquid composition containing a vegetable protein and an oil or fat obtained by the production method of item 11 or 12, which is a food or drink.
  • an enzyme preparation containing a protein deamidase and a lipase for improving the emulsifying property and/or the foaming property of a liquid composition containing a vegetable protein and an oil or fat.
  • Item 15 An application of an enzyme preparation containing a protein deamidase and a lipase as an emulsifying agent and/or a foaming agent for a liquid composition containing a vegetable protein and an oil or fat.
  • the present invention provides a processing technology that can improve the emulsifying and/or foaming properties of a liquid composition containing vegetable protein.
  • Emulsifying agent and foaming agent The emulsifying agent and foaming agent of the liquid composition containing a vegetable protein and a fat or oil of the present invention are characterized in that they both contain protein deamidating enzyme and lipase.
  • the emulsifying agent and foaming agent of the present invention will be described in detail below.
  • the emulsifying agent and foaming agent of the present invention contain, as active ingredients, a protein deamidase and a lipase. From the viewpoint of further improving the emulsifying ability and foaming ability improving effects, it is preferable that the agent further contains a protease.
  • the protein deamidase used in the present invention is an enzyme that exhibits an action of decomposing an amide group-containing side chain of a protein without cleaving a peptide bond or crosslinking the protein, and the type, origin, etc. of the enzyme are not particularly limited.
  • protein deamidating enzymes include enzymes that deamidate glutamine residues in proteins and convert them to glutamic acid (e.g., protein glutaminase), and enzymes that deamidate asparagine residues in proteins and convert them to aspartic acid (e.g., protein asparaginase).
  • protein deamidase examples include protein deamidases derived from the genera Chryseobacterium, Flavobacterium, Empedobacter, Sphingobacterium, Aureobacterium, Myroides, Luteimicrobium, Agromyces, Microbacterium, or Leifsonia. These protein deamidating enzymes are known, and reference can be made to, for example, JP2000-50887A, JP2001-218590A, WO2006/075772A1, WO2015/133590, etc. These protein deamidating enzymes may be used alone or in combination.
  • protein glutaminase is preferred, more preferably protein glutaminase derived from the genus Chryseobacterium, and even more preferably protein glutaminase derived from the species Chryseobacterium proteolyticum.
  • Protein deamidase can be prepared from the culture medium of the microorganism from which the protein deamidase is derived. Specific preparation methods include a method of recovering protein deamidase from the culture medium or cells of the microorganism. For example, when a protein deamidase-secreting microorganism is used, the cells can be recovered from the culture medium in advance by filtration, centrifugation, or the like as necessary, and the enzyme can be separated and/or purified. When a protein deamidase-nonsecreting microorganism is used, the cells can be recovered from the culture medium in advance by pressure treatment, ultrasonic treatment, or the like to expose the enzyme, and the enzyme can be separated and/or purified.
  • a known protein separation and/or purification method can be used without any particular limitation, and examples of the method include centrifugation, UF concentration, salting out, various chromatography methods using ion exchange resins, etc.
  • the separated and/or purified enzyme can be powdered by a drying method such as freeze-drying or vacuum drying, and can also be powdered using an appropriate excipient and/or drying aid in the drying method. Additionally, the isolated and/or purified enzymes can be liquefied by adding appropriate additives and sterilizing by filtration.
  • the amount of protein deamidating enzyme contained in the emulsifying agent and foaming agent of the present invention is not particularly limited as long as the effect of protein deamidating enzyme can be effectively obtained when using the emulsifying agent and foaming agent of the present invention, but may be, for example, 0.1 to 5,000 U/g.
  • the amount of enzyme that liberates 1 ⁇ mol of ammonia per minute using benzyloxycarbonyl-L-glutaminylglycine (Z-Gln-Gly) as a substrate is defined as 1 unit (1 U).
  • Lipase used in the present invention is not particularly limited with respect to its type, origin, etc., so long as it is an enzyme that has the ability to hydrolyze triglycerides.
  • lipases examples include lipases derived from the genus Rhizopus, Aspergillus, Mucor, Rhizomucor, Thermomyces, Pseudomonas, Geotrichum, Penicillium, and Candida.
  • Examples of lipases derived from the genus Rhizopus include lipases derived from Rhizopus delemar, Rhizopus oryzae, Rhizopus arrhizus, Rhizopus niveus, Rhizopus javanicus, etc.
  • Examples of lipases derived from the genus Aspergillus include lipases derived from Aspergillus niger, etc.
  • Examples of lipases derived from the genus Mucor include lipases derived from Mucor javanicus, Mucor miehei, etc.
  • Examples of lipases derived from the genus Rhizomucor include lipases derived from Rhizomucor miehei, etc.
  • Examples of lipases derived from the genus Thermomyces include lipases derived from Thermomyces lanuginosus, etc.
  • lipases may be used alone or in combination.
  • lipases derived from the genus Rhizopus are preferred, and lipases derived from Rhizopus oryzae are more preferred.
  • the lipase used in the present invention is preferably an enzyme having the ability to hydrolyze ester bonds at one or two of the 1 ( ⁇ ), 2 ( ⁇ ) and 3 ( ⁇ ) positions of a triglyceride (specifically, the 1st, 2nd and 3rd positions, the 1st and 2nd positions, the 1st and 3rd positions, or the 2nd and 3rd positions), more preferably an enzyme having the ability to hydrolyze ester bonds at the 1st and 3rd positions of a triglyceride, and even more preferably an enzyme having the ability to position-specifically hydrolyze ester bonds at the 1st and 3rd positions of a triglyceride.
  • an enzyme having the ability to hydrolyze ester bonds at one or two of the 1 ( ⁇ ), 2 ( ⁇ ) and 3 ( ⁇ ) positions of a triglyceride specifically, the 1st, 2nd and 3rd positions, the 1st and 2nd positions, the 1st and 3rd positions, or
  • the amount of lipase contained in the emulsifying agent and foaming agent of the present invention is not particularly limited as long as the effect of lipase can be effectively obtained when using the emulsifying agent and foaming agent of the present invention, but may be, for example, 1 to 1,500,000 U/g.
  • the amount of lipase per 1 U of protein deamidating enzyme may be, for example, 0.1 U or more, 0.3 U or more, 0.5 U or more, or 1 U or more, and from the viewpoint of further enhancing the emulsifying property enhancing effect and/or the foaming property enhancing effect, preferably 2 U or more, 2.5 U or more, 3 U or more, 4 U or more, 7 U or more, or 10 U or more, and more preferably 12 U or more, 13 U or more, or 14 U or more.
  • the upper limit of the range of the amount of lipase per 1 U of protein deamidating enzyme is not particularly limited, but may be, for example, 1000 U or less, or 600 U or less.
  • the amount is preferably 300 U or less, 200 U or less, 160 U or less, 150 U or less, 140 U or less, or 120 U or less, more preferably 100 U or less, 90 U or less, 80 U or less, or 75 U or less, and even more preferably 70 U or less, 60 U or less, 50 U or less, 40 U or less, 30 U or less, or 20 U or less.
  • Lipase activity is measured using olive oil as a substrate, and the amount of enzyme that increases free fatty acids by 1 ⁇ mol per minute is defined as 1 unit (1 U).
  • protease used in the present invention is not particularly limited in type, origin, etc.
  • an endopeptidase is used as the protease.
  • proteases examples include fungal proteases and bacterial proteases.
  • Proteases derived from filamentous fungi are not particularly limited, but examples include proteases derived from the genera Aspergillus, Rhizopus, Mucor, Neurospora, Penicillium, Rhizomucor, and Sclerotinia.
  • proteases derived from the genus Aspergillus include Aspergillus oryzae, Aspergillus niger, Aspergillus melleus, Aspergillus japonicus, Aspergillus awamori, Aspergillus kawachii, Aspergillus sojae, and Aspergillus niger.
  • proteases include those derived from Aspergillus parasiticus, Aspergillus penicillioides, Aspergillus restrictus, Aspergillus sydowii, Aspergillus terreus, Aspergillus ustus, and Aspergillus versicolor.
  • proteases derived from the genus Rhizopus include proteases derived from Rhizopus chinensis, Rhizopus delemar, Rhizopus niveus, and Rhizopus oryzae.
  • Bacterial proteases include proteases derived from the genera Bacillus and Geobacillus.
  • proteases derived from the genus Bacillus include Bacillus amyloliquefaciens, Bacillus cereus, Bacillus clausii, Bacillus intermedius, Bacillus lentus, etc. s), Bacillus licheniformis, Bacillus stearothermophilus, Bacillus subtilis, and Bacillus thermoproteolyticus, and proteases derived from these Geobacillus species.
  • the above-mentioned proteases may be used alone or in combination of two or more kinds.
  • a protease derived from a filamentous fungus is used, more preferably, a protease derived from the genus Aspergillus is used, and even more preferably, a protease derived from Aspergillus oryzae is used.
  • the amount of protease contained in the emulsifying agent and foaming agent of the present invention is not particularly limited as long as the effect of the protease can be effectively obtained when using the emulsifying agent and foaming agent of the present invention, but may be, for example, 1 to 500,000 U/g.
  • the amount of protease per 1 U of protein deamidating enzyme may be, for example, 0.1 U or more, 0.3 U or more, 0.5 U or more, or 1 U or more. From the viewpoint of further improving the emulsifying agent and/or foaming agent, the amount is preferably 2 U or more, more preferably 3 U or more, and even more preferably 3.5 U or more.
  • the upper limit of the range of the amount of protease per 1 U of protein deamidating enzyme is not particularly limited, but may be, for example, 150 U or less.
  • the amount is preferably 100 U or less, 75 U or less, or 50 U or less, more preferably 25 U or less, or 15 U or less, even more preferably 10 U or less, even more preferably 5 U or less, and even more preferably 4 U or less.
  • Protease activity is measured by using casein as a substrate and the amount of enzyme that produces an increase in the colored substance in Folin's test solution equivalent to 1 ⁇ g of tyrosine per minute is defined as 1 unit (1 U).
  • the emulsifying agent and foaming agent of the present invention can be prepared as an enzyme preparation containing the above-mentioned specified enzyme, and may contain other components other than the above-mentioned specified enzyme to the extent that they do not affect the effects of the present invention.
  • examples of other components include enzymes other than the above-mentioned specified enzymes, and/or bases and/or additives used in ordinary enzyme preparations. These other components can be appropriately determined depending on the application and formulation form of the emulsifying agent and foaming agent.
  • the formulation of the emulsification improver and foaming improver of the present invention may be in the form of a liquid or a solid.
  • the emulsifying agent and foaming agent of the present invention are used for the purpose of improving the emulsifying property and foaming property of a liquid composition containing a vegetable protein and an oil or fat, respectively.
  • the emulsifying agent and foaming agent of the present invention can be used in the enzyme treatment step in the following method.
  • a method for improving emulsifiability of a liquid composition containing a vegetable protein and an oil or fat comprising an enzyme treatment step of treating the liquid composition with a protein deamidating enzyme and a lipase;
  • a method for improving the foaming property of a liquid composition containing a vegetable protein and an oil comprising an enzyme treatment step of acting on the liquid composition with a protein deamidase and a lipase; or a method for producing an emulsion of a liquid composition containing a vegetable protein and an oil, the method comprising an enzyme treatment step of treating the liquid composition containing the vegetable protein and the oil with a protein deamidase and a lipase.
  • Method for improving emulsifying properties of a liquid composition containing vegetable protein and fats and oils and method for improving foaming properties of a liquid composition containing vegetable protein and fats and oils, are both characterized by including an enzyme treatment step in which a protein deamidating enzyme and a lipase are allowed to act on a liquid composition containing vegetable protein and fats and oils.
  • liquid composition to be treated with the enzyme in the method of the present invention contains a vegetable protein and a fat/oil.
  • Vegetable Proteins are not particularly limited, but include, for example, proteins of cereals such as soybeans, peas, lupine beans, broad beans, chickpeas, mung beans, and kidney beans; proteins of cereals such as oats, barley, wheat, rye, rice, buckwheat, barnyard millet, millet, teff, quinoa, and corn; proteins of nuts and seeds such as canary seeds, flaxseeds, almonds, cashew nuts, hazelnuts, pecan nuts, macadamia nuts, pistachios, walnuts, Brazil nuts, peanuts, coconuts, hemp (industrial hemp), pili nuts, chestnuts, sesame seeds, and pine nuts.
  • proteins of cereals such as soybeans, peas, lupine beans, broad beans, chickpeas, mung beans, and kidney beans
  • proteins of cereals such as oats, barley, wheat, rye, rice, buckwheat
  • These proteins may be in the form of natural products; in the form of proteins partially decomposed chemically with acids, alkalis, and the like; in the form of proteins chemically modified with various reagents; and in the form of synthetic proteins.
  • the vegetable proteins when these vegetable proteins are in the form of natural products, the vegetable proteins may be contained incidentally as a result of using the plant materials from which they are derived (specifically, the above-mentioned pulses, cereals, nuts, seeds, etc.) as ingredients for the liquid composition, or may be contained as a result of using, as an ingredient for the liquid composition, a processed material in which the protein content of the plant materials has been increased to a desired level (for example, a protein content of 20 to 100% by weight).
  • the form of the processed material is not particularly limited, and examples thereof include powder, slurry, liquid, etc.
  • the above-mentioned vegetable proteins may be used alone or in combination.
  • preferred are cereal proteins and nut and seed proteins more preferred are proteins from soybeans, peas, lupin beans, broad beans, chickpeas, mung beans, kidney beans, canary seeds, linseeds, almonds, cashew nuts, hazelnuts, pecan nuts, macadamia nuts, pistachios, walnuts, Brazil nuts, peanuts, coconuts, hemp (industrial hemp), pili nuts, chestnuts, sesame seeds, and pine nuts, and more preferred are proteins from peas and almonds.
  • the vegetable protein content in the liquid composition is not particularly limited, but may be, for example, 0.1 to 20% by weight, preferably 0.2 to 10% by weight, and more preferably 0.35 to 4% by weight.
  • the content of the plant material or the processed material contained in the liquid composition is, for example, 0.1 to 50% by weight, preferably 0.2 to 35% by weight, and more preferably 0.4 to 20% by weight.
  • oils and fats are not particularly limited, but typically vegetable oils and fats are used.
  • vegetable oils and fats include oils and fats from cereals such as soybeans, peas, lupine beans, broad beans, chickpeas, mung beans, and kidney beans; oils and fats from cereals such as oats, barley, wheat, rye, rice, buckwheat, barnyard millet, millet, teff, quinoa, and corn; oils and fats from nuts and seeds such as rapeseed, sunflower seeds, camellia seeds, safflower seeds, cotton seeds, oil palm fruits, coconut fruits, cacao, avocados, olives, canary seeds, linseeds, shea nuts, almonds, cashew nuts, hazel nuts, pecan nuts, macadamia nuts, pistachios, walnuts, Brazil nuts, peanuts, coconuts, hemp (industrial hemp), pili nuts, chestnuts, sesame seeds,
  • animal oils and fats can also be used as the oils and fats.
  • animal fats and oils include fish oil, lard, beef tallow, milk fat, etc. These fats and oils may be in the form of natural products, hydrogenated oils, fractionated oils, or synthetic fats and oils obtained by ester exchange or the like.
  • the vegetable fats and oils are vegetable fats and oils and in the form of natural products
  • the vegetable fats and oils may be included as a result of using the plant material from which they are derived (specifically, the above-mentioned pulses, cereals, nuts, seeds, etc.) as the material for the liquid composition, or may be included as a result of using a processed material from the plant material in which the fat and oil content has been increased to an arbitrary level (for example, the fat and oil content is 40 to 100% by weight) as the material for the liquid composition.
  • the form of the processed material is not particularly limited, and examples include powder, slurry (i.e., butter), liquid, etc.
  • the above-mentioned fats and oils may be used alone or in combination.
  • vegetable fats and oils more preferred are soybean, pea, rice, corn, rapeseed, sunflower seed, safflower seed, cotton seed, oil palm fruit, coconut fruit, cacao fruit, almond, cashew nut, and peanut fats, and even more preferred are pea, rapeseed, sunflower seed, and almond fats and oils.
  • the vegetable oil may be derived from the same plant as the plant from which the vegetable protein is derived, or may be derived from a different plant, or may be a combination thereof.
  • the content of the oil or fat in the liquid composition is not particularly limited and can be determined appropriately depending on the type of the target emulsion composition and/or foamable composition, but can be, for example, 0.1 to 25% by weight, and from the viewpoint of further improving the emulsifying property improvement effect and/or foaming property improvement effect, preferably 1 to 22% by weight, more preferably 3 to 20% by weight, even more preferably 4.8 to 18% by weight, and even more preferably 10 to 17% by weight or 13 to 16% by weight.
  • the ratio of the vegetable protein content to the fat and oil content is determined according to the above-mentioned respective contents, but the fat and oil content per 1 part by weight of vegetable protein is preferably 0.1 to 60 parts by weight, more preferably 0.5 to 50 parts by weight, even more preferably 10 to 47 parts by weight, and even more preferably 20 to 45 parts by weight, or 35 to 40 parts by weight.
  • the content of the plant material or the processed material contained in the liquid composition is, for example, 0.1 to 40% by weight, preferably 1 to 35% by weight, more preferably 2.5 to 30% by weight, even more preferably 5 to 25% by weight, and even more preferably 10 to 20% by weight, or 13 to 17% by weight.
  • the liquid composition may contain, in addition to the above components and water, seasonings, emulsifiers, gelling agents, etc., as appropriate.
  • seasonings include sugar, salt, etc., and preferably sugar.
  • the sugar content is, for example, 0.1 to 1.5% by weight, preferably 0.3 to 1.2% by weight, and more preferably 0.5 to 1% by weight.
  • emulsifiers include those used as emulsifiers in animal milk substitute beverages, and specifically include glycerin fatty acid esters, sorbitan fatty acid esters, propylene glycol fatty acid esters, sucrose fatty acid esters, polyglycerin fatty acid esters, gum arabic, lecithin, etc.
  • the emulsifying agent and foaming agent of the present invention are excellent in improving the emulsifying properties and foaming properties of liquid compositions, respectively, and therefore, as a suitable example of a liquid composition, it preferably does not contain an emulsifier (particularly lecithin) and/or a gelling agent, and more preferably does not contain an emulsifier (particularly lecithin) and a gelling agent.
  • the liquid composition is not particularly limited in its form, as long as it is liquid.
  • the liquid composition may be in the form of an emulsified composition, or may not be in the form of an emulsified composition.
  • the liquid composition may be in the form of a foamed composition, or may not be in the form of a foamed composition.
  • the emulsification improver and foaming improver of the present invention are excellent in the emulsification improver and foaming improver of the liquid composition, respectively, and therefore, preferred examples of the form of the liquid composition include a non-emulsified and/or non-foamed composition, and more preferably, a non-emulsified and non-foamed composition.
  • the preparation method of the liquid composition is not particularly limited as long as it is prepared as a liquid composition containing vegetable protein and fats and oils in water.
  • a method of preparing the liquid composition by mixing water and a processed material of a plant material containing vegetable protein and vegetable fats and oils (and other components as necessary); a method of preparing the liquid composition by mixing water, a processed material of a plant material containing at least vegetable protein, and a processed material of a plant material containing at least vegetable fats and oils (and other components as necessary); a method of preparing the liquid composition by crushing and dispersing a plant material containing vegetable protein and vegetable fats and oils in water, and mixing other components as necessary; a method of preparing the liquid composition by crushing and dispersing a plant material containing at least vegetable protein in water, and further mixing fats and oils and other components as necessary, and the like can be mentioned.
  • the liquid composition is treated with a protein deamidase and a lipase.
  • a protease it is preferable to use a protease in combination with the protein deamidase and the lipase.
  • lipase and protease used is as described above in “1-1-2. Lipase” and “1-1-3. Protease,” respectively.
  • the specific amount of protein deamidating enzyme used is not particularly limited, but may be, for example, 0.05 U or more, or 0.1 U or more per 1 g of vegetable protein. From the viewpoint of further improving the emulsifying property improving effect and/or the foaming property improving effect, it is preferably 0.4 U or more, more preferably 1 U or more, 2 U or more, 3 U or more, 3.5 U or more, or 4 U or more, even more preferably 4.5 U or more, and even more preferably 4.8 U or more.
  • the upper limit of the range of the amount of protein deamidating enzyme used is not particularly limited, but may be, for example, 50 U or less, 40 U or less, 30 U or less, 20 U or less, or 15 U or less, preferably 10 U or less, more preferably 7 U or less, or 6 U or less per 1 g of vegetable protein.
  • the specific amount of lipase used is not particularly limited, but may be, for example, 1 U or more per 1 g of fat or oil. From the viewpoint of further improving the emulsifying property improving effect and/or the foaming property improving effect, preferably 5 U or more, 10 U or more, 14 U or more, 30 U or more, 40 U or more, or 50 U or more, more preferably 60 U or more, 65 U or more, 70 U or more, or 73 U or more.
  • the upper limit of the range of the amount of lipase used is not particularly limited, but may be, for example, 500 U or less, 400 U or less, 350 U or less, or 300 U or less per 1 g of fat or oil.
  • emulsifying property improving effect and/or the foaming property improving effect preferably 200 U or less, or 170 U or less, more preferably 130 U or less, or 120 U or less, even more preferably 90 U or less, 85 U or less, or 80 U or less.
  • the specific amount of protease used is not particularly limited, but the amount per 1 g of vegetable protein is, for example, 1 U or more, and from the viewpoint of further improving the emulsifying property improving effect and/or the foaming property improving effect, preferably 5 U or more, more preferably 10 U or more, and even more preferably 13 U or more.
  • the upper limit of the range of the amount of protease used is not particularly limited, but the amount per 1 g of vegetable protein is, for example, 150 U or less, 100 U or less, or 75 U or less, and from the viewpoint of further improving the emulsifying property improving effect and/or the foaming property improving effect, preferably 60 U or less, more preferably 50 U or less, even more preferably 40 U or less, even more preferably 30 U or less, even more preferably 20 U or less, or 17 U or less.
  • the order in which the enzymes are allowed to act is not particularly limited, and the enzymes may be allowed to act sequentially in any order, or all of the enzymes may be allowed to act simultaneously, but it is preferable that all of the enzymes be allowed to act simultaneously.
  • reaction conditions for the enzyme treatment are appropriately selected depending on the temperature and pH characteristics of the enzyme used, the scale of the liquid composition, and the desired degree of improvement in emulsifying or foaming properties.
  • the reaction temperature can be appropriately determined by those skilled in the art depending on the temperature characteristics of the enzyme used, but examples include 20°C to 60°C, preferably 35°C to 56°C, and more preferably 45°C to 52°C.
  • the reaction pH (pH of the liquid composition) can be appropriately determined by those skilled in the art depending on the pH characteristics of the enzyme used, and examples of the pH at 25°C include 5 to 8 or 5 to 7, preferably 5.5 to 7, more preferably 6 to 6.9, and even more preferably 6.3 to 6.9.
  • the treatment time can be appropriately determined by those skilled in the art depending on the scale of the liquid composition and the desired degree of improvement in emulsifying or foaming properties, but can be, for example, 10 minutes to 4 hours, preferably 0.5 hours to 3 hours.
  • the stirring speed can be appropriately determined by those skilled in the art depending on the scale of the liquid composition, etc., but can be, for example, 100 to 300 rpm, preferably 150 to 250 rpm, and more preferably 180 to 220 rpm.
  • the method of the present invention may include any other steps in addition to the enzyme treatment step.
  • Specific examples of other steps include the step of preparing the liquid composition as described above as a step performed before the enzyme treatment step, and the step of preparing the liquid composition as a step performed after the enzyme treatment step, including the emulsification step (in the case of the emulsification improvement method and the foaming improvement method) and the foaming step (in the case of the foaming improvement method). Details of the step of preparing the liquid composition are as described in "2-1-5. Preparation method" above.
  • Conditions for the emulsification step include the above-mentioned reaction temperature as the temperature, the stirring conditions include, for example, 3000 to 7000 rpm, preferably 4000 to 6000 rpm, more preferably 4500 to 5500 rpm, and the stirring time includes, for example, 2 to 20 minutes, preferably 5 to 15 minutes, more preferably 8 to 13 minutes.
  • Conditions for the foaming step can be appropriately adopted from conditions generally used for foaming using animal milk.
  • the method for producing an emulsion of a liquid composition containing a vegetable protein and an oil of the present invention is characterized by including an enzyme treatment step of treating a liquid composition containing a vegetable protein and an oil with a protein deamidating enzyme and a lipase.
  • Emulsion of liquid composition containing vegetable protein and fat is an emulsion composition obtained by the above "3. Method for producing emulsion of liquid composition containing vegetable protein and fat" and is a food or drink.
  • the emulsion of the present invention has excellent emulsifying properties and foaming properties.
  • the emulsion type of the emulsion of the present invention may be either oil-in-water type or water-in-oil type, but is preferably oil-in-water type.
  • Specific examples of the food and beverages that involve the emulsion of the present invention include vegetable protein drinks (such as vegetable milk), vegetable creamers (such as coffee creamers), vegetable foamed milk, vegetable creams, etc.
  • Protein deamidase activity measurement method 0.1 mL of a sample solution containing protein deamidase was added to 1 mL of 0.2 M phosphate buffer (pH 6.5) containing 30 mM Z-Gln-Gly, and the mixture was allowed to stand at 37° C. for 10 minutes, after which 1 mL of 0.4 M TCA solution was added to stop the reaction.
  • the amount of ammonia produced in the reaction solution was measured using an Ammonia Test Wako (Fujifilm Wako Pure Chemicals).
  • the ammonia concentration in the reaction solution was calculated from a calibration curve showing the relationship between ammonia concentration and absorbance (630 nm) created using an ammonia standard solution (ammonium chloride).
  • the activity of protein deamidase was calculated from the following formula, where 1 unit (1 U) is the amount of enzyme that produces 1 ⁇ mol of ammonia per minute, where the reaction solution volume is 2.1, the enzyme solution volume is 0.1, Df is the dilution ratio of the enzyme solution, and 17.03 is the molecular weight of ammonia.
  • the neutral olive oil emulsion which is the substrate, was prepared by the following method. 200 g of anhydrous sodium carbonate was dissolved in 400 mL of water, and added to about 1.5 L of olive oil that had been warmed at 45°C for 20 minutes while gently stirring to avoid emulsification, and then stirred at room temperature for about 15 minutes. After leaving this at room temperature for more than 20 hours, the oil was centrifuged (5°C, 5,000 min -1 , 20 minutes) to prepare neutral olive oil.
  • 0.02 mol/L sodium hydroxide solution (quantitative) was continued to be dripped to maintain the pH at 7.00, and after 10 minutes, 0.02 mol/L sodium hydroxide solution (quantitative) was added to adjust the pH to 9.00.
  • the amount of 0.02 mol/L sodium hydroxide solution (quantitative) used (V10 (mL)) was recorded.
  • the blank solution was treated in the same way, and after adjusting the pH to 9.00, 5 mL of the sample solution containing lipase was added, the pH was again adjusted to 9.00, and the amount of 0.02 mol/L sodium hydroxide solution (for quantitative analysis) used (V0 (mL)) was recorded.
  • the amount of enzyme that increases free fatty acids by 1 ⁇ mol per minute is defined as 1 unit (1 U), and was calculated using the following formula.
  • 1mg/mL tyrosine standard stock solution (0.2mol/L hydrochloric acid) was measured at 1mL, 2mL, 3mL and 4mL, and 0.2mol/L hydrochloric acid test solution was added to each to make 100mL. 2mL of each solution was measured, and 5mL of 0.55mol/L sodium carbonate test solution and 1mL of Folin test solution (1 ⁇ 3) were added, and the solution was immediately shaken and left at 37°C for 30 minutes. For each of these solutions, 2mL of 0.2mol/L hydrochloric acid test solution was measured, and the solution obtained by the same procedure as above was used as a control, and the absorbance A1, A2, A3 and A4 at a wavelength of 660nm were measured.
  • the absorbance A1, A2, A3 and A4 were plotted on the vertical axis and the amount of tyrosine ( ⁇ g) in 2mL of each solution on the horizontal axis, and a calibration curve was created to determine the amount of tyrosine ( ⁇ g) per absorbance difference of 1.
  • Analysis sample 1 emulsion composition immediately after preparation (day 0, 25°C).
  • Analysis sample 2 The emulsion composition was allowed to stand in a refrigerator set at 4° C. for one week.
  • Analysis sample 3 The emulsion composition was centrifuged at 3000 rpm for 25 minutes (25° C.). Centrifugation at 3000 rpm for 25 minutes is an accelerated condition equivalent to standing still for one year (Procedia Chemistry, Volume 16, 2015, Pages 171-176).
  • the mixture was emulsified for 10 minutes at 5000 rpm, the enzymes were inactivated by heat treatment (85°C, 15 minutes), and the mixture was cooled to room temperature (25°C) to prepare an oil-in-water emulsion composition (almond milk) (pH at 25°C: 6.5).
  • the prepared almond milk was divided into two 50 mL tubes, one containing 35 mL (a sample for evaluating solubility and emulsifying properties) and the other containing 100 mL (a sample for evaluating foaming properties).
  • Samples for evaluating solubility and emulsification were prepared as analytical samples similar to analytical samples 1 and 3 in Test Example 1, and 100-fold diluted samples were prepared in the same manner as in Test Example 1, and the absorbance at 280 nm and at 600 nm were measured. The results are shown in Tables 6 and 7.
  • emulsifiability was improved by treating a liquid composition containing vegetable protein and fats and oils with protein deamidating enzyme and lipase.
  • the degree of improvement was greater than when lecithin, a general-purpose emulsifier, was used.
  • emulsifiability was further improved when protease was used in combination with protein deamidating enzyme and lipase.
  • foaming properties were improved by treating a liquid composition containing vegetable protein and fats and oils with protein deamidating enzyme and lipase.
  • protein deamidating enzyme and lipase when protease was used in combination with protein deamidating enzyme and lipase, foaming properties were further improved, and the degree of improvement was greater than when lecithin, a general-purpose emulsifier, was used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Grain Derivatives (AREA)

Abstract

本発明の目的は、植物性タンパク質を含む液状組成物の乳化性及び/又は起泡性を向上できる加工技術を提供することである。タンパク質脱アミド酵素及びリパーゼで植物性タンパク質及び油脂を含む液状組成物を処理すると、当該液状組成物の乳化性及び/又は起泡性を向上できる。

Description

植物性タンパク質及び油脂を含む液状組成物の乳化性向上剤及び起泡性向上剤
 本発明は、植物性タンパク質を含む液状組成物の乳化性及び/又は起泡性を向上できる加工技術に関する。具体的には、本発明は、植物性タンパク質及び油脂を含む液状組成物の乳化性向上剤又は起泡性向上剤、植物性タンパク質及び油脂を含む液状組成物の乳化性又は起泡性を向上させる方法、植物性タンパク質及び油脂を含む液状組成物の乳化物の製造方法、並びに、植物性タンパク質及び油脂を含む液状組成物の乳化物に関する。
 近年、食品市場ではサステナビリティ及び健康志向等を背景に、乳代替市場及び肉代替市場が拡大している。中でも、動物乳の代替品である植物性飲料は乳代替市場において重要なカテゴリーの1つであり、引き続き注目されている。
 植物性飲料は乳とは根本的に異なる成分組成を有しているため、動物乳の特性に近づけるための加工が事実上必須である。このため、植物性飲料の加工技術が種々検討されている。
 植物性飲料が模する動物乳の特性の例として乳化特性が挙げられる。一般的に、植物性タンパク質を含む飲料は、その乳化状態を良好に保持する点において、乳化剤が配合されており、そのような乳化剤としては、特許文献1に記載されるように、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、アラビアガム、レシチン等が用いられる。一方、乳化剤以外の方法で乳化処理する加工技術も検討されている。例えば、特許文献2には、乳タンパク質を配合しなくても満足のいく乳化安定性を有する植物ベースの液状栄養組成物を製造できる技術として、所定の要件を満たす植物性タンパク質素材を用いる方法が記載されている。
 植物性飲料が模する動物乳の特性の別の例として、起泡性も挙げられる。例えば、特許文献3には、低脂肪化した豆乳を加熱処理することにより、豆乳に良好な起泡性が付与されることが記載されている。
特開2021-176284号公報 特開2021-52655号公報 国際公開第2014/092157号
 植物性飲料は、特に健康意識の高いユーザーから注目を集めているため、添加剤として乳化剤が配合されていないものが望まれる傾向にある。しかしながら、現状、植物性飲料に優れた乳化性を付与するには、乳化剤に頼らざるを得ない。また、特許文献2に記載されるように所定の要件を満たす植物性タンパク質素材を用いる方法も提案されているが、当該素材の要件として、タンパク質含量だけでなく、NSI、分子量分布、及びゲル化特性が全て所定の範囲を満たす必要がある。このような条件の厳格な素材が入手容易でないことに鑑みると、より入手容易な材料を用いて乳化性を向上できる方法が望まれる。
 また、植物性飲料の起泡性については未だ十分に検討されていない。特許文献3に記載される方法が提案されているものの、当該方法は豆乳にしか適用することができない。また、一般的に、植物性飲料を起泡させるのは困難性が高い。しかしながら、今後の乳代替市場の拡大に鑑みると、別の種類の植物性飲料でも適用可能な、起泡性の向上方法が望まれる。
 そこで本発明は、植物性タンパク質を含む液状組成物の乳化性及び/又は起泡性を向上できる加工技術を提供することを目的とする。
 本発明者は、植物性タンパク質を含む液状組成物に油脂を配合し、タンパク質脱アミド酵素及びリパーゼで処理することによって、乳化性及び/又は起泡性を向上できることを見出した。さらに、タンパク質脱アミド酵素及びリパーゼに加え、プロテアーゼも用いて処理した場合には、乳化性及び/又は起泡性をより一層向上できることも見出した。本発明は、これらの知見に基づいて、更に検討を重ねることにより完成したものである。
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. タンパク質脱アミド酵素及びリパーゼを含む、植物性タンパク質及び油脂を含む液状組成物の乳化性向上剤。
項2. 前記タンパク質脱アミド酵素1Uに対する前記リパーゼの量が1U以上である、項1に記載の乳化性向上剤。
項3. さらにプロテアーゼを含む、項1又は2に記載の乳化性向上剤。
項4. タンパク質脱アミド酵素及びリパーゼを含む、植物性タンパク質及び油脂を含む液状組成物の起泡性向上剤。
項5. さらにプロテアーゼを含む、項4に記載の起泡性向上剤。
項6. 前記タンパク質脱アミド酵素1Uに対する前記プロテアーゼの量が1U以上である、項5に記載の起泡性向上剤。
項7. 植物性タンパク質及び油脂を含む液状組成物の乳化性を向上させる方法であって、前記液状組成物に、タンパク質脱アミド酵素及びリパーゼを作用させる酵素処理工程を含む、前記方法。
項8. 前記植物性タンパク質1gあたり、前記タンパク質脱アミド酵素を0.05U以上用いる、項7に記載の方法。
項9. 前記油脂1g当たり、前記リパーゼを1U以上用いる、項7又は8に記載の方法。
項10. 植物性タンパク質及び油脂を含む液状組成物の起泡性を向上させる方法であって、前記液状組成物に、タンパク質脱アミド酵素及びリパーゼを作用させる酵素処理工程を含む、前記方法。
項11. 植物性タンパク質及び油脂を含む液状組成物の乳化物の製造方法であって、植物性タンパク質及び油脂を含む液状組成物を、タンパク質脱アミド酵素及びリパーゼで処理する酵素処理工程を含む、前記製造方法。
項12. 前記酵素処理工程でさらにプロテアーゼを用いる、項11に記載の製造方法。
項13. 項11又は12の製造方法により得られる植物性タンパク質及び油脂を含む液状組成物の乳化物であって、飲食品であるもの。
項14. タンパク質脱アミド酵素及びリパーゼを含む酵素製剤の、植物性タンパク質及び油脂を含む液状組成物の乳化性向上及び/又は起泡性向上のための使用。
項15. タンパク質脱アミド酵素及びリパーゼを含む酵素製剤を、植物性タンパク質及び油脂を含む液状組成物の乳化性向上剤及び/又は起泡性向上剤とする応用。
 本発明によれば、植物性タンパク質を含む液状組成物の乳化性及び/又は起泡性を向上できる加工技術が提供される。
1.乳化性向上剤及び起泡性向上剤
 本発明の植物性タンパク質及び油脂を含む液状組成物の乳化性向上剤及び起泡性向上剤は、いずれも、タンパク質脱アミド酵素及びリパーゼを含むことを特徴とする。以下、本発明の乳化性向上剤及び起泡性向上剤について詳述する。
1-1.所定の酵素
 本発明の乳化性向上剤及び起泡性向上剤は、有効成分として、タンパク質脱アミド酵素及びリパーゼを含む。乳化性向上効果及び起泡性向上効果をより一層向上させる観点から、好ましくは、さらにプロテアーゼを含む。
1-1-1.タンパク質脱アミド酵素
 本発明で用いられるタンパク質脱アミド酵素としては、ペプチド結合の切断及びタンパク質の架橋を伴わないタンパク質のアミド基含有側鎖を分解する作用を示す酵素であって、その種類及び由来等は特に限定されない。
 タンパク質脱アミド酵素の例として、タンパク質中のグルタミン残基を脱アミド化し、グルタミン酸に変換する酵素(例えばプロテイングルタミナーゼ)、及びタンパク質中のアスパラギン残基を脱アミド化し、アスパラギン酸に変換する酵素(例えばプロテインアスパラギナーゼ)が挙げられる。
 タンパク質脱アミド酵素のより具体的な例としては、クリセオバクテリウム(Chryseobacterium)属、フラボバクテリウム(Flavobacterium)属、エンペドバクター(Empedobacter)属、スフィンゴバクテリウム(Sphingobacterium)属、アウレオバクテリウム(Aureobacterium)属、ミロイデス(Myroides)属、ルテイミクロビウム(Luteimicrobium)属、アグロマイセス(Agromyces)属、ミクロバクテリウム(Microbacterium)属、又はレイフソニア(Leifsonia)属由来のタンパク質脱アミド酵素が挙げられる。これらのタンパク質脱アミド酵素は公知であり、例えば、JP2000-50887A、JP2001-218590A、WO2006/075772A1、WO2015/133590等を参照することができる。これらのタンパク質脱アミド酵素は、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。
 これらのタンパク質脱アミド酵素の中でも、乳化性向上効果及び/又は起泡性向上効果をより一層向上させる観点から、好ましくはプロテイングルタミナーゼが挙げられ、より好ましくはクリセオバクテリウム属由来のプロテイングルタミナーゼが挙げられ、さらに好ましくはクリセオバクテリウム・プロテオリティカム(Chryseobacterium proteolyticum)種由来のプロテイングルタミナーゼが挙げられる。
 タンパク質脱アミド酵素は、上記のタンパク質脱アミド酵素の由来元となる微生物の培養液より調製することができる。具体的な調製方法としては、上記の微生物の培養液又は菌体よりタンパク質脱アミド酵素を回収する方法が挙げられる。例えば、タンパク質脱アミド酵素分泌型微生物を用いる場合は、培養液から、必要に応じて予めろ過、遠心処理等によって菌体を回収した後、酵素を分離及び/又は精製することができる。また、タンパク質脱アミド酵素非分泌型微生物を用いる場合は、必要に応じて予め培養液から菌体を回収した後、菌体を加圧処理、超音波処理等によって破砕して酵素を露出させた後、酵素を分離及び/又は精製することができる。酵素の分離及び/又は精製法としては、公知のタンパク質分離及び/又は精製法を特に限定されることなく用いることができ、例えば、遠心分離法、UF濃縮法、塩析法、イオン交換樹脂等を用いた各種クロマトグラフィー法等が挙げられる。分離及び/又は精製された酵素は、凍結乾燥、減圧乾燥等の乾燥法により粉末化することができ、また、当該乾燥法において適当な賦形剤及び/又は乾燥助剤を用いて粉末化することもできる。また、分離及び/又は精製された酵素は、適当な添加剤を加え、ろ過滅菌することで液状化することもできる。
 本発明の乳化性向上剤及び起泡性向上剤に含まれるタンパク質脱アミド酵素の量としては、本発明の乳化性向上剤及び起泡性向上剤の使用時にタンパク質脱アミド酵素による効果を有効に得られる限度において特に限定されないが、例えば、0.1~5,000U/gが挙げられる。
 タンパク質脱アミド酵素の活性については、ベンジルオキシカルボニル-L-グルタミニルグリシン(Z-Gln-Gly)を基質とし、1分間に1μmolのアンモニアを遊離する酵素量を1単位(1U)とする。
1-1-2.リパーゼ
 本発明で用いられるリパーゼとしては、トリグリセリドを加水分解する作用を示す酵素であれば、その種類及び由来等は特に限定されない。
 リパーゼの例としては、例えば、リゾプス(Rhizopus)属由来、アスペルギルス(Aspergillus)属由来、ムコール(Mucor)属由来、リゾムコール(Rhizomucor)属由来、サーモミセス(Thermomyces)属由来、シュードモナス(Pseudomonas)属由来、ジオトリケム(Geotrichum)属由来、ペニシリウム(Penicillium)属由来、キャンディダ(Candida)属由来等のリパーゼが挙げられる。
 リゾプス属由来のリパーゼとしては、例えば、リゾプス・デレマー(Rhizopus delemar)、リゾプス・オリゼ(Rhizopus oryzae)、リゾプス・アリズス(Rhizopus arrhizus)、リゾプス・ニベウス(Rhizopus niveus)、リゾプス・ジャバニクス(Rhizopus javanicus)等由来のリパーゼが挙げられる。アスペルギルス属由来のリパーゼとしては、例えば、アスペルギルス・ニガ(Aspergillus niger)等由来のリパーゼが挙げられる。ムコール属由来のリパーゼとしては、例えば、ムコール・ヤバニカス(Mucor javanicus)、ムコール・ミエヘイ(Mucor miehei)等由来のリパーゼが挙げられる。リゾムコール属由来のリパーゼとしては、例えば、リゾムコール・ミエヘイ(Rhizomucor miehei)等由来のリパーゼが挙げられる。サーモミセス属由来のリパーゼとしては、例えば、サーモミセス・ラヌギノサス(Thermomyces lanuginosus)等由来のリパーゼが挙げられる。
 これらのリパーゼは、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。これらのリパーゼの中でも、乳化性向上効果及び/又は起泡性向上効果をより一層向上させる観点から、好ましくはリゾプス属由来のリパーゼが挙げられ、より好ましくはリゾプス・オリゼ(Rhizopus oryzae)由来のリパーゼが挙げられる。
 また、本発明で用いられるリパーゼとしては、乳化性向上効果及び/又は起泡性向上効果をより一層向上させる観点から、好ましくは、トリグリセリドの1(α)位、2(β)位、3(γ)位のうち、一個又は二個の位置(具体的には、1位、2位、3位、1位と2位、1位と3位、又は2位と3位)のエステル結合を加水分解する作用を持つ酵素が挙げられ、より好ましくは、トリグリセリドの1位及び3位のエステル結合を加水分解する作用を持つ酵素が挙げられ、さらに好ましくは、トリグリセリドの1位及び3位のエステル結合を位置特異的に加水分解する作用を持つ酵素が挙げられる。
 本発明の乳化性向上剤及び起泡性向上剤に含まれるリパーゼの量としては、本発明の乳化性向上剤及び起泡性向上剤の使用時にリパーゼによる効果を有効に得られる限度において特に限定されないが、例えば、1~1,500,000U/gが挙げられる。
 本発明の乳化性向上剤及び起泡性向上剤において、タンパク質脱アミド酵素1U当たりのリパーゼの量としては、例えば0.1U以上、0.3U以上、0.5U以上、又は1U以上が挙げられ、乳化性向上効果及び/又は起泡性向上効果をより一層向上させる観点から、好ましくは2U以上、2.5U以上、3U以上、4U以上、7U以上、又は10U以上が挙げられ、より好ましくは12U以上、13U以上、又は14U以上が挙げられる。タンパク質脱アミド酵素1U当たりのリパーゼの量の範囲の上限としては特に限定されないが、例えば1000U以下、又は600U以下が挙げられ、乳化性向上効果及び/又は起泡性向上効果をより一層向上させる観点から、好ましくは300U以下、200U以下、160U以下、150U以下、140U以下、又は120U以下が挙げられ、より好ましくは100U以下、90U以下、80U以下、又は75U以下が挙げられ、さらに好ましくは70U以下、60U以下、50U以下、40U以下、30U以下、又は20U以下が挙げられる。
 リパーゼの活性についてはオリブ油を基質とし、1分間に1μmolの遊離脂肪酸の増加をもたらす酵素量を1単位(1U)とする。
1-1-3.プロテアーゼ
 本発明で用いられるプロテアーゼについては、その種類及び由来等は特に限定されない。好ましくは、プロテアーゼとしてエンド型ペプチダーゼが用いられる。
 プロテアーゼの例としては、糸状菌由来プロテアーゼ及び細菌由来プロテアーゼが挙げられる。
 糸状菌由来プロテアーゼとしては特に限定されないが、例えば、アスペルギルス(Aspergillus)属、リゾプス(Rhizopus)属、ムコール(Mucor)属、ニューロスポーラ(Neurospora)属、ペニシリウム(Penicillium)属、リゾムコール(Rhizomucor)属、及びスクレロティニア(Sclerotinia)属等に由来するプロテアーゼが挙げられる。
 アスペルギルス属由来プロテアーゼの具体例としては、アスペルギルス・オリゼ(Aspergillus oryzae)、アスペルギルス・ニガ(Aspergillus niger)、アスペルギルス・メレウス(Aspergillus melleus)、アスペルギルス・ジャポニクス(Aspergillus japonicus)、アスペルギルス・アワモリ(Aspergillus awamori)、アスペルギルス・カワチ(Aspergillus kawachii)、アスペルギルス・ソーエ(Aspergillus sojae)、アスペルギルス・タマリ(Aspergillus tamarii)、アスペルギルス・ファチダス(Aspergillus foetidus)、アスペルギルス・フミガーツス(Aspergillus fumigatus)、アスペルギルス・ニデュランス(Aspergillus nidulans)、アスペルギルス・アクレタス(Aspergillus aculeatus)、アスペルギルス・キャンディダス(Aspergillus candidus)、アスペルギルス・フラバス(Aspergillus flavus)、アスペルギルス・サイトイ(Aspergillus saitoi)、アスペルギルス・イヌイ(Aspergillus inuii)、アスペルギルス・グラカス(Aspergillus glaucus)、アスペルギルス・セシェルス(Aspergillus caesiellus)、アスペルギルス・クラバタス(Aspergillus clavatus)、アスペルギルス・デフレクタス(Aspergillus deflectus)、アスペルギルス・フィシャリアヌス(Aspergillus fischerianus)、アスペルギルス・パラシティクス(Aspergillus parasiticus)、アスペルギルス・ペニシロイデス(Aspergillus penicillioides)、アスペルギルス・レストリクタス(Aspergillus restrictus)、アスペルギルス・シドウィ(Aspergillus sydowii)、アスペルギルス・テレウス(Aspergillus terreus)、アスペルギルス・ウスタス(Aspergillus ustus)、及びアスペルギルス・ベルシコロル(Aspergillus versicolor)等に由来するプロテアーゼが挙げられる。
 リゾプス属由来プロテアーゼの具体例としては、リゾプス・キネンシス(Rhizopus chinensis)、リゾプス・デレマー(Rhizopus delemar)、リゾプス・ニベウス(Rhizopus niveus)、及びリゾプス・オリゼ(Rhizopus oryzae)等に由来するプロテアーゼが挙げられる。
 細菌由来プロテアーゼとしては、バチルス(Bacillus)属及びジオバチルス(Geobacillus)属等に由来するプロテアーゼが挙げられる。
 バチルス属(又はジオバチルス属)由来プロテアーゼの具体例としては、バチルス・アミロリケファシエンス(Bacillus amyloliquefaciens)、バチルス・セレウス(Bacillus cereus)、バチルス・クラウジー(Bacillus clausii)、バチルス・インターミディウス(Bacillus intermedius)、バチルス・レンタス(Bacillus lentus)、バチルス・リケニフォルミス(Bacillus licheniformis)、バチルス・ステアロサーモフィラス(Bacillus stearothermophilus)、バチルス・サブティリス(Bacillus subtilis)、及びバチルス・サーモプロテオリティカス(Bacillus thermoproteolyticus)、及びこれらのジオバチルス属由来のプロテアーゼが挙げられる。
 本発明において、上記のプロテアーゼは、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。上記のプロテアーゼの中でも、乳化性向上効果及び/又は起泡性向上効果をより一層向上させる観点から、好ましくは糸状菌由来プロテアーゼが挙げられ、より好ましくはアスペルギルス属由来プロテアーゼが挙げられ、さらに好ましくはアスペルギルス・オリゼ由来プロテアーゼが挙げられる。
 本発明の乳化性向上剤及び起泡性向上剤に含まれるプロテアーゼの量としては、本発明の乳化性向上剤及び起泡性向上剤の使用時にプロテアーゼによる効果を有効に得られる限度において特に限定されないが、例えば、1~500,000U/gが挙げられる。
 本発明の乳化性向上剤及び起泡性向上剤がプロテアーゼを含む場合、タンパク質脱アミド酵素1U当たりのプロテアーゼの量としては、例えば0.1U以上、0.3U以上、0.5U以上、又は1U以上が挙げられ、乳化性向上効果及び/又は起泡性向上効果をより一層向上させる観点から、好ましくは2U以上、より好ましくは3U以上、さらに好ましくは3.5U以上が挙げられる。タンパク質脱アミド酵素1U当たりのプロテアーゼの量の範囲の上限としては特に限定されないが、例えば150U以下が挙げられ、乳化性向上効果及び/又は起泡性向上効果をより一層向上させる観点から、好ましくは100U以下、75U以下、又は50U以下、より好ましくは25U以下、又は15U以下、さらに好ましくは10U以下が挙げられ、一層好ましくは5U以下、より一層好ましくは4U以下が挙げられる。
 プロテアーゼの活性については、カゼインを基質とし、1分間にチロシン1μgに相当するフォリン試液呈色物質の増加をもたらす酵素量を1単位(1U)とする。
1-2.他の成分
 本発明の乳化性向上剤及び起泡性向上剤は、上記の所定の酵素を含む酵素製剤として調製されることができ、上記の所定の酵素以外に、本発明の効果に影響を与えない程度に、他の成分を含んでいてもよい。他の成分としては、上記所定の酵素以外の酵素、並びに/若しくは、通常の酵素製剤に用いられる基剤及び/又は添加剤等が挙げられる。これらの他の成分は、乳化性向上剤及び起泡性向上剤の用途及び製剤形態等に応じて適宜決定することができる。
1-3.製剤形態
 本発明の乳化性向上剤及び起泡性向上剤の製剤形態は、液体であってもよいし、固体であってもよい。
1-4.用途
 本発明の乳化性向上剤及び起泡性向上剤は、それぞれ、植物性タンパク質及び油脂を含む液状組成物の乳化性及び起泡性を向上させる目的で用いられる。具体的には、本発明の乳化性向上剤及び起泡性向上剤は、以下の方法における酵素処理工程に用いることができる。
 植物性タンパク質及び油脂を含む液状組成物の乳化性を向上させる方法であって、前記液状組成物に、タンパク質脱アミド酵素及びリパーゼを作用させる酵素処理工程を含む、前記方法;
 植物性タンパク質及び油脂を含む液状組成物の起泡性を向上させる方法であって、前記液状組成物に、タンパク質脱アミド酵素及びリパーゼを作用させる酵素処理工程を含む、前記方法;又は
 植物性タンパク質及び油脂を含む液状組成物の乳化物の製造方法であって、植物性タンパク質及び油脂を含む液状組成物を、タンパク質脱アミド酵素及びリパーゼで処理する酵素処理工程を含む、前記製造方法。
 上記方法における液状組成物及び酵素処理工程等の詳細については後述「2.植物性タンパク質及び油脂を含む液状組成物の乳化性を向上させる方法、並びに植物性タンパク質及び油脂を含む液状組成物の起泡性を向上させる方法」に詳述する。
2.植物性タンパク質及び油脂を含む液状組成物の乳化性を向上させる方法、並びに植物性タンパク質及び油脂を含む液状組成物の起泡性を向上させる方法
 本発明の植物性タンパク質及び油脂を含む液状組成物の乳化性を向上させる方法、並びに植物性タンパク質及び油脂を含む液状組成物の起泡性を向上させる方法は、いずれも、植物性タンパク質及び油脂を含む液状組成物に、タンパク質脱アミド酵素及びリパーゼを作用させる酵素処理工程を含むことを特徴とする。以下、本発明のこれらの方法について詳述する。
2-1.植物性タンパク質及び油脂を含む液状組成物
 本発明の方法において酵素処理対象となる液状組成物は、植物性タンパク質及び油脂を含む。
2-1-1.植物性タンパク質
 植物性タンパク質としては、特に限定されないが、例えば、大豆、エンドウ、ルピン豆、そら豆、ひよこ豆、緑豆、インゲン豆等の菽穀類のタンパク質;オート麦、大麦、小麦、ライ麦、米、そば、ひえ、あわ、テフ、キヌア、トウモロコシ等の禾穀類のタンパク質;カナリーシード、亜麻仁、アーモンド、カシューナッツ、ヘーゼルナッツ、ペカンナッツ、マカダミアナッツ、ピスタチオ、クルミ、ブラジルナッツ、ピーナッツ、ココナッツ、ヘンプ(産業用ヘンプ)、ピリナッツ、栗、ゴマ、松の実等の種実類のタンパク質等が挙げられる。また、これらタンパク質は、天然物の形態;酸、アルカリなどによる化学的部分分解タンパク質の形態、各種試薬による化学修飾タンパク質の形態;及び合成タンパク質の形態のいずれであってもよい。また、これらの植物性タンパク質が天然物の形態である場合、植物性タンパク質は、液状組成物の材料として、由来する植物材料(具体的には、上記の菽穀類、禾穀類、種実類等)を使用したことに付随して含まれているものであってもよいし、液状組成物の材料として、該植物材料からタンパク質含量を任意の程度(例えばタンパク質含量が20~100重量%となる程度)に高めた加工材料を使用したことにより含まれているものであってもよい。当該加工材料の形態としては特に限定されず、粉末状、スラリー状、液状等が挙げられる。
 本発明において、上記の植物性タンパク質は、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。乳化性及び/又は起泡性をより一層向上させる観点から、好ましくは菽穀類タンパク質及び種実類タンパク質が挙げられ、より好ましくは、大豆、エンドウ、ルピン豆、そら豆、ひよこ豆、緑豆、インゲン豆、カナリーシード、亜麻仁、アーモンド、カシューナッツ、ヘーゼルナッツ、ペカンナッツ、マカダミアナッツ、ピスタチオ、クルミ、ブラジルナッツ、ピーナッツ、ココナッツ、ヘンプ(産業用ヘンプ)、ピリナッツ、栗、ゴマ、松の実のタンパク質が挙げられ、より好ましくは、エンドウ及びアーモンドのタンパク質が挙げられる。
 液状組成物中の植物性タンパク質の含量としては特に限定されないが、例えば0.1~20重量%、好ましくは0.2~10重量%、より好ましくは0.35~4重量%が挙げられる。
 また、液状組成物中に含まれる上記植物材料又は上記加工材料の含有量(但し、これら材料に水が含まれる場合、当該含有量には水の含量は含まないものとする。)としては、例えば0.1~50重量%、好ましくは0.2~35重量%、より好ましくは0.4~20重量%が挙げられる。
2-1-2.油脂
 油脂としては特に限定されないが、典型的には植物性油脂が用いられる。植物性油脂としては、大豆、エンドウ、ルピン豆、そら豆、ひよこ豆、緑豆、インゲン豆等の菽穀類の油脂;オート麦、大麦、小麦、ライ麦、米、そば、ひえ、あわ、テフ、キヌア、トウモロコシ等の禾穀類の油脂;ナタネ、ひまわり種子、ツバキ種子、ベニバナ種子、綿実、アブラヤシ果実、ココヤシ果実、カカオ、アボカド、オリーブ、カナリーシード、亜麻仁、シアナッツ、アーモンド、カシューナッツ、ヘーゼルナッツ、ペカンナッツ、マカダミアナッツ、ピスタチオ、クルミ、ブラジルナッツ、ピーナッツ、ココナッツ、ヘンプ(産業用ヘンプ)、ピリナッツ、栗、ゴマ、松の実等の種実類の油脂等が挙げられる。また、油脂としては、動物性油脂が用いられることも許容する。動物性油脂としては、魚油、ラード、牛脂、乳脂等が挙げられる。また、これら油脂は、天然物の形態;水添油の形態;分別油の形態;及びエステル交換等による合成油脂の形態のいずれであってもよい。また、油脂が、植物性油脂であり且つ天然物の形態である場合、植物性油脂は、液状組成物の材料として、由来する植物材料(具体的には、上記の菽穀類、禾穀類、種実類等)を使用したことに付随して含まれているものであってもよいし、液状組成物の材料として、該植物材料から油脂含量を任意の程度(例えば、油脂含量が40~100重量%となる程度)に高めた加工材料を使用したことにより含まれているものであってもよい。当該加工材料の形態としては特に限定されず、粉末状、スラリー状(つまりバターの形態)、液状等が挙げられる。
 本発明において、上記の油脂は、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。乳化性及び/又は起泡性をより一層向上させる観点から、好ましくは植物性油脂が挙げられ、より好ましくは大豆、エンドウ、米、トウモロコシ、ナタネ、ひまわり種子、ベニバナ種子、綿実、アブラヤシ果実、ココヤシ果実、カカオ果実、アーモンド、カシューナッツ、ピーナッツの油脂が挙げられ、さらに好ましくは、エンドウ、ナタネ、ひまわり種子、アーモンドの油脂が挙げられる。
 油脂が植物性油脂である場合、植物性油脂は、その由来する植物が植物性タンパク質の由来植物と同じであってもよいし、異なっていてもよいし、それらの組み合わせであってもよい。
 液状組成物中の油脂の含量としては特に限定されず、目的の乳化組成物及び/又は起泡性組成物の種類に応じて適宜決定することができるが、例えば0.1~25重量%が挙げられ、乳化性向上効果及び/又は起泡性向上効果をより一層向上させる観点から、好ましくは1~22重量%、より好ましくは3~20重量%、さらに好ましくは4.8~18重量%、一層好ましくは10~17重量%、又は13~16重量%が挙げられる。
 植物性タンパク質の含有量と油脂の含有量の比率については、上記の各含有量に応じて定まるが、植物性タンパク質1重量部当たりの油脂の含有量として、好ましくは0.1~60重量部、より好ましくは0.5~50重量部、さらに好ましくは10~47重量部、一層好ましくは20~45重量部、又は35~40重量部が挙げられる。
 また、油脂が植物性油脂である場合、液状組成物中に含まれる上記植物材料又は上記加工材料の含有量(但し、これら材料に水が含まれる場合、当該含有量には水の含量は含まないものとする。)としては、例えば0.1~40重量%、好ましくは1~35重量%、より好ましくは2.5~30重量%、さらに好ましくは5~25重量%、一層好ましくは10~20重量%、又は13~17重量%が挙げられる。
2-1-3.他の成分
 液状組成物には、上記の成分及び水の他に、適宜、調味料、乳化剤、ゲル化剤等を含むことができる。調味料としては、砂糖、食塩等が挙げられ、好ましくは砂糖が挙げられる。液状組成物が砂糖を含む場合、砂糖の含有量としては、例えば0.1~1.5重量%、好ましくは0.3~1.2重量%、より好ましくは0.5~1重量%が挙げられる。乳化剤としては、動物乳の代替飲料において乳化剤として用いられているものが挙げられ、具体的には、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、アラビアガム、レシチン等が挙げられる。
 本発明の乳化性向上剤及び起泡性向上剤は、それぞれ、液状組成物の乳化性向上効果及び起泡性向上効果に優れているため、液状組成物の好適な例として、好ましくは乳化剤(特にレシチン)及び/又はゲル化剤を含んでおらず、より好ましくは乳化剤(特にレシチン)及びゲル化剤を含んでいない。
2-1-4.形態
 液状組成物は、液状であることを限度として、その形態については特に限定されない。例えば、液状組成物は、乳化組成物の形態であってもよいし、乳化組成物でない形態であってもよい。また、液状組成物は、起泡した組成物の形態であってもよいし、起泡していない組成物の形態であってもよい。本発明の乳化性向上剤及び起泡性向上剤は、それぞれ、液状組成物の乳化性向上効果及び起泡性向上効果に優れているため、液状組成物の形態の好適な例として、好ましくは、乳化組成物でない及び/又は起泡していない組成物の形態が挙げられ、より好ましくは、乳化組成物でなく且つ起泡していない組成物の形態が挙げられる。
2-1-5.調製方法
 液状組成物は、水中に植物性タンパク質及び油脂を含むものとして調製される限りにおいて、その調製方法は特に限定されない。例えば、水、及び植物材料の加工材料であって植物性タンパク質及び植物性油脂を含むもの(並びに必要に応じて他の成分)を混合して調製する方法;水、植物材料の加工材料であって少なくとも植物性タンパク質を含むもの、及び植物材料の加工材料であって少なくとも植物性油脂を含むもの(並びに必要に応じて他の成分)を混合して調製する方法;水中で、植物性タンパク質及び植物性油脂を含む植物材料を破砕及び分散させ、必要に応じて他の成分を混合して調製する方法;水中で、少なくとも植物性タンパク質を含む植物材料を破砕及び分散させ、さらに油脂、及び必要に応じて他の成分を混合して調製する方法等が挙げられる。
2-2.酵素処理工程
 酵素処理工程では、上記の液状組成物に、タンパク質脱アミド酵素及びリパーゼを作用させる。乳化性向上効果及び/又は起泡性向上効果をより一層向上させる観点から、タンパク質脱アミド酵素及びリパーゼに、さらにプロテアーゼを組み合わせて使用することが好ましい。
2-2-1.所定の酵素
 タンパク質脱アミド酵素、リパーゼ及びプロテアーゼの具体例の詳細については、それぞれ、上記「1-1-1.タンパク質脱アミド酵素」、「1-1-2.リパーゼ」及び「1-1-3.プロテアーゼ」に述べた通りである。
 タンパク質脱アミド酵素に対するリパーゼ及びプロテアーゼの使用比率については、それぞれ、上記「1-1-2.リパーゼ」及び「1-1-3.プロテアーゼ」に述べた通りである。
 タンパク質脱アミド酵素の具体的な使用量としては特に限定されないが、植物性タンパク質1g当たりの量として、例えば0.05U以上、又は0.1U以上が挙げられ、乳化性向上効果及び/又は起泡性向上効果をより一層向上させる観点から、好ましくは0.4U以上、より好ましくは1U以上、2U以上、3U以上、3.5U以上、又は4U以上、さらに好ましくは4.5U以上、一層好ましくは4.8U以上が挙げられる。タンパク質脱アミド酵素の使用量範囲の上限としては特に限定されないが、植物性タンパク質1g当たりの量として、例えば50U以下、40U以下、30U以下、20U以下、又は15U以下、好ましくは10U以下、より好ましくは7U以下、又は6U以下が挙げられる。
 リパーゼの具体的な使用量としては特に限定されないが、油脂1g当たりの量として、例えば1U以上が挙げられ、乳化性向上効果及び/又は起泡性向上効果をより一層向上させる観点から、好ましくは5U以上、10U以上、14U以上、30U以上、40U以上、又は50U以上、より好ましくは60U以上、65U以上、70U以上、又は73U以上が挙げられる。リパーゼの使用量範囲の上限としては特に限定されないが、油脂1g当たりの量として、例えば500U以下、400U以下、350U以下、又は300U以下が挙げられ、乳化性向上効果及び/又は起泡性向上効果をより一層向上させる観点から、好ましくは200U以下、又は170U以下、より好ましくは130U以下、又は120U以下、さらに好ましくは90U以下、85U以下、又は80U以下が挙げられる。
 本発明において、プロテアーゼがさらに組み合わされる場合、プロテアーゼの具体的な使用量としては特に限定されないが、植物性タンパク質1g当たりの量として、例えば1U以上が挙げられ、乳化性向上効果及び/又は起泡性向上効果をより一層向上させる観点から、好ましくは5U以上、より好ましくは10U以上、さらに好ましくは13U以上が挙げられる。プロテアーゼの使用量範囲の上限としては特に限定されないが、植物性タンパク質1g当たりの量として、例えば150U以下、100U以下、又は75U以下が挙げられ、乳化性向上効果及び/又は起泡性向上効果をより一層向上させる観点から、好ましくは60U以下、より好ましくは50U以下、さらに好ましくは40U以下、一層好ましくは30U以下、より一層好ましくは20U以下、又は17U以下が挙げられる。
2-2-2.処理条件等
 酵素処理工程では、当該処理により、液状組成物において乳化性及び起泡性を向上させる反応を進行させる。
 各酵素を作用させる順番としては特に限定されず、各酵素を任意の順番で順次作用させてもよいし、全ての酵素を同時に作用させてもよいが、好ましくは全ての酵素を同時に作用させることができる。
 酵素処理における反応条件(温度、pH、時間等)については、使用する酵素の温度特性及びpH特性、液状組成物のスケール、並びに目的とする乳化性又は起泡性の向上効果の程度等に応じて適宜選択される。
 反応温度については、使用する酵素の温度特性等に応じて当業者が適宜決定することができるが、例えば20℃~60℃、好ましくは35℃~56℃、より好ましくは45℃~52℃が挙げられる。
 反応pH(液状組成物のpH)については、使用する酵素のpH特性等に応じて当業者が適宜決定することができるが、25℃でのpHとして、例えば5~8、又は5~7、好ましくは5.5~7、より好ましくは6~6.9、さらに好ましくは6.3~6.9が挙げられる。
 処理時間については、液状組成物のスケール、及び目的とする乳化性又は起泡性の向上効果の程度等に応じて当業者が適宜決定することができるが、例えば10分から4時間、好ましくは0.5時間から3時間が挙げられる。
 酵素処理工程を行う間、反応液を攪拌することが好ましい。撹拌速度については、液状組成物のスケール等に応じて当業者が適宜決定することができるが、例えば100~300rpm、好ましくは150~250rpm、より好ましくは180~220rpmが挙げられる。
2-3.他の工程
 本発明の方法は、上記の酵素処理工程の他に、任意の他の工程を含むことができる。他の工程の具体例については、酵素処理工程の前に行われる工程として、上記の液状組成物を調製する工程が挙げられ、酵素処理工程の後に行われる工程として、乳化工程(乳化性向上方法の場合及び起泡性向上方法の場合)及び起泡工程(起泡性向上方法の場合)が挙げられる。液状組成物を調製する工程の詳細は、上記「2-1-5.調製方法」で述べた通りである。乳化工程の条件としては、温度としては上記の反応温度が挙げられ、攪拌条件としては、例えば3000~7000rpm、好ましくは4000~6000rpm、より好ましくは4500~5500rpmが挙げられ、攪拌時間としては、例えば2~20分、好ましくは5~15分、より好ましくは8~13分が挙げられる。起泡工程の条件としては、一般的に動物乳を用いた泡立に用いられる条件を適宜採用することができる。
3.植物性タンパク質及び油脂を含む液状組成物の乳化物の製造方法
 本発明の植物性タンパク質及び油脂を含む液状組成物の乳化物の製造方法は、植物性タンパク質及び油脂を含む液状組成物を、タンパク質脱アミド酵素及びリパーゼで処理する酵素処理工程を含むことを特徴とする。
 液状組成物、酵素処理工程及び他の工程の詳細については、上記「2.植物性タンパク質及び油脂を含む液状組成物の乳化性を向上させる方法、並びに植物性タンパク質及び油脂を含む液状組成物の起泡性を向上させる方法」で述べた通りである。
4.植物性タンパク質及び油脂を含む液状組成物の乳化物
 本発明の植物性タンパク質及び油脂を含む液状組成物の乳化物は、上記「3.植物性タンパク質及び油脂を含む液状組成物の乳化物の製造方法」により得られる乳化組成物であって、飲食品であるものである。本発明の乳化物は、優れた乳化性及び起泡性を有している。
 本発明の乳化物の乳化タイプとしては水中油型及び油中水型のいずれであってもよいが、好ましくは水中油型が挙げられる。
 本発明の乳化物に係る飲食品の具体的な形態としては、植物性タンパク質飲料(植物性ミルク等)、植物性クリーマ―(コーヒークリーマー等)、植物性フォームドミルク、植物性クリーム等が挙げられる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明は以下の実施例に限定して解釈されるものではない。
[使用した材料]
 以下の試験例において使用した材料(酵素、基質、添加物)の詳細は以下の通りである。
Figure JPOXMLDOC01-appb-T000001
[酵素活性測定方法]
(1)タンパク質脱アミド酵素活性測定法
 30mM Z-Gln-Glyを含む0.2Mリン酸バッファー(pH6.5)1mLにタンパク質脱アミド酵素を含む試料溶液0.1mLを添加して、37℃、10分間放置した後、0.4M TCA溶液を1mL加えて反応を停止した。ブランクとして、30mM Z-Gln-Glyを含む0.2Mリン酸バッファー(pH6.5)1mLに0.4M TCA溶液を1mL加え、さらにタンパク質脱アミド酵素を含む試料溶液0.1mLを添加して、37℃で10分間放置した。
 前記で得られた溶液についてアンモニアテストワコー(富士フイルム和光純薬)を用い、反応液中に生じたアンモニア量の測定を行った。アンモニア標準液(塩化アンモニウム)を用いて作成したアンモニア濃度と吸光度(630nm)との関係を表す検量線より、反応液中のアンモニア濃度を求めた。
 タンパク質脱アミド酵素の活性を、1分間に1μmolのアンモニアを生成する酵素量を1単位(1U)とし、以下の式から算出した。式中、反応液量は2.1、酵素溶液量は0.1、Dfは酵素溶液の希釈倍率である。また、17.03はアンモニアの分子量である。
Figure JPOXMLDOC01-appb-M000002
(2)リパーゼ活性測定法
 基質である中性オリブ油乳化液は次に示す方法により調製した。無水炭酸ナトリウム200gを水400mLに溶かし、あらかじめ45℃で20分間温めたオリブ油約1.5L中に乳化が起きないよう静かに攪拌しながら加え、更に室温で約15分間攪拌した。これを室温で20時間以上放置した後、油を遠心分離(5℃、5,000min-1、20分間)し、中性オリブ油を調製した。中性オリブ油51.4mLと11重量%アラビアゴム・1.25重量%塩化カルシウム二水和物溶液158mLとをホモジナイザー容器に入れ、16,000±500min-1で30分間乳化することで調製した。
 平底試験管に水9mL、0.5重量%タウロコール酸ナトリウム試液2mL及び基質の中性オリブ油乳化液24mLを入れて混ぜ、37±0.5℃で10~15分間放置した。この液にpH電極と0.02mol/L水酸化ナトリウム液(定量用)注入管とを浸し、以降連続攪拌した。0.02mol/L水酸化ナトリウム液(定量用)にてpHを7.00に調整し、ビューレットを「0」に合わせた。リパーゼを含む試料溶液5mLを加えて反応を開始した。pH7.00を保持するように0.02mol/L水酸化ナトリウム液(定量用)を滴下し続け、10分後、0.02mol/L水酸化ナトリウム液(定量用)を添加してpHを9.00に合わせた。0.02mol/L水酸化ナトリウム液(定量用)の使用量(V10(mL))を記録した。ブランク溶液も同様に操作し、pHを9.00に合わせた後、リパーゼを含む試料溶液5mLを加え、再びpHを9.00に合わせ、0.02mol/L水酸化ナトリウム液(定量用)の使用量(V0(mL))を記録した。
 本条件下、1分間に1μmolの遊離脂肪酸の増加をもたらす酵素量を1単位(1U)とし、次式より算出した。
Figure JPOXMLDOC01-appb-M000003
(3)プロテアーゼ活性測定法
 0.6%(w/v)カゼイン溶液(0.7%(w/v)乳酸、pH3.0)5mLを、37℃で10分間加温した後、プロテアーゼを含む試料溶液1mLを加え、直ちに振り混ぜた。この液を37℃で10分間放置した後、0.44mol/Lトリクロロ酢酸試液5mLを加えて振り混ぜ、再び37℃で30分間放置し、ろ過した。初めのろ液3mLを除き、次のろ液2mLを量り、0.55mol/L炭酸ナトリウム試液5mL及びフォリン試液(1→3)1mLを加え、よく振り混ぜ、37℃で30分間放置した。この液(酵素反応液)につき、水を対照とし、波長660nmにおける吸光度ATを測定した。別に、プロテアーゼを含む試料溶液1mLを量り、0.44mol/Lトリクロロ酢酸試液5mLを加えて振り混ぜた後、0.6%(w/v)カゼイン溶液(0.7%(w/v)乳酸、pH3.0)5mLを加え、直ちに振り混ぜ、37℃で30分間放置したことを除いて上述の酵素反応液と同様に操作した液(ブランク)について、吸光度ABを測定した。1分間にチロシン1μgに相当するフォリン試液呈色物質の増加をもたらす酵素量を1単位(1U)とした。
 1mg/mLチロシン標準原液(0.2mol/L塩酸)1mL,2mL,3mL及び4mLを量り、それぞれに0.2mol/L塩酸試液を加え、100mLとした。それぞれの液2mLを量り、0.55mol/L炭酸ナトリウム試液5mL及びフォリン試液(1→3)1mLを加え、直ちに振り混ぜ、37℃で30分間放置した。これらの液につき、0.2mol/L塩酸試液2mLを量り、上記と同様に操作して得た液を対照とし、波長660nmにおける吸光度A1,A2,A3及びA4を測定した。縦軸に吸光度A1,A2,A3及びA4を、横軸にそれぞれの液2mL中のチロシン量(μg)をとり、検量線を作成し、吸光度差1に対するチロシン量(μg)を求めた。
Figure JPOXMLDOC01-appb-M000004
[試験例1]
 エンドウタンパク質素材を0.1Mリン酸ナトリウム緩衝液(pH6.8)に懸濁して調製したタンパク質溶液に、菜種油を加えて50℃で10分間攪拌することで、表2~5に示す組成の液状組成物を調製した後、表2~5に示す量の酵素を加えて50℃で2時間、200rpmで反応させた。その後、85℃で15分間処理して酵素を失活させた。反応液をホモジナイザー(SILERSON,L5M-A)を用いて5000rpmで10分間乳化し、その後室温(25℃)まで冷却し、水中油型乳化組成物(25℃でのpH:6.8)を調製した。
 得られた乳化組成物35mLずつを50mL容チューブに3本分とり、次のようにして分析用サンプル1、2、3を用意した。
 分析用サンプル1:調製直後(0日目、25℃)の乳化組成物。
 分析用サンプル2:4℃に設定した冷蔵庫中に乳化組成物を1週間静置したもの。
 分析用サンプル3:乳化組成物を3000rpmで25分間(25℃)遠心分離したもの。3000rpmで25分間の遠心分離は、1年静置に相当する加速条件である(Procedia Chemistry, Volume 16, 2015, Pages 171-176)。
 サンプル1~3の、乳化相の上端から1cm下の位置よりそれぞれ1mLをサンプリングし、精製水で100倍希釈した。得られた100倍希釈サンプルについて、280nmでの吸光度と600nmでの吸光度とを測定した。280nmでの吸光度によりタンパク質の可溶化を確認したうえで、600nmでの吸光度により乳化性の程度を評価した。600nmでの吸光度が大きいほど、乳化性が向上していることを示す。結果を表2~5に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表2~5から明らかな通り、植物性タンパク質及び油脂を含む液状組成物をタンパク質脱アミド酵素及びリパーゼを用いて処理することで、乳化性が向上した。
[試験例2]
 RO水、エンドウタンパク質素材、アーモンドバター及びサトウキビ糖、並びに場合によりヒマワリ油及び/又はレシチンを混合し、ホモジナイザー(SILERSON,L5M-A)を用いて5000rpmで10分間撹拌し、表6、7に示す組成の液状組成物を調製した。当該液状組成物の総タンパク質及び総脂質の量は、表6、7に示す通りである。この液状組成物に、表6、7に示す量の酵素を加えて50℃で1時間攪拌(200rpm)した。その後、5000rpmで10分間乳化し、熱処理(85℃、15分)で酵素を失活させ、さらに室温(25℃)まで冷却し、水中油型乳化組成物(アーモンドミルク)(25℃でのpH:6.5)を調製した。
 調製したアーモンドミルクを、50mL容チューブに35mL×2本(溶解性及び乳化性評価用サンプル)と、100mL(起泡性評価用サンプル)とに取り分けた。
 溶解性及び乳化性評価用サンプルについては、試験例1の分析用サンプル1及び3と同様の分析用サンプルとして用意し、試験例1と同様にして100倍希釈サンプルを調製し、280nmでの吸光度と600nmでの吸光度とを測定した。結果を表6、7に示す。
 また、起泡性評価用サンプルを、ミルク泡だて器(HadinEEon、モデル:MMF-9401)を用いて泡立てし、フォームドミルクを調製した。得られたフォームドミルクをメスシリンダーに移して泡の層の体積を測定することで、起泡性を評価した。当該体積が大きいほど、起泡性が向上していることを示す。結果を表6、7に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表6、7から明らかなように、植物性タンパク質及び油脂を含む液状組成物をタンパク質脱アミド酵素及びリパーゼを用いて処理することで、乳化性が向上した。その程度は、汎用乳化剤であるレシチンを用いた場合よりも向上していた。特に、タンパク質脱アミド酵素及びリパーゼとともにプロテアーゼを併用した場合には、乳化性がより一層向上していた。
 また、表6、7から明らかなように、植物性タンパク質及び油脂を含む液状組成物をタンパク質脱アミド酵素及びリパーゼを用いて処理することで、起泡性も向上した。特に、タンパク質脱アミド酵素及びリパーゼとともにプロテアーゼを併用した場合には、起泡性がより一層向上しており、その程度は、汎用乳化剤であるレシチンを用いた場合よりも向上していた。

Claims (13)

  1.  タンパク質脱アミド酵素及びリパーゼを含む、植物性タンパク質及び油脂を含む液状組成物の乳化性向上剤。
  2.  前記タンパク質脱アミド酵素1Uに対する前記リパーゼの量が1U以上である、請求項1に記載の乳化性向上剤。
  3.  さらにプロテアーゼを含む、請求項1に記載の乳化性向上剤。
  4.  タンパク質脱アミド酵素及びリパーゼを含む、植物性タンパク質及び油脂を含む液状組成物の起泡性向上剤。
  5.  さらにプロテアーゼを含む、請求項4に記載の起泡性向上剤。
  6.  前記タンパク質脱アミド酵素1Uに対する前記プロテアーゼの量が1U以上である、請求項5に記載の起泡性向上剤。
  7.  植物性タンパク質及び油脂を含む液状組成物の乳化性を向上させる方法であって、前記液状組成物に、タンパク質脱アミド酵素及びリパーゼを作用させる酵素処理工程を含む、前記方法。
  8.  前記植物性タンパク質1gあたり、前記タンパク質脱アミド酵素を0.05U以上用いる、請求項7に記載の方法。
  9.  前記油脂1g当たり、前記リパーゼを1U以上用いる、請求項7に記載の方法。
  10.  植物性タンパク質及び油脂を含む液状組成物の起泡性を向上させる方法であって、前記液状組成物に、タンパク質脱アミド酵素及びリパーゼを作用させる酵素処理工程を含む、前記方法。
  11.  植物性タンパク質及び油脂を含む液状組成物の乳化物の製造方法であって、植物性タンパク質及び油脂を含む液状組成物を、タンパク質脱アミド酵素及びリパーゼで処理する酵素処理工程を含む、前記製造方法。
  12.  前記酵素処理工程でさらにプロテアーゼを用いる、請求項11に記載の製造方法。
  13.  請求項11の製造方法により得られる植物性タンパク質及び油脂を含む液状組成物の乳化物であって、飲食品であるもの。
PCT/JP2023/038988 2022-10-28 2023-10-27 植物性タンパク質及び油脂を含む液状組成物の乳化性向上剤及び起泡性向上剤 WO2024090579A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022173787 2022-10-28
JP2022-173787 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024090579A1 true WO2024090579A1 (ja) 2024-05-02

Family

ID=90830980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038988 WO2024090579A1 (ja) 2022-10-28 2023-10-27 植物性タンパク質及び油脂を含む液状組成物の乳化性向上剤及び起泡性向上剤

Country Status (1)

Country Link
WO (1) WO2024090579A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014542A1 (ja) * 2020-07-13 2022-01-20 天野エンザイム株式会社 植物性タンパク質食品の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014542A1 (ja) * 2020-07-13 2022-01-20 天野エンザイム株式会社 植物性タンパク質食品の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAPAN ICE CREAM ASSOCIATION: "Appropriate temperature|Tell me! Ice Cream Prince | Welcome to the land of ice cream", 23 September 2021 (2021-09-23), XP093162080, Retrieved from the Internet <URL:https://web.archive.org/web/20210923115022/https://www.icecream.or.jp/iceworld/qa/10.html> [retrieved on 20231205] *
NISSEI: "Soft serve mix", 28 June 2022 (2022-06-28), XP093162070, Retrieved from the Internet <URL:https://web.archive.org/web/20220628132222/https://www.nissei-com.co.jp/softmix/> [retrieved on 20231205] *

Similar Documents

Publication Publication Date Title
RU2616802C2 (ru) Жидкая овсяная основа
US20240016187A1 (en) Method for producing processed plant-based protein-containing liquid composition
KR101722909B1 (ko) 커피 화이트너,이의 제조방법 및 음료의 제조방법
EP4180528A1 (en) Method for producing vegetable protein food
EP4241571A1 (en) Method for producing processed plant-based milk having increased dispersion stability and/or solubility
US20240122197A1 (en) Stretchable cheese alternative producing method
WO2024090579A1 (ja) 植物性タンパク質及び油脂を含む液状組成物の乳化性向上剤及び起泡性向上剤
US20030211202A1 (en) Method of treating soy proteins and soy protein product produced by this method
WO2023176455A1 (ja) 植物性タンパク臭抑制剤、植物性タンパク臭抑制用油脂組成物、及びこれらの利用
WO2022172897A1 (ja) うま味増強剤、うま味増強用油脂組成物、食用組成物のうま味増強方法、及びうま味増強剤の製造方法
AU9137501A (en) A process for making partially digested soy protein-containing dressing
WO2022181810A1 (ja) ストレッチ性チーズ代替物の製造方法
US20230329262A1 (en) Method of manufacturing processed chickpea milk
JP4481626B2 (ja) ゴマ含有食品
WO2024053745A1 (ja) 加工植物性タンパク質含有組成物の製造方法
CN116896986A (zh) 延展性干酪替代物的制造方法
WO2024010087A1 (ja) 植物性タンパク質含有組成物の香気変化方法及び呈味増強方法
US20220264916A1 (en) Process for increasing yield in production of plant based products
EP3890514B1 (en) Dressing
CN116471944A (zh) 一种含有加工植物性蛋白质的液态组合物的制造方法
CN116940240A (zh) 延展性干酪替代物的制造方法
JPH1198960A (ja) 蛋白性乳化剤の製造法
Goertzen The enzymatic modification of a chickpea protein isolate for improved nutritional and functional properties
TW202320646A (zh) 呈味改善劑、呈味改善用油脂組成物、呈味改善方法、呈味改善劑之製造方法及呈味經改善的食品
WO2023219172A1 (ja) 加工植物性タンパク質含有組成物の製造方法