WO2024090575A1 - Fuel cell power generation apparatus - Google Patents

Fuel cell power generation apparatus Download PDF

Info

Publication number
WO2024090575A1
WO2024090575A1 PCT/JP2023/038974 JP2023038974W WO2024090575A1 WO 2024090575 A1 WO2024090575 A1 WO 2024090575A1 JP 2023038974 W JP2023038974 W JP 2023038974W WO 2024090575 A1 WO2024090575 A1 WO 2024090575A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell power
power generation
wiring
unit
Prior art date
Application number
PCT/JP2023/038974
Other languages
French (fr)
Japanese (ja)
Inventor
邦幸 高橋
琢 福村
洋 高野
誠 三上
太一郎 加藤
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022173447A external-priority patent/JP2024064683A/en
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2024090575A1 publication Critical patent/WO2024090575A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04044Purification of heat exchange media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies

Definitions

  • This disclosure relates to a fuel cell power generation device.
  • a fuel cell module that includes a first heat exchanger that cools a first coolant discharged from the fuel cell stack, and a second heat exchanger that cools a second coolant discharged from several auxiliary devices, such as a converter that boosts the output voltage of the fuel cell stack.
  • a heat exchanger is a vehicle radiator (see, for example, Patent Document 1).
  • Patent Document 1 also discloses a fuel cell module that includes a fuel cell stack, a number of auxiliary devices that drive the fuel cell stack, a number of maintenance parts, and a frame that supports the fuel cell stack, the number of auxiliary devices, and the number of maintenance parts.
  • the first aspect of this disclosure provides a fuel cell power generation device that can be used for a variety of purposes.
  • the second aspect of the present disclosure provides a power generation device in which the fuel cell unit and auxiliary unit can be transported as a single unit.
  • a power wiring that outputs power to the outside and a signal wiring that transmits signals to the fuel cell unit are connected to the fuel cell unit, which has fuel cell cells.
  • the signal wiring that transmits signals to the fuel cell unit it is required to suppress the effects of electromagnetic noise from the power wiring that outputs power from the fuel cell unit.
  • the third aspect of the present disclosure provides a power generation device that suppresses the effects of electromagnetic noise from the power wiring that outputs electric power.
  • a fuel cell power generator includes: a fuel cell having an anode and an cathode; a fuel pipe for supplying hydrogen to the fuel electrode; an air compressor that compresses air and supplies it to the air electrode; an exhaust pipe for discharging exhaust gas generated by the fuel cell;
  • the fuel cell is provided with a first intermediate heat exchanger capable of exchanging heat between a first cooling fluid that cools the fuel cell and a first cold heat source that is any one of air, liquid, and cold heat generated by the expansion of compressed hydrogen.
  • the fuel cell power generation device is provided with a first intermediate heat exchanger capable of exchanging heat between the first cooling liquid that cools the fuel cell and a first cold heat source that is either air, liquid, or cold heat generated by the expansion of compressed hydrogen, so that the fuel cell power generation device can be used for a variety of purposes.
  • a fuel cell power generation device comprising a mobile platform having a longitudinal direction in a first direction, and a fuel cell module including an auxiliary unit used when operating a fuel cell, the mobile platform having a first frame member and a second frame member having an internal space in which at least one of a first side in the first direction or a second side opposite to the first side is open, the second frame member is spaced apart from the first frame member in a second direction intersecting the first direction, each of the first frame member and the second frame member extends in the first direction, and the fuel cell module is placed on the top of each of the first frame member and the second frame member.
  • a fuel cell power generation device comprising a fuel cell unit having a fuel cell cell, an auxiliary unit having auxiliary equipment used in operating the fuel cell cell, a first wiring that carries electricity generated from the fuel cell unit and is connected to the fuel cell unit and is disposed in the auxiliary unit, and a second wiring for at least one of transmitting and receiving signals in the fuel cell unit, the first wiring being disposed at a distance from the second wiring.
  • the first aspect of this disclosure provides a fuel cell power generation device that can be used for a variety of purposes.
  • the second aspect of the present disclosure provides a power generation device in which the fuel cell unit and auxiliary unit can be transported as a single unit.
  • the third aspect of the present disclosure provides a power generation device that can suppress the effects of electromagnetic noise from the power wiring that outputs electric power.
  • FIG. 1 is a diagram showing an example of the configuration of a fuel cell power generation system including a fuel cell power generation device according to a first embodiment.
  • FIG. 2 is a diagram showing in detail an example of the configuration of the fuel cell power generation device of the first embodiment.
  • FIG. 3 is a perspective view of a fuel cell power generating apparatus according to the second embodiment.
  • FIG. 4 is a front view of a fuel cell power generating apparatus according to the second embodiment.
  • FIG. 5 is a rear view of the fuel cell power generating apparatus according to the second embodiment.
  • FIG. 6 is a plan view of a fuel cell power generating apparatus according to the second embodiment.
  • FIG. 7 is a diagram illustrating the configuration of a fuel cell power generation device according to the second embodiment.
  • FIG. 8 is a perspective view of a pallet in a fuel cell power generation system according to the second embodiment.
  • FIG. 9 is a side view of a frame member provided on a pallet in a fuel cell power generation system according to the second embodiment.
  • FIG. 10 is a diagram showing a state in which forks are inserted into frame members provided on a pallet in a fuel cell power generation system according to the second embodiment.
  • FIG. 11 is a perspective view of a first modified example of the fuel cell power generating apparatus according to the second embodiment.
  • FIG. 12 is a perspective view of a second modified example of the fuel cell power generating apparatus according to the second embodiment.
  • FIG. 13 is a perspective view of a mobile platform in Modification 2 of the fuel cell power generation system according to the second embodiment.
  • FIG. 14 is a side view of a transport platform in Modification 2 of the fuel cell power generation system according to the second embodiment.
  • FIG. 15 is a bottom view of a transport stand in Modification 2 of the fuel cell power generation system according to the second embodiment.
  • FIG. 16 is a perspective view of a fuel cell power generating apparatus according to embodiment 2A.
  • FIG. 17 is a perspective view of a transport platform for a fuel cell power generation system according to embodiment 2A.
  • FIG. 18 is a perspective view of a modified example of a fuel cell power generating apparatus according to embodiment 2A.
  • FIG. 19 is a perspective view of a modified example of the transport platform for the fuel cell power generation system according to embodiment 2A.
  • FIG. 20 is a diagram showing a state in which a modified example of the transport stand for the fuel cell power generation system according to embodiment 2A is used.
  • FIG. 21 is a perspective view of a fuel cell power generating apparatus according to the third embodiment.
  • FIG. 22 is a perspective view of a fuel cell power generating apparatus according to the third embodiment.
  • FIG. 23 is a front view of a fuel cell power generating apparatus according to the third embodiment.
  • FIG. 24 is a rear view of the fuel cell power generating apparatus according to the third embodiment.
  • FIG. 25 is a diagram illustrating the configuration of a fuel cell power generating apparatus according to the third embodiment.
  • FIG. 26 is a diagram illustrating wiring of a fuel cell power generating apparatus according to the third embodiment.
  • FIG. 27 is a diagram illustrating wiring of a fuel cell power generating apparatus according to the third embodiment.
  • FIG. 28 is a diagram illustrating the ground wiring of the fuel cell power generator according to the third embodiment.
  • FIG. 29 is a diagram illustrating the ground wiring of the fuel cell power generator according to the third embodiment.
  • FIG. 30 is a diagram illustrating power supply wiring of a fuel cell power generator according to the third embodiment.
  • FIG. 31 is a perspective view of a fuel cell power generation apparatus according to embodiment 3A.
  • FIG. 32 is a perspective view of a fuel cell power generating apparatus according to embodiment 3A.
  • FIG. 33 is a front view of a fuel cell power generator according to embodiment 3A.
  • FIG. 34 is a rear view of the fuel cell power generator according to the third embodiment.
  • FIG. 35 is a perspective view of an auxiliary frame in a fuel cell power generation system according to the third embodiment.
  • FIG. 36 is a perspective view of an auxiliary frame in a fuel cell power generation system according to embodiment 3A.
  • FIG. 37 is a perspective view of an auxiliary frame in a fuel cell power generation system according to the third embodiment.
  • FIG. 38 is a diagram illustrating the arrangement of auxiliary machinery in a fuel cell power generation system according to the third embodiment.
  • FIG. 39 is a diagram illustrating the arrangement of auxiliary machinery in a fuel cell power generation system according to the third embodiment.
  • FIG. 40 is a diagram for explaining the arrangement of liquid system devices and electrical system devices in a fuel cell power generation system according to the third embodiment.
  • FIG. 41 is a diagram for explaining the arrangement of liquid system devices and electrical system devices in a fuel cell power generation system according to the third embodiment.
  • FIG. 42 is a perspective view of a pallet in a fuel cell power generation system according to the third embodiment.
  • FIG. 43 is a side view of a pallet in a fuel cell power generation system according to embodiment 3A.
  • FIG. 44 is a bottom view of a pallet in a fuel cell power generation system according to embodiment 3A.
  • “approximately parallel” means that even if two lines or two surfaces are not completely parallel to each other, they can be treated as parallel to each other as long as it is within the range of manufacturing tolerance.
  • the other terms “approximately right angle,” “approximately perpendicular,” “approximately horizontal,” and “approximately vertical” are also intended to fall under the respective terms as long as the relative positional relationship between the two lines or two surfaces is within the range of manufacturing tolerance.
  • FIG. 1 is a diagram showing an example of the configuration of a fuel cell power generation system including a fuel cell power generation device of the first embodiment.
  • the fuel cell power generation system 201 shown in FIG. 1 is a system that supplies power generated by multiple FC (fuel cell) platforms connected in parallel to an external device 12 that is the power supply target.
  • FC fuel cell
  • Specific examples of uses of the fuel cell power generation system 201 include stationary power generation systems, power generation systems for loading and unloading machinery such as port cranes, and power generation systems for ships. Other uses include railways and construction machinery. Uses of the fuel cell power generation system 201 are not limited to these examples, and the fuel cell power generation system 201 may be applied to other applications.
  • the fuel cell power generation system 201 includes a fuel cell power generation device 101 and an auxiliary system 301.
  • the auxiliary system 301 is a peripheral system that includes multiple auxiliary devices connected to the fuel cell power generation apparatus 101, which is the main unit, and assists the operation of the fuel cell power generation apparatus 101.
  • FIG. 1 shows the multiple auxiliary devices as examples of a control power supply 32, a purge system 30, a fuel system 18, an air supply system 19, an output line 17, a power conversion device 11, a DC/DC converter 13, a secondary battery 14, an exhaust system 31, and a cooler 15.
  • Some or all of the multiple auxiliary devices may be built into the fuel cell power generation apparatus 101, or may be unitized.
  • the fuel cell power generation apparatus 101 may include some or all of the multiple auxiliary devices inside the fuel cell power generation apparatus 101, or may be external to the fuel cell power generation apparatus 101.
  • the fuel cell power generation device 101 generates power to be supplied to an external device 12 using multiple FC platforms.
  • the fuel cell power generation device 101 may be unitized.
  • the fuel cell power generation device 101 includes multiple FC platforms (in this example, three FC platforms 1, 2, and 3) connected in parallel to an output line 17, and a control device 10 that controls the multiple FC platforms.
  • the number of multiple FC platforms connected in parallel is not limited to three, and may be two, four, or more.
  • FC platforms 1, 2, and 3 each include an FC stack connected to a common output line 17 via an output point 16.
  • the FC stack is an example of a fuel cell.
  • FC platform 1 includes an FC stack 21
  • FC platform 2 includes an FC stack 22
  • FC platform 3 includes an FC stack 23.
  • the FC stacks 21, 22, and 23 are devices that electrochemically convert the chemical energy of fuels such as hydrogen into electrical energy.
  • the FC stacks 21, 22, and 23 generate electricity through an electrochemical reaction between hydrogen or hydrogen-rich gas supplied via a fuel system 18 including a fuel pipe and oxygen contained in air supplied from the outside via an air supply system 19 including an air pipe.
  • the power generation state of the FC stacks 21, 22, and 23 (FC platforms 1, 2, and 3) is controlled by the control device 10.
  • Exhaust gas generated by the electrochemical reaction of the FC stacks 21, 22, and 23 is discharged via an exhaust system 31 including an exhaust pipe.
  • the FC stacks 21, 22, and 23 are cooled by a coolant supplied from a cooler 15 such as a radiator.
  • the FC stacks 21, 22, and 23 are, for example, polymer electrolyte fuel cells (PEFCs) and have a stack structure in which many single cells are stacked.
  • the single cell has a membrane-electrode assembly (MEA) in which both sides of a polymer electrolyte membrane for selectively transporting hydrogen ions are sandwiched between a pair of electrodes formed of a porous material, and a pair of separators that sandwich the MEA from both sides.
  • MEA membrane-electrode assembly
  • Each of the pair of electrodes has a catalyst layer mainly composed of carbon powder that supports a platinum-based metal catalyst (electrode catalyst), for example, and a gas diffusion layer that is both breathable and electronically conductive.
  • the FC stacks 21, 22, and 23 are fitted with voltage sensors for detecting the voltages at their output terminals, and current sensors for detecting the output currents from their output terminals.
  • the control device 10 obtains the detection values of the voltages output from the FC stacks 21, 22, and 23 using the voltage sensors, and obtains the detection values of the currents output from the FC stacks 21, 22, and 23 using the current sensors.
  • the control device 10 detects the output powers p1, p2, and p3 of the FC stacks 21, 22, and 23 using the detection values of the voltages and currents.
  • FC stacks 21, 22, 23 FC platforms 1, 2, 3 in the fuel cell power generation device 101 is supplied to the external device 12 via the power conversion device 11.
  • the power conversion device 11 is a device that converts input power Pa into power Pc that is supplied to the external device 12.
  • the power conversion device 11 is, for example, an inverter that converts DC power obtained by power generation in the FC stacks 21, 22, and 23 into AC power and supplies it to the external device 12.
  • inverters include a power conditioning system (PCS) and a grid-connected inverter.
  • PCS power conditioning system
  • the power conversion device 11 may be an inverter that drives the motor.
  • the power conversion device 11 may be a converter that converts the voltage of the DC power obtained by power generation in the FC stacks 21, 22, and 23 into DC power of a different voltage and supplies it to the external device 12.
  • the DC power obtained by power generation in the FC stacks 21, 22, 23 may be charged to the secondary battery 14 connected to the output line 17 via the DC/DC converter 13.
  • the power Pb discharged from the secondary battery 14 is supplied to the external device 12 via the power conversion device 11.
  • the power Pb input (regenerated) from the external device 12 via the power conversion device 11 may be charged to the secondary battery 14.
  • the charging or discharging of the secondary battery 14 is controlled by the DC/DC converter 13 that operates according to a drive control signal from the control device 10.
  • the DC/DC converter 13 may not be required.
  • the secondary battery 14 is a chargeable and dischargeable battery.
  • the secondary battery 14 may include a plurality of storage batteries 14 1 , ..., 14 n (n is an integer of 2 or more) connected in series.
  • Specific examples of the secondary battery 14 include a lithium ion battery, a lithium ion capacitor, and an electric double layer capacitor.
  • the fuel system 18 may include a reforming device that reforms the hydrocarbon fuel supplied from the outside into hydrogen-rich gas.
  • the reforming device outputs hydrogen-rich gas produced by a reforming reaction of the hydrocarbon fuel to the hydrogen pipe.
  • the reforming device includes, for example, a desulfurizer that removes sulfur contained in the hydrocarbon fuel, a reformer that causes a reforming reaction of the desulfurized hydrocarbon fuel, and a CO remover that removes carbon monoxide (CO) generated during reforming.
  • Hydrocarbon fuels are not limited to city gas, but may also include methane gas, propane gas, digester gas derived from sewage sludge, etc., and biogas generated from food waste, etc.
  • the control device 10 is a controller that controls the operation of the FC platforms 1, 2, and 3.
  • the control device 10 operates, for example, with power (e.g., 12-volt direct current power) supplied from a control power source 32.
  • the control power source 32 is, for example, a control battery.
  • the number of control devices 10 is not limited to one, and may be multiple. For example, a control device may be provided for each of the FC platforms 1, 2, and 3.
  • FIG. 1 illustrates an example of a configuration in which a fuel cell power generation device 101 has a control power supply 32 common to FC platforms 1, 2, and 3.
  • a control power supply 32 By sharing the power supply for FC platforms 1, 2, and 3 as a control power supply 32, the fuel cell power generation system 201 and the fuel cell power generation device 101 can be made smaller than in a configuration in which multiple control power supplies are provided.
  • the fuel cell power generation device 101 may be provided with individual control power supplies 32 for the FC platforms 1, 2, and 3. By providing multiple power supplies separately for the multiple FC platforms, even if some of the multiple control power supplies are unusable due to failure or maintenance, etc., the remaining power supplies can be used to continue operating some or all of the multiple FC platforms.
  • control device 10 (the processing performed by the control device 10) are realized, for example, by a processor such as a CPU (Central Processing Unit) operating according to a program stored in memory.
  • the functions of the control device 10 may also be realized by an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit).
  • the fuel cell power generation device 101 includes, for example, a control device 10 and multiple FC platforms 1, 2, and 3.
  • the FC platform 1 includes, for example, a fuel pipe 118, an air pipe 119, an air filter 33, an exhaust pipe 131, a first cooling system 36, a second cooling system 90, and an FC unit 51.
  • the FC unit 51 includes an FC stack 21, a boost converter 42, a hydrogen pump 43, an air compressor 45, a water pump 44, an air inlet shutoff valve 77, and an exhaust air outlet shutoff valve 78, etc.
  • the boost converter 42, the hydrogen pump 43, the air compressor 45, the water pump 44, the air inlet shutoff valve 77, and the exhaust air outlet shutoff valve 78, etc. are controlled by the control device 10.
  • the FC platforms 2 and 3 have the same configuration and function as the FC platform 1, and are controlled by the control device 10 in the same manner as the FC platform 1. Therefore, the explanation of FC platforms 2 and 3 will be omitted, as the explanation of FC platform 1 will be used.
  • the FC stack 21 has a fuel electrode 71 and an air electrode 72.
  • the FC stack 21 generates electricity by an electrochemical reaction between hydrogen or hydrogen-rich gas supplied to the fuel electrode 71 and oxygen contained in the air supplied to the air electrode 72.
  • the FC stack 21 is connected to the output line 17 via a boost converter 42.
  • the boost converter 42 is a DC/DC converter that boosts the voltage output from the FC stack 21 and outputs the boosted DC power to the output line 17 via the output point 16.
  • the output power of the multiple FC stacks 21, 22, and 23 in the multiple FC platforms 1, 2, and 3 is output to a common output line 17 via the corresponding boost converters 42.
  • the fuel pipe 118 is supplied with hydrogen from a fuel system 18 commonly connected to the multiple FC platforms 1, 2, and 3.
  • the fuel pipe 118 supplies hydrogen to the fuel electrode 71 via the inlet 75.
  • Air is supplied to the air pipe 119 from an air supply system 19 commonly connected to the multiple FC platforms 1, 2, and 3.
  • the air pipe 119 supplies air to the air electrode 72 of the FC stack 21 via an inlet 73.
  • the air pipe 119 is not essential, and the air filter 33 may directly draw in air from the open parts of the FC platforms 1, 2, and 3.
  • the air filter 33 removes dust and impurities that may adversely affect the fuel cell from the air supplied via the air supply system 19 and air pipe 119, and supplies the air to the air compressor 45 via the air pipe 120.
  • the air filter is also called an air cleaner.
  • the air compressor 45 compresses the air supplied through the air filter 33 and supplies it to the air electrode 72 of the FC stack 21.
  • the oxygen-containing air compressed by the air compressor 45 is supplied to the air electrode 72 of the FC stack 21 via the inlet 73.
  • the air inlet shutoff valve 77 shuts off the flow of air supplied from the air compressor 45 to the inlet 73 of the air electrode 72.
  • the exhaust pipe 131 discharges exhaust gas generated in the FC stack 21 to an exhaust system 31 commonly connected to multiple FC platforms 1, 2, and 3.
  • the exhaust air outlet shutoff valve 78 shuts off the flow of off-gas discharged from the outlet 74 of the air electrode 72 of the FC stack 21 to the exhaust pipe 131.
  • the first cooling system 36 cools the FC stack 21 with a first cooling liquid such as cooling water.
  • the first cooling system 36 has a first intermediate heat exchanger 34 that exchanges heat with a cold source 39 to cool the first cooling liquid.
  • the water pump 44 circulates the first cooling liquid between the first intermediate heat exchanger 34 and the FC stack 21.
  • the FC stack 21 is cooled by the first cooling liquid circulated by the water pump 44.
  • the first intermediate heat exchanger 34 is a heat exchanger capable of exchanging heat between the first cooling liquid that cools the FC stack 21 and a different type of cold heat source 39.
  • the different types of cold heat sources 39 mean that the type of cold heat source 39 used does not matter.
  • the first intermediate heat exchanger 34 can cool the first cooling liquid with any cold heat source 39, regardless of the type of cold heat source 39 used, thereby realizing a fuel cell power generation device 101 that can be used for various purposes such as those described above.
  • the first intermediate heat exchanger 34 has a heat dissipation section 40 through which the first cooling liquid circulating in the first cooling system 36 passes, and a heat receiving section 41 through which a heat medium passes to transfer heat between the cold heat source 39.
  • the heat medium supplied from the cold heat source 39 may be liquid or gas.
  • the first cooling liquid is cooled by dissipating heat from the heat dissipation section 40 to the heat receiving section 41 in the first intermediate heat exchanger 34.
  • a specific example of the first intermediate heat exchanger 34 is a plate heat exchanger, but the first intermediate heat exchanger 34 is not limited to this.
  • the multiple first intermediate heat exchangers 34 in the multiple FC platforms 1, 2, 3 may each exchange heat with a cold heat source 39 that is commonly connected to the multiple FC platforms 1, 2, 3. This allows the cold heat source 39 to be common between the multiple FC platforms 1, 2, 3, making it possible to reduce the size of the fuel cell power generation device 101. Note that the cold heat source 39 may be different between the multiple FC platforms 1, 2, 3.
  • the second cooling system 90 cools the air compressor 45 with a second cooling liquid such as cooling water.
  • the second cooling system 90 has a second intermediate heat exchanger 92 that exchanges heat with a cold source 94 to cool the second cooling liquid.
  • the pump 91 circulates the second cooling liquid between the second intermediate heat exchanger 92 and the air compressor 45.
  • the air compressor 45 is cooled by the second cooling liquid circulated by the pump 91.
  • the second intermediate heat exchanger 92 is a heat exchanger capable of exchanging heat between the second cooling liquid, which cools the air compressor 45, and a different type of cold heat source 94.
  • the different types of cold heat sources 94 mean that the type of cold heat source 94 used does not matter.
  • the second intermediate heat exchanger 92 can cool the second cooling liquid with any cold heat source 94, regardless of the type of cold heat source 94 used, thereby realizing a fuel cell power generation device 101 that can be used for various purposes such as those described above.
  • the second intermediate heat exchanger 92 has a heat dissipation section 95 through which the second cooling liquid circulating in the second cooling system 90 passes, and a heat receiving section 96 through which a heat medium passes to transfer heat between the cold heat source 94.
  • the heat medium supplied from the cold heat source 94 may be liquid or gas.
  • the second cooling liquid is cooled by dissipating heat from the heat dissipation section 95 to the heat receiving section 96 in the second intermediate heat exchanger 92.
  • a specific example of the second intermediate heat exchanger 92 is a plate heat exchanger, but the second intermediate heat exchanger 92 is not limited to this.
  • the multiple second intermediate heat exchangers 92 in the multiple FC platforms 1, 2, 3 may each exchange heat with a cold heat source 94 that is commonly connected to the multiple FC platforms 1, 2, 3. This allows the cold heat source 94 to be common between the multiple FC platforms 1, 2, 3, making it possible to reduce the size of the fuel cell power generation device 101. Note that the cold heat source 94 may be different between the multiple FC platforms 1, 2, 3.
  • the cooler 15 ( Figure 1) is an example of the cold heat source 39 or the cold heat source 94.
  • the cold heat source 39 or the cold heat source 94 is, for example, an air-cooled cooler, an open cooling tower, a closed cooling tower, cooling water in a factory, drinking water, river water, seawater, the heat of vaporization of liquefied hydrogen, or the cold heat generated when compressed hydrogen expands.
  • the material of the heat receiving portion 41 of the first intermediate heat exchanger 34 is, for example, a low-elution metal with a relatively low elution rate of metal ions (such as highly corrosion-resistant austenitic stainless steel (SUS316L)). If the heat medium in contact with the heat receiving portion 41 is seawater or the like, there is a risk that metal ions will elute from the heat receiving portion 41, depending on the material of the heat receiving portion 41. If the material of the heat receiving portion 41 is a low-elution metal as described above, the restrictions on the heat medium supplied from the cold heat source 39 are alleviated, and the options for the cold heat source 39 increase. As a result, a fuel cell power generation device 101 that can be used for various applications such as those described above is realized. The same applies to the material of the heat receiving portion 96 of the second intermediate heat exchanger 92.
  • SUS316L highly corrosion-resistant austenitic stainless steel
  • the first coolant can dissipate heat without having to extend the path through which the first coolant circulates to the cold heat source 39 outside the FC platform.
  • the path through which the first coolant circulates can be shortened, and the amount of expensive first coolant used to cool the fuel cell can be reduced.
  • costs can be reduced.
  • the second intermediate heat exchanger 92 the amount of second coolant used can be reduced, and costs can be reduced.
  • the cold heat source 94 from which the second intermediate heat exchanger 92 dissipates heat of the second cooling liquid may be the same as or different from the cold heat source 39 from which the first intermediate heat exchanger 34 dissipates heat of the first cooling liquid. If the cold heat source 94 and the cold heat source 39 are the same, the cold heat source is shared between the first intermediate heat exchanger 34 and the second intermediate heat exchanger 92, so that the fuel cell power generation device 101 can be made smaller.
  • the first cooling system 36 may include an ion exchanger 35 that removes ions from the first cooling liquid. By removing ions from the first cooling liquid, an increase in the electrical conductivity of the first cooling liquid inputted and outputted to the FC stack 21 is suppressed, thereby suppressing electrical interference between the FC stack 21 and the first cooling liquid.
  • the first intermediate heat exchanger 34 by adopting the first intermediate heat exchanger 34, the elution of ions from the first cooling liquid on the first cooling system 36 side to the heat medium on the cold heat source 39 side is suppressed, thereby reducing the frequency of maintenance of the ion exchanger 35.
  • the first cooling system 36 may include a sensor 37 that measures the electrical conductivity of the first cooling liquid.
  • the electrical conductivity of the first cooling liquid can be managed. For example, if the sensor 37 detects that the electrical conductivity has started to increase, the user can know when to perform maintenance on the ion exchanger 35. In addition, by managing the electrical conductivity, the insulation between the DC PN (between the positive and negative) of the fuel cell can be maintained. If the electrical conductivity is measured to be equal to or greater than a first threshold value (e.g., 1 ⁇ S/cm), the sensor 37 or the control device 10 may issue an alarm so that the user can be aware of the alarm.
  • a first threshold value e.g., 1 ⁇ S/cm
  • control device 10 may stop the FC platform in which the electrical conductivity equal to or greater than the second threshold value is measured.
  • a second threshold value e.g., 5 ⁇ S/cm
  • the first cooling system 36 may include a first tank 38 that absorbs the expansion or contraction of the first cooling liquid caused by temperature changes. This suppresses the expansion or contraction of the first cooling liquid caused by temperature changes.
  • the second cooling system 90 may include a second tank 93 that absorbs the expansion or contraction of the second cooling liquid caused by temperature changes. This suppresses the expansion or contraction of the second cooling liquid caused by temperature changes.
  • the FC platform 1 may include a first gas-liquid separator 79 and a hydrogen pump 43.
  • the first gas-liquid separator 79 separates hydrogen gas and wastewater from the first multiphase flow discharged from the outlet 76 of the fuel electrode 71.
  • the hydrogen pump 43 circulates the hydrogen gas separated by the first gas-liquid separator 79 to the inlet 75 of the fuel electrode 71. This allows surplus hydrogen gas produced by power generation in the FC stack 21 to be reused for power generation in the FC stack 21.
  • the FC platform 1 may also include a mixer 80.
  • the exhaust pipe 131 discharges a second multiphase flow obtained by combining the wastewater separated by the first gas-liquid separator 79, hydrogen mixed in the wastewater, and exhaust air discharged from the outlet 74 of the air electrode 72 in the mixer 80. This allows the wastewater, hydrogen, and exhaust air to be discharged together.
  • the FC platform 1 may be provided with a second gas-liquid separator 81 that separates water and gas from the second multiphase flow. This allows the wastewater and exhaust gas to be separated and discharged.
  • the wastewater or exhaust gas may be collected by a collector 82. This prevents the surrounding area from being polluted by the wastewater or exhaust gas.
  • the fuel cell power generation device 101 may be equipped with a purge system 30 that individually supplies an inert gas such as nitrogen to the multiple fuel pipes 118 in the multiple FC platforms 1, 2, and 3.
  • the purge system 30 may switch the flow path with a valve so that the multiple fuel pipes 118 can be individually purged with the inert gas. This makes it possible to manage the deterioration of characteristics due to purging with the inert gas on a per-FC stack basis.
  • a portion of the output power p1 of the FC stack 21 is used as operating power for auxiliary equipment such as the air compressor 45 in the FC unit 51, and the surplus power is output as the output power P1 of the FC unit 51.
  • the control device 10 performs control to maintain the power supplied from the output line 17 to the outside at a substantially constant predetermined value.
  • Po is the power at the output point 16.
  • Pb is the power exchanged between the secondary battery 14 and the output line 17.
  • the control device 10 may control the power generation of the FC stacks 21, 22, and 23 and the conversion operation of the power conversion device 11 so that the power Pc output from the power conversion device 11 to the external device 12 follows a target value.
  • Pa or Pc is an example of power supplied from the output line 17 to the outside.
  • the control device 10 may perform control (power fluctuation control) to change (more specifically, increase or decrease) the output power p1, p2, and p3 of the FC stacks 21, 22, and 23 while the supply power Pa from the output line 17 to the outside is maintained at a substantially constant value.
  • the supply power Pa can be detected by a voltage sensor and a current sensor.
  • the control device 10 increases or decreases the operating current (load current) of the boost converter 42 of the FC platform 1 to increase or decrease the load on the FC stack 21 and increase or decrease the output power p1.
  • the control device 10 increases or decreases the operating current (load current) of the boost converter 42 of the FC platform 2 to increase or decrease the load on the FC stack 22 and increase or decrease the output power p2.
  • the control device 10 increases or decreases the operating current (load current) of the boost converter 42 of the FC platform 3 to increase or decrease the load on the FC stack 23 and increase or decrease the output power p3.
  • the output powers p1, p2, and p3 of the multiple FC stacks 21, 22, and 23 are increased or decreased while the power supply Pa from the output line 17 to the outside is maintained at an approximately constant value.
  • the humidity distribution deviation within the cell surface of the multiple FC stacks 21, 22, and 23 is reduced compared to the case where the output powers p1, p2, and p3 are always controlled to be constant.
  • control device 10 performing the power fluctuation control to increase or decrease the output powers p1, p2, and p3 while the supply power Pa is maintained at an approximately constant value, an approximately constant power supply is ensured and deterioration of the multiple FC stacks 21, 22, and 23 is suppressed. Suppressing deterioration of the multiple FC stacks 21, 22, and 23 contributes to improving the durability of the fuel cell power generation device 101 and the fuel cell power generation system 201.
  • the fuel cell power generation system 201 or the fuel cell power generation device 101 may include a plurality of switches (switches 61, 62, and 63 in this example) provided for each of a plurality of FC platforms.
  • Switch 61 is a circuit breaker that switches between disconnection and connection of the power path between the FC stack 21 and boost converter 42, and the output point 16 connected to the output line 17.
  • Switch 62 is a circuit breaker that switches between disconnection and connection of the power path between the FC stack 22 and boost converter (not shown), and the output point 16 connected to the output line 17.
  • Switch 63 is a circuit breaker that switches between disconnection and connection of the power path between the FC stack 23 and boost converter (not shown), and the output point 16 connected to the output line 17.
  • the control device 10 may separate some of the FC stacks 21, 22, 23 from the other FC stacks by switches 61, 62, or 63. With the FC stacks separated, the control device 10 may control the output power of the other FC stacks so that the power supply Pa is maintained at a substantially constant value. This makes it easier to replace the FC stacks while the power supply Pa is maintained at a substantially constant value. For example, with the FC stack 21 separated from the FC stacks 22, 23 by switch 61, the control device 10 may control the output power of the other FC stacks 22, 23 so that the power supply Pa is maintained at a substantially constant value.
  • the switches 61, 62, 63 are automatically switched on and off by the control device 10, but may also be switched manually.
  • the fuel cell power generation system 101 may be equipped with shutoff valves for shutting off the piping and switches for shutting off the wiring so that some of the multiple FC platforms can be shut down and removed while the remaining FC platforms are in operation.
  • the piping transmits liquids (coolant, wastewater, etc.) or gases (air, hydrogen, exhaust gas, etc.), and the wiring transmits power and signals.
  • shutoff valves for shutting off the piping include the air inlet shutoff valve 77 and the exhaust air outlet shutoff valve 78.
  • switches for shutting off the wiring include switches 61, 62, and 63.
  • the fuel cell power generation system 101 may have a function for individually detecting ground faults in multiple FC platforms.
  • the control device 10 may use the switch 61, 62, or 63 to disconnect an FC platform among multiple FC platforms 1, 2, and 3 in which a drop in resistance to ground or a ground fault has been detected.
  • the number of the multiple storage batteries 14 1 , ..., 14 n connected in series may be adjusted so that the output voltage of the secondary battery 14 is approximately equal to the output voltage at the output point 16. This makes it possible to eliminate the DC/DC converter 13 and reduce the size of the fuel cell power generation device 101.
  • multiple storage batteries 14 1 , ..., 14 n may be connected in parallel to increase the capacity of the secondary battery 14.
  • the number of parallel connections of the multiple storage batteries 14 1 , ..., 14 n is preferably smaller than the number of the multiple FC platforms commonly connected to the output line 17.
  • the fuel cell power generation system 101 can be made smaller than when storage batteries are individually connected to the output power lines of the multiple FC platforms.
  • the problem of decarbonizing power sources through hydrogen power generation can be solved in fields such as stationary generators, power sources for port loading and unloading machines (such as cranes), power sources for ships, power sources for railways, heavy construction machinery, and heavy civil engineering machinery.
  • the problem of developing an inexpensive and highly efficient platform that can be used in common for various applications can be solved.
  • the common parts are constructed as an FC platform, thereby reducing the system development resources (design, engineering, etc.) for each application.
  • the mass production effect of the FC platform can be obtained, and the price can be reduced.
  • first cooling system 36 and second cooling system 90 individual engineering of the cooling systems is not required depending on the system to which they are applied, the installation location, etc. More specifically, by installing one or both intermediate heat exchangers of the two cooling systems within the FC platform, individual engineering of the cooling systems is not required.
  • the parallelization of FC platforms can improve scalability and support high output.
  • multiple FC platforms can be easily parallelized, making it easier to improve scalability and support high output.
  • multiple FC platforms can be separated independently, facilitating handling such as transportation, which, for example, facilitates maintenance.
  • the system downtime can be shortened by replacing each FC platform, improving the system's operating rate.
  • the FC platform can be returned to the factory and repaired there, reducing the cost of on-site repair. During the factory return period, a replacement FC platform can be replaced, improving the system's operating rate.
  • the point where the purge system 30 that supplies nitrogen merges with the fuel system 18 that supplies hydrogen is after the fuel system 18 branches off toward the FC stacks 21, 22, and 23, but it may be before the branching.
  • the fuel cell power generation apparatus includes a pallet having a longitudinal direction in a first direction.
  • the fuel cell power generation apparatus also includes a fuel cell unit attached to an upper portion of a first side of the pallet in the first direction and including fuel cells.
  • the fuel cell power generation apparatus also includes an auxiliary unit attached to an upper portion of a second side of the pallet opposite the first side in the first direction and used when operating the fuel cells.
  • the pallet of the fuel cell power generation device includes a first frame member, a second frame member, and a connecting member that connects the first frame member and the second frame member.
  • the first frame member extends in a first direction and has a first mounting portion on a first side of the upper portion on which the fuel cell unit is mounted, and a second mounting portion on a second side of the upper portion on which the auxiliary unit is mounted.
  • the first frame member also has an internal space with the first side open. For example, when transporting the fuel cell power generation device, one of the forks of a forklift is inserted into the space in the first frame member from the first side.
  • the second frame member is spaced from the first frame member in a second direction intersecting the first direction, extends in the first direction, and has a third mounting portion on the upper first side on which the fuel cell unit is mounted, and a fourth mounting portion on the upper second side on which the auxiliary unit is mounted.
  • the second frame member has an internal space with the first side open. For example, when transporting the fuel cell power generation device, the other fork of a forklift is inserted from the first side into the space in the second frame member.
  • the fuel cell power generation device includes a mobile platform having a longitudinal direction in the first direction, and a fuel cell module including an auxiliary unit used when operating the fuel cell.
  • the mobile platform in the fuel cell power generation device according to the second embodiment includes a first frame member and a second frame member having an internal space in which at least one of the first side in the first direction or the second side opposite to the first side is open.
  • the second frame member in the fuel cell power generation device according to the second embodiment is spaced apart from the first frame member in a second direction intersecting the first direction.
  • each of the first frame member and the second frame member in the fuel cell power generation device according to the second embodiment extends in the first direction.
  • a fuel cell module is placed on top of each of the first frame member and the second frame member in the fuel cell power generation device according to the second embodiment.
  • FIG. 3 is a perspective view of fuel cell power generation device 401, which is an example of a fuel cell power generation device according to the second embodiment.
  • FIG. 4 is a front view of fuel cell power generation device 401, which is an example of a fuel cell power generation device according to the second embodiment.
  • FIG. 5 is a rear view of fuel cell power generation device 401, which is an example of a fuel cell power generation device according to the second embodiment.
  • FIG. 6 is a plan view of fuel cell power generation device 401, which is an example of a fuel cell power generation device according to the second embodiment.
  • FIG. 7 is a diagram illustrating the configuration of fuel cell power generation device 401, which is an example of a fuel cell power generation device according to the second embodiment.
  • drawings explaining the second embodiment may set a virtual three-dimensional coordinate system (XYZ Cartesian coordinate system) consisting of mutually orthogonal X-axis, Y-axis, and Z-axis (XYZ axes).
  • XYZ Cartesian coordinate system XYZ Cartesian coordinate system
  • a black circle in a circle on the coordinate axis indicates that the coordinate axis faces towards the front of the paper surface.
  • a cross in a circle on the coordinate axis indicates that the coordinate axis faces away from the paper surface.
  • this coordinate system is defined for the purpose of explanation and does not limit the attitude of the fuel cell power generation device etc. according to the second embodiment.
  • the X-axis direction is the direction in which the fuel cell unit 410 and the auxiliary unit 420 are aligned.
  • the X-axis direction is parallel to the horizontal plane.
  • the Y-axis direction is perpendicular to the X-axis direction and parallel to the horizontal plane.
  • the Z-axis direction is perpendicular to the X-axis and Y-axis directions.
  • the Z-axis direction is perpendicular to the horizontal plane. In other words, the Z-axis direction is the vertical direction.
  • a view of an object viewed from the +Y side along the Y-axis direction is called a front view
  • a view of an object viewed from the -Y side is called a back view
  • Viewing an object from the +Y side along the Y-axis direction is called a front view
  • viewing an object from the -Y side is called a back view
  • Viewing an object from the +Z side along the Z-axis direction is called a plan view
  • viewing an object from the +Z side along the Z-axis direction is called a plan view.
  • the X-axis direction is sometimes referred to as the left-right direction, the Y-axis direction as the front-back direction, and the Z-axis direction as the up-down direction.
  • the +X side may be referred to as the left side, the -X side as the right side, the +Y side as the front side, the -Y side as the rear side, the +Z side as the top side, and the -Z side as the bottom side.
  • the fuel cell power generation device 401 is a fuel cell that uses fuel cell cells.
  • the fuel cell power generation device 401 is a chemical cell that uses hydrogen as fuel and converts chemical energy into electricity by reacting with oxygen in the air.
  • the fuel cell power generation apparatus 401 includes a fuel cell unit 410 and an auxiliary unit 420.
  • the fuel cell unit 410 and the auxiliary unit 420 may be collectively referred to as a fuel cell module 460.
  • the fuel cell power generation apparatus 401 also includes a pallet 430 that holds the fuel cell unit 410 and the auxiliary unit 420.
  • the pallet 430 is an example of a mobile stand.
  • the fuel cell power generation apparatus 401 includes a pallet 430, which is an example of a mobile stand on which the fuel cell module 460 is placed.
  • the mobile stand is not limited to a pallet, and may be, for example, a stand used when transporting the fuel cell module 460.
  • the fuel cell power generation apparatus 401 also includes an insulating member 441a and an insulating member 441b (see FIG. 8) between the fuel cell unit 410 and the pallet 430.
  • the fuel cell power generation apparatus 401 also includes an insulating member 442a and an insulating member 442b (see FIG. 8) between the auxiliary unit 420 and the pallet 430.
  • the fuel cell power generation device 401 has an insulating member between the pallet 430 (mobile platform) and the fuel cell module 460. Note that the insulating member is not necessary.
  • the fuel cell unit 410 generates electricity by causing a chemical reaction between hydrogen and oxygen.
  • the fuel cell unit 410 is attached to the upper part of the +X side in the X-axis direction of the pallet 430.
  • the fuel cell unit 410 includes a fuel cell 411, a boost converter 412, a hydrogen pump 413, a coolant pump 414, and an air compressor 415.
  • the fuel cell 411 generates electricity by causing a chemical reaction between the supplied hydrogen SH and the oxygen contained in the air SA.
  • the fuel cell 411 is, for example, a polymer electrolyte fuel cell (PEFC).
  • PEFC polymer electrolyte fuel cell
  • the fuel cell 411 which is a polymer electrolyte fuel cell, has a stack structure in which many single cells are stacked.
  • the single cell in the fuel cell 411 which is a polymer electrolyte fuel cell, includes a membrane electrode assembly (MEA) that includes a polymer electrolyte membrane and a pair of electrodes provided on both sides of the polymer electrolyte membrane.
  • MEA membrane electrode assembly
  • the polymer electrolyte membrane selectively transports hydrogen ions.
  • Each electrode is formed of a porous material.
  • Each of the pair of electrodes includes a catalyst layer that is primarily composed of carbon powder that supports a platinum-based metal catalyst (electrode catalyst), and a gas diffusion layer that is both breathable and electronically conductive.
  • the single cell includes a pair of separators that sandwich the membrane electrode assembly (MEA) from both sides.
  • the electricity generated by the fuel cell 411 is boosted by the boost converter 412 and output as electric power EP.
  • the boost converter 412 is, for example, a DC/DC converter.
  • the fuel cell 411 is cooled by the coolant CL1 circulating between the auxiliary unit 420 and the fuel cell 411.
  • the auxiliary unit 420 supplies the fuel cell 411 with coolant CL1L, which is the low-temperature coolant CL1.
  • the coolant CL1L is sent to the fuel cell 411 by a coolant pump 414.
  • the coolant CL1L cools the fuel cell 411.
  • the fuel cell unit 410 then discharges the coolant CL1H, which is the coolant CL1 whose temperature has increased after cooling the fuel cell 411, to the auxiliary unit 420.
  • the boost converter 412 is also cooled by the cooling liquid CL2 circulating between the auxiliary unit 420 and the boost converter 412.
  • the motor of the air compressor 415 is cooled by the cooling liquid CL2 circulating between the auxiliary unit 420 and the boost converter 412.
  • the auxiliary unit 420 supplies the low-temperature cooling liquid CL2, ie, cooling liquid CL2L, to the boost converter 412 and the air compressor 415.
  • the cooling liquid CL2L cools the motors of the boost converter 412 and the air compressor 415.
  • the fuel cell unit 410 then discharges the cooling liquid CL2H, which is the cooling liquid CL2 whose temperature has increased after cooling the motors of the boost converter 412 and the air compressor 415, to the auxiliary unit 420.
  • Hydrogen SH is supplied to the fuel cell 411 provided in the fuel cell unit 410 through the auxiliary unit 420. Unreacted hydrogen discharged from the hydrogen SH supplied to the fuel cell 411 is returned to the fuel cell 411 by the hydrogen pump 413.
  • Air SA is also supplied to the fuel cell unit 410 from the auxiliary unit 420. The air SA supplied from the auxiliary unit 420 is compressed by the air compressor 415 and supplied to the fuel cell 411.
  • the auxiliary unit 420 is used when operating the fuel cell 411 of the fuel cell unit 410.
  • the auxiliary unit 420 is attached to the upper part of the -X side in the X-axis direction of the pallet 430.
  • the auxiliary unit 420 supplies a coolant and the like to the fuel cell unit 410.
  • the auxiliary unit 420 includes a heat exchanger 421, a heat exchanger 422, a reservoir tank 423, a reservoir tank 424, an ion exchanger 425, an air filter 426, an electric circuit box 427, a coolant pump 428, and a gas-liquid separator 429.
  • the heat exchanger 421 exchanges heat between the cooling liquid CL1 that has cooled the fuel cell 411 and the cooling liquid CL supplied from an external cooling device 450.
  • the heat exchanger 421 is, for example, a plate-type heat exchanger, in particular a brazed plate-type heat exchanger.
  • the heat exchanger 421 cools the cooling liquid CL1H that has returned from the fuel cell unit 410 after cooling the fuel cell 411 and has increased in temperature, using the cooling liquid CL supplied from the cooling device 450.
  • the cooling liquid CL1L that has been cooled by heat exchange in the heat exchanger 421 is then supplied to the fuel cell 411.
  • the external cooling device 450 supplies the cooling liquid CLL, which is a low-temperature cooling liquid CL, to the auxiliary unit 420.
  • the cooling device 450 then recovers the cooling liquid CLH, which is a high-temperature cooling liquid CL, from the auxiliary unit 420.
  • the cooling device 450 cools the recovered cooling liquid CLH.
  • the cooling device 450 then cools the cooling liquid CLH and supplies the cooling liquid CLL, whose temperature has been reduced, to the auxiliary unit 420.
  • the heat exchanger 421 exchanges heat between the coolant CLaL, which is branched off from the coolant CLL and supplied to the heat exchanger 421, and the coolant CL1, and discharges the coolant CLaH, whose temperature has increased.
  • the discharged coolant CLaH is combined with another coolant and returns to the cooling device 450 as the coolant CLH.
  • the heat exchanger 421 also exchanges heat between the coolant CL1H, which is supplied from the fuel cell 411, and the coolant CL, and discharges the coolant CL1L, whose temperature has decreased.
  • the discharged coolant CL1L is supplied to the fuel cell unit 410.
  • the cooling liquid CL1H returning from the fuel cell unit 410 is introduced from the lower side of the heat exchanger 421.
  • the cooling liquid CL1L is discharged from the lower side of the heat exchanger 421.
  • the cooling liquid CLaL supplied from the cooling device 450 is introduced from the upper side of the heat exchanger 421.
  • the cooling liquid CLaH is discharged from the upper side of the heat exchanger 421.
  • the heat exchanger 422 exchanges heat between the cooling liquid CL2 that has cooled the boost converter 412 and the cooling liquid CL that is supplied from an external cooling device 450.
  • the heat exchanger 422 is, for example, a plate-type heat exchanger, particularly a brazed plate-type heat exchanger.
  • the heat exchanger 422 cools the cooling liquid CL2H that has returned from the boost converter 412 and the air compressor 415 after cooling the boost converter 412 and the air compressor 415 and has increased in temperature, by the cooling liquid CL that is supplied from the cooling device 450.
  • the cooling liquid CL2L that has been cooled by heat exchange in the heat exchanger 422 is supplied to the boost converter 412 and the air compressor 415.
  • the heat exchanger 422 exchanges heat between the cooling liquid CLbL, which is branched off from the cooling liquid CLL and supplied to the cooling liquid CL2, and the cooling liquid CLbH, whose temperature has increased, is discharged.
  • the discharged cooling liquid CLbH is combined with another cooling liquid and returns to the cooling device 450 as the cooling liquid CLH.
  • the heat exchanger 422 also exchanges heat between the cooling liquid CL2H, which is supplied from the boost converter 412 and the air compressor 415, and the cooling liquid CL2, and discharges the cooling liquid CL2L, whose temperature has decreased.
  • the discharged cooling liquid CL2L is supplied to the boost converter 412 and the air compressor 415.
  • the reservoir tank 423 is a tank that stores the coolant CL1 that cools the fuel cell 411.
  • the reservoir tank 423 adjusts the increase or decrease of the coolant CL1 that cools the fuel cell 411.
  • the reservoir tank 423 is provided above the auxiliary unit 420.
  • the reservoir tank 424 is a tank that stores the coolant CL2 that cools the boost converter 412 and the air compressor 415.
  • the reservoir tank 424 adjusts the increase or decrease of the coolant CL2 that cools the boost converter 412 and the air compressor 415.
  • the reservoir tank 424 is provided above the auxiliary unit 420.
  • the ion exchanger 425 removes impurity ions contained in the coolant CL1 that cools the fuel cell 411.
  • a degassing section 425a that exhausts air from within the piping connected to the ion exchanger 425 is provided on the upper side of the auxiliary unit 420.
  • Air filter 426 The air filter 426 removes dust and impurities that adversely affect the fuel cell from the air SA.
  • the air filter 426 filters the air SA supplied to the fuel cell unit 410.
  • the air filter 426 supplies clean air from which dust and impurities that adversely affect the fuel cell have been removed to the fuel cell 411.
  • the electric circuit box 427 houses an electric circuit used to drive the fuel cell unit 410.
  • the electric circuit box 427 includes a circuit board, a relay, and the like therein.
  • the coolant pump 428 is a pump that sends the coolant CL 2 to each of the boost converter 412 and the air compressor 415 of the fuel cell unit 410 .
  • the gas-liquid separator 429 separates moisture EW contained in the exhaust gas EG from the fuel cell 411.
  • the gas-liquid separator 429 discharges the moisture EW separated from the exhaust gas EG, and exhaust gas EA obtained by separating the moisture EW from the exhaust gas EG.
  • the auxiliary unit 420 includes a frame 420f.
  • the frame 420f has a rectangular parallelepiped shape.
  • the heat exchanger 421, the heat exchanger 422, the reservoir tank 423, the reservoir tank 424, the ion exchanger 425, the air filter 426, the electric circuit box 427, and the coolant pump 428 are provided in a space inside the frame 420f.
  • the heat exchanger 421, the heat exchanger 422, the reservoir tank 423, the reservoir tank 424, the ion exchanger 425, the air filter 426, the electric circuit box 427, and the coolant pump 428 are provided inside the frame 420f in a plan view.
  • the heat exchanger 421, the heat exchanger 422, the reservoir tank 423, the reservoir tank 424, the ion exchanger 425, and the like may be provided on the top surface of the frame 420f, so that the devices are provided outside the frame 420f. In that case, even if they are outside frame 420f, they are provided inside frame 420f in plan view.
  • heat exchanger 421, heat exchanger 422, reservoir tank 423, reservoir tank 424, ion exchanger 425, air filter 426, electric circuit box 427, and coolant pump 428 in the space inside frame 420f, these devices can be protected from external mechanical shocks.
  • the heat exchanger 421 is provided on the lower side (-Z side) and -X side inside the frame 420f.
  • the heat exchanger 421 is the heaviest of the accessories provided in the accessory unit 420. Furthermore, when comparing the weight of the fuel cell unit 410 and the accessory unit 420, the fuel cell unit 410 is heavier. Therefore, by providing the heavier heat exchanger 421 in the accessory unit 420 on the lower side (-Z side) and -X side inside the frame 420f, the overall weight balance of the fuel cell power generation device 401 can be improved.
  • the air filter 426 and the electric circuit box 427 are each provided at a higher position than the heat exchanger 421.
  • the air filters 426 By providing the air filters 426 at a higher position than the heat exchanger 421, it is possible to prevent the coolant CL1 from flowing into the air filter 426 when the coolant CL1 leaks.
  • the electric circuit box 427 at a higher position than the heat exchanger 421, it is possible to prevent the coolant CL1 from getting on the electric circuit box 427 when the coolant CL1 leaks.
  • By preventing the coolant CL1 from getting on the electric circuit box 427 it is possible to prevent electric leakage in the electric circuit box 427.
  • the air filter 426 and the electrical circuit box 427 are positioned so as not to overlap the heat exchanger 422, the ion exchanger 425, the reservoir tank 423, and the reservoir tank 424 in a plan view.
  • the air filter 426 By providing the air filter 426 in a position that does not overlap with the heat exchanger 422, the ion exchanger 425, the reservoir tank 423, and the reservoir tank 424 in a plan view, it is possible to prevent the coolant CL1 or the coolant CL2 from flowing into the air filter 426 when the coolant CL1 or the coolant CL2 leaks.
  • the electric circuit box 427 By providing the electric circuit box 427 at a position that does not overlap with the heat exchanger 422, the ion exchanger 425, the reservoir tank 423, and the reservoir tank 424 in a plan view, it is possible to prevent the coolant CL1 or the coolant CL2 from getting on the electric circuit box 427 when the coolant CL1 or the coolant CL2 leaks. By preventing the coolant CL1 or the coolant CL2 from getting on the electric circuit box 427, it is possible to prevent electric leakage in the electric circuit box 427.
  • the ion exchanger 425 is provided above the air filter 426. Meanwhile, the position where the piping through which the coolant CL1 flows in the ion exchanger is connected is provided at a position that does not overlap the intake port of the air filter 426 in a plan view. By providing the position where the piping through which the coolant CL1 flows in the ion exchanger 425 is connected at a position that does not overlap the intake port of the air filter 426 in a plan view, it is possible to prevent the coolant CL1 from flowing into the air filter 426 when the coolant CL1 leaks.
  • the temperature of the coolant CL1H recovered from the fuel cell unit 410 is about 70°C. Therefore, to prevent the electric circuits housed in the electric circuit box 427 from becoming too hot, the electric circuit box 427 may be located away from the path through which the coolant CL1H passes.
  • the auxiliary unit 420 can suppress the temperature rise of the electric circuit box 427 due to the coolant CL1H by providing the heat exchanger 421 on the lower side of the auxiliary unit 420 and the electric circuit box 427 on the upper side of the auxiliary unit 420.
  • the auxiliary equipment provided in the auxiliary equipment unit 420 is not limited to the heat exchanger 421, the heat exchanger 422, the reservoir tank 423, the reservoir tank 424, the ion exchanger 425, the air filter 426, the electric circuit box 427, the coolant pump 428, and the gas-liquid separator 429.
  • the auxiliary equipment provided in the auxiliary equipment unit 420 may be an appropriate combination of the heat exchanger 421, the heat exchanger 422, the reservoir tank 423, the reservoir tank 424, the ion exchanger 425, the air filter 426, the electric circuit box 427, the coolant pump 428, and the gas-liquid separator 429.
  • the auxiliary equipment provided in the auxiliary equipment unit 420 is not limited to the case where all of the above devices are provided, and may include only some of them.
  • the air filter 426 may be provided separately from the auxiliary equipment unit.
  • the auxiliary equipment unit may also include devices other than those described above.
  • FIG. 8 is a perspective view of a pallet 430 in a fuel cell power generation apparatus 401, which is an example of a fuel cell power generation apparatus according to the second embodiment.
  • the pallet 430 holds the fuel cell unit 410 and the auxiliary unit 420.
  • the forks of the forklift are inserted into the pallet 430.
  • the forks are an example of a loading member of a transport device.
  • the transport device is not limited to a forklift, but may be any device capable of transporting the fuel cell power generation apparatus 401, such as a cargo handling vehicle, a crane, or a hand lifter.
  • the loading member is not limited to a fork, but may be any member on which the fuel cell power generation apparatus 401 can be placed.
  • Pallet 430 has a longitudinal direction in the X-axis direction.
  • Pallet 430 includes square pipes 431 and 432 as an example of a frame member.
  • Pallet 430 also includes connecting members 433a, 433b, and 433c that connect square pipes 431 and 432.
  • the square pipe 431 is a square pipe extending in the X-axis direction.
  • the square pipe 431 has a mounting portion 431A on which the fuel cell unit 410 is mounted at an upper portion on the +X side.
  • the square pipe 431 also has a mounting portion 431B on which the auxiliary unit 420 is mounted at an upper portion on the -X side.
  • the square pipe 431 has a mounting section 431A on the +X side on which the fuel cell unit 410 is mounted.
  • the fuel cell unit 410 is heavier than the auxiliary unit 420, when transporting the fuel cell power generation device 401, it is advisable to insert the forks of a forklift from the +X side of the square pipe 431. The same applies to the square pipe 432.
  • square pipe 431 The structure of square pipe 431 will be explained in more detail. Note that since square pipe 432 has a similar structure to square pipe 431, a detailed explanation of square pipe 432 will be omitted and reference will be made to the explanation of square pipe 431.
  • FIG. 9 is a side view of a square pipe 431, which is a frame member of a pallet 430 in a fuel cell power generation device 401, which is an example of a fuel cell power generation device according to the second embodiment.
  • the square pipe 431 is a square pipe whose cross section in the YZ plane perpendicular to the X-axis direction is rectangular.
  • the square pipe 431 has a horizontal plate portion 431a, a vertical plate portion 431b, a horizontal plate portion 431c, and a vertical plate portion 431d.
  • the +X side of the square pipe 431 is open.
  • the square pipe 431 has an opening portion 431h1 (see FIG. 8) on the +X side.
  • the -X side of the square pipe 431 is open.
  • the square pipe 431 has an opening portion 431h2 (see FIG. 8) on the -X side.
  • the horizontal plate portion 431a is a plate-like member parallel to the XY plane and with its longitudinal direction in the X-axis direction.
  • the horizontal plate portion 431a has an upper surface 431aA on the +Z side and an inner surface 431aB on the -Z side.
  • the square pipe 431 has mounting portions 431A and 431B on the upper surface 431aA. The forks of a forklift come into contact with the inner surface 431aB when transporting the fuel cell power generation device 401.
  • the vertical plate portion 431b is a plate-like member that is parallel to the ZX plane and has a longitudinal direction in the X-axis direction.
  • the vertical plate portion 431b extends from the +Y side end of the horizontal plate portion 431a to the -Z side.
  • the -Z side of the vertical plate portion 431b connects to the +Y side of the horizontal plate portion 431c.
  • the horizontal plate portion 431c is a plate-shaped member that is parallel to the XY plane and has a longitudinal direction in the X-axis direction.
  • the horizontal plate portion 431c is provided at a distance from the horizontal plate portion 431a on the -Z side.
  • the vertical plate portion 431d is a plate-like member that is parallel to the ZX plane and has a longitudinal direction in the X-axis direction.
  • the vertical plate portion 431d extends from the -Y side end of the horizontal plate portion 431a to the -Z side.
  • the -Z side of the vertical plate portion 431d is connected to the -Y side of the horizontal plate portion 431c.
  • the vertical plate portion 431d is spaced apart from the -Y side of the vertical plate portion 431b.
  • the vertical plate portions 431b and 431d prevent the forks from shifting horizontally (Y-axis direction) and causing the fuel cell power generation device 401 to come off the forks when the fuel cell power generation device 401 is transported by a forklift.
  • the square pipe 431 has a space 431S inside, surrounded by horizontal plate portion 431a, vertical plate portion 431b, horizontal plate portion 431c, and vertical plate portion 431d. As described above, the space 431S is open to the +X side and the -X side. One of the forks of a forklift is inserted into the space 431S from the +X side of the square pipe 431.
  • Figure 10 is a diagram showing a state in which a fork F is inserted into the square pipe 431, which is a frame member of a pallet 430 in a fuel cell power generation device 401, which is an example of a fuel cell power generation device according to the second embodiment. In Figure 10, the square pipe 431 is shown in cross section.
  • the square pipe 431 has an internal space 431S into which the fork F of a forklift is inserted.
  • the width W in the Y-axis direction and the height H in the Z-axis direction of the space 431S are determined so that the fork F can be inserted into the space 431S. More specifically, since the shape of the fork F is determined by factors such as the weight of the object to be transported, the width W is made wider than the width of the fork F suitable for transporting the fuel cell power generation device 401, and the height H is made higher than the height of the fork F.
  • the width W of the space 431S is about 1.1 to 1.3 times the width of the fork F.
  • the height H of the space 431S is about 1.5 to 3.5 times the height of the fork F.
  • the length of the fork F may be longer than the length L of the square pipe 431. Therefore, the space 431S may be formed along the longitudinal direction (X-axis direction) of the square pipe 431. Also, at least when the fuel cell power generation device 401 is transported, the square pipe 431 is configured so that no protrusions or the like are provided on the inner surface 431aB. In other words, the inner surface 431aB is formed flat. It is preferable that the inner surfaces of the vertical plate portion 431b, the horizontal plate portion 431c, and the vertical plate portion 431d are also configured so that no protrusions or the like are provided, at least when the fuel cell power generation device 401 is transported.
  • the dimensions are such that the fork F can be inserted at least when the fuel cell power generation device 401 is transported.
  • protrusions or the like are provided on the outer surface of the square pipe 431, the protrusions or the like are attached to the outer surface of the square pipe 431 by welding or the like so that there are no protrusions or the like on the inside of the square pipe 431. Note that when the fuel cell power generation device 401 is not being transported, there may be protrusions or the like on the inside of the square pipe 431.
  • the space 431S of the square pipe 431 is formed so that the forks F of the forklift are inserted from the +X side.
  • the space 431S of the square pipe 431 is larger than the forks F of the forklift so that the forks F do not interfere with the square pipe 431 when they are inserted from the +X side.
  • the openings 431h1 and 431h2 may be covered with a cover or the like.
  • the space 431S does not have to penetrate the square pipe 431 as long as a fork can be inserted therein.
  • the space 431S may be formed partway in the X-axis direction as long as a fork can be inserted therein.
  • the square pipe 431 may have an open portion 431h1 but no open portion 431h2, and the -X side of the square pipe 431 may be blocked. The same applies to the square pipe 432.
  • the square pipe 432 is a square pipe extending in the X-axis direction.
  • the square pipe 432 is provided at a distance from the square pipe 431 on the -Y side in the Y-axis direction.
  • the square pipe 432 has a mounting portion 432A on which the fuel cell unit 410 is mounted at an upper portion on the +X side.
  • the square pipe 432 also has a mounting portion 432B on which the auxiliary unit 420 is mounted at an upper portion on the -X side.
  • the other fork of the forklift is inserted into the +X side of the square pipe 432 in the direction indicated by the arrow FA.
  • the square pipe 432 has an opening 432h1 (see FIG. 8) on the +X side and an opening 432h2 (see FIG. 8) on the -X side.
  • the square pipe 432 also has a space 432S inside.
  • the openings 432h1 and 432h2 may be covered with a cover or the like.
  • Each of the connecting members 433a, 433b, and 433c connects the square pipe 431 and the square pipe 432 together.
  • the pallet 430 in the fuel cell power generation device 401 according to the second embodiment has square pipes 431 and 432 as frame members, but the frame members are not limited to square pipes.
  • the frame members may be any member into which the forks of a forklift can be inserted.
  • structural steel for example, lip channel steel material, so-called C-channel steel material, may also be used.
  • the horizontal plate portion 431c is not included.
  • the forks of the forklift are inserted into the space surrounded by the horizontal plate portion 431a, the vertical plate portion 431b, and the vertical plate portion 431d.
  • the transportation of the fuel cell power generation device according to the second embodiment is not limited to transportation by a forklift.
  • the fuel cell power generation device may be transported by inserting one of two lifters into the opening from the +X side and the other from the -X side.
  • the fuel cell power generation device may be transported by passing a plate through each of the square pipes 431 and 432, which are the frame members, and lifting the plate with a crane or the like.
  • the fuel cell unit and the auxiliary unit can be transported as a single unit.
  • the fuel cell unit and the auxiliary unit are attached together to a pallet, and the fuel cell power generation system can be transported by inserting the forks of a forklift into the pallet.
  • insulating members are provided between the fuel cell unit and the pallet, and between the auxiliary unit and the pallet, thereby isolating the fuel cell unit and the auxiliary unit.
  • the auxiliary equipment is stored in the space inside the frame of the auxiliary equipment unit so that it does not protrude outside the frame, thereby preventing the auxiliary equipment from coming into contact with external structures or equipment when transporting the fuel cell. Also, by storing the auxiliary equipment in the space inside the frame of the auxiliary equipment unit so that it does not protrude outside the frame, the auxiliary equipment can be protected from external impacts, etc.
  • the X-axis direction is an example of a first direction
  • the Y-axis direction is an example of a second direction intersecting the first direction
  • the +X side is an example of a first side
  • the -X side is an example of a second side opposite the first side.
  • the square pipe 431 is an example of a first frame member
  • the square pipe 432 is an example of a second frame member
  • the mounting portion 431A is an example of a first mounting portion
  • the mounting portion 431B is an example of a second mounting portion
  • the mounting portion 432A is an example of a third mounting portion
  • the mounting portion 432B is an example of a fourth mounting portion.
  • the cooling liquid CL1 is an example of a first cooling liquid
  • the cooling liquid CL is an example of a second cooling liquid.
  • a fuel cell module 460 includes a fuel cell unit 410 and an auxiliary unit 420.
  • the fuel cell module in the fuel cell power generation apparatus according to the second embodiment is not limited to a case in which it includes a fuel cell unit and an auxiliary unit.
  • the fuel cell module in the fuel cell power generation apparatus according to the second embodiment may include a fuel cell module including a fuel cell and an auxiliary used to operate the fuel cell.
  • Figure 11 is a perspective view of a fuel cell power generation device 1101, which is an example of the first modified example of the fuel cell power generation device according to the second embodiment.
  • the fuel cell power generation system 1101 has a fuel cell module 1160 instead of the fuel cell module 460 in the fuel cell power generation system 401.
  • the fuel cell module 1160 includes fuel cells and auxiliary equipment used to operate the fuel cell.
  • the fuel cell module 1160 in the fuel cell power generation system 1101 is placed on a pallet 430.
  • the fuel cell power generation system 1101 is transported by a transport device. When the fuel cell power generation system 1101 is transported, as with the fuel cell power generation system 401, the loading member of the transport device is inserted inside the pallet 430.
  • Variation 2 of the fuel cell power generation system according to the second embodiment will be described.
  • pallet 430 which is an example of a mobile stand, uses square pipes 431 and 432 as an example of a frame member.
  • the frame member in the fuel cell power generation system according to the second embodiment is not limited to square pipes.
  • Variation 2 of the fuel cell power generation system according to the second embodiment an example will be described in which a member having a C-shaped (U-shaped) cross-sectional shape is used as the frame member.
  • Figure 12 is a perspective view of a fuel cell power generation device 1201, which is an example of the second variation of the fuel cell power generation device according to the second embodiment.
  • the fuel cell power generation system 1201 has a mobile platform 1230 instead of the pallet 430 in the fuel cell power generation system 1101.
  • the fuel cell module 1160 in the fuel cell power generation system 1201 is placed on the mobile platform 1230.
  • the fuel cell power generation system 1201 is transported by a transport device.
  • the loading member of the transport device is inserted inside the mobile platform 1230.
  • Fig. 13 is a perspective view of the mobile platform 1230 in the fuel cell power generation system 1201, which is an example of the modified example 2 of the fuel cell power generation system according to the second embodiment.
  • Fig. 14 is a side view of the mobile platform 1230 in the fuel cell power generation system 1201, which is an example of the modified example 2 of the fuel cell power generation system according to the second embodiment. Specifically, it is a side view seen from the +X side along the X-axis direction.
  • Fig. 15 is a bottom view of the mobile platform 1230 in the fuel cell power generation system 1201, which is an example of the modified example 2 of the fuel cell power generation system according to the second embodiment.
  • the mobile platform 1230 has its longitudinal direction in the X-axis direction.
  • the mobile platform 1230 includes frame members 1231 and 1232, each of which has a C-shaped or U-shaped cross section.
  • frame members 1231 and 1232 are each composed of a C-shaped member having a C-shaped cross section or a U-shaped member having a U-shaped cross section.
  • a cross section is C-shaped or U-shaped, it means that one of the four sides of a rectangular cross section is open. In other words, it does not mean that the unopened side is rounded, as in the case of a C-shape.
  • the C-shaped member or U-shaped member is, for example, a shaped steel, such as a lip-channel steel material, or a so-called C-channel steel material.
  • Each of frame members 1231 and 1232 extends along the X-axis direction.
  • Frame member 1232 is spaced apart from frame member 1231 in the Y-axis direction.
  • a plate member 1231a is provided at the end of the +X side of the frame member 1231 so as to cover the -Z side.
  • the frame member 1231 and the plate member 1231a form an opening 1231h1 on the +X side.
  • a plate member 1231b is provided at the end of the -X side of the frame member 1231 so as to cover the -Z side.
  • the frame member 1231 and the plate member 1231b form an opening 1231h2 on the -X side.
  • a plate member 1232a is provided at the end of the +X side of the frame member 1232 so as to cover the -Z side.
  • the frame member 1232 and the plate member 1232a form an opening 1232h1 on the +X side.
  • a plate member 1232b is provided at the end of the -X side of the frame member 1232 so as to cover the -Z side.
  • the frame member 1232 and the plate member 1232b form an opening 1232h2 on the -X side.
  • mobile platform 1230 includes connecting member 1233a, connecting member 1233b, connecting member 1233c, connecting member 1233d, and connecting member 1233e.
  • Each of connecting member 1233a, connecting member 1233b, connecting member 1233c, connecting member 1233d, and connecting member 1233e is composed of a C-shaped member having a C-shaped cross section or a U-shaped member having a U-shaped cross section.
  • the fuel cell power generation apparatus includes a mobile platform having a longitudinal direction in a first direction, and a fuel cell module including an auxiliary unit used when operating the fuel cell.
  • the mobile platform in the fuel cell power generation apparatus according to the second embodiment includes a first frame member and a second frame member extending in the first direction.
  • the second frame member in the fuel cell power generation apparatus according to the second embodiment is spaced apart from the first frame member in a second direction intersecting the first direction.
  • the fuel cell power generation apparatus includes a fuel cell module mounted on the top of each of the first frame member and the second frame member.
  • the first frame member and the second frame member in the fuel cell power generation apparatus according to the second embodiment include a first space penetrating in the second direction at the same first position in the first direction.
  • the first frame member and the second frame member in the fuel cell power generation apparatus according to the second embodiment include a second space penetrating in the second direction at the same second position in the first direction different from the first position.
  • Figure 16 is a perspective view of fuel cell power generation device 1301, which is an example of the fuel cell power generation device according to embodiment 2A.
  • the fuel cell power generation system 1301 includes a fuel cell module 1160 and a mobile stand 1330.
  • the fuel cell module 1160 in the fuel cell power generation system 1301 is placed on the mobile stand 1330.
  • the fuel cell power generation system 1301 is transported by a transport device. When the fuel cell power generation system 1301 is transported, a loading member on the transport device is inserted into the mobile stand 1330 along the Y-axis direction.
  • FIG. 17 is a perspective view of a mobile platform 1330 in a fuel cell power generation apparatus 1301, which is an example of a fuel cell power generation apparatus according to embodiment 2A.
  • the mobile platform 1330 has its longitudinal direction in the X-axis direction.
  • the mobile platform 1330 includes frame members 1331 and 1332, which are square pipes. Each of frame members 1331 and 1332 extends along the X-axis direction. Frame member 1332 is spaced apart from frame member 1331 in the Y-axis direction.
  • the frame member 1331 has a space 1331S1 that is open in the Y-axis direction at a first position Pos1 in the X-axis direction and penetrates the frame member 1331.
  • the frame member 1331 also has a space 1331S2 that penetrates the frame member 1331 in the Y-axis direction at a second position Pos2 in the X-axis direction away from the first position Pos1 to the -X side.
  • the frame member 1331 has a space 1331S2 at a second position Pos2 that is different from the first position Pos1 where the space 1331S1 is provided.
  • the spaces 1331S1 and 1331S2 are separated by a distance that allows a loading member of a transport device to be inserted.
  • the center of gravity of the fuel cell power generation device in the X-axis direction is located between the spaces 1331S1 and 1331S2.
  • the frame member 1332 has a space 1332S1 that is open in the Y-axis direction and penetrates the frame member 1332 at a first position Pos1 in the X-axis direction.
  • the frame member 1332 also has a space 1332S2 that penetrates the frame member 1332 in the Y-axis direction at a second position Pos2 in the X-axis direction away from the first position Pos1 to the -X side.
  • the frame member 1332 has a space 1332S2 at a second position Pos2 different from the first position Pos1 where the space 1332S1 is provided.
  • the spaces 1332S1 and 1332S2 are separated by a distance that allows a loading member of a transport device to be inserted.
  • the center of gravity of the fuel cell power generation device in the X-axis direction is located between the spaces 1332S1 and 1332S2.
  • Space 1331S1 in frame member 1331 and space 1332S1 in frame member 1332 are provided at the same first position Pos1 in the X-axis direction.
  • Space 1331S2 in frame member 1331 and space 1332S2 in frame member 1332 are provided at the same second position Pos2 in the X-axis direction.
  • the same position in the X-axis direction does not necessarily mean that it is the same position in the exact same way, but means that it is considered to be the same position as long as it is within the range of manufacturing tolerance.
  • the loading member of the transport equipment can be inserted from a second direction intersecting with the first direction, which is the longitudinal direction of the mobile platform. Note that in the fuel cell power generation device of embodiment 2A, the loading member of the transport equipment may be inserted from the first direction, which is the longitudinal direction of the mobile platform, as in the fuel cell power generation device of embodiment 2.
  • Figure 18 is a perspective view of a fuel cell power generation device 1302, which is an example of a modified example of the fuel cell power generation device according to embodiment 2A.
  • the fuel cell power generation system 1302 includes a fuel cell module 1160 and a mobile stand 1335.
  • the mobile stand 1335 includes a pallet 430, which is an example of a mobile stand, and a mobile stand 1330. From another perspective, the fuel cell power generation system 1302 includes the mobile stand 1330 below the pallet 430 in the fuel cell power generation system 1101 shown in FIG. 11.
  • the fuel cell power generation system 1302 is provided with a pallet 430 as a mobile stand 1335 into which the load members of the transport equipment can be inserted from the X-axis direction, and a mobile stand 1330 into which the load members of the transport equipment can be inserted from the Y-axis direction.
  • the fuel cell power generation system 1302 is provided with a pallet 430 and the mobile stand 1330 as a mobile stand 1335, so that the load members of the transport equipment can be inserted from the Y-axis direction as well.
  • the fuel cell power generation device 401 allows the loading members of the transport equipment to be inserted from the X-axis direction, but does not allow the loading members of the transport equipment to be inserted from the Y-axis direction.
  • the fuel cell power generation device 401 by making the mobile platform two-tiered, the loading members of the transport equipment can be inserted from the Y-axis direction as well.
  • Figure 19 is a perspective view of mobile stand 1430, which is an example of a modified example of the mobile stand in the fuel cell power generation system according to embodiment 2A.
  • the mobile platform 1430 has its longitudinal direction in the X-axis direction.
  • the mobile platform 1430 includes frame members 1431 and 1432, each of which has a C-shaped or U-shaped cross section. Each of the frame members 1431 and 1432 extends along the X-axis direction. The frame member 1432 is spaced apart from the frame member 1431 in the Y-axis direction.
  • Plate member 1431a is provided at the +X side end of frame member 1431 to cover the -Z side.
  • Plate member 1431b is provided at the -X side end of frame member 1431 to cover the -Z side.
  • Plate member 1432a is provided at the +X side end of frame member 1432 to cover the -Z side.
  • Plate member 1432b is provided at the -X side end of frame member 1432 to cover the -Z side.
  • the frame member 1431 has a space 1431S1 that is open in the Y-axis direction and penetrates at a first position Pos1 in the X-axis direction.
  • the frame member 1431 also has a space 1431S2 that penetrates in the Y-axis direction at a second position Pos2 in the X-axis direction away from the first position Pos1 to the -X side.
  • the frame member 1431 has a space 1431S2 at a second position Pos2 that is different from the first position Pos1 where the space 1431S1 is provided.
  • the space 1431S1 and the space 1431S2 are separated by a distance that allows a load member of a transport device to be inserted.
  • the frame member 1432 has a space 1432S1 that is open in the Y-axis direction and penetrates at a first position Pos1 in the X-axis direction.
  • the frame member 1432 also has a space 1432S2 that penetrates in the Y-axis direction at a second position Pos2 in the X-axis direction away from the first position Pos1 to the -X side.
  • the frame member 1432 has a space 1432S2 at a second position Pos2 that is different from the first position Pos1 where the space 1432S1 is provided.
  • the space 1432S1 and the space 1432S2 are separated by a distance that allows a loading member of a transport device to be inserted.
  • the mobile platform 1430 is provided with a connecting member 1433a and a connecting member 1433b.
  • the connecting member 1433a and the connecting member 1433b are each composed of a C-shaped member having a C-shaped cross section or a U-shaped member having a U-shaped cross section.
  • the connecting member 1433a is provided at the first position Pos1. By providing the connecting member 1433a at the first position Pos1, the space 1431S1 and the space 1432S1 are connected along the Y-axis direction.
  • the connecting member 1433b is provided at the second position Pos2. By providing the connecting member 1433b at the second position Pos2, the space 1431S2 and the space 1432S2 are connected along the Y-axis direction.
  • Figure 20 shows the usage state of the mobile platform 1430, which is an example of a modified mobile platform for a fuel cell power generation system according to embodiment 2A.
  • the opening on the side of the frame member 1431 may be blocked by a flat plate 1431c in order to reinforce the mobile platform 1430.
  • the opening on the side of the frame member 1432 may be blocked by a flat plate 1432c.
  • the fuel cell module (fuel cell unit and auxiliary unit) can be transported as a unit.
  • the fuel cell module is attached to a mobile platform, and the fuel cell power generation apparatus can be transported by inserting the loading member of the transporting device into the mobile platform in a direction intersecting the longitudinal direction of the mobile platform.
  • a pallet having a longitudinal direction in a first direction; a fuel cell unit attached to an upper portion of the pallet on a first side in the first direction and including a fuel cell; an auxiliary unit that is attached to an upper portion of a second side of the pallet that is opposite to the first side in the first direction and is used when operating the fuel cell; Equipped with The auxiliary unit includes: an air filter for filtering air supplied to the fuel cell unit; a heat exchanger for exchanging heat between a first cooling liquid for cooling the fuel cell unit and a second cooling liquid supplied from an outside; an ion exchanger for removing ions contained in the first cooling liquid; a reservoir tank for storing the first cooling liquid; an electric circuit box that houses an electric circuit used to drive the fuel cell unit; Equipped with The air filter and the electric circuit box are provided at positions higher than the heat exchanger, the ion exchanger, and the reservoir tank, respectively, or at positions not overlapping the heat exchanger, the ion exchanger, and the reservoir tank, respectively, in a plan
  • the ion exchanger is provided above the air filter, A position where a pipe through which the first cooling liquid flows in the ion exchanger is connected is provided at a position that does not overlap an intake port of the air filter in a plan view. 2.
  • the reservoir tank is provided above the auxiliary unit. 3.
  • a degassing unit is provided in a pipe connected to the ion exchanger, the degassing unit exhausting air from within the pipe, The deaeration unit is provided above the auxiliary unit. 4.
  • the first cooling liquid is introduced from a lower side of the heat exchanger and discharged from the lower side of the heat exchanger
  • the second cooling liquid is introduced from an upper side of the heat exchanger and discharged from the upper side of the heat exchanger. 5.
  • the power generating device according to claim 1 the first cooling liquid is introduced from a lower side of the heat exchanger and discharged from the lower side of the heat exchanger, and the second cooling liquid is introduced from an upper side of the heat exchanger and discharged from the upper side of the heat exchanger. 5.
  • the power generating device according to claim 1 .
  • a pallet having a longitudinal direction in a first direction; a fuel cell unit attached to an upper portion of the pallet on a first side in the first direction and including a fuel cell; an auxiliary unit that is attached to an upper portion of a second side of the pallet that is opposite to the first side in the first direction and is used when operating the fuel cell; Equipped with The pallet is a first frame member extending in the first direction and having a first mounting portion on which the fuel cell unit is mounted on the first side of an upper portion and a second mounting portion on which the auxiliary unit is mounted on the second side of an upper portion, the first frame member having an internal space with the first side open; a second frame member that is spaced from the first frame member in a second direction intersecting the first direction, extends in the first direction, and has a third mounting portion on the first side of an upper portion on which the fuel cell unit is mounted, and a fourth mounting portion on the second side of an upper portion on which the auxiliary unit is mounted, the second frame member having an internal space that is open
  • Each of the first frame member and the second frame member is a square pipe. 7.
  • the space of the first frame member is formed so that one of the forks of a forklift is inserted from the first side
  • the space of the second frame member is formed so that the other fork of the forklift is inserted from the first side. 7.
  • the space of the first frame member is formed from the first side to the second side of the first frame member,
  • the space of the second frame member is formed from the first side to the second side of the second frame member. 7.
  • the auxiliary unit includes an air filter that filters air supplied to the fuel cell unit, a heat exchanger that exchanges heat between a first cooling liquid that cools the fuel cell unit and a second cooling liquid supplied from an outside, an ion exchanger that removes ions contained in the first cooling liquid, and a reservoir tank that stores the first cooling liquid.
  • the accessory unit comprises a frame; the air filter, the heat exchanger, the ion exchanger and the reservoir tank are provided inside the frame; 13.
  • the heat exchanger is provided below the frame and on the second side. 14.
  • the fuel cell power generation apparatus includes a fuel cell unit including fuel cells, and an auxiliary unit.
  • the auxiliary unit in the fuel cell power generation apparatus according to the third embodiment includes auxiliary equipment used to operate the fuel cell.
  • the fuel cell power generation apparatus according to the third embodiment also includes a first wiring that carries electricity generated from the fuel cell unit, is connected to the fuel cell unit, and is disposed in the auxiliary unit.
  • the fuel cell power generation apparatus according to the third embodiment includes a second wiring for at least one of transmitting and receiving signals in the fuel cell unit.
  • the first wiring in the fuel cell power generation apparatus according to the third embodiment is provided spaced apart from the second wiring.
  • FIG. 21 and 22 are a perspective view of a fuel cell power generation device 501, which is an example of a fuel cell power generation device according to the third embodiment.
  • Figure 22 is a perspective view from a different direction than Figure 21.
  • Figure 23 is a front view of the fuel cell power generation device 501, which is an example of a fuel cell power generation device according to the third embodiment.
  • Figure 24 is a rear view of the fuel cell power generation device 501, which is an example of a fuel cell power generation device according to the third embodiment.
  • Figure 25 is a diagram illustrating the configuration of the fuel cell power generation device 501, which is an example of a fuel cell power generation device according to the third embodiment.
  • a virtual three-dimensional coordinate system (XYZ Cartesian coordinate system) consisting of mutually orthogonal X-axis, Y-axis, and Z-axis (XYZ axes) may be set.
  • XYZ Cartesian coordinate system consisting of mutually orthogonal X-axis, Y-axis, and Z-axis (XYZ axes)
  • XYZ axes For a coordinate axis perpendicular to the paper surface of the drawing, when a black circle is shown in a circle on the coordinate axis, it indicates that the coordinate axis faces towards the front of the paper surface. Also, when a cross is shown in a circle on the coordinate axis, it indicates that the coordinate axis faces away from the paper surface.
  • this coordinate system is defined for the purpose of explanation and does not limit the attitude of the fuel cell power generation device etc. according to the third embodiment.
  • the X-axis direction is the direction in which the fuel cell unit 510 and the auxiliary unit 520 are aligned.
  • the X-axis direction is parallel to the horizontal plane.
  • the Y-axis direction is perpendicular to the X-axis direction and parallel to the horizontal plane.
  • the Z-axis direction is perpendicular to the X-axis and Y-axis directions.
  • the Z-axis direction is perpendicular to the horizontal plane. In other words, the Z-axis direction is the vertical direction.
  • a view of an object viewed from the +Y side along the Y-axis direction is called a front view
  • a view of an object viewed from the -Y side is called a back view
  • Viewing an object from the +Y side along the Y-axis direction is called a front view
  • viewing an object from the -Y side is called a back view
  • Viewing an object from the +Z side along the Z-axis direction is called a plan view
  • viewing an object from the +Z side along the Z-axis direction is called a plan view.
  • the X-axis direction is sometimes referred to as the left-right direction, the Y-axis direction as the front-back direction, and the Z-axis direction as the up-down direction.
  • the +X side may be referred to as the left side, the -X side as the right side, the +Y side as the front side, the -Y side as the rear side, the +Z side as the top side, and the -Z side as the bottom side.
  • the fuel cell power generation device 501 is a fuel cell that uses fuel cell cells.
  • the fuel cell power generation device 501 is a chemical cell that uses hydrogen as fuel and converts chemical energy into electricity by reacting with oxygen in the air.
  • the fuel cell power generation system 501 includes a fuel cell unit 510 and an auxiliary unit 520.
  • the fuel cell power generation system 501 also includes a pallet 530 that holds the fuel cell unit 510 and the auxiliary unit 520.
  • the fuel cell unit 510 generates electricity by causing a chemical reaction between hydrogen and oxygen.
  • the fuel cell unit 510 is attached to the upper part of the -X side in the X-axis direction of the pallet 530.
  • the fuel cell unit 510 includes a fuel cell 511, a boost converter 512, a hydrogen pump 513, a coolant pump 514, and an air compressor 515.
  • the fuel cell 511 generates electricity by causing a chemical reaction between the supplied hydrogen SH and the oxygen contained in the air SA.
  • the fuel cell 511 is, for example, a polymer electrolyte fuel cell (PEFC).
  • PEFC polymer electrolyte fuel cell
  • the fuel cell 511 which is a polymer electrolyte fuel cell, has a stack structure in which many single cells are stacked.
  • the unit cell of the fuel cell 511 which is a polymer electrolyte fuel cell, includes a membrane electrode assembly (MEA) that includes a polymer electrolyte membrane and a pair of electrodes provided on both sides of the polymer electrolyte membrane.
  • MEA membrane electrode assembly
  • the polymer electrolyte membrane selectively transports hydrogen ions.
  • Each electrode is formed of a porous material.
  • Each of the pair of electrodes includes a catalyst layer that is primarily composed of carbon powder that supports a platinum-based metal catalyst (electrode catalyst), and a gas diffusion layer that is both breathable and electronically conductive.
  • the unit cell includes a pair of separators that sandwich the membrane electrode assembly (MEA) from both sides.
  • the electricity generated by the fuel cell 511 is boosted by the boost converter 512 and output as electric power EP.
  • the boost converter 512 is, for example, a DC/DC converter.
  • the fuel cell 511 is cooled by the coolant CL1 circulating between the auxiliary unit 520 and the fuel cell 511.
  • the auxiliary unit 520 supplies the fuel cell 511 with coolant CL1L, which is the low-temperature coolant CL1.
  • the coolant CL1L is sent to the fuel cell 511 by a coolant pump 514.
  • the coolant CL1L cools the fuel cell 511.
  • the fuel cell unit 510 then discharges the coolant CL1H, which is the coolant CL1 whose temperature has increased after cooling the fuel cell 511, to the auxiliary unit 520.
  • the boost converter 512 is also cooled by the cooling liquid CL2 circulating between the auxiliary unit 520 and the boost converter 512.
  • the motor of the air compressor 515 is cooled by the cooling liquid CL2 circulating between the auxiliary unit 520 and the boost converter 512.
  • the auxiliary unit 520 supplies the low-temperature cooling liquid CL2, ie, cooling liquid CL2L, to the boost converter 512 and the air compressor 515.
  • the cooling liquid CL2L cools the motors of the boost converter 512 and the air compressor 515.
  • the fuel cell unit 510 then discharges the cooling liquid CL2H, which is the cooling liquid CL2 whose temperature has increased after cooling the motors of the boost converter 512 and the air compressor 515, to the auxiliary unit 520.
  • Hydrogen SH is supplied to the fuel cell 511 provided in the fuel cell unit 510 through the auxiliary unit 520. Unreacted hydrogen discharged from the hydrogen SH supplied to the fuel cell 511 is returned to the fuel cell 511 by the hydrogen pump 513.
  • Air SA is also supplied to the fuel cell unit 510 from the auxiliary unit 520. The air SA supplied from the auxiliary unit 520 is compressed by the air compressor 515 and supplied to the fuel cell 511.
  • the auxiliary unit 520 is used when operating the fuel cell 511 of the fuel cell unit 510.
  • the auxiliary unit 520 is attached to the upper part of the +X side in the X-axis direction of the pallet 530.
  • the auxiliary unit 520 supplies coolant and the like to the fuel cell unit 510.
  • the auxiliary unit 520 includes auxiliary equipment used when operating the fuel cell 511.
  • the auxiliary unit 520 includes a frame 520f.
  • the auxiliary equipment included in the auxiliary unit 520 is provided inside the frame 520f.
  • the auxiliary unit 520 includes, as an example of auxiliary equipment, a heat exchanger 521, a heat exchanger 522, a reservoir tank 523, a reservoir tank 524, an ion exchanger 525, an air filter 526, an electric circuit box 527, a coolant pump 528, and a gas-liquid separator 529.
  • the auxiliary unit 520 also includes a power wiring terminal block 531, a signal wiring terminal block 532, a power wiring terminal block 533, and a ground wiring terminal block 534.
  • Each of the power wiring terminal block 531, the signal wiring terminal block 532, the power wiring terminal block 533, and the ground wiring terminal block 534 is an example of a connection part.
  • the connection part relays and connects wiring extending from either the fuel cell unit 510 or the auxiliary unit 520 to the outside.
  • the heat exchanger 521 exchanges heat between the coolant CL1 that has cooled the fuel cell 511 and the coolant CL supplied from an external cooling device 550.
  • the heat exchanger 521 is, for example, a plate-type heat exchanger, particularly a brazed plate-type heat exchanger.
  • the heat exchanger 521 cools the coolant CL1H that has returned from the fuel cell unit 510 after cooling the fuel cell 511 and has increased in temperature, using the coolant CL supplied from the cooling device 550.
  • the coolant CL1L that has been cooled by heat exchange in the heat exchanger 521 is supplied to the fuel cell 511.
  • the coolant CL is an example of a first coolant
  • the coolant CL1 is an example of a second coolant.
  • the external cooling device 550 supplies the cooling liquid CLL, which is a low-temperature cooling liquid CL, to the auxiliary unit 520.
  • the cooling device 550 then recovers the cooling liquid CLH, which is a high-temperature cooling liquid CL, from the auxiliary unit 520.
  • the cooling device 550 cools the recovered cooling liquid CLH.
  • the cooling device 550 then cools the cooling liquid CLH and supplies the cooling liquid CLL, whose temperature has been reduced, to the auxiliary unit 520.
  • the heat exchanger 521 exchanges heat between the coolant CLaL, which is supplied by branching off the coolant CLL, and the coolant CL1, for the coolant CL, and discharges the coolant CLaH, whose temperature has increased.
  • the discharged coolant CLaH merges with another coolant and returns to the cooling device 550 as the coolant CLH.
  • the heat exchanger 521 also exchanges heat between the coolant CL1H, which is supplied from the fuel cell 511, and the coolant CL, for the coolant CL1, and discharges the coolant CL1L, whose temperature has decreased.
  • the discharged coolant CL1L is supplied to the fuel cell unit 510.
  • the auxiliary unit 520 includes pipes 521a1 and 521a2 that allow the coolant CL to flow to the heat exchanger 521.
  • the auxiliary unit 520 also includes pipes 521b1 and 521b2 that allow the coolant CL1 to flow between the heat exchanger 521 and the fuel cell unit.
  • the pipes may be pipes or hoses.
  • the pipes may be made of metal or resin.
  • the pipes may be an appropriate combination of straight pipes, curved pipes, reducers, joints, etc. The same applies to the following pipes.
  • the heat exchanger 522 exchanges heat between the cooling liquid CL2 that has cooled the boost converter 512 and the cooling liquid CL that is supplied from an external cooling device 550.
  • the heat exchanger 522 is, for example, a plate-type heat exchanger, particularly a brazed plate-type heat exchanger.
  • the heat exchanger 522 cools the cooling liquid CL2H that has returned from the boost converter 512 and the air compressor 515 after cooling the boost converter 512 and the air compressor 515 and has increased in temperature, by the cooling liquid CL that is supplied from the cooling device 550.
  • the cooling liquid CL2L that has been cooled by heat exchange in the heat exchanger 522 is supplied to the boost converter 512 and the air compressor 515.
  • the heat exchanger 522 exchanges heat between the cooling liquid CLbL, which is branched off from the cooling liquid CLL and supplied to the cooling liquid CL2, and discharges the cooling liquid CLbH, whose temperature has increased.
  • the discharged cooling liquid CLbH is combined with another cooling liquid and returns to the cooling device 550 as the cooling liquid CLH.
  • the heat exchanger 522 also exchanges heat between the cooling liquid CL2H, which is supplied from the boost converter 512 and the air compressor 515, and the cooling liquid CL2, and discharges the cooling liquid CL2L, whose temperature has decreased.
  • the discharged cooling liquid CL2L is supplied to the boost converter 512 and the air compressor 515.
  • the auxiliary unit 520 includes pipes 522a1 and 522a2 that pass the cooling liquid CL through the heat exchanger 522.
  • the reservoir tank 523 is a tank that stores the coolant CL1 that cools the fuel cell 511.
  • the reservoir tank 523 adjusts the increase or decrease of the coolant CL1 that cools the fuel cell 511.
  • the reservoir tank 523 is provided above the auxiliary unit 520.
  • the reservoir tank 524 is a tank that stores the coolant CL2 that cools the boost converter 512 and the air compressor 515.
  • the reservoir tank 524 adjusts the increase or decrease of the coolant CL2 that cools the boost converter 512 and the air compressor 515.
  • the reservoir tank 524 is provided above the auxiliary unit 520.
  • the ion exchanger 525 removes impurity ions contained in the coolant CL1 that cools the fuel cell 511.
  • a degassing section 525a that exhausts air from within the piping connected to the ion exchanger 525 is provided on the upper side of the auxiliary unit 520.
  • Air filter 5266 The air filter 526 removes dust and impurities that adversely affect the fuel cell from the air SA.
  • the air filter 526 filters the air SA supplied to the fuel cell unit 510.
  • the air filter 526 supplies clean air from which dust and impurities that adversely affect the fuel cell have been removed to the fuel cell 511.
  • the electric circuit box 527 houses an electric circuit used to drive the fuel cell unit 510.
  • the electric circuit box 527 includes a circuit board, a relay, and the like therein.
  • the coolant pump 528 is a pump that sends the coolant CL 2 to each of the boost converter 512 and the air compressor 515 of the fuel cell unit 510 .
  • the gas-liquid separator 529 separates moisture EW contained in the exhaust gas EG from the fuel cell 511.
  • the gas-liquid separator 529 discharges the moisture EW separated from the exhaust gas EG, and exhaust gas EA obtained by separating the moisture EW from the exhaust gas EG.
  • the power wiring terminal block 531 is a terminal block to which power wiring C1 (see FIG. 26 ) that transmits output from the fuel cell unit 510 is connected.
  • the power wiring C1 is connected from the fuel cell unit 510 to the power wiring terminal block 531.
  • the power wiring terminal block 531 is provided on the +X side of the auxiliary unit 520. In other words, the power wiring terminal block 531 is provided on the side of the auxiliary unit 520 opposite the fuel cell unit 510.
  • the power wiring terminal block 531 is provided above the pipes 521a1, 521a2, 522a1, and 522a2 through which the cooling liquid CL flows. By providing the power wiring terminal block 531 above the pipes 521a1, 521a2, 522a1, and 522a2 through which the cooling liquid CL flows, a short circuit of the power wiring C1 at the power wiring terminal block 531 can be prevented in the event of a leakage of the cooling liquid CL.
  • the power wiring terminal block 531 may be installed, for example, in a waterproof and dustproof box.
  • the power wiring C1 connected to the power wiring terminal block 531 may be arranged so that the portion at the power wiring terminal block 531 is the highest.
  • the power wiring C1 connected to the power wiring terminal block 531 may be arranged so that the portion at the power wiring terminal block 531 is the uppermost apex.
  • the power wiring terminal block 531 may be, for example, a terminal block with voltage resistance specifications.
  • the power wiring terminal block 531 may also be provided with, for example, an insulating cover. Providing the power wiring terminal block 531 with an insulating cover can prevent inadvertent electric shock.
  • the power wiring terminal block 531 has been described as an example, it is not limited to a terminal block as long as it can relay and connect the power wiring C1 extending from the fuel cell unit 510 to the outside.
  • the auxiliary unit 520 only needs to be equipped with a power wiring connection section that relays the power wiring C1 to the outside.
  • the power wiring terminal block 531 is an example of a power wiring connection section.
  • the signal wiring terminal block 532 is connected to a signal wiring C2 (see FIG. 26) that transmits signals between the electric circuit box 527 and a signal wiring C3 (see FIG. 26) that transmits signals between the fuel cell unit 510.
  • the power wiring terminal block 531 is provided spaced apart from the signal wiring terminal block 532.
  • the power wiring terminal block 531 may be spaced apart from the signal wiring terminal block 532 by, for example, 15 centimeters or more.
  • the signal wiring terminal block 532 has been described as an example, it is not limited to a terminal block as long as it is possible to relay and connect each of the signal wiring C2 and the signal wiring C3 to the outside.
  • the auxiliary unit 520 only needs to be equipped with a signal wiring connection part that relays at least one of the signal wiring C2 and the signal wiring C3 to the outside.
  • the signal wiring terminal block 532 is an example of a signal wiring connection part.
  • the power supply wiring terminal block 533 is connected to a power supply wiring P1 (see FIG. 30) that supplies DC power to the electric circuit box 527.
  • Ground wiring terminal block 5334 The ground wiring terminal block 534 is connected to the ground wiring G1 (see FIG. 28) and the ground wiring G2 (see FIG. 29).
  • Each of the hydrogen detectors 535a and 535b detects, for example, hydrogen leaked from a pipe.
  • the fuel cell power generation device 501 has wiring and piping connection surfaces concentrated on the left side (+X side) of the auxiliary unit 520. By having the wiring and piping connection surfaces concentrated on the left side (+X side) of the auxiliary unit 520, the fuel cell power generation device 501 can perform wiring and piping work efficiently.
  • Figure 26 is a diagram that describes the wiring of the fuel cell power generation device 501, which is an example of a fuel cell power generation device according to the third embodiment.
  • the power wiring C1 is a wiring that passes electricity generated in the fuel cell unit 510.
  • the power wiring C1 is connected from the fuel cell unit 510 to the power wiring terminal block 531.
  • the power wiring C1 is provided on the rear side (-Y side) of the auxiliary unit 520 and above the center (+Z side). In other words, the power wiring C1 is disposed at an end of the auxiliary unit 520. In particular, the power wiring C1 is disposed at the upper end of the auxiliary unit 520.
  • the power wiring C1 may be configured so that electricity flows from an externally provided storage battery to the fuel cell unit 510 at startup, for example.
  • the power wiring C1 is provided above the pipes 521a1 and 521a2 through which the cooling liquid CL from the outside flows, and above the pipes 521b1 and 521b2 through which the cooling liquid CL1 flows.
  • the pipes 21a1 and 21a2 are each an example of a first pipe
  • the pipes 21b1 and 21b2 are each an example of a second pipe.
  • the fuel cell power generation apparatus 501 may be provided with an illuminated lamp that can determine whether or not electricity is flowing through the power wiring C1.
  • the fuel cell power generation apparatus 501 may be provided with an illuminated lamp in the power wiring C1 that can determine whether or not electricity is flowing through it.
  • the fuel cell power generation apparatus 501 may be provided with a lamp that lights up under voltage conditions of 42 volts or more. By providing an illuminated lamp that can determine whether or not electricity is flowing through the power wiring C1, it is possible to warn users when wiring the power wiring C1 not to perform wiring work while it is energized.
  • the signal wiring C2 is a wiring that transmits control signals and the like between the outside of the fuel cell power generation device 501 and the electric circuit box 527.
  • the signal wiring C2 is connected from the electric circuit box 527 to the signal wiring terminal block 532.
  • the signal wiring C2 is provided on the front side (+Y side) and left side (+X side) of the auxiliary unit 520.
  • the signal wiring C2 is provided away from the power wiring C1.
  • the signal wiring C2 may be provided away from the power wiring C1 by, for example, 15 centimeters or more in a straight line distance. The same applies to each of the signal wiring C3, signal wiring C4, and signal wiring C5 described below.
  • the signal wiring C3 is a wiring that transmits control signals and the like between the fuel cell unit 510 and the electric circuit box 527, and also transmits control signals and the like between the fuel cell unit 510 and the fuel cell power generation device 501 via the signal wiring terminal block 532.
  • the signal wiring C3 is wired from the fuel cell unit 510 on the lower side (-Z side) along the Y-axis direction from the rear side (-Y side) to the front side (+Y side).
  • the signal wiring C3 is wired from the fuel cell unit 510 on the lower side (-Z side) along the X-axis direction from the right side (-X side) to the left side (+X side).
  • the signal wiring C3 branches and connects to the electric circuit box 527 and the signal wiring terminal block 532 from the lower side (-Z side) along the Z-axis direction.
  • the signal wiring C3 is provided away from the power wiring C1.
  • wiring along the X-axis direction does not necessarily mean wiring strictly parallel to the X-axis direction.
  • wiring along the X-axis direction may be inclined in any direction relative to the X-axis direction, or may be curved halfway relative to the X-axis direction.
  • wiring along the Y-axis direction and wiring along the Z-axis direction may be inclined in any direction relative to the X-axis direction, or may be curved halfway relative to the X-axis direction. The same applies to wiring along the Y-axis direction and wiring along the Z-axis direction. The same applies in the following explanations.
  • Figure 27 is a diagram explaining the wiring of the fuel cell power generation device 501, which is an example of a fuel cell power generation device according to the third embodiment.
  • the signal wiring C4 is a wiring that transmits measurement signals and the like between the fuel cell unit 510 and the air filter 526.
  • the signal wiring C4 is wired from the fuel cell unit 510 on the lower side (-Z side) along the Y-axis direction from the rear side (-Y side) to the front side (+Y side).
  • the signal wiring C4 is wired from the fuel cell unit 510 on the lower side (-Z side) along the X-axis direction from the right side (-X side) to the left side (+X side).
  • the signal wiring C4 is connected to the air filter 526 from the lower side (-Z side) along the Z-axis direction.
  • the signal wiring C4 is provided at a distance from the power wiring C1.
  • the signal wiring C5 is a wiring that transmits measurement signals and the like between the fuel cell unit 510 and each of the hydrogen detectors 535a and 535b.
  • the signal wiring C5 connects to each of the hydrogen detectors 535a and 535b from the upper side (+Z side) of the fuel cell unit 510.
  • the signal wiring C5 is provided away from the power wiring C1.
  • each of the power wiring C1, signal wiring C2, signal wiring C3, signal wiring C4, and signal wiring C5 may have a waterproof and dustproof connector or a rod terminal at the end.
  • the wiring work can be performed without using tools. By performing the wiring work without using tools, the wiring work can be performed efficiently with less man-hours.
  • each of the signal wiring C2, signal wiring C3, signal wiring C4, and signal wiring C5 may be a shielded cable. It is desirable to route each of the signal wiring C2, signal wiring C3, signal wiring C4, and signal wiring C5 away from noise sources such as switching power supplies, power converters, inverters, and converters. By routing each of the signal wiring C2, signal wiring C3, signal wiring C4, and signal wiring C5 away from the noise sources, noise from the noise sources to each of the signal wiring C2, signal wiring C3, signal wiring C4, and signal wiring C5 can be suppressed.
  • noise sources such as switching power supplies, power converters, inverters, and converters.
  • a partition may be provided between the power wiring C1 and the signal wiring provided near the power wiring C1.
  • the power wiring C1 may be provided separated from the signal wiring provided near the power wiring C1 by a partition.
  • each of the signal wirings C2, C3, C4, and C5 may be wired taking into consideration the wiring length, wiring path, or wiring type so that there are no loops along the way. By wiring so that there are no loops, it is possible to suppress the generation of noise in each of the signal wirings C2, C3, C4, and C5. In addition, by wiring so that there are no loops, it is possible to prevent the radiation of electromagnetic waves due to the antenna effect.
  • the signal wiring provided in the fuel cell power generation device 501 may be connected to the fuel cell unit 510 and a connection section, and may transmit and/or receive signals in the fuel cell unit 510 to and from the outside.
  • the signal wiring provided in the fuel cell power generation device 501 may be connected to the auxiliary equipment provided in the auxiliary unit 520 and a connection section, and may transmit and/or receive signals in the auxiliary equipment to and from the outside.
  • FIG. 28 and 29 is a diagram explaining the ground wiring of the fuel cell power generation device 501, which is an example of a fuel cell power generation device according to the third embodiment.
  • the ground wiring G1 is a wiring that connects the housing of the fuel cell unit 510 to the ground wiring terminal block 534.
  • the ground wiring G1 is provided along the X-axis direction from the ground wiring terminal block 534 to the lower side (-Z side) and rear side (-Y side) of the auxiliary unit 520.
  • the ground wiring G1 is folded back along the lower side (-Z side) and rear side (-Y side) of the fuel cell unit 510, and then connected to the housing of the fuel cell unit 510. Note that, although the ground wiring G1 is folded back and connected to the housing of the fuel cell unit 510 in FIG. 28, it may be connected without being folded back.
  • the ground wiring G2 is a wiring that connects the ground terminal in the fuel cell unit 510 and the electric circuit box 527 to the ground wiring terminal block 534.
  • the ground wiring G2 is provided from the ground wiring terminal block 534 to the lower side (-Z side) of the auxiliary unit 520, on the rear side (-Y side), along the X-axis direction.
  • the ground wiring G2 branches along the way.
  • One of the branched ground wiring G2 connects to the ground terminal in the fuel cell unit 510.
  • the other of the branched ground wiring G2 is provided along the Y-axis direction from the rear side (-Y side) to the front side (+Y side) on the lower side (-Z side) of the auxiliary unit 520.
  • the other of the branched ground wiring G2 is provided along the X-axis direction from the right side (-X side) to the left side (+X side) on the lower side (-Z side) of the auxiliary unit 520 along the way.
  • the other of the branched ground wiring G2 is provided along the Z-axis direction from the lower side (-Z side) to the upper side (+Z side).
  • the other end of the branched ground wiring G2 is connected to the electric circuit box 527.
  • Figure 30 is a diagram explaining the power supply wiring P1 of the fuel cell power generation device 501, which is an example of a fuel cell power generation device according to the third embodiment.
  • the power supply wiring P1 is a wiring that supplies power to each of the fuel cell unit 510 and the auxiliary unit 520.
  • the power supply wiring P1 is connected to a battery with an output voltage of 12 volts, for example.
  • the power supply wiring P1 is a wiring that connects the electric circuit box 527 and the power supply wiring terminal block 533.
  • the power supply wiring P1 is provided from the power supply wiring terminal block 533 to the lower side (-Z side) of the auxiliary unit 520, on the left side (+X side) along the Y-axis direction.
  • the power supply wiring P1 extends from the left side (+X side) to the right side (-X side) along the X-axis direction on the lower side (-Z side) of the auxiliary unit 520, turns back, and extends to the left side (+X side).
  • the power supply wiring P1 extends from the lower side (-Z side) to the upper side (+Z side) along the Z-axis direction, and connects to the electric circuit box 527.
  • a filter may be provided on the wiring between the power supply source, for example, the power supply wiring P1 or the battery, and the motor provided in at least one of the fuel cell unit 510 and the auxiliary unit 520.
  • the filter may be, for example, an LCR filter including a coil, a capacitor, and a resistor.
  • each of the power wiring C1, signal wiring C2, signal wiring C3, signal wiring C4, signal wiring C5, ground wiring G1, ground wiring G2 and power supply wiring P1 may be appropriately fixed to a structure in the auxiliary unit 520.
  • the signal wiring is arranged away from the power wiring, thereby suppressing the effects of noise from the power wiring.
  • the power wiring terminal block, the signal wiring terminal block, the ground wiring terminal block, and the power wiring terminal block are arranged together on the side of the auxiliary unit opposite the fuel cell unit.
  • the fuel cell power generation device according to the third embodiment can improve the work efficiency of wiring work.
  • the fuel cell power generation device includes a fuel cell unit equipped with fuel cells, and an auxiliary unit equipped with auxiliary equipment for operating the fuel cells.
  • the auxiliary equipment unit in the fuel cell device according to embodiment 3A includes an auxiliary equipment frame to which the auxiliary equipment is attached.
  • the fuel cell device according to embodiment 3A includes a reinforcing member that reinforces the auxiliary equipment frame, and the auxiliary equipment is fixed by the reinforcing member.
  • FIG. 31 and 32 are a perspective view of fuel cell power generation device 2002, which is an example of a fuel cell power generation device according to embodiment 3A.
  • Fig. 32 is a perspective view seen from a different direction than Fig. 31.
  • Fig. 33 is a front view of fuel cell power generation device 2002, which is an example of a fuel cell power generation device according to embodiment 3A.
  • Fig. 34 is a rear view of fuel cell power generation device 2002, which is an example of a fuel cell power generation device according to embodiment 3A.
  • the drawings may include a virtual three-dimensional coordinate system (XYZ Cartesian coordinate system) consisting of mutually orthogonal X-axis, Y-axis, and Z-axis (XYZ axes).
  • XYZ Cartesian coordinate system XYZ Cartesian coordinate system
  • the fuel cell power generation system 2002 is a fuel cell that uses fuel cell cells, similar to the fuel cell power generation system 501.
  • the fuel cell power generation system 2002 includes a fuel cell unit 2110 and an auxiliary unit 2120.
  • the fuel cell power generation system 2002 also includes a pallet 2130 that holds the fuel cell unit 2110 and the auxiliary unit 2120.
  • the fuel cell unit 2110 is attached by a mounting plate 2135 fixed to the +Y side of the pallet 2130, and a mounting plate 2136 fixed to the -Y side of the pallet 2130.
  • the fuel cell unit 2110 is fixed to the mounting plate 2135 by four bolts BT.
  • the fuel cell unit 2110 is also fixed to the mounting plate 2136 by four bolts BT.
  • the fuel cell unit 2110 is fixed to the pallet 2130 with eight bolts BT, but five or more bolts BT may be used. In other words, the fuel cell unit 2110 may be fixed to the pallet 2130 at five or more points. Fixing the fuel cell unit 2110 to the pallet 2130 at four or fewer points may not be sufficient, so it is preferable that the fuel cell unit 2110 be fixed to the pallet 2130 at five or more points.
  • fuel cell unit 2110 has the same functions and configuration as fuel cell unit 510, the description of fuel cell unit 2110 should be referred to, and a detailed description of fuel cell unit 2110 will be omitted here.
  • the auxiliary unit 2120 is used when operating the fuel cell of the fuel cell unit 2110.
  • the auxiliary unit 2120 is attached to the upper part of the +X side in the X-axis direction of the pallet 2130.
  • the auxiliary unit 2120 supplies a coolant and the like to the fuel cell unit 2110.
  • the auxiliary unit 2120 includes auxiliary machinery used when operating the fuel cell in the fuel cell unit 2110.
  • the auxiliary unit 2120 includes a frame 2120f.
  • the frame 2120f is an example of an auxiliary frame.
  • the auxiliary unit 2120 includes, as examples of auxiliary equipment, heat exchanger 2121, heat exchanger 2122, reservoir tank 2123, reservoir tank 2124, ion exchanger 2125, air filter 2126, and electrical circuit box 2127.
  • the auxiliary unit 2120 also includes a coolant pump and a gas-liquid separator, similar to the coolant pump 528 and gas-liquid separator 529, respectively, in the fuel cell power generation system 501.
  • the auxiliary unit 2120 also includes hydrogen detector 2145a and hydrogen detector 2145b, similar to the hydrogen detector 535a and hydrogen detector 535b in the fuel cell power generation system 501.
  • the auxiliary unit 2120 includes a power wiring terminal block 2141, a signal wiring terminal block 2142, a power wiring terminal block 2143, and a ground wiring terminal block 2144.
  • Each of the power wiring terminal block 2141, the signal wiring terminal block 2142, the power wiring terminal block 2143, and the ground wiring terminal block 2144 is an example of a connection part.
  • the connection part relays and connects wiring extending from either the fuel cell unit 2110 or the auxiliary unit 2120 to the outside.
  • the heat exchanger 2121 has the same function and configuration as the heat exchanger 521 in the fuel cell power generation system 501, the description of the heat exchanger 521 in the fuel cell power generation system 501 should be referred to, and a detailed description of the heat exchanger 2121 will be omitted here.
  • the same also applies to the power wiring terminal block 2141, the signal wiring terminal block 2142, the power wiring terminal block 2143, and the ground wiring terminal block 2144.
  • FIG. 35, 36, and 37 is a perspective view of the frame body 2120f, which is an auxiliary frame in a fuel cell power generation system 2002, which is an example of a fuel cell power generation system according to embodiment 3A. Note that, for the sake of explanation, a heat exchanger 2121 is shown in each of Figures 35, 36, and 37.
  • Frame 2120f is provided with bar material 2120f1, bar material 2120f2, bar material 2120f3, and bar material 2120f4 on the -Z side.
  • Bar material 2120f1 and bar material 2120f3 each extend along the Y-axis direction.
  • Bar material 2120f3 is provided spaced apart from bar material 2120f1 along the X-axis direction on the -X side.
  • Bar material 2120f2 and bar material 2120f4 each extend along the X-axis direction.
  • Bar material 2120f4 is provided spaced apart from bar material 2120f2 along the Y-axis direction on the -Y side.
  • Bar material 2120f1, bar material 2120f2, bar material 2120f3, and bar material 2120f4 each are, for example, steel sections having an L-shaped cross section. The same applies to the following bar materials.
  • the bar material is not limited to steel sections with an L-shaped cross section, but may be steel sections with a C-shaped or U-shaped cross section, round bars, square bars, etc.
  • the +Y end of bar 2120f1 is connected to the +X end of bar 2120f2.
  • the -Y end of bar 2120f1 is connected to the +X end of bar 2120f4.
  • the +Y end of bar 2120f3 is connected to the -X end of bar 2120f2.
  • the -Y end of bar 2120f3 is connected to the -X end of bar 2120f4.
  • Bars 2120f1, 2120f2, 2120f3 and 2120f4 are rectangular in plan view, that is, when viewed from the +Z side along the Z-axis direction.
  • Frame 2120f includes connecting member 2120fm1 that connects bar 2120f1 and bar 2120f3. Additionally, the frame 2120f includes a connecting member 2120fm1 that connects the rods 2120f1 and 2120f3, and a connecting member 2120fm2 that connects the rods 2120f2.
  • the frame 2120f is fixed to the pallet 2130 by fixing each of the bars 2120f1, 2120f2, 2120f3, 2120f4 and the connecting member 2120fm2 to the pallet 2130 with bolts BT2.
  • the frame 2120f is fixed to the pallet 2130 with nine bolts BT2.
  • the frame 2120f is fixed to the pallet 2130 with nine bolts BT2, but five or more bolts BT2 may be used.
  • the frame 2120f which is an example of an accessory frame, may be fixed to the pallet 130 at five or more points. Since fixing the frame 2120f to the pallet 2130 at four or fewer points may not be sufficient, it is preferable that the frame 2120f be fixed to the pallet 2130 at five or more points.
  • frame 2120f includes bars 2120f5, 2120f6, 2120f7, and 2120f8 extending along the Z-axis direction.
  • the -Z end of bar 2120f5 connects to the corner where bar 2120f1 and bar 2120f4 are joined.
  • the -Z end of bar 2120f6 connects to the corner where bar 2120f1 and bar 2120f2 are joined.
  • the -Z end of bar 2120f7 connects to the corner where bar 2120f2 and bar 2120f3 are joined.
  • the -Z end of bar 2120f8 connects to the corner where bar 2120f3 and bar 2120f4 are joined.
  • Bar material 2120f5 and bar material 2120f8 are each longer than bar material 2120f6 and bar material 2120f7.
  • frame 2120f is provided with rods 2120fa, 2120fb, 2120fc, and 2120fd on the +Z side.
  • Each of rods 2120fa and 2120fc extends along the Y-axis direction.
  • Rod 2120fc is spaced apart from rod 2120fa along the X-axis direction on the -X side.
  • Each of rods 2120fb and 2120fd extends along the X-axis direction.
  • Rod 2120fd is spaced apart from rod 2120fc along the Y-axis direction on the -Y side in a plan view.
  • the +Y end of bar 2120fa is connected to the +X end of bar 2120fb.
  • the -Y end of bar 2120fa is connected between the +Z end and the -Z end of bar 2120f5.
  • the +Y end of bar 2120fc is connected to the -X end of bar 2120fb.
  • the -Y end of bar 2120fc is connected between the +Z end and the -Z end of bar 2120f8.
  • the +X end of bar 2120fd is connected to the +Z end of bar 2120f5.
  • the -X end of bar 2120fd is connected to the +Z end of bar 2120f8.
  • the +Z end of bar 2120f6 connects to the corner where bar 2120fa and bar 2120fb join.
  • the +Z end of bar 2120f7 connects to the corner where bar 2120fb and bar 2120fc join.
  • Bar material 2120fa, bar material 2120fb, bar material 2120fc, and bar material 2120fd are rectangular in plan view. Also, bar material 2120fa, bar material 2120fb, bar material 2120fc, and bar material 2120fd are configured to overlap bar material 2120f1, bar material 2120f2, bar material 2120f3, and bar material 2120f4 in plan view.
  • the frame 2120f has a top surface 120fS defined by the bars 2120fa, 2120fb, and 2120fc.
  • the frame 2120f includes a reinforcing member 2120fr that connects the rods 2120f5 and 2120f8 to reinforce the frame 2120f.
  • the heat exchanger 2121 is fixed by the reinforcing member 2120fr.
  • the number of parts can be reduced by fixing the heat exchanger 2121, which is one of the auxiliary devices, to the reinforcing member 2120fr that reinforces the frame 2120f.
  • the material costs and assembly man-hours can be reduced by fixing the heat exchanger 2121, which is one of the auxiliary devices, to the reinforcing member 2120fr that reinforces the frame 2120f.
  • the frame body 2120f may include a connecting member 120fm that connects between the rods included in the frame body 2120f.
  • the connecting member 120fm may also connect between the rods included in the frame body 2120f and the connecting member 120fm.
  • the bar is an example of a structural member.
  • FIG. 38 is a diagram illustrating the arrangement of the auxiliaries in a fuel cell power generation system 2002, which is an example of a fuel cell power generation system according to embodiment 3A.
  • the maintenance parts that require maintenance during operation such as the reservoir tank 2123, the reservoir tank 2124, the ion exchanger 2125, and the air filter 2126, are provided on the top surface 2120fS of the frame 2120f.
  • the frame 2120f which is an example of an accessory frame, has maintenance parts on the top surface 2120fS.
  • the +X side surface of the auxiliary unit 2120 in the fuel cell power generation system 2002 is, for example, the maintenance surface 2120S through which workers or the like can access the auxiliary equipment.
  • the space 2120V in which the maintenance parts are provided is a space with at least one side open around the maintenance parts.
  • those requiring particularly complicated maintenance work such as the ion exchanger 2125 and the air filter 2126, are provided near the maintenance surface 2120S.
  • those requiring particularly complicated maintenance work near the maintenance surface 2120S, the efficiency of the maintenance work can be improved.
  • the reservoir tank 2124 which is an example of a maintenance part, is fixed to the frame body 2120f by support 2120s1 fixed to the frame body 2120f shown in Figures 35 to 37 at both ends.
  • the ion exchanger 2125 which is an example of a maintenance part, is fixed to the frame body 2120f by support 2120s2 fixed to the frame body 2120f at both ends, and supports 2120t1 and 2120t2 whose section modulus has been increased to increase rigidity.
  • Supports 2120t1 and 2120t2 have a U-shaped cross section, which increases the section modulus and increases rigidity.
  • Supports that have maintenance parts fixed at both ends or supports with increased rigidity due to an increased section modulus provide the rigidity to withstand vibrations during operation of the fuel cell power generation system 2002 and shocks during transportation.
  • FIG. 40 and 41 is a diagram explaining the arrangement of the liquid system devices and electrical system devices in a fuel cell power generation system 2002, which is an example of a fuel cell power generation system according to embodiment 3A.
  • the electrical system equipment is arranged away from the liquid system equipment. More specifically, the space in which the electrical system equipment is arranged is provided separately from the space in which the liquid system equipment is arranged.
  • the electrical system equipment is provided in space SE1 or space SE2.
  • the electrical system equipment is, for example, power wiring, signal wiring, and an electrical circuit box 2127.
  • the liquid system equipment is provided in space SW.
  • the liquid system equipment is, for example, a cooling liquid piping, a heat exchanger 2121, a heat exchanger 2122, a reservoir tank 2123, a reservoir tank 2124, and an ion exchanger 2125.
  • the electrical equipment is arranged away from the liquid equipment, which prevents liquid leaking from the liquid equipment in an emergency from coming into contact with electrical equipment such as electrical wiring.
  • electrical equipment such as electrical wiring
  • the fuel cell power generation apparatus 2002 power wiring for transmitting electricity generated in the fuel cell unit to the outside is provided in the space SE1. Furthermore, in the fuel cell power generation apparatus 2002, signal wiring for transmitting and receiving signals in the fuel cell unit is provided in the space SE2.
  • the space SE2 is provided at a distance from the space SE1. By providing the spaces SE1 and SE2 at a distance, the signal wiring is provided at a distance from the power wiring. Note that with regard to the point that the signal wiring is provided at a distance from the power wiring, please refer to the explanation of the fuel cell power generation apparatus 501, which is an example of the fuel cell power generation apparatus according to the first embodiment, and a detailed explanation will be omitted here.
  • Pallet 2130 is a mobile platform capable of transporting fuel cell unit 2110 and auxiliary unit 2120 as a unit. Pallet 2130 can be lifted by a transport device by inserting a loading member of the transport device, for example, the forks of a forklift, into the interior of pallet 2130.
  • the transport device may be a device capable of transporting fuel cell power generation system 2002, for example, a loading vehicle, a crane, a hand lifter, etc.
  • the loading member is not limited to a fork, and may be any member on which fuel cell power generation system 2002 can be placed.
  • Pallet 2130 is equipped with eye bolts 2139a, 2139b, 2139c, and 2139d so that it can be lifted by a transport device, such as a crane.
  • Figure 42 is a perspective view of the pallet 2130 in the fuel cell power generation apparatus 2002, which is an example of a fuel cell power generation apparatus according to embodiment 3A.
  • Figure 43 is a side view of the pallet 2130 in the fuel cell power generation apparatus 2002, which is an example of a fuel cell power generation apparatus according to embodiment 3A. Specifically, it is a side view seen from the +X side along the X-axis direction.
  • Figure 44 is a bottom view of the pallet 2130 in the fuel cell power generation apparatus 2002, which is an example of a fuel cell power generation apparatus according to embodiment 3A.
  • the pallet 2130 has a longitudinal direction along the X-axis.
  • Pallet 2130 includes frame members 2131 and 2132, each of which has a C-shaped or U-shaped cross section.
  • frame members 2131 and 2132 are each composed of a C-shaped member having a C-shaped cross section or a U-shaped member having a U-shaped cross section.
  • a cross section is C-shaped or U-shaped, it means that one of the four sides of a rectangular cross section is open. In other words, it does not mean that the unopened side is rounded, as in the case of a C-shape.
  • the C-shaped member or U-shaped member is, for example, a shaped steel, such as a lip-channel steel material, or a so-called C-channel steel material.
  • Each of frame members 2131 and 2132 extends along the X-axis direction.
  • Frame member 2132 is spaced apart from frame member 2131 in the Y-axis direction.
  • a flat plate member 2131a is provided at the end of the +X side of the frame member 2131 so as to cover the -Z side.
  • the frame member 2131 and the plate member 2131a form an opening 2131h1 on the +X side.
  • a flat plate member 2131b is provided at the end of the -X side of the frame member 2131 so as to cover the -Z side.
  • the frame member 2131 and the plate member 2131b form an opening 2131h2 on the -X side.
  • a flat plate member 2132a is provided at the end of the +X side of the frame member 2132 so as to cover the -Z side.
  • the frame member 2132 and the plate member 2132a form an opening 2132h1 on the +X side.
  • a flat plate member 2132b is provided at the end of the -X side of the frame member 2132 so as to cover the -Z side.
  • the frame member 2132 and the plate member 2132b form an opening 2132h2 on the -X side.
  • the pallet 2130 has a combination of C-shaped members and flat plates.
  • pallet 2130 includes connecting member 2133a, connecting member 2133b, connecting member 2133c, connecting member 2133d, and connecting member 2133e.
  • Each of connecting member 2133a, connecting member 2133b, connecting member 2133c, connecting member 2133d, and connecting member 2133e is composed of a C-shaped member having a C-shaped cross section or a U-shaped member having a U-shaped cross section.
  • the smallest possible plate members are provided only at the fixing points for fixing the fuel cell power generation device 2002, which has little effect on the rigidity, thereby reducing costs and weight.
  • a fuel cell unit including a fuel cell; an auxiliary unit including an auxiliary device used when operating the fuel cell and a terminal block; a first wiring that allows electricity generated from the fuel cell unit to flow and connects the fuel cell unit to the terminal block of the auxiliary unit; A second wiring for transmitting a signal to the fuel cell unit; Equipped with The first wiring is provided at a distance from the second wiring. Power generation equipment.
  • the terminal block is provided on the opposite side to the fuel cell unit. 17.
  • the auxiliary unit includes, as the auxiliary, a heat exchanger for exchanging heat between a first cooling liquid from an outside and a second cooling liquid supplied to the fuel cell unit, a first pipe connecting the heat exchanger to the outside, and a second pipe connecting the heat exchanger to the fuel cell unit;
  • the terminal block is provided above the heat exchanger, the first pipe, and the second pipe.
  • the terminal block includes a power wiring terminal block and a signal wiring terminal block, The power wiring terminal block is provided separately from the signal wiring terminal block. 16.
  • the first wiring is installed at an end of the auxiliary unit. 16.
  • the first wiring is installed at an upper end of the auxiliary unit. 16.
  • the terminal block is installed in a waterproof and dustproof box. 16.
  • the first wiring is further provided with a light-up lamp capable of determining whether or not electricity is being applied.
  • a light-up lamp capable of determining whether or not electricity is being applied.
  • a waterproof and dustproof connector or a rod terminal is provided at an end of the first wiring and the second wiring. 16. The power generating device of claim 15.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Provided is a fuel cell power generation apparatus comprising: a fuel cell having a fuel electrode and an air electrode; a fuel pipe that supplies hydrogen to the fuel electrode; an air compressor that compresses air and supplies the compressed air to the air electrode; an exhaust pipe that discharges exhaust gas generated by the fuel cell; and a first intermediate heat exchanger that is capable of performing heat exchange between a first coolant for cooling the fuel cell and a first cold heat source, which is any of air, liquid, or cold heat generated when compressed hydrogen expands.

Description

燃料電池発電装置Fuel Cell Power Generation Equipment
 本開示は、燃料電池発電装置に関する。 This disclosure relates to a fuel cell power generation device.
 従来、燃料電池スタックから排出される第1冷却液を冷却する第1熱交換器と、燃料電池スタックの出力電圧を昇圧するコンバータ等のいくつかの補機から排出される第2冷却液を冷却する第2熱交換器とを備える燃料電池モジュールが知られている。熱交換器の具体例として、車両のラジエータが挙げられている(例えば、特許文献1参照)。 Conventionally, a fuel cell module is known that includes a first heat exchanger that cools a first coolant discharged from the fuel cell stack, and a second heat exchanger that cools a second coolant discharged from several auxiliary devices, such as a converter that boosts the output voltage of the fuel cell stack. A specific example of a heat exchanger is a vehicle radiator (see, for example, Patent Document 1).
 また、特許文献1には、燃料電池スタックと、燃料電池スタックを駆動させる複数の補機と、複数のメンテナンス部品と、燃料電池スタック、複数の補機及び複数のメンテナンス部品を支持するフレームと、を備えた燃料電池モジュールが開示されている。 Patent Document 1 also discloses a fuel cell module that includes a fuel cell stack, a number of auxiliary devices that drive the fuel cell stack, a number of maintenance parts, and a frame that supports the fuel cell stack, the number of auxiliary devices, and the number of maintenance parts.
特開2022-086272号公報JP 2022-086272 A
 しかしながら、熱交換器が車両のラジエータに限られていると、燃料電池発電装置を様々な用途に適用することが難しい。 However, if the heat exchanger is limited to the vehicle's radiator, it is difficult to apply the fuel cell power generation system to various applications.
 本開示における第1態様は、様々な用途に適用可能な燃料電池発電装置を提供する。 The first aspect of this disclosure provides a fuel cell power generation device that can be used for a variety of purposes.
 また、特許文献1に開示されているような燃料電池モジュールを、一体で運搬して設置することが求められている。 In addition, there is a demand for fuel cell modules such as those disclosed in Patent Document 1 to be transported and installed as a whole.
 本開示における第2態様は、燃料電池ユニット及び補機ユニットを一体で運搬可能な発電装置を提供する。 The second aspect of the present disclosure provides a power generation device in which the fuel cell unit and auxiliary unit can be transported as a single unit.
 さらに、燃料電池セルを備える燃料電池ユニットには、外部に電力を出力する動力配線と、燃料電池ユニットに信号を伝達する信号配線と、が接続される。燃料電池ユニットに信号を伝達する信号配線において、燃料電池ユニットから電力を出力する動力配線からの電磁ノイズの影響を抑制することが求められている。 Furthermore, a power wiring that outputs power to the outside and a signal wiring that transmits signals to the fuel cell unit are connected to the fuel cell unit, which has fuel cell cells. In the signal wiring that transmits signals to the fuel cell unit, it is required to suppress the effects of electromagnetic noise from the power wiring that outputs power from the fuel cell unit.
 本開示における第3態様は、電力を出力する動力配線からの電磁ノイズの影響を抑制する発電装置を提供する。 The third aspect of the present disclosure provides a power generation device that suppresses the effects of electromagnetic noise from the power wiring that outputs electric power.
 第1態様では、燃料電池発電装置は、
 燃料極と空気極を有する燃料電池と、
 前記燃料極に水素を供給する燃料管と、
 空気を圧縮し、前記空気極に供給する空気コンプレッサと、
 前記燃料電池で発生する排ガスを排出する排気管と、
 前記燃料電池を冷却する第1冷却液を、空気、液体、圧縮水素が膨張した際の冷熱、の何れかの第1冷熱源との間で熱交換可能な第1中間熱交換器と、を備える。
In a first aspect, a fuel cell power generator includes:
a fuel cell having an anode and an cathode;
a fuel pipe for supplying hydrogen to the fuel electrode;
an air compressor that compresses air and supplies it to the air electrode;
an exhaust pipe for discharging exhaust gas generated by the fuel cell;
The fuel cell is provided with a first intermediate heat exchanger capable of exchanging heat between a first cooling fluid that cools the fuel cell and a first cold heat source that is any one of air, liquid, and cold heat generated by the expansion of compressed hydrogen.
 第1態様によれば、前記燃料電池を冷却する第1冷却液を、空気、液体、圧縮水素が膨張した際の冷熱、の何れかの第1冷熱源との間で熱交換可能な第1中間熱交換器を備えるので、燃料電池発電装置を様々な用途に適用できる。 According to the first aspect, the fuel cell power generation device is provided with a first intermediate heat exchanger capable of exchanging heat between the first cooling liquid that cools the fuel cell and a first cold heat source that is either air, liquid, or cold heat generated by the expansion of compressed hydrogen, so that the fuel cell power generation device can be used for a variety of purposes.
 また、本開示における第2態様によれば、第1方向に長手方向を有する移動用架台と、燃料電池セルを動作させる際に使用される補機ユニットを含む燃料電池モジュールと、を備え、前記移動用架台は、内部に前記第1方向の第1側もしくは前記第1側と反対側である第2側の少なくとも一方が開放された空間を有する第1枠部材及び第2枠部材と、前記第2枠部材は、前記第1枠部材から前記第1方向に交差する第2方向に離隔し、前記第1枠部材及び前記第2枠部材のそれぞれは前記第1方向に延び、前記第1枠部材及び前記第2枠部材のそれぞれの上部に前記燃料電池モジュールが載置される燃料電池発電装置を提供する。 Furthermore, according to a second aspect of the present disclosure, there is provided a fuel cell power generation device comprising a mobile platform having a longitudinal direction in a first direction, and a fuel cell module including an auxiliary unit used when operating a fuel cell, the mobile platform having a first frame member and a second frame member having an internal space in which at least one of a first side in the first direction or a second side opposite to the first side is open, the second frame member is spaced apart from the first frame member in a second direction intersecting the first direction, each of the first frame member and the second frame member extends in the first direction, and the fuel cell module is placed on the top of each of the first frame member and the second frame member.
 さらに、本開示における第3態様によれば、燃料電池セルを備える燃料電池ユニットと、前記燃料電池セルを動作させる際に使用される補機を備える補機ユニットと、前記燃料電池ユニットから発生した電気を流し、前記燃料電池ユニットに接続され、前記補機ユニットに配置される第1配線と、前記燃料電池ユニットにおける信号を送信及び受信の少なくともいずれかをするための第2配線と、を備え、前記第1配線は、前記第2配線から離隔して設けられる燃料電池発電装置を提供する。 Furthermore, according to a third aspect of the present disclosure, there is provided a fuel cell power generation device comprising a fuel cell unit having a fuel cell cell, an auxiliary unit having auxiliary equipment used in operating the fuel cell cell, a first wiring that carries electricity generated from the fuel cell unit and is connected to the fuel cell unit and is disposed in the auxiliary unit, and a second wiring for at least one of transmitting and receiving signals in the fuel cell unit, the first wiring being disposed at a distance from the second wiring.
 本開示における第1態様は、様々な用途に適用可能な燃料電池発電装置を提供できる。 The first aspect of this disclosure provides a fuel cell power generation device that can be used for a variety of purposes.
 本開示における第2態様は、燃料電池ユニット及び補機ユニットを一体で運搬できる発電装置を提供できる。 The second aspect of the present disclosure provides a power generation device in which the fuel cell unit and auxiliary unit can be transported as a single unit.
 本開示における第3態様は、電力を出力する動力配線からの電磁ノイズの影響を抑制できる発電装置を提供できる。 The third aspect of the present disclosure provides a power generation device that can suppress the effects of electromagnetic noise from the power wiring that outputs electric power.
図1は、第1実施形態の燃料電池発電装置を備える燃料電池発電システムの構成例を示す図である。FIG. 1 is a diagram showing an example of the configuration of a fuel cell power generation system including a fuel cell power generation device according to a first embodiment. 図2は、第1実施形態の燃料電池発電装置の構成例を詳細に示す図である。FIG. 2 is a diagram showing in detail an example of the configuration of the fuel cell power generation device of the first embodiment. 図3は、第2実施形態に係る燃料電池発電装置の斜視図である。FIG. 3 is a perspective view of a fuel cell power generating apparatus according to the second embodiment. 図4は、第2実施形態に係る燃料電池発電装置の正面図である。FIG. 4 is a front view of a fuel cell power generating apparatus according to the second embodiment. 図5は、第2実施形態に係る燃料電池発電装置の背面図である。FIG. 5 is a rear view of the fuel cell power generating apparatus according to the second embodiment. 図6は、第2実施形態に係る燃料電池発電装置の平面図である。FIG. 6 is a plan view of a fuel cell power generating apparatus according to the second embodiment. 図7は、第2実施形態に係る燃料電池発電装置の構成を説明する図である。FIG. 7 is a diagram illustrating the configuration of a fuel cell power generation device according to the second embodiment. 図8は、第2実施形態に係る燃料電池発電装置におけるパレットの斜視図である。FIG. 8 is a perspective view of a pallet in a fuel cell power generation system according to the second embodiment. 図9は、第2実施形態に係る燃料電池発電装置におけるパレットが備える枠部材の側面図である。FIG. 9 is a side view of a frame member provided on a pallet in a fuel cell power generation system according to the second embodiment. 図10は、第2実施形態に係る燃料電池発電装置におけるパレットが備える枠部材にフォークが挿入された状態を示す図である。FIG. 10 is a diagram showing a state in which forks are inserted into frame members provided on a pallet in a fuel cell power generation system according to the second embodiment. 図11は、第2実施形態に係る燃料電池発電装置の変形例1の斜視図である。FIG. 11 is a perspective view of a first modified example of the fuel cell power generating apparatus according to the second embodiment. 図12は、第2実施形態に係る燃料電池発電装置の変形例2の斜視図である。FIG. 12 is a perspective view of a second modified example of the fuel cell power generating apparatus according to the second embodiment. 図13は、第2実施形態に係る燃料電池発電装置の変形例2における移動用架台の斜視図である。FIG. 13 is a perspective view of a mobile platform in Modification 2 of the fuel cell power generation system according to the second embodiment. 図14は、第2実施形態に係る燃料電池発電装置の変形例2における移動用架台の側面図である。FIG. 14 is a side view of a transport platform in Modification 2 of the fuel cell power generation system according to the second embodiment. 図15は、第2実施形態に係る燃料電池発電装置の変形例2における移動用架台の底面図である。FIG. 15 is a bottom view of a transport stand in Modification 2 of the fuel cell power generation system according to the second embodiment. 図16は、第2A実施形態に係る燃料電池発電装置の斜視図である。FIG. 16 is a perspective view of a fuel cell power generating apparatus according to embodiment 2A. 図17は、第2A実施形態に係る燃料電池発電装置における移動用架台の斜視図である。FIG. 17 is a perspective view of a transport platform for a fuel cell power generation system according to embodiment 2A. 図18は、第2A実施形態に係る燃料電池発電装置の変形例の斜視図である。FIG. 18 is a perspective view of a modified example of a fuel cell power generating apparatus according to embodiment 2A. 図19は、第2A実施形態に係る燃料電池発電装置における移動用架台の変形例の斜視図である。FIG. 19 is a perspective view of a modified example of the transport platform for the fuel cell power generation system according to embodiment 2A. 図20は、第2A実施形態に係る燃料電池発電装置における移動用架台の変形例の使用状態を示す図である。FIG. 20 is a diagram showing a state in which a modified example of the transport stand for the fuel cell power generation system according to embodiment 2A is used. 図21は、第3実施形態に係る燃料電池発電装置の斜視図である。FIG. 21 is a perspective view of a fuel cell power generating apparatus according to the third embodiment. 図22は、第3実施形態に係る燃料電池発電装置の斜視図である。FIG. 22 is a perspective view of a fuel cell power generating apparatus according to the third embodiment. 図23は、第3実施形態に係る燃料電池発電装置の正面図である。FIG. 23 is a front view of a fuel cell power generating apparatus according to the third embodiment. 図24は、第3実施形態に係る燃料電池発電装置の背面図である。FIG. 24 is a rear view of the fuel cell power generating apparatus according to the third embodiment. 図25は、第3実施形態に係る燃料電池発電装置の構成を説明する図である。FIG. 25 is a diagram illustrating the configuration of a fuel cell power generating apparatus according to the third embodiment. 図26は、第3実施形態に係る燃料電池発電装置の配線について説明する図である。FIG. 26 is a diagram illustrating wiring of a fuel cell power generating apparatus according to the third embodiment. 図27は、第3実施形態に係る燃料電池発電装置の配線について説明する図である。FIG. 27 is a diagram illustrating wiring of a fuel cell power generating apparatus according to the third embodiment. 図28は、第3実施形態に係る燃料電池発電装置の接地配線について説明する図である。FIG. 28 is a diagram illustrating the ground wiring of the fuel cell power generator according to the third embodiment. 図29は、第3実施形態に係る燃料電池発電装置の接地配線について説明する図である。FIG. 29 is a diagram illustrating the ground wiring of the fuel cell power generator according to the third embodiment. 図30は、第3実施形態に係る燃料電池発電装置の電源配線について説明する図である。FIG. 30 is a diagram illustrating power supply wiring of a fuel cell power generator according to the third embodiment. 図31は、第3A実施形態に係る燃料電池発電装置の斜視図である。FIG. 31 is a perspective view of a fuel cell power generation apparatus according to embodiment 3A. 図32は、第3A実施形態に係る燃料電池発電装置の斜視図である。FIG. 32 is a perspective view of a fuel cell power generating apparatus according to embodiment 3A. 図33は、第3A実施形態に係る燃料電池発電装置の正面図である。FIG. 33 is a front view of a fuel cell power generator according to embodiment 3A. 図34は、第3A実施形態に係る燃料電池発電装置の背面図である。FIG. 34 is a rear view of the fuel cell power generator according to the third embodiment. 図35は、第3A実施形態に係る燃料電池発電装置における補機フレームの斜視図である。FIG. 35 is a perspective view of an auxiliary frame in a fuel cell power generation system according to the third embodiment. 図36は、第3A実施形態に係る燃料電池発電装置における補機フレームの斜視図である。FIG. 36 is a perspective view of an auxiliary frame in a fuel cell power generation system according to embodiment 3A. 図37は、第3A実施形態に係る燃料電池発電装置における補機フレームの斜視図である。FIG. 37 is a perspective view of an auxiliary frame in a fuel cell power generation system according to the third embodiment. 図38は、第3A実施形態に係る燃料電池発電装置における補機の配置について説明する図である。FIG. 38 is a diagram illustrating the arrangement of auxiliary machinery in a fuel cell power generation system according to the third embodiment. 図39は、第3A実施形態に係る燃料電池発電装置における補機の配置について説明する図である。FIG. 39 is a diagram illustrating the arrangement of auxiliary machinery in a fuel cell power generation system according to the third embodiment. 図40は、第3A実施形態に係る燃料電池発電装置における液系機器と電気系機器の配置について説明する図である。FIG. 40 is a diagram for explaining the arrangement of liquid system devices and electrical system devices in a fuel cell power generation system according to the third embodiment. 図41は、第3A実施形態に係る燃料電池発電装置における液系機器と電気系機器の配置について説明する図である。FIG. 41 is a diagram for explaining the arrangement of liquid system devices and electrical system devices in a fuel cell power generation system according to the third embodiment. 図42は、第3A実施形態に係る燃料電池発電装置におけるパレットの斜視図である。FIG. 42 is a perspective view of a pallet in a fuel cell power generation system according to the third embodiment. 図43は、第3A実施形態に係る燃料電池発電装置におけるパレットの側面図である。FIG. 43 is a side view of a pallet in a fuel cell power generation system according to embodiment 3A. 図44は、第3A実施形態に係る燃料電池発電装置におけるパレットの底面図である。FIG. 44 is a bottom view of a pallet in a fuel cell power generation system according to embodiment 3A.
 以下、実施形態について、添付の図面を参照しながら説明する。なお、本開示はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 Embodiments will now be described with reference to the accompanying drawings. Note that the present disclosure is not limited to these examples, but is defined by the claims, and is intended to include all modifications within the meaning and scope of the claims.
 なお、各実施形態に係る明細書及び図面の記載に関して、実質的に同一の又は対応する機能構成を有する構成要素については、同一の符号を付することにより重複した説明を省略する場合がある。また、理解を容易にするために、図面における各部の縮尺は、実際とは異なる場合がある。 In addition, with regard to the description of the specification and drawings relating to each embodiment, components having substantially the same or corresponding functional configurations may be given the same reference numerals to avoid redundant explanation. Also, to facilitate understanding, the scale of each part in the drawings may differ from the actual scale.
 平行、直角、直交、水平、垂直、上下、左右及び前後等の方向には、実施形態の効果を損なわない程度のずれが許容される。角部の形状は、直角に限られず、丸みを帯びてもよい。平行、直角、直交、水平、垂直には、それぞれ略平行、略直角、略直交、略水平、略垂直が含まれてもよい。 In directions such as parallel, right-angled, orthogonal, horizontal, vertical, up-down, left-right, and front-back, deviations that do not impair the effects of the embodiment are permitted. The shape of the corners is not limited to right angles and may be rounded. Parallel, right-angled, orthogonal, horizontal, and vertical may include approximately parallel, approximately right-angled, approximately orthogonal, approximately horizontal, and approximately vertical, respectively.
 例えば、略平行は、2つの線又は2つの面が互いに完全に平行でなくても、製造上許容される範囲内であれば互いに平行として扱うことができることを意味する。他の略直角、略直交、略水平及び略垂直のそれぞれについても、略平行と同様に、2つの線又は2つの面の相互の位置関係が製造上許容される範囲内であればそれぞれに該当することが意図される。 For example, "approximately parallel" means that even if two lines or two surfaces are not completely parallel to each other, they can be treated as parallel to each other as long as it is within the range of manufacturing tolerance. As with "approximately parallel," the other terms "approximately right angle," "approximately perpendicular," "approximately horizontal," and "approximately vertical" are also intended to fall under the respective terms as long as the relative positional relationship between the two lines or two surfaces is within the range of manufacturing tolerance.
 ≪第1実施形態≫
 以下、第1実施形態を説明する。
First Embodiment
The first embodiment will be described below.
 図1は、第1実施形態の燃料電池発電装置を備える燃料電池発電システムの構成例を示す図である。図1に示す燃料電池発電システム201は、並列に接続された複数のFC(燃料電池)プラットフォームによって発電された電力を、給電対象である外部装置12に供給するシステムである。燃料電池発電システム201の用途の具体例として、定置用の発電システム、港湾クレーンなどの荷役機械用の発電システム、船舶用の発電システムなどが挙げられる。その他には、鉄道用、建設機械用などもある。燃料電池発電システム201の用途は、これらの例に限られず、燃料電池発電システム201は、他のアプリケーションに適用されてもよい。 FIG. 1 is a diagram showing an example of the configuration of a fuel cell power generation system including a fuel cell power generation device of the first embodiment. The fuel cell power generation system 201 shown in FIG. 1 is a system that supplies power generated by multiple FC (fuel cell) platforms connected in parallel to an external device 12 that is the power supply target. Specific examples of uses of the fuel cell power generation system 201 include stationary power generation systems, power generation systems for loading and unloading machinery such as port cranes, and power generation systems for ships. Other uses include railways and construction machinery. Uses of the fuel cell power generation system 201 are not limited to these examples, and the fuel cell power generation system 201 may be applied to other applications.
 燃料電池発電システム201は、燃料電池発電装置101と補機システム301を備える。 The fuel cell power generation system 201 includes a fuel cell power generation device 101 and an auxiliary system 301.
 補機システム301は、主機である燃料電池発電装置101に接続される複数の補機を含み、燃料電池発電装置101の稼働を補助する周辺システムである。図1は、複数の補機として、制御用電源32、パージ系統30、燃料系統18、給気系統19、出力線17、電力変換装置11、DC/DCコンバータ13、二次電池14、排気系統31及び冷却器15を例示する。複数の補機の一部又は全部は、燃料電池発電装置101に内蔵されてもよいし、ユニット化されてもよい。燃料電池発電装置101は、複数の補機の一部又は全部を、燃料電池発電装置101の内部に備えてもよいし、燃料電池発電装置101の外部に備えてもよい。 The auxiliary system 301 is a peripheral system that includes multiple auxiliary devices connected to the fuel cell power generation apparatus 101, which is the main unit, and assists the operation of the fuel cell power generation apparatus 101. FIG. 1 shows the multiple auxiliary devices as examples of a control power supply 32, a purge system 30, a fuel system 18, an air supply system 19, an output line 17, a power conversion device 11, a DC/DC converter 13, a secondary battery 14, an exhaust system 31, and a cooler 15. Some or all of the multiple auxiliary devices may be built into the fuel cell power generation apparatus 101, or may be unitized. The fuel cell power generation apparatus 101 may include some or all of the multiple auxiliary devices inside the fuel cell power generation apparatus 101, or may be external to the fuel cell power generation apparatus 101.
 燃料電池発電装置101は、外部装置12に供給される電力を複数のFCプラットフォームによって発電する。燃料電池発電装置101は、ユニット化されてもよい。燃料電池発電装置101は、出力線17に並列に接続された複数のFCプラットフォーム(この例では、3つのFCプラットフォーム1,2,3)と、それらの複数のFCプラットフォームを制御する制御装置10とを備える。並列に接続される複数のFCプラットフォームの台数は、3台に限られず、2台でも、4台以上でもよい。 The fuel cell power generation device 101 generates power to be supplied to an external device 12 using multiple FC platforms. The fuel cell power generation device 101 may be unitized. The fuel cell power generation device 101 includes multiple FC platforms (in this example, three FC platforms 1, 2, and 3) connected in parallel to an output line 17, and a control device 10 that controls the multiple FC platforms. The number of multiple FC platforms connected in parallel is not limited to three, and may be two, four, or more.
 FCプラットフォーム1,2,3は、それぞれ、共通の出力線17に出力点16を経由して接続されるFCスタックを含む。FCスタックは、燃料電池の一例である。FCプラットフォーム1は、FCスタック21を含み、FCプラットフォーム2は、FCスタック22を含み、FCプラットフォーム3は、FCスタック23を含む。 FC platforms 1, 2, and 3 each include an FC stack connected to a common output line 17 via an output point 16. The FC stack is an example of a fuel cell. FC platform 1 includes an FC stack 21, FC platform 2 includes an FC stack 22, and FC platform 3 includes an FC stack 23.
 FCスタック21,22,23は、水素などの燃料の化学エネルギーを電気化学的に電気エネルギーに変換する装置である。FCスタック21,22,23は、燃料管を含む燃料系統18を介して供給される水素又は水素リッチなガスと、空気管を含む給気系統19を介して外部から供給される空気に含まれる酸素との電気化学反応によって発電する。FCスタック21,22,23(FCプラットフォーム1,2,3)の発電状態は、制御装置10によって制御される。FCスタック21,22,23の電気化学反応により発生した排ガスは、排気管を含む排気系統31を介して排出される。FCスタック21,22,23は、ラジエータなどの冷却器15から供給される冷却液(クーラント)により冷却される。 The FC stacks 21, 22, and 23 are devices that electrochemically convert the chemical energy of fuels such as hydrogen into electrical energy. The FC stacks 21, 22, and 23 generate electricity through an electrochemical reaction between hydrogen or hydrogen-rich gas supplied via a fuel system 18 including a fuel pipe and oxygen contained in air supplied from the outside via an air supply system 19 including an air pipe. The power generation state of the FC stacks 21, 22, and 23 ( FC platforms 1, 2, and 3) is controlled by the control device 10. Exhaust gas generated by the electrochemical reaction of the FC stacks 21, 22, and 23 is discharged via an exhaust system 31 including an exhaust pipe. The FC stacks 21, 22, and 23 are cooled by a coolant supplied from a cooler 15 such as a radiator.
 FCスタック21,22,23は、例えば、固体高分子形燃料電池(PEFC)であり、多数の単セルを積層したスタック構造を備える。単セルは、水素イオンを選択的に輸送するための高分子電解質膜の両側面を多孔質材料により形成された一対の電極によって挟まれた膜-電極アッセンブリ(MEA)と、このMEAを両側から挟み込む一対のセパレータとを有する。一対の電極のそれぞれは、例えば白金系の金属触媒(電極触媒)を担持するカーボン粉末を主成分とする触媒層と、通気性及び電子導電性を併せ持つガス拡散層とを有している。 The FC stacks 21, 22, and 23 are, for example, polymer electrolyte fuel cells (PEFCs) and have a stack structure in which many single cells are stacked. The single cell has a membrane-electrode assembly (MEA) in which both sides of a polymer electrolyte membrane for selectively transporting hydrogen ions are sandwiched between a pair of electrodes formed of a porous material, and a pair of separators that sandwich the MEA from both sides. Each of the pair of electrodes has a catalyst layer mainly composed of carbon powder that supports a platinum-based metal catalyst (electrode catalyst), for example, and a gas diffusion layer that is both breathable and electronically conductive.
 FCスタック21,22,23には、それらの出力端子の電圧を検出するための電圧センサと、それらの出力端子からの出力電流を検出するための電流センサが取り付けられている。制御装置10は、FCスタック21,22,23から出力される各電圧の検出値を電圧センサにより取得し、FCスタック21,22,23から出力される各電流の検出値を電流センサにより取得する。制御装置10は、各電圧の検出値と各電流の検出値を用いて、FCスタック21,22,23の各出力電力p1,p2,p3を検出する。 The FC stacks 21, 22, and 23 are fitted with voltage sensors for detecting the voltages at their output terminals, and current sensors for detecting the output currents from their output terminals. The control device 10 obtains the detection values of the voltages output from the FC stacks 21, 22, and 23 using the voltage sensors, and obtains the detection values of the currents output from the FC stacks 21, 22, and 23 using the current sensors. The control device 10 detects the output powers p1, p2, and p3 of the FC stacks 21, 22, and 23 using the detection values of the voltages and currents.
 燃料電池発電装置101内のFCスタック21,22,23(FCプラットフォーム1,2,3)の発電により生成された発電電力は、電力変換装置11を介して、外部装置12に供給される。 The power generated by the FC stacks 21, 22, 23 ( FC platforms 1, 2, 3) in the fuel cell power generation device 101 is supplied to the external device 12 via the power conversion device 11.
 電力変換装置11は、入力される電力Paを、外部装置12に供給される電力Pcに変換する装置である。電力変換装置11は、例えば、FCスタック21,22,23の発電により得られた直流電力を交流電力に変換して外部装置12に供給するインバータである。インバータの具体例として、パワーコンディショナ(PCS:Power Conditioning System)、系統連系インバータなどが挙げられる。外部装置12がモータの場合、電力変換装置11は、モータを駆動するインバータでもよい。電力変換装置11は、FCスタック21,22,23の発電により得られた直流電力の電圧を、異なる電圧の直流電力に変換して外部装置12に供給するコンバータでもよい。 The power conversion device 11 is a device that converts input power Pa into power Pc that is supplied to the external device 12. The power conversion device 11 is, for example, an inverter that converts DC power obtained by power generation in the FC stacks 21, 22, and 23 into AC power and supplies it to the external device 12. Specific examples of inverters include a power conditioning system (PCS) and a grid-connected inverter. When the external device 12 is a motor, the power conversion device 11 may be an inverter that drives the motor. The power conversion device 11 may be a converter that converts the voltage of the DC power obtained by power generation in the FC stacks 21, 22, and 23 into DC power of a different voltage and supplies it to the external device 12.
 FCスタック21,22,23の発電により得られた直流電力は、出力線17にDC/DCコンバータ13を介して接続される二次電池14に充電されてもよい。二次電池14から放電された電力Pbは、電力変換装置11を介して外部装置12に供給される。外部装置12から電力変換装置11を介して入力(回生)された電力Pbが二次電池14に充電されてもよい。二次電池14の充電又は放電は、制御装置10からの駆動制御信号により動作するDC/DCコンバータ13により制御される。DC/DCコンバータ13は、無くてもよい。 The DC power obtained by power generation in the FC stacks 21, 22, 23 may be charged to the secondary battery 14 connected to the output line 17 via the DC/DC converter 13. The power Pb discharged from the secondary battery 14 is supplied to the external device 12 via the power conversion device 11. The power Pb input (regenerated) from the external device 12 via the power conversion device 11 may be charged to the secondary battery 14. The charging or discharging of the secondary battery 14 is controlled by the DC/DC converter 13 that operates according to a drive control signal from the control device 10. The DC/DC converter 13 may not be required.
 二次電池14は、充放電可能な電池である。二次電池14は、直列に接続された複数の蓄電池14,…,14を含むものでもよい(nは、2以上の整数)。二次電池14(複数の蓄電池14,…,14)の具体例として、リチウムイオンバッテリ、リチウムイオンキャパシタ、電気二重層キャパシタなどが挙げられる。 The secondary battery 14 is a chargeable and dischargeable battery. The secondary battery 14 may include a plurality of storage batteries 14 1 , ..., 14 n (n is an integer of 2 or more) connected in series. Specific examples of the secondary battery 14 (the plurality of storage batteries 14 1 , ..., 14 n ) include a lithium ion battery, a lithium ion capacitor, and an electric double layer capacitor.
 燃料系統18は、外部から供給される炭化水素系燃料を水素リッチなガスに改質する改質機器を含んでもよい。改質機器は、炭化水素系燃料の改質反応により生成される水素リッチガスを水素管に出力する。改質機器は、例えば、炭化水素系燃料に含まれる硫黄分を除去する脱硫器と、脱硫された炭化水素系燃料を改質反応させる改質器と、改質時に発生する一酸化炭素(CO)を除去するCO除去器とを含む。 The fuel system 18 may include a reforming device that reforms the hydrocarbon fuel supplied from the outside into hydrogen-rich gas. The reforming device outputs hydrogen-rich gas produced by a reforming reaction of the hydrocarbon fuel to the hydrogen pipe. The reforming device includes, for example, a desulfurizer that removes sulfur contained in the hydrocarbon fuel, a reformer that causes a reforming reaction of the desulfurized hydrocarbon fuel, and a CO remover that removes carbon monoxide (CO) generated during reforming.
 炭化水素系燃料は、都市ガスに限られず、メタンガス、プロパンガス、下水汚泥等に由来する消化ガス、食品残渣等から発生するバイオガスなどを含んでもよい。 Hydrocarbon fuels are not limited to city gas, but may also include methane gas, propane gas, digester gas derived from sewage sludge, etc., and biogas generated from food waste, etc.
 制御装置10は、FCプラットフォーム1,2,3の動作を制御するコントローラである。制御装置10は、例えば、制御用電源32から供給される電力(例えば、DC12ボルトの直流電力)により動作する。制御用電源32は、例えば、制御用電池である。制御装置10の個数は、1つに限られず、複数でもよく、例えば、FCプラットフォーム1,2,3の各々に対して制御装置が設けられてもよい。 The control device 10 is a controller that controls the operation of the FC platforms 1, 2, and 3. The control device 10 operates, for example, with power (e.g., 12-volt direct current power) supplied from a control power source 32. The control power source 32 is, for example, a control battery. The number of control devices 10 is not limited to one, and may be multiple. For example, a control device may be provided for each of the FC platforms 1, 2, and 3.
 図1は、燃料電池発電装置101がFCプラットフォーム1,2,3に共通の制御用電源32を備える形態を例示する。FCプラットフォーム1,2,3の電源が制御用電源32に共通化されることで、複数の制御用電源を備える形態の場合に比べて、燃料電池発電システム201及び燃料電池発電装置101を小型化できる。 FIG. 1 illustrates an example of a configuration in which a fuel cell power generation device 101 has a control power supply 32 common to FC platforms 1, 2, and 3. By sharing the power supply for FC platforms 1, 2, and 3 as a control power supply 32, the fuel cell power generation system 201 and the fuel cell power generation device 101 can be made smaller than in a configuration in which multiple control power supplies are provided.
 燃料電池発電装置101は、FCプラットフォーム1,2,3に個別の制御用電源32を備えてもよい。複数のFCプラットフォームの電源が個別に複数用意されることで、複数の制御用電源のうち一部の電源が故障又はメンテナンス等により使用不能な場合でも、残りの電源を用いて複数のFCプラットフォームの一部又は全部の動作を継続できる。 The fuel cell power generation device 101 may be provided with individual control power supplies 32 for the FC platforms 1, 2, and 3. By providing multiple power supplies separately for the multiple FC platforms, even if some of the multiple control power supplies are unusable due to failure or maintenance, etc., the remaining power supplies can be used to continue operating some or all of the multiple FC platforms.
 制御装置10の機能(制御装置10が行う処理)は、例えば、メモリに記憶されたプログラムによって、CPU(Central Processing Unit)等のプロセッサが動作することにより実現される。制御装置10の機能は、FPGA(Field Programmable Gate Array)又はASIC(Application Specific Integrated Circuit)によって実現されてもよい。 The functions of the control device 10 (the processing performed by the control device 10) are realized, for example, by a processor such as a CPU (Central Processing Unit) operating according to a program stored in memory. The functions of the control device 10 may also be realized by an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit).
 図2は、第1実施形態の燃料電池発電装置101の構成例を詳細に示す図である。燃料電池発電装置101は、例えば、制御装置10及び複数のFCプラットフォーム1,2,3を備える。FCプラットフォーム1は、例えば、燃料管118、空気管119、空気フィルタ33、排気管131、第1冷却系統36、第2冷却系統90及びFCユニット51を備える。FCユニット51は、FCスタック21、昇圧コンバータ42、水素ポンプ43、空気コンプレッサ45、ウォーターポンプ44、空気入口遮断弁77及び排空気出口遮断弁78等を備える。昇圧コンバータ42、水素ポンプ43、空気コンプレッサ45、ウォーターポンプ44、空気入口遮断弁77及び排空気出口遮断弁78等は、制御装置10により制御される。FCプラットフォーム2,3は、FCプラットフォーム1と同じ構成及び機能を有し、FCプラットフォーム1と同様に、制御装置10により制御される。よって、FCプラットフォーム2,3の説明については、FCプラットフォーム1の説明を援用することで、省略する。 2 is a diagram showing in detail an example of the configuration of the fuel cell power generation device 101 of the first embodiment. The fuel cell power generation device 101 includes, for example, a control device 10 and multiple FC platforms 1, 2, and 3. The FC platform 1 includes, for example, a fuel pipe 118, an air pipe 119, an air filter 33, an exhaust pipe 131, a first cooling system 36, a second cooling system 90, and an FC unit 51. The FC unit 51 includes an FC stack 21, a boost converter 42, a hydrogen pump 43, an air compressor 45, a water pump 44, an air inlet shutoff valve 77, and an exhaust air outlet shutoff valve 78, etc. The boost converter 42, the hydrogen pump 43, the air compressor 45, the water pump 44, the air inlet shutoff valve 77, and the exhaust air outlet shutoff valve 78, etc. are controlled by the control device 10. The FC platforms 2 and 3 have the same configuration and function as the FC platform 1, and are controlled by the control device 10 in the same manner as the FC platform 1. Therefore, the explanation of FC platforms 2 and 3 will be omitted, as the explanation of FC platform 1 will be used.
 FCスタック21は、燃料極71と空気極72を有する。FCスタック21は、燃料極71に供給された水素又は水素リッチなガスと、空気極72に供給された空気に含まれる酸素との電気化学反応によって発電する。FCスタック21は、昇圧コンバータ42を介して、出力線17に接続されている。昇圧コンバータ42は、FCスタック21から出力された電圧を昇圧し、昇圧後の直流電力を出力点16を経由して出力線17に出力するDC/DCコンバータである。複数のFCプラットフォーム1,2,3における複数のFCスタック21,22,23の出力電力は、対応する昇圧コンバータ42を介して、共通の出力線17に出力される。 The FC stack 21 has a fuel electrode 71 and an air electrode 72. The FC stack 21 generates electricity by an electrochemical reaction between hydrogen or hydrogen-rich gas supplied to the fuel electrode 71 and oxygen contained in the air supplied to the air electrode 72. The FC stack 21 is connected to the output line 17 via a boost converter 42. The boost converter 42 is a DC/DC converter that boosts the voltage output from the FC stack 21 and outputs the boosted DC power to the output line 17 via the output point 16. The output power of the multiple FC stacks 21, 22, and 23 in the multiple FC platforms 1, 2, and 3 is output to a common output line 17 via the corresponding boost converters 42.
 燃料管118は、複数のFCプラットフォーム1,2,3に共通に接続された燃料系統18から水素が供給される。燃料管118は、燃料極71に入口75を介して水素を供給する。 The fuel pipe 118 is supplied with hydrogen from a fuel system 18 commonly connected to the multiple FC platforms 1, 2, and 3. The fuel pipe 118 supplies hydrogen to the fuel electrode 71 via the inlet 75.
 空気管119は、複数のFCプラットフォーム1,2,3に共通に接続された給気系統19から空気が供給される。空気管119は、FCスタック21の空気極72に入口73を介して空気を供給する。空気管119は必須ではなく、FCプラットフォーム1,2,3の開放部から空気フィルタ33が直接空気を吸い込んでもよい。 Air is supplied to the air pipe 119 from an air supply system 19 commonly connected to the multiple FC platforms 1, 2, and 3. The air pipe 119 supplies air to the air electrode 72 of the FC stack 21 via an inlet 73. The air pipe 119 is not essential, and the air filter 33 may directly draw in air from the open parts of the FC platforms 1, 2, and 3.
 空気フィルタ33は、給気系統19及び空気管119を介して供給される空気に含まれる塵や燃料電池に悪影響を及ぼす不純物を取り除いて、空気コンプレッサ45に空気管120を介して供給する。空気フィルタは、エアクリーナーとも称される。 The air filter 33 removes dust and impurities that may adversely affect the fuel cell from the air supplied via the air supply system 19 and air pipe 119, and supplies the air to the air compressor 45 via the air pipe 120. The air filter is also called an air cleaner.
 空気コンプレッサ45は、空気フィルタ33を通して供給された空気を圧縮し、FCスタック21の空気極72に供給する。空気コンプレッサ45により圧縮された酸素を含む空気は、FCスタック21の空気極72に入口73を介して供給される。空気入口遮断弁77は、空気コンプレッサ45から空気極72の入口73へ供給される空気の流れを遮断する。 The air compressor 45 compresses the air supplied through the air filter 33 and supplies it to the air electrode 72 of the FC stack 21. The oxygen-containing air compressed by the air compressor 45 is supplied to the air electrode 72 of the FC stack 21 via the inlet 73. The air inlet shutoff valve 77 shuts off the flow of air supplied from the air compressor 45 to the inlet 73 of the air electrode 72.
 排気管131は、複数のFCプラットフォーム1,2,3に共通に接続された排気系統31に、FCスタック21で発生する排ガスを排出する。排空気出口遮断弁78は、FCスタック21の空気極72の出口74から排気管131に排出されるオフガスの流れを遮断する。 The exhaust pipe 131 discharges exhaust gas generated in the FC stack 21 to an exhaust system 31 commonly connected to multiple FC platforms 1, 2, and 3. The exhaust air outlet shutoff valve 78 shuts off the flow of off-gas discharged from the outlet 74 of the air electrode 72 of the FC stack 21 to the exhaust pipe 131.
 第1冷却系統36は、FCスタック21を冷却水等の第1冷却液によって冷却する。第1冷却系統36は、冷熱源39との間で第1冷却液の熱交換を行って第1冷却液を冷却する第1中間熱交換器34を有する。ウォーターポンプ44は、第1冷却液を、第1中間熱交換器34とFCスタック21との間で循環させる。ウォーターポンプ44により循環された第1冷却液により、FCスタック21は冷却される。 The first cooling system 36 cools the FC stack 21 with a first cooling liquid such as cooling water. The first cooling system 36 has a first intermediate heat exchanger 34 that exchanges heat with a cold source 39 to cool the first cooling liquid. The water pump 44 circulates the first cooling liquid between the first intermediate heat exchanger 34 and the FC stack 21. The FC stack 21 is cooled by the first cooling liquid circulated by the water pump 44.
 第1中間熱交換器34は、FCスタック21を冷却する第1冷却液を異種の冷熱源39との間で熱交換可能な熱交換器である。異種の冷熱源39とは、利用する冷熱源39の種類を問わないことを意味する。第1中間熱交換器34は、利用する冷熱源39の種類を問わずに、任意の冷熱源39で第1冷却液を冷却できるので、上記のような様々な用途に適用可能な燃料電池発電装置101が実現される。 The first intermediate heat exchanger 34 is a heat exchanger capable of exchanging heat between the first cooling liquid that cools the FC stack 21 and a different type of cold heat source 39. The different types of cold heat sources 39 mean that the type of cold heat source 39 used does not matter. The first intermediate heat exchanger 34 can cool the first cooling liquid with any cold heat source 39, regardless of the type of cold heat source 39 used, thereby realizing a fuel cell power generation device 101 that can be used for various purposes such as those described above.
 第1中間熱交換器34は、第1冷却系統36を循環する第1冷却液が通過する放熱部40と、冷熱源39との間で熱を移動させる熱媒が通過する受熱部41と、を有する。冷熱源39から供給される熱媒は、液体でも気体でもよい。第1中間熱交換器34において放熱部40から受熱部41へ放熱されることで、第1冷却液は、冷却される。第1中間熱交換器34の具体例として、プレート熱交換器などが挙げられるが、第1中間熱交換器34は、これに限られない。 The first intermediate heat exchanger 34 has a heat dissipation section 40 through which the first cooling liquid circulating in the first cooling system 36 passes, and a heat receiving section 41 through which a heat medium passes to transfer heat between the cold heat source 39. The heat medium supplied from the cold heat source 39 may be liquid or gas. The first cooling liquid is cooled by dissipating heat from the heat dissipation section 40 to the heat receiving section 41 in the first intermediate heat exchanger 34. A specific example of the first intermediate heat exchanger 34 is a plate heat exchanger, but the first intermediate heat exchanger 34 is not limited to this.
 複数のFCプラットフォーム1,2,3における複数の第1中間熱交換器34は、それぞれ、複数のFCプラットフォーム1,2,3に共通に接続される冷熱源39との間で熱交換してもよい。これにより、冷熱源39が複数のFCプラットフォーム1,2,3間で共通化されるので、燃料電池発電装置101を小型化できる。なお、冷熱源39は、複数のFCプラットフォーム1,2,3間で相違してもよい。 The multiple first intermediate heat exchangers 34 in the multiple FC platforms 1, 2, 3 may each exchange heat with a cold heat source 39 that is commonly connected to the multiple FC platforms 1, 2, 3. This allows the cold heat source 39 to be common between the multiple FC platforms 1, 2, 3, making it possible to reduce the size of the fuel cell power generation device 101. Note that the cold heat source 39 may be different between the multiple FC platforms 1, 2, 3.
 第2冷却系統90は、空気コンプレッサ45を冷却水等の第2冷却液によって冷却する。第2冷却系統90は、冷熱源94との間で第2冷却液の熱交換を行って第2冷却液を冷却する第2中間熱交換器92を有する。ポンプ91は、第2冷却液を、第2中間熱交換器92と空気コンプレッサ45との間で循環させる。ポンプ91により循環された第2冷却液により、空気コンプレッサ45は冷却される。 The second cooling system 90 cools the air compressor 45 with a second cooling liquid such as cooling water. The second cooling system 90 has a second intermediate heat exchanger 92 that exchanges heat with a cold source 94 to cool the second cooling liquid. The pump 91 circulates the second cooling liquid between the second intermediate heat exchanger 92 and the air compressor 45. The air compressor 45 is cooled by the second cooling liquid circulated by the pump 91.
 第2中間熱交換器92は、空気コンプレッサ45を冷却する第2冷却液を異種の冷熱源94との間で熱交換可能な熱交換器である。異種の冷熱源94とは、利用する冷熱源94の種類を問わないことを意味する。第2中間熱交換器92は、利用する冷熱源94の種類を問わずに、任意の冷熱源94で第2冷却液を冷却できるので、上記のような様々な用途に適用可能な燃料電池発電装置101が実現される。 The second intermediate heat exchanger 92 is a heat exchanger capable of exchanging heat between the second cooling liquid, which cools the air compressor 45, and a different type of cold heat source 94. The different types of cold heat sources 94 mean that the type of cold heat source 94 used does not matter. The second intermediate heat exchanger 92 can cool the second cooling liquid with any cold heat source 94, regardless of the type of cold heat source 94 used, thereby realizing a fuel cell power generation device 101 that can be used for various purposes such as those described above.
 第2中間熱交換器92は、第2冷却系統90を循環する第2冷却液が通過する放熱部95と、冷熱源94との間で熱を移動させる熱媒が通過する受熱部96と、を有する。冷熱源94から供給される熱媒は、液体でも気体でもよい。第2中間熱交換器92において放熱部95から受熱部96へ放熱されることで、第2冷却液は、冷却される。第2中間熱交換器92の具体例として、プレート熱交換器などが挙げられるが、第2中間熱交換器92は、これに限られない。 The second intermediate heat exchanger 92 has a heat dissipation section 95 through which the second cooling liquid circulating in the second cooling system 90 passes, and a heat receiving section 96 through which a heat medium passes to transfer heat between the cold heat source 94. The heat medium supplied from the cold heat source 94 may be liquid or gas. The second cooling liquid is cooled by dissipating heat from the heat dissipation section 95 to the heat receiving section 96 in the second intermediate heat exchanger 92. A specific example of the second intermediate heat exchanger 92 is a plate heat exchanger, but the second intermediate heat exchanger 92 is not limited to this.
 複数のFCプラットフォーム1,2,3における複数の第2中間熱交換器92は、それぞれ、複数のFCプラットフォーム1,2,3に共通に接続される冷熱源94との間で熱交換してもよい。これにより、冷熱源94が複数のFCプラットフォーム1,2,3間で共通化されるので、燃料電池発電装置101を小型化できる。なお、冷熱源94は、複数のFCプラットフォーム1,2,3間で相違してもよい。 The multiple second intermediate heat exchangers 92 in the multiple FC platforms 1, 2, 3 may each exchange heat with a cold heat source 94 that is commonly connected to the multiple FC platforms 1, 2, 3. This allows the cold heat source 94 to be common between the multiple FC platforms 1, 2, 3, making it possible to reduce the size of the fuel cell power generation device 101. Note that the cold heat source 94 may be different between the multiple FC platforms 1, 2, 3.
 冷却器15(図1)は、冷熱源39又は冷熱源94の一例である。冷熱源39又は冷熱源94は、例えば、空冷冷却器、開放式冷却塔、密閉式冷却塔、工場の冷却水、上水、河川水、海水、液化水素の気化熱、または圧縮水素が膨張した際の冷熱などである。 The cooler 15 (Figure 1) is an example of the cold heat source 39 or the cold heat source 94. The cold heat source 39 or the cold heat source 94 is, for example, an air-cooled cooler, an open cooling tower, a closed cooling tower, cooling water in a factory, drinking water, river water, seawater, the heat of vaporization of liquefied hydrogen, or the cold heat generated when compressed hydrogen expands.
 第1中間熱交換器34の受熱部41の素材は、例えば、金属イオンの溶出性が比較的低い低溶出性金属(例えば、高耐食のオーステナイト系ステンレス(SUS316L)など)である。受熱部41に接触する熱媒が海水などであると、受熱部41の素材によっては、金属イオンが受熱部41から溶出するおそれがある。受熱部41の素材が上記のような低溶出性金属であると、冷熱源39から供給される熱媒の制約が緩和されるので、冷熱源39の選択肢が増える。その結果、上記のような様々な用途に適用可能な燃料電池発電装置101が実現される。これは、第2中間熱交換器92の受熱部96の素材についても同様である。 The material of the heat receiving portion 41 of the first intermediate heat exchanger 34 is, for example, a low-elution metal with a relatively low elution rate of metal ions (such as highly corrosion-resistant austenitic stainless steel (SUS316L)). If the heat medium in contact with the heat receiving portion 41 is seawater or the like, there is a risk that metal ions will elute from the heat receiving portion 41, depending on the material of the heat receiving portion 41. If the material of the heat receiving portion 41 is a low-elution metal as described above, the restrictions on the heat medium supplied from the cold heat source 39 are alleviated, and the options for the cold heat source 39 increase. As a result, a fuel cell power generation device 101 that can be used for various applications such as those described above is realized. The same applies to the material of the heat receiving portion 96 of the second intermediate heat exchanger 92.
 また、第1中間熱交換器34の採用によって、第1冷却液が循環する経路をFCプラットフォームの外側の冷熱源39まで伸ばさなくても、第1冷却液を放熱できる。つまり、第1冷却液が循環する経路を短縮でき、燃料電池を冷却する高価な第1冷却液の使用量を削減できる。その結果、コスト低減が可能となる。同様に、第2中間熱交換器92の採用によっても、第2冷却液の使用量を削減でき、コスト低減が可能となる。 Furthermore, by employing the first intermediate heat exchanger 34, the first coolant can dissipate heat without having to extend the path through which the first coolant circulates to the cold heat source 39 outside the FC platform. In other words, the path through which the first coolant circulates can be shortened, and the amount of expensive first coolant used to cool the fuel cell can be reduced. As a result, costs can be reduced. Similarly, by employing the second intermediate heat exchanger 92, the amount of second coolant used can be reduced, and costs can be reduced.
 第2中間熱交換器92が第2冷却液の熱を放熱する冷熱源94は、第1中間熱交換器34が第1冷却液の熱を放熱する冷熱源39と同じでも異なってもよい。冷熱源94と冷熱源39が同じであれば、冷熱源が第1中間熱交換器34と第2中間熱交換器92との間で共通化されるので、燃料電池発電装置101を小型化できる。 The cold heat source 94 from which the second intermediate heat exchanger 92 dissipates heat of the second cooling liquid may be the same as or different from the cold heat source 39 from which the first intermediate heat exchanger 34 dissipates heat of the first cooling liquid. If the cold heat source 94 and the cold heat source 39 are the same, the cold heat source is shared between the first intermediate heat exchanger 34 and the second intermediate heat exchanger 92, so that the fuel cell power generation device 101 can be made smaller.
 第1冷却系統36は、第1冷却液からイオンを取り除くイオン交換器35を備えてもよい。第1冷却液からのイオンの取り除きによって、FCスタック21において入出力される第1冷却液の電気伝導度の上昇が抑制されるので、FCスタック21と第1冷却液との間の電気的な干渉が抑制される。 The first cooling system 36 may include an ion exchanger 35 that removes ions from the first cooling liquid. By removing ions from the first cooling liquid, an increase in the electrical conductivity of the first cooling liquid inputted and outputted to the FC stack 21 is suppressed, thereby suppressing electrical interference between the FC stack 21 and the first cooling liquid.
 また、第1中間熱交換器34が採用されることで、第1冷却系統36側の第1冷却液から冷熱源39側の熱媒へのイオンの溶出が抑制されるので、イオン交換器35のメンテナンスの頻度が低減する。 In addition, by adopting the first intermediate heat exchanger 34, the elution of ions from the first cooling liquid on the first cooling system 36 side to the heat medium on the cold heat source 39 side is suppressed, thereby reducing the frequency of maintenance of the ion exchanger 35.
 第1冷却系統36は、第1冷却液の電気伝導度を測定するセンサ37を備えてもよい。センサ37を備えることで、第1冷却液の電気伝導度を管理できる。例えば、電気伝導度が上昇し始めたことがセンサ37により検知された場合、ユーザは、イオン交換器35をメンテナンスするタイミングを把握できる。また、電気伝導度を管理することで燃料電池の直流PN間(プラスとマイナス間)の絶縁性を保つことができる。センサ37又は制御装置10は、電気伝導度が第1閾値(例えば、1μS/cm)以上と測定された場合、ユーザが認知できるように、警報を発報してもよい。制御装置10は、電気伝導度が第1閾値よりも大きな第2閾値(例えば、5μS/cm)以上と測定された場合、第2閾値以上の電気伝導度が測定されたFCプラットフォームを停止させてもよい。 The first cooling system 36 may include a sensor 37 that measures the electrical conductivity of the first cooling liquid. By including the sensor 37, the electrical conductivity of the first cooling liquid can be managed. For example, if the sensor 37 detects that the electrical conductivity has started to increase, the user can know when to perform maintenance on the ion exchanger 35. In addition, by managing the electrical conductivity, the insulation between the DC PN (between the positive and negative) of the fuel cell can be maintained. If the electrical conductivity is measured to be equal to or greater than a first threshold value (e.g., 1 μS/cm), the sensor 37 or the control device 10 may issue an alarm so that the user can be aware of the alarm. If the electrical conductivity is measured to be equal to or greater than a second threshold value (e.g., 5 μS/cm) that is greater than the first threshold value, the control device 10 may stop the FC platform in which the electrical conductivity equal to or greater than the second threshold value is measured.
 第1冷却系統36は、第1冷却液の温度変化に伴う膨張又は収縮を吸収する第1タンク38を備えてもよい。これにより、第1冷却液の温度変化に伴う膨張又は収縮が抑制される。 The first cooling system 36 may include a first tank 38 that absorbs the expansion or contraction of the first cooling liquid caused by temperature changes. This suppresses the expansion or contraction of the first cooling liquid caused by temperature changes.
 同様に、第2冷却系統90は、第2冷却液の温度変化に伴う膨張又は収縮を吸収する第2タンク93を備えてもよい。これにより、第2冷却液の温度変化に伴う膨張又は収縮が抑制される。 Similarly, the second cooling system 90 may include a second tank 93 that absorbs the expansion or contraction of the second cooling liquid caused by temperature changes. This suppresses the expansion or contraction of the second cooling liquid caused by temperature changes.
 FCプラットフォーム1は、第1気液分離器79及び水素ポンプ43を備えてもよい。第1気液分離器79は、燃料極71の出口76から排出される第1混相流から水素ガスと排水を分離する。水素ポンプ43は、第1気液分離器79により分離された水素ガスを燃料極71の入口75へ循環させる。これにより、FCスタック21での発電により生成された余剰の水素ガスを、FCスタック21での発電に再利用できる。 The FC platform 1 may include a first gas-liquid separator 79 and a hydrogen pump 43. The first gas-liquid separator 79 separates hydrogen gas and wastewater from the first multiphase flow discharged from the outlet 76 of the fuel electrode 71. The hydrogen pump 43 circulates the hydrogen gas separated by the first gas-liquid separator 79 to the inlet 75 of the fuel electrode 71. This allows surplus hydrogen gas produced by power generation in the FC stack 21 to be reused for power generation in the FC stack 21.
 FCプラットフォーム1は、混合器80を備えてもよい。排気管131は、第1気液分離器79により分離された排水と、当該排水に混入する水素と、空気極72の出口74から排出される排空気とを混合器80で合流させた第2混相流を排出する。これにより、排水と水素と排空気をまとめて排出できる。 The FC platform 1 may also include a mixer 80. The exhaust pipe 131 discharges a second multiphase flow obtained by combining the wastewater separated by the first gas-liquid separator 79, hydrogen mixed in the wastewater, and exhaust air discharged from the outlet 74 of the air electrode 72 in the mixer 80. This allows the wastewater, hydrogen, and exhaust air to be discharged together.
 FCプラットフォーム1は、第2混相流から水と気体を分離する第2気液分離器81を備えてもよい。これにより、排水と排ガスを分離して排出できる。排水又は排ガスは、回収器82により回収されてもよい。これにより、排水又は排ガスによる周辺の汚染が抑制される。 The FC platform 1 may be provided with a second gas-liquid separator 81 that separates water and gas from the second multiphase flow. This allows the wastewater and exhaust gas to be separated and discharged. The wastewater or exhaust gas may be collected by a collector 82. This prevents the surrounding area from being polluted by the wastewater or exhaust gas.
 燃料電池発電装置101は、複数のFCプラットフォーム1,2,3における複数の燃料管118に窒素等の不活性ガスを個別に供給するパージ系統30を備えてもよい。パージ系統30は、複数の燃料管118を不活性ガスで個別にパージできるように、バルブで流路を切り替えてもよい。これにより、不活性ガスのパージによる特性劣化をFCスタック単位で管理できる。 The fuel cell power generation device 101 may be equipped with a purge system 30 that individually supplies an inert gas such as nitrogen to the multiple fuel pipes 118 in the multiple FC platforms 1, 2, and 3. The purge system 30 may switch the flow path with a valve so that the multiple fuel pipes 118 can be individually purged with the inert gas. This makes it possible to manage the deterioration of characteristics due to purging with the inert gas on a per-FC stack basis.
 FCスタック21の出力電力p1の一部は、FCユニット51内の空気コンプレッサ45等の補機の動作電力として使用され、その余剰電力が、FCユニット51の出力電力P1として出力される。FCスタック22の出力電力p2及びFCスタック23の出力電力p3についても同様である。 A portion of the output power p1 of the FC stack 21 is used as operating power for auxiliary equipment such as the air compressor 45 in the FC unit 51, and the surplus power is output as the output power P1 of the FC unit 51. The same applies to the output power p2 of the FC stack 22 and the output power p3 of the FC stack 23.
 制御装置10は、出力線17から外部への供給電力を略一定の所定値に維持する制御を行う。例えば、制御装置10は、出力線17から電力変換装置11に向けて出力される供給電力Pa(=Po-Pb)が一定の目標値に維持されるように、FCスタック21,22,23(FCプラットフォーム1,2,3)の発電及びDC/DCコンバータ13の変換動作を制御する。Poは、出力点16における電力である。Poは、FCプラットフォーム1,2,3の各出力電力P1,P2,P3の和に等しい(Po=P1+P2+P3)。Pbは、二次電池14と出力線17との間でやり取りされる電力である。 The control device 10 performs control to maintain the power supplied from the output line 17 to the outside at a substantially constant predetermined value. For example, the control device 10 controls the power generation of the FC stacks 21, 22, 23 ( FC platforms 1, 2, 3) and the conversion operation of the DC/DC converter 13 so that the supply power Pa (=Po-Pb) output from the output line 17 to the power conversion device 11 is maintained at a constant target value. Po is the power at the output point 16. Po is equal to the sum of the output powers P1, P2, P3 of the FC platforms 1, 2, 3 (Po=P1+P2+P3). Pb is the power exchanged between the secondary battery 14 and the output line 17.
 制御装置10は、電力変換装置11から外部装置12に向けて出力される電力Pcが目標値に追従するように、FCスタック21,22,23の発電及び電力変換装置11の変換動作を制御してもよい。Pa又はPcは、出力線17から外部への供給電力の一例である。 The control device 10 may control the power generation of the FC stacks 21, 22, and 23 and the conversion operation of the power conversion device 11 so that the power Pc output from the power conversion device 11 to the external device 12 follows a target value. Pa or Pc is an example of power supplied from the output line 17 to the outside.
 制御装置10は、出力線17から外部への供給電力Paが略一定値に維持された状態で、FCスタック21,22,23の各出力電力p1,p2,p3を変化(より詳しくは、増減)させる制御(電力変動制御)を行ってもよい。供給電力Paは、電圧センサ及び電流センサにより検出可能である。 The control device 10 may perform control (power fluctuation control) to change (more specifically, increase or decrease) the output power p1, p2, and p3 of the FC stacks 21, 22, and 23 while the supply power Pa from the output line 17 to the outside is maintained at a substantially constant value. The supply power Pa can be detected by a voltage sensor and a current sensor.
 制御装置10は、例えば、FCプラットフォーム1の昇圧コンバータ42の動作電流(負荷電流)を増減することでFCスタック21の負荷を増減させ、出力電力p1を増減させる。同様に、制御装置10は、FCプラットフォーム2の昇圧コンバータ42の動作電流(負荷電流)を増減することでFCスタック22の負荷を増減させ、出力電力p2を増減させる。制御装置10は、FCプラットフォーム3の昇圧コンバータ42の動作電流(負荷電流)を増減することでFCスタック23の負荷を増減させ、出力電力p3を増減させる。 The control device 10, for example, increases or decreases the operating current (load current) of the boost converter 42 of the FC platform 1 to increase or decrease the load on the FC stack 21 and increase or decrease the output power p1. Similarly, the control device 10 increases or decreases the operating current (load current) of the boost converter 42 of the FC platform 2 to increase or decrease the load on the FC stack 22 and increase or decrease the output power p2. The control device 10 increases or decreases the operating current (load current) of the boost converter 42 of the FC platform 3 to increase or decrease the load on the FC stack 23 and increase or decrease the output power p3.
 制御装置10が上記のような電力変動制御を行うことで、出力線17から外部への供給電力Paが略一定値に維持された状態で、複数のFCスタック21,22,23の各出力電力p1,p2,p3が増減する。これにより、出力線17から外部への一定の電力供給が確保された状態で、複数のFCスタック21,22,23のセル面内の湿度分布の偏りは、各出力電力p1,p2,p3が常に一定に制御される場合に比べて、減少する。セル面内の湿度分布の偏りが減少することで、有効反応面積の低下による電流密度の上昇が抑制されるので、電流密度の上昇による電解質膜の劣化が抑制される。したがって、供給電力Paが略一定値に維持された状態で各出力電力p1,p2,p3を増減させる電力変動制御が制御装置10により行われることで、略一定の電力供給が確保され、複数のFCスタック21,22,23の劣化が抑制される。複数のFCスタック21,22,23の劣化の抑制は、燃料電池発電装置101及び燃料電池発電システム201の耐久性の向上に貢献する。 By the control device 10 performing the power fluctuation control as described above, the output powers p1, p2, and p3 of the multiple FC stacks 21, 22, and 23 are increased or decreased while the power supply Pa from the output line 17 to the outside is maintained at an approximately constant value. As a result, while a constant power supply from the output line 17 to the outside is ensured, the humidity distribution deviation within the cell surface of the multiple FC stacks 21, 22, and 23 is reduced compared to the case where the output powers p1, p2, and p3 are always controlled to be constant. By reducing the humidity distribution deviation within the cell surface, the increase in current density due to the decrease in effective reaction area is suppressed, and deterioration of the electrolyte membrane due to the increase in current density is suppressed. Therefore, by the control device 10 performing the power fluctuation control to increase or decrease the output powers p1, p2, and p3 while the supply power Pa is maintained at an approximately constant value, an approximately constant power supply is ensured and deterioration of the multiple FC stacks 21, 22, and 23 is suppressed. Suppressing deterioration of the multiple FC stacks 21, 22, and 23 contributes to improving the durability of the fuel cell power generation device 101 and the fuel cell power generation system 201.
 燃料電池発電システム201又は燃料電池発電装置101は、複数のFCプラットフォームのそれぞれに対して設けられた複数の開閉器(この例では、開閉器61,62,63)を備えてもよい。開閉器61は、FCスタック21及び昇圧コンバータ42と、出力線17に接続される出力点16との間の電力経路の遮断と接続を切り替える遮断器である。開閉器62は、FCスタック22及び不図示の昇圧コンバータと、出力線17に接続される出力点16との間の電力経路の遮断と接続を切り替える遮断器である。開閉器63は、FCスタック23及び不図示の昇圧コンバータと、出力線17に接続される出力点16との間の電力経路の遮断と接続を切り替える遮断器である。 The fuel cell power generation system 201 or the fuel cell power generation device 101 may include a plurality of switches (switches 61, 62, and 63 in this example) provided for each of a plurality of FC platforms. Switch 61 is a circuit breaker that switches between disconnection and connection of the power path between the FC stack 21 and boost converter 42, and the output point 16 connected to the output line 17. Switch 62 is a circuit breaker that switches between disconnection and connection of the power path between the FC stack 22 and boost converter (not shown), and the output point 16 connected to the output line 17. Switch 63 is a circuit breaker that switches between disconnection and connection of the power path between the FC stack 23 and boost converter (not shown), and the output point 16 connected to the output line 17.
 制御装置10は、複数のFCスタック21,22,23のうち、一部のFCスタックを他のFCスタックから開閉器61,62又は63により切り離してもよい。当該一部のFCスタックが切り離された状態で、制御装置10は、供給電力Paが略一定値に維持されるように、当該他のFCスタックの出力電力を制御してもよい。これにより、供給電力Paが略一定値に維持された状態で、当該一部のFCスタックの交換が容易になる。例えば、制御装置10は、FCスタック21が開閉器61によりFCスタック22,23から切り離された状態で、供給電力Paが略一定値に維持されるように、他のFCスタック22,23の出力電力を制御してもよい。開閉器61,62,63の開閉は、制御装置10によって自動で切り替えられるが、手動で切り替えられてもよい。 The control device 10 may separate some of the FC stacks 21, 22, 23 from the other FC stacks by switches 61, 62, or 63. With the FC stacks separated, the control device 10 may control the output power of the other FC stacks so that the power supply Pa is maintained at a substantially constant value. This makes it easier to replace the FC stacks while the power supply Pa is maintained at a substantially constant value. For example, with the FC stack 21 separated from the FC stacks 22, 23 by switch 61, the control device 10 may control the output power of the other FC stacks 22, 23 so that the power supply Pa is maintained at a substantially constant value. The switches 61, 62, 63 are automatically switched on and off by the control device 10, but may also be switched manually.
 燃料電池発電装置101は、複数のFCプラットフォームのうち、一部のFCプラットフォームが動作中に残りのFCプラットフォームを運転停止して取り外せるように、配管を遮断する遮断弁、及び、配線を遮断する開閉器を備えてもよい。配管は、液体(冷却液、排水など)又は気体(空気、水素、排ガスなど)を伝達し、配線は、電力や信号を伝送する。配管を遮断する遮断弁として、空気入口遮断弁77及び排空気出口遮断弁78が例示される。配線を遮断する開閉器として、開閉器61,62,63が例示される。 The fuel cell power generation system 101 may be equipped with shutoff valves for shutting off the piping and switches for shutting off the wiring so that some of the multiple FC platforms can be shut down and removed while the remaining FC platforms are in operation. The piping transmits liquids (coolant, wastewater, etc.) or gases (air, hydrogen, exhaust gas, etc.), and the wiring transmits power and signals. Examples of shutoff valves for shutting off the piping include the air inlet shutoff valve 77 and the exhaust air outlet shutoff valve 78. Examples of switches for shutting off the wiring include switches 61, 62, and 63.
 燃料電池発電装置101は、複数のFCプラットフォームの地絡を個別に検出する機能を備えてもよい。例えば、制御装置10は、複数のFCプラットフォーム1,2,3のうち、対地間抵抗の低下もしくは地絡が検出されたFCプラットフォームを、開閉器61,62又は63により切り離してもよい。 The fuel cell power generation system 101 may have a function for individually detecting ground faults in multiple FC platforms. For example, the control device 10 may use the switch 61, 62, or 63 to disconnect an FC platform among multiple FC platforms 1, 2, and 3 in which a drop in resistance to ground or a ground fault has been detected.
 二次電池14の出力電圧と出力点16での出力電圧とが略等しくなるように、直列に接続される複数の蓄電池14,…,14の数が調整されてもよい。これにより、DC/DCコンバータ13を削除して燃料電池発電装置101を小型化できる。 The number of the multiple storage batteries 14 1 , ..., 14 n connected in series may be adjusted so that the output voltage of the secondary battery 14 is approximately equal to the output voltage at the output point 16. This makes it possible to eliminate the DC/DC converter 13 and reduce the size of the fuel cell power generation device 101.
 外部装置12の電力需要と燃料電池発電装置101の関係から、二次電池14の容量を増加させるため、複数の蓄電池14,…,14を並列に接続してもよい。複数の蓄電池14,…,14の並列数は、出力線17に共通接続される複数のFCプラットフォームの数よりも少ないのが好ましい。この場合、複数のFCプラットフォームの各出力電力ラインに個別に蓄電池を接続する場合に比べて、燃料電池発電装置101を小型化できる。 Depending on the relationship between the power demand of the external device 12 and the fuel cell power generation system 101, multiple storage batteries 14 1 , ..., 14 n may be connected in parallel to increase the capacity of the secondary battery 14. The number of parallel connections of the multiple storage batteries 14 1 , ..., 14 n is preferably smaller than the number of the multiple FC platforms commonly connected to the output line 17. In this case, the fuel cell power generation system 101 can be made smaller than when storage batteries are individually connected to the output power lines of the multiple FC platforms.
 このように、本実施形態によれば、定置用発電機、港湾荷役機械(クレーンなど)用電源、船用電源、鉄道用電源、建設用重機、土木作業用重機などの分野において、水素発電による電源の脱炭素化の課題を解決できる。水素発電には、水素燃焼式と燃料電池式があるが、一般的に燃料電池式の方が高効率である。燃料電池を多用途に適用する際に、それぞれのシステム開発に時間と労力を要する。本実施形態によれば、様々な用途に共通して使用できる安価で高効率なプラットフォームの開発という課題を解決できる。より詳しくは、様々な用途(定置用、クレーン用、船舶用、鉄道用、建機用等)に適用するために、共通となる部分をFCプラットフォームとして構築することで、各用途のシステム開発リソース(設計、エンジニアリングなど)を低減できる。各用途共通のプラットフォームを使用することで、FCプラットフォームの量産効果が得られ、低価格化が実現する。 In this way, according to this embodiment, the problem of decarbonizing power sources through hydrogen power generation can be solved in fields such as stationary generators, power sources for port loading and unloading machines (such as cranes), power sources for ships, power sources for railways, heavy construction machinery, and heavy civil engineering machinery. There are hydrogen combustion and fuel cell types of hydrogen power generation, but the fuel cell type is generally more efficient. When applying fuel cells to multiple applications, it takes time and effort to develop each system. According to this embodiment, the problem of developing an inexpensive and highly efficient platform that can be used in common for various applications can be solved. More specifically, in order to apply it to various applications (stationary, crane, ship, railway, construction machinery, etc.), the common parts are constructed as an FC platform, thereby reducing the system development resources (design, engineering, etc.) for each application. By using a platform common to each application, the mass production effect of the FC platform can be obtained, and the price can be reduced.
 また、本実施形態によれば、2つの冷却系(第1冷却系統36及び第2冷却系統90)について、適用するシステムや設置場所などに応じて冷却系の個別エンジニアリングが不要となる。より詳しくは、2つの冷却系のうち一方又は両方の中間熱交換器をFCプラットフォーム内に設置することで冷却系の個別エンジニアリングが不要になる。 Furthermore, according to this embodiment, for the two cooling systems (first cooling system 36 and second cooling system 90), individual engineering of the cooling systems is not required depending on the system to which they are applied, the installation location, etc. More specifically, by installing one or both intermediate heat exchangers of the two cooling systems within the FC platform, individual engineering of the cooling systems is not required.
 また、本実施形態によれば、FCプラットフォームの並列化により、拡張性向上及び高出力対応を実現できる。補機を組み込んだFCプラットフォームを構築することで、複数のFCプラットフォームを容易に並列化でき、拡張性向上及び高出力対応の実現が容易になる。 Furthermore, according to this embodiment, the parallelization of FC platforms can improve scalability and support high output. By constructing an FC platform that incorporates auxiliary equipment, multiple FC platforms can be easily parallelized, making it easier to improve scalability and support high output.
 また、本実施形態によれば、複数のFCプラットフォームをそれぞれ独立に切り離すことができ、運搬などの取り扱いが容易になるので、例えば、メンテナンスが容易化される。例えば、システム故障時にはFCプラットフォームごとの交換によって、システムの停止期間が短縮し、システムの稼働率が向上する。システム故障時には現地で修復するのではなく、FCプラットフォームを工場に引き取り、工場で修復することで、現地修復にかかるコストが低減する。工場引き取り期間は代替えのFCプラットフォームを入れ替えることで、システムの稼働率が向上する。 Furthermore, according to this embodiment, multiple FC platforms can be separated independently, facilitating handling such as transportation, which, for example, facilitates maintenance. For example, in the event of a system failure, the system downtime can be shortened by replacing each FC platform, improving the system's operating rate. In the event of a system failure, rather than repairing the system on-site, the FC platform can be returned to the factory and repaired there, reducing the cost of on-site repair. During the factory return period, a replacement FC platform can be replaced, improving the system's operating rate.
 以上の通り、実施形態を説明したが、上記実施形態は、例として提示したものであり、上記実施形態により本発明が限定されるものではない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の組み合わせ、省略、置き換え、変更などを行うことが可能である。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the embodiments have been described above, they are presented as examples, and the present invention is not limited to the above embodiments. The above embodiments can be implemented in various other forms, and various combinations, omissions, substitutions, modifications, etc. can be made without departing from the gist of the invention. These embodiments and their variations are included in the scope and gist of the invention, and are included in the scope of the invention and its equivalents described in the claims.
 例えば、図1では、窒素を供給するパージ系統30が水素を供給する燃料系統18に合流する箇所は、燃料系統18がFCスタック21,22,23に向けて分岐した後の系統であるが、分岐する前の系統でもよい。 For example, in FIG. 1, the point where the purge system 30 that supplies nitrogen merges with the fuel system 18 that supplies hydrogen is after the fuel system 18 branches off toward the FC stacks 21, 22, and 23, but it may be before the branching.
 ≪第2実施形態≫
 <燃料電池発電装置>
 第2実施形態に係る燃料電池発電装置は、第1方向に長手方向を有するパレットを備える。また、第2実施形態に係る燃料電池発電装置は、パレットにおける第1方向の第1側の上部に取り付けられ、燃料電池セルを備える燃料電池ユニットを備える。さらに、第2実施形態に係る燃料電池発電装置は、パレットにおける第1方向の第1側と反対側である第2側の上部に取り付けられ、燃料電池セルを動作させる際に使用される補機ユニットを備える。
Second Embodiment
<Fuel cell power generation device>
The fuel cell power generation apparatus according to the second embodiment includes a pallet having a longitudinal direction in a first direction. The fuel cell power generation apparatus according to the second embodiment also includes a fuel cell unit attached to an upper portion of a first side of the pallet in the first direction and including fuel cells. The fuel cell power generation apparatus according to the second embodiment also includes an auxiliary unit attached to an upper portion of a second side of the pallet opposite the first side in the first direction and used when operating the fuel cells.
 第2実施形態に係る燃料電池発電装置のパレットは、第1枠部材と、第2枠部材と、第1枠部材と第2枠部材とを連結する連結部材を備える。 The pallet of the fuel cell power generation device according to the second embodiment includes a first frame member, a second frame member, and a connecting member that connects the first frame member and the second frame member.
 第1枠部材は、第1方向に延び、上部の第1側に燃料電池ユニットが載置される第1載置部と、上部の第2側に補機ユニットが載置される第2載置部と、を有する。また、第1枠部材は、内部に第1側が開放された空間を有する。例えば、燃料電池発電装置を運搬する際に、第1側から第1枠部材が有する空間にフォークリフトのフォークの一方が挿入される。 The first frame member extends in a first direction and has a first mounting portion on a first side of the upper portion on which the fuel cell unit is mounted, and a second mounting portion on a second side of the upper portion on which the auxiliary unit is mounted. The first frame member also has an internal space with the first side open. For example, when transporting the fuel cell power generation device, one of the forks of a forklift is inserted into the space in the first frame member from the first side.
 第2枠部材は、第1枠部材から第1方向に交差する第2方向に離隔し、第1方向に延び、上部の第1側に燃料電池ユニットが載置される第3載置部と、上部の第2側に補機ユニットが載置される第4載置部と、を有する。第2枠部材は、内部に第1側が開放された空間を有する。例えば、燃料電池発電装置を運搬する際に、第1側から第2枠部材が有する空間にフォークリフトのフォークの他方が挿入される。 The second frame member is spaced from the first frame member in a second direction intersecting the first direction, extends in the first direction, and has a third mounting portion on the upper first side on which the fuel cell unit is mounted, and a fourth mounting portion on the upper second side on which the auxiliary unit is mounted. The second frame member has an internal space with the first side open. For example, when transporting the fuel cell power generation device, the other fork of a forklift is inserted from the first side into the space in the second frame member.
 また、別の観点から第2実施形態に係る燃料電池発電装置を説明すると、第2実施形態に係る燃料電池発電装置は、第1方向に長手方向を有する移動用架台と、燃料電池セルを動作させる際に使用される補機ユニットを含む燃料電池モジュールと、を備える。また、第2実施形態に係る燃料電池発電装置における移動用架台は、内部に第1方向の第1側もしくは第1側と反対側である第2側の少なくとも一方が開放された空間を有する第1枠部材及び第2枠部材を備える。さらに、第2実施形態に係る燃料電池発電装置における第2枠部材は、第1枠部材から前記第1方向に交差する第2方向に離隔する。さらにまた、第2実施形態に係る燃料電池発電装置における第1枠部材及び第2枠部材のそれぞれは第1方向に延びる。また、第2実施形態に係る燃料電池発電装置における第1枠部材及び第2枠部材のそれぞれの上部に燃料電池モジュールが載置される。 The fuel cell power generation device according to the second embodiment will be described from another perspective. The fuel cell power generation device according to the second embodiment includes a mobile platform having a longitudinal direction in the first direction, and a fuel cell module including an auxiliary unit used when operating the fuel cell. The mobile platform in the fuel cell power generation device according to the second embodiment includes a first frame member and a second frame member having an internal space in which at least one of the first side in the first direction or the second side opposite to the first side is open. Furthermore, the second frame member in the fuel cell power generation device according to the second embodiment is spaced apart from the first frame member in a second direction intersecting the first direction. Furthermore, each of the first frame member and the second frame member in the fuel cell power generation device according to the second embodiment extends in the first direction. A fuel cell module is placed on top of each of the first frame member and the second frame member in the fuel cell power generation device according to the second embodiment.
 第2実施形態に係る燃料電池発電装置について説明する。図3は、第2実施形態に係る燃料電池発電装置の一例である燃料電池発電装置401の斜視図である。図4は、第2実施形態に係る燃料電池発電装置の一例である燃料電池発電装置401の正面図である。図5は、第2実施形態に係る燃料電池発電装置の一例である燃料電池発電装置401の背面図である。図6は、第2実施形態に係る燃料電池発電装置の一例である燃料電池発電装置401の平面図である。図7は、第2実施形態に係る燃料電池発電装置の一例である燃料電池発電装置401の構成を説明する図である。 The fuel cell power generation device according to the second embodiment will now be described. FIG. 3 is a perspective view of fuel cell power generation device 401, which is an example of a fuel cell power generation device according to the second embodiment. FIG. 4 is a front view of fuel cell power generation device 401, which is an example of a fuel cell power generation device according to the second embodiment. FIG. 5 is a rear view of fuel cell power generation device 401, which is an example of a fuel cell power generation device according to the second embodiment. FIG. 6 is a plan view of fuel cell power generation device 401, which is an example of a fuel cell power generation device according to the second embodiment. FIG. 7 is a diagram illustrating the configuration of fuel cell power generation device 401, which is an example of a fuel cell power generation device according to the second embodiment.
 なお、第2実施形態を説明する図面には、説明の便宜のために、互いに直交するX軸、Y軸及びZ軸(XYZ軸)からなる仮想三次元座標系(XYZ直交座標系)が設定される場合がある。図面の紙面に対して垂直な座標軸について、座標軸の丸の中に黒丸印を示す場合、当該座標軸が紙面に対して手前側に向いていることを表している。また、座標軸の丸の中にバツ印を示す場合、当該座標軸が紙面に対して奥側に向いていることを表している。 In addition, for ease of explanation, the drawings explaining the second embodiment may set a virtual three-dimensional coordinate system (XYZ Cartesian coordinate system) consisting of mutually orthogonal X-axis, Y-axis, and Z-axis (XYZ axes). For a coordinate axis perpendicular to the paper surface of the drawing, a black circle in a circle on the coordinate axis indicates that the coordinate axis faces towards the front of the paper surface. Also, a cross in a circle on the coordinate axis indicates that the coordinate axis faces away from the paper surface.
 ただし、当該座標系は、説明のために定めるものであって、第2実施形態に係る燃料電池発電装置等の姿勢について限定するものではない。 However, this coordinate system is defined for the purpose of explanation and does not limit the attitude of the fuel cell power generation device etc. according to the second embodiment.
 なお、以下の図面では、X軸方向は燃料電池ユニット410と補機ユニット420とが並ぶ方向とする。なお、X軸方向は水平面と平行な方向とする。また、Y軸方向は、X軸方向と垂直であって、水平面と平行な方向とする。Z軸方向は、X軸方向及びY軸方向に垂直な方向とする。Z軸方向は、水平面に対して垂直な方向とする。すなわち、Z軸方向は鉛直方向とする。 In the following drawings, the X-axis direction is the direction in which the fuel cell unit 410 and the auxiliary unit 420 are aligned. The X-axis direction is parallel to the horizontal plane. The Y-axis direction is perpendicular to the X-axis direction and parallel to the horizontal plane. The Z-axis direction is perpendicular to the X-axis and Y-axis directions. The Z-axis direction is perpendicular to the horizontal plane. In other words, the Z-axis direction is the vertical direction.
 また、Y軸方向に沿って、対象を+Y側から見る図を正面図、対象を-Y側から見る図を背面図という。Y軸方向に沿って、対象を+Y側から見ることを正面視、対象を-Y側から見ることを背面視という。Z軸方向に沿って、対象を+Z側から見る図を平面図、Z軸方向に沿って、対象を+Z側から見ることを平面視という。 In addition, a view of an object viewed from the +Y side along the Y-axis direction is called a front view, and a view of an object viewed from the -Y side is called a back view. Viewing an object from the +Y side along the Y-axis direction is called a front view, and viewing an object from the -Y side is called a back view. Viewing an object from the +Z side along the Z-axis direction is called a plan view, and viewing an object from the +Z side along the Z-axis direction is called a plan view.
 なお、正面図を基準にして、X軸方向を左右方向、Y軸方向を前後方向、Z軸方向を上下方向、という場合がある。対象に対して、+X側を左側、-X側を右側、+Y側を前側、-Y側を後ろ側、+Z側を上側、-Z側を下側、という場合がある。 In addition, with the front view as the reference, the X-axis direction is sometimes referred to as the left-right direction, the Y-axis direction as the front-back direction, and the Z-axis direction as the up-down direction. In relation to an object, the +X side may be referred to as the left side, the -X side as the right side, the +Y side as the front side, the -Y side as the rear side, the +Z side as the top side, and the -Z side as the bottom side.
 燃料電池発電装置401は、燃料電池セルを用いる燃料電池である。燃料電池発電装置401は、水素を燃料として、空気中の酸素と反応することにより、化学エネルギーを電気に変換する化学電池である。 The fuel cell power generation device 401 is a fuel cell that uses fuel cell cells. The fuel cell power generation device 401 is a chemical cell that uses hydrogen as fuel and converts chemical energy into electricity by reacting with oxygen in the air.
 燃料電池発電装置401は、燃料電池ユニット410と、補機ユニット420と、を備える。なお、燃料電池ユニット410と補機ユニット420とをまとめて燃料電池モジュール460という場合がある。また、燃料電池発電装置401は、燃料電池ユニット410及び補機ユニット420を保持するパレット430を備える。パレット430は、移動用架台の一例である。言い換えると、燃料電池発電装置401は、燃料電池モジュール460を載置される移動用架台の一例であるパレット430を備える。移動用架台は、パレットに限らず、例えば、燃料電池モジュール460を運搬する際に用いられる台であればよい。また、燃料電池発電装置401は、燃料電池ユニット410とパレット430との間に、絶縁部材441a及び絶縁部材441b(図8参照)を備える。燃料電池発電装置401は、補機ユニット420とパレット430との間に、絶縁部材442a及び絶縁部材442b(図8参照)を備える。言い換えると、燃料電池発電装置401は、パレット430(移動用架台)と燃料電池モジュール460との間に絶縁部材を備える。なお、絶縁部材はなくてもよい。 The fuel cell power generation apparatus 401 includes a fuel cell unit 410 and an auxiliary unit 420. The fuel cell unit 410 and the auxiliary unit 420 may be collectively referred to as a fuel cell module 460. The fuel cell power generation apparatus 401 also includes a pallet 430 that holds the fuel cell unit 410 and the auxiliary unit 420. The pallet 430 is an example of a mobile stand. In other words, the fuel cell power generation apparatus 401 includes a pallet 430, which is an example of a mobile stand on which the fuel cell module 460 is placed. The mobile stand is not limited to a pallet, and may be, for example, a stand used when transporting the fuel cell module 460. The fuel cell power generation apparatus 401 also includes an insulating member 441a and an insulating member 441b (see FIG. 8) between the fuel cell unit 410 and the pallet 430. The fuel cell power generation apparatus 401 also includes an insulating member 442a and an insulating member 442b (see FIG. 8) between the auxiliary unit 420 and the pallet 430. In other words, the fuel cell power generation device 401 has an insulating member between the pallet 430 (mobile platform) and the fuel cell module 460. Note that the insulating member is not necessary.
 [燃料電池ユニット410]
 燃料電池ユニット410は、水素と酸素を化学反応させることにより電気を発生させる。燃料電池ユニット410は、パレット430におけるX軸方向の+X側の上部に取り付けられる。燃料電池ユニット410は、燃料電池セル411、昇圧コンバータ412、水素ポンプ413、冷却液ポンプ414及びエアコンプレッサ415を備える。
[Fuel cell unit 410]
The fuel cell unit 410 generates electricity by causing a chemical reaction between hydrogen and oxygen. The fuel cell unit 410 is attached to the upper part of the +X side in the X-axis direction of the pallet 430. The fuel cell unit 410 includes a fuel cell 411, a boost converter 412, a hydrogen pump 413, a coolant pump 414, and an air compressor 415.
 燃料電池セル411は、供給される水素SHと、空気SAに含まれる酸素とを化学反応させることにより電気を発生させる。燃料電池セル411は、例えば、固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)である。固体高分子形燃料電池である燃料電池セル411は、多数の単セルを積層したスタック構造を有する。 The fuel cell 411 generates electricity by causing a chemical reaction between the supplied hydrogen SH and the oxygen contained in the air SA. The fuel cell 411 is, for example, a polymer electrolyte fuel cell (PEFC). The fuel cell 411, which is a polymer electrolyte fuel cell, has a stack structure in which many single cells are stacked.
 固体高分子形燃料電池である燃料電池セル411における単セルは、高分子電解質膜と、高分子電解質膜の両側面に設けられた一対の電極と、を備える膜-電極アッセンブリ(MEA:Membrane Electrode Assembly)を備える。高分子電解質膜は、水素イオンを選択的に輸送する。また、一つの電極のそれぞれは、多孔質材料により形成される。一対の電極のそれぞれは、例えば、白金系の金属触媒(電極触媒)を担持するカーボン粉末を主成分とする触媒層と、通気性及び電子導電性を併せ持つガス拡散層と、を有する。さらに、単セルは、膜-電極アッセンブリ(MEA)を両側から挟み込む一対のセパレータを有する。 The single cell in the fuel cell 411, which is a polymer electrolyte fuel cell, includes a membrane electrode assembly (MEA) that includes a polymer electrolyte membrane and a pair of electrodes provided on both sides of the polymer electrolyte membrane. The polymer electrolyte membrane selectively transports hydrogen ions. Each electrode is formed of a porous material. Each of the pair of electrodes includes a catalyst layer that is primarily composed of carbon powder that supports a platinum-based metal catalyst (electrode catalyst), and a gas diffusion layer that is both breathable and electronically conductive. Furthermore, the single cell includes a pair of separators that sandwich the membrane electrode assembly (MEA) from both sides.
 燃料電池セル411により発生した電気は、昇圧コンバータ412により昇圧されて電力EPとして出力される。昇圧コンバータ412は、例えば、DC/DCコンバータである。 The electricity generated by the fuel cell 411 is boosted by the boost converter 412 and output as electric power EP. The boost converter 412 is, for example, a DC/DC converter.
 燃料電池セル411は、補機ユニット420との間で循環する冷却液CL1により冷却される。補機ユニット420は、低温の冷却液CL1である冷却液CL1Lを燃料電池セル411に供給する。冷却液CL1Lは、冷却液ポンプ414により燃料電池セル411に送られる。冷却液CL1Lは、燃料電池セル411を冷却する。そして、燃料電池ユニット410は、燃料電池セル411を冷却して温度が上昇した冷却液CL1である冷却液CL1Hを補機ユニット420に排出する。 The fuel cell 411 is cooled by the coolant CL1 circulating between the auxiliary unit 420 and the fuel cell 411. The auxiliary unit 420 supplies the fuel cell 411 with coolant CL1L, which is the low-temperature coolant CL1. The coolant CL1L is sent to the fuel cell 411 by a coolant pump 414. The coolant CL1L cools the fuel cell 411. The fuel cell unit 410 then discharges the coolant CL1H, which is the coolant CL1 whose temperature has increased after cooling the fuel cell 411, to the auxiliary unit 420.
 また、昇圧コンバータ412は、補機ユニット420との間で循環する冷却液CL2により冷却される。同様に、エアコンプレッサ415のモータは、補機ユニット420との間で循環する冷却液CL2により冷却される。補機ユニット420は、低温の冷却液CL2である冷却液CL2Lを昇圧コンバータ412及びエアコンプレッサ415のそれぞれに供給する。冷却液CL2Lは、昇圧コンバータ412及びエアコンプレッサ415のモータを冷却する。そして、燃料電池ユニット410は、昇圧コンバータ412及びエアコンプレッサ415のモータを冷却して温度が上昇した冷却液CL2である冷却液CL2Hを補機ユニット420に排出する。 The boost converter 412 is also cooled by the cooling liquid CL2 circulating between the auxiliary unit 420 and the boost converter 412. Similarly, the motor of the air compressor 415 is cooled by the cooling liquid CL2 circulating between the auxiliary unit 420 and the boost converter 412. The auxiliary unit 420 supplies the low-temperature cooling liquid CL2, ie, cooling liquid CL2L, to the boost converter 412 and the air compressor 415. The cooling liquid CL2L cools the motors of the boost converter 412 and the air compressor 415. The fuel cell unit 410 then discharges the cooling liquid CL2H, which is the cooling liquid CL2 whose temperature has increased after cooling the motors of the boost converter 412 and the air compressor 415, to the auxiliary unit 420.
 燃料電池ユニット410が備える燃料電池セル411に、補機ユニット420を通って、水素SHが供給される。燃料電池セル411に供給された水素SHにおいて、未反応で排出された水素は、水素ポンプ413により燃料電池セル411に戻される。また、燃料電池ユニット410に、補機ユニット420から空気SAが供給される。補機ユニット420から供給された空気SAは、エアコンプレッサ415により圧縮されて燃料電池セル411に供給される。 Hydrogen SH is supplied to the fuel cell 411 provided in the fuel cell unit 410 through the auxiliary unit 420. Unreacted hydrogen discharged from the hydrogen SH supplied to the fuel cell 411 is returned to the fuel cell 411 by the hydrogen pump 413. Air SA is also supplied to the fuel cell unit 410 from the auxiliary unit 420. The air SA supplied from the auxiliary unit 420 is compressed by the air compressor 415 and supplied to the fuel cell 411.
 [補機ユニット420]
 補機ユニット420は、燃料電池ユニット410の燃料電池セル411を動作させる際に使用される。補機ユニット420は、パレット430におけるX軸方向の-X側の上部に取り付けられる。補機ユニット420は、燃料電池ユニット410に冷却液等を供給する。補機ユニット420は、熱交換器421と、熱交換器422と、リザーバータンク423と、リザーバータンク424と、イオン交換器425と、エアフィルタ426と、電気回路ボックス427と、冷却液ポンプ428と、気液分離器429と、を備える。
[Auxiliary unit 420]
The auxiliary unit 420 is used when operating the fuel cell 411 of the fuel cell unit 410. The auxiliary unit 420 is attached to the upper part of the -X side in the X-axis direction of the pallet 430. The auxiliary unit 420 supplies a coolant and the like to the fuel cell unit 410. The auxiliary unit 420 includes a heat exchanger 421, a heat exchanger 422, a reservoir tank 423, a reservoir tank 424, an ion exchanger 425, an air filter 426, an electric circuit box 427, a coolant pump 428, and a gas-liquid separator 429.
  (熱交換器421)
 熱交換器421は、燃料電池セル411を冷却した冷却液CL1と、外部の冷却装置450から供給される冷却液CLとの間で熱交換を行う。熱交換器421は、例えば、プレート式熱交換器、特に、ブレージングプレート式熱交換器である。熱交換器421は、燃料電池ユニット410から、燃料電池セル411を冷却して温度が上昇して戻ってきた冷却液CL1Hを、冷却装置450から供給される冷却液CLにより冷却する。そして、熱交換器421において熱交換して冷却された冷却液CL1Lは、燃料電池セル411に供給される。
(Heat exchanger 421)
The heat exchanger 421 exchanges heat between the cooling liquid CL1 that has cooled the fuel cell 411 and the cooling liquid CL supplied from an external cooling device 450. The heat exchanger 421 is, for example, a plate-type heat exchanger, in particular a brazed plate-type heat exchanger. The heat exchanger 421 cools the cooling liquid CL1H that has returned from the fuel cell unit 410 after cooling the fuel cell 411 and has increased in temperature, using the cooling liquid CL supplied from the cooling device 450. The cooling liquid CL1L that has been cooled by heat exchange in the heat exchanger 421 is then supplied to the fuel cell 411.
 外部の冷却装置450は、低温の冷却液CLである冷却液CLLを補機ユニット420に供給する。そして、冷却装置450は、補機ユニット420から温度が上昇した高温の冷却液CLである冷却液CLHを回収する。冷却装置450は、回収した冷却液CLHを冷却する。そして、冷却装置450は、冷却液CLHを冷却して温度が低下した冷却液CLLを補機ユニット420に供給する。 The external cooling device 450 supplies the cooling liquid CLL, which is a low-temperature cooling liquid CL, to the auxiliary unit 420. The cooling device 450 then recovers the cooling liquid CLH, which is a high-temperature cooling liquid CL, from the auxiliary unit 420. The cooling device 450 cools the recovered cooling liquid CLH. The cooling device 450 then cools the cooling liquid CLH and supplies the cooling liquid CLL, whose temperature has been reduced, to the auxiliary unit 420.
 熱交換器421は、冷却液CLについて、冷却液CLLから分岐して供給された冷却液CLaLを、冷却液CL1と熱交換して、温度が上昇した冷却液CLaHを排出する。排出された冷却液CLaHは、別の冷却液と合流して冷却液CLHとして、冷却装置450に戻る。また、熱交換器421は、冷却液CL1について、燃料電池セル411から供給された冷却液CL1Hを、冷却液CLと熱交換して、温度が低下した冷却液CL1Lを排出する。排出された冷却液CL1Lは、燃料電池ユニット410に供給される。 The heat exchanger 421 exchanges heat between the coolant CLaL, which is branched off from the coolant CLL and supplied to the heat exchanger 421, and the coolant CL1, and discharges the coolant CLaH, whose temperature has increased. The discharged coolant CLaH is combined with another coolant and returns to the cooling device 450 as the coolant CLH. The heat exchanger 421 also exchanges heat between the coolant CL1H, which is supplied from the fuel cell 411, and the coolant CL, and discharges the coolant CL1L, whose temperature has decreased. The discharged coolant CL1L is supplied to the fuel cell unit 410.
 熱交換器421において、燃料電池ユニット410から戻ってくる冷却液CL1Hは、熱交換器421の下側から導入される。そして、冷却液CL1Lは、熱交換器421の下側から排出される。また、冷却装置450から供給される冷却液CLaLは、熱交換器421の上側から導入される。そして、冷却液CLaHは、熱交換器421の上側から排出される。 In the heat exchanger 421, the cooling liquid CL1H returning from the fuel cell unit 410 is introduced from the lower side of the heat exchanger 421. The cooling liquid CL1L is discharged from the lower side of the heat exchanger 421. The cooling liquid CLaL supplied from the cooling device 450 is introduced from the upper side of the heat exchanger 421. The cooling liquid CLaH is discharged from the upper side of the heat exchanger 421.
  (熱交換器422)
 熱交換器422は、昇圧コンバータ412を冷却した冷却液CL2と、外部の冷却装置450から供給される冷却液CLとの間で熱交換を行う。熱交換器422は、例えば、プレート式熱交換器、特に、ブレージングプレート式熱交換器である。熱交換器422は、昇圧コンバータ412及びエアコンプレッサ415のそれぞれから、昇圧コンバータ412及びエアコンプレッサ415のそれぞれを冷却して温度が上昇して戻ってきた冷却液CL2Hを、冷却装置450から供給される冷却液CLにより冷却する。そして、熱交換器422において熱交換して冷却された冷却液CL2Lは、昇圧コンバータ412及びエアコンプレッサ415のそれぞれに供給される。
(Heat exchanger 422)
The heat exchanger 422 exchanges heat between the cooling liquid CL2 that has cooled the boost converter 412 and the cooling liquid CL that is supplied from an external cooling device 450. The heat exchanger 422 is, for example, a plate-type heat exchanger, particularly a brazed plate-type heat exchanger. The heat exchanger 422 cools the cooling liquid CL2H that has returned from the boost converter 412 and the air compressor 415 after cooling the boost converter 412 and the air compressor 415 and has increased in temperature, by the cooling liquid CL that is supplied from the cooling device 450. The cooling liquid CL2L that has been cooled by heat exchange in the heat exchanger 422 is supplied to the boost converter 412 and the air compressor 415.
 熱交換器422は、冷却液CLについて、冷却液CLLから分岐して供給された冷却液CLbLを、冷却液CL2と熱交換して、温度が上昇した冷却液CLbHを排出する。排出された冷却液CLbHは、別の冷却液と合流して冷却液CLHとして、冷却装置450に戻る。また、熱交換器422は、冷却液CL2について、昇圧コンバータ412及びエアコンプレッサ415のそれぞれから供給された冷却液CL2Hを、冷却液CLと熱交換して、温度が低下した冷却液CL2Lを排出する。排出された冷却液CL2Lは、昇圧コンバータ412及びエアコンプレッサ415のそれぞれに供給される。 The heat exchanger 422 exchanges heat between the cooling liquid CLbL, which is branched off from the cooling liquid CLL and supplied to the cooling liquid CL2, and the cooling liquid CLbH, whose temperature has increased, is discharged. The discharged cooling liquid CLbH is combined with another cooling liquid and returns to the cooling device 450 as the cooling liquid CLH. The heat exchanger 422 also exchanges heat between the cooling liquid CL2H, which is supplied from the boost converter 412 and the air compressor 415, and the cooling liquid CL2, and discharges the cooling liquid CL2L, whose temperature has decreased. The discharged cooling liquid CL2L is supplied to the boost converter 412 and the air compressor 415.
  (リザーバータンク423)
 リザーバータンク423は、燃料電池セル411を冷却する冷却液CL1を貯蔵するタンクである。リザーバータンク423は、燃料電池セル411を冷却する冷却液CL1の増減を調整する。リザーバータンク423は、補機ユニット420の上側に設けられる。
(Reservoir tank 423)
The reservoir tank 423 is a tank that stores the coolant CL1 that cools the fuel cell 411. The reservoir tank 423 adjusts the increase or decrease of the coolant CL1 that cools the fuel cell 411. The reservoir tank 423 is provided above the auxiliary unit 420.
  (リザーバータンク424)
 リザーバータンク424は、昇圧コンバータ412及びエアコンプレッサ415のそれぞれを冷却する冷却液CL2を貯蔵するタンクである。リザーバータンク424は、昇圧コンバータ412及びエアコンプレッサ415のそれぞれを冷却する冷却液CL2の増減を調整する。リザーバータンク424は、補機ユニット420の上側に設けられる。
(Reservoir tank 424)
The reservoir tank 424 is a tank that stores the coolant CL2 that cools the boost converter 412 and the air compressor 415. The reservoir tank 424 adjusts the increase or decrease of the coolant CL2 that cools the boost converter 412 and the air compressor 415. The reservoir tank 424 is provided above the auxiliary unit 420.
  (イオン交換器425)
 イオン交換器425は、燃料電池セル411を冷却する冷却液CL1に含まれる不純物イオンを除去する。イオン交換器425に接続する配管に、配管内の空気を排気する脱気部425aを備える。脱気部425aは、補機ユニット420の上側に設けられる。
(Ion exchanger 425)
The ion exchanger 425 removes impurity ions contained in the coolant CL1 that cools the fuel cell 411. A degassing section 425a that exhausts air from within the piping connected to the ion exchanger 425 is provided on the upper side of the auxiliary unit 420.
  (エアフィルタ426)
 エアフィルタ426は、空気SAに含まれる塵及び燃料電池に悪影響を及ぼす不純物等を除去する。エアフィルタ426は、燃料電池ユニット410に供給される空気SAを濾過する。エアフィルタ426は、空気SAに含まれる塵及び燃料電池に悪影響を及ぼす不純物等を除去した清浄な空気を燃料電池セル411に供給する。
(Air filter 426)
The air filter 426 removes dust and impurities that adversely affect the fuel cell from the air SA. The air filter 426 filters the air SA supplied to the fuel cell unit 410. The air filter 426 supplies clean air from which dust and impurities that adversely affect the fuel cell have been removed to the fuel cell 411.
  (電気回路ボックス427)
 電気回路ボックス427は、燃料電池ユニット410を駆動するために用いられる電気回路が収納される。電気回路ボックス427は、内部に、回路基板、リレー等を備える。
(Electrical circuit box 427)
The electric circuit box 427 houses an electric circuit used to drive the fuel cell unit 410. The electric circuit box 427 includes a circuit board, a relay, and the like therein.
  (冷却液ポンプ428)
 冷却液ポンプ428は、冷却液CL2を燃料電池ユニット410の昇圧コンバータ412及びエアコンプレッサ415のそれぞれに送るポンプである。
(Coolant pump 428)
The coolant pump 428 is a pump that sends the coolant CL 2 to each of the boost converter 412 and the air compressor 415 of the fuel cell unit 410 .
  (気液分離器429)
 気液分離器429は、燃料電池セル411からの排気EGに含まれる水分EWを分離する。気液分離器429は、排気EGから分離した水分EWと、排気EGから水分EWを分離した排気EAを排出する。
(Gas-Liquid Separator 429)
The gas-liquid separator 429 separates moisture EW contained in the exhaust gas EG from the fuel cell 411. The gas-liquid separator 429 discharges the moisture EW separated from the exhaust gas EG, and exhaust gas EA obtained by separating the moisture EW from the exhaust gas EG.
  [補機ユニット420における配置について]
 補機ユニット420は、枠420fを備える。枠420fは、直方体形状を有する。熱交換器421、熱交換器422、リザーバータンク423、リザーバータンク424、イオン交換器425、エアフィルタ426、電気回路ボックス427及び冷却液ポンプ428は、枠420fの内側の空間に設けられる。また、熱交換器421、熱交換器422、リザーバータンク423、リザーバータンク424、イオン交換器425、エアフィルタ426、電気回路ボックス427及び冷却液ポンプ428は、平面視において枠420fの内側に設けられる。なお、例えば、枠420fの天面に熱交換器421、熱交換器422、リザーバータンク423、リザーバータンク424、イオン交換器425等を設けることにより、枠420fの外側に当該機器を設けるようにしてもよい。その場合は、枠420fの外側であっても、平面視において枠420fの内側に設けるようにする。熱交換器421、熱交換器422、リザーバータンク423、リザーバータンク424、イオン交換器425、エアフィルタ426、電気回路ボックス427及び冷却液ポンプ428が、枠420fの内側の空間に設けられることにより、外部からの機械的な衝撃からこれらの機器を保護できる。
[Regarding the arrangement of the auxiliary unit 420]
The auxiliary unit 420 includes a frame 420f. The frame 420f has a rectangular parallelepiped shape. The heat exchanger 421, the heat exchanger 422, the reservoir tank 423, the reservoir tank 424, the ion exchanger 425, the air filter 426, the electric circuit box 427, and the coolant pump 428 are provided in a space inside the frame 420f. The heat exchanger 421, the heat exchanger 422, the reservoir tank 423, the reservoir tank 424, the ion exchanger 425, the air filter 426, the electric circuit box 427, and the coolant pump 428 are provided inside the frame 420f in a plan view. For example, the heat exchanger 421, the heat exchanger 422, the reservoir tank 423, the reservoir tank 424, the ion exchanger 425, and the like may be provided on the top surface of the frame 420f, so that the devices are provided outside the frame 420f. In that case, even if they are outside frame 420f, they are provided inside frame 420f in plan view. By providing heat exchanger 421, heat exchanger 422, reservoir tank 423, reservoir tank 424, ion exchanger 425, air filter 426, electric circuit box 427, and coolant pump 428 in the space inside frame 420f, these devices can be protected from external mechanical shocks.
 熱交換器421は、枠420fの内側における下側(-Z側)かつ-X側に設けられる。熱交換器421は、補機ユニット420に設けられる補機の中でも重量の重い機器である。また、燃料電池ユニット410と補機ユニット420とを重量を比較すると、燃料電池ユニット410の方が重い。したがって、補機ユニット420において重量の重い熱交換器421を、枠420fの内側における下側(-Z側)かつ-X側に設けることにより、燃料電池発電装置401の全体の重量バランスをよくできる。 The heat exchanger 421 is provided on the lower side (-Z side) and -X side inside the frame 420f. The heat exchanger 421 is the heaviest of the accessories provided in the accessory unit 420. Furthermore, when comparing the weight of the fuel cell unit 410 and the accessory unit 420, the fuel cell unit 410 is heavier. Therefore, by providing the heavier heat exchanger 421 in the accessory unit 420 on the lower side (-Z side) and -X side inside the frame 420f, the overall weight balance of the fuel cell power generation device 401 can be improved.
 エアフィルタ426及び電気回路ボックス427のそれぞれは、熱交換器421より高い位置に設けられる。エアフィルタ426のそれぞれが、熱交換器421より高い位置に設けられることにより、冷却液CL1が漏れたときにエアフィルタ426に冷却液CL1が流入することを防止できる。また、電気回路ボックス427が、熱交換器421より高い位置に設けられることにより、冷却液CL1が漏れたときに、冷却液CL1が電気回路ボックス427にかかることを防止できる。冷却液CL1が電気回路ボックス427にかかることを防止することにより、電気回路ボックス427における漏電を防止できる。 The air filter 426 and the electric circuit box 427 are each provided at a higher position than the heat exchanger 421. By providing the air filters 426 at a higher position than the heat exchanger 421, it is possible to prevent the coolant CL1 from flowing into the air filter 426 when the coolant CL1 leaks. Also, by providing the electric circuit box 427 at a higher position than the heat exchanger 421, it is possible to prevent the coolant CL1 from getting on the electric circuit box 427 when the coolant CL1 leaks. By preventing the coolant CL1 from getting on the electric circuit box 427, it is possible to prevent electric leakage in the electric circuit box 427.
 さらに、エアフィルタ426及び電気回路ボックス427のそれぞれは、平面視で熱交換器422、イオン交換器425、リザーバータンク423及びリザーバータンク424のそれぞれと重ならない位置に設けられる。 Furthermore, the air filter 426 and the electrical circuit box 427 are positioned so as not to overlap the heat exchanger 422, the ion exchanger 425, the reservoir tank 423, and the reservoir tank 424 in a plan view.
 エアフィルタ426が、平面視で熱交換器422、イオン交換器425、リザーバータンク423及びリザーバータンク424のそれぞれと重ならない位置に設けられることにより、冷却液CL1又は冷却液CL2が漏れたときにエアフィルタ426への冷却液CL1又は冷却液CL2の流入を防止できる。 By providing the air filter 426 in a position that does not overlap with the heat exchanger 422, the ion exchanger 425, the reservoir tank 423, and the reservoir tank 424 in a plan view, it is possible to prevent the coolant CL1 or the coolant CL2 from flowing into the air filter 426 when the coolant CL1 or the coolant CL2 leaks.
 電気回路ボックス427が、平面視で熱交換器422、イオン交換器425、リザーバータンク423及びリザーバータンク424のそれぞれと重ならない位置に設けられることにより、冷却液CL1又は冷却液CL2が漏れたときに、冷却液CL1又は冷却液CL2が電気回路ボックス427にかかることを防止できる。冷却液CL1又は冷却液CL2が電気回路ボックス427にかかることを防止することにより、電気回路ボックス427における漏電を防止できる。 By providing the electric circuit box 427 at a position that does not overlap with the heat exchanger 422, the ion exchanger 425, the reservoir tank 423, and the reservoir tank 424 in a plan view, it is possible to prevent the coolant CL1 or the coolant CL2 from getting on the electric circuit box 427 when the coolant CL1 or the coolant CL2 leaks. By preventing the coolant CL1 or the coolant CL2 from getting on the electric circuit box 427, it is possible to prevent electric leakage in the electric circuit box 427.
 イオン交換器425は、エアフィルタ426の上方に設けられている。一方、イオン交換器における冷却液CL1が流れる配管が接続される位置は、平面視で、エアフィルタ426の吸入口に重ならない位置に設けられる。イオン交換器425における冷却液CL1が流れる配管が接続される位置が、平面視で、エアフィルタ426の吸入口に重ならない位置に設けられることにより、冷却液CL1が漏れたときに、エアフィルタ426への冷却液CL1の流入を防止できる。 The ion exchanger 425 is provided above the air filter 426. Meanwhile, the position where the piping through which the coolant CL1 flows in the ion exchanger is connected is provided at a position that does not overlap the intake port of the air filter 426 in a plan view. By providing the position where the piping through which the coolant CL1 flows in the ion exchanger 425 is connected at a position that does not overlap the intake port of the air filter 426 in a plan view, it is possible to prevent the coolant CL1 from flowing into the air filter 426 when the coolant CL1 leaks.
 燃料電池ユニット410から回収される冷却液CL1Hの温度は、70℃程度になる。したがって、電気回路ボックス427に収納された電気回路等が高温にならないようにするために、電気回路ボックス427は、冷却液CL1Hが通る経路から離すように設けてもよい。補機ユニット420は、熱交換器421を補機ユニット420の下側、電気回路ボックス427を補機ユニット420の上側に備えることにより、冷却液CL1Hによる電気回路ボックス427の温度上昇を抑制できる。 The temperature of the coolant CL1H recovered from the fuel cell unit 410 is about 70°C. Therefore, to prevent the electric circuits housed in the electric circuit box 427 from becoming too hot, the electric circuit box 427 may be located away from the path through which the coolant CL1H passes. The auxiliary unit 420 can suppress the temperature rise of the electric circuit box 427 due to the coolant CL1H by providing the heat exchanger 421 on the lower side of the auxiliary unit 420 and the electric circuit box 427 on the upper side of the auxiliary unit 420.
  なお、補機ユニット420が備える補機は、熱交換器421、熱交換器422、リザーバータンク423、リザーバータンク424、イオン交換器425、エアフィルタ426、電気回路ボックス427、冷却液ポンプ428及び気液分離器429に限らない。補機ユニット420が備える補機は、熱交換器421、熱交換器422、リザーバータンク423、リザーバータンク424、イオン交換器425、エアフィルタ426、電気回路ボックス427、冷却液ポンプ428及び気液分離器429の中から適宜組み合わせてもよい。補機ユニット420が備える補機は、上記の機器のすべてを備えている場合に限らず、一部を備えていてもよい。例えば、エアフィルタ426は、補機ユニットと別に備えるようにしてもよい。また、補機ユニットは、上記以外の機器を備えていてもよい。 The auxiliary equipment provided in the auxiliary equipment unit 420 is not limited to the heat exchanger 421, the heat exchanger 422, the reservoir tank 423, the reservoir tank 424, the ion exchanger 425, the air filter 426, the electric circuit box 427, the coolant pump 428, and the gas-liquid separator 429. The auxiliary equipment provided in the auxiliary equipment unit 420 may be an appropriate combination of the heat exchanger 421, the heat exchanger 422, the reservoir tank 423, the reservoir tank 424, the ion exchanger 425, the air filter 426, the electric circuit box 427, the coolant pump 428, and the gas-liquid separator 429. The auxiliary equipment provided in the auxiliary equipment unit 420 is not limited to the case where all of the above devices are provided, and may include only some of them. For example, the air filter 426 may be provided separately from the auxiliary equipment unit. The auxiliary equipment unit may also include devices other than those described above.
 [パレット430]
 図8は、第2実施形態に係る燃料電池発電装置の一例である燃料電池発電装置401におけるパレット430の斜視図である。パレット430は、燃料電池ユニット410及び補機ユニット420を載置して保持する。パレット430は、フォークリフトにより燃料電池発電装置401を運搬する際に、フォークリフトのフォークが挿入される。フォークは、運搬機器の載荷部材の一例である。なお、運搬機器は、フォークリフトに限らず、燃料電池発電装置401を運搬可能な機器、例えば、荷役車両、クレーン、ハンドリフタ等であればよい。また、載荷部材は、フォークに限らず、燃料電池発電装置401を載せることができる部材であればよい。
[Palette 430]
8 is a perspective view of a pallet 430 in a fuel cell power generation apparatus 401, which is an example of a fuel cell power generation apparatus according to the second embodiment. The pallet 430 holds the fuel cell unit 410 and the auxiliary unit 420. When the fuel cell power generation apparatus 401 is transported by a forklift, the forks of the forklift are inserted into the pallet 430. The forks are an example of a loading member of a transport device. Note that the transport device is not limited to a forklift, but may be any device capable of transporting the fuel cell power generation apparatus 401, such as a cargo handling vehicle, a crane, or a hand lifter. Furthermore, the loading member is not limited to a fork, but may be any member on which the fuel cell power generation apparatus 401 can be placed.
 パレット430は、X軸方向に長手方向を有する。パレット430は、枠部材の一例として角パイプ431及び角パイプ432を備える。また、パレット430は、角パイプ431と角パイプ432とを連結する連結部材433a、連結部材433b及び連結部材433cを備える。 Pallet 430 has a longitudinal direction in the X-axis direction. Pallet 430 includes square pipes 431 and 432 as an example of a frame member. Pallet 430 also includes connecting members 433a, 433b, and 433c that connect square pipes 431 and 432.
  (角パイプ431)
 角パイプ431は、X軸方向に延びる角パイプである。角パイプ431は、+X側の上部に、燃料電池ユニット410が載置される載置部431Aを有する。また、角パイプ431は、-X側の上部に、補機ユニット420が載置される載置部431Bを有する。
(Square pipe 431)
The square pipe 431 is a square pipe extending in the X-axis direction. The square pipe 431 has a mounting portion 431A on which the fuel cell unit 410 is mounted at an upper portion on the +X side. The square pipe 431 also has a mounting portion 431B on which the auxiliary unit 420 is mounted at an upper portion on the -X side.
 燃料電池発電装置401が運搬される際に、矢印FAに示す向きに、角パイプ431の+X側からフォークリフトのフォークの一方が挿入される。 When the fuel cell power generation device 401 is transported, one of the forks of a forklift is inserted into the +X side of the square pipe 431 in the direction indicated by the arrow FA.
 角パイプ431は、+X側に燃料電池ユニット410が載置される載置部431Aを有する。燃料電池発電装置401において、燃料電池ユニット410は補機ユニット420より重いことから、燃料電池発電装置401を運搬する際には、角パイプ431の+X側からフォークリフトのフォークを挿入するようにするとよい。角パイプ432についても同様である。 The square pipe 431 has a mounting section 431A on the +X side on which the fuel cell unit 410 is mounted. In the fuel cell power generation device 401, since the fuel cell unit 410 is heavier than the auxiliary unit 420, when transporting the fuel cell power generation device 401, it is advisable to insert the forks of a forklift from the +X side of the square pipe 431. The same applies to the square pipe 432.
 角パイプ431の構造についてより詳しく説明する。なお、角パイプ432は、角パイプ431と同様の構造を有することから、角パイプ432についての詳細な説明は省略して、角パイプ431の説明を参照することとする。 The structure of square pipe 431 will be explained in more detail. Note that since square pipe 432 has a similar structure to square pipe 431, a detailed explanation of square pipe 432 will be omitted and reference will be made to the explanation of square pipe 431.
 図9は、第2実施形態に係る燃料電池発電装置の一例である燃料電池発電装置401におけるパレット430が備える枠部材である角パイプ431の側面図である。 FIG. 9 is a side view of a square pipe 431, which is a frame member of a pallet 430 in a fuel cell power generation device 401, which is an example of a fuel cell power generation device according to the second embodiment.
 角パイプ431は、X軸方向に垂直なYZ平面における断面が矩形状である角パイプである。角パイプ431は、横板部431aと、縦板部431bと、横板部431cと、縦板部431dと、を備える。角パイプ431の+X側は、開放された状態になっている。言い換えると、角パイプ431は、+X側に開放部431h1(図8参照)を備える。同様に、角パイプ431の-X側は、開放された状態になっている。言い換えると、角パイプ431は、-X側に開放部431h2(図8参照)を備える。 The square pipe 431 is a square pipe whose cross section in the YZ plane perpendicular to the X-axis direction is rectangular. The square pipe 431 has a horizontal plate portion 431a, a vertical plate portion 431b, a horizontal plate portion 431c, and a vertical plate portion 431d. The +X side of the square pipe 431 is open. In other words, the square pipe 431 has an opening portion 431h1 (see FIG. 8) on the +X side. Similarly, the -X side of the square pipe 431 is open. In other words, the square pipe 431 has an opening portion 431h2 (see FIG. 8) on the -X side.
 横板部431aは、XY平面に平行であってX軸方向に長手方向を有する板状の部材である。横板部431aは、+Z側に上面431aAと-Z側に内面431aBを有する。角パイプ431は、上面431aAに載置部431A及び載置部431Bを有する。フォークリフトのフォークは、燃料電池発電装置401を運搬する際に、内面431aBに接触する。 The horizontal plate portion 431a is a plate-like member parallel to the XY plane and with its longitudinal direction in the X-axis direction. The horizontal plate portion 431a has an upper surface 431aA on the +Z side and an inner surface 431aB on the -Z side. The square pipe 431 has mounting portions 431A and 431B on the upper surface 431aA. The forks of a forklift come into contact with the inner surface 431aB when transporting the fuel cell power generation device 401.
 縦板部431bは、ZX平面に平行であってX軸方向に長手方向を有する板状の部材である。縦板部431bは、横板部431aにおける+Y側の端部から-Z側に延びて設けられる。縦板部431bの-Z側は、横板部431cの+Y側と接続する。 The vertical plate portion 431b is a plate-like member that is parallel to the ZX plane and has a longitudinal direction in the X-axis direction. The vertical plate portion 431b extends from the +Y side end of the horizontal plate portion 431a to the -Z side. The -Z side of the vertical plate portion 431b connects to the +Y side of the horizontal plate portion 431c.
 横板部431cは、XY平面に平行であってX軸方向に長手方向を有する板状の部材である。横板部431cは、横板部431aの-Z側に離隔して設けられる。 The horizontal plate portion 431c is a plate-shaped member that is parallel to the XY plane and has a longitudinal direction in the X-axis direction. The horizontal plate portion 431c is provided at a distance from the horizontal plate portion 431a on the -Z side.
 縦板部431dは、ZX平面に平行であってX軸方向に長手方向を有する板状の部材である。縦板部431dは、横板部431aにおける-Y側の端部から-Z側に延びて設けられる。縦板部431dの-Z側は、横板部431cの-Y側と接続する。縦板部431dは、縦板部431bの-Y側に離隔して設けられる。 The vertical plate portion 431d is a plate-like member that is parallel to the ZX plane and has a longitudinal direction in the X-axis direction. The vertical plate portion 431d extends from the -Y side end of the horizontal plate portion 431a to the -Z side. The -Z side of the vertical plate portion 431d is connected to the -Y side of the horizontal plate portion 431c. The vertical plate portion 431d is spaced apart from the -Y side of the vertical plate portion 431b.
 なお、縦板部431b及び縦板部431dは、燃料電池発電装置401をフォークリフトで運搬する際に、フォークが横方向(Y軸方向)にずれて、フォークから燃料電池発電装置401がはずれることを防止する。 In addition, the vertical plate portions 431b and 431d prevent the forks from shifting horizontally (Y-axis direction) and causing the fuel cell power generation device 401 to come off the forks when the fuel cell power generation device 401 is transported by a forklift.
 角パイプ431は、内部に、横板部431a、縦板部431b、横板部431c及び縦板部431dに囲まれた空間431Sを有する。上述のように、空間431Sは、+X側及び-X側に開放している。空間431Sには、角パイプ431の+X側からフォークリフトのフォークの一方が挿入される。図10は、第2実施形態に係る燃料電池発電装置の一例である燃料電池発電装置401におけるパレット430が備える枠部材である角パイプ431にフォークFが挿入された状態を示す図である。図10において、角パイプ431は断面図で示す。 The square pipe 431 has a space 431S inside, surrounded by horizontal plate portion 431a, vertical plate portion 431b, horizontal plate portion 431c, and vertical plate portion 431d. As described above, the space 431S is open to the +X side and the -X side. One of the forks of a forklift is inserted into the space 431S from the +X side of the square pipe 431. Figure 10 is a diagram showing a state in which a fork F is inserted into the square pipe 431, which is a frame member of a pallet 430 in a fuel cell power generation device 401, which is an example of a fuel cell power generation device according to the second embodiment. In Figure 10, the square pipe 431 is shown in cross section.
 角パイプ431は、内部の空間431SにフォークリフトのフォークFが挿入される。フォークFが空間431Sに挿入できるように、空間431SのY軸方向の幅Wと、Z軸方向の高さHは定められる。より具体的には、フォークFの形状は、運搬する対象物の重量等により定まることから、燃料電池発電装置401を運搬するのに適するフォークFの幅より幅Wを広くし、フォークFの高さより高さHを高くする。例えば、空間431Sの幅Wは、フォークFの幅より1.1から1.3倍程度の幅にする。また、例えば、空間431Sの高さHは、フォークFの高さより1.5から3.5倍程度の高さにする。 The square pipe 431 has an internal space 431S into which the fork F of a forklift is inserted. The width W in the Y-axis direction and the height H in the Z-axis direction of the space 431S are determined so that the fork F can be inserted into the space 431S. More specifically, since the shape of the fork F is determined by factors such as the weight of the object to be transported, the width W is made wider than the width of the fork F suitable for transporting the fuel cell power generation device 401, and the height H is made higher than the height of the fork F. For example, the width W of the space 431S is about 1.1 to 1.3 times the width of the fork F. Also, for example, the height H of the space 431S is about 1.5 to 3.5 times the height of the fork F.
 また、図10に示す例のように、フォークFの長さが角パイプ431の長さLより長い場合もある。したがって、空間431Sは、角パイプ431の長手方向(X軸方向)にわたって形成されるようにしてもよい。また、少なくとも燃料電池発電装置401の運搬時には、角パイプ431は、内面431aBに突起等を設けない構成にする。言い換えると、内面431aBは、平坦に形成される。なお、縦板部431b、横板部431c及び縦板部431dのそれぞれの内面についても、少なくとも燃料電池発電装置401の運搬時に、突起等を設けない構成にすることが望ましい。また、縦板部431b、横板部431c及び縦板部431dのそれぞれの内面について突起等を設ける場合、少なくとも燃料電池発電装置401の運搬時に、フォークFが挿入できるような寸法にすることが望ましい。角パイプ432についても同様である。 Also, as shown in the example of FIG. 10, the length of the fork F may be longer than the length L of the square pipe 431. Therefore, the space 431S may be formed along the longitudinal direction (X-axis direction) of the square pipe 431. Also, at least when the fuel cell power generation device 401 is transported, the square pipe 431 is configured so that no protrusions or the like are provided on the inner surface 431aB. In other words, the inner surface 431aB is formed flat. It is preferable that the inner surfaces of the vertical plate portion 431b, the horizontal plate portion 431c, and the vertical plate portion 431d are also configured so that no protrusions or the like are provided, at least when the fuel cell power generation device 401 is transported. Also, when protrusions or the like are provided on the inner surfaces of the vertical plate portion 431b, the horizontal plate portion 431c, and the vertical plate portion 431d, it is preferable that the dimensions are such that the fork F can be inserted at least when the fuel cell power generation device 401 is transported. The same applies to the square pipe 432.
 例えば、角パイプ431の外面に突起等を設ける場合は、角パイプ431の外面に溶接等により突起等を取り付けるようにして、角パイプ431の内側に突起等がないようにする。なお、燃料電池発電装置401を運搬しないときは、角パイプ431の内側に突起等があってもよい。 For example, if protrusions or the like are provided on the outer surface of the square pipe 431, the protrusions or the like are attached to the outer surface of the square pipe 431 by welding or the like so that there are no protrusions or the like on the inside of the square pipe 431. Note that when the fuel cell power generation device 401 is not being transported, there may be protrusions or the like on the inside of the square pipe 431.
 上述のように、角パイプ431が有する空間431Sは、+X側からフォークリフトのフォークFが挿入されるように形成されている。言い換えると、角パイプ431が有する空間431Sは、フォークリフトのフォークFが+X側から挿入される際に、角パイプ431に干渉しないように、フォークリフトのフォークFより大きい空間となっている。 As described above, the space 431S of the square pipe 431 is formed so that the forks F of the forklift are inserted from the +X side. In other words, the space 431S of the square pipe 431 is larger than the forks F of the forklift so that the forks F do not interfere with the square pipe 431 when they are inserted from the +X side.
 なお、燃料電池発電装置401を設置後など、燃料電池発電装置401を運搬していないときは、開放部431h1及び開放部431h2をカバー等により塞いでもよい。 In addition, when the fuel cell power generation device 401 is not being transported, such as after installation, the openings 431h1 and 431h2 may be covered with a cover or the like.
 また、角パイプ431において、空間431Sは、フォークが挿入できれば、角パイプ431を貫通していなくてもよい。例えば、空間431Sは、フォークが挿入できれば、X軸方向の途中まで形成されているような形態でもよい。言い換えると、角パイプ431は、開放部431h1を備えて、開放部431h2を備えず、角パイプ431の-X側は、塞がれていてもよい。角パイプ432についても同様である。 Also, in the square pipe 431, the space 431S does not have to penetrate the square pipe 431 as long as a fork can be inserted therein. For example, the space 431S may be formed partway in the X-axis direction as long as a fork can be inserted therein. In other words, the square pipe 431 may have an open portion 431h1 but no open portion 431h2, and the -X side of the square pipe 431 may be blocked. The same applies to the square pipe 432.
  (角パイプ432)
 角パイプ432は、X軸方向に延びる角パイプである。角パイプ432は、角パイプ431からY軸方向の-Y側に離隔して設けられる。角パイプ432は、+X側の上部に、燃料電池ユニット410が載置される載置部432Aを有する。また、角パイプ432は、-X側の上部に、補機ユニット420が載置される載置部432Bを有する。
(Square pipe 432)
The square pipe 432 is a square pipe extending in the X-axis direction. The square pipe 432 is provided at a distance from the square pipe 431 on the -Y side in the Y-axis direction. The square pipe 432 has a mounting portion 432A on which the fuel cell unit 410 is mounted at an upper portion on the +X side. The square pipe 432 also has a mounting portion 432B on which the auxiliary unit 420 is mounted at an upper portion on the -X side.
 燃料電池発電装置401が運搬される際に、矢印FAに示す向きに、角パイプ432の+X側からフォークリフトのフォークの他方が挿入される。 When the fuel cell power generation device 401 is transported, the other fork of the forklift is inserted into the +X side of the square pipe 432 in the direction indicated by the arrow FA.
 なお、角パイプ431において説明したように、角パイプ432は、+X側に開放部432h1(図8参照)及び-X側に開放部432h2(図8参照)を備える。また、角パイプ432は、内部に空間432Sを有する。また、燃料電池発電装置401を設置後など、燃料電池発電装置401を運搬していないときは、開放部432h1及び開放部432h2をカバー等により塞いでもよい。 As explained for the square pipe 431, the square pipe 432 has an opening 432h1 (see FIG. 8) on the +X side and an opening 432h2 (see FIG. 8) on the -X side. The square pipe 432 also has a space 432S inside. After the fuel cell power generation device 401 is installed, or when the fuel cell power generation device 401 is not being transported, the openings 432h1 and 432h2 may be covered with a cover or the like.
  (連結部材433a、連結部材433b及び連結部材433c)
 連結部材433a、連結部材433b及び連結部材433cのそれぞれは、角パイプ431と角パイプ432とを連結する。
(Connecting member 433a, connecting member 433b, and connecting member 433c)
Each of the connecting members 433a, 433b, and 433c connects the square pipe 431 and the square pipe 432 together.
 第2実施形態に係る燃料電池発電装置401におけるパレット430は、枠部材として角パイプ431及び角パイプ432を備えるが、枠部材は角パイプに限らない。枠部材は、フォークリフトのフォークが挿入可能である部材であればよい。枠部材として、形鋼、例えば、リップ溝形鋼材、いわゆる、Cチャンネル鋼材、を用いてもよい。 The pallet 430 in the fuel cell power generation device 401 according to the second embodiment has square pipes 431 and 432 as frame members, but the frame members are not limited to square pipes. The frame members may be any member into which the forks of a forklift can be inserted. As the frame members, structural steel, for example, lip channel steel material, so-called C-channel steel material, may also be used.
 例えば、枠部材としてリップ溝形鋼材を用いた場合について図9の例で説明すると、横板部431cがないような構成となる。枠部材としてリップ溝形鋼材を用いた場合、フォークリフトのフォークは、横板部431a、縦板部431b及び縦板部431dにより囲まれる空間に挿入される。 For example, in the case where lip channel steel is used as the frame member, as shown in the example of Figure 9, the horizontal plate portion 431c is not included. When lip channel steel is used as the frame member, the forks of the forklift are inserted into the space surrounded by the horizontal plate portion 431a, the vertical plate portion 431b, and the vertical plate portion 431d.
 また、上記の例では、枠部材として、2本の角パイプの例を示したが、角パイプの数は3本以上でもよい。 In addition, in the above example, two square pipes are used as the frame members, but the number of square pipes may be three or more.
 なお、第2実施形態に係る燃料電池発電装置の運搬は、フォークリフトによる運搬に限らず、例えば、2台のリフタの一方を+X側から、他方を-X側から開放部に挿入して、燃料電池発電装置を運搬してもよい。また、例えば、枠部材である角パイプ431及び角パイプ432のそれぞれに、板を通して、当該板をクレーン等により持ち上げて、燃料電池発電装置を運搬してもよい。 The transportation of the fuel cell power generation device according to the second embodiment is not limited to transportation by a forklift. For example, the fuel cell power generation device may be transported by inserting one of two lifters into the opening from the +X side and the other from the -X side. In addition, for example, the fuel cell power generation device may be transported by passing a plate through each of the square pipes 431 and 432, which are the frame members, and lifting the plate with a crane or the like.
 <まとめ>
 第2実施形態に係る燃料電池発電装置によれば、燃料電池ユニット及び補機ユニットを一体で運搬できる。第2実施形態に係る燃料電池発電装置によれば、パレットに、燃料電池ユニット及び補機ユニットが一体に取り付けられ、パレットにフォークリフトのフォークを挿入して燃料電池発電装置を運搬できる。
<Summary>
According to the fuel cell power generation system of the second embodiment, the fuel cell unit and the auxiliary unit can be transported as a single unit. According to the fuel cell power generation system of the second embodiment, the fuel cell unit and the auxiliary unit are attached together to a pallet, and the fuel cell power generation system can be transported by inserting the forks of a forklift into the pallet.
 また、第2実施形態に係る燃料電池発電装置によれば、燃料電池ユニットとパレットとの間及び補機ユニットとパレットとの間に、絶縁部材を備えることにより、燃料電池ユニットと補機ユニットとを絶縁できる。燃料電池ユニットと補機ユニットとを絶縁することにより、絶縁劣化したときの原因を調査しやすくできる。 Furthermore, in the fuel cell power generation device according to the second embodiment, insulating members are provided between the fuel cell unit and the pallet, and between the auxiliary unit and the pallet, thereby isolating the fuel cell unit and the auxiliary unit. By insulating the fuel cell unit and the auxiliary unit, it becomes easier to investigate the cause of insulation deterioration.
 さらに、第2実施形態に係る燃料電池発電装置によれば、補機ユニットが備える枠の内側の空間に、補機を収納して、枠の外側に張り出さない構造にすることにより、燃料電池を運搬する際に、外部の構造物又は機器と、補機とが接触することを防止できる。また、補機ユニットが備える枠の内側の空間に、補機を収納して、枠の外側に張り出さない構造にすることにより、補機を外部からの衝撃等から保護できる。 Furthermore, with the fuel cell power generation system according to the second embodiment, the auxiliary equipment is stored in the space inside the frame of the auxiliary equipment unit so that it does not protrude outside the frame, thereby preventing the auxiliary equipment from coming into contact with external structures or equipment when transporting the fuel cell. Also, by storing the auxiliary equipment in the space inside the frame of the auxiliary equipment unit so that it does not protrude outside the frame, the auxiliary equipment can be protected from external impacts, etc.
 なお、X軸方向が第1方向の一例、Y軸方向が第1方向に交差する第2方向の一例、+X側が第1側の一例、-X側が第1側と反対側の第2側の一例、である。また、角パイプ431が第1枠部材の一例、角パイプ432が第2枠部材の一例、載置部431Aが第1載置部の一例、載置部431Bが第2載置部の一例、載置部432Aが第3載置部の一例、載置部432Bが第4載置部の一例、である。さらに、冷却液CL1が第1冷却液の一例、冷却液CLが第2冷却液の一例、である。 The X-axis direction is an example of a first direction, the Y-axis direction is an example of a second direction intersecting the first direction, the +X side is an example of a first side, and the -X side is an example of a second side opposite the first side. Also, the square pipe 431 is an example of a first frame member, the square pipe 432 is an example of a second frame member, the mounting portion 431A is an example of a first mounting portion, the mounting portion 431B is an example of a second mounting portion, the mounting portion 432A is an example of a third mounting portion, and the mounting portion 432B is an example of a fourth mounting portion. Furthermore, the cooling liquid CL1 is an example of a first cooling liquid, and the cooling liquid CL is an example of a second cooling liquid.
 <変形例1>
 第2実施形態に係る燃料電池発電装置の変形例1について説明する。第2実施形態に係る燃料電池発電装置の一例である燃料電池発電装置401において、燃料電池モジュール460は、燃料電池ユニット410と、補機ユニット420と、を備える。第2実施形態に係る燃料電池発電装置における燃料電池モジュールは、燃料電池ユニットと補機ユニットとを備える場合に限らない。第2実施形態に係る燃料電池発電装置における燃料電池モジュールは、燃料電池セルと、前記燃料電池セルを動作させる際に使用される補機と、を含む燃料電池モジュールを備えていればよい。
<Modification 1>
A first modified example of the fuel cell power generation apparatus according to the second embodiment will now be described. In a fuel cell power generation apparatus 401, which is an example of the fuel cell power generation apparatus according to the second embodiment, a fuel cell module 460 includes a fuel cell unit 410 and an auxiliary unit 420. The fuel cell module in the fuel cell power generation apparatus according to the second embodiment is not limited to a case in which it includes a fuel cell unit and an auxiliary unit. The fuel cell module in the fuel cell power generation apparatus according to the second embodiment may include a fuel cell module including a fuel cell and an auxiliary used to operate the fuel cell.
 第2実施形態に係る燃料電池発電装置の変形例1について、図を用いて詳細を説明する。図11は、第2実施形態に係る燃料電池発電装置の変形例1の一例である燃料電池発電装置1101の斜視図である。 The details of the first modified example of the fuel cell power generation device according to the second embodiment will be described with reference to the drawings. Figure 11 is a perspective view of a fuel cell power generation device 1101, which is an example of the first modified example of the fuel cell power generation device according to the second embodiment.
 燃料電池発電装置1101は、燃料電池発電装置401における燃料電池モジュール460に換えて、燃料電池モジュール1160を備える。燃料電池モジュール1160は、燃料電池セルと、当該燃料電池を動作させる際に使用される補機とを含む。燃料電池発電装置1101における燃料電池モジュール1160は、パレット430に載置される。燃料電池発電装置401と同様に、燃料電池発電装置1101は、運搬機器により運搬される。燃料電池発電装置1101が運搬される際には、燃料電池発電装置401と同様に、運搬機器における載荷部材がパレット430の内部に挿入される。 The fuel cell power generation system 1101 has a fuel cell module 1160 instead of the fuel cell module 460 in the fuel cell power generation system 401. The fuel cell module 1160 includes fuel cells and auxiliary equipment used to operate the fuel cell. The fuel cell module 1160 in the fuel cell power generation system 1101 is placed on a pallet 430. As with the fuel cell power generation system 401, the fuel cell power generation system 1101 is transported by a transport device. When the fuel cell power generation system 1101 is transported, as with the fuel cell power generation system 401, the loading member of the transport device is inserted inside the pallet 430.
 <変形例2>
 第2実施形態に係る燃料電池発電装置の変形例2について説明する。第2実施形態に係る燃料電池発電装置の一例である燃料電池発電装置401において、移動用架台の一例であるパレット430は、枠部材の一例として角パイプ431及び角パイプ432を用いている。第2実施形態に係る燃料電池発電装置における枠部材は角パイプに限らない。第2実施形態に係る燃料電池発電装置の変形例2では、枠部材として、C字形(U字形)の断面形状を有する部材を用いた例について説明する。
<Modification 2>
Variation 2 of the fuel cell power generation system according to the second embodiment will be described. In fuel cell power generation system 401, which is an example of the fuel cell power generation system according to the second embodiment, pallet 430, which is an example of a mobile stand, uses square pipes 431 and 432 as an example of a frame member. The frame member in the fuel cell power generation system according to the second embodiment is not limited to square pipes. In Variation 2 of the fuel cell power generation system according to the second embodiment, an example will be described in which a member having a C-shaped (U-shaped) cross-sectional shape is used as the frame member.
 第2実施形態に係る燃料電池発電装置の変形例2について、図を用いて詳細を説明する。図12は、第2実施形態に係る燃料電池発電装置の変形例2の一例である燃料電池発電装置1201の斜視図である。 The second variation of the fuel cell power generation device according to the second embodiment will now be described in detail with reference to the drawings. Figure 12 is a perspective view of a fuel cell power generation device 1201, which is an example of the second variation of the fuel cell power generation device according to the second embodiment.
 燃料電池発電装置1201は、燃料電池発電装置1101におけるパレット430に換えて、移動用架台1230を備える。燃料電池発電装置1201における燃料電池モジュール1160は、移動用架台1230に載置される。燃料電池発電装置401及び燃料電池発電装置1101と同様に、燃料電池発電装置1201は、運搬機器により運搬される。燃料電池発電装置1201が運搬される際には、燃料電池発電装置401及び燃料電池発電装置1101と同様に、運搬機器における載荷部材が移動用架台1230の内部に挿入される。 The fuel cell power generation system 1201 has a mobile platform 1230 instead of the pallet 430 in the fuel cell power generation system 1101. The fuel cell module 1160 in the fuel cell power generation system 1201 is placed on the mobile platform 1230. As with the fuel cell power generation system 401 and the fuel cell power generation system 1101, the fuel cell power generation system 1201 is transported by a transport device. When the fuel cell power generation system 1201 is transported, as with the fuel cell power generation system 401 and the fuel cell power generation system 1101, the loading member of the transport device is inserted inside the mobile platform 1230.
 [移動用架台1230]
 図13は、第2実施形態に係る燃料電池発電装置の変形例2の一例である燃料電池発電装置1201における移動用架台1230の斜視図である。図14は、第2実施形態に係る燃料電池発電装置の変形例2の一例である燃料電池発電装置1201における移動用架台1230の側面図である。具体的には、X軸方向に沿って、+X側から見た側面図である。図15は、第2実施形態に係る燃料電池発電装置の変形例2の一例である燃料電池発電装置1201における移動用架台1230の底面図である。
[Mobile stand 1230]
Fig. 13 is a perspective view of the mobile platform 1230 in the fuel cell power generation system 1201, which is an example of the modified example 2 of the fuel cell power generation system according to the second embodiment. Fig. 14 is a side view of the mobile platform 1230 in the fuel cell power generation system 1201, which is an example of the modified example 2 of the fuel cell power generation system according to the second embodiment. Specifically, it is a side view seen from the +X side along the X-axis direction. Fig. 15 is a bottom view of the mobile platform 1230 in the fuel cell power generation system 1201, which is an example of the modified example 2 of the fuel cell power generation system according to the second embodiment.
 移動用架台1230は、X軸方向に長手方向を有する。 The mobile platform 1230 has its longitudinal direction in the X-axis direction.
 移動用架台1230は、断面がC字形又はU字形である枠部材1231及び枠部材1232を備える。言い換えると、枠部材1231及び枠部材1232のそれぞれは、断面がC字形であるC字形部材又は断面がU字形であるU字形部材により構成される。なお、本明細書において、断面がC字形又は断面がU字形という場合、4角形の断面における4辺の内、1辺が開放されていることを意味する。すなわち、例えば、C字のように、開放されていない辺が丸みを帯びていることを意味するものではない。C字形部材又はU字形部材は、例えば、形鋼、例えば、リップ溝形鋼材、いわゆる、Cチャンネル鋼材である。 The mobile platform 1230 includes frame members 1231 and 1232, each of which has a C-shaped or U-shaped cross section. In other words, frame members 1231 and 1232 are each composed of a C-shaped member having a C-shaped cross section or a U-shaped member having a U-shaped cross section. In this specification, when a cross section is C-shaped or U-shaped, it means that one of the four sides of a rectangular cross section is open. In other words, it does not mean that the unopened side is rounded, as in the case of a C-shape. The C-shaped member or U-shaped member is, for example, a shaped steel, such as a lip-channel steel material, or a so-called C-channel steel material.
 枠部材1231及び枠部材1232のそれぞれは、X軸方向に沿って延びる。枠部材1232は、枠部材1231からY軸方向に離隔して設けられる。 Each of frame members 1231 and 1232 extends along the X-axis direction. Frame member 1232 is spaced apart from frame member 1231 in the Y-axis direction.
 枠部材1231の+X側の端部に、-Z側を覆うように、板部材1231aが設けられる。枠部材1231と板部材1231aにより、+X側に開放部1231h1が形成される。枠部材1231の-X側の端部に、-Z側を覆うように、板部材1231bが設けられる。枠部材1231と板部材1231bにより、-X側に開放部1231h2が形成される。 A plate member 1231a is provided at the end of the +X side of the frame member 1231 so as to cover the -Z side. The frame member 1231 and the plate member 1231a form an opening 1231h1 on the +X side. A plate member 1231b is provided at the end of the -X side of the frame member 1231 so as to cover the -Z side. The frame member 1231 and the plate member 1231b form an opening 1231h2 on the -X side.
 枠部材1232の+X側の端部に、-Z側を覆うように、板部材1232aが設けられる。枠部材1232と板部材1232aにより、+X側に開放部1232h1が形成される。枠部材1232の-X側の端部に、-Z側を覆うように、板部材1232bが設けられる。枠部材1232と板部材1232bにより、-X側に開放部1232h2が形成される。 A plate member 1232a is provided at the end of the +X side of the frame member 1232 so as to cover the -Z side. The frame member 1232 and the plate member 1232a form an opening 1232h1 on the +X side. A plate member 1232b is provided at the end of the -X side of the frame member 1232 so as to cover the -Z side. The frame member 1232 and the plate member 1232b form an opening 1232h2 on the -X side.
 枠部材1231と枠部材1232とを連結するために、移動用架台1230は、連結部材1233a、連結部材1233b、連結部材1233c、連結部材1233d及び連結部材1233eを備える。連結部材1233a、連結部材1233b、連結部材1233c、連結部材1233d及び連結部材1233eのそれぞれは、断面がC字形であるC字形部材又は断面がU字形であるU字形部材により構成される。 In order to connect frame member 1231 and frame member 1232, mobile platform 1230 includes connecting member 1233a, connecting member 1233b, connecting member 1233c, connecting member 1233d, and connecting member 1233e. Each of connecting member 1233a, connecting member 1233b, connecting member 1233c, connecting member 1233d, and connecting member 1233e is composed of a C-shaped member having a C-shaped cross section or a U-shaped member having a U-shaped cross section.
 ≪第2A実施形態≫
 <燃料電池発電装置>
 第2A実施形態に係る燃料電池発電装置は、第1方向に長手方向を有する移動用架台と、燃料電池セルを動作させる際に使用される補機ユニットを含む燃料電池モジュールと、を備える。また、第2A実施形態に係る燃料電池発電装置における移動用架台は、第1方向に延びる第1枠部材及び第2枠部材を備える。さらに、第2A実施形態に係る燃料電池発電装置における第2枠部材は、第1枠部材から第1方向に交差する第2方向に離隔する。さらにまた、第2A実施形態に係る燃料電池発電装置は、第1枠部材及び第2枠部材のそれぞれの上部に燃料電池モジュールが載置される。さらに、第2A実施形態に係る燃料電池発電装置における第1枠部材及び前記第2枠部材のそれぞれは、第1方向における同じ第1位置に、第2方向に貫通する第1空間を備える。また、第2A実施形態に係る燃料電池発電装置における第1枠部材及び第2枠部材のそれぞれは、第1位置と異なる第1方向における同じ第2位置に、第2方向に貫通する第2空間を備える。
≪Second A embodiment≫
<Fuel cell power generation device>
The fuel cell power generation apparatus according to the second embodiment includes a mobile platform having a longitudinal direction in a first direction, and a fuel cell module including an auxiliary unit used when operating the fuel cell. The mobile platform in the fuel cell power generation apparatus according to the second embodiment includes a first frame member and a second frame member extending in the first direction. The second frame member in the fuel cell power generation apparatus according to the second embodiment is spaced apart from the first frame member in a second direction intersecting the first direction. The fuel cell power generation apparatus according to the second embodiment includes a fuel cell module mounted on the top of each of the first frame member and the second frame member. The first frame member and the second frame member in the fuel cell power generation apparatus according to the second embodiment include a first space penetrating in the second direction at the same first position in the first direction. The first frame member and the second frame member in the fuel cell power generation apparatus according to the second embodiment include a second space penetrating in the second direction at the same second position in the first direction different from the first position.
 第2A実施形態に係る燃料電池発電装置について、図を用いて詳細を説明する。図16は、第2A実施形態に係る燃料電池発電装置の一例である燃料電池発電装置1301の斜視図である。 The fuel cell power generation device according to embodiment 2A will be described in detail with reference to the drawings. Figure 16 is a perspective view of fuel cell power generation device 1301, which is an example of the fuel cell power generation device according to embodiment 2A.
 燃料電池発電装置1301は、燃料電池モジュール1160と、移動用架台1330と、を備える。燃料電池発電装置1301における燃料電池モジュール1160は、移動用架台1330に載置される。燃料電池発電装置1301は、運搬機器により運搬される。燃料電池発電装置1301が運搬される際には、運搬機器における載荷部材がY軸方向に沿って移動用架台1330に挿入される。 The fuel cell power generation system 1301 includes a fuel cell module 1160 and a mobile stand 1330. The fuel cell module 1160 in the fuel cell power generation system 1301 is placed on the mobile stand 1330. The fuel cell power generation system 1301 is transported by a transport device. When the fuel cell power generation system 1301 is transported, a loading member on the transport device is inserted into the mobile stand 1330 along the Y-axis direction.
 [移動用架台330]
 図17は、第2A実施形態に係る燃料電池発電装置の一例である燃料電池発電装置1301における移動用架台1330の斜視図である。
[Mobile stand 330]
FIG. 17 is a perspective view of a mobile platform 1330 in a fuel cell power generation apparatus 1301, which is an example of a fuel cell power generation apparatus according to embodiment 2A.
 移動用架台1330は、X軸方向に長手方向を有する。 The mobile platform 1330 has its longitudinal direction in the X-axis direction.
 移動用架台1330は、角パイプである枠部材1331及び枠部材1332を備える。枠部材1331及び枠部材1332のそれぞれは、X軸方向に沿って延びる。枠部材1332は、枠部材1331からY軸方向に離隔して設けられる。 The mobile platform 1330 includes frame members 1331 and 1332, which are square pipes. Each of frame members 1331 and 1332 extends along the X-axis direction. Frame member 1332 is spaced apart from frame member 1331 in the Y-axis direction.
 枠部材1331は、X軸方向における第1位置Pos1に、Y軸方向に開放され貫通する空間1331S1を備える。また、枠部材1331は、第1位置Pos1から-X側に離れたX軸方向における第2位置Pos2に、Y軸方向に貫通する空間1331S2を備える。言い換えると、枠部材1331は、空間1331S1を備える第1位置Pos1と異なる第2位置Pos2に、空間1331S2を備える。なお、空間1331S1と空間1331S2は、運搬機器における載荷部材が挿入可能な距離離れている。また、空間1331S1と空間1331S2の間に、燃料電池発電装置のX軸方向の重心位置がくる。 The frame member 1331 has a space 1331S1 that is open in the Y-axis direction at a first position Pos1 in the X-axis direction and penetrates the frame member 1331. The frame member 1331 also has a space 1331S2 that penetrates the frame member 1331 in the Y-axis direction at a second position Pos2 in the X-axis direction away from the first position Pos1 to the -X side. In other words, the frame member 1331 has a space 1331S2 at a second position Pos2 that is different from the first position Pos1 where the space 1331S1 is provided. The spaces 1331S1 and 1331S2 are separated by a distance that allows a loading member of a transport device to be inserted. The center of gravity of the fuel cell power generation device in the X-axis direction is located between the spaces 1331S1 and 1331S2.
 枠部材1332は、X軸方向における第1位置Pos1に、Y軸方向に開放され貫通する空間1332S1を備える。また、枠部材1332は、第1位置Pos1から-X側に離れたX軸方向における第2位置Pos2に、Y軸方向に貫通する空間1332S2を備える。言い換えると、枠部材1332は、空間1332S1を備える第1位置Pos1と異なる第2位置Pos2に、空間1332S2を備える。なお、空間1332S1と空間1332S2は、運搬機器における載荷部材が挿入可能な距離離れている。また、空間1332S1と空間1332S2の間に、燃料電池発電装置のX軸方向の重心位置がくる。 The frame member 1332 has a space 1332S1 that is open in the Y-axis direction and penetrates the frame member 1332 at a first position Pos1 in the X-axis direction. The frame member 1332 also has a space 1332S2 that penetrates the frame member 1332 in the Y-axis direction at a second position Pos2 in the X-axis direction away from the first position Pos1 to the -X side. In other words, the frame member 1332 has a space 1332S2 at a second position Pos2 different from the first position Pos1 where the space 1332S1 is provided. The spaces 1332S1 and 1332S2 are separated by a distance that allows a loading member of a transport device to be inserted. The center of gravity of the fuel cell power generation device in the X-axis direction is located between the spaces 1332S1 and 1332S2.
 枠部材1331における空間1331S1と枠部材1332における空間1332S1とは、X軸方向における同じ第1位置Pos1に設けられる。枠部材1331における空間1331S2と枠部材1332における空間1332S2とは、X軸方向における同じ第2位置Pos2に設けられる。ここで、X軸方向における同じ位置という場合、厳密に同じ位置であることに限らず、製造上許容される範囲内であれば同じ位置であると見なすことを意味する。 Space 1331S1 in frame member 1331 and space 1332S1 in frame member 1332 are provided at the same first position Pos1 in the X-axis direction. Space 1331S2 in frame member 1331 and space 1332S2 in frame member 1332 are provided at the same second position Pos2 in the X-axis direction. Here, the same position in the X-axis direction does not necessarily mean that it is the same position in the exact same way, but means that it is considered to be the same position as long as it is within the range of manufacturing tolerance.
 第2A実施形態に係る燃料電池発電装置によれば、移動用架台の長手方向である第1方向に交差する第2方向から運搬機器の載荷部材を挿入できる。なお、第2A実施形態に係る燃料電池発電装置において、第2実施形態に係る燃料電池発電装置のように、移動用架台の長手方向である第1方向から運搬機器の載荷部材を挿入するようにしてもよい。 According to the fuel cell power generation device of embodiment 2A, the loading member of the transport equipment can be inserted from a second direction intersecting with the first direction, which is the longitudinal direction of the mobile platform. Note that in the fuel cell power generation device of embodiment 2A, the loading member of the transport equipment may be inserted from the first direction, which is the longitudinal direction of the mobile platform, as in the fuel cell power generation device of embodiment 2.
 第2A実施形態に係る燃料電池発電装置の変形例について説明する。図18は、第2A実施形態に係る燃料電池発電装置の変形例の一例である燃料電池発電装置1302の斜視図である。 We will now explain a modified example of the fuel cell power generation device according to embodiment 2A. Figure 18 is a perspective view of a fuel cell power generation device 1302, which is an example of a modified example of the fuel cell power generation device according to embodiment 2A.
 燃料電池発電装置1302は、燃料電池モジュール1160と、移動用架台1335と、を備える。移動用架台1335は、移動用架台の一例であるパレット430と、移動用架台1330と、を備える。別の観点から説明すると、燃料電池発電装置1302は、図11に示す燃料電池発電装置1101におけるパレット430の下側に、移動用架台1330を備える。 The fuel cell power generation system 1302 includes a fuel cell module 1160 and a mobile stand 1335. The mobile stand 1335 includes a pallet 430, which is an example of a mobile stand, and a mobile stand 1330. From another perspective, the fuel cell power generation system 1302 includes the mobile stand 1330 below the pallet 430 in the fuel cell power generation system 1101 shown in FIG. 11.
 燃料電池発電装置1302は、移動用架台1335として、X軸方向から運搬機器の載荷部材を挿入できるパレット430と、Y軸方向から運搬機器の載荷部材を挿入できる移動用架台1330と、を備える。燃料電池発電装置1302は、移動用架台1335として、パレット430と移動用架台1330とを備えることにより、Y軸方向からも運搬機器の載荷部材を挿入できる。 The fuel cell power generation system 1302 is provided with a pallet 430 as a mobile stand 1335 into which the load members of the transport equipment can be inserted from the X-axis direction, and a mobile stand 1330 into which the load members of the transport equipment can be inserted from the Y-axis direction. By providing the pallet 430 and the mobile stand 1330 as a mobile stand 1335, the fuel cell power generation system 1302 is provided with a pallet 430 and the mobile stand 1330 as a mobile stand 1335, so that the load members of the transport equipment can be inserted from the Y-axis direction as well.
 例えば、燃料電池発電装置401は、X軸方向から運搬機器の載荷部材を挿入できるが、Y軸方向から運搬機器の載荷部材を挿入できない。燃料電池発電装置401において、移動用架台を2段にすることにより、Y軸方向からも運搬機器の載荷部材を挿入できる。 For example, the fuel cell power generation device 401 allows the loading members of the transport equipment to be inserted from the X-axis direction, but does not allow the loading members of the transport equipment to be inserted from the Y-axis direction. In the fuel cell power generation device 401, by making the mobile platform two-tiered, the loading members of the transport equipment can be inserted from the Y-axis direction as well.
 第2A実施形態に係る燃料電池発電装置における移動用架台の変形例について説明する。図19は、第2A実施形態に係る燃料電池発電装置における移動用架台の変形例の一例である移動用架台1430の斜視図である。 We will now explain a modified example of the mobile stand in the fuel cell power generation system according to embodiment 2A. Figure 19 is a perspective view of mobile stand 1430, which is an example of a modified example of the mobile stand in the fuel cell power generation system according to embodiment 2A.
 移動用架台1430は、X軸方向に長手方向を有する。 The mobile platform 1430 has its longitudinal direction in the X-axis direction.
 移動用架台1430は、断面がC字形又はU字形である枠部材1431及び枠部材1432を備える。枠部材1431及び枠部材1432のそれぞれは、X軸方向に沿って延びる。枠部材1432は、枠部材1431からY軸方向に離隔して設けられる。 The mobile platform 1430 includes frame members 1431 and 1432, each of which has a C-shaped or U-shaped cross section. Each of the frame members 1431 and 1432 extends along the X-axis direction. The frame member 1432 is spaced apart from the frame member 1431 in the Y-axis direction.
 枠部材1431の+X側の端部に、-Z側を覆うように、板部材1431aが設けられる。枠部材1431の-X側の端部に、-Z側を覆うように、板部材1431bが設けられる。枠部材1432の+X側の端部に、-Z側を覆うように、板部材1432aが設けられる。枠部材1432の-X側の端部に、-Z側を覆うように、板部材1432bが設けられる。 Plate member 1431a is provided at the +X side end of frame member 1431 to cover the -Z side. Plate member 1431b is provided at the -X side end of frame member 1431 to cover the -Z side. Plate member 1432a is provided at the +X side end of frame member 1432 to cover the -Z side. Plate member 1432b is provided at the -X side end of frame member 1432 to cover the -Z side.
 枠部材1431は、X軸方向における第1位置Pos1に、Y軸方向に開放され貫通する空間1431S1を備える。また、枠部材1431は、第1位置Pos1から-X側に離れたX軸方向における第2位置Pos2に、Y軸方向に貫通する空間1431S2を備える。言い換えると、枠部材1431は、空間1431S1を備える第1位置Pos1と異なる第2位置Pos2に、空間1431S2を備える。なお、空間1431S1と空間1431S2は、運搬機器における載荷部材が挿入可能な距離離れている。 The frame member 1431 has a space 1431S1 that is open in the Y-axis direction and penetrates at a first position Pos1 in the X-axis direction. The frame member 1431 also has a space 1431S2 that penetrates in the Y-axis direction at a second position Pos2 in the X-axis direction away from the first position Pos1 to the -X side. In other words, the frame member 1431 has a space 1431S2 at a second position Pos2 that is different from the first position Pos1 where the space 1431S1 is provided. The space 1431S1 and the space 1431S2 are separated by a distance that allows a load member of a transport device to be inserted.
 枠部材1432は、X軸方向における第1位置Pos1に、Y軸方向に開放され貫通する空間1432S1を備える。また、枠部材1432は、第1位置Pos1から-X側に離れたX軸方向における第2位置Pos2に、Y軸方向に貫通する空間1432S2を備える。言い換えると、枠部材1432は、空間1432S1を備える第1位置Pos1と異なる第2位置Pos2に、空間1432S2を備える。なお、空間1432S1と空間1432S2は、運搬機器における載荷部材が挿入可能な距離離れている。 The frame member 1432 has a space 1432S1 that is open in the Y-axis direction and penetrates at a first position Pos1 in the X-axis direction. The frame member 1432 also has a space 1432S2 that penetrates in the Y-axis direction at a second position Pos2 in the X-axis direction away from the first position Pos1 to the -X side. In other words, the frame member 1432 has a space 1432S2 at a second position Pos2 that is different from the first position Pos1 where the space 1432S1 is provided. The space 1432S1 and the space 1432S2 are separated by a distance that allows a loading member of a transport device to be inserted.
 枠部材1431と枠部材1432とを連結するために、移動用架台1430は、連結部材1433a及び連結部材1433bを備える。連結部材1433a及び連結部材1433bのそれぞれは、断面がC字形であるC字形部材又は断面がU字形であるU字形部材により構成される。連結部材1433aは第1位置Pos1に設けられる。連結部材1433aが第1位置Pos1に設けられることにより、空間1431S1と空間1432S1とは、Y軸方向に沿って連通する。連結部材1433bは第2位置Pos2に設けられる。連結部材1433bが第2位置Pos2に設けられることにより、空間1431S2と空間1432S2とは、Y軸方向に沿って連通する。 In order to connect the frame members 1431 and 1432, the mobile platform 1430 is provided with a connecting member 1433a and a connecting member 1433b. The connecting member 1433a and the connecting member 1433b are each composed of a C-shaped member having a C-shaped cross section or a U-shaped member having a U-shaped cross section. The connecting member 1433a is provided at the first position Pos1. By providing the connecting member 1433a at the first position Pos1, the space 1431S1 and the space 1432S1 are connected along the Y-axis direction. The connecting member 1433b is provided at the second position Pos2. By providing the connecting member 1433b at the second position Pos2, the space 1431S2 and the space 1432S2 are connected along the Y-axis direction.
 移動用架台1430を運搬機器によって搬送した後における使用状態について説明する。図20は、第2A実施形態に係る燃料電池発電装置における移動用架台の変形例の一例である移動用架台1430の使用状態を示す図である。 The following describes the usage state of the mobile platform 1430 after it has been transported by a transport device. Figure 20 shows the usage state of the mobile platform 1430, which is an example of a modified mobile platform for a fuel cell power generation system according to embodiment 2A.
 移動用架台1430において、例えば、運搬機器による輸送後、移動用架台1430を補強するために、枠部材1431における側面の開口を平板1431cにより塞いでもよい。同様に、枠部材1432における側面の開口を平板1432cにより塞いでもよい。 In the mobile platform 1430, for example, after transportation by a transport device, the opening on the side of the frame member 1431 may be blocked by a flat plate 1431c in order to reinforce the mobile platform 1430. Similarly, the opening on the side of the frame member 1432 may be blocked by a flat plate 1432c.
 <まとめ>
 第2A実施形態に係る燃料電池発電装置によれば、燃料電池モジュール(燃料電池ユニット及び補機ユニット)を一体で運搬できる。第2A実施形態に係る燃料電池発電装置によれば、移動用架台に、燃料電池モジュールが取り付けられ、運搬機器の載荷部材を移動用架台の長手方向に交差する方向から移動用架台に挿入して燃料電池発電装置を運搬できる。
<Summary>
According to the fuel cell power generation apparatus of the second embodiment, the fuel cell module (fuel cell unit and auxiliary unit) can be transported as a unit. According to the fuel cell power generation apparatus of the second embodiment, the fuel cell module is attached to a mobile platform, and the fuel cell power generation apparatus can be transported by inserting the loading member of the transporting device into the mobile platform in a direction intersecting the longitudinal direction of the mobile platform.
 なお、本開示には、下記の付記にて示される態様も含まれる。 This disclosure also includes the aspects described in the appendix below.
 [付記1]
 第1方向に長手方向を有するパレットと、
 前記パレットにおける前記第1方向の第1側の上部に取り付けられ、燃料電池セルを備える燃料電池ユニットと、
 前記パレットにおける前記第1方向の前記第1側と反対側である第2側の上部に取り付けられ、前記燃料電池セルを動作させる際に使用される補機ユニットと、
を備え、
 前記補機ユニットは、
  前記燃料電池ユニットに供給される空気を濾過するエアフィルタと、
  前記燃料電池ユニットを冷却する第1冷却液と外部から供給される第2冷却液の間で熱交換を行う熱交換器と、
  前記第1冷却液に含まれるイオンを除去するイオン交換器と、
  前記第1冷却液を貯蔵するリザーバータンクと、
  前記燃料電池ユニットの駆動に用いられる電気回路を収納する電気回路ボックスと、
を備え、
  前記エアフィルタ及び前記電気回路ボックスのそれぞれは、前記熱交換器、前記イオン交換器及び前記リザーバータンクのそれぞれより高い位置に設けられる、又は、平面視で前記熱交換器、前記イオン交換器及び前記リザーバータンクのそれぞれと重ならない位置に設けられる、
発電装置。
[Appendix 1]
a pallet having a longitudinal direction in a first direction;
a fuel cell unit attached to an upper portion of the pallet on a first side in the first direction and including a fuel cell;
an auxiliary unit that is attached to an upper portion of a second side of the pallet that is opposite to the first side in the first direction and is used when operating the fuel cell;
Equipped with
The auxiliary unit includes:
an air filter for filtering air supplied to the fuel cell unit;
a heat exchanger for exchanging heat between a first cooling liquid for cooling the fuel cell unit and a second cooling liquid supplied from an outside;
an ion exchanger for removing ions contained in the first cooling liquid;
a reservoir tank for storing the first cooling liquid;
an electric circuit box that houses an electric circuit used to drive the fuel cell unit;
Equipped with
The air filter and the electric circuit box are provided at positions higher than the heat exchanger, the ion exchanger, and the reservoir tank, respectively, or at positions not overlapping the heat exchanger, the ion exchanger, and the reservoir tank, respectively, in a plan view.
Power generation equipment.
 [付記2]
 前記イオン交換器は、前記エアフィルタの上方に設けられ、
 前記イオン交換器における前記第1冷却液が流れる配管が接続される位置は、平面視で、前記エアフィルタの吸入口に重ならない位置に設けられる、
付記1に記載の発電装置。
[Appendix 2]
The ion exchanger is provided above the air filter,
A position where a pipe through which the first cooling liquid flows in the ion exchanger is connected is provided at a position that does not overlap an intake port of the air filter in a plan view.
2. The power generating device of claim 1.
 [付記3]
 前記リザーバータンクは、前記補機ユニットの上側に設けられる、
付記1又は付記2のいずれかに記載の発電装置。
[Appendix 3]
The reservoir tank is provided above the auxiliary unit.
3. The power generating device according to claim 1 or 2.
 [付記4]
 前記イオン交換器に接続する配管に、前記配管内の空気を排気する脱気部を備え、
 前記脱気部は、前記補機ユニットの上側に設けられる、
付記1から付記3のいずれかに記載の発電装置。
[Appendix 4]
A degassing unit is provided in a pipe connected to the ion exchanger, the degassing unit exhausting air from within the pipe,
The deaeration unit is provided above the auxiliary unit.
4. The power generating device according to claim 1.
 [付記5]
 前記熱交換器において、前記第1冷却液は、前記熱交換器の下側から導入されて、前記熱交換器の下側から排出され、前記第2冷却液は、前記熱交換器の上側から導入されて、前記熱交換器の上側から排出される、
付記1から付記4のいずれかに記載の発電装置。
[Appendix 5]
In the heat exchanger, the first cooling liquid is introduced from a lower side of the heat exchanger and discharged from the lower side of the heat exchanger, and the second cooling liquid is introduced from an upper side of the heat exchanger and discharged from the upper side of the heat exchanger.
5. The power generating device according to claim 1 .
 [付記6]
 第1方向に長手方向を有するパレットと、
 前記パレットにおける前記第1方向の第1側の上部に取り付けられ、燃料電池セルを備える燃料電池ユニットと、
 前記パレットにおける前記第1方向の前記第1側と反対側である第2側の上部に取り付けられ、前記燃料電池セルを動作させる際に使用される補機ユニットと、
を備え、
 前記パレットは、
  前記第1方向に延び、上部の前記第1側に前記燃料電池ユニットが載置される第1載置部と、上部の前記第2側に前記補機ユニットが載置される第2載置部と、を有し、内部に前記第1側が開放された空間を有する第1枠部材と、
  前記第1枠部材から前記第1方向に交差する第2方向に離隔し、前記第1方向に延び、上部の前記第1側に前記燃料電池ユニットが載置される第3載置部と、上部の前記第2側に前記補機ユニットが載置される第4載置部と、を有し、内部に前記第1側が開放された空間を有する第2枠部材と、
  前記第1枠部材と前記第2枠部材とを連結する連結部材と、
を備える、
発電装置。
[Appendix 6]
a pallet having a longitudinal direction in a first direction;
a fuel cell unit attached to an upper portion of the pallet on a first side in the first direction and including a fuel cell;
an auxiliary unit that is attached to an upper portion of a second side of the pallet that is opposite to the first side in the first direction and is used when operating the fuel cell;
Equipped with
The pallet is
a first frame member extending in the first direction and having a first mounting portion on which the fuel cell unit is mounted on the first side of an upper portion and a second mounting portion on which the auxiliary unit is mounted on the second side of an upper portion, the first frame member having an internal space with the first side open;
a second frame member that is spaced from the first frame member in a second direction intersecting the first direction, extends in the first direction, and has a third mounting portion on the first side of an upper portion on which the fuel cell unit is mounted, and a fourth mounting portion on the second side of an upper portion on which the auxiliary unit is mounted, the second frame member having an internal space that is open to the first side;
a connecting member that connects the first frame member and the second frame member;
Equipped with
Power generation equipment.
 [付記7]
 前記パレットと前記燃料電池ユニットとの間に絶縁部材を備える、
付記6に記載の発電装置。
[Appendix 7]
an insulating member is provided between the pallet and the fuel cell unit;
7. The power generating device of claim 6.
 [付記8]
 前記パレットと前記補機ユニットとの間に絶縁部材を備える、
付記7に記載の発電装置。
[Appendix 8]
An insulating member is provided between the pallet and the auxiliary unit.
8. The power generating device of claim 7.
 [付記9]
 前記第1枠部材及び前記第2枠部材のそれぞれは、角パイプである、
付記6に記載の発電装置。
[Appendix 9]
Each of the first frame member and the second frame member is a square pipe.
7. The power generating device of claim 6.
 [付記10]
 前記第1枠部材が有する前記空間は、前記第1側からフォークリフトのフォークの一方が挿入されるように形成され、
 前記第2枠部材が有する前記空間は、前記第1側から前記フォークリフトのフォークの他方が挿入されるように形成される、
付記6に記載の発電装置。
[Appendix 10]
The space of the first frame member is formed so that one of the forks of a forklift is inserted from the first side,
The space of the second frame member is formed so that the other fork of the forklift is inserted from the first side.
7. The power generating device of claim 6.
 [付記11]
 前記第1枠部材が有する前記空間は、前記第1枠部材の前記第1側から前記第2側にわたって形成され、
 前記第2枠部材が有する前記空間は、前記第2枠部材の前記第1側から前記第2側にわたって形成される、
付記6に記載の発電装置。
[Appendix 11]
The space of the first frame member is formed from the first side to the second side of the first frame member,
The space of the second frame member is formed from the first side to the second side of the second frame member.
7. The power generating device of claim 6.
 [付記12]
 前記補機ユニットは、前記燃料電池ユニットに供給される空気を濾過するエアフィルタと、前記燃料電池ユニットを冷却する第1冷却液と外部から供給される第2冷却液との間で熱交換を行う熱交換器と、前記第1冷却液に含まれるイオンを除去するイオン交換器と、前記第1冷却液を貯蔵するリザーバータンクと、を備える、
付記6から付記11のいずれかに記載の発電装置。
[Appendix 12]
The auxiliary unit includes an air filter that filters air supplied to the fuel cell unit, a heat exchanger that exchanges heat between a first cooling liquid that cools the fuel cell unit and a second cooling liquid supplied from an outside, an ion exchanger that removes ions contained in the first cooling liquid, and a reservoir tank that stores the first cooling liquid.
12. The power generating device according to any one of claims 6 to 11.
 [付記13]
 前記補機ユニットは枠を備え、
 前記エアフィルタ、前記熱交換器、前記イオン交換器及び前記リザーバータンクは、前記枠の内側に設けられる、
付記12に記載の発電装置。
[Appendix 13]
the accessory unit comprises a frame;
the air filter, the heat exchanger, the ion exchanger and the reservoir tank are provided inside the frame;
13. The power generating device of claim 12.
 [付記14]
 前記熱交換器は、前記枠の下側かつ前記第2側に設けられる、
付記13に記載の発電装置。
[Appendix 14]
The heat exchanger is provided below the frame and on the second side.
14. The power generating device of claim 13.
 ≪第3実施形態≫
 <燃料電池発電装置>
 第3実施形態に係る燃料電池発電装置は、燃料電池セルを備える燃料電池ユニットと、補機ユニットと、を備える。第3実施形態に係る燃料電池発電装置における補機ユニットは、燃料電池セルを動作させる際に使用される補機を備える。また、第3実施形態に係る燃料電池発電装置は、燃料電池ユニットから発生した電気を流し、燃料電池ユニットに接続され、補機ユニットに配置される第1配線を備える。さらに、第3実施形態に係る燃料電池発電装置は、燃料電池ユニットにおける信号を送信及び受信の少なくともいずれかをするための第2配線を備える。そして、第3実施形態に係る燃料電池発電装置における第1配線は、第2配線から離隔して設けられる。
Third Embodiment
<Fuel cell power generation device>
The fuel cell power generation apparatus according to the third embodiment includes a fuel cell unit including fuel cells, and an auxiliary unit. The auxiliary unit in the fuel cell power generation apparatus according to the third embodiment includes auxiliary equipment used to operate the fuel cell. The fuel cell power generation apparatus according to the third embodiment also includes a first wiring that carries electricity generated from the fuel cell unit, is connected to the fuel cell unit, and is disposed in the auxiliary unit. Furthermore, the fuel cell power generation apparatus according to the third embodiment includes a second wiring for at least one of transmitting and receiving signals in the fuel cell unit. The first wiring in the fuel cell power generation apparatus according to the third embodiment is provided spaced apart from the second wiring.
 第3実施形態に係る燃料電池発電装置について詳細を説明する。図21及び図22のそれぞれは、第3実施形態に係る燃料電池発電装置の一例である燃料電池発電装置501の斜視図である。図22は、図21と異なる方向から見た斜視図である。図23は、第3実施形態に係る燃料電池発電装置の一例である燃料電池発電装置501の正面図である。図24は、第3実施形態に係る燃料電池発電装置の一例である燃料電池発電装置501の背面図である。図25は、第3実施形態に係る燃料電池発電装置の一例である燃料電池発電装置501の構成を説明する図である。 The fuel cell power generation device according to the third embodiment will now be described in detail. Each of Figures 21 and 22 is a perspective view of a fuel cell power generation device 501, which is an example of a fuel cell power generation device according to the third embodiment. Figure 22 is a perspective view from a different direction than Figure 21. Figure 23 is a front view of the fuel cell power generation device 501, which is an example of a fuel cell power generation device according to the third embodiment. Figure 24 is a rear view of the fuel cell power generation device 501, which is an example of a fuel cell power generation device according to the third embodiment. Figure 25 is a diagram illustrating the configuration of the fuel cell power generation device 501, which is an example of a fuel cell power generation device according to the third embodiment.
 なお、第3実施形態を説明する図面には、説明の便宜のために、互いに直交するX軸、Y軸及びZ軸(XYZ軸)からなる仮想三次元座標系(XYZ直交座標系)が設定される場合がある。図面の紙面に対して垂直な座標軸について、座標軸の丸の中に黒丸印を示す場合、当該座標軸が紙面に対して手前側に向いていることを表している。また、座標軸の丸の中にバツ印を示す場合、当該座標軸が紙面に対して奥側に向いていることを表している。 In addition, for ease of explanation, in the drawings explaining the third embodiment, a virtual three-dimensional coordinate system (XYZ Cartesian coordinate system) consisting of mutually orthogonal X-axis, Y-axis, and Z-axis (XYZ axes) may be set. For a coordinate axis perpendicular to the paper surface of the drawing, when a black circle is shown in a circle on the coordinate axis, it indicates that the coordinate axis faces towards the front of the paper surface. Also, when a cross is shown in a circle on the coordinate axis, it indicates that the coordinate axis faces away from the paper surface.
 ただし、当該座標系は、説明のために定めるものであって、第3実施形態に係る燃料電池発電装置等の姿勢について限定するものではない。 However, this coordinate system is defined for the purpose of explanation and does not limit the attitude of the fuel cell power generation device etc. according to the third embodiment.
 なお、以下の図面では、X軸方向は燃料電池ユニット510と補機ユニット520とが並ぶ方向とする。なお、X軸方向は水平面と平行な方向とする。また、Y軸方向は、X軸方向と垂直であって、水平面と平行な方向とする。Z軸方向は、X軸方向及びY軸方向に垂直な方向とする。Z軸方向は、水平面に対して垂直な方向とする。すなわち、Z軸方向は鉛直方向とする。 In the following drawings, the X-axis direction is the direction in which the fuel cell unit 510 and the auxiliary unit 520 are aligned. The X-axis direction is parallel to the horizontal plane. The Y-axis direction is perpendicular to the X-axis direction and parallel to the horizontal plane. The Z-axis direction is perpendicular to the X-axis and Y-axis directions. The Z-axis direction is perpendicular to the horizontal plane. In other words, the Z-axis direction is the vertical direction.
 また、Y軸方向に沿って、対象を+Y側から見る図を正面図、対象を-Y側から見る図を背面図という。Y軸方向に沿って、対象を+Y側から見ることを正面視、対象を-Y側から見ることを背面視という。Z軸方向に沿って、対象を+Z側から見る図を平面図、Z軸方向に沿って、対象を+Z側から見ることを平面視という。 In addition, a view of an object viewed from the +Y side along the Y-axis direction is called a front view, and a view of an object viewed from the -Y side is called a back view. Viewing an object from the +Y side along the Y-axis direction is called a front view, and viewing an object from the -Y side is called a back view. Viewing an object from the +Z side along the Z-axis direction is called a plan view, and viewing an object from the +Z side along the Z-axis direction is called a plan view.
 なお、正面図を基準にして、X軸方向を左右方向、Y軸方向を前後方向、Z軸方向を上下方向、という場合がある。対象に対して、+X側を左側、-X側を右側、+Y側を前側、-Y側を後ろ側、+Z側を上側、-Z側を下側、という場合がある。 In addition, with the front view as the reference, the X-axis direction is sometimes referred to as the left-right direction, the Y-axis direction as the front-back direction, and the Z-axis direction as the up-down direction. In relation to an object, the +X side may be referred to as the left side, the -X side as the right side, the +Y side as the front side, the -Y side as the rear side, the +Z side as the top side, and the -Z side as the bottom side.
 燃料電池発電装置501は、燃料電池セルを用いる燃料電池である。燃料電池発電装置501は、水素を燃料として、空気中の酸素と反応することにより、化学エネルギーを電気に変換する化学電池である。 The fuel cell power generation device 501 is a fuel cell that uses fuel cell cells. The fuel cell power generation device 501 is a chemical cell that uses hydrogen as fuel and converts chemical energy into electricity by reacting with oxygen in the air.
 燃料電池発電装置501は、燃料電池ユニット510と、補機ユニット520と、を備える。また、燃料電池発電装置501は、燃料電池ユニット510及び補機ユニット520を保持するパレット530を備える。 The fuel cell power generation system 501 includes a fuel cell unit 510 and an auxiliary unit 520. The fuel cell power generation system 501 also includes a pallet 530 that holds the fuel cell unit 510 and the auxiliary unit 520.
 [燃料電池ユニット510]
 燃料電池ユニット510は、水素と酸素を化学反応させることにより電気を発生させる。燃料電池ユニット510は、パレット530におけるX軸方向の-X側の上部に取り付けられる。燃料電池ユニット510は、燃料電池セル511、昇圧コンバータ512、水素ポンプ513、冷却液ポンプ514及びエアコンプレッサ515を備える。
[Fuel cell unit 510]
The fuel cell unit 510 generates electricity by causing a chemical reaction between hydrogen and oxygen. The fuel cell unit 510 is attached to the upper part of the -X side in the X-axis direction of the pallet 530. The fuel cell unit 510 includes a fuel cell 511, a boost converter 512, a hydrogen pump 513, a coolant pump 514, and an air compressor 515.
 燃料電池セル511は、供給される水素SHと、空気SAに含まれる酸素とを化学反応させることにより電気を発生させる。燃料電池セル511は、例えば、固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)である。固体高分子形燃料電池である燃料電池セル511は、多数の単セルを積層したスタック構造を有する。 The fuel cell 511 generates electricity by causing a chemical reaction between the supplied hydrogen SH and the oxygen contained in the air SA. The fuel cell 511 is, for example, a polymer electrolyte fuel cell (PEFC). The fuel cell 511, which is a polymer electrolyte fuel cell, has a stack structure in which many single cells are stacked.
 固体高分子形燃料電池である燃料電池セル511における単セルは、高分子電解質膜と、高分子電解質膜の両側面に設けられた一対の電極と、を備える膜-電極アッセンブリ(MEA:Membrane Electrode Assembly)を備える。高分子電解質膜は、水素イオンを選択的に輸送する。また、一つの電極のそれぞれは、多孔質材料により形成される。一対の電極のそれぞれは、例えば、白金系の金属触媒(電極触媒)を担持するカーボン粉末を主成分とする触媒層と、通気性及び電子導電性を併せ持つガス拡散層と、を有する。さらに、単セルは、膜-電極アッセンブリ(MEA)を両側から挟み込む一対のセパレータを有する。 The unit cell of the fuel cell 511, which is a polymer electrolyte fuel cell, includes a membrane electrode assembly (MEA) that includes a polymer electrolyte membrane and a pair of electrodes provided on both sides of the polymer electrolyte membrane. The polymer electrolyte membrane selectively transports hydrogen ions. Each electrode is formed of a porous material. Each of the pair of electrodes includes a catalyst layer that is primarily composed of carbon powder that supports a platinum-based metal catalyst (electrode catalyst), and a gas diffusion layer that is both breathable and electronically conductive. Furthermore, the unit cell includes a pair of separators that sandwich the membrane electrode assembly (MEA) from both sides.
 燃料電池セル511により発生した電気は、昇圧コンバータ512により昇圧されて電力EPとして出力される。昇圧コンバータ512は、例えば、DC/DCコンバータである。 The electricity generated by the fuel cell 511 is boosted by the boost converter 512 and output as electric power EP. The boost converter 512 is, for example, a DC/DC converter.
 燃料電池セル511は、補機ユニット520との間で循環する冷却液CL1により冷却される。補機ユニット520は、低温の冷却液CL1である冷却液CL1Lを燃料電池セル511に供給する。冷却液CL1Lは、冷却液ポンプ514により燃料電池セル511に送られる。冷却液CL1Lは、燃料電池セル511を冷却する。そして、燃料電池ユニット510は、燃料電池セル511を冷却して温度が上昇した冷却液CL1である冷却液CL1Hを補機ユニット520に排出する。 The fuel cell 511 is cooled by the coolant CL1 circulating between the auxiliary unit 520 and the fuel cell 511. The auxiliary unit 520 supplies the fuel cell 511 with coolant CL1L, which is the low-temperature coolant CL1. The coolant CL1L is sent to the fuel cell 511 by a coolant pump 514. The coolant CL1L cools the fuel cell 511. The fuel cell unit 510 then discharges the coolant CL1H, which is the coolant CL1 whose temperature has increased after cooling the fuel cell 511, to the auxiliary unit 520.
 また、昇圧コンバータ512は、補機ユニット520との間で循環する冷却液CL2により冷却される。同様に、エアコンプレッサ515のモータは、補機ユニット520との間で循環する冷却液CL2により冷却される。補機ユニット520は、低温の冷却液CL2である冷却液CL2Lを昇圧コンバータ512及びエアコンプレッサ515のそれぞれに供給する。冷却液CL2Lは、昇圧コンバータ512及びエアコンプレッサ515のモータを冷却する。そして、燃料電池ユニット510は、昇圧コンバータ512及びエアコンプレッサ515のモータを冷却して温度が上昇した冷却液CL2である冷却液CL2Hを補機ユニット520に排出する。 The boost converter 512 is also cooled by the cooling liquid CL2 circulating between the auxiliary unit 520 and the boost converter 512. Similarly, the motor of the air compressor 515 is cooled by the cooling liquid CL2 circulating between the auxiliary unit 520 and the boost converter 512. The auxiliary unit 520 supplies the low-temperature cooling liquid CL2, ie, cooling liquid CL2L, to the boost converter 512 and the air compressor 515. The cooling liquid CL2L cools the motors of the boost converter 512 and the air compressor 515. The fuel cell unit 510 then discharges the cooling liquid CL2H, which is the cooling liquid CL2 whose temperature has increased after cooling the motors of the boost converter 512 and the air compressor 515, to the auxiliary unit 520.
 燃料電池ユニット510が備える燃料電池セル511に、補機ユニット520を通って、水素SHが供給される。燃料電池セル511に供給された水素SHにおいて、未反応で排出された水素は、水素ポンプ513により燃料電池セル511に戻される。また、燃料電池ユニット510に、補機ユニット520から空気SAが供給される。補機ユニット520から供給された空気SAは、エアコンプレッサ515により圧縮されて燃料電池セル511に供給される。 Hydrogen SH is supplied to the fuel cell 511 provided in the fuel cell unit 510 through the auxiliary unit 520. Unreacted hydrogen discharged from the hydrogen SH supplied to the fuel cell 511 is returned to the fuel cell 511 by the hydrogen pump 513. Air SA is also supplied to the fuel cell unit 510 from the auxiliary unit 520. The air SA supplied from the auxiliary unit 520 is compressed by the air compressor 515 and supplied to the fuel cell 511.
 [補機ユニット520]
 補機ユニット520は、燃料電池ユニット510の燃料電池セル511を動作させる際に使用される。補機ユニット520は、パレット530におけるX軸方向の+X側の上部に取り付けられる。補機ユニット520は、燃料電池ユニット510に冷却液等を供給する。補機ユニット520は、燃料電池セル511を動作させる際に使用させる補機を備える。補機ユニット520は、枠体520fを備える。補機ユニット520が備える補機は、枠体520fの内側に設けられる。
[Auxiliary unit 520]
The auxiliary unit 520 is used when operating the fuel cell 511 of the fuel cell unit 510. The auxiliary unit 520 is attached to the upper part of the +X side in the X-axis direction of the pallet 530. The auxiliary unit 520 supplies coolant and the like to the fuel cell unit 510. The auxiliary unit 520 includes auxiliary equipment used when operating the fuel cell 511. The auxiliary unit 520 includes a frame 520f. The auxiliary equipment included in the auxiliary unit 520 is provided inside the frame 520f.
 補機ユニット520は、補機の一例として、熱交換器521と、熱交換器522と、リザーバータンク523と、リザーバータンク524と、イオン交換器525と、エアフィルタ526と、電気回路ボックス527と、冷却液ポンプ528と、気液分離器529と、を備える。また、補機ユニット520は、動力配線端子台531と、信号配線端子台532と、電源配線端子台533と、接地配線端子台534と、を備える。なお、動力配線端子台531、信号配線端子台532、電源配線端子台533及び接地配線端子台534のそれぞれは、接続部の一例である。接続部は、燃料電池ユニット510及び補機ユニット520のいずれかから延びる配線を、外部に中継して接続する。 The auxiliary unit 520 includes, as an example of auxiliary equipment, a heat exchanger 521, a heat exchanger 522, a reservoir tank 523, a reservoir tank 524, an ion exchanger 525, an air filter 526, an electric circuit box 527, a coolant pump 528, and a gas-liquid separator 529. The auxiliary unit 520 also includes a power wiring terminal block 531, a signal wiring terminal block 532, a power wiring terminal block 533, and a ground wiring terminal block 534. Each of the power wiring terminal block 531, the signal wiring terminal block 532, the power wiring terminal block 533, and the ground wiring terminal block 534 is an example of a connection part. The connection part relays and connects wiring extending from either the fuel cell unit 510 or the auxiliary unit 520 to the outside.
  (熱交換器521)
 熱交換器521は、燃料電池セル511を冷却した冷却液CL1と、外部の冷却装置550から供給される冷却液CLとの間で熱交換を行う。熱交換器521は、例えば、プレート式熱交換器、特に、ブレージングプレート式熱交換器である。熱交換器521は、燃料電池ユニット510から、燃料電池セル511を冷却して温度が上昇して戻ってきた冷却液CL1Hを、冷却装置550から供給される冷却液CLにより冷却する。そして、熱交換器521において熱交換して冷却された冷却液CL1Lは、燃料電池セル511に供給される。なお、冷却液CLが第1冷却液の一例、冷却液CL1が第2冷却液の一例である。
(Heat exchanger 521)
The heat exchanger 521 exchanges heat between the coolant CL1 that has cooled the fuel cell 511 and the coolant CL supplied from an external cooling device 550. The heat exchanger 521 is, for example, a plate-type heat exchanger, particularly a brazed plate-type heat exchanger. The heat exchanger 521 cools the coolant CL1H that has returned from the fuel cell unit 510 after cooling the fuel cell 511 and has increased in temperature, using the coolant CL supplied from the cooling device 550. The coolant CL1L that has been cooled by heat exchange in the heat exchanger 521 is supplied to the fuel cell 511. The coolant CL is an example of a first coolant, and the coolant CL1 is an example of a second coolant.
 外部の冷却装置550は、低温の冷却液CLである冷却液CLLを補機ユニット520に供給する。そして、冷却装置550は、補機ユニット520から温度が上昇した高温の冷却液CLである冷却液CLHを回収する。冷却装置550は、回収した冷却液CLHを冷却する。そして、冷却装置550は、冷却液CLHを冷却して温度が低下した冷却液CLLを補機ユニット520に供給する。 The external cooling device 550 supplies the cooling liquid CLL, which is a low-temperature cooling liquid CL, to the auxiliary unit 520. The cooling device 550 then recovers the cooling liquid CLH, which is a high-temperature cooling liquid CL, from the auxiliary unit 520. The cooling device 550 cools the recovered cooling liquid CLH. The cooling device 550 then cools the cooling liquid CLH and supplies the cooling liquid CLL, whose temperature has been reduced, to the auxiliary unit 520.
 熱交換器521は、冷却液CLについて、冷却液CLLから分岐して供給された冷却液CLaLを、冷却液CL1と熱交換して、温度が上昇した冷却液CLaHを排出する。排出された冷却液CLaHは、別の冷却液と合流して冷却液CLHとして、冷却装置550に戻る。また、熱交換器521は、冷却液CL1について、燃料電池セル511から供給された冷却液CL1Hを、冷却液CLと熱交換して、温度が低下した冷却液CL1Lを排出する。排出された冷却液CL1Lは、燃料電池ユニット510に供給される。 The heat exchanger 521 exchanges heat between the coolant CLaL, which is supplied by branching off the coolant CLL, and the coolant CL1, for the coolant CL, and discharges the coolant CLaH, whose temperature has increased. The discharged coolant CLaH merges with another coolant and returns to the cooling device 550 as the coolant CLH. The heat exchanger 521 also exchanges heat between the coolant CL1H, which is supplied from the fuel cell 511, and the coolant CL, for the coolant CL1, and discharges the coolant CL1L, whose temperature has decreased. The discharged coolant CL1L is supplied to the fuel cell unit 510.
 補機ユニット520は、冷却液CLを熱交換器521に流す配管521a1及び配管521a2を備える。また、補機ユニット520は、冷却液CL1を熱交換器521と燃料電池ユニットとの間で流す配管521b1及び配管521b2を備える。なお、配管は、パイプでもよいし、ホースでもよい。配管の材質についても、金属でもよいし、樹脂でもよい。また、配管は、直管パイプ、曲管パイプ、レデューサ及び継手等を適宜組み合わせてもよい。以下の配管についても同様である。 The auxiliary unit 520 includes pipes 521a1 and 521a2 that allow the coolant CL to flow to the heat exchanger 521. The auxiliary unit 520 also includes pipes 521b1 and 521b2 that allow the coolant CL1 to flow between the heat exchanger 521 and the fuel cell unit. The pipes may be pipes or hoses. The pipes may be made of metal or resin. The pipes may be an appropriate combination of straight pipes, curved pipes, reducers, joints, etc. The same applies to the following pipes.
  (熱交換器522)
 熱交換器522は、昇圧コンバータ512を冷却した冷却液CL2と、外部の冷却装置550から供給される冷却液CLとの間で熱交換を行う。熱交換器522は、例えば、プレート式熱交換器、特に、ブレージングプレート式熱交換器である。熱交換器522は、昇圧コンバータ512及びエアコンプレッサ515のそれぞれから、昇圧コンバータ512及びエアコンプレッサ515のそれぞれを冷却して温度が上昇して戻ってきた冷却液CL2Hを、冷却装置550から供給される冷却液CLにより冷却する。そして、熱交換器522において熱交換して冷却された冷却液CL2Lは、昇圧コンバータ512及びエアコンプレッサ515のそれぞれに供給される。
(Heat exchanger 522)
The heat exchanger 522 exchanges heat between the cooling liquid CL2 that has cooled the boost converter 512 and the cooling liquid CL that is supplied from an external cooling device 550. The heat exchanger 522 is, for example, a plate-type heat exchanger, particularly a brazed plate-type heat exchanger. The heat exchanger 522 cools the cooling liquid CL2H that has returned from the boost converter 512 and the air compressor 515 after cooling the boost converter 512 and the air compressor 515 and has increased in temperature, by the cooling liquid CL that is supplied from the cooling device 550. The cooling liquid CL2L that has been cooled by heat exchange in the heat exchanger 522 is supplied to the boost converter 512 and the air compressor 515.
 熱交換器522は、冷却液CLについて、冷却液CLLから分岐して供給された冷却液CLbLを、冷却液CL2と熱交換して、温度が上昇した冷却液CLbHを排出する。排出された冷却液CLbHは、別の冷却液と合流して冷却液CLHとして、冷却装置550に戻る。また、熱交換器522は、冷却液CL2について、昇圧コンバータ512及びエアコンプレッサ515のそれぞれから供給された冷却液CL2Hを、冷却液CLと熱交換して、温度が低下した冷却液CL2Lを排出する。排出された冷却液CL2Lは、昇圧コンバータ512及びエアコンプレッサ515のそれぞれに供給される。 The heat exchanger 522 exchanges heat between the cooling liquid CLbL, which is branched off from the cooling liquid CLL and supplied to the cooling liquid CL2, and discharges the cooling liquid CLbH, whose temperature has increased. The discharged cooling liquid CLbH is combined with another cooling liquid and returns to the cooling device 550 as the cooling liquid CLH. The heat exchanger 522 also exchanges heat between the cooling liquid CL2H, which is supplied from the boost converter 512 and the air compressor 515, and the cooling liquid CL2, and discharges the cooling liquid CL2L, whose temperature has decreased. The discharged cooling liquid CL2L is supplied to the boost converter 512 and the air compressor 515.
 補機ユニット520は、冷却液CLを熱交換器522に流す配管522a1及び配管522a2を備える。 The auxiliary unit 520 includes pipes 522a1 and 522a2 that pass the cooling liquid CL through the heat exchanger 522.
  (リザーバータンク523)
 リザーバータンク523は、燃料電池セル511を冷却する冷却液CL1を貯蔵するタンクである。リザーバータンク523は、燃料電池セル511を冷却する冷却液CL1の増減を調整する。リザーバータンク523は、補機ユニット520の上側に設けられる。
(Reservoir tank 523)
The reservoir tank 523 is a tank that stores the coolant CL1 that cools the fuel cell 511. The reservoir tank 523 adjusts the increase or decrease of the coolant CL1 that cools the fuel cell 511. The reservoir tank 523 is provided above the auxiliary unit 520.
  (リザーバータンク524)
 リザーバータンク524は、昇圧コンバータ512及びエアコンプレッサ515のそれぞれを冷却する冷却液CL2を貯蔵するタンクである。リザーバータンク524は、昇圧コンバータ512及びエアコンプレッサ515のそれぞれを冷却する冷却液CL2の増減を調整する。リザーバータンク524は、補機ユニット520の上側に設けられる。
(Reservoir tank 524)
The reservoir tank 524 is a tank that stores the coolant CL2 that cools the boost converter 512 and the air compressor 515. The reservoir tank 524 adjusts the increase or decrease of the coolant CL2 that cools the boost converter 512 and the air compressor 515. The reservoir tank 524 is provided above the auxiliary unit 520.
  (イオン交換器525)
 イオン交換器525は、燃料電池セル511を冷却する冷却液CL1に含まれる不純物イオンを除去する。イオン交換器525に接続する配管に、配管内の空気を排気する脱気部525aを備える。脱気部525aは、補機ユニット520の上側に設けられる。
(Ion exchanger 525)
The ion exchanger 525 removes impurity ions contained in the coolant CL1 that cools the fuel cell 511. A degassing section 525a that exhausts air from within the piping connected to the ion exchanger 525 is provided on the upper side of the auxiliary unit 520.
  (エアフィルタ526)
 エアフィルタ526は、空気SAに含まれる塵及び燃料電池に悪影響を及ぼす不純物等を除去する。エアフィルタ526は、燃料電池ユニット510に供給される空気SAを濾過する。エアフィルタ526は、空気SAに含まれる塵及び燃料電池に悪影響を及ぼす不純物等を除去した清浄な空気を燃料電池セル511に供給する。
(Air filter 526)
The air filter 526 removes dust and impurities that adversely affect the fuel cell from the air SA. The air filter 526 filters the air SA supplied to the fuel cell unit 510. The air filter 526 supplies clean air from which dust and impurities that adversely affect the fuel cell have been removed to the fuel cell 511.
  (電気回路ボックス527)
 電気回路ボックス527は、燃料電池ユニット510を駆動するために用いられる電気回路が収納される。電気回路ボックス527は、内部に、回路基板、リレー等を備える。
(Electrical circuit box 527)
The electric circuit box 527 houses an electric circuit used to drive the fuel cell unit 510. The electric circuit box 527 includes a circuit board, a relay, and the like therein.
  (冷却液ポンプ528)
 冷却液ポンプ528は、冷却液CL2を燃料電池ユニット510の昇圧コンバータ512及びエアコンプレッサ515のそれぞれに送るポンプである。
(Coolant pump 528)
The coolant pump 528 is a pump that sends the coolant CL 2 to each of the boost converter 512 and the air compressor 515 of the fuel cell unit 510 .
  (気液分離器529)
 気液分離器529は、燃料電池セル511からの排気EGに含まれる水分EWを分離する。気液分離器529は、排気EGから分離した水分EWと、排気EGから水分EWを分離した排気EAを排出する。
(Gas-Liquid Separator 529)
The gas-liquid separator 529 separates moisture EW contained in the exhaust gas EG from the fuel cell 511. The gas-liquid separator 529 discharges the moisture EW separated from the exhaust gas EG, and exhaust gas EA obtained by separating the moisture EW from the exhaust gas EG.
  (動力配線端子台531)
 動力配線端子台531は、燃料電池ユニット510から出力を流す動力配線C1(図26参照)が接続される端子台である。動力配線C1は、燃料電池ユニット510から動力配線端子台531まで接続する。動力配線端子台531は、補機ユニット520における+X側に設けられる。言い換えると、動力配線端子台531は、補機ユニット520において、燃料電池ユニット510と反対の側に設けられる。
(Power wiring terminal block 531)
The power wiring terminal block 531 is a terminal block to which power wiring C1 (see FIG. 26 ) that transmits output from the fuel cell unit 510 is connected. The power wiring C1 is connected from the fuel cell unit 510 to the power wiring terminal block 531. The power wiring terminal block 531 is provided on the +X side of the auxiliary unit 520. In other words, the power wiring terminal block 531 is provided on the side of the auxiliary unit 520 opposite the fuel cell unit 510.
 動力配線端子台531は、冷却液CLが流れる配管521a1、配管521a2、配管522a1及び配管522a2より上側に設けられる。動力配線端子台531を、冷却液CLが流れる配管521a1、配管521a2、配管522a1及び配管522a2より上側に設けることにより、冷却液CLが漏洩した場合に、動力配線端子台531において動力配線C1の短絡を防止できる。 The power wiring terminal block 531 is provided above the pipes 521a1, 521a2, 522a1, and 522a2 through which the cooling liquid CL flows. By providing the power wiring terminal block 531 above the pipes 521a1, 521a2, 522a1, and 522a2 through which the cooling liquid CL flows, a short circuit of the power wiring C1 at the power wiring terminal block 531 can be prevented in the event of a leakage of the cooling liquid CL.
 なお、動力配線端子台531は、例えば、防水防塵ボックス内に設置してもよい。動力配線端子台531を防水防塵ボックス内に設置する場合、動力配線端子台531に接続する動力配線C1は、動力配線端子台531における部分が一番高くなるようにしてもよい。言い換えると、動力配線端子台531に接続する動力配線C1は、動力配線端子台531における部分が上側の頂点になるようにしてもよい。動力配線端子台531を防水防塵ボックス内に設置することにより、動力配線端子台531において冷却液CLの付着を防止できる。動力配線端子台531において冷却液CLの付着を防止することにより、動力配線C1における短絡を防止できる。 The power wiring terminal block 531 may be installed, for example, in a waterproof and dustproof box. When the power wiring terminal block 531 is installed in a waterproof and dustproof box, the power wiring C1 connected to the power wiring terminal block 531 may be arranged so that the portion at the power wiring terminal block 531 is the highest. In other words, the power wiring C1 connected to the power wiring terminal block 531 may be arranged so that the portion at the power wiring terminal block 531 is the uppermost apex. By installing the power wiring terminal block 531 in a waterproof and dustproof box, adhesion of the coolant CL to the power wiring terminal block 531 can be prevented. Preventing adhesion of the coolant CL to the power wiring terminal block 531 can prevent a short circuit in the power wiring C1.
 動力配線端子台531は、例えば、耐電圧仕様の端子台であってもよい。また、動力配線端子台531は、例えば、絶縁カバーを備えるようにしてもよい。動力配線端子台531が絶縁カバーを備えることにより、不注意で感電することを防止できる。 The power wiring terminal block 531 may be, for example, a terminal block with voltage resistance specifications. The power wiring terminal block 531 may also be provided with, for example, an insulating cover. Providing the power wiring terminal block 531 with an insulating cover can prevent inadvertent electric shock.
 なお、動力配線端子台531を例として説明したが、燃料電池ユニット510から延びる動力配線C1を外部に中継して接続できれば、端子台に限らない。すなわち、補機ユニット520は、動力配線C1を外部に中継する動力配線接続部を備えていればよい。動力配線端子台531は、動力配線接続部の一例である。 Note that while the power wiring terminal block 531 has been described as an example, it is not limited to a terminal block as long as it can relay and connect the power wiring C1 extending from the fuel cell unit 510 to the outside. In other words, the auxiliary unit 520 only needs to be equipped with a power wiring connection section that relays the power wiring C1 to the outside. The power wiring terminal block 531 is an example of a power wiring connection section.
  (信号配線端子台532)
 信号配線端子台532は、電気回路ボックス527との間で信号を伝達する信号配線C2(図26参照)と、燃料電池ユニット510との間で信号を伝達する信号配線C3(図26参照)と、が接続される。動力配線端子台531は、信号配線端子台532から離隔して設けられる。動力配線端子台531は、例えば、信号配線端子台532から15センチメートル以上離隔しているとよい。
(Signal wiring terminal block 532)
The signal wiring terminal block 532 is connected to a signal wiring C2 (see FIG. 26) that transmits signals between the electric circuit box 527 and a signal wiring C3 (see FIG. 26) that transmits signals between the fuel cell unit 510. The power wiring terminal block 531 is provided spaced apart from the signal wiring terminal block 532. The power wiring terminal block 531 may be spaced apart from the signal wiring terminal block 532 by, for example, 15 centimeters or more.
 なお、信号配線端子台532を例として説明したが、信号配線C2及び信号配線C3のそれぞれを外部に中継して接続できれば、端子台に限らない。すなわち、補機ユニット520は、信号配線C2及び信号配線C3の少なくともいずれかを外部に中継する信号配線接続部を備えていればよい。信号配線端子台532は、信号配線接続部の一例である。 Note that while the signal wiring terminal block 532 has been described as an example, it is not limited to a terminal block as long as it is possible to relay and connect each of the signal wiring C2 and the signal wiring C3 to the outside. In other words, the auxiliary unit 520 only needs to be equipped with a signal wiring connection part that relays at least one of the signal wiring C2 and the signal wiring C3 to the outside. The signal wiring terminal block 532 is an example of a signal wiring connection part.
  (電源配線端子台533)
 電源配線端子台533は、電気回路ボックス527に直流電力を供給する電源配線P1(図30参照)が接続される。
(Power supply wiring terminal block 533)
The power supply wiring terminal block 533 is connected to a power supply wiring P1 (see FIG. 30) that supplies DC power to the electric circuit box 527.
  (接地配線端子台534)
 接地配線端子台534は、接地配線G1(図28参照)及び接地配線G2(図29参照)が接続される。
(Ground wiring terminal block 534)
The ground wiring terminal block 534 is connected to the ground wiring G1 (see FIG. 28) and the ground wiring G2 (see FIG. 29).
  (水素検知器535a及び水素検知器535b)
 水素検知器535a及び水素検知器535bのそれぞれは、例えば、配管から漏れた水素を検出する。
(Hydrogen detector 535a and hydrogen detector 535b)
Each of the hydrogen detectors 535a and 535b detects, for example, hydrogen leaked from a pipe.
 燃料電池発電装置501は、補機ユニット520における左側(+X側)の面に、配線及び配管の接続面を集約して有する。燃料電池発電装置501が、補機ユニット520における左側(+X側)の面に、配線及び配管の接続面を集約して有することにより、配線作業及び配管作業を効率よくできる。 The fuel cell power generation device 501 has wiring and piping connection surfaces concentrated on the left side (+X side) of the auxiliary unit 520. By having the wiring and piping connection surfaces concentrated on the left side (+X side) of the auxiliary unit 520, the fuel cell power generation device 501 can perform wiring and piping work efficiently.
 <配線の引き回しについて>
 第3実施形態に係る燃料電池発電装置における配線の引き回しについて、燃料電池発電装置501を用いて説明する。
<About wiring>
The wiring arrangement in the fuel cell power generating apparatus according to the third embodiment will be described using a fuel cell power generating apparatus 501.
 燃料電池発電装置501が備える動力配線C1、信号配線C2及び信号配線C3のそれぞれについて説明する。図26は、第3実施形態に係る燃料電池発電装置の一例である燃料電池発電装置501の配線について説明する図である。 The following describes the power wiring C1, signal wiring C2, and signal wiring C3 of the fuel cell power generation device 501. Figure 26 is a diagram that describes the wiring of the fuel cell power generation device 501, which is an example of a fuel cell power generation device according to the third embodiment.
 [動力配線C1]
 動力配線C1は、燃料電池ユニット510において発生した電気を流す配線である。動力配線C1は、燃料電池ユニット510から動力配線端子台531まで接続する。動力配線C1は、補機ユニット520における後ろ側(-Y側)であって、中心より上側(+Z側)に設けられる。言い換えると、動力配線C1は、補機ユニット520における端部に配置される。特に、動力配線C1は、補機ユニット520における上端部に配置される。なお、動力配線C1は、例えば、起動時に、外部に設けられた蓄電池から燃料電池ユニット510に電気が流れるようにしてもよい。
[Power wiring C1]
The power wiring C1 is a wiring that passes electricity generated in the fuel cell unit 510. The power wiring C1 is connected from the fuel cell unit 510 to the power wiring terminal block 531. The power wiring C1 is provided on the rear side (-Y side) of the auxiliary unit 520 and above the center (+Z side). In other words, the power wiring C1 is disposed at an end of the auxiliary unit 520. In particular, the power wiring C1 is disposed at the upper end of the auxiliary unit 520. Note that the power wiring C1 may be configured so that electricity flows from an externally provided storage battery to the fuel cell unit 510 at startup, for example.
 動力配線C1は、外部からの冷却液CLが流れる配管521a1及び配管521a2のそれぞれと、冷却液CL1が流れる配管521b1及び配管521b2のそれぞれと、より上部に設けられる。なお、配管21a1及び配管21a2のそれぞれが第1配管の一例、配管21b1及び配管21b2のそれぞれが第2配管の一例、である。 The power wiring C1 is provided above the pipes 521a1 and 521a2 through which the cooling liquid CL from the outside flows, and above the pipes 521b1 and 521b2 through which the cooling liquid CL1 flows. Note that the pipes 21a1 and 21a2 are each an example of a first pipe, and the pipes 21b1 and 21b2 are each an example of a second pipe.
 なお、燃料電池発電装置501は、動力配線C1が通電しているかどうかを判別可能な点灯式のランプを備えてもよい。言い換えると、燃料電池発電装置501は、動力配線C1に、通電の有無が判別可能な点灯式のランプを備えてもよい。例えば、燃料電池発電装置501は、42ボルト以上の電圧条件において点灯するランプを備えるようにしてもよい。動力配線C1に通電の有無が判別可能な点灯式のランプを備えることにより、動力配線C1を配線するときに、通電した状態での配線作業を行うことがないように注意喚起できる。 The fuel cell power generation apparatus 501 may be provided with an illuminated lamp that can determine whether or not electricity is flowing through the power wiring C1. In other words, the fuel cell power generation apparatus 501 may be provided with an illuminated lamp in the power wiring C1 that can determine whether or not electricity is flowing through it. For example, the fuel cell power generation apparatus 501 may be provided with a lamp that lights up under voltage conditions of 42 volts or more. By providing an illuminated lamp that can determine whether or not electricity is flowing through the power wiring C1, it is possible to warn users when wiring the power wiring C1 not to perform wiring work while it is energized.
 [信号配線C2]
 信号配線C2は、燃料電池発電装置501の外部と電気回路ボックス527との間で制御信号等を伝送する配線である。信号配線C2は、電気回路ボックス527から信号配線端子台532まで接続する。信号配線C2は、補機ユニット520の前側(+Y側)であって、左側(+X側)に設けられる。信号配線C2は、動力配線C1から離隔して設けられる。信号配線C2は、動力配線C1から、例えば、直線距離で15センチメートル以上、動力配線C1から離隔して設けられるとよい。なお、以下に説明する信号配線C3、信号配線C4及び信号配線C5のそれぞれについても同様である。
[Signal wiring C2]
The signal wiring C2 is a wiring that transmits control signals and the like between the outside of the fuel cell power generation device 501 and the electric circuit box 527. The signal wiring C2 is connected from the electric circuit box 527 to the signal wiring terminal block 532. The signal wiring C2 is provided on the front side (+Y side) and left side (+X side) of the auxiliary unit 520. The signal wiring C2 is provided away from the power wiring C1. The signal wiring C2 may be provided away from the power wiring C1 by, for example, 15 centimeters or more in a straight line distance. The same applies to each of the signal wiring C3, signal wiring C4, and signal wiring C5 described below.
 [信号配線C3]
 信号配線C3は、燃料電池ユニット510と電気回路ボックス527との間で制御信号等を伝送するとともに、信号配線端子台532を介して燃料電池ユニット510と燃料電池発電装置501との間で制御信号等を伝送する配線である。信号配線C3は、燃料電池ユニット510から下側(-Z側)をY軸方向に沿って後ろ側(-Y側)から前側(+Y側)に配線される。そして、信号配線C3は、燃料電池ユニット510から下側(-Z側)をX軸方向に沿って右側(-X側)から左側(+X側)に配線される。そして、信号配線C3は、分岐して、下側(-Z側)からZ軸方向に沿って、電気回路ボックス527及び信号配線端子台532のそれぞれに接続する。信号配線C3は、動力配線C1から離隔して設けられる。
[Signal wiring C3]
The signal wiring C3 is a wiring that transmits control signals and the like between the fuel cell unit 510 and the electric circuit box 527, and also transmits control signals and the like between the fuel cell unit 510 and the fuel cell power generation device 501 via the signal wiring terminal block 532. The signal wiring C3 is wired from the fuel cell unit 510 on the lower side (-Z side) along the Y-axis direction from the rear side (-Y side) to the front side (+Y side). The signal wiring C3 is wired from the fuel cell unit 510 on the lower side (-Z side) along the X-axis direction from the right side (-X side) to the left side (+X side). The signal wiring C3 branches and connects to the electric circuit box 527 and the signal wiring terminal block 532 from the lower side (-Z side) along the Z-axis direction. The signal wiring C3 is provided away from the power wiring C1.
 なお、X軸方向に沿って配線させるという場合、X軸方向に厳密に平行に配線される場合に限らない。X軸方向に沿って配線させるという場合、例えば、X軸方向に対してどの方向にも傾いた状態で配線されていてもよいし、X軸方向に対して途中で曲がった状態で配線されていてもよい。Y軸方向に沿って配線されるという場合及びZ軸方向に沿って配線されるという場合についても同様である。また、以下の説明においても同様である。 Note that wiring along the X-axis direction does not necessarily mean wiring strictly parallel to the X-axis direction. For example, wiring along the X-axis direction may be inclined in any direction relative to the X-axis direction, or may be curved halfway relative to the X-axis direction. The same applies to wiring along the Y-axis direction and wiring along the Z-axis direction. The same applies in the following explanations.
 次に、燃料電池発電装置501が備える信号配線C4及び信号配線C5のそれぞれについて説明する。図27は、第3実施形態に係る燃料電池発電装置の一例である燃料電池発電装置501の配線について説明する図である。 Next, we will explain the signal wiring C4 and signal wiring C5 provided in the fuel cell power generation device 501. Figure 27 is a diagram explaining the wiring of the fuel cell power generation device 501, which is an example of a fuel cell power generation device according to the third embodiment.
 [信号配線C4]
 信号配線C4は、燃料電池ユニット510とエアフィルタ526との間で計測信号等を伝送する配線である。信号配線C4は、燃料電池ユニット510から下側(-Z側)をY軸方向に沿って後ろ側(-Y側)から前側(+Y側)に配線される。そして、信号配線C4は、燃料電池ユニット510から下側(-Z側)をX軸方向に沿って右側(-X側)から左側(+X側)に配線される。そして、信号配線C4は、下側(-Z側)からZ軸方向に沿って、エアフィルタ526に接続する。信号配線C4は、動力配線C1から離隔して設けられる。
[Signal wiring C4]
The signal wiring C4 is a wiring that transmits measurement signals and the like between the fuel cell unit 510 and the air filter 526. The signal wiring C4 is wired from the fuel cell unit 510 on the lower side (-Z side) along the Y-axis direction from the rear side (-Y side) to the front side (+Y side). The signal wiring C4 is wired from the fuel cell unit 510 on the lower side (-Z side) along the X-axis direction from the right side (-X side) to the left side (+X side). The signal wiring C4 is connected to the air filter 526 from the lower side (-Z side) along the Z-axis direction. The signal wiring C4 is provided at a distance from the power wiring C1.
 [信号配線C5]
 信号配線C5は、燃料電池ユニット510と水素検知器535a及び水素検知器535bのそれぞれとの間で計測信号等を伝送する配線である。信号配線C5は、燃料電池ユニット510における上側(+Z側)から、水素検知器535a及び水素検知器535bのそれぞれに接続する。信号配線C5は、動力配線C1から離隔して設けられる。
[Signal wiring C5]
The signal wiring C5 is a wiring that transmits measurement signals and the like between the fuel cell unit 510 and each of the hydrogen detectors 535a and 535b. The signal wiring C5 connects to each of the hydrogen detectors 535a and 535b from the upper side (+Z side) of the fuel cell unit 510. The signal wiring C5 is provided away from the power wiring C1.
 なお、動力配線C1、信号配線C2、信号配線C3、信号配線C4及び信号配線C5のそれぞれは、端部に防水防塵コネクタ又は棒端子を備えてもよい。動力配線C1、信号配線C2、信号配線C3、信号配線C4及び信号配線C5のそれぞれが、端部に防水防塵コネクタ又は棒端子を備えることにより、工具を使わずに、結線作業ができる。工具を使わずに結線作業を行うことにより、効率的にかつ少ない工数により結線作業をできる。 Note that each of the power wiring C1, signal wiring C2, signal wiring C3, signal wiring C4, and signal wiring C5 may have a waterproof and dustproof connector or a rod terminal at the end. By each of the power wiring C1, signal wiring C2, signal wiring C3, signal wiring C4, and signal wiring C5 having a waterproof and dustproof connector or a rod terminal at the end, the wiring work can be performed without using tools. By performing the wiring work without using tools, the wiring work can be performed efficiently with less man-hours.
 また、信号配線C2、信号配線C3、信号配線C4及び信号配線C5のそれぞれは、シールドケーブルであってもよい。信号配線C2、信号配線C3、信号配線C4及び信号配線C5のそれぞれは、例えば、スイッチング電源、電力変換器、インバータ及びコンバータ等のノイズ源から離して引き回すことが望ましい。信号配線C2、信号配線C3、信号配線C4及び信号配線C5のそれぞれをノイズ源から離して引き回すことにより、信号配線C2、信号配線C3、信号配線C4及び信号配線C5のそれぞれへのノイズ源からのノイズを抑制できる。 Furthermore, each of the signal wiring C2, signal wiring C3, signal wiring C4, and signal wiring C5 may be a shielded cable. It is desirable to route each of the signal wiring C2, signal wiring C3, signal wiring C4, and signal wiring C5 away from noise sources such as switching power supplies, power converters, inverters, and converters. By routing each of the signal wiring C2, signal wiring C3, signal wiring C4, and signal wiring C5 away from the noise sources, noise from the noise sources to each of the signal wiring C2, signal wiring C3, signal wiring C4, and signal wiring C5 can be suppressed.
 さらに、動力配線C1と、動力配線C1の近傍に設けられる信号配線との間に仕切を設けてもよい。言い換えると、動力配線C1は、動力配線C1の近傍に設けられる信号配線から仕切を隔てて設けてもよい。 Furthermore, a partition may be provided between the power wiring C1 and the signal wiring provided near the power wiring C1. In other words, the power wiring C1 may be provided separated from the signal wiring provided near the power wiring C1 by a partition.
 また、信号配線C2、信号配線C3、信号配線C4及び信号配線C5のそれぞれは、途中にループとなる部分がないように、配線長、配線経路又は配線の種類を考慮して配線してもよい。ループとなる部分がないように配線することにより、信号配線C2、信号配線C3、信号配線C4及び信号配線C5のそれぞれにおけるノイズの発生を抑制できる。また、ループとなる部分がないように配線することにより、アンテナ作用による電磁波の放射を防止できる。 In addition, each of the signal wirings C2, C3, C4, and C5 may be wired taking into consideration the wiring length, wiring path, or wiring type so that there are no loops along the way. By wiring so that there are no loops, it is possible to suppress the generation of noise in each of the signal wirings C2, C3, C4, and C5. In addition, by wiring so that there are no loops, it is possible to prevent the radiation of electromagnetic waves due to the antenna effect.
 燃料電池発電装置501が備える信号配線は、燃料電池ユニット510と接続部と接続して、燃料電池ユニット510における信号を外部と送信及び受信の少なくともいずれかをしてもよい。また、燃料電池発電装置501が備える信号配線は、補機ユニット520が備える補機と接続部と接続して、補機における信号を外部と送信及び受信の少なくともいずれかをしてもよい。 The signal wiring provided in the fuel cell power generation device 501 may be connected to the fuel cell unit 510 and a connection section, and may transmit and/or receive signals in the fuel cell unit 510 to and from the outside. In addition, the signal wiring provided in the fuel cell power generation device 501 may be connected to the auxiliary equipment provided in the auxiliary unit 520 and a connection section, and may transmit and/or receive signals in the auxiliary equipment to and from the outside.
 次に、燃料電池発電装置501が備える接地配線G1及び接地配線G2のそれぞれについて説明する。図28及び図29のそれぞれは、第3実施形態に係る燃料電池発電装置の一例である燃料電池発電装置501の接地配線について説明する図である。 Next, we will explain the ground wiring G1 and the ground wiring G2 provided in the fuel cell power generation device 501. Each of Figures 28 and 29 is a diagram explaining the ground wiring of the fuel cell power generation device 501, which is an example of a fuel cell power generation device according to the third embodiment.
 [接地配線G1]
 接地配線G1は、燃料電池ユニット510における筐体と接地配線端子台534とを接続する配線である。接地配線G1は、接地配線端子台534から補機ユニット520における下側(-Z側)であって、後ろ側(-Y側)においてX軸方向に沿って設けられる。そして、接地配線G1は、燃料電池ユニット510における下側(-Z側)であって後ろ側(-Y側)に沿って、折り返してから、燃料電池ユニット510の筐体に接続する。なお、図28において、接地配線G1は折り返して燃料電池ユニット510の筐体に接続しているが、折り返さずに接続するようにしてもよい。
[Ground wiring G1]
The ground wiring G1 is a wiring that connects the housing of the fuel cell unit 510 to the ground wiring terminal block 534. The ground wiring G1 is provided along the X-axis direction from the ground wiring terminal block 534 to the lower side (-Z side) and rear side (-Y side) of the auxiliary unit 520. The ground wiring G1 is folded back along the lower side (-Z side) and rear side (-Y side) of the fuel cell unit 510, and then connected to the housing of the fuel cell unit 510. Note that, although the ground wiring G1 is folded back and connected to the housing of the fuel cell unit 510 in FIG. 28, it may be connected without being folded back.
 [接地配線G2]
 接地配線G2は、燃料電池ユニット510における接地端子及び電気回路ボックス527のそれぞれと接地配線端子台534とを接続する配線である。接地配線G2は、接地配線端子台534から補機ユニット520における下側(-Z側)であって、後ろ側(-Y側)においてX軸方向に沿って設けられる。そして、接地配線G2は、途中で分岐する。そして、分岐した接地配線G2の一方は燃料電池ユニット510における接地端子に接続する。分岐した接地配線G2の他方は、補機ユニット520の下側(-Z側)において後ろ側(-Y側)から前側(+Y側)においてY軸方向に沿って設けられる。そして、分岐した接地配線G2の他方は、途中で補機ユニット520の下側(-Z側)においてX軸方向に沿って右側(-X側)から左側(+X側)に設けられる。そして、分岐した接地配線G2の他方は、Z軸方向に沿って下側(-Z側)から上側(+Z側)に設けられる。そして、分岐した接地配線G2の他方は、電気回路ボックス527に接続する。
[Ground wiring G2]
The ground wiring G2 is a wiring that connects the ground terminal in the fuel cell unit 510 and the electric circuit box 527 to the ground wiring terminal block 534. The ground wiring G2 is provided from the ground wiring terminal block 534 to the lower side (-Z side) of the auxiliary unit 520, on the rear side (-Y side), along the X-axis direction. The ground wiring G2 branches along the way. One of the branched ground wiring G2 connects to the ground terminal in the fuel cell unit 510. The other of the branched ground wiring G2 is provided along the Y-axis direction from the rear side (-Y side) to the front side (+Y side) on the lower side (-Z side) of the auxiliary unit 520. The other of the branched ground wiring G2 is provided along the X-axis direction from the right side (-X side) to the left side (+X side) on the lower side (-Z side) of the auxiliary unit 520 along the way. The other of the branched ground wiring G2 is provided along the Z-axis direction from the lower side (-Z side) to the upper side (+Z side). The other end of the branched ground wiring G2 is connected to the electric circuit box 527.
 次に、燃料電池発電装置501が備える電源配線P1について説明する。図30は、第3実施形態に係る燃料電池発電装置の一例である燃料電池発電装置501の電源配線P1について説明する図である。 Next, we will explain the power supply wiring P1 provided in the fuel cell power generation device 501. Figure 30 is a diagram explaining the power supply wiring P1 of the fuel cell power generation device 501, which is an example of a fuel cell power generation device according to the third embodiment.
 [電源配線P1]
 電源配線P1は、燃料電池ユニット510及び補機ユニット520のそれぞれに電源を供給する配線である。電源配線P1は、例えば、出力電圧が12ボルトのバッテリに接続される。電源配線P1は、電気回路ボックス527と電源配線端子台533とを接続する配線である。電源配線P1は、電源配線端子台533から補機ユニット520における下側(-Z側)であって、左側(+X側)においてY軸方向に沿って設けられる。そして、電源配線P1は、補機ユニット520における、下側(-Z側)においてX軸方向に沿って左側(+X側)から右側(-X側)に延びて折り返し、左側(+X側)まで延びる。そして、電源配線P1は、Z軸方向に沿って下側(-Z側)から上側(+Z側)まで延びて、電気回路ボックス527に接続する。
[Power supply wiring P1]
The power supply wiring P1 is a wiring that supplies power to each of the fuel cell unit 510 and the auxiliary unit 520. The power supply wiring P1 is connected to a battery with an output voltage of 12 volts, for example. The power supply wiring P1 is a wiring that connects the electric circuit box 527 and the power supply wiring terminal block 533. The power supply wiring P1 is provided from the power supply wiring terminal block 533 to the lower side (-Z side) of the auxiliary unit 520, on the left side (+X side) along the Y-axis direction. The power supply wiring P1 extends from the left side (+X side) to the right side (-X side) along the X-axis direction on the lower side (-Z side) of the auxiliary unit 520, turns back, and extends to the left side (+X side). The power supply wiring P1 extends from the lower side (-Z side) to the upper side (+Z side) along the Z-axis direction, and connects to the electric circuit box 527.
 なお、電力供給源、例えば、電源配線P1、バッテリ、と、燃料電池ユニット510及び補機ユニット520の少なくともいずれかに備えるモータとの間の配線には、フィルタを備えてもよい。フィルタは、例えば、コイル、コンデンサ及び抵抗を備えるLCRフィルタでもよい。電力供給源とモータとの間の配線にフィルタを備えることにより、配線からの電磁波の放射を抑制できる。配線からの電磁波の放射を抑制することにより、信号配線におけるノイズを低減できる。 In addition, a filter may be provided on the wiring between the power supply source, for example, the power supply wiring P1 or the battery, and the motor provided in at least one of the fuel cell unit 510 and the auxiliary unit 520. The filter may be, for example, an LCR filter including a coil, a capacitor, and a resistor. By providing a filter on the wiring between the power supply source and the motor, it is possible to suppress the radiation of electromagnetic waves from the wiring. By suppressing the radiation of electromagnetic waves from the wiring, it is possible to reduce noise in the signal wiring.
 なお、動力配線C1、信号配線C2、信号配線C3、信号配線C4、信号配線C5、接地配線G1、接地配線G2及び電源配線P1のそれぞれは、補機ユニット520における構造物に途中適宜固定されてもよい。 In addition, each of the power wiring C1, signal wiring C2, signal wiring C3, signal wiring C4, signal wiring C5, ground wiring G1, ground wiring G2 and power supply wiring P1 may be appropriately fixed to a structure in the auxiliary unit 520.
 第3実施形態に係る燃料電池発電装置によれば、信号配線を、動力配線から離隔して設けることにより、動力配線からのノイズの影響を抑制できる。 In the fuel cell power generation device according to the third embodiment, the signal wiring is arranged away from the power wiring, thereby suppressing the effects of noise from the power wiring.
 また、第3実施形態に係る燃料電池発電装置において、動力配線端子台、信号配線端子台、接地配線端子台及び電源配線端子台が、補機ユニットにおける燃料電池ユニットと反対側に集約して設けられる。動力配線端子台、信号配線端子台、接地配線端子台及び電源配線端子台が、補機ユニットにおける燃料電池ユニットと反対側に集約して設けられることにより、第3実施形態に係る燃料電池発電装置によれば、配線作業における作業効率を向上できる。 Furthermore, in the fuel cell power generation device according to the third embodiment, the power wiring terminal block, the signal wiring terminal block, the ground wiring terminal block, and the power wiring terminal block are arranged together on the side of the auxiliary unit opposite the fuel cell unit. By arranging the power wiring terminal block, the signal wiring terminal block, the ground wiring terminal block, and the power wiring terminal block together on the side of the auxiliary unit opposite the fuel cell unit, the fuel cell power generation device according to the third embodiment can improve the work efficiency of wiring work.
 ≪第3A実施形態≫
 第3A実施形態に係る燃料電池発電装置について説明する。第3A実施形態に係る燃料電池発電装置は、燃料電池セルを備える燃料電池ユニットと、燃料電池セルを動作させるため補機を備える補機ユニットと、を備える。また、第3A実施形態に係る燃料電池装置における補機ユニットは、補機が取り付けられる補機フレームを備える。さらに、第3A実施形態に係る燃料電池装置は、補機フレームを補強する補強部材を備え、当該補強部材で補機が固定される。
<3A embodiment>
A fuel cell power generation device according to embodiment 3A will now be described. The fuel cell power generation device according to embodiment 3A includes a fuel cell unit equipped with fuel cells, and an auxiliary unit equipped with auxiliary equipment for operating the fuel cells. The auxiliary equipment unit in the fuel cell device according to embodiment 3A includes an auxiliary equipment frame to which the auxiliary equipment is attached. Furthermore, the fuel cell device according to embodiment 3A includes a reinforcing member that reinforces the auxiliary equipment frame, and the auxiliary equipment is fixed by the reinforcing member.
 第3A実施形態に係る燃料電池発電装置について図面を用いて詳細を説明する。図31及び図32のそれぞれは、第3A実施形態に係る燃料電池発電装置の一例である燃料電池発電装置2002の斜視図である。図32は、図31と異なる方向から見た斜視図である。図33は、第3A実施形態に係る燃料電池発電装置の一例である燃料電池発電装置2002の正面図である。図34は、第3A実施形態に係る燃料電池発電装置の一例である燃料電池発電装置2002の背面図である。 The fuel cell power generation device according to embodiment 3A will be described in detail with reference to the drawings. Each of Figs. 31 and 32 is a perspective view of fuel cell power generation device 2002, which is an example of a fuel cell power generation device according to embodiment 3A. Fig. 32 is a perspective view seen from a different direction than Fig. 31. Fig. 33 is a front view of fuel cell power generation device 2002, which is an example of a fuel cell power generation device according to embodiment 3A. Fig. 34 is a rear view of fuel cell power generation device 2002, which is an example of a fuel cell power generation device according to embodiment 3A.
 なお、図面には、第3実施形態における説明と同様に、説明の便宜のために、互いに直交するX軸、Y軸及びZ軸(XYZ軸)からなる仮想三次元座標系(XYZ直交座標系)が設定される場合がある。 As with the third embodiment, for ease of explanation, the drawings may include a virtual three-dimensional coordinate system (XYZ Cartesian coordinate system) consisting of mutually orthogonal X-axis, Y-axis, and Z-axis (XYZ axes).
 燃料電池発電装置2002は、燃料電池発電装置501と同様に、燃料電池セルを用いる燃料電池である。燃料電池発電装置2002は、燃料電池ユニット2110と、補機ユニット2120と、を備える。また、燃料電池発電装置2002は、燃料電池ユニット2110及び補機ユニット2120を保持するパレット2130を備える。 The fuel cell power generation system 2002 is a fuel cell that uses fuel cell cells, similar to the fuel cell power generation system 501. The fuel cell power generation system 2002 includes a fuel cell unit 2110 and an auxiliary unit 2120. The fuel cell power generation system 2002 also includes a pallet 2130 that holds the fuel cell unit 2110 and the auxiliary unit 2120.
 燃料電池ユニット2110は、パレット2130における+Y側の側面に固定された取付板2135と、パレット2130における-Y側の側面に固定された取付板2136と、により取り付けられる。燃料電池ユニット2110は、取付板2135に4本のボルトBTにより固定される。また、燃料電池ユニット2110は、取付板2136に4本のボルトBTにより固定される。 The fuel cell unit 2110 is attached by a mounting plate 2135 fixed to the +Y side of the pallet 2130, and a mounting plate 2136 fixed to the -Y side of the pallet 2130. The fuel cell unit 2110 is fixed to the mounting plate 2135 by four bolts BT. The fuel cell unit 2110 is also fixed to the mounting plate 2136 by four bolts BT.
 燃料電池ユニット2110は、パレット2130に8本のボルトBTにより固定されているが、5本以上のボルトBTで固定されればよい。言い換えると、燃料電池ユニット2110は、5点以上でパレット2130に固定されればよい。燃料電池ユニット2110を4点以下でパレット2130に固定しても十分固定されない場合があることから、燃料電池ユニット2110は、5点以上でパレット2130に固定されるとよい。 The fuel cell unit 2110 is fixed to the pallet 2130 with eight bolts BT, but five or more bolts BT may be used. In other words, the fuel cell unit 2110 may be fixed to the pallet 2130 at five or more points. Fixing the fuel cell unit 2110 to the pallet 2130 at four or fewer points may not be sufficient, so it is preferable that the fuel cell unit 2110 be fixed to the pallet 2130 at five or more points.
 燃料電池ユニット2110は、燃料電池ユニット510と同様の機能、構成を有することから、燃料電池ユニット2110について、燃料電池ユニット510の説明を参照することとして、燃料電池ユニット2110の詳細な説明についてここでは省略する。 Since fuel cell unit 2110 has the same functions and configuration as fuel cell unit 510, the description of fuel cell unit 2110 should be referred to, and a detailed description of fuel cell unit 2110 will be omitted here.
 [補機ユニット2120]
 補機ユニット2120は、燃料電池ユニット2110の燃料電池セルを動作させる際に使用される。補機ユニット2120は、パレット2130におけるX軸方向の+X側の上部に取り付けられる。補機ユニット2120は、燃料電池ユニット2110に冷却液等を供給する。補機ユニット2120は、燃料電池ユニット2110における燃料電池セルを動作させる際に使用させる補機を備える。補機ユニット2120は、枠体2120fを備える。なお、枠体2120fは、補機フレームの一例である。
[Auxiliary unit 2120]
The auxiliary unit 2120 is used when operating the fuel cell of the fuel cell unit 2110. The auxiliary unit 2120 is attached to the upper part of the +X side in the X-axis direction of the pallet 2130. The auxiliary unit 2120 supplies a coolant and the like to the fuel cell unit 2110. The auxiliary unit 2120 includes auxiliary machinery used when operating the fuel cell in the fuel cell unit 2110. The auxiliary unit 2120 includes a frame 2120f. The frame 2120f is an example of an auxiliary frame.
 補機ユニット2120は、補機の一例として、熱交換器2121と、熱交換器2122と、リザーバータンク2123と、リザーバータンク2124と、イオン交換器2125と、エアフィルタ2126と、電気回路ボックス2127と、を備える。また、補機ユニット2120は、燃料電池発電装置501における冷却液ポンプ528及び気液分離器529のそれぞれと同様に、冷却液ポンプと、気液分離器と、を備える。さらに、補機ユニット2120は、燃料電池発電装置501における水素検知器535a及び水素検知器535bと同様に、水素検知器2145a及び水素検知器2145bを備える。 The auxiliary unit 2120 includes, as examples of auxiliary equipment, heat exchanger 2121, heat exchanger 2122, reservoir tank 2123, reservoir tank 2124, ion exchanger 2125, air filter 2126, and electrical circuit box 2127. The auxiliary unit 2120 also includes a coolant pump and a gas-liquid separator, similar to the coolant pump 528 and gas-liquid separator 529, respectively, in the fuel cell power generation system 501. The auxiliary unit 2120 also includes hydrogen detector 2145a and hydrogen detector 2145b, similar to the hydrogen detector 535a and hydrogen detector 535b in the fuel cell power generation system 501.
 補機ユニット2120は、動力配線端子台2141と、信号配線端子台2142と、電源配線端子台2143と、接地配線端子台2144と、を備える。なお、動力配線端子台2141、信号配線端子台2142、電源配線端子台2143及び接地配線端子台2144のそれぞれは、接続部の一例である。接続部は、燃料電池ユニット2110及び補機ユニット2120のいずれかから延びる配線を、外部に中継して接続する。 The auxiliary unit 2120 includes a power wiring terminal block 2141, a signal wiring terminal block 2142, a power wiring terminal block 2143, and a ground wiring terminal block 2144. Each of the power wiring terminal block 2141, the signal wiring terminal block 2142, the power wiring terminal block 2143, and the ground wiring terminal block 2144 is an example of a connection part. The connection part relays and connects wiring extending from either the fuel cell unit 2110 or the auxiliary unit 2120 to the outside.
 熱交換器2121は、燃料電池発電装置501における熱交換器521と同様の機能、構成を有することから、燃料電池発電装置501における熱交換器521の説明を参照することとして、熱交換器2121の詳細な説明についてここでは省略する。熱交換器2122、リザーバータンク2123、リザーバータンク2124、イオン交換器2125、エアフィルタ2126、電気回路ボックス2127、補機ユニット2120が備える冷却液ポンプ及び補機ユニット2120が備える気液分離器のそれぞれについても同様である。また、動力配線端子台2141、信号配線端子台2142、電源配線端子台2143及び接地配線端子台2144のそれぞれについても同様である。 Since the heat exchanger 2121 has the same function and configuration as the heat exchanger 521 in the fuel cell power generation system 501, the description of the heat exchanger 521 in the fuel cell power generation system 501 should be referred to, and a detailed description of the heat exchanger 2121 will be omitted here. The same applies to the heat exchanger 2122, the reservoir tank 2123, the reservoir tank 2124, the ion exchanger 2125, the air filter 2126, the electric circuit box 2127, the cooling liquid pump provided in the auxiliary unit 2120, and the gas-liquid separator provided in the auxiliary unit 2120. The same also applies to the power wiring terminal block 2141, the signal wiring terminal block 2142, the power wiring terminal block 2143, and the ground wiring terminal block 2144.
 補機ユニット2120が備える補機フレームの一例である枠体2120fについて説明する。図35、図36及び図37のそれぞれは、第3A実施形態に係る燃料電池発電装置の一例である燃料電池発電装置2002における補機フレームである枠体2120fの斜視図である。なお、図35、図36及び図37のそれぞれに、説明のために、熱交換器2121を記載している。 The following describes the frame body 2120f, which is an example of an auxiliary frame provided in the auxiliary unit 2120. Each of Figures 35, 36, and 37 is a perspective view of the frame body 2120f, which is an auxiliary frame in a fuel cell power generation system 2002, which is an example of a fuel cell power generation system according to embodiment 3A. Note that, for the sake of explanation, a heat exchanger 2121 is shown in each of Figures 35, 36, and 37.
 枠体2120fは、-Z側に、棒材2120f1、棒材2120f2、棒材2120f3及び棒材2120f4を備える。棒材2120f1及び棒材2120f3のそれぞれは、Y軸方向に沿って延びる。棒材2120f3は、棒材2120f1からX軸方向に沿って-X側に離隔して設けられる。棒材2120f2及び棒材2120f4のそれぞれは、X軸方向に沿って延びる。棒材2120f4は、棒材2120f2からY軸方向に沿って-Y側に離隔して設けられる。棒材2120f1、棒材2120f2、棒材2120f3及び棒材2120f4のそれぞれは、例えば、断面がL次形の型鋼である。以下の棒材についても同様である。なお、棒材は、断面がL次形の型鋼に限らず、例えば、断面がC字形又はU字形の型鋼、丸棒、角棒等でもよい。 Frame 2120f is provided with bar material 2120f1, bar material 2120f2, bar material 2120f3, and bar material 2120f4 on the -Z side. Bar material 2120f1 and bar material 2120f3 each extend along the Y-axis direction. Bar material 2120f3 is provided spaced apart from bar material 2120f1 along the X-axis direction on the -X side. Bar material 2120f2 and bar material 2120f4 each extend along the X-axis direction. Bar material 2120f4 is provided spaced apart from bar material 2120f2 along the Y-axis direction on the -Y side. Bar material 2120f1, bar material 2120f2, bar material 2120f3, and bar material 2120f4 each are, for example, steel sections having an L-shaped cross section. The same applies to the following bar materials. The bar material is not limited to steel sections with an L-shaped cross section, but may be steel sections with a C-shaped or U-shaped cross section, round bars, square bars, etc.
 棒材2120f1における+Y側の端部は、棒材2120f2における+X側の端部に接続される。棒材2120f1における-Y側の端部は、棒材2120f4における+X側の端部に接続される。棒材2120f3における+Y側の端部は、棒材2120f2における-X側の端部に接続される。棒材2120f3における-Y側の端部は、棒材2120f4における-X側の端部に接続される。棒材2120f1、棒材2120f2、棒材2120f3及び棒材2120f4は、平面視で、すなわち、+Z側からZ軸方向に沿って見たときに、矩形状となる。枠体2120fは、棒材2120f1と棒材2120f3とを接続する連結部材2120fm1を備える。また、枠体2120fは、棒材2120f1と棒材2120f3とを接続する連結部材2120fm1と、棒材2120f2とを接続する連結部材2120fm2を備える。 The +Y end of bar 2120f1 is connected to the +X end of bar 2120f2. The -Y end of bar 2120f1 is connected to the +X end of bar 2120f4. The +Y end of bar 2120f3 is connected to the -X end of bar 2120f2. The -Y end of bar 2120f3 is connected to the -X end of bar 2120f4. Bars 2120f1, 2120f2, 2120f3 and 2120f4 are rectangular in plan view, that is, when viewed from the +Z side along the Z-axis direction. Frame 2120f includes connecting member 2120fm1 that connects bar 2120f1 and bar 2120f3. Additionally, the frame 2120f includes a connecting member 2120fm1 that connects the rods 2120f1 and 2120f3, and a connecting member 2120fm2 that connects the rods 2120f2.
 棒材2120f1、棒材2120f2、棒材2120f3、棒材2120f4及び連結部材2120fm2のそれぞれをボルトBT2によりパレット2130に固定することにより、枠体2120fはパレット2130に固定される。枠体2120fは、9本のボルトBT2により、パレット2130に固定される。 The frame 2120f is fixed to the pallet 2130 by fixing each of the bars 2120f1, 2120f2, 2120f3, 2120f4 and the connecting member 2120fm2 to the pallet 2130 with bolts BT2. The frame 2120f is fixed to the pallet 2130 with nine bolts BT2.
 枠体2120fは、パレット2130に9本のボルトBT2により固定されているが、5本以上のボルトBT2で固定されればよい。言い換えると、補機フレームの一例である枠体2120fは、5点以上でパレット130に固定されればよい。枠体2120fを4点以下でパレット2130に固定しても十分固定されない場合があることから、枠体2120fは、5点以上でパレット2130に固定されるとよい。 The frame 2120f is fixed to the pallet 2130 with nine bolts BT2, but five or more bolts BT2 may be used. In other words, the frame 2120f, which is an example of an accessory frame, may be fixed to the pallet 130 at five or more points. Since fixing the frame 2120f to the pallet 2130 at four or fewer points may not be sufficient, it is preferable that the frame 2120f be fixed to the pallet 2130 at five or more points.
 また、枠体2120fは、Z軸方向に沿って延びる棒材2120f5、棒材2120f6、棒材2120f7及び棒材2120f8を備える。棒材2120f5における-Z側の端部は、棒材2120f1と棒材2120f4とが結合する角に接続する。棒材2120f6における-Z側の端部は、棒材2120f1と棒材2120f2とが結合する角に接続する。棒材2120f7における-Z側の端部は、棒材2120f2と棒材2120f3とが結合する角に接続する。棒材2120f8における-Z側の端部は、棒材2120f3と棒材2120f4とが結合する角に接続する。 Furthermore, frame 2120f includes bars 2120f5, 2120f6, 2120f7, and 2120f8 extending along the Z-axis direction. The -Z end of bar 2120f5 connects to the corner where bar 2120f1 and bar 2120f4 are joined. The -Z end of bar 2120f6 connects to the corner where bar 2120f1 and bar 2120f2 are joined. The -Z end of bar 2120f7 connects to the corner where bar 2120f2 and bar 2120f3 are joined. The -Z end of bar 2120f8 connects to the corner where bar 2120f3 and bar 2120f4 are joined.
 棒材2120f5及び棒材2120f8のそれぞれは、棒材2120f6及び棒材2120f7のそれぞれより長い。 Bar material 2120f5 and bar material 2120f8 are each longer than bar material 2120f6 and bar material 2120f7.
 さらに、枠体2120fは、+Z側に、棒材2120fa、棒材2120fb、棒材2120fc及び棒材2120fdを備える。棒材2120fa及び棒材2120fcのそれぞれは、Y軸方向に沿って延びる。棒材2120fcは、棒材2120faからX軸方向に沿って-X側に離隔して設けられる。棒材2120fb及び棒材2120fdのそれぞれは、X軸方向に沿って延びる。棒材2120fdは、平面視で棒材2120fcからY軸方向に沿って-Y側に離隔して設けられる。 Furthermore, frame 2120f is provided with rods 2120fa, 2120fb, 2120fc, and 2120fd on the +Z side. Each of rods 2120fa and 2120fc extends along the Y-axis direction. Rod 2120fc is spaced apart from rod 2120fa along the X-axis direction on the -X side. Each of rods 2120fb and 2120fd extends along the X-axis direction. Rod 2120fd is spaced apart from rod 2120fc along the Y-axis direction on the -Y side in a plan view.
 棒材2120faにおける+Y側の端部は、棒材2120fbにおける+X側の端部に接続される。棒材2120faにおける-Y側の端部は、棒材2120f5における+Z側の端部と-Z側の端部との間に接続される。棒材2120fcにおける+Y側の端部は、棒材2120fbにおける-X側の端部に接続される。棒材2120fcにおける-Y側の端部は、棒材2120f8における+Z側の端部と-Z側の端部との間に接続される。棒材2120fdにおける+X側の端部は、棒材2120f5の+Z側の端部に接続される。棒材2120fdにおける-X側の端部は、棒材2120f8の+Z側の端部に接続される。 The +Y end of bar 2120fa is connected to the +X end of bar 2120fb. The -Y end of bar 2120fa is connected between the +Z end and the -Z end of bar 2120f5. The +Y end of bar 2120fc is connected to the -X end of bar 2120fb. The -Y end of bar 2120fc is connected between the +Z end and the -Z end of bar 2120f8. The +X end of bar 2120fd is connected to the +Z end of bar 2120f5. The -X end of bar 2120fd is connected to the +Z end of bar 2120f8.
 棒材2120f6における+Z側の端部は、棒材2120faと棒材2120fbとが結合する角に接続する。棒材2120f7における+Z側の端部は、棒材2120fbと棒材2120fcとが結合する角に接続する。 The +Z end of bar 2120f6 connects to the corner where bar 2120fa and bar 2120fb join. The +Z end of bar 2120f7 connects to the corner where bar 2120fb and bar 2120fc join.
 棒材2120fa、棒材2120fb、棒材2120fc及び棒材2120fdは、平面視で矩形状となる。また、棒材2120fa、棒材2120fb、棒材2120fc及び棒材2120fdは、平面視で、棒材2120f1、棒材2120f2、棒材2120f3及び棒材2120f4と重なるようになっている。 Bar material 2120fa, bar material 2120fb, bar material 2120fc, and bar material 2120fd are rectangular in plan view. Also, bar material 2120fa, bar material 2120fb, bar material 2120fc, and bar material 2120fd are configured to overlap bar material 2120f1, bar material 2120f2, bar material 2120f3, and bar material 2120f4 in plan view.
 枠体2120fは、棒材2120fa、棒材2120fb及び棒材2120fcにより画定される天面120fSを有する。 The frame 2120f has a top surface 120fS defined by the bars 2120fa, 2120fb, and 2120fc.
 枠体2120fは、棒材2120f5と棒材2120f8とを接続して枠体2120fを補強する補強部材2120frを備える。熱交換器2121は、補強部材2120frで固定される。枠体2120fを補強する補強部材2120frで、補機の一つである熱交換器2121が固定されることにより、部品点数を低減できる。また、枠体2120fを補強する補強部材2120frで、補機の一つである熱交換器2121が固定されることにより、材料費や組み立て工数を低減できる。 The frame 2120f includes a reinforcing member 2120fr that connects the rods 2120f5 and 2120f8 to reinforce the frame 2120f. The heat exchanger 2121 is fixed by the reinforcing member 2120fr. The number of parts can be reduced by fixing the heat exchanger 2121, which is one of the auxiliary devices, to the reinforcing member 2120fr that reinforces the frame 2120f. Furthermore, the material costs and assembly man-hours can be reduced by fixing the heat exchanger 2121, which is one of the auxiliary devices, to the reinforcing member 2120fr that reinforces the frame 2120f.
 なお、枠体2120fは、枠体2120fが備える棒材の間を接続する連結部材120fmを備えてもよい。また、連結部材120fmは、枠体2120fが備える棒材と連結部材120fmとの間を接続してもよい。枠体2120fが連結部材120fmを備えることにより、枠体2120fの剛性を高めることができる。 The frame body 2120f may include a connecting member 120fm that connects between the rods included in the frame body 2120f. The connecting member 120fm may also connect between the rods included in the frame body 2120f and the connecting member 120fm. By including the connecting member 120fm in the frame body 2120f, the rigidity of the frame body 2120f can be increased.
 なお、棒材が構造部材の一例である。 The bar is an example of a structural member.
 次に、補機ユニット2120における補機の配置について説明する。図38及び図39のそれぞれは、第3A実施形態に係る燃料電池発電装置の一例である燃料電池発電装置2002における補機の配置について説明する図である。 Next, the arrangement of the auxiliaries in the auxiliary unit 2120 will be described. Each of Figures 38 and 39 is a diagram illustrating the arrangement of the auxiliaries in a fuel cell power generation system 2002, which is an example of a fuel cell power generation system according to embodiment 3A.
 補機ユニット2120における補機の中で、運用時にメンテナンスが必要となるメンテナンス部品、例えば、リザーバータンク2123、リザーバータンク2124、イオン交換器2125及びエアフィルタ2126は、枠体2120fにおける天面2120fSに設けられる。言い換えると、補機フレームの一例である枠体2120fは、天面2120fSにメンテナンス部品を備える。 Among the accessories in the accessory unit 2120, the maintenance parts that require maintenance during operation, such as the reservoir tank 2123, the reservoir tank 2124, the ion exchanger 2125, and the air filter 2126, are provided on the top surface 2120fS of the frame 2120f. In other words, the frame 2120f, which is an example of an accessory frame, has maintenance parts on the top surface 2120fS.
 燃料電池発電装置2002における補機ユニット2120における+X側の面は、例えば、作業員等が補機にアクセスするためのメンテナンス面2120Sとなる。 The +X side surface of the auxiliary unit 2120 in the fuel cell power generation system 2002 is, for example, the maintenance surface 2120S through which workers or the like can access the auxiliary equipment.
 枠体2120fにおいて、天面2120fSの上側における周囲の一部はフレームレスになっている。メンテナンス部品が設けられる空間2120V、言い換えると、枠体2120fにおける天面2120fSの上部の空間2120V、は、メンテナンス部品の周囲の少なくとも1面が開放された空間になっている。補機ユニット2120におけるメンテナンス部品が、枠体2120fにおける天面2120fSに設けられることにより、メンテナンス面2120Sからアクセスを容易にできる。 In the frame 2120f, a portion of the periphery above the top surface 2120fS is frameless. The space 2120V in which the maintenance parts are provided, in other words the space 2120V above the top surface 2120fS of the frame 2120f, is a space with at least one side open around the maintenance parts. By providing the maintenance parts of the auxiliary unit 2120 on the top surface 2120fS of the frame 2120f, they can be easily accessed from the maintenance surface 2120S.
 また、メンテナンス部品の中で、メンテナンス作業が特に煩雑なメンテナンス部品、例えば、イオン交換器2125及びエアフィルタ2126は、メンテナンス面2120Sの近くに設けられる。メンテナンス部品の中で、メンテナンス作業が特に煩雑なメンテナンス部品が、メンテナンス面2120Sの近くに設けられることにより、メンテナンス作業における効率を高めることができる。 Furthermore, among the maintenance parts, those requiring particularly complicated maintenance work, such as the ion exchanger 2125 and the air filter 2126, are provided near the maintenance surface 2120S. By providing among the maintenance parts, those requiring particularly complicated maintenance work near the maintenance surface 2120S, the efficiency of the maintenance work can be improved.
 さらに、メンテナンス部品の一例であるリザーバータンク2124は、図35から図37に示す枠体2120fに両端持ちで固定されたサポート2120s1により枠体2120fに固定される。また、メンテナンス部品の一例であるイオン交換器2125は、枠体2120fに両端持ちで固定されたサポート2120s2と、断面係数を上げて剛性を高めたサポート2120t1及びサポート2120t2により枠体2120fに固定される。サポート2120t1及びサポート2120t2は、断面をU字形にすることにより、断面係数を上げて剛性を高める。 Furthermore, the reservoir tank 2124, which is an example of a maintenance part, is fixed to the frame body 2120f by support 2120s1 fixed to the frame body 2120f shown in Figures 35 to 37 at both ends. Furthermore, the ion exchanger 2125, which is an example of a maintenance part, is fixed to the frame body 2120f by support 2120s2 fixed to the frame body 2120f at both ends, and supports 2120t1 and 2120t2 whose section modulus has been increased to increase rigidity. Supports 2120t1 and 2120t2 have a U-shaped cross section, which increases the section modulus and increases rigidity.
 メンテナンス部品を両端持ちで固定されたサポート又は断面係数を上げて剛性を高めたサポートは、燃料電池発電装置2002の運用時の振動や輸送時の衝撃に耐える剛性を備える。 Supports that have maintenance parts fixed at both ends or supports with increased rigidity due to an increased section modulus provide the rigidity to withstand vibrations during operation of the fuel cell power generation system 2002 and shocks during transportation.
 次に、補機ユニット2120における液系機器と電気系機器について説明する。図40及び図41のそれぞれは、第3A実施形態に係る燃料電池発電装置の一例である燃料電池発電装置2002における液系機器と電気系機器の配置について説明する図である。 Next, the liquid system devices and electrical system devices in the auxiliary unit 2120 will be described. Each of Figures 40 and 41 is a diagram explaining the arrangement of the liquid system devices and electrical system devices in a fuel cell power generation system 2002, which is an example of a fuel cell power generation system according to embodiment 3A.
 燃料電池発電装置2002において、電気系機器は、液系機器から離隔して配置される。より具体的には、電気系機器が配置される空間は、液系機器が配置される空間と分けて設けられる。電気系機器は、空間SE1又は空間SE2に設けられる。電気系機器は、例えば、動力配線、信号配線、電気回路ボックス2127である。液系機器は、空間SWに設けられる。液系機器は、例えば、冷却液配管、熱交換器2121、熱交換器2122、リザーバータンク2123、リザーバータンク2124及びイオン交換器2125である。 In the fuel cell power generation system 2002, the electrical system equipment is arranged away from the liquid system equipment. More specifically, the space in which the electrical system equipment is arranged is provided separately from the space in which the liquid system equipment is arranged. The electrical system equipment is provided in space SE1 or space SE2. The electrical system equipment is, for example, power wiring, signal wiring, and an electrical circuit box 2127. The liquid system equipment is provided in space SW. The liquid system equipment is, for example, a cooling liquid piping, a heat exchanger 2121, a heat exchanger 2122, a reservoir tank 2123, a reservoir tank 2124, and an ion exchanger 2125.
 燃料電池発電装置2002において、電気系機器が液系機器から離隔して配置されることにより、液系機器から非常時に漏れた液が、電気配線等の電気系機器にかかることを抑制できる。液系機器から非常時に漏れた液が、電気配線等の電気系機器にかかることを抑制することにより、電気系機器において漏電を抑制できる。 In the fuel cell power generation system 2002, the electrical equipment is arranged away from the liquid equipment, which prevents liquid leaking from the liquid equipment in an emergency from coming into contact with electrical equipment such as electrical wiring. By preventing liquid leaking from the liquid equipment in an emergency from coming into contact with electrical equipment such as electrical wiring, leakage current in the electrical equipment can be prevented.
 さらに、燃料電池発電装置2002において、燃料電池ユニットにおいて発電された電気を外部に流す動力配線は空間SE1に設けられる。また、燃料電池発電装置2002において、燃料電池ユニットにおける信号を送受信するための信号配線は空間SE2に設けられる。空間SE2は、空間SE1に対して離隔して設けられる。空間SE1と空間SE2とが離隔して設けられることにより、信号配線は、動力配線から離隔して設けられる。なお、信号配線が動力配線から離隔して設けられる点については、第1実施形態に係る燃料電池発電装置の一例である燃料電池発電装置501の説明を参照することとして、ここでは詳細な説明は省略する。 Furthermore, in the fuel cell power generation apparatus 2002, power wiring for transmitting electricity generated in the fuel cell unit to the outside is provided in the space SE1. Furthermore, in the fuel cell power generation apparatus 2002, signal wiring for transmitting and receiving signals in the fuel cell unit is provided in the space SE2. The space SE2 is provided at a distance from the space SE1. By providing the spaces SE1 and SE2 at a distance, the signal wiring is provided at a distance from the power wiring. Note that with regard to the point that the signal wiring is provided at a distance from the power wiring, please refer to the explanation of the fuel cell power generation apparatus 501, which is an example of the fuel cell power generation apparatus according to the first embodiment, and a detailed explanation will be omitted here.
 [パレット2130]
 パレット2130は、燃料電池ユニット2110と補機ユニット2120を一体で運搬可能な移動用架台である。パレット2130は、運搬機器における載荷部材、例えば、フォークリフトのフォーク、がパレット2130の内部に挿入されることにより、運搬機器により持ち上げ可能になっている。運搬機器は、燃料電池発電装置2002を運搬可能な機器、例えば、荷役車両、クレーン、ハンドリフタ等であってもよい。また、載荷部材は、フォークに限らず、燃料電池発電装置2002を載せることができる部材であればよい。
[Palette 2130]
Pallet 2130 is a mobile platform capable of transporting fuel cell unit 2110 and auxiliary unit 2120 as a unit. Pallet 2130 can be lifted by a transport device by inserting a loading member of the transport device, for example, the forks of a forklift, into the interior of pallet 2130. The transport device may be a device capable of transporting fuel cell power generation system 2002, for example, a loading vehicle, a crane, a hand lifter, etc. Furthermore, the loading member is not limited to a fork, and may be any member on which fuel cell power generation system 2002 can be placed.
 パレット2130は、運搬機器、例えば、クレーン、により吊り上げ可能となるように、アイボルト2139a、アイボルト2139b、アイボルト2139c及びアイボルト2139dを備える。 Pallet 2130 is equipped with eye bolts 2139a, 2139b, 2139c, and 2139d so that it can be lifted by a transport device, such as a crane.
 パレット2130について、より詳細に説明する。図42は、第3A実施形態に係る燃料電池発電装置の一例である燃料電池発電装置2002におけるパレット2130の斜視図である。図43は、第3A実施形態に係る燃料電池発電装置の一例である燃料電池発電装置2002におけるパレット2130の側面図である。具体的には、X軸方向に沿って、+X側から見た側面図である。図44は、第3A実施形態に係る燃料電池発電装置の一例である燃料電池発電装置2002におけるパレット2130の底面図である。 The pallet 2130 will now be described in more detail. Figure 42 is a perspective view of the pallet 2130 in the fuel cell power generation apparatus 2002, which is an example of a fuel cell power generation apparatus according to embodiment 3A. Figure 43 is a side view of the pallet 2130 in the fuel cell power generation apparatus 2002, which is an example of a fuel cell power generation apparatus according to embodiment 3A. Specifically, it is a side view seen from the +X side along the X-axis direction. Figure 44 is a bottom view of the pallet 2130 in the fuel cell power generation apparatus 2002, which is an example of a fuel cell power generation apparatus according to embodiment 3A.
 パレット2130は、X軸方向に長手方向を有する。 The pallet 2130 has a longitudinal direction along the X-axis.
 パレット2130は、断面がC字形又はU字形である枠部材2131及び枠部材2132を備える。言い換えると、枠部材2131及び枠部材2132のそれぞれは、断面がC字形であるC字形部材又は断面がU字形であるU字形部材により構成される。なお、本明細書において、断面がC字形又は断面がU字形という場合、4角形の断面における4辺の内、1辺が開放されていることを意味する。すなわち、例えば、C字のように、開放されていない辺が丸みを帯びていることを意味するものではない。C字形部材又はU字形部材は、例えば、形鋼、例えば、リップ溝形鋼材、いわゆる、Cチャンネル鋼材である。 Pallet 2130 includes frame members 2131 and 2132, each of which has a C-shaped or U-shaped cross section. In other words, frame members 2131 and 2132 are each composed of a C-shaped member having a C-shaped cross section or a U-shaped member having a U-shaped cross section. In this specification, when a cross section is C-shaped or U-shaped, it means that one of the four sides of a rectangular cross section is open. In other words, it does not mean that the unopened side is rounded, as in the case of a C-shape. The C-shaped member or U-shaped member is, for example, a shaped steel, such as a lip-channel steel material, or a so-called C-channel steel material.
 枠部材2131及び枠部材2132のそれぞれは、X軸方向に沿って延びる。枠部材2132は、枠部材2131からY軸方向に離隔して設けられる。 Each of frame members 2131 and 2132 extends along the X-axis direction. Frame member 2132 is spaced apart from frame member 2131 in the Y-axis direction.
 枠部材2131の+X側の端部に、-Z側を覆うように、平板である板部材2131aが設けられる。枠部材2131と板部材2131aにより、+X側に開放部2131h1が形成される。枠部材2131の-X側の端部に、-Z側を覆うように、平板である板部材2131bが設けられる。枠部材2131と板部材2131bにより、-X側に開放部2131h2が形成される。 A flat plate member 2131a is provided at the end of the +X side of the frame member 2131 so as to cover the -Z side. The frame member 2131 and the plate member 2131a form an opening 2131h1 on the +X side. A flat plate member 2131b is provided at the end of the -X side of the frame member 2131 so as to cover the -Z side. The frame member 2131 and the plate member 2131b form an opening 2131h2 on the -X side.
 枠部材2132の+X側の端部に、-Z側を覆うように、平板である板部材2132aが設けられる。枠部材2132と板部材2132aにより、+X側に開放部2132h1が形成される。枠部材2132の-X側の端部に、-Z側を覆うように、平板である板部材2132bが設けられる。枠部材2132と板部材2132bにより、-X側に開放部2132h2が形成される。 A flat plate member 2132a is provided at the end of the +X side of the frame member 2132 so as to cover the -Z side. The frame member 2132 and the plate member 2132a form an opening 2132h1 on the +X side. A flat plate member 2132b is provided at the end of the -X side of the frame member 2132 so as to cover the -Z side. The frame member 2132 and the plate member 2132b form an opening 2132h2 on the -X side.
 上述のように、パレット2130は、C字形部材と平板の組合せを有する。 As described above, the pallet 2130 has a combination of C-shaped members and flat plates.
 枠部材2131と枠部材2132とを連結するために、パレット2130は、連結部材2133a、連結部材2133b、連結部材2133c、連結部材2133d及び連結部材2133eを備える。連結部材2133a、連結部材2133b、連結部材2133c、連結部材2133d及び連結部材2133eのそれぞれは、断面がC字形であるC字形部材又は断面がU字形であるU字形部材により構成される。 In order to connect frame member 2131 and frame member 2132, pallet 2130 includes connecting member 2133a, connecting member 2133b, connecting member 2133c, connecting member 2133d, and connecting member 2133e. Each of connecting member 2133a, connecting member 2133b, connecting member 2133c, connecting member 2133d, and connecting member 2133e is composed of a C-shaped member having a C-shaped cross section or a U-shaped member having a U-shaped cross section.
 パレット2130において、剛性に対する影響が少ない燃料電池発電装置2002を固定する固定箇所のみに、固定可能な最小サイズの板部材を設けることにより、コストダウンと軽量化を行うことができる。 In the pallet 2130, the smallest possible plate members are provided only at the fixing points for fixing the fuel cell power generation device 2002, which has little effect on the rigidity, thereby reducing costs and weight.
 なお、本開示には、下記の付記にて示される態様も含まれる。 This disclosure also includes the aspects described in the appendix below.
 [付記15]
 燃料電池セルを備える燃料電池ユニットと、
 前記燃料電池セルを動作させる際に使用される補機と、端子台と、を備える補機ユニットと、
 前記燃料電池ユニットから発生した電気を流し、前記燃料電池ユニットから前記補機ユニットが備える前記端子台まで接続する第1配線と、
 前記燃料電池ユニットに信号を伝達する第2配線と、
を備え、
 前記第1配線は、前記第2配線から離隔して設けられる、
発電装置。
[Appendix 15]
a fuel cell unit including a fuel cell;
an auxiliary unit including an auxiliary device used when operating the fuel cell and a terminal block;
a first wiring that allows electricity generated from the fuel cell unit to flow and connects the fuel cell unit to the terminal block of the auxiliary unit;
A second wiring for transmitting a signal to the fuel cell unit;
Equipped with
The first wiring is provided at a distance from the second wiring.
Power generation equipment.
 [付記16]
 前記燃料電池ユニットと前記補機ユニットは、並んで設けられる、
付記15に記載の発電装置。
[Appendix 16]
The fuel cell unit and the auxiliary unit are provided side by side.
16. The power generating device of claim 15.
 [付記17]
 前記端子台は、前記燃料電池ユニットに対して反対の側に設けられる、
付記16に記載の発電装置。
[Appendix 17]
The terminal block is provided on the opposite side to the fuel cell unit.
17. The power generating device of claim 16.
 [付記18]
 前記補機ユニットは、前記補機として、外部からの第1冷却液と、前記燃料電池ユニットに供給される第2冷却液との間で熱交換する熱交換器と、前記熱交換器と外部とを接続する第1配管と、前記熱交換器と前記燃料電池ユニットとを接続する第2配管と、を備え、
 前記端子台は、前記熱交換器、前記第1配管及び前記第2配管のそれぞれより上部に設けられる、
付記15に記載の発電装置。
[Appendix 18]
the auxiliary unit includes, as the auxiliary, a heat exchanger for exchanging heat between a first cooling liquid from an outside and a second cooling liquid supplied to the fuel cell unit, a first pipe connecting the heat exchanger to the outside, and a second pipe connecting the heat exchanger to the fuel cell unit;
The terminal block is provided above the heat exchanger, the first pipe, and the second pipe.
16. The power generating device of claim 15.
 [付記19]
 前記端子台は、動力配線端子台及び信号配線端子台を含み、
 前記動力配線端子台は、前記信号配線端子台から離隔して設けられる、
付記15に記載の発電装置。
[Appendix 19]
The terminal block includes a power wiring terminal block and a signal wiring terminal block,
The power wiring terminal block is provided separately from the signal wiring terminal block.
16. The power generating device of claim 15.
 [付記20]
 前記第1配線は、前記補機ユニットの端部に設置される、
付記15に記載の発電装置。
[Appendix 20]
The first wiring is installed at an end of the auxiliary unit.
16. The power generating device of claim 15.
 [付記21]
 前記第2配線は、前記補機ユニットの端部に設置される、
付記15に記載の発電装置。
[Appendix 21]
The second wiring is installed at an end of the auxiliary unit.
16. The power generating device of claim 15.
 [付記22]
 前記第1配線は、前記補機ユニットの上端部に設置される、
付記15に記載の発電装置。
[Appendix 22]
The first wiring is installed at an upper end of the auxiliary unit.
16. The power generating device of claim 15.
 [付記23]
 前記端子台は、防水防塵ボックス内に設置される、
付記15に記載の発電装置。
[Appendix 23]
The terminal block is installed in a waterproof and dustproof box.
16. The power generating device of claim 15.
 [付記24]
 前記第1配線に、通電の有無が判別可能な点灯式のランプを更に備える、
付記15に記載の発電装置。
[Appendix 24]
The first wiring is further provided with a light-up lamp capable of determining whether or not electricity is being applied.
16. The power generating device of claim 15.
 [付記25]
 前記第1配線及び前記第2配線の端部に、防水防塵コネクタ又は棒端子を備える、
付記15に記載の発電装置。
[Appendix 25]
A waterproof and dustproof connector or a rod terminal is provided at an end of the first wiring and the second wiring.
16. The power generating device of claim 15.
 本願は、日本特許庁に2022年10月28日に出願された基礎特許出願2022-173447号、日本特許庁に2023年1月11日に出願された基礎特許出願2023-002355号及び日本特許庁に2023年7月13日に出願された基礎特許出願2023-114905号の優先権を主張するものであり、その全内容を参照によりここに援用する。 This application claims priority to basic patent application No. 2022-173447, filed with the Japan Patent Office on October 28, 2022, basic patent application No. 2023-002355, filed with the Japan Patent Office on January 11, 2023, and basic patent application No. 2023-114905, filed with the Japan Patent Office on July 13, 2023, the entire contents of which are incorporated herein by reference.
 1,2,3 FCプラットフォーム
 10 制御装置
 11 電力変換装置
 12 外部装置
 13 DC/DCコンバータ
 14 二次電池
 14,14 蓄電池
 15 冷却器
 16 出力点
 17 出力線
 18 燃料系統
 19 給気系統
 21,22,23 FCスタック
 30 パージ系統
 31 排気系統
 32 制御用電源
 33 空気フィルタ
 34 第1中間熱交換器
 35 イオン交換器
 36 第1冷却系統
 37 センサ
 38 第1タンク
 39 冷熱源
 40 放熱部
 41 受熱部
 42 昇圧コンバータ
 43 水素ポンプ
 44 ウォーターポンプ
 45 空気コンプレッサ
 51 FCユニット
 61,62,63 開閉器
 71 燃料極
 72 空気極
 73,75 入口
 74,76 出口
 77 空気入口遮断弁
 78 排空気出口遮断弁
 79 第1気液分離器
 80 混合器
 81 第2気液分離器
 82 回収器
 90 第2冷却系統
 91 ポンプ
 92 第2中間熱交換器
 93 第2タンク
 94 冷熱源
 95 放熱部
 96 受熱部
 101 燃料電池発電装置
 118 燃料管
 119,120 空気管
 131 排気管
 201 燃料電池発電システム
 301 補機システム
 401 燃料電池発電装置
 410 燃料電池ユニット
 420 補機ユニット
 420f 枠
 421、422 熱交換器
 423、424 リザーバータンク
 425 イオン交換器
 425a 脱気部
 426 エアフィルタ
 427 電気回路ボックス
 430 パレット
 431、432 角パイプ
 431A、431B、432A、432B 載置部
 433a、433b、433c 連結部材
 441a、441b、442a、442b 絶縁部材
 501 燃料電池発電装置
 510 燃料電池ユニット
 520 補機ユニット
 521、522 熱交換器
 521a1、521a2、521b1、521b2、522a1、522a2 配管
 523、524、2123、2124 リザーバータンク
 525、2125 イオン交換器
 526 エアフィルタ
 527 電気回路ボックス
 530 パレット
 531、2141 動力配線端子台
 532、2142 信号配線端子台
 533、2143 電源配線端子台
 534、2144 接地配線端子台
 535a、535b、2145a、2145b 水素検知器
 550 冷却装置
 C1 動力配線
 C2、C3、C4、C5 信号配線
REFERENCE SIGNS LIST 1, 2, 3 FC platform 10 Control device 11 Power conversion device 12 External device 13 DC/DC converter 14 Secondary battery 14 1 , 14 n battery 15 Cooler 16 Output point 17 Output line 18 Fuel system 19 Air supply system 21, 22, 23 FC stack 30 Purge system 31 Exhaust system 32 Control power supply 33 Air filter 34 First intermediate heat exchanger 35 Ion exchanger 36 First cooling system 37 Sensor 38 First tank 39 Cold source 40 Heat dissipation section 41 Heat receiving section 42 Boost converter 43 Hydrogen pump 44 Water pump 45 Air compressor 51 FC unit 61, 62, 63 Switch 71 Fuel electrode 72 Air electrode 73, 75 Inlet Description of the Reference Signs 74, 76 Outlet 77 Air inlet shutoff valve 78 Exhaust air outlet shutoff valve 79 First gas-liquid separator 80 Mixer 81 Second gas-liquid separator 82 Recovery device 90 Second cooling system 91 Pump 92 Second intermediate heat exchanger 93 Second tank 94 Cold heat source 95 Heat radiating section 96 Heat receiving section 101 Fuel cell power generation device 118 Fuel pipe 119, 120 Air pipe 131 Exhaust pipe 201 Fuel cell power generation system 301 Auxiliary system 401 Fuel cell power generation device 410 Fuel cell unit 420 Auxiliary unit 420f Frame 421, 422 Heat exchanger 423, 424 Reservoir tank 425 Ion exchanger 425a Deaeration section 426 Air filter 427 Electric circuit box 430 Pallet 431, 432 Square pipe 431A, 431B, 432A, 432B Placement portion 433a, 433b, 433c Connection member 441a, 441b, 442a, 442b Insulation member 501 Fuel cell power generation device 510 Fuel cell unit 520 Auxiliary unit 521, 522 Heat exchanger 521a1, 521a2, 521b1, 521b2, 522a1, 522a2 Pipe 523, 524, 2123, 2124 Reservoir tank 525, 2125 Ion exchanger 526 Air filter 527 Electric circuit box 530 Pallet 531, 2141 Power wiring terminal block 532, 2142 Signal wiring terminal block 533, 2143 Power wiring terminal block 534, 2144 Ground wiring terminal block 535a, 535b, 2145a, 2145b Hydrogen detector 550 Cooling device C1 Power wiring C2, C3, C4, C5 Signal wiring

Claims (54)

  1.  燃料極と空気極を有する燃料電池と、
     前記燃料極に水素を供給する燃料管と、
     空気を圧縮し、前記空気極に供給する空気コンプレッサと、
     前記燃料電池で発生する排ガスを排出する排気管と、
     前記燃料電池を冷却する第1冷却液を、空気、液体、圧縮水素が膨張した際の冷熱、の何れかの第1冷熱源との間で熱交換可能な第1中間熱交換器と、を備える、燃料電池発電装置。
    a fuel cell having an anode and an cathode;
    a fuel pipe for supplying hydrogen to the fuel electrode;
    an air compressor that compresses air and supplies it to the air electrode;
    an exhaust pipe for discharging exhaust gas generated by the fuel cell;
    a first intermediate heat exchanger capable of exchanging heat between a first cooling liquid that cools the fuel cell and a first cold heat source that is any one of air, liquid, and cold heat generated by the expansion of compressed hydrogen.
  2.  前記空気コンプレッサを冷却する第2冷却液を前記第1冷熱源とは異なる第2冷熱源との間で熱交換可能な第2中間熱交換器を備える、請求項1に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 1, further comprising a second intermediate heat exchanger capable of exchanging heat between a second cooling liquid for cooling the air compressor and a second cold source different from the first cold source.
  3.  前記空気コンプレッサを冷却する第2冷却液を前記第1冷熱源との間で熱交換可能な第2中間熱交換器を備える、請求項1に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 1, further comprising a second intermediate heat exchanger capable of exchanging heat between the first cold source and a second cooling liquid that cools the air compressor.
  4.  前記第1冷却液からイオンを取り除くイオン交換器を備える、請求項1に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 1, further comprising an ion exchanger that removes ions from the first cooling liquid.
  5.  前記第1冷却液の電気伝導度を測定するセンサを備える、請求項4に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 4, further comprising a sensor for measuring the electrical conductivity of the first cooling liquid.
  6.  前記第1冷却液の温度変化に伴う膨張又は収縮を吸収する第1タンクを備える、請求項1に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 1, further comprising a first tank that absorbs expansion or contraction of the first cooling liquid caused by temperature changes.
  7.  前記燃料極の出口から排出される第1混相流から水素ガスを分離する第1気液分離器と、
     前記第1気液分離器により分離された水素ガスを前記燃料極の入口へ循環させる水素ポンプと、を備える、請求項1に記載の燃料電池発電装置。
    a first gas-liquid separator for separating hydrogen gas from a first mixed-phase flow discharged from an outlet of the anode;
    2. The fuel cell power generation system according to claim 1, further comprising: a hydrogen pump that circulates the hydrogen gas separated by the first gas-liquid separator to an inlet of the fuel electrode.
  8.  前記排気管は、前記第1気液分離器により分離された排水と、前記排水に混入する水素と、前記空気極の出口から排出される排空気とを合流させた第2混相流を排出する、請求項7に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 7, wherein the exhaust pipe discharges a second mixed-phase flow obtained by combining the wastewater separated by the first gas-liquid separator, hydrogen mixed in the wastewater, and exhaust air discharged from the outlet of the air electrode.
  9.  前記第2混相流から水と気体を分離する第2気液分離器を備える、請求項8に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 8, further comprising a second gas-liquid separator that separates water and gas from the second multiphase flow.
  10.  複数の燃料電池プラットフォームを備え、
     前記複数の燃料電池プラットフォームは、それぞれ、前記燃料電池、前記燃料管、前記空気コンプレッサ、前記排気管および前記第1中間熱交換器を有し、
     前記複数の燃料電池プラットフォームにおける複数の前記燃料電池の出力電力は、共通の出力線に出力される、
     請求項1から9のいずれか一項に記載の燃料電池発電装置。
    Equipped with multiple fuel cell platforms,
    each of the plurality of fuel cell platforms includes the fuel cell, the fuel pipe, the air compressor, the exhaust pipe, and the first intermediate heat exchanger;
    The output power of the fuel cells in the fuel cell platforms is output to a common output line.
    10. A fuel cell power generation system according to any one of claims 1 to 9.
  11.  前記複数の燃料電池プラットフォームにおける複数の前記第1中間熱交換器は、共通の冷熱源との間で熱交換する、請求項10に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 10, wherein the first intermediate heat exchangers in the fuel cell platforms exchange heat with a common cold source.
  12.  前記共通の冷熱源は、空気、液体、圧縮水素が膨張した際の冷熱、の何れかである、請求項11に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 11, wherein the common cold source is air, liquid, or cold generated by the expansion of compressed hydrogen.
  13.  前記出力線から外部への供給電力が所定値に維持されるように、複数の前記燃料電池の各出力を制御する制御装置を備える、請求項10に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 10, further comprising a control device that controls the output of each of the fuel cells so that the power supplied from the output line to the outside is maintained at a predetermined value.
  14.  前記制御装置は、複数の前記燃料電池のうち、一部の前記燃料電池を他の前記燃料電池から切り離し、前記供給電力が前記所定値に維持されるように、前記他の前記燃料電池の出力電力を制御する、請求項13に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 13, wherein the control device separates some of the fuel cells from the other fuel cells and controls the output power of the other fuel cells so that the supply power is maintained at the predetermined value.
  15.  前記複数の燃料電池プラットフォームに個別の制御用電源を備える、請求項13に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 13, wherein each of the fuel cell platforms is provided with an individual control power supply.
  16.  前記複数の燃料電池プラットフォームに共通の制御用電源を備える、請求項13に記載の燃料電池発電装置。 The fuel cell power generation device according to claim 13, comprising a control power supply common to the plurality of fuel cell platforms.
  17.  前記出力線に接続される二次電池を備え、
     前記二次電池は、直列に接続された複数の蓄電池を含む、請求項10に記載の燃料電池発電装置。
    a secondary battery connected to the output line;
    11. The fuel cell power generation system according to claim 10, wherein the secondary battery includes a plurality of storage batteries connected in series.
  18.  前記出力線に接続される、並列に接続された複数の蓄電池を備え、
     前記複数の蓄電池の数は、前記複数の燃料電池プラットフォームの数よりも少ない、請求項10に記載の燃料電池発電装置。
    a plurality of storage batteries connected in parallel to the output line;
    The fuel cell power plant of claim 10 , wherein the number of said plurality of storage batteries is less than the number of said plurality of fuel cell platforms.
  19.  前記複数の燃料電池プラットフォームにおける複数の前記燃料管に不活性ガスを個別に供給するパージ系統を備える、請求項10に記載の燃料電池発電装置。 The fuel cell power generation system according to claim 10, further comprising a purge system that individually supplies inert gas to the fuel pipes in the fuel cell platforms.
  20.  第1方向に長手方向を有する移動用架台と、
     燃料電池セルと、前記燃料電池セルを動作させる際に使用される補機と、を含む燃料電池モジュールと、
    を備え、
     前記移動用架台は、内部に前記第1方向の第1側もしくは前記第1側と反対側である第2側の少なくとも一方が開放された空間を有する第1枠部材及び第2枠部材を備え、
     前記第2枠部材は、前記第1枠部材から前記第1方向に交差する第2方向に離隔し、
     前記第1枠部材及び前記第2枠部材のそれぞれは前記第1方向に延び、
     前記第1枠部材及び前記第2枠部材のそれぞれの上部に前記燃料電池モジュールが載置される、
    燃料電池発電装置。
    A mobile platform having a longitudinal direction in a first direction;
    A fuel cell module including a fuel cell and an auxiliary device used to operate the fuel cell;
    Equipped with
    the moving platform includes a first frame member and a second frame member having an internal space in which at least one of a first side in the first direction and a second side opposite to the first side is open,
    the second frame member is spaced apart from the first frame member in a second direction intersecting the first direction,
    Each of the first frame member and the second frame member extends in the first direction,
    the fuel cell module is placed on an upper portion of each of the first frame member and the second frame member;
    Fuel cell power generation equipment.
  21.  第1方向に長手方向を有する移動用架台と、
     燃料電池セルと、前記燃料電池セルを動作させる際に使用される補機と、を含む燃料電池モジュールと、
    を備え、
     前記移動用架台は、前記第1方向に延びる第1枠部材及び第2枠部材を備え、
     前記第2枠部材は前記第1枠部材から前記第1方向に交差する第2方向に離隔し、
     前記第1枠部材及び前記第2枠部材のそれぞれの上部に前記燃料電池モジュールが載置され、
     前記第1枠部材及び前記第2枠部材のそれぞれは、前記第1方向における同じ位置に、前記第2方向に貫通する空間を備える、
    燃料電池発電装置。
    A mobile platform having a longitudinal direction in a first direction;
    A fuel cell module including a fuel cell and an auxiliary device used to operate the fuel cell;
    Equipped with
    the moving platform includes a first frame member and a second frame member extending in the first direction,
    the second frame member is spaced apart from the first frame member in a second direction intersecting the first direction,
    the fuel cell module is placed on an upper portion of each of the first frame member and the second frame member,
    Each of the first frame member and the second frame member has a space penetrating therethrough in the second direction at the same position in the first direction.
    Fuel cell power generation equipment.
  22.  前記第1枠部材及び前記第2枠部材のそれぞれは、C字形部材もしくは角パイプである、
    請求項20又は請求項21のいずれかに記載の燃料電池発電装置。
    Each of the first frame member and the second frame member is a C-shaped member or a square pipe.
    22. A fuel cell power generating apparatus according to claim 20 or 21.
  23.  前記第1枠部材が有する前記空間は、前記第1側から運搬機器の載荷部材の一方が挿入されるように形成され、
     前記第2枠部材が有する前記空間は、前記第1側から前記運搬機器の載荷部材の他方が挿入されるように形成される、
    請求項20に記載の燃料電池発電装置。
    The space of the first frame member is formed so that one of the load members of the transport device is inserted from the first side,
    The space of the second frame member is formed so that the other of the loading members of the transport equipment is inserted from the first side.
    21. The fuel cell power plant of claim 20.
  24.  前記第1枠部材が有する前記空間は、前記第1枠部材の前記第1側から前記第2側にわたって形成され、
     前記第2枠部材が有する前記空間は、前記第2枠部材の前記第1側から前記第2側にわたって形成される、
    請求項20に記載の燃料電池発電装置。
    The space of the first frame member is formed from the first side to the second side of the first frame member,
    The space of the second frame member is formed from the first side to the second side of the second frame member.
    21. The fuel cell power plant of claim 20.
  25.  前記補機を備える補機ユニットを備え、
     前記補機ユニットは、前記燃料電池モジュールを冷却する第1冷却液と外部から供給される第2冷却液との間で熱交換を行う熱交換器と、前記第1冷却液に含まれるイオンを除去するイオン交換器と、前記第1冷却液を貯蔵するリザーバータンクと、を備える、
    請求項20に記載の燃料電池発電装置。
    an auxiliary unit including the auxiliary;
    The auxiliary unit includes a heat exchanger that exchanges heat between a first cooling liquid that cools the fuel cell module and a second cooling liquid supplied from an outside, an ion exchanger that removes ions contained in the first cooling liquid, and a reservoir tank that stores the first cooling liquid.
    21. The fuel cell power plant of claim 20.
  26.  前記補機ユニットは枠を備え、
     前記熱交換器、前記イオン交換器及び前記リザーバータンクは、平面視において前記枠の内側に設けられる、
    請求項25に記載の燃料電池発電装置。
    the accessory unit comprises a frame;
    The heat exchanger, the ion exchanger, and the reservoir tank are provided inside the frame in a plan view.
    26. The fuel cell power plant of claim 25.
  27.  前記枠は、直方体形状であって、前記熱交換器、前記イオン交換器及び前記リザーバータンクは、前記枠の内側に設けられる、
    請求項26に記載の燃料電池発電装置。
    The frame has a rectangular parallelepiped shape, and the heat exchanger, the ion exchanger, and the reservoir tank are provided inside the frame.
    27. The fuel cell power plant of claim 26.
  28.  前記熱交換器は、前記枠の下側かつ前記第2側に設けられる、
    請求項26に記載の燃料電池発電装置。
    The heat exchanger is provided below the frame and on the second side.
    27. The fuel cell power plant of claim 26.
  29.  燃料電池セルを備える燃料電池ユニットと、
     前記燃料電池セルを動作させる際に使用される補機を備える補機ユニットと、
     前記燃料電池ユニットから発生した電気を流し、前記燃料電池ユニットに接続され、前記補機ユニットに配置される第1配線と、
     前記燃料電池ユニットにおける信号を送信及び受信の少なくともいずれかをするための第2配線と、
    を備え、
     前記第1配線は、前記第2配線から離隔して設けられる、
    燃料電池発電装置。
    a fuel cell unit including a fuel cell;
    an auxiliary unit including auxiliary devices used when operating the fuel cell;
    a first wiring that passes electricity generated by the fuel cell unit, is connected to the fuel cell unit, and is disposed in the auxiliary unit;
    a second wiring for at least one of transmitting and receiving a signal in the fuel cell unit;
    Equipped with
    The first wiring is provided at a distance from the second wiring.
    Fuel cell power generation equipment.
  30.  前記補機ユニットは、接続部を備える、
    請求項29に記載の燃料電池発電装置。
    The accessory unit includes a connection portion.
    30. The fuel cell power plant of claim 29.
  31.  燃料電池セルを備える燃料電池ユニットと、
     前記燃料電池セルを動作させる際に使用される補機を備える補機ユニットと、
     前記燃料電池ユニットから発生した電気を流し、前記燃料電池ユニットに接続され、前記補機ユニットに配置される第1配線と、
     前記燃料電池ユニットにおける信号を送信及び受信の少なくともいずれかをするための第2配線と、
    を備え、
     前記第1配線は、前記第2配線から離隔して設けられる、
    燃料電池発電装置。
    a fuel cell unit including a fuel cell;
    an auxiliary unit including auxiliary devices used when operating the fuel cell;
    a first wiring that passes electricity generated by the fuel cell unit, is connected to the fuel cell unit, and is disposed in the auxiliary unit;
    a second wiring for at least one of transmitting and receiving a signal in the fuel cell unit;
    Equipped with
    The first wiring is provided at a distance from the second wiring.
    Fuel cell power generation equipment.
  32.  前記補機ユニットは、接続部を備える、
    請求項31に記載の燃料電池発電装置。
    The accessory unit includes a connection portion.
    32. The fuel cell power plant of claim 31.
  33.  前記燃料電池ユニットと前記補機ユニットは、並んで設けられる、
    請求項32に記載の燃料電池発電装置。
    The fuel cell unit and the auxiliary unit are provided side by side.
    33. The fuel cell power plant of claim 32.
  34.  前記接続部は、前記燃料電池ユニットに対して反対の側に設けられる、
    請求項33に記載の燃料電池発電装置。
    The connection portion is provided on the opposite side to the fuel cell unit.
    34. The fuel cell power plant of claim 33.
  35.  前記補機ユニットは、前記補機として、外部からの第1冷却液と、前記燃料電池ユニットに供給される第2冷却液との間で熱交換する熱交換器と、前記熱交換器と外部とを接続する第1配管と、前記熱交換器と前記燃料電池ユニットとを接続する第2配管と、を備え、
     前記接続部は、前記熱交換器、前記第1配管及び前記第2配管のそれぞれより上部に設けられる、
    請求項32に記載の燃料電池発電装置。
    the auxiliary unit includes, as the auxiliary, a heat exchanger for exchanging heat between a first cooling liquid from an outside and a second cooling liquid supplied to the fuel cell unit, a first pipe connecting the heat exchanger to the outside, and a second pipe connecting the heat exchanger to the fuel cell unit;
    The connection portion is provided above the heat exchanger, the first pipe, and the second pipe.
    33. The fuel cell power plant of claim 32.
  36.  前記接続部は、動力配線接続部及び信号配線接続部を含み、
     前記動力配線接続部は、前記信号配線接続部から離隔して設けられる、
    請求項32に記載の燃料電池発電装置。
    The connection portion includes a power wiring connection portion and a signal wiring connection portion,
    The power wiring connection portion is provided apart from the signal wiring connection portion.
    33. The fuel cell power plant of claim 32.
  37.  前記第1配線は、前記補機ユニットの端部に設置される、
    請求項31に記載の燃料電池発電装置。
    The first wiring is installed at an end of the auxiliary unit.
    32. The fuel cell power plant of claim 31.
  38.  前記第2配線は、前記補機ユニットの端部に設置される、
    請求項31に記載の燃料電池発電装置。
    The second wiring is installed at an end of the auxiliary unit.
    32. The fuel cell power plant of claim 31.
  39.  前記第1配線は、前記補機ユニットの上端部に設置される、
    請求項31に記載の燃料電池発電装置。
    The first wiring is installed at an upper end of the auxiliary unit.
    32. The fuel cell power plant of claim 31.
  40.  前記接続部は、防水防塵ボックス内に設置される、
    請求項32に記載の燃料電池発電装置。
    The connection part is installed in a waterproof and dustproof box.
    33. The fuel cell power plant of claim 32.
  41.  前記第1配線に、通電の有無が判別可能な点灯式のランプを更に備える、
    請求項31に記載の燃料電池発電装置。
    The first wiring is further provided with a light-up lamp capable of determining whether or not electricity is being applied.
    32. The fuel cell power plant of claim 31.
  42.  前記第1配線及び前記第2配線の端部に、防水防塵コネクタ又は棒端子を備える、
    請求項31に記載の燃料電池発電装置。
    A waterproof and dustproof connector or a rod terminal is provided at an end of the first wiring and the second wiring.
    32. The fuel cell power plant of claim 31.
  43.  燃料電池セルを備える燃料電池ユニットと、
     前記燃料電池セルを動作させるため補機を備える補機ユニットと、
    を備え、
     前記補機ユニットは、前記補機が取り付けられる補機フレームを備え、
     前記補機フレームを補強する補強部材を備え、前記補強部材で前記補機が固定される、
    燃料電池発電装置。
    a fuel cell unit including a fuel cell;
    an auxiliary unit including an auxiliary device for operating the fuel cell;
    Equipped with
    The accessory unit includes an accessory frame to which the accessory is attached,
    A reinforcing member is provided to reinforce the auxiliary frame, and the auxiliary is fixed by the reinforcing member.
    Fuel cell power generation equipment.
  44.  前記補機フレームは、メンテナンス部品の周囲の少なくとも1面が開放される、
    請求項43に記載の燃料電池発電装置。
    The accessory frame has at least one surface around the maintenance part open.
    44. The fuel cell power plant of claim 43.
  45.  前記補機フレームは、天面に前記メンテナンス部品を備える、
    請求項44に記載の燃料電池発電装置。
    The auxiliary frame is provided with the maintenance part on a top surface.
    45. The fuel cell power plant of claim 44.
  46.  前記メンテナンス部品は、前記天面に両端持ちで固定されたサポート又は断面係数を上げて剛性を高めたサポートにより前記補機フレームに固定される、
    請求項45に記載の燃料電池発電装置。
    The maintenance part is fixed to the auxiliary frame by a support fixed to the top surface at both ends or a support having an increased section modulus to increase rigidity.
    46. A fuel cell power plant according to claim 45.
  47.  複数の前記メンテナンス部品を備え、
     複数の前記メンテナンス部品において、メンテナンス作業が煩雑な前記メンテナンス部品は、メンテナンス面の近くに設けられる、
    請求項45に記載の燃料電池発電装置。
    A plurality of the maintenance parts are provided,
    Among the plurality of maintenance parts, the maintenance part requiring complicated maintenance work is provided near a maintenance surface.
    46. A fuel cell power plant according to claim 45.
  48.  前記燃料電池ユニットと前記補機ユニットを一体で運搬可能な移動用架台を備える、
    請求項43に記載の燃料電池発電装置。
    a mobile platform capable of transporting the fuel cell unit and the auxiliary unit together;
    44. The fuel cell power plant of claim 43.
  49.  前記補機フレームは、前記移動用架台と5点以上で固定される、
    請求項48に記載の燃料電池発電装置。
    The auxiliary frame is fixed to the mobile platform at five or more points.
    49. The fuel cell power plant of claim 48.
  50.  前記燃料電池ユニットは、前記移動用架台と5点以上で固定される、
    請求項48に記載の燃料電池発電装置。
    The fuel cell unit is fixed to the mobile stand at five or more points.
    49. The fuel cell power plant of claim 48.
  51.  前記移動用架台は、C字形部材と平板の組合せを有する、
    請求項48に記載の燃料電池発電装置。
    The mobile platform has a combination of a C-shaped member and a flat plate.
    49. The fuel cell power plant of claim 48.
  52.  電気系機器は、液系機器から離隔して配置される、
    請求項43に記載の燃料電池発電装置。
    The electrical equipment is arranged separately from the liquid equipment.
    44. The fuel cell power plant of claim 43.
  53.  前記燃料電池ユニットにおいて発電された電気を外部に流す動力配線と、
     前記燃料電池ユニットにおける信号を送信及び受信の少なくともいずれかをするための信号配線と、
    を備え、
     前記信号配線は、前記動力配線から離隔して設けられる、
    請求項43に記載の燃料電池発電装置。
    a power wiring for transmitting electricity generated in the fuel cell unit to the outside;
    a signal wiring for transmitting and/or receiving a signal in the fuel cell unit;
    Equipped with
    The signal wiring is provided separately from the power wiring.
    44. The fuel cell power plant of claim 43.
  54.  前記信号配線は、前記補機における信号を送信及び受信の少なくともいずれかをするための配線を含む、
    請求項53に記載の燃料電池発電装置。
    The signal wiring includes wiring for at least one of transmitting and receiving signals in the auxiliary device.
    54. The fuel cell power plant of claim 53.
PCT/JP2023/038974 2022-10-28 2023-10-27 Fuel cell power generation apparatus WO2024090575A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022-173447 2022-10-28
JP2022173447A JP2024064683A (en) 2022-10-28 2022-10-28 Fuel Cell Power Generation Equipment
JP2023-002355 2023-01-11
JP2023002355 2023-01-11
JP2023114905 2023-07-13
JP2023-114905 2023-07-13

Publications (1)

Publication Number Publication Date
WO2024090575A1 true WO2024090575A1 (en) 2024-05-02

Family

ID=90830934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038974 WO2024090575A1 (en) 2022-10-28 2023-10-27 Fuel cell power generation apparatus

Country Status (1)

Country Link
WO (1) WO2024090575A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847244A (en) * 1994-07-28 1996-02-16 Motor Jidosha Kk Noise-proof device and noise-proof filter of power converter
JP2002172391A (en) * 2000-12-06 2002-06-18 Japan Organo Co Ltd Ion exchange system
JP2002298887A (en) * 2001-03-30 2002-10-11 Matsushita Electric Ind Co Ltd Power management device
JP2005228591A (en) * 2004-02-13 2005-08-25 Toyota Motor Corp Fuel cell system
JP2008234888A (en) * 2007-03-19 2008-10-02 Equos Research Co Ltd Fuel cell system
JP2009266638A (en) * 2008-04-25 2009-11-12 Aisin Seiki Co Ltd Fuel cell system
JP2012041063A (en) * 2010-08-19 2012-03-01 Honda Motor Co Ltd Pallet for conveyance and assembly thereof
WO2013008368A1 (en) * 2011-07-14 2013-01-17 パナソニック株式会社 Fuel cell system and method for controlling same
JP2016096010A (en) * 2014-11-14 2016-05-26 トヨタ自動車株式会社 Fuel battery system
JP2018106901A (en) * 2016-12-26 2018-07-05 株式会社デンソー Fuel cell cooling system
JP2018111525A (en) * 2017-01-13 2018-07-19 大阪瓦斯株式会社 Pallet with vibration preventing tools and pallet body used on the same
JP2021190175A (en) * 2020-05-25 2021-12-13 トヨタ自動車株式会社 Fuel cell system
JP2022086178A (en) * 2020-11-30 2022-06-09 トヨタ自動車株式会社 Fuel cell module and manufacturing method thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847244A (en) * 1994-07-28 1996-02-16 Motor Jidosha Kk Noise-proof device and noise-proof filter of power converter
JP2002172391A (en) * 2000-12-06 2002-06-18 Japan Organo Co Ltd Ion exchange system
JP2002298887A (en) * 2001-03-30 2002-10-11 Matsushita Electric Ind Co Ltd Power management device
JP2005228591A (en) * 2004-02-13 2005-08-25 Toyota Motor Corp Fuel cell system
JP2008234888A (en) * 2007-03-19 2008-10-02 Equos Research Co Ltd Fuel cell system
JP2009266638A (en) * 2008-04-25 2009-11-12 Aisin Seiki Co Ltd Fuel cell system
JP2012041063A (en) * 2010-08-19 2012-03-01 Honda Motor Co Ltd Pallet for conveyance and assembly thereof
WO2013008368A1 (en) * 2011-07-14 2013-01-17 パナソニック株式会社 Fuel cell system and method for controlling same
JP2016096010A (en) * 2014-11-14 2016-05-26 トヨタ自動車株式会社 Fuel battery system
JP2018106901A (en) * 2016-12-26 2018-07-05 株式会社デンソー Fuel cell cooling system
JP2018111525A (en) * 2017-01-13 2018-07-19 大阪瓦斯株式会社 Pallet with vibration preventing tools and pallet body used on the same
JP2021190175A (en) * 2020-05-25 2021-12-13 トヨタ自動車株式会社 Fuel cell system
JP2022086178A (en) * 2020-11-30 2022-06-09 トヨタ自動車株式会社 Fuel cell module and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US11637307B2 (en) Modular and scalable flow battery system
US9079508B2 (en) Fuel cell vehicle
US20050112428A1 (en) Fuel cell power system having multiple fuel cell modules
CN110212229B (en) Vehicle-mounted fuel cell system and fuel cell vehicle
JP2008270047A (en) Fuel cell system
WO2024090575A1 (en) Fuel cell power generation apparatus
JP2006200563A (en) Liquid fuel supply system
CN113783227A (en) Marine fuel cell power supply system and fuel cell ship
JP2013193724A (en) Fuel cell system
JP7234912B2 (en) battery pack
US8647786B2 (en) Fuel cell system
JP5374096B2 (en) Fuel cell stack and installation method thereof
CN109997269B (en) Redox flow battery
US20220173423A1 (en) Fuel cell module and manufacturing method thereof
CN109478661B (en) Fuel cell device
JP2024064683A (en) Fuel Cell Power Generation Equipment
US11728503B2 (en) Fuel cell module
JP7477005B1 (en) Fuel cell power generation device and fuel cell power generation system
WO2013149712A2 (en) Fuel cell module for a vehicle
JP5449848B2 (en) Fuel cell stack
JP7477808B1 (en) Fuel Cell Power Generation System
EP4362144A2 (en) Fuel cell modules
CN110036517B (en) Redox flow battery
US11342575B2 (en) Fuel cell stack
JP6986183B1 (en) Power supply system