WO2024090489A1 - 放射性医薬組成物の製造方法 - Google Patents

放射性医薬組成物の製造方法 Download PDF

Info

Publication number
WO2024090489A1
WO2024090489A1 PCT/JP2023/038582 JP2023038582W WO2024090489A1 WO 2024090489 A1 WO2024090489 A1 WO 2024090489A1 JP 2023038582 W JP2023038582 W JP 2023038582W WO 2024090489 A1 WO2024090489 A1 WO 2024090489A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
acid
cation exchange
exchange material
solution
Prior art date
Application number
PCT/JP2023/038582
Other languages
English (en)
French (fr)
Inventor
稔 河谷
侑紀 奥村
英晃 竹森
文章 竹中
浩章 市川
Original Assignee
日本メジフィジックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本メジフィジックス株式会社 filed Critical 日本メジフィジックス株式会社
Publication of WO2024090489A1 publication Critical patent/WO2024090489A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/20Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing sulfur, e.g. dimethyl sulfoxide [DMSO], docusate, sodium lauryl sulfate or aminosulfonic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/10Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography

Definitions

  • the present invention relates to a method for producing a radiopharmaceutical composition and a method for purifying a radiolabeled antibody.
  • radionuclides are used for therapeutic or in vivo diagnostic applications, for example positron-emitting and gamma-emitting nuclides for tumor diagnosis and beta-emitting nuclides for tumor treatment.
  • In vivo diagnostic and therapeutic applications of radionuclides require their delivery to a target cell site.
  • One method for delivering a radionuclide to a target cell site is by conjugating the radionuclide to a biologically useful molecule, such as an antibody.
  • Non-Patent Document 1 discloses that an anti-IGSF4 antibody that specifically recognizes IgSF4, a molecule specifically expressed in liver cancer cells, was labeled with 67 Cu. This 67 Cu-labeled anti-IGSF4 antibody was purified by centrifugation using a centrifugal ultrafiltration filter known under the trade name of Amicon after being labeled with 67 Cu.
  • Non-Patent Document 2 discloses that an anti-LTA antibody, which is an antibody that binds to lipoteichoic acid (LTA), was labeled with 89Zr . This 89Zr -labeled anti-LTA antibody was also purified by centrifugation using a centrifugal ultrafiltration filter after labeling with 89Zr .
  • Patent Document 1 discloses the use of a cation exchange column (POROS 50 HS, Applied Biosystems) to purify rituximab or bevacizumab containing Chinese hamster ovary protein contaminants.
  • a cation exchange column POROS 50 HS, Applied Biosystems
  • Radionuclides used for therapeutic or in vivo diagnostic applications are characterized by their short half-lives and rapid decay and disappearance, which demands the preparation of radiopharmaceutical compositions in a shorter time period.
  • a method is required to reduce radioactive contamination of equipment and radiation exposure of workers as much as possible.
  • a molecule labeled with a radioactive nuclide as an active ingredient usually only needs to have a radioactivity sufficient for therapeutic or in vivo diagnostic applications, and a small amount of substance is sufficient.
  • Non-Patent Documents 1 and 2 are difficult to automate.
  • US Pat. No. 5,399,633 does not disclose automating the synthesis and purification of radiolabeled antibodies.
  • the problem of Patent Document 1 is to improve the removal of Chinese Hamster Ovary protein contaminants, and does not focus on problems related to the production of radiolabeled antibodies.
  • the present invention aims to produce a radiopharmaceutical composition with excellent radiochemical yield and radiochemical purity by purifying a radiolabeled antibody using a simple and easy method.
  • the inventors conducted intensive research in light of the above problems, and as a result, succeeded in contacting a solution of a crude radiolabeled antibody with a cation exchange material to adsorb the radiolabeled antibody onto the cation exchange material, and then eluting the adsorbed radiolabeled antibody using an eluent containing one or more additives, thereby completing the present invention.
  • One aspect of the present invention is A method for producing a liquid radiopharmaceutical composition comprising a radiolabeled antibody, which is an antibody labeled with a radionuclide, as an active ingredient and one or more additives (A), comprising the steps of: (Step 1) labeling an antibody with a radioactive nuclide to obtain a crude solution of said radioactively labeled antibody; (Step 2) contacting the solution of the crude product obtained in Step 1 with a cation exchange material to adsorb the radioactively labeled antibody onto the cation exchange material; (step 3) eluting the radiolabeled antibody adsorbed on the cation exchange material in step 2 using an eluent containing the additive (A); including, A method for producing a radiopharmaceutical composition.
  • Step A labeling an antibody with a radioactive nuclide to obtain a crude solution of radiolabeled antibody;
  • Step B contacting the solution of the crude product obtained in Step A with a cation exchange material to adsorb the radioactively labeled antibody onto the cation exchange material; and
  • Step C eluting the radioactively labeled antibody adsorbed onto the cation exchange material in Step B using an eluent containing one or more additives.
  • a method for purifying a radiolabeled antibody including, A method for purifying a radiolabeled antibody.
  • the radiolabeled antibody is purified using a cation exchange material, which allows for easy purification of the radiolabeled antibody and can also be applied to an automated synthesis device.
  • a portion of the formulation is used as the eluent, simplifying the formulation process and allowing the radiopharmaceutical composition to be produced in a shorter time. Therefore, according to the present invention, it is possible to produce a radiopharmaceutical composition with excellent radiochemical yield and radiochemical purity.
  • the present invention provides a liquid pharmaceutical composition (hereinafter also referred to as the liquid pharmaceutical composition of the present invention) containing an antibody labeled with a radioactive nuclide (hereinafter also referred to as the radiolabeled antibody of the present invention) as an active ingredient.
  • a liquid pharmaceutical composition hereinafter also referred to as the liquid pharmaceutical composition of the present invention
  • an antibody labeled with a radioactive nuclide hereinafter also referred to as the radiolabeled antibody of the present invention
  • the present invention also provides (Step 1) labeling an antibody with a radioactive nuclide to obtain a crude solution of radiolabeled antibody; (step 2) contacting the solution of the crude product obtained in step 1 with a cation exchange material to adsorb the radiolabeled antibody onto the cation exchange material; and (step 3) eluting the radiolabeled antibody adsorbed onto the cation exchange material in step 2 using an eluent containing one or more additives.
  • the present invention provides a method for producing a liquid radiopharmaceutical composition containing a radiolabeled antibody as an active ingredient and one or more additives, comprising:
  • the radionuclide and the antibody form a complex (hereinafter, also referred to as the complex of the radionuclide and the antibody of the present invention).
  • the antibody and the radionuclide may be directly linked.
  • the antibody and the radionuclide may be linked via a linker.
  • the radionuclide may be a radioactive metal nuclide, and this radioactive metal nuclide may form a chelate (complex) with a chelating agent, or the antibody and the chelating agent may be linked via a linker or not.
  • the linkage may preferably be a covalent linkage.
  • Radioactive nuclide contained in the radioactively labeled antibody of the present invention may be a radioactive nuclide that emits ⁇ particles, positrons, ⁇ rays, or ⁇ rays, or a radioactive halogen nuclide.
  • radioactive nuclides that emit ⁇ particles include 211 At, 212 Bi, 213 Bi, 225 Ac, and 227 Th.
  • radioactive nuclides that emit positrons include 64 Cu, 68 Ga, 86 Y, and 89 Zr.
  • radioactive nuclides that emit ⁇ rays include 64 Cu, 90 Y, or 177 Lu.
  • radioactive nuclides that emit ⁇ rays include 99m Tc or 111 In.
  • radioactive halogen nuclide examples include 18 F, Al 18 F, 77 Br, 123 I, 125 I, 131 I, or 211 At.
  • the radioactive nuclide contained in the RI-labeled antibody of the present invention, and in turn in the liquid pharmaceutical composition of the present invention, is preferably Al 18 F, 89 Zr, 90 Y, 111 In, 177 Lu, or 225 Ac.
  • radionuclides can be produced by a predetermined nuclear reaction, or can be obtained as commercial products from Eckert & Ziegler, Thermo Fisher Scientific, Institute of Isotopes, POLATOM, etc.
  • the radionuclides thus produced or obtained can be used to form a complex with an antibody by subjecting them to a chemical treatment such as chelation to make them into a chemical form suitable for binding to an antibody, and thus the antibody is labeled with the radionuclides.
  • the antibody contained in the liquid pharmaceutical composition of the present invention and the radiolabeled antibody of the present invention is not particularly limited, and includes monoclonal antibodies (including full-length monoclonal antibodies), polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments thereof so long as they exhibit the desired binding specificity.
  • antibodies are generally expected to have a therapeutic effect when administered to a mammal suffering from a disease or disorder, and examples of such antibodies include antibodies against CD polypeptides such as CD3, CD4, CD8, CD19, CD20, and CD34; members of the HER receptor family, such as the EGF receptor (HER1), HER2, HER3, or HER4 receptor; cell adhesion molecules, such as LFA-1, Mac1, p150, 95, VLA-4, ICAM-1, VCAM, and av/b3 integrin, including either the a or b subunit thereof (e.g., anti-CD11a, anti-CD18, or anti-CD11b antibodies); growth factors such as VEGF; IgE; blood group antigens; flk2/flt3 receptors; obesity (OB) receptors; mpl receptors; CTLA-4; protein C, etc.
  • Specific examples of antibodies to be purified include, but are not limited to, those listed in Table 1.
  • the antibody may also be conjugated to a drug, and several antibody-drug conjugates have been approved. Preferred are trastuzumab, pertuzumab, panitumumab, rituximab, and bevacizumab. In the present specification, when the antibody is radiolabeled, it is distinguished by the term "radioactive.”
  • Step 1 of the present invention is a step of labeling an antibody with a radioactive nuclide to obtain a solution of a crude product of the radioactively labeled antibody labeled with the radioactive nuclide.
  • the method of labeling an antibody with a radionuclide is not particularly limited, but preferably a chelating agent is used.
  • the chelating agent is not particularly limited as long as it has a site in its structure where a radionuclide is coordinated, but preferably has a substituent that enables the chelating moiety, which is the site where a radionuclide is coordinated, to be complexed with an antibody.
  • Examples of the chelating moiety include CB-TE2A (1,4,8,11-Tetraazabicyclo[6.6.2]hexadecane-4,11-diacetic acid), CDTA (Cyclohexane-trans-1,2-diamine tetra-acetic acid), CDTPA (4-cyano-4-[[(dodecylthio)thioxomethyl]thio]-Pentanoic acid), DOTA (1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid), and DOTMA ((1R,4R,7R,10R)- ⁇ , ⁇ ', ⁇ ”, ⁇ '”-tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid).
  • CB-TE2A (1,4,8,11-Tetraazabicyclo[6.6.2]hexadecane-4,11-diacetic
  • DOTAM 1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane
  • DOTA-GA ⁇ -(2-Carboxyethyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid
  • DOTA-GA-NHS DOTP (((1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetrayl)tetrakis(methylene))tetraphosphonic acid)
  • DOTPA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrapropionic acid), 1,4,7,10-tetrakis(pyridin-2-ylmethyl)-1,4,7,10-tetraazacyclododecane(L py ), p-SCN-Bn-DOTA (S-2-(4-
  • H6phospa N,N'-(methylenephosphonate)-N,N'-[6-(methoxycarbonyl)pyridin-2-yl]-methyl-1,2-diaminoethane
  • HP-D03A Hydrophiletraazacyclododecanetriacetic acid
  • porphyrin DO3A (1,4,7,10-Tetraazacyclododecane-1,4,7-triacetic acid trisodium salt
  • DO3A-NHS (1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid mono-N-hydroxysuccinimide ester
  • the compound has a structure derived from the compound represented by the following formula (A).
  • R 11 , R 13 and R 14 each independently represent a group consisting of -(CH 2 ) p COOH, -(CH 2 ) p C 5 H 4 N, -(CH 2 ) p PO 3 H 2 , -(CH 2 ) p CONH 2 or -(CHCOOH)(CH 2 ) p COOH; one of R 12 and R 15 is a hydrogen atom, a carboxyl group or a carboxyalkyl group having 2 or 3 carbon atoms, and the other is a substituent for conjugating with the antibody; p is an integer of 0 to 3; when R 12 is a substituent for conjugating with the antibody, R 15 is a hydrogen atom; and when R 12 is not a substituent for conjugating with the antibody, R 15 is a substituent for conjugating with the antibody.)
  • formula (A) Specific examples include structures derived from compounds represented by the following formulas (A-1) to (A-13).
  • the linking site between the chelating moiety and the substituent that enables conjugation with the antibody is preferably an amide bond or a thiourea bond, with an amide bond being more preferred from the viewpoint of stability.
  • An amide bond is formed, for example, by the reaction of the N-hydroxysuccinimide ester (NHS) group of the above formula (A-10) or (A-11), the 2,6-dioxotetrahydro-2H-pyranyl group of the above formula (A-12), or the 2,3,5,6-tetrafluorophenol ester group of the above formula (A-13) with a primary amine.
  • a thiourea bond is formed by the reaction of the isothiocyanate group of the compounds shown in the above formula (A-2) or (A-3) with a primary amine.
  • At least one molecule of a chelating agent may be provided per antibody molecule, but it is preferable to provide between one and eight molecules.
  • the chelating agent may be connected to the antibody via a linker, such as a substituted or unsubstituted alkyl group, a substituted or unsubstituted heteroalkyl group, a polyethylene glycol (PEG) group, a peptide, a sugar chain, a disulfide group, or a combination thereof.
  • a linker such as a substituted or unsubstituted alkyl group, a substituted or unsubstituted heteroalkyl group, a polyethylene glycol (PEG) group, a peptide, a sugar chain, a disulfide group, or a combination thereof.
  • PEG polyethylene glycol
  • the chelating agent modifies the antibody site-specifically, more preferably in the Fc region, via a linker.
  • the linker can be one that contains a peptide consisting of 13 to 17 amino acid residues (hereinafter also referred to as "antibody-modified peptide") represented by the following formula (i) and is formed by a crosslinking reaction between the antibody-modified peptide modified with a crosslinking agent and the antibody.
  • antibody-modified peptide represented by the following formula (i) and is formed by a crosslinking reaction between the antibody-modified peptide modified with a crosslinking agent and the antibody.
  • the left side of the amino acid sequence on the paper indicates the N-terminus side
  • the right side of the amino acid sequence on the paper indicates the C-terminus side.
  • the position at which the chelating agent and the antibody-modified peptide are linked is not particularly limited, but can be linked directly or indirectly to, for example, the N-terminus or C-terminus of the antibody-modified peptide, preferably the N-terminus.
  • the C-terminus of the antibody-modified peptide may be modified, such as by amidation, to improve its stability.
  • Xa, Xb, Xc, and Xd respectively represent a number of consecutive Xs, b number of consecutive Xs, c number of consecutive Xs, and d number of consecutive Xs;
  • X is an amino acid residue having neither a thiol group nor a haloacetyl group in a side chain, a, b, c and d each independently represent an integer of 1 to 5 and satisfy a+b+c+d ⁇ 14, and Xaa1 and Xaa3 each independently represent represents an amino acid residue derived from an amino acid having a thiol group in the side chain, or one represents an amino acid residue derived from an amino acid having a thiol group in the side chain, the other represents an amino acid residue derived from an amino acid having a haloacet
  • Amino acid residues that may be included in X in the above formula (i) include, for example, those derived from amino acids such as glycine, alanine, phenylalanine, proline, asparagine, aspartic acid, glutamic acid, arginine, histidine, serine, threonine, tyrosine, and methionine, and X may be amino acid residues consisting of the same type of amino acid, or may be amino acid residues consisting of different types of amino acids.
  • amino acids such as glycine, alanine, phenylalanine, proline, asparagine, aspartic acid, glutamic acid, arginine, histidine, serine, threonine, tyrosine, and methionine
  • X may be amino acid residues consisting of the same type of amino acid, or may be amino acid residues consisting of different types of amino acids.
  • a, b, c, and d are not particularly limited as long as they are numbers within the ranges described above, but from the viewpoint of the binding stability between the peptide and the antibody, a is preferably an integer between 1 and 3, b is preferably an integer between 1 and 3, c is preferably an integer between 3 and 5, and d is preferably an integer between 1 and 3, provided that a+b+c+d ⁇ 14.
  • Xaa1 and Xaa3 are amino acid residues derived from amino acids having a thiol group in the side chain, and the amino acids may be the same or different.
  • amino acids having a thiol group in the side chain include cysteine and homocysteine.
  • Such amino acid residues are preferably bonded by a disulfide bond, or the sulfide group is bonded via a linker shown in the following formula (4).
  • the wavy line portion indicates the bond portion with the sulfide group.
  • Xaa1 and Xaa3 may be an amino acid residue derived from an amino acid having a thiol group in a side chain, and the other may be an amino acid residue derived from an amino acid having a haloacetyl group in a side chain. These are bonded via a thioether bond.
  • the haloacetyl group has its end substituted with a halogen such as iodine, and the halogen is eliminated by reaction with the thiol group in the other side chain to form a thioether bond.
  • Specific amino acid sequences of the antibody-modified peptide represented by formula (i) include, for example, the peptides described in WO 2016/186206, WO 2017/217347, and WO 2018/230257, and these can also be used.
  • the antibody-modified peptide preferably has any one of the following sequences (1) to (14) as its amino acid sequence, and more preferably has the following sequence (1), (2), (13) or (14).
  • (Xaa 2 ) represents a lysine residue, a cysteine residue, an aspartic acid residue, a glutamic acid residue, 2-aminosuberic acid, or a diaminopropionic acid residue
  • (Xaa 1 ) and (Xaa 3 ) both represent homocysteine residues.
  • amino acids other than (Xaa 1 ), (Xaa 2 ), and (Xaa 3 ) are represented by single-letter abbreviations.
  • the conjugate of the radionuclide and antibody of the present invention can be prepared, for example, by introducing radioactive iodine ( 123I , 131I ) as a radionuclide into the tyrosine residue of the antibody. Also, it can be prepared by introducing a substituent to which a radioactive halogen nuclide can stably bind into the antibody of the present invention, and reacting the resulting compound with a radioactive halogen ion.
  • the radiolabeled antibody of the present invention can be produced through two steps: a conjugation step of conjugating a chelating agent with an antibody, and a complex formation step of forming a complex between a radionuclide and a chelating agent (a step of producing a chelating agent chelated with a radionuclide).
  • the conjugation step may be performed before or after the complex formation step.
  • the radionuclide is chelated (complexed) with the chelating agent.
  • the radionuclide used here is preferably used in an ionizable form, more preferably in an ionic form, from the viewpoint of increasing the efficiency of complex formation.
  • the order of adding the radionuclide to the chelating agent does not matter as long as the complex can be formed with the radionuclide.
  • a solution in which radionuclide ions are dissolved in a solvent mainly composed of water can be used as the radionuclide.
  • the resulting complex may be purified using a filtration filter, a membrane filter, a column filled with various packing materials, chromatography, or the like.
  • a conjugation step is carried out after the complex formation step.
  • a complex is formed between a radioactive nuclide and a chelating agent having a first atomic group capable of click reaction as a substituent for enabling conjugation with an antibody.
  • step (B) a click reaction is carried out between the peptide-modified antibody, the Fc region of which has been site-specifically modified, and the chelating agent complexed in step (A) using the antibody-modified peptide shown in (i) above and an antibody-modified linker having a second atomic group capable of click reaction, to obtain the chelate complex of the present invention.
  • Steps (A) and (B) will be described in detail below.
  • the first atomic group and the second atomic group capable of a click reaction an appropriate one is selected according to the type of click reaction, and examples include a combination of an alkyne and an azide, and a combination of 1,2,4,5-tetrazine and an alkene.
  • These atomic groups may be such that the first atomic group has one of the above combinations of atomic groups, and the second atomic group has one of the above combinations of atomic groups that is different from the first atomic group.
  • the chelating linker is an alkyne and the antibody-modifying linker is an azide, or that the chelating linker is 1,2,4,5-tetrazine and the antibody-modifying linker is an alkene.
  • click reactions using such combinations of atomic groups include the Huisgen cycloaddition reaction and the inverse electron demand Diels-Alder reaction.
  • combinations of atomic groups capable of a click reaction include, as shown in the formula below, a combination of an atomic group containing dibenzocyclooctyne (DBCO) as the alkyne of the first atomic group (formula (1a)) and an atomic group containing an azide group as the azide of the second atomic group (formula (2a)), or a combination of an atomic group containing 1,2,4,5-tetrazine as the first atomic group (formula (1b)) and an atomic group containing trans-cyclooctene (TCO) as the alkene of the second atomic group (formula (2b)).
  • DBCO dibenzocyclooctyne
  • TCO trans-cyclooctene
  • R1 represents a linking site with a chelating agent
  • R2 represents a linking site with an antibody-modifying peptide in an antibody.
  • one of R3 and R4 represents a linking site to either a chelating agent or an antibody-modifying peptide in an antibody, the other represents a hydrogen atom, a methyl group, a phenyl group, or a pyridyl group, and R5 represents a linking site to either a chelating agent or an antibody-modifying peptide in an antibody depending on R3 or R4 .
  • DBCO dibenzylcyclooctyne
  • various commercially available DBCO reagents can be used. Specifically, for example, DBCO-C6-Acid, Dibenzocyclooctyne-Amine, Dibenzocyclooctyne Maleimide, DBCO-PEG acid, DBCO-PEG-NHS ester, DBCO-PEG-Alcohol, DBCO-PEG-amine, DBCO-PEG-NH-Boc, Carboxyrhodamine-PEG-DBCO, Sulforhodamine-PEG-DBCO, TAMRA-PEG-DBCO, DBCO-PEG-Biotin, DBCO-PEG-DBCO, DBCO-PEG-Maleimide, TCO-PEG-DBCO, DBCO-mPEG, etc.
  • DBCO-C6-Acid Dibenzocyclooctyne-Amine, Dibenzocycl
  • a chelating agent having a structure represented by the following formula (ii): A-B-C...
  • A is a chelating moiety represented by the following formula (iia):
  • Ra, Rb and Rc are independently a group consisting of -(CH 2 ) p COOH, -(CH 2 ) p C 5 H 4 N, -(CH 2 ) p PO 3 H 2 , -(CH 2 ) p CONH 2 or -(CHCOOH)(CH 2 ) p COOH, where p is an integer of 0 to 3, and either Rd or Re is a bonding site (*) with B, and the other is a hydrogen atom or a group consisting of -(CH 2 ) p COOH, -(CH 2 ) p C 5 H 4 N, -(CH 2 ) p PO 3 H 2 , -(CH 2 ) p CONH 2 or -(CHCOOH)(CH 2 ) p COOH, where p is an integer of 0 to 3.
  • B is represented by the following formula (iib).
  • La and Lb are independently a bonding linker having 1 to 50 carbon atoms containing at least an amide bond or a thiourea bond, t is an integer of 0 to 30, s is 0 or 1, * is a bonding site with A, and ** is a bonding site with C.
  • C is either an alkyne derivative represented by the following formula (iic) or a tetrazine derivative represented by the following formula (iid).
  • X is CHRk-** or N-**
  • Rk is independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • the Rk moieties may be combined to form a cycloalkyl group
  • Rf, Rg, Rh and Ri are independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 5 carbon atoms
  • Rf and Rg may be combined together or Rh and Ri may be combined to form a hydrocarbon ring
  • ** indicates a bonding site with B
  • ** indicates a bonding site with B
  • Rj indicates a hydrogen atom, a methyl group, a phenyl group or a pyridyl group.
  • A is the DOTA derivative
  • B is a linker having 1 to 50 carbon atoms and including a thiourea bond
  • La is 0 or 1
  • t is an integer of 0 to 30
  • Lb is a linker having 1 to 50 carbon atoms and including an amide bond or a thiourea bond
  • C is an alkyne derivative represented by formula (iic), in which X is N-**, Y is CHRk, Rk is a hydrogen atom, and Rf and Rg together form a benzene ring.
  • DOTA-PEGt-DBCO derivatives in which Rh and Ri together form a benzene ring, and ** is the bonding site with B; or B is even more preferably a DOTA-PEGt-Tz derivative, in which La is a bonding linker having 1 to 50 carbon atoms and including a thiourea bond, s is 0 or 1, and when s is 1, t is an integer of 0 to 30, Lb is a bonding linker having 1 to 50 carbon atoms and including an amide bond or a thiourea bond, and C is a tetrazine derivative represented by formula (iid).
  • B is even more preferably a DO3A-PEGt-DBCO derivative in which La is a bond linker having 1 to 50 carbon atoms and including an amide bond or a thiourea bond, s is 0 or 1, and when s is 1, t is an integer between 0 and 30, and Lb is a bond linker having 1 to 50 carbon atoms and including an amide bond, and C is an alkyne derivative represented by formula (iic), in which X is N-**, Y is CHRk, Rk is a hydrogen atom, Rf and Rg are taken together to form a benzene ring, Rh and Ri are taken together to form a benzene ring, and ** is a bond site with B.
  • B is even more preferably a DOTA-GA-PEGt-DBCO derivative in which La is a bond linker having 1 to 50 carbon atoms and containing an amide bond or a thiourea bond, s is 0 or 1, and when s is 1, t is an integer of 0 to 30, Lb is a bond linker having 1 to 50 carbon atoms and containing an amide bond or a thiourea bond, and C is an alkyne derivative represented by formula (iic), in which X is N-**, Y is CHRk, Rk is a hydrogen atom, Rf and Rg are taken together to form a benzene ring, Rh and Ri are taken together to form a benzene ring, and ** is a bond site with B.
  • the molar ratio of the chelating agent to the radionuclide is preferably 10/1 or more at the lower limit, more preferably 100/1 or more, and even more preferably 500/1 or more at the upper limit, preferably 10,000/1 or less, more preferably 8,000/1 or less, and even more preferably 7,000/1 or less, for example, in the range of 100/1 or more and 7,000/1 or less, and more preferably 500/1 or more and 7,000/1 or less.
  • the complex formation reaction is preferably carried out in a solvent.
  • the solvent that can be used include water, saline, or buffer solutions such as sodium acetate buffer, ammonium acetate buffer, phosphate buffer, phosphate-buffered saline, trishydroxymethylaminomethane buffer (Tris buffer), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer (HEPES buffer), and tetramethylammonium acetate buffer.
  • the amount of the solvent is not particularly limited, but from the viewpoint of practicality in the manufacturing process, at the start of step (A), the lower limit is 0.01 mL or more, preferably 0.1 mL or more, more preferably 1.0 mL or more, even more preferably 10 mL or more, and even more preferably 100 mL or more, and the upper limit is preferably 1000 mL or less, more preferably 100 mL or less, even more preferably 10 mL or less, and even more preferably 1.0 mL or less, for example, in the range of 0.01 mL or more and 100 mL or less.
  • the concentration of the chelating agent in the reaction solution of the complex formation reaction is, independently from the viewpoint of the yield of the desired chelating agent, at the start of step (A), preferably at a lower limit of 0.001 ⁇ mol/L or more, more preferably at a lower limit of 0.01 ⁇ mol/L or more, even more preferably at a higher limit of 0.1 ⁇ mol/L or more, and even more preferably at a higher limit of 1 ⁇ mol/L, and preferably at an upper limit of 1000 ⁇ mol/L or less, more preferably at a lower limit of 100 ⁇ mol/L or less, and even more preferably at a lower limit of 10 ⁇ mol/L, for example, in the range of 1 ⁇ mol/L or more and 100 ⁇ mol/L or less.
  • the temperature of the complex formation reaction may be, for example, room temperature (25°C) or under heated conditions, but from the viewpoint of simultaneously suppressing the decomposition of the chelating agent and improving the efficiency of complex formation, the lower limit is preferably 20°C or higher, more preferably 30°C or higher, even more preferably 35°C or higher, even more preferably 37°C or higher, and particularly preferably 45°C or higher, and the upper limit is preferably 150°C or lower, more preferably 120°C or lower, even more preferably 100°C or lower, and even more preferably 90°C or lower, for example, a range of 30°C or higher and 100°C or lower is preferred, and a range of 35°C or higher and 90°C or lower is more preferred.
  • the lower limit of the reaction time is preferably 5 minutes or more, more preferably 10 minutes or more, even more preferably 20 minutes or more, even more preferably 30 minutes or more, and particularly preferably 45 minutes or more
  • the upper limit is preferably 180 minutes or less, more preferably 150 minutes or less, even more preferably 120 minutes or less, even more preferably 90 minutes or less, and particularly preferably 60 minutes or less, for example, a range of 10 minutes or more to 150 minutes or less is preferred, and a range of 10 minutes or more to 60 minutes or less is more preferred.
  • the antibody used in step (B) is a peptide-modified antibody in which the Fc region (constant region) of the humanized antibody described in detail in the above section "(1-2) Antibody” has been site-specifically modified using the antibody-modified peptide shown in (i) above and an antibody-modified linker having a click-reactive second atomic group.
  • Antibody-modified peptides can be produced by combining amino acids, both natural and unnatural, and subjecting them to peptide synthesis methods such as liquid phase synthesis, solid phase synthesis, automated peptide synthesis, recombinant gene synthesis, and phage display.
  • peptide synthesis methods such as liquid phase synthesis, solid phase synthesis, automated peptide synthesis, recombinant gene synthesis, and phage display.
  • the functional groups of the amino acids used may be protected as necessary. These can be carried out, for example, in accordance with the methods described in WO 2017/217347 and WO 2018/230257.
  • the antibody-modified linker may be an antibody-modified peptide bound to a linker represented by the following formula (S1). *-(( L1 ) m -Z) k - L2 - AG2 ...(S1) (In the formula, * indicates a binding site to the N-terminus or C-terminus of the peptide, L1 is a polyethylene glycol (PEG) linker moiety; m is an integer of 1 to 50, Z is a second linker moiety connecting (L 1 ) m and L 2 ; k is 0 or 1; L2 is a second PEG linker moiety; AG2 is the second atomic group.
  • S1 is a polyethylene glycol (PEG) linker moiety
  • m is an integer of 1 to 50
  • Z is a second linker moiety connecting (L 1 ) m and L 2
  • k is 0 or 1
  • L2 is a second PEG linker moiety
  • AG2 is the second atomic group.
  • the structure of Z is not particularly limited as long as it is a linker structure that bonds (L 1 ) m and L 2 to each other, and may include, for example, an amino acid sequence consisting of 1 to 5 amino acid residues.
  • the amino acid sequence included in Z preferably includes a cysteine residue, and more preferably is bonded to L 2 via a thioether group formed by bonding a thiol group of the cysteine residue with a maleimide group.
  • the PEG linker portion constituting L2 preferably has a structure represented by the following formula (P2):
  • n is an integer, preferably 1 to 50, more preferably 1 to 20, even more preferably 2 to 10, and still more preferably 2 to 6.
  • One end of the PEG linker structure may be modified with a structure derived from a commercially available PEGylation reagent or a structure derived from a reagent commonly used for PEGylation, and examples include, but are not limited to, structures derived from diglycolic acid or its derivatives, and maleimide or its derivatives.
  • the method of introducing the second atomic group into the antibody-modified linker includes obtaining an antibody-modified peptide having the desired amino acid sequence by the above-mentioned method, dissolving the peptide in a solution containing a solubilizing agent and a reducing agent, and, if necessary, an acid, and adding an organic solvent solution of an atomic group containing an azide group or trans-cyclooctene (TCO) as the second atomic group to the solution, and stirring at room temperature to introduce the second atomic group.
  • TCO trans-cyclooctene
  • the azide group When introducing an atomic group containing an azide group as the second atomic group, the azide group can be introduced directly to the N-terminus or C-terminus of the peptide in the usual manner using a commercially available azide group introduction reagent, or the atomic group containing an azide group can be introduced via the linker structure described above.
  • azide group introduction reagents that can be used include silyl azide, phosphoric acid azide, alkyl ammonium azide, inorganic azide, sulfonyl azide, and PEG azide.
  • TCO when introducing an atomic group containing TCO as the second atomic group, TCO can be introduced directly to the N-terminus or C-terminus of the peptide using a commercially available click chemistry reagent containing TCO according to standard methods, or the atomic group containing TCO can be introduced via the linker structure described above.
  • the method of obtaining a peptide-modified antibody by binding an antibody-modified peptide to an antibody can be carried out, for example, by using a crosslinking agent.
  • the crosslinking agent is a chemical substance for covalently linking an antibody-modified peptide to an antibody, and examples thereof include crosslinking agents containing preferably two or more succinimidyl groups, such as disuccinimidyl glutarate (DSG) and disuccinimidyl suberate (DSS), crosslinking agents consisting of a compound or a salt thereof containing preferably two or more imido acid moieties, such as dimethyl adipimidate, and compounds having disulfide bonds, such as dimethyl 3,3'-dithiobispropionimidate and dithiobissuccinimidyl propionic acid, or a salt thereof.
  • DSG disuccinimidyl glutarate
  • DSS disuccinimidyl suberate
  • crosslinking agents consisting of a
  • a crosslinking reaction can be caused between the amino acid residue of Xaa 2 in the antibody-modified peptide and the antibody.
  • the crosslinking reaction in the antibody occurs site-specifically between the amino acid residue of Xaa 2 and the Lys252 residue according to the Eu numbering in the humanized antibody of the present invention. These Lys residues are present in the Fc region of the humanized antibody of the present invention.
  • the antibody-modified peptide can be bound to the antibody by, for example, dispersing the above-mentioned antibody-modified peptide, the antibody, the crosslinker, and, if necessary, the catalyst in an appropriate buffer solution at a temperature of 10°C to 30°C.
  • the reaction time can be about 10 minutes to 2 hours.
  • the molar ratio of the peptide to the antibody during the reaction, as antibody/peptide is preferably 1/5 or more, more preferably 1/3 or more, and even more preferably 1/1.5 or more, and preferably 20/1 or less, more preferably 10/1 or less, even more preferably 5/1 or less, even more preferably 1/1 or less, and especially preferably 1/1.7 or less, and is preferably in the range of, for example, 1/5 to 20/1, and more preferably 1/1.5 to 1/1.7.
  • the peptide-modified antibody obtained through the above steps is a mixture containing an arbitrary ratio of an antibody in which one antibody molecule is bound to one antibody-modified peptide molecule (hereinafter referred to as a "monovalent antibody”) and an antibody in which two antibody-modified peptide molecules are bound to one antibody molecule (hereinafter referred to as a "bivalent antibody”), and this may be subjected to the subsequent steps as is, or the unmodified antibody, the monovalent antibody, and the bivalent antibody may be separated and purified using a filtration filter, a membrane filter, a column filled with various packing materials, various types of chromatography, or other methods, and then only the antibody of one of the valencies may be subjected to the subsequent steps.
  • the mixture containing them may be subjected to the subsequent steps.
  • any of the purification methods described above may be used.
  • the shape of the packing carrier suitable for separating and purifying proteins such as antibodies can be gel (e.g., column gel), particles, beads, nanoparticles, microparticles, and macrobeads, and the material of the carrier can be magnetic, latex, agarose, glass, cellulose, sepharose, nitrocellulose, polystyrene, and other polymeric materials.
  • gel e.g., column gel
  • the material of the carrier can be magnetic, latex, agarose, glass, cellulose, sepharose, nitrocellulose, polystyrene, and other polymeric materials.
  • a specific example is an IgG-BP column in which the above-mentioned antibody-modified peptide is bound to a column gel (see WO 2021/080008).
  • the IgG-BP column is a column on which an IgG-binding peptide is immobilized. Bivalent antibodies cannot bind to the column because their binding sites are already occupied by the IgG-binding peptide, and only monovalent antibodies show affinity to the column.
  • a first antibody composition containing relatively large amounts of unmodified antibodies and monovalent antibodies, and a second antibody composition containing relatively large amounts of bivalent antibodies can be separated and purified by utilizing the difference in their interactions with the antibody-modified peptide.
  • the molar ratio of unmodified antibodies to monovalent antibodies in the first antibody composition is 4-47:53-96, preferably 4-30:70-96, more preferably 4-20:80-96, and even more preferably 4-10:90-96.
  • the first antibody composition or the second antibody composition thus separated and purified may be used as is in the subsequent click reaction in step (B), or the protein concentration of the peptide-modified antibody contained therein may be adjusted before being used in the click reaction in step (B).
  • the following describes an example of separating and purifying a peptide-modified antibody to be used in the click reaction in step (B).
  • the peptide-modified antibody is subjected to a click reaction in step (B) through an antibody modification step of site-specifically modifying the Fc region of an antibody with a linker (antibody-modifying linker) comprising an antibody-modifying peptide to obtain the modified antibody, and an antibody purification step of purifying the modified antibody using a carrier on which the above-mentioned immunoglobulin-binding protein is immobilized.
  • the antibody purification step further includes a retention step of retaining the modified antibody retained on the carrier on the carrier, a washing step of washing the modified antibody not retained on the carrier, and an elution step of eluting the modified antibody retained on the carrier in the retention step.
  • modified antibodies are obtained as a mixture containing unmodified antibodies not modified with an antibody-modifying linker, monovalent antibodies, and divalent antibodies
  • a first antibody composition relatively rich in unmodified antibodies and monovalent antibodies and a second antibody composition relatively rich in divalent antibodies are eluted by utilizing the differences in the interactions of the unmodified antibodies, monovalent antibodies, and divalent antibodies with immunoglobulin-binding proteins.
  • a second antibody composition relatively rich in peptide-modified antibodies (divalent antibodies) that have a low level of interaction with immunoglobulin-binding proteins is eluted
  • a first antibody composition relatively rich in peptide-modified antibodies (unmodified antibodies and monovalent antibodies) that have a high level of interaction with immunoglobulin-binding proteins is eluted.
  • containing a relatively large amount of unmodified antibodies and monovalent antibodies means that the total amount of unmodified antibodies and monovalent antibodies contained in the first antibody composition is greater than the divalent antibodies contained in the antibody composition, and preferably means that the total amount of unmodified antibodies and monovalent antibodies is 55% or more, 63% or more, 70% or more, 80% or more, or 90% or more relative to the total amount (100%) of unmodified antibodies and modified antibodies contained in the antibody composition; and "containing a relatively large amount of divalent antibodies” means that the amount of divalent antibodies contained in the second antibody composition is greater than the monovalent antibodies contained in the antibody composition, and preferably means that the amount of divalent antibodies is 55% or more, 63% or more, 70% or more, 80% or more, or 90% or more relative to the total amount (100%) of unmodified antibodies and modified antibodies contained in the antibody composition.
  • a solution containing a mixture of unmodified antibodies, monovalent antibodies, and divalent antibodies obtained in the antibody modification step is added to the column, and the unmodified antibodies and monovalent antibodies retained on the carrier are retained on the column, while the divalent antibodies not retained on the carrier are allowed to pass through.
  • the solution passed through in the retention step constitutes a part of the second antibody composition.
  • the dilution solvent is not particularly limited as long as it dissolves the peptide-modified antibodies and is unlikely to aggregate or denature in the solvent, and water, saline, or buffers such as sodium acetate buffer, ammonium acetate buffer, phosphate buffer, phosphate buffered saline, 2-amino-2-(hydroxymethyl)propane-1,3-diol (Tris) buffer, 2-[4-(2-hydroxyethyl)-1-piperazinyl]-ethanesulfonic acid (HEPES) buffer, etc., can be used, and it is preferable to use any of the buffers described above, and it is more preferable to use sodium acetate buffer.
  • buffers such as sodium acetate buffer, ammonium acetate buffer, phosphate buffer, phosphate buffered saline, 2-amino-2-(hydroxymethyl)propane-1,3-diol (Tris) buffer, 2-[4-(2-hydroxyethyl)-1
  • the concentration of the buffer is 10 mmol/L or more, preferably 15 mmol/L or more, more preferably 20 mmol/L or more, and 1000 mmol/L or less, preferably 500 mmol/L or less, more preferably 100 mmol/L or less.
  • the elution solvent may contain an additive such as sodium chloride or potassium chloride. The concentration of the additive contained in the elution solvent is not particularly limited, but for example, 0.15 mol/L can be used.
  • the modified antibody remaining in the column is eluted from the column using a washing solvent. Since the solution passed through the column in the above-mentioned retention step and the solution eluted from the column in the washing step contain relatively large amounts of bivalent antibodies, they can be used together as the second antibody composition.
  • the washing solvent is not particularly limited as long as it is a buffer solution in which the peptide-modified antibody dissolves, is unlikely to aggregate or denature in the solvent, and has an appropriate pH buffering ability, and can be, for example, a sodium acetate buffer solution, an ammonium acetate buffer solution, a phosphate buffered saline solution, a 2-amino-2-(hydroxymethyl)propane-1,3-diol (Tris) buffer solution, a 2-[4-(2-hydroxyethyl)-1-piperazinyl]-ethanesulfonic acid (HEPES) buffer solution, or the like.
  • a sodium acetate buffer solution an ammonium acetate buffer solution
  • a phosphate buffered saline solution a 2-amino-2-(hydroxymethyl)propane-1,3-diol (Tris) buffer solution
  • Tris 2-amino-2-(hydroxymethyl)propane-1,3-diol
  • the concentration of the buffer used in the washing solvent is, as a lower limit, 20 mmol/L or more, preferably 30 mmol/L or more, and, as an upper limit, 200 mmol/L or less, preferably 70 mmol/L or less.
  • the pH of the washing solvent is, as a lower limit, 4.0 or more, preferably 4.5 or more, more preferably 4.8 or more, and, as an upper limit, 7.4 or less, preferably 6.0 or less, more preferably 5.2 or less.
  • the elution solvent may contain an additive such as sodium chloride, potassium chloride, etc.
  • concentration of the additive contained in the elution solvent is not particularly limited, but for example, 0.15 mol/L can be used.
  • the modified antibodies retained on the carrier are eluted from the column using an elution solvent, i.e., the first antibody composition containing relatively large amounts of unmodified antibodies and monovalent antibodies is eluted from the column using an elution solvent.
  • an elution solvent a buffer solution such as a sodium acetate buffer, an ammonium acetate buffer, a citrate buffer, etc. can be used.
  • the elution solvent may contain an additive such as sodium chloride or potassium chloride.
  • the concentration of the additive contained in the elution solvent is not particularly limited, but for example, 0.15 mol/L can be used.
  • the concentration of the buffer is, as a lower limit, 20 mmol/L or more, preferably 30 mmol/L or more, and as an upper limit, 200 mmol/L or less, preferably 70 mmol/L or less.
  • the pH of the elution solvent is preferably, as a lower limit, pH 3.0 or more, and as an upper limit, pH 4.2 or less, from the viewpoint of weakening the interaction between the unmodified antibody and the monovalent antibody and the immunoglobulin-binding protein and preventing denaturation and aggregation of the antibody.
  • the first antibody composition or the second antibody composition obtained in the antibody purification step may be used as is in the click reaction in the subsequent step (B), or the protein concentration of the peptide-modified antibody contained therein may be adjusted before being used in the click reaction in step (B).
  • the click reaction in step (B) is carried out between a first atomic group capable of click reaction possessed by the chelating agent and a second atomic group capable of click reaction possessed by the peptide-modified antibody.
  • This click reaction forms a linking group (a substituent that enables conjugation with the antibody) that links the chelating agent to the antibody.
  • the order of addition does not matter.
  • one of the complex and the peptide-modified antibody may be added to a reaction vessel containing a solvent, and then the other may be added to cause the reaction; or one of the chelating agent and the antibody may be dispersed in a solvent, and the other may be added to the dispersion and caused to react.
  • they may be added simultaneously to a reaction vessel containing a solvent and caused to react.
  • the solvent used in the click reaction in step (B) may be a solvent containing water, such as water, saline, or a buffer solution such as sodium acetate buffer, ammonium acetate buffer, phosphate buffer, phosphate-buffered saline, Tris buffer, HEPES buffer, or tetramethylammonium acetate buffer.
  • a buffer solution such as sodium acetate buffer, ammonium acetate buffer, phosphate buffer, phosphate-buffered saline, Tris buffer, HEPES buffer, or tetramethylammonium acetate buffer.
  • the pH at 25°C is preferably 4.0 to 10.0, more preferably 5.5 to 8.5, from the viewpoint of achieving both the stability of the complex and the antibody and the binding efficiency thereof.
  • the amount of reaction liquid is not particularly limited, but from the viewpoint of practicality in the manufacturing process, at the start of step (B), the lower limit is preferably 0.001 mL or more, more preferably 0.01 mL or more, even more preferably 0.1 mL or more, and even more preferably 1 mL or more, and the upper limit is preferably 1000 mL or less, more preferably 100 mL or less, even more preferably 10 mL or less, and even more preferably 1 mL or less, for example, a range of 0.001 mL or more to 1000 mL or less is preferred, and a range of 0.1 mL or more to 10 mL or less is more preferred.
  • the concentrations of the chelating agent and the antibody in the reaction solution at the start of step (B) are each independently preferably 0.001 ⁇ mol/L or more as a lower limit, more preferably 0.01 ⁇ mol/L or more, even more preferably 0.1 ⁇ mol/L or more, and even more preferably 1.0 ⁇ mol/L or more, and preferably 1000 ⁇ mol/L or less as an upper limit, and more preferably 100 ⁇ mol/L or less, for example, a range of 0.1 ⁇ mol/L or more to 1000 ⁇ mol/L or less is preferred, and a range of 1 ⁇ mol/L or more to 100 ⁇ mol/L or less is more preferred from the viewpoint of the yield of the desired chelate complex.
  • the upper limit of the reaction temperature for the click reaction in step (B) is preferably 50°C or lower, more preferably 40°C or lower.
  • the lower limit of the reaction temperature is not particularly limited as long as the reaction proceeds at that temperature, but is preferably 15°C or higher.
  • the reaction time for the click reaction is preferably 5 minutes or more, more preferably 10 minutes or more, and is preferably 24 hours or less, more preferably 20 hours or less, provided that the reaction temperature is as described above. For example, a range of 5 minutes to 24 hours is preferred, and more preferably a range of 10 minutes to 20 hours is preferred.
  • the radiolabeled antibody produced by steps (A) and (B) is an antibody in which a specific site (e.g., a lysine residue in the Fc region of the antibody) that specifically binds to an antigen is specifically modified with a chelating agent.
  • This radiolabeled antibody has one or two molecules of the chelating agent per antibody molecule.
  • the chelating agent site-specifically modifies the Fc region of the antibody via a linker.
  • the linker is composed of a chelating linker connected to the chelating agent, a first atomic group connected to the linker, a second atomic group capable of click-reacting with the first atomic group, and an antibody-modified linker (including the antibody-modified peptide represented by the above formula (i)) connected to the second atomic group. Therefore, the linker has a chemical structure derived from the first atomic group and the second atomic group.
  • a chemical structure may be a triazole skeleton-containing structure represented by the following formula (10a) or (10b) or a pyridazine skeleton-containing structure represented by the following formula (10c).
  • Formula (10a) and formula (10b) are isomers, so they may be included in any ratio.
  • R 1A represents a bonding site with a chelating linker
  • R 2A represents a bonding site with an antibody-modifying linker
  • one of R 3A and R 4A represents a hydrogen atom, a methyl group, a phenyl group or a pyridyl group, the other represents a bonding site with a chelating linker
  • R 5A represents a bonding site with an antibody-modifying linker.
  • Step 2 A step of contacting the solution of the crude product obtained in step 1 with a cation exchange material to adsorb the radiolabeled antibody onto the cation exchange material
  • a cation exchange material refers to a negatively charged solid phase having free cations that are exchanged for cations in the solution passing over or through the solid phase.
  • the charge can be obtained by attaching one or more charged ligands to the solid phase, for example by covalent bonding.
  • the charge can be an inherent property of the solid phase (e.g., silica).
  • the cation exchange material can be a membrane, a monolith, or a resin.
  • a preferred cation exchange material is one that has a charged group on the resin support.
  • the charged group can be a carboxyl group, a sulfo group, or a phosphate group, but can also include, for example, a sulfonate group, a carboxymethyl group, a sulfoisobutyl group, a sulfoethyl group, a carboxyl group, a sulfopropyl group, a sulfonyl group, a sulfoxyethyl group, a benzenesulfonic acid group, or an orthophosphate group, with a sulfopropyl group or a carboxymethyl group being more preferred.
  • the resin support examples include carboxymethylcellulose and agarose.
  • the cation exchange material is a cation exchange chromatography material, and may be provided in the form of a cation exchange chromatography column in which the material is packed in a column.
  • cation exchange materials include carboxymethylcellulose, BAKERBOND ABX TM , sulfopropyl (SP) immobilized agarose (e.g., SP-SEPHAROSE FAST FLOW TM , SP-SEPHAROSE FAST FLOW XL TM , or SP-SEPHAROSE HIGH PERFORMANCE TM from GE Healthcare and HiTrap SP FF TM from Cytiva), CAPTO S TM (GE Healthcare), FRACTOGEL-SO3 TM , FRACTOGEL-SE HICAP TM , and FRACTOPREP TM (EMD Merck), agarose-immobilized sulfonyl (eg, S-SEPHAROSE FAST FLOW TM from GE Healthcare), and SUPER SP TM (Tosoh Biosciences).
  • SP sulfopropyl
  • SP sulfopropyl
  • SP sulfopropyl
  • SP sulfopropyl
  • SP
  • the cation exchange material can be washed before the "contact between the radiolabeled antibody and the cation exchange material" described later, and is preferably washed (so-called equilibration).
  • the equilibration liquid is a liquid used to equilibrate the cation exchange material before contacting the solution of the crude product of the radiolabeled antibody with the cation exchange material.
  • As the equilibration liquid it is preferable to use a solution having the same composition as the "elution liquid” used in step 3, and it is more preferable to use two types of solutions: a liquid having the same composition as the washing liquid described later in "(2-3) Washing step", and a solution having the same composition as the "elution liquid” used in step 3.
  • the pH of the equilibration liquid is in the range of 4 to 8, and preferably 5 to 6.
  • the amount of the cation exchange material used is preferably 0.01 mL or more and more preferably 1 mL or less per 1 mg of antibody
  • step 2 the solution of the radiolabeled antibody crude product obtained in step 1 is contacted with a cation exchange material (described above) to adsorb the radiolabeled antibody to the cation exchange material.
  • a cation exchange material described above
  • contact or “contacting” means exposing the radiolabeled antibody to the cation exchange material under appropriate conditions so that the radiolabeled antibody is reversibly immobilized (i.e., adsorbed) in or on the cation exchange material by ionic interaction between the radiolabeled antibody and the charged group or groups of charged groups of the cation exchange material.
  • the contact means passing the solution of the radiolabeled antibody crude product through the cation exchange chromatography column.
  • the solution of the crude product of the radiolabeled antibody is not particularly limited as long as it is prepared so that the radiolabeled antibody can be adsorbed to the cation exchange material.
  • the pH of the solution of the crude product of the radiolabeled antibody can be lower than the isoelectric point of the radiolabeled antibody.
  • a "positively charged additive" arginine, for example
  • the concentration of the positively charged additive (arginine, for example) included in the solution of the crude product of the radiolabeled antibody can be preferably 30 mmol/L or less.
  • the radiolabeled antibody is adsorbed to the cation exchange material.
  • the washing solution used in this step is used to remove one or more contaminants from the cation exchange material without substantially eluting the desired radiolabeled antibody.
  • the contaminants are substances other than the desired radiolabeled antibody, such as unreacted radionuclides, antibodies, chelating agents, etc., present in the solution of the crude radiolabeled antibody.
  • the cleaning solution preferably contains one or more pH adjusters, including, but not limited to, histidine, 2-morpholinoethanesulfonic acid (MES), 2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1,3-diol (Bis-Tris), N-(2-acetamido)iminodiacetic acid (ADA), piperazine-1,4-bis(2-ethanesulfonic acid) (PIPES), N-(2-acetamido)-2-aminoethanesulfonic acid (N-(2-acetamido)-2-aminoethanesulfonic acid), and 1,2-dimethylphenylsulfonyl ether (DMSO).
  • pH adjusters including, but not limited to, histidine, 2-morpholinoethanesulfonic acid (MES), 2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1,3-diol (
  • the buffer is at least one selected from the group consisting of sulfonic acid (ACES), 2-hydroxy-3-morpholinopropanesulfonic acid (MOPSO), N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES), 3-morpholinopropane-1-sulfonic acid (MOPS), N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid (TES) and 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (HEPES).
  • a pH of the washing solution used in step 3 described below is usually higher than the pH of the solution used when contacting the radiolabeled antibody with the cation exchange material.
  • the pH of the washing solution is preferably 4 or higher, more preferably 5 or higher, and is preferably 7 or lower, and more preferably 6.5 or lower.
  • the washing step may be carried out once or, if desired, 2 to 5 times, and preferably, a liquid volume of at least 3 times the volume of the cation exchange material is used per washing step.
  • Step 3 Step of eluting the radiolabeled antibody adsorbed on the cation exchange material in step 2 using an eluent containing one or more additives (3-1) Eluent
  • the term "eluent” refers to a solution used for eluting the radiolabeled antibody from the cation exchange material to which the antibody is adsorbed.
  • the eluent is set so that the radiolabeled antibody is eluted from the cation exchange material.
  • An additive hereinafter also referred to as "first additive” and corresponding to additive (A) contained in the composition of the radiopharmaceutical composition which is the final product of the production method of the present invention is added to the eluent.
  • the first additive is not limited as long as it is a pharmaceutical additive and elutes the radiolabeled antibody from the cation exchange material, but from the viewpoint of increasing the radiochemical yield, it is preferable that the first additive contains a positively charged additive (corresponding to additive (a1)) and a pH adjuster.
  • a positively charged additive refers to a substance that is made of or contains a compound that is positively charged when it comes into contact with water.
  • Compounds that are positively charged when they come into contact with water usually have a cationic group in the molecule, and examples of such cationic groups include amino groups such as primary amino groups, secondary amino groups, and tertiary amino groups, onium bases such as quaternary ammonium groups and phosphonium groups, amino acid residues such as arginyl groups, lysyl groups, histidyl groups, and guanidyl groups, and heterocyclic groups such as imidazole groups, but are preferably compounds with a guanidine skeleton.
  • amino groups such as primary amino groups, secondary amino groups, and tertiary amino groups
  • onium bases such as quaternary ammonium groups and phosphonium groups
  • amino acid residues such as arginyl groups, lysyl groups, histidyl groups, and guanidyl groups
  • heterocyclic groups such as imidazole groups, but are preferably compounds with a guanidine skeleton.
  • Examples of compounds with a guanidine skeleton include arginine, or arginine derivatives such as acylated arginine and agmatine, but are preferably arginine.
  • the concentration of arginine in the eluent is preferably 10 mmol/L or more, more preferably 30 mmol/L or more, and even more preferably 50 mmol/L or more, and is preferably 500 mmol/L or less, more preferably 400 mmol/L or less, and even more preferably 300 mmol/L or less.
  • the positively charged additive may contain salts intended to increase conductivity.
  • Usable salts include sodium chloride, sodium acetate, potassium chloride, etc., and at least one of them can be included in the positively charged additive.
  • sodium chloride it is preferably used at a concentration of 100 mmol/L or more, more preferably 150 mmol/L or more, preferably 300 mmol/L or less, more preferably 200 mmol/L or less.
  • a pharmaceutical additive that achieves the purpose of adjusting the eluent to a desired pH can be used, and specifically, a histidine buffer is preferable, and in addition to or instead of the histidine buffer, at least one buffer selected from the group consisting of 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (HEPES) buffer, phosphate buffer, and citrate buffer can be used.
  • HEPES 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid
  • the concentration of histidine in the eluent is preferably 10 mmol/L or more, more preferably 20 mmol/L or more, even more preferably 30 mmol/L or more, and is preferably 300 mmol/L or less, more preferably 250 mmol/L or less, even more preferably 200 mmol/L or less.
  • the pH of the eluent is preferably higher than 6, and is preferably 8 or lower, more preferably 7 or lower.
  • the eluent of the present invention may be a formulation component of a radiopharmaceutical composition.
  • the radiolabeled antibody adsorbed on the cation exchange material can be eluted from the cation exchange material by passing the above-mentioned eluent through the column to which the radiolabeled antibody is adsorbed.
  • the passage of the eluent may be carried out once, or may be carried out two or three times as desired.
  • a volume of the liquid used for each elution step is at least three times the volume of the cation exchange material.
  • a diluent in producing a radiopharmaceutical composition, may be added to the eluate containing the radiolabeled antibody after carrying out step 3. Since the eluate of the present invention can be a formulation, it is possible to formulate the composition without solvent exchange by adding a diluent to the eluate.
  • a diluent water for injection or physiological saline is used.
  • a further additive hereinafter also referred to as "second additive"; equivalent to additive (B)
  • the second additive is not limited as long as it is a pharmaceutical additive, and examples thereof include stabilizers, surfactants, antioxidants, chelating agents, and pH adjusters.
  • the second additive can be added, for example, by dissolving it in a diluent.
  • liquid radiopharmaceutical composition containing a radiolabeled antibody as an active ingredient, which is an antibody labeled with a radioactive nuclide, and one or more additives
  • liquid refers to a liquid or fluid state under normal conditions (e.g., in the atmosphere, at room temperature/normal temperature), and also includes a state having some viscosity. Specific examples include, but are not limited to, a solution, a suspension, a dispersion, an emulsion, and the like.
  • the liquid pharmaceutical composition can be produced, for example, by dissolving the chelate complex of the present invention produced by the above-mentioned method in a solvent mainly composed of water and approximately isotonic with a living body.
  • a solvent mainly composed of water and approximately isotonic with a living body In this case, other pharma-ceutical acceptable components may be contained as necessary.
  • An effective amount of a liquid pharmaceutical composition is administered to a living body orally or parenterally, such as intravenously, subcutaneously, intraperitoneally or intramuscularly, and is used for treating or diagnosing a disease, or detecting a lesion.
  • the subjects of administration herein include, but are not limited to, humans, or animals such as mice, rats, monkeys, guinea pigs, chimpanzees, sheep, goats, dogs, cats, pigs, cows, and horses, with humans being preferred.
  • the liquid pharmaceutical composition of the present invention can be used for radionuclide internal therapy.
  • Radionuclide internal therapy involves administering a radiopharmaceutical intravenously or orally, accumulating the radiopharmaceutical at a lesion site such as a primary cancer lesion or a metastatic lesion, and destroying cancer cells at the lesion site by radiation emitted from the radiopharmaceutical. Therefore, the liquid pharmaceutical composition of the present invention can be preferably used for radionuclide internal therapy for cancer.
  • the dosage and dose of the pharmaceutical composition are appropriately selected depending on the type of radionuclide, the effectiveness of the active ingredient, the form and route of administration, the stage of progression of the disease (especially cancer), the patient's body type, weight, and age, and the type and amount of the therapeutic drug for other diseases used in combination.
  • the dosage of the pharmaceutical composition may be expressed as a human equivalent dose (HED) calculated by converting the mouse dosage into a human dosage based on body surface area.
  • the radionuclide when the dose for a mouse weighing 20 g is used to calculate the HED for a human weighing 60 kg, if the radionuclide is iodine-131, it can usually be administered at 100 MBq/kg or less per dose. It can also be effective at a dose of 50 MBq/kg or less per dose. For example, if the radionuclide is yttrium-90, it can usually be administered at 50 MBq/kg or less per dose. It can also be effective at a dose of 30 MBq/kg or less per dose. For example, if the radionuclide is lutetium-177, it can usually be administered at 50 MBq/kg or less per dose.
  • radionuclide is iodine-131
  • the toxicity to the thyroid gland where iodine accumulates physiologically can be reduced by administering a non-radioactive iodine preparation (stable iodine preparation) in advance.
  • Potassium iodide, potassium iodate, etc. can be used as the stable iodine preparation.
  • the obtained radiopharmaceutical composition may be used for cancer diagnosis in radioactive nuclide internal therapy for cancer.
  • the pharmaceutical composition for cancer diagnosis of the present invention may be used for diagnosis before RI internal therapy for cancer, or for diagnosis after radioactive nuclide internal therapy for cancer. By using it for diagnosis before radioactive nuclide internal therapy for cancer, it can be used to determine the treatment selection of whether or not to perform radioactive nuclide internal therapy for cancer using the liquid pharmaceutical composition of the present invention containing a radioactive nuclide that emits beta rays.
  • radioactive nuclide internal therapy for cancer, it can be used to determine whether or not radioactive nuclide internal therapy for cancer using the liquid pharmaceutical composition of the present invention containing a radioactive nuclide that emits beta rays is effective, and to optimize the treatment plan, such as increasing or decreasing the dosage.
  • Step A labeling an antibody with a radioactive nuclide to obtain a crude solution of radiolabeled antibody;
  • Step B contacting the solution of the crude product obtained in Step A with a cation exchange material to adsorb the radioactively labeled antibody onto the cation exchange material; and
  • Step C eluting the radioactively labeled antibody adsorbed onto the cation exchange material in Step B using an eluent containing one or more additives.
  • a method for purifying a radiolabeled antibody is provided.
  • Step A can be carried out in the same manner as step 1 in the above "(1) Pharmaceutical composition and its production method.”
  • Step B can be carried out in the same manner as step 2 in the above "(1) Pharmaceutical composition and its production method.”
  • Step C can be carried out in the same manner as step 3 in "(1) Pharmaceutical composition and method for producing same” above.
  • the eluate obtained through step C contains radioactively labeled antibody at a high concentration, and therefore a high radiochemical yield is expected. In addition, high radiochemical purity can be maintained.
  • the liquid pharmaceutical composition of the present invention when stored at room temperature, has a radiochemical purity of at least a certain percentage at the time when a period of 1 to 5 times the half-life of the radioactive metal nuclide constituting the radiolabeled antibody contained in the liquid pharmaceutical composition has elapsed.
  • the radioactive metal nuclide is a positron-emitting nuclide (e.g., Zr-89)
  • the radiochemical purity of the complex when stored at room temperature for 7 days from the end of production is preferably 90% or more, more preferably 95% or more.
  • the radiochemical purity of the complex when stored at room temperature for 14 days from the end of production is preferably 90% or more, more preferably 95% or more.
  • room temperature in this specification preferably refers to "normal temperature” as defined in the Japanese Pharmacopoeia, specifically 15 to 25°C.
  • the temperature may deviate from the temperature of the set storage conditions, and even if the temperature deviation occurs, it is preferable for the liquid pharmaceutical composition to have little change in radiochemical purity.
  • the radiochemical purity refers to the percentage of the radioactivity (counts) of the peak corresponding to the complex relative to the total radioactivity (counts) detected when the sample is analyzed using a commercially available radiation detector.
  • High performance liquid chromatography or thin layer chromatography can be used to analyze the radiochemical purity, but thin layer chromatography is preferably used. More preferably, thin layer chromatography is used under the conditions described in the Examples below.
  • the radiopharmaceutical composition comprises a second additive (B) in addition to the first additive (A), The method according to [1], further comprising the step of adding a diluent containing the second additive (B) to the eluate containing the radiolabeled antibody after the step 3.
  • the radioactive nuclide is a radioactive metal nuclide or a radioactive halogen nuclide.
  • the radionuclide is Al 18 F, 89 Zr, 90 Y, 111 In, 177 Lu, or 225 Ac.
  • the pH adjuster is selected from the group consisting of histidine, 2-morpholinoethanesulfonic acid (MES), 2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1,3-diol (Bis-Tris), N-(2-acetamido)iminodiacetic acid (ADA), piperazine-1,4-bis(2-ethanesulfonic acid) (PIPES), N-(2-acetamido)-2-aminoethanesulfonic acid (ACES), 2-hydroxy-3-morpholinoethanesulfonic acid (2-hydroxyethyl)amino ...
  • MES 2-morpholinoethanesulfonic acid
  • ADA N-(2-acetamido)iminodiacetic acid
  • PPES piperazine-1,4-bis(2-ethanesulfonic acid)
  • AES N-(2-acetamido)-2-aminoethanesulfonic
  • the buffer is at least one selected from the group consisting of morpholinopropane-1-sulfonic acid (MOPSO), N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES), 3-morpholinopropane-1-sulfonic acid (MOPS), N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid (TES) and 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (HEPES).
  • MOPSO morpholinopropane-1-sulfonic acid
  • BES N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid
  • MOPS 3-morpholinopropane-1-sulfonic acid
  • TES N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid
  • HEPES 2-[4-(2-hydroxyethyl)-1-piperazin
  • the radiopharmaceutical composition comprises, as the additive (A), a positively charged additive (a1) and a pH adjuster; The method according to any of [1] to [10], wherein the eluent comprises the positively charged additive (a1) and the pH adjuster contained in the radiopharmaceutical composition.
  • the positively charged additive (a1) comprises a compound having a guanidine skeleton.
  • the compound having a guanidine skeleton is at least one compound selected from the group consisting of arginine, acylated arginine, and agmatine.
  • the positively charged additive (a1) further contains at least one compound selected from the group consisting of sodium chloride, potassium chloride and sodium acetate.
  • the pH adjuster comprises at least one buffer selected from the group consisting of histidine, 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (HEPES), phosphoric acid, and citric acid.
  • the eluent containing the additive (A) contains a histidine buffer containing arginine.
  • Step A labeling an antibody with a radioactive nuclide to obtain a crude solution of a radiolabeled antibody;
  • Step B contacting the solution of the crude product obtained in Step A with a cation exchange material to adsorb the radioactively labeled antibody onto the cation exchange material; and
  • Step C eluting the radioactively labeled antibody adsorbed onto the cation exchange material in Step B using an eluent containing one or more additives.
  • Methods for purifying radiolabeled antibodies including, Methods for purifying radiolabeled antibodies.
  • the radiolabeled antibody is a conjugate of an antibody and a chelating agent to which a radionuclide is chelated, and the chelating agent site-specifically modifies the Fc region of the antibody via a linker.
  • the linker comprises an antibody-modifying peptide consisting of 13 to 17 amino acid residues and represented by the following formula (i): (Xa) -Xaa1- (Xb)-Xaa2-(Xc)-Xaa3-( Xd ) ...
  • Xa, Xb, Xc, and Xd respectively represent a consecutive Xs, b consecutive Xs, c consecutive Xs, and d consecutive Xs;
  • X is an amino acid residue having neither a thiol group nor a haloacetyl group in the side chain, a, b, c, and d each independently represents an integer of 1 to 5, and a+b+c+d ⁇ 14;
  • Xaa1 and Xaa3 are each independently represents an amino acid residue derived from an amino acid having a thiol group in the side chain, and is bonded via a disulfide bond or the sulfide group is bonded via a linker, or one represents an amino acid residue derived from an amino acid having a thiol group in a side chain, and the other represents an amino acid residue derived from an amino acid having a haloacetyl group in a side chain, and they are bonded via a
  • Production Example 1 Site-specific antibody modification with a peptide linker (1)
  • Antibody modification step An antibody-modified peptide was produced by the method described in WO 2017/217347 to obtain a peptide containing 17 amino acid residues represented by the following formula (P3).
  • the amino acid sequence of this peptide was identical to the sequence in SEQ ID NO: 10 in which Xaa 2 is a lysine residue, and the side chain terminal amino group of the lysine residue was modified with the structure represented by R1.
  • cysteine residues formed a disulfide bond with each other, and the N-terminus of the peptide was bound to ethyl azide as an atomic group containing an azide group as the second atomic group via a linker structure having diglycolic acid and eight PEGs.
  • peptide and the antibody drug shown in Table 2 were mixed in sodium acetate buffer (pH 6.0) and reacted for 30 minutes at room temperature to obtain a solution containing peptide-modified antibodies.
  • peptide-modified antibodies are antibodies in which the Fc region of each antibody has been site-specifically modified with the above peptides.
  • the conditions for the hydrophobic column chromatography are as follows: Column: BioPro HIC BF (4.6 mm x 10 cm, 4.0 ⁇ m) Detector: ultraviolet spectrophotometer (measurement wavelength: 280 nm) Mobile phase A: 50 mmol/L phosphate buffer (pH 7.0) containing 1.5 mol/L ammonium sulfate Mobile phase B: 50 mmol/L phosphate buffer (pH 7.0) Mobile phase C: Water Mobile phase delivery: The mixing ratio of mobile phase A, mobile phase B and mobile phase C is changed as follows to control the concentration gradient.
  • Example 1 Production of a radiopharmaceutical composition containing 89Zr-labeled rituximab as an active ingredient ( 1) Complex formation step The structure of the chelating moiety (DOTA-GA-DBCO) used in this example is shown in the following formula (L1-5). A 89Y target was irradiated with protons and dissolved in a 0.1 mol/L aqueous hydrochloric acid solution to prepare a 89Zr ion-containing solution (radioactivity concentration 4200 MBq/mL, liquid volume 0.100 mL), and the solvent was distilled off under heating conditions.
  • DOTA-GA-DBCO chelating moiety
  • the chelating moiety was dispersed in a 100 mmol/L acetic acid-sodium acetate buffer solution (pH 5.0) to obtain a dispersion containing 0.3 mmol/L of the chelating moiety ( 89Zr chelating moiety dispersion).
  • 89Zr chelating moiety dispersion 0.074 mL of this 89Zr dispersion and 0.099 mL of a 150 mmol/L gentisic acid solution (dissolved in 100 mmol/L acetic acid-sodium acetate buffer (pH 5.0)) were added to the radioactive metal source from which the solvent had been distilled off, and reacted under heating conditions to obtain a 89Zr complex solution.
  • the radiochemical purity of the 89Zr complex in the 89Zr complex solution was measured by TLC analysis, and the 89Zr complex was obtained with a radiochemical purity of 96.5%.
  • the TLC analysis was performed by measuring thin layer chromatography (manufactured by Agilent, model number: SGI0001, developing solvent was acetonitrile:water (volume ratio 1:1)) with a radio ⁇ -TLC analyzer (manufactured by raytest, MODELGITA Star PS), and the percentage of the radioactivity (counts) of the peak detected near the front of the solvent to the total radioactivity (counts) detected was taken as the radiochemical purity (%).
  • His5.5 20 mmol/L histidine buffer
  • RH6.1 arginine-containing 50 mmol/L histidine buffer
  • the radiochemical yield is a value expressed as a percentage by dividing the radioactivity of the 89 Zr-labeled antibody contained in 3 mL of the eluate by the radioactivity of the 89 Zr-labeled antibody in the pseudo-reaction solution passed through the column.
  • Comparative Example 1 Production of a radiopharmaceutical composition containing 89Zr-labeled rituximab as an active ingredient.
  • a cation exchange resin was equilibrated with 5 mL of His5.5 and 5 mL of 19 mmol/L MES buffer (pH 5.5) containing 160 mmol/L NaCl (hereinafter referred to as "NaMES5.5") in that order, and 89Zr -labeled rituximab was purified from the pseudo-reaction solution in the same manner as in Example 1, except that 3 mL of NaMES5.5 was used as the eluent.
  • the MES buffer has no history of being used as an additive for pharmaceuticals.
  • the radiochemical yield was 13.6% and the radiochemical purity was 50.9%.
  • Examples 2 to 5 Production of radiopharmaceutical compositions containing various radiolabeled antibodies as active ingredients (1) Complex formation step The complex formation step was carried out in the same manner as in step (1) of Example 1.
  • the radiochemical purity of the eluate was analyzed by TLC, and the radioactivity of each was measured to calculate the radiochemical yield of the target 89 Zr-labeled antibody.
  • the radiochemical yield is a value expressed as a percentage, obtained by dividing the radioactivity of the 89 Zr-labeled antibody contained in 3 mL of eluate by the radioactivity of the 89 Zr-labeled antibody in the reaction solution passed through the column.
  • the radiochemical yield and radiochemical purity of the resulting radiopharmaceutical composition are shown in Table 5.
  • Example 6 Production of a radiopharmaceutical composition containing 225 Ac-labeled panitumumab as an active ingredient (1) Complex formation step The same chelating moiety (DOTA-GA-DBCO) as in Example 1 was dispersed in 156 mmol/L acetic acid-sodium acetate buffer (pH 5.5) to obtain a dispersion containing 0.3 mmol/L of the chelating moiety ( 225 Ac chelating moiety dispersion).
  • DOTA-GA-DBCO acetic acid-sodium acetate buffer
  • the radiochemical purity of the 225 Ac complex in the 225 Ac complex solution was measured by TLC analysis, and the 225 Ac complex was obtained with a radiochemical purity of 97.3%.
  • the TLC analysis was performed in the same manner as in Example 1(1), except that a radio ⁇ -TLC analyzer (manufactured by Raytest, Model: GITA Star) was used as the detector.
  • the radiochemical purity of the eluent was analyzed by TLC in the same manner as in step (2), and the radioactivity of each was measured to calculate the radiochemical yield of the desired 225 Ac-labeled panitumumab.
  • the radiochemical yield was 49.78%
  • the recovery rate was 82.55%
  • the radiochemical purity was 99.9%.
  • the radiochemical yield is a value expressed as a percentage by dividing the radioactivity of the 225 Ac-labeled antibody contained in 3 mL of eluent by the radioactivity of the 225 Ac used in the reaction.
  • the recovery rate is the radioactivity of the 225 Ac-labeled antibody contained in 3 mL of eluent divided by the radioactivity of the 225 Ac used in the reaction multiplied by the radiochemical purity in the labeling step (radioactivity of the 225 Ac-labeled antibody), expressed as a percentage.
  • step (3) The eluate obtained in step (3) was dispensed into three tubes each at 0.9 mL, and each was designated as entries 1 to 3 and formulated by the following procedure.
  • the dispensed solution (radioactivity concentration 2.23 MBq/mL) was stored as it was as a formulation.
  • RH6.1 was added to the dispensed solution, and the solution was diluted to a radioactivity concentration of 1.71 MBq/mL and stored as a formulation.
  • entry 3 the dispensed solution was concentrated by ultrafiltration using a filter (Merck, model number: UFC505096), and then RH6.1 was added and the solution was diluted to a radioactivity concentration of 4.00 MBq/mL and stored as a formulation.
  • Comparative Example 2 Production of a radiopharmaceutical composition containing 225 Ac-labeled panitumumab as an active ingredient (1) Complex formation step The complex formation step was carried out in the same manner as in step (1) of Example 6. The radioactivity of the 225 Ac ion-containing solution used in the reaction was 13.584 MBq.
  • step (2) Labeling step This was carried out in the same manner as in step (2) of Example 6.
  • the radiochemical purity was measured in the same manner as in step (1) except that the developing solvent was acetonitrile:0.1 mol/L EDTA solution (volume ratio 1:1) and the percentage of the radioactivity (counts) of the peak detected near the origin relative to the total radioactivity (counts) detected was defined as the radiochemical purity (%). It was found that 225 Ac-labeled panitumumab was obtained with a radiochemical purity of 74.8%.
  • the radiochemical yield is the value expressed as a percentage by dividing the radioactivity of the 225 Ac-labeled antibody contained in 3 mL of eluent by the radioactivity of the 225 Ac used in the reaction.
  • the recovery rate is the radioactivity of the 225 Ac-labeled antibody contained in 3 mL of eluent divided by the radioactivity of the 225 Ac used in the reaction multiplied by the radiochemical purity in the labeling step (radioactivity of the 225 Ac-labeled antibody), expressed as a percentage.
  • step (3) The eluate obtained in step (3) was dispensed into three tubes each at 0.9 mL, and formulated by the following procedure as entries 4 to 6, respectively.
  • entry 4 the dispensed solution was concentrated by ultrafiltration using a filter (Merck, model number: UFC505096), and then NaMES5.5 was added and diluted to a radioactivity concentration of 2.23 MBq/mL, which was then stored as a formulation.
  • entry 5 the dispensed solution (radioactivity concentration 1.71 MBq/mL) was stored as is as a formulation.
  • the dispensed solution was concentrated by ultrafiltration using a filter (Merck, model number: UFC505096), and then NaMES5.5 was added and diluted to a radioactivity concentration of 4.00 MBq/mL, which was then stored as a formulation.
  • Test Example 1 Evaluation of the effect of the composition of the eluent on the storage stability of the preparation
  • the storage stability of the radiopharmaceutical compositions (radioactive preparations) of entries 1 to 6 prepared in Example 6 and Comparative Example 2 at room temperature from immediately after production until 14 days later was examined.
  • the storage stability at 37°C was also examined from 10 days after production. The results are shown in Table 6.
  • Table 6 show that entries 1 to 3, which were formulated with RH6.1, were more effective at suppressing the decline in radiochemical purity over time at all radioactivity concentrations than entries 4 to 6, which were formulated with NaMES5.5. A similar tendency was also observed in storage at 37°C after 10 days, with entries 1 to 3 being more effective at suppressing the decline in radiochemical purity over time than entries 4 to 6.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は、放射性核種で抗体を標識した放射性標識抗体を有効成分とし、1種以上の添加剤を含む液状の放射性医薬組成物の製造方法であって、 (工程1)放射性核種で抗体を標識して前記放射性標識抗体の粗生成物の溶液を得る工程と、 (工程2)前記工程1で得られた前記粗生成物の溶液を陽イオン交換材料と接触させて前記放射性標識抗体を前記陽イオン交換材料に吸着させる工程と、 (工程3)前記添加剤を含む溶離液を用いて前記工程2で前記陽イオン交換材料に吸着した前記放射性標識抗体を溶出する工程と、 を含む、 放射性医薬組成物の製造方法に関する。 本発明の方法により、放射性標識抗体を簡便かつ簡易な手法で精製することにより放射化学的収率及び放射化学的純度に優れる放射性医薬組成物を製造することができる。

Description

放射性医薬組成物の製造方法
 本発明は、放射性医薬組成物の製造方法、及び、放射性標識抗体の精製方法に関する。
 従来、放射性核種は、治療的または生体内診断の用途に使用されている。例えば、ポジトロン放出核種やガンマ線放出核種は腫瘍の診断に用いられ、ベータ線放出核種は腫瘍の治療に用いられている。
 放射性核種を生体内診断および治療に適用するには、放射性核種を標的細胞部位まで運搬することが必要となる。放射性核種を標的細胞部位に運搬する一つの方法として、放射性核種を、生物学的に有用な分子、例えば、抗体に複合化することが挙げられる。
 非特許文献1には、肝癌細胞特異的に発現する分子であるIgSF4に特異的に認識する抗IGSF4抗体を67Cuで標識したことが開示されている。この67Cu標識抗IGSF4抗体は、67Cuを標識した後にアミコンとの商品名で知られる遠心式限外ろ過フィルターを用いて遠心分離により精製されている。
 また、非特許文献2には、リポタイコ酸(LTA)に結合する抗体である抗LTA抗体を89Zrで標識したことが開示されている。この89Zr標識抗LTA抗体も、89Zrを標識した後に遠心式限外ろ過フィルターを用いた遠心分離により精製されている。
 なお、抗体を精製する方法として、特許文献1では、陽イオン交換カラム(POROS 50 HS, Applied Biosystems)を用いて、チャイニーズハムスター卵巣タンパク質汚染物質を含むリツキシマブ又はベバシズマブを精製することを開示する。
特表2011-502161号公報 特開2010-270068号公報
Katsumasa Fujiki, et al., Scientific Reports, 2017, 7, 1912. Julie E. Pickett, et al., Bone Research, 2018, 6, 13.
 治療的または生体内診断の用途に使用される放射性核種の特徴として、半減期が短く短期間に減衰し消滅することが挙げられる。このため、放射性医薬組成物の製造は、より短時間で行うことが求められる。
 また、放射性医薬組成物の製造においては、機器に対する放射能汚染や作業者の放射線被曝をできるだけ低減させる方法が求められる。その一方、有効成分となる放射性核種で標識された分子は、治療的または生体内診断の用途を発揮し得る放射能量があればよく物質量としては少量で足りることが通常である。このため、低分子の放射性標識物質の場合、例えば、特許文献2で示すような小型の装置で、合成から精製まで一連して自動化することが行われているが、放射性標識抗体を自動化して製造することには未だ諸々の課題がある。
 非特許文献1、2で示す遠心分離機を用いる精製法は、自動化が困難である。
 特許文献2には、放射性標識抗体の合成および精製を自動化することは開示されていない。
 特許文献1は、チャイニーズハムスター卵巣タンパク質汚染物質の除去を改善することを課題とするものであり、放射性標識抗体の製造に関する課題には着目されていない。
 本発明は、放射性標識抗体を簡便かつ簡易な手法で精製することにより放射化学的収率および放射化学的純度に優れる放射性医薬組成物を製造することを目的とする。
 本発明者らは、上記課題に鑑み鋭意検討を行った結果、放射性標識抗体の粗生成物の溶液を陽イオン交換材料と接触させて該放射性標識抗体を陽イオン交換材料に吸着させ、続いて1種以上の添加剤を含む溶離液を用いることで該吸着した放射性標識抗体を溶出させることに成功し、本発明を完成するに至った。
 本発明の一態様は、
 放射性核種で抗体を標識した放射性標識抗体を有効成分とし、1種以上の添加剤(A)を含む液状の放射性医薬組成物の製造方法であって、
(工程1)放射性核種で抗体を標識して前記放射性標識抗体の粗生成物の溶液を得る工程と、
(工程2)前記工程1で得られた前記粗生成物の溶液を陽イオン交換材料と接触させて前記放射性標識抗体を前記陽イオン交換材料に吸着させる工程と、
(工程3)前記添加剤(A)を含む溶離液を用いて前記工程2で前記陽イオン交換材料に吸着した前記放射性標識抗体を溶出する工程と、
を含む、
放射性医薬組成物の製造方法である。
 また、本発明の他の態様は、
(工程A)放射性核種で抗体を標識して放射性標識抗体の粗生成物の溶液を得る工程、
(工程B)前記工程Aで得られた前記粗生成物の溶液を陽イオン交換材料と接触させて前記放射性標識抗体を前記陽イオン交換材料に吸着させる工程、及び
(工程C)1種以上の添加剤を含む溶離液を用いて前記工程Bで陽イオン交換材料に吸着した前記放射性標識抗体を溶出する工程と、
を含む、
放射性標識抗体の精製方法である。
 本発明によれば、陽イオン交換材料で放射性標識抗体を精製するので、簡便に放射性標識抗体を精製することができるとともに、自動合成装置に適用することもできる。また、製剤処方の一部を溶離液に用いるので、処方製法を簡略化し、より短時間で放射性医薬組成物を製造することができる。したがって、本発明によれば、放射化学的収率および放射化学的純度に優れる放射性医薬組成物を製造することが可能になる。
 本明細書で使用する用語は、特に言及しない限り、当該技術分野で通常用いられる意味で用いることができる。
(1)医薬組成物及びその製造方法
 本発明は、放射性核種で標識された抗体(以下、本発明の放射性標識抗体とも称する)を有効成分として含有する液状の医薬組成物(以下、本発明の液状医薬組成物とも称する)を提供する。
 本発明はまた、
(工程1)放射性核種で抗体を標識して放射性標識抗体の粗生成物の溶液を得る工程、
(工程2)工程1で得られた粗生成物の溶液を陽イオン交換材料と接触させて放射性標識抗体を陽イオン交換材料に吸着させる工程、及び
(工程3)1種以上の添加剤を含む溶離液を用いて工程2で陽イオン交換材料に吸着した放射性標識抗体を溶出する工程と、
を含む、放射性標識抗体を有効成分とし、1種以上の添加剤を含む液状の放射性医薬組成物を製造する方法を提供する。
 本発明の放射性標識抗体において放射性核種と抗体とは複合体を形成する(以下、本発明の放射性核種と抗体との複合体とも称する)。本発明の放射性核種と抗体との複合体では、抗体と放射性核種とが直接連結していてもよい。また、本発明の放射性核種と抗体との複合体では、抗体と放射性核種とがリンカーを介して連結していてもよい。この場合、放射性核種を放射性金属核種とし、この放射性金属核種が、キレート剤とキレート(錯体)を形成していてもよく、抗体とキレート剤とが、リンカーを介して、またはリンカーを介さずに連結していてもよい。ここで、連結は、好ましくは、共有結合による連結であり得る。以下、各工程について説明する。
工程1:放射性核種で抗体を標識して放射性標識抗体の粗生成物の溶液を得る工程
(1-1)放射性核種
 本発明の放射性標識抗体に含まれる放射性核種は、α粒子、ポジトロン、β線又はγ線を放出する放射性核種や放射性ハロゲン核種であり得る。α粒子を放出する放射性核種として、211At、212Bi、213Bi、225Ac、227Thが例示される。また、ポジトロンを放出する放射性核種として、64Cu、68Ga、86Y、89Zrが例示される。また、β線を放出する放射性核種として、64Cu、90Y又は、177Luが例示される。また、γ線を放出する放射性核種として、99mTc又は111Inが例示される。放射性ハロゲン核種として、18F、Al18F、77Br、123I、125I、131I又は211Atが例示される。本発明のRI標識抗体、ひいては本発明の液状医薬組成物に含まれる放射性核種は、Al18F、89Zr、90Y、111In、177Lu、又は225Acであることが、好ましい。
 これらの放射性核種は、所定の核反応により製造することもできるし、Eckert & Ziegler社、Thermo Fisher Scientific社、Institute of Isotopes社、POLATOM等から市販されている製品を入手することもできる。このようにして製造又は入手した放射性核種をキレート化等の化学処理を加えて抗体との結合に適した化学形とすることで、抗体との複合体形成に使用することができ、かくして抗体が放射性核種で標識される。
(1-2)抗体
 本発明の液状医薬組成物及び本発明の放射性標識抗体に含まれる抗体は、特に限定されず、モノクローナル抗体(完全長モノクローナル抗体を含む)、ポリクローナル抗体、多重特異性抗体(例えば二重特異性抗体)、及び所望する結合特異性を示す限りそれらの抗体断片を包含する。
 通常、疾病や疾患を患っている哺乳動物へ投与することにより、治療効果が期待できる抗体であり、例えば、CD3、CD4、CD8、CD19、CD20及びCD34のようなCDポリペプチド;HERレセプターファミリーのメンバー、例えばEGFレセプター(HER1)、HER2、HER3あるいはHER4レセプター;細胞接着分子、例えばLFA-1、Mac1、p150、95、VLA-4、ICAM-1、VCAM及びav/b3インテグリンで、そのa又はb何れかのサブユニットを含むもの(例えば、抗CD11a、抗CD18あるいは抗CD11b抗体);VEGFのような増殖因子;IgE;血液型抗原;flk2/flt3レセプター;肥満(OB)レセプター;mplレセプター;CTLA-4;プロテインC等に対する抗体が挙げられる。
 精製される抗体の具体例には、限定されるものではないが、表1に記載の抗体が挙げられる。
 また、抗体は、薬物との複合体であってもよく、幾つかの抗体薬物複合体が承認を受けている。
 好ましくは、トラスツズマブ、ペルツズマブ、パニツムマブ、リツキシマブ、ベバシズマブが挙げられる。
 尚、本明細書では、該抗体が放射標識された場合は、「放射性」と区別して標記する。
(1-3)キレート剤
 本発明の工程1は、放射性核種で抗体を標識して該放射性核種で標識された放射性標識抗体の粗生成物の溶液を得る工程である。
 抗体を放射性核種で標識する方法は特に限定されないが、好ましくはキレート剤を用いる。キレート剤は、放射性核種が配位する部位を構造中に有するものであれば特に限定されないが、好ましくは、放射性核種が配位する部位であるキレート部と抗体との複合化を可能とするための置換基とを有する。キレート部として、例えば、CB-TE2A(1,4,8,11-Tetraazabicyclo[6.6.2]hexadecane-4,11-diacetic acid)、CDTA(Cyclohexane-trans-1,2-diamine tetra-acetic acid)、CDTPA(4-cyano-4-[[(dodecylthio)thioxomethyl]thio]-Pentanoic acid)、DOTA(1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid)、DOTMA((1R,4R,7R,10R)-α,α’,α”,α’”-tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)、DOTAM(1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane)、DOTA-GA(α-(2-Carboxyethyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)、DOTA-GA-NHS、DOTP(((1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetrayl)tetrakis(methylene))tetraphosphonic acid)、DOTPA(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrapropionic acid), 1,4,7,10-tetrakis(pyridin-2-ylmethyl)-1,4,7,10-tetraazacyclododecane(Lpy)、p-SCN-Bn-DOTA(S-2-(4-Isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid)、MeO-DOTA-NCS(1-[(2-methoxy-5-isothiocyanatophenyl)-carboxymethyl]-4,7,10-triscarboxy 5 methyl-1,4,7,10-tetraazacyclododecane)、EuK-106、DOTMP(1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetrakis(methylenephosphonic acid))、DOTA-4AMP(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(acetamidomethylenephosphonic acid)、D02P(Tetraazacyclododecane dimethanephosphonic acid)、Deferoxamine (DFO)、DTPA(Glycine, N,N-bis[2-[bis(carboxymethyl)amino]ethyl]-)、DTPA-BMA(5,8-Bis(carboxymethyl)-11-[2-(methylamino)-2-oxoethyl]-3-oxo-2,5,8,11-tetraazatridecan-13-oic acid)、EDTA(2,2’,2”,2’”-(ethane-1,2-diylbis(azanetriyl))tetraacetic acid)、NOTA(1,4,7-Triazacyclononane-1,4,7-triacetic acid)、NOTP(1,4,7-Triazacyclononane-1,4,7-triyltris(methylenephosphonic acid)、TETPA(1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetrapropionic acid)、TETA(1,4,8,11-Tetraazacyclotetradecane-N,N’,N”,N’”-tetraacetic acid)、TTHA(3,6,9,12-Tetrakis(carboxymethyl)-3,6,9,12-tetraazatetradecanedioic acid)、HEHA(1,2,7,10,13-hexaazacyclooctadecane-1,4,7,10,13,16-hexaacetic acid)、1,2-HOPO(N,N’,N”,N’”-tetra(1,2-dihydro-1-hydroxy-2-oxopyridine-6-carbonyl)-1,5,10,14-tetraazatetradecane)、PEPA(1,4,7,10,13-pentaazacyclopentadecane-N,N’,N”,N’”,N””-penta-acetic acid)、H4octapa(N,N’-bis(6-carboxy-2-pyridylmethyl)-ethylenediamine-N,N’-diacetic acid)、H2bispa2(6,6’-({9-hydroxy-1,5-bis(methoxycarbonyl)-2,4-di(pyridine-2-yl)-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl}bis(-methylene))dipicolinic acid)、H2dedpa(1,2-[{6-(carboxy)-pyridin-2-yl}-methylamino]ethane)、H2macropa(6-(1,4,10,13-tetraoxa-7,16-diazacyclooctadecan-N,N’-methyl)picolinic acid)、H5decapa(N,N”-bis(6-carboxy-2-pyridylmethyl)-diethylenetriamine-N,N’,N”-triacetic acid)、H6phospa(N,N’-(methylenephosphonate)-N,N’-[6-(methoxycarbonyl)pyridin-2-yl]-methyl-1,2-diaminoethane)、HP-D03A(Hydroxypropyltetraazacyclododecanetriacetic acid)、porphyrin、DO3A(1,4,7,10-Tetraazacyclododecane-1,4,7-triacetic acid trisodium salt)、DO3A-NHS(1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid mono-N-hydroxysuccinimide ester)といったものが挙げられるが、下記式(A)で表される化合物に由来する構造を有することが好ましい。
(式(A)中、R11、R13及びR14は、それぞれ独立して、-(CHCOOH、-(CHN、-(CHPO、-(CHCONH若しくは、-(CHCOOH)(CH)COOHからなる基であり、R12又はR15の一方が、水素原子、カルボキシル基、又は、炭素数2若しくは3のカルボキシアルキル基であり、他方が、前記抗体と複合化するための置換基であり、pが0以上3以下の整数であり、R12が前記抗体と複合化するための置換基であるときR15は水素原子であり、R12が前記抗体と複合化するための置換基でないときR15は前記抗体と複合化するための置換基である。)
 式(A)で表される具体的な構造としては、以下の式(A-1)~(A-13)で表される化合物に由来する構造が挙げられる。
 キレート部と、抗体と複合化を可能とするための置換基との連結部位は、アミド結合か、チオウレア結合であることが好ましいが、安定性の観点からはアミド結合がより好ましい。
 アミド結合は、例えば、上記式(A-10)や(A-11)のN-ヒドロキシスクシンイミドエステル(NHS)基、上記(A-12)の2,6-ジオキソテトラヒドロ-2H-ピラニル基、又は、上記(A-13)の2,3,5,6-テトラフルオロフェノールエステル基と、第1級アミンとの反応により形成される。また、チオウレア結合は、上記式(A-2)、(A-3)で示す化合物のイソチオシアネート基と、第1級アミンとの反応により形成される。
 本発明の放射性標識抗体において、キレート剤は、抗体1分子に対し、少なくとも1分子以上備えていればよいが、1分子以上8分子以下備えることが好ましい。ただし、抗体そのものの活性(抗原認識作用、中和作用、補体活性化作用及び/又はオプソニン作用)を維持する観点から、抗体のFc領域(定常領域)に部位特異的にキレート剤が導入されることが好ましく、本発明において、キレート剤は、抗体1分子に対して1分子又は2分子備えていることがより好ましい。より好ましくは、キレート剤は、抗体1分子に対して1分子備えている。
 本発明の放射性標識抗体において、キレート剤は、リンカーを介して抗体と接続されていてもよい。リンカーとしては、置換又は無置換のアルキル基、置換又は無置換のヘテロアルキル基、ポリエチレングリコール(PEG)基、ペプチド、糖鎖、ジスルフィド基及びこれらの組み合わせなどが挙げられる。
 好ましくは、キレート剤は、リンカーを介して、抗体を部位特異的に、より好ましくはFc領域に修飾している。この場合、リンカーは、下記式(i)で表される、13以上17以下のアミノ酸残基からなるペプチド(以下、「抗体修飾ペプチド」ともいう。)を含み、かつ架橋剤で修飾された抗体修飾ペプチドと抗体との架橋反応によって形成されているものを用いることができる。なお、式(i)において、アミノ酸配列の紙面左側がN末端側を示し、アミノ酸配列の紙面右側がC末端側を示すものとして説明する。キレート剤がリンカーとして抗体修飾ペプチドを介して抗体と接続される場合、キレート剤と抗体修飾ペプチドが連結する位置は特に限定しないが、例えば抗体修飾ペプチドのN末端又はC末端、好ましくはN末端に直接又は間接的に連結することができる。また、抗体修飾ペプチドのC末端はその安定性の向上等のためにアミド化等の修飾を受けていてもよい。
 (Xa)-Xaa1-(Xb)-Xaa2-(Xc)-Xaa3-(Xd)・・・(i)
 式(i)中、Xa、Xb、Xc及びXdは、それぞれ、連続するa個のX、連続するb個のX、連続するc個のX、及び連続するd個のXを表し、
Xは、側鎖にチオール基及びハロアセチル基のいずれも有しないアミノ酸残基であり、a、b、c及びdはそれぞれ独立に1以上5以下の整数で、かつa+b+c+d≦14を満たし
Xaa及びXaaは、それぞれ独立に、
側鎖にチオール基を有するアミノ酸に由来するアミノ酸残基を表し、又は、
一方が、側鎖にチオール基を有するアミノ酸に由来するアミノ酸残基を表し、他方が、側鎖にハロアセチル基を有するアミノ酸に由来するアミノ酸残基を表し、XaaとXaaとが連結しており、
Xaaは、リシン残基、アルギニン残基、システイン残基、アスパラギン酸残基、グルタミン酸残基、2-アミノスベリン酸、又はジアミノプロピオン酸であり、架橋剤で修飾されている。
 上記式(i)におけるXに含まれ得るアミノ酸残基としては、例えば、グリシン、アラニン、フェニルアラニン、プロリン、アスパラギン、アスパラギン酸、グルタミン酸、アルギニン、ヒスチジン、セリン、スレオニン、チロシン、メチオニン等のアミノ酸に由来するものが挙げられ、Xは、同一の種類のアミノ酸からなるアミノ酸残基であってもよく、それぞれ異なる種類のアミノ酸からなるアミノ酸残基であってもよい。
 式(i)中のa、b、c及びdは、上述した範囲の数であれば特に制限はないが、ペプチドと抗体との結合安定性の観点から、a+b+c+d≦14を条件として、aは好ましくは1以上3以下の整数、bは好ましくは1以上3以下の整数、cは好ましくは3以上5以下の整数、及びdは好ましくは1以上3以下の整数である。
 Xaa及びXaaは、側鎖にチオール基を有するアミノ酸に由来するアミノ酸残基であり、該アミノ酸はそれぞれ同一であってもよく、異なっていてもよい。側鎖にチオール基を有するアミノ酸としては、例えばシステイン、ホモシステインが挙げられる。このようなアミノ酸残基は、ジスルフィド結合によって結合しているか、又は以下の式(4)に示すリンカーを介して、スルフィド基が結合されていることが好ましい。式(4)中、波線部分はスルフィド基との結合部分を示す。
 Xaa及びXaaは、上述した組み合わせに代えて、Xaa及びXaaのうち一方が側鎖にチオール基を有するアミノ酸に由来するアミノ酸残基であり、他方が側鎖にハロアセチル基を有するアミノ酸に由来するアミノ酸残基であってもよい。これらは、チオエーテル結合を介して結合している。ハロアセチル基は、その末端がヨウ素等のハロゲンで置換されており、他方の側鎖におけるチオール基との反応によってハロゲンが脱離して、チオエーテル結合が形成される。
 式(i)で表される抗体修飾ペプチドの具体的なアミノ酸配列は、例えば国際公開第2016/186206号、国際公開第2017/217347号及び国際公開第2018/230257号に記載のペプチドが挙げられ、これらを用いることもできる。
 これらのうち、抗体修飾ペプチドのアミノ酸配列として、以下の配列(1)~(14)のいずれか一つを有していることが好ましく、以下の配列(1)、(2)、(13)又は(14)を有していることが更に好ましい。以下のアミノ酸配列(1)~(14)において、(Xaa)はリシン残基、システイン残基、アスパラギン酸残基、グルタミン酸残基、2-アミノスベリン酸、又はジアミノプロピオン酸を示し、(Xaa)及び(Xaa)はともにホモシステイン残基を示す。また、以下のアミノ酸配列(1)~(14)中、(Xaa)、(Xaa)及び(Xaa)以外のアミノ酸は一文字略号にて表記する。
 (1)DCAYH(Xaa2)GELVWCT (配列番号1)
 (2)GPDCAYH(Xaa2)GELVWCTFH (配列番号2)
 (3)RCAYH(Xaa2)GELVWCS (配列番号3)
 (4)GPRCAYH(Xaa2)GELVWCSFH (配列番号4)
 (5)SPDCAYH(Xaa2)GELVWCTFH (配列番号5)
 (6)GDDCAYH(Xaa2)GELVWCTFH (配列番号6)
 (7)GPSCAYH(Xaa2)GELVWCTFH (配列番号7)
 (8)GPDCAYH(Xaa2)GELVWCSFH (配列番号8)
 (9)GPDCAYH(Xaa2)GELVWCTHH (配列番号9)
 (10)GPDCAYH(Xaa2)GELVWCTFY (配列番号10)
 (11)SPDCAYH(Xaa2)GELVWCTFY (配列番号11) 
 (12)SDDCAYH(Xaa2)GELVWCTFY (配列番号12)
 (13)RGNCAYH(Xaa2)GQLVWCTYH (配列番号13) 
 (14)G(Xaa1)DCAYH(Xaa2)GELVWCT(Xaa3)H (配列番号14)
(1-4)放射性標識抗体の製造方法
 本発明の放射性標識抗体の製造方法について説明する。
 本発明の放射性標識抗体において、本発明の放射性核種と抗体との複合体は、例えば、抗体のチロシン残基に放射性核種として放射性ヨウ素(123I、131I)を導入して調製する方法があり得る。また、本発明の抗体に放射性ハロゲン核種が安定に結合する置換基を導入し、放射性ハロゲンイオンと反応させ調製する方法があり得る。
 本発明の放射性標識抗体は、キレート剤と抗体とをコンジュゲーションするコンジュゲーション工程と、放射性核種とキレート剤との錯体を形成する錯体形成工程(放射性核種がキレートしたキレート剤の製造工程)との2つの工程から製造することができる。コンジュゲーション工程は、錯体形成工程の前であってもよいし錯体形成工程の後であってもよい。
 コンジュゲーション工程においては、種々の抗体の化学修飾法が用いられる。具体的には、(a)~(f)の方法が挙げられる。
(a)アミンカップリング法(N-ヒドロキシスクシミジル(NHS)基で活性化されたカルボキシル基をもつキレート剤またはキレートを用いて抗体のリシン残基のアミノ基を修飾する方法)
(b)抗体のヒンジ部位にあるポリペプチド鎖間のジスルフィド結合(SS結合)を部分的に還元することによって生じるスルフヒドリル(SH)基に対して、SH基に反応性を有するマレイミド基を持つキレート剤またはリンカーで修飾する方法
(c)遺伝子工学によるアミノ酸変異によって、抗体に新たに導入されたシステインに対してマレイミド基をもつキレート剤またはリンカーを修飾する方法
(d)遺伝子工学によるアミノ酸変異によって、抗体に新たに導入されたアジド化リシンのアジド基に、クリック反応を利用して、アルキン(例えばDibenzocyclooctyne: DBCO)をもつキレート剤またはリンカーを修飾する方法
(e)トランスグルタミナーゼを利用して、抗体の特定の位置に導入されたグルタミンに、リシンの側鎖を有するキレート剤またはリンカーを修飾する方法
(f)前述した(i)で示す抗体修飾ペプチドを有するキレート剤またはリンカーを、抗体のFc領域を部位特異的に修飾する方法
 錯体形成工程では、キレート剤に放射性核種をキレート(錯体形成)させる。ここで使用する放射性核種は、錯体形成効率を高める観点から、電離可能な態様で用いることが好ましく、イオンの態様で用いることが更に好ましい。錯体形成工程は、放射性核種との錯体形成が可能であれば、キレート剤への放射性核種の添加順序は問わない。例えば、水を主体とする溶媒に、放射性核種イオンが溶解した溶液を放射性核種として用いることができる。
 錯体形成後、ろ過フィルター、メンブランフィルター、種々の充填剤を充填したカラム、クロマトグラフィー等を用いて、得られた錯体を精製してもよい。
 本発明の放射性標識抗体の製造方法は、錯体形成工程の後にコンジュゲーション工程が実行されることが好ましい。
 より好ましい態様において、錯体形成工程(A)では、放射性核種とクリック反応可能な第1の原子団を抗体と複合化を可能とするための置換基として有するキレート剤との間で錯体を形成する。次いで、コンジュゲーション工程(B)では、前述した(i)で示す抗体修飾ペプチドと、クリック反応可能な第2の原子団とを有する抗体修飾リンカーを用いて、Fc領域を部位特異的に修飾されたペプチド修飾抗体と、工程(A)で得られた錯体形成されたキレート剤との間でクリック反応を実行し、本発明のキレート複合体を得る。
 以下工程(A)及び(B)について、詳述する。
 クリック反応可能な第1原子団と第2原子団の組み合わせとしては、クリック反応の種類に応じて適切なものが選択され、例えば、アルキンとアジドとの組み合わせ、1,2,4,5-テトラジンとアルケンとの組み合わせ等が挙げられる。これらの原子団は、第1原子団が上記原子団の組み合わせのうち一つを有し、第2原子団が上記原子団の組み合わせのうち第1原子団と異なる一つとなる原子団を有していればよい。キレート剤及び抗体の安定性と、これらの結合効率の向上とを両立する観点から、キレートリンカーがアルキンであり且つ抗体修飾リンカーがアジドであるか、又はキレートリンカーが1,2,4,5-テトラジンであり且つ抗体修飾リンカーがアルケンであることが好ましい。このような原子団の組み合わせによるクリック反応の具体例として、ヒュスゲン環化付加反応、あるいは逆電子要請型ディールスアルダー反応等が挙げられる。
 クリック反応可能な原子団の組み合わせの具体例としては、以下の式に示すように、第1原子団のアルキンとしてジベンゾシクロオクチン(DBCO)を含む原子団(式(1a))と、第2原子団のアジドとしてアジド基を含む原子団(式(2a))との組み合わせ、あるいは、第1原子団が1,2,4,5-テトラジンを含む原子団(式(1b))と、第2原子団のアルケンとしてtrans-シクロオクテン(TCO)を含む原子団(式(2b))との組み合わせが挙げられる。好ましくは式(1a)と式(2a)との組合せである。
(式中、Rは、キレート剤との連結部位を示し、Rは、抗体における抗体修飾ペプチドとの連結部位を示す。)
(式中、R及びRのうち一方がキレート剤又は抗体における抗体修飾ペプチドのいずれか一方との連結部位を示し、他方が水素原子、メチル基、フェニル基又はピリジル基を示し、Rは、R又はRに応じてキレート剤又は抗体における抗体修飾ペプチドのいずれか一方との連結部位を示す。)
 第1原子団のアルキンとして、上記式(1a)で表されるジベンジルシクロオクチン(DBCO)を含む原子団を用いる場合は、市販されている種々のDBCO試薬が挙げられる。具体的には、例えば、DBCO-C6-Acid、Dibenzocyclooctyne-Amine、Dibenzocyclooctyne Maleimide、DBCO-PEG acid、DBCO-PEG-NHS ester、DBCO-PEG-Alcohol、DBCO-PEG-amine、DBCO-PEG-NH-Boc、Carboxyrhodamine-PEG-DBCO、Sulforhodamine-PEG-DBCO、TAMRA-PEG-DBCO、DBCO-PEG-Biotin、DBCO-PEG-DBCO、DBCO-PEG-Maleimide、TCO-PEG-DBCO、DBCO-mPEGなどが選択できるが、好ましくはDibenzocyclooctyne Maleimideを用いる。
 工程(A)では、より好ましくは、以下の式(ii)で表される構造を有するキレート剤を用いる。
 A-B-C ・・・(ii) 
 式(ii)中、Aは、以下の式(iia)で表されるキレート部である。
 式(iia)中、Ra、Rb及びRcは、独立して、-(CHCOOH、-(CHN、-(CHPO、-(CHCONH若しくは、-(CHCOOH)(CHCOOHからなる基であり、pは0以上3以下の整数であり、Rd又はReのいずれか一方が、Bとの結合部位(*)であり、他方が水素原子であるか、-(CHCOOH、-(CHN、-(CH)pPO、-(CHCONH若しくは、-(CHCOOH)(CHCOOHからなる基であり、pは0以上3以下の整数である。
 式(ii)中、Bは以下の式(iib)で表される。
 式(iib)中、La及びLbは、独立して、少なくともアミド結合又はチオウレア結合を含む炭素数1以上50以下の結合リンカーであり、tは0以上30以下の整数であり、sは0又は1であり、*はAとの結合部位であり、**はCとの結合部位である。
 式(ii)中、Cは、以下の式(iic)で表されるアルキン誘導体又は式(iid)で表されるテトラジン誘導体のいずれかである。
(式(iic)中、XはCHRk-**又はN-**であり、YはCHRk又はC=Oであり、Rkは独立して水素原子であるか、炭素数1以上5以下のアルキル基であって、XがCHRk-**で、YがCHRkである場合は、Rk部分が一緒になってシクロアルキル基を形成してもよく、Rf、Rg、Rh及びRiは、独立して、水素原子、ハロゲン原子、炭素数1以上5以下のアルキル基であり、RfとRgが一緒になって、若しくはRhとRiが一緒になって炭化水素環を形成してもよく、**はBとの結合部位を示し、式(iid)中、**はBとの結合部位を示し、Rjは水素原子、メチル基、フェニル基又はピリジル基を示す。)
 工程(A)で使用されるキレート剤として、上記式(iia)中、Ra乃至Rdが、-(CHCOOHであり、pが1であり、ReがBとの結合部位であるDOTA誘導体;又はRa乃至Rcが、-(CHCOOHであり、pが1であり、RdがBとの結合部位であり、Reが水素原子であるDO3A誘導体若しくはDOTA-GA誘導体のいずれかがより好ましい。
 式(ii)中、Aが上記DOTA誘導体である場合、Bは、Laがチオウレア結合を含む炭素数1以上50以下の結合リンカーであり、sが0又は1であり、sが1である場合は、tが0以上30以下の整数であり、Lbがアミド結合若しくはチオウレア結合を含む炭素数1以上50以下の結合リンカーであり、Cは、式(iic)で表されるアルキン誘導体であり、式(iic)中、XがN―**であり、YがCHRkであり、Rkが水素原子であり、RfとRgが一緒になってベンゼン環を形成しており、RhとRiが一緒になってベンゼン環を形成しており、**はBとの結合部位である、DOTA-PEGt-DBCO誘導体;又はBは、Laがチオウレア結合を含む炭素数1以上50以下の結合リンカーであり、sが0又は1であり、sが1である場合は、tが0以上30以下の整数であり、Lbがアミド結合若しくはチオウレア結合を含む炭素数1以上50以下の結合リンカーであり、Cは、式(iid)で表されるテトラジン誘導体である、DOTA-PEGt-Tz誘導体が更により好ましい。
 式(ii)中、Aが上記DO3A誘導体である場合、Bは、Laがアミド結合若しくはチオウレア結合を含む炭素数1以上50以下の結合リンカーであり、sが0又は1であり、sが1である場合は、tが0以上30以下の整数であり、Lbがアミド結合を含む炭素数1以上50以下の結合リンカーであり、Cは、式(iic)で表されるアルキン誘導体であり、式(iic)中、XがN―**であり、YがCHRkであり、Rkが水素原子であり、RfとRgが一緒になってベンゼン環を形成しており、RhとRiが一緒になってベンゼン環を形成しており、**はBとの結合部位である、DO3A-PEGt-DBCO誘導体が更により好ましい。
 式(ii)中、Aが上記DOTA-GA誘導体である場合、Bは、Laがアミド結合若しくはチオウレア結合を含む炭素数1以上50以下の結合リンカーであり、sが0又は1であり、sが1である場合は、tが0以上30以下の整数であり、Lbがアミド結合を含む若しくはチオウレア結合を含む炭素数1以上50以下の結合リンカーであり、Cは、式(iic)で表されるアルキン誘導体であり、式(iic)中、XがN-**であり、YがCHRkであり、Rkが水素原子であり、RfとRgが一緒になってベンゼン環を形成しており、RhとRiが一緒になってベンゼン環を形成しており、**はBとの結合部位である、DOTA-GA-PEGt-DBCO誘導体が更により好ましい。
 キレート剤と放射性核種とのモル比率は、キレート部/放射性核種として、下限が、10/1以上が好ましく、100/1以上がより好ましく、500/1以上がさらに好ましく、上限が、10000/1以下が好ましく、8000/1以下がより好ましく、7000/1以下がさらに好ましく、例えば、100/1以上7000/1以下の範囲が好ましく、より好ましくは500/1以上7000/1以下の範囲である。
 錯体形成反応は、溶媒下に行うことが好ましい。溶媒としては、例えば水、生理食塩水、又は酢酸ナトリウム緩衝液、酢酸アンモニウム緩衝液、リン酸緩衝液、リン酸緩衝生理食塩水、トリスヒドロキシメチルアミノメタン緩衝液(Tris緩衝液)、4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルホン酸緩衝液(HEPES緩衝液)、若しくはテトラメチルアンモニウム酢酸緩衝液等の緩衝液等を用いることができる。
 溶媒の液量は特に限定されないが、製造工程における実用性の観点から、工程(A)の開始時において、下限は、0.01mL以上、好ましくは0.1mL以上、より好ましくは1.0mL以上、さらに好ましくは10mL以上、よりさらに好ましくは100mL以上であり、上限は、好ましくは1000mL以下、より好ましくは100mL以下、さらに好ましくは10mL以下、よりさらに好ましくは1.0mL以下であり、例えば、0.01mL以上100mL以下の範囲である。
 錯体形成反応の反応液中のキレート剤の濃度は、目的とするキレート剤の収率の観点から、それぞれ独立して、工程(A)の開始時において、下限は、好ましくは0.001μmol/L以上、より好ましくは0.01μmol/L以上、さらに好ましくは0.1μmol/L以上、より好ましくは1μmol/L以上であり、上限は、好ましくは1000μmol/L以下、より好ましくは100μmol/L以下、さらに好ましくは10μmol/L以下であり、例えば、1μmol/L以上100μmol/L以下の範囲が挙げられる。
 錯体形成反応の温度としては、例えば室温(25℃)であってもよく、加熱条件下であってもよいが、キレート剤の分解抑制と錯体の形成効率向上とを両立する観点から、下限は、好ましくは20℃以上、より好ましくは30℃以上、さらに好ましくは35℃以上、よりさらに好ましくは37℃以上、特に好ましくは45℃以上であり、上限は、好ましくは150℃以下、より好ましくは120℃以下、さらに好ましくは100℃以下、よりさらに好ましくは90℃以下であり、例えば、30℃以上100℃以下の範囲が好ましく、より好ましくは35℃以上90℃以下の範囲である。
 反応時間は、上述の反応温度であることを条件として、下限は、好ましくは5分以上、より好ましくは10分以上、さらに好ましくは20分以上、よりさらに好ましくは30分以上、特に好ましくは45分以上であり、上限は、好ましくは180分以下、より好ましくは150分以下、さらに好ましくは120分以下、よりさらに好ましくは90分以下、特に好ましくは60分以下であり、例えば、10分以上150分以下の範囲が好ましく、より好ましくは10分以上60分以下の範囲である。
 工程(B)で使用される抗体は、前述した(i)で示す抗体修飾ペプチドと、クリック反応可能な第2の原子団とを有する抗体修飾リンカーを用いて、上記「(1-2)抗体」の項で詳述したヒト化抗体のFc領域(定常領域)が部位特異的に修飾されたペプチド修飾抗体である。
 抗体修飾ペプチドは、天然アミノ酸及び非天然アミノ酸を問わないアミノ酸を組み合わせて用いて、例えば液相合成法、固相合成法、自動ペプチド合成法、遺伝子組み換え法及びファージディスプレイ法等のペプチド合成法に供することよって製造することができる。ペプチドの合成にあたり、必要に応じて、用いられるアミノ酸の官能基の保護を行ってもよい。これらは、例えば、国際公開第2017/217347号及び国際公開第2018/230257号に記載の方法に準じて行うことができる。
 抗体修飾リンカーは、抗体修飾ペプチドと、以下の式(S1)で表されるリンカーとが結合したものであってもよい。
  *-((L-Z)-L-AG ・・・(S1)
(式中、*は、ペプチドのN末端又はC末端との結合部位を示し、
 Lは、ポリエチレングリコール(PEG)リンカー部であり、
 mは、1以上50以下の整数であり、
 Zは、(LとLとを結合する第2リンカー部であり、
 kは、0又は1であり、
 Lは、第2のPEGリンカー部であり、
 AGは第2原子団である。)
 前記式(S1)において、Zの構造は、(LとLとを互いに結合するリンカー構造であれば特に限定されないが、例えば1以上5以下のアミノ酸残基からなるアミノ酸配列を含むことができる。この場合、Zに含まれるアミノ酸配列は、システイン残基を含むことが好ましく、システイン残基のチオール基とマレイミド基との結合により形成されたチオエーテル基を介してLと結合していることがより好ましい。
 本発明において、Lを構成するPEGリンカー部は、以下の式(P2)に示す構造を有していることが好ましい。式(P2)中、nは整数であり、好ましくは1以上50以下、より好ましくは1以上20以下、さらに好ましくは2以上10以下、一層好ましくは2以上6以下である。
 PEGリンカー部の構造の一端は、市販されているPEG化試薬に由来する構造又はPEG化する際に通常用いられる試薬に由来する構造によって修飾されていてもよく、特に限定されないが、例えばジグリコール酸又はその誘導体、マレイミド又はその誘導体に由来する構造が例示される。
 抗体修飾リンカーへの前記第2原子団への導入方法は、上述の方法によって所望のアミノ酸配列を有する抗体修飾ペプチドを得た後、該ペプチドを、溶解補助剤及び還元剤、並びに必要に応じて酸を加えた溶液に溶解し、該溶液に第2原子団として、アジド基又はtrans-シクロオクテン(TCO)を含む原子団の有機溶媒溶液を添加し、室温で攪拌することにより導入する方法が挙げられる。
 第2原子団としてアジド基を含む原子団を導入する場合には、市販のアジド基導入試薬を用いて、常法に従い、ペプチドのN末端又はC末端に直接アジド基を導入するか、又は上述したリンカー構造を介してアジド基を含む原子団を導入することができる。用いられるアジド基導入試薬としては例えば、シリルアジド、リン酸アジド、アルキルアンモニウムアジド、無機アジド、スルホニルアジド、又はPEGアジド等が挙げられる。
 また、第2原子団としてTCOを含む原子団を導入する場合には、TCOを含む市販のクリックケミストリー用試薬を用いて、常法に従い、ペプチドのN末端又はC末端に直接TCOを導入するか、又は上述したリンカー構造を介してTCOを含む原子団を導入することができる。
 抗体修飾ペプチドと抗体とを結合させて、ペプチド修飾抗体を得る方法は、例えば架橋剤を用いて行うことができる。架橋剤とは、抗体修飾ペプチドと、抗体とを共有結合により連結させるための化学物質であり、その例として、ジスクシンイミジルグルタレート(DSG)、ジスクシンイミジルスベレート(DSS)等のスクシンイミジル基を好ましくは2以上含む架橋剤、アジプイミド酸ジメチル等のイミド酸部分を好ましくは2以上含む化合物又はその塩からなる架橋剤、並びに3,3’-ジチオビスプロピオンイミド酸ジメチル、ジチオビススクシンイミジルプロピオン酸等のジスルフィド結合を有する化合物又はその塩からなるもの等が挙げられる。このような架橋剤を用いることによって、抗体修飾ペプチドにおけるXaa2のアミノ酸残基と、抗体との間で架橋反応を起こすことができる。抗体における架橋反応は、例えば抗体として本発明のヒト化抗体を用いた場合、Xaa2のアミノ酸残基と、本発明のヒト化抗体におけるEuナンバリングに従うLys252残基との間に部位特異的に生じる。これらのLys残基は、本発明のヒト化抗体におけるFc領域に存在する。
 抗体修飾ペプチドと抗体との結合方法は、例えば、上述した抗体修飾ペプチドと、抗体と、架橋剤と、必要に応じて触媒とを、適切な緩衝液中に10℃以上30℃以下の環境下で分散させて行うことができる。反応時間は10分以上2時間程度以下とすることができる。ペプチドと抗体との反応時におけるモル比率は、抗体/ペプチドとして、下限は、好ましくは1/5以上、より好ましくは1/3以上、さらに好ましくは1/1.5以上であり、上限は、好ましくは20/1以下、より好ましくは10/1以下、さらに好ましくは5/1以下、よりさらに好ましくは1/1以下、特に好ましくは1/1.7以下であり、例えば1/5以上20/1以下の範囲が好ましく、より好ましくは1/1.5以上1/1.7以下である。
 以上の工程を経て得られるペプチド修飾抗体は、抗体1分子に対して抗体修飾ペプチド1分子が結合した抗体(以下、「一価抗体」という)と、抗体1分子に対して抗体修飾ペプチド2分子が結合した抗体(以下、「二価抗体」という)とを任意の割合で含有する混合物であるが、これをそのままで以後の工程に供してもよく、ろ過フィルター、メンブランフィルター、種々の充填剤を充填したカラム、各種クロマトグラフィー等の方法で、未修飾抗体と、一価抗体と、二価抗体とを分離精製したあとでいずれかの価数の抗体のみを以後の工程に供してもよい。精製の結果、未修飾抗体と他の価数の抗体との分離ができない場合には、これらを含有する混合物として以降の工程に供してもよい。
 未修飾抗体と、一価抗体と、二価抗体とを分離精製する場合は、上記のいずれの精製方法で分離精製してもよいが、種々の充填剤を充填したカラムを用いることが好ましく、抗体等のタンパク質の分離精製に適した充填剤を充填したカラムを用いることがより好ましい。
 抗体等のタンパク質の分離精製に適した充填剤の担体の形状としては、ゲル(例えばカラム用ゲル)、粒子、ビーズ、ナノ粒子、微粒子及びマクロビーズなどの形状が挙げられ、担体の材質としては、磁性物質、ラテックス、アガロース、ガラス、セルロース、セファロース、ニトロセルロース、ポリスチレン、その他の高分子材料が挙げられる。具体的には上述の抗体修飾ペプチドを、カラム用ゲルに結合させたIgG-BPカラムが例示できる(国際公開第2021/080008号参照)。
 IgG-BPカラムは、IgG結合ペプチドを固相化したカラムである。二価抗体は、結合部位がすでにIgG結合ペプチドで占有されているために当該カラムには結合し得ず、一価抗体のみが当該カラムに対して親和性を示す。このIgG-BPカラムを用いて、抗体修飾ペプチドに対するそれぞれの相互作用の違いを利用して、未修飾抗体および一価抗体を相対的に多く含む第一の抗体組成物と、二価抗体を相対的に多く含む第二の抗体組成物とをそれぞれ分離精製することができる。ある好ましい態様では、第一の抗体組成物において、未修飾抗体と一価抗体とのモル比が4~47:53~96、好ましくは4~30:70~96、より好ましくは4~20:80~96、さらに好ましくは、4~10:90~96である。
 このようにして、分離精製した第一の抗体組成物又は第二の抗体組成物は、そのまま以降の工程(B)におけるクリック反応に用いてもよく、含有するペプチド修飾抗体のタンパク質濃度を調節してから工程(B)におけるクリック反応に用いてもよい。
 工程(B)におけるクリック反応に用いるペプチド修飾抗体を分離精製する場合を例に、以下説明する。
 ペプチド修飾抗体は、抗体修飾ペプチドを備えるリンカー(抗体修飾リンカー)によって抗体のFc領域を部位特異的に修飾して修飾抗体を得る抗体修飾工程と、上述のイムノグロブリン結合性タンパク質が固定化された担体を用いて修飾抗体を精製する抗体精製工程とを経て、工程(B)におけるクリック反応に供される。また、抗体精製工程は、担体に保持される修飾抗体を担体に保持させる保持工程と、担体に保持されない修飾抗体を洗浄する洗浄工程、保持工程で担体に保持された修飾抗体を溶出する溶出工程とを更に含む。
 より具体的には、抗体修飾工程において、抗体修飾リンカーが修飾されない未修飾抗体と、一価抗体と、二価抗体と、を含む混合物として修飾抗体を取得し、抗体精製工程において、未修飾抗体、一価抗体および二価抗体のイムノグロブリン結合性タンパク質に対するそれぞれの相互作用の違いを利用して、未修飾抗体および一価抗体を相対的に多く含む第一の抗体組成物と、二価抗体を相対的に多く含む第二の抗体組成物とをそれぞれ溶出する。すなわち、抗体精製工程のうち、保持工程および洗浄工程では、イムノグロブリン結合性タンパク質との相互作用の程度が低いペプチド修飾抗体(二価抗体)を相対的に多く含む第二の抗体組成物が溶出され、抗体精製工程のうち溶出工程では、イムノグロブリン結合性タンパク質との相互作用の程度が高いペプチド修飾抗体(未修飾抗体及び一価抗体)を相対的に多く含む第一の抗体組成物が溶出される。ここで、「未修飾抗体及び一価抗体を相対的に多く含む」とは、第一の抗体組成物に含まれる未修飾抗体及び一価抗体の合計量が、該抗体組成物に含まれる二価抗体よりも多いことを意味し、好ましくは該抗体組成物に含まれる未修飾抗体及び修飾抗体の全量(100%)に対して、未修飾抗体及び一価抗体の合計量が55%以上、63%以上、70%以上、80%以上、又は90%以上であることを意味し、「二価抗体を相対的に多く含む」とは、第二の抗体組成物に含まれる二価抗体の量が該抗体組成物に含まれる一価抗体より多いことを意味し、好ましくは該抗体組成物に含まれる未修飾抗体及び修飾抗体の全量(100%)に対して、二価抗体の量が55%以上、63%以上、70%以上、80%以上、又は90%以上であることを意味する。
 保持工程では、抗体修飾工程で得られた未修飾抗体、一価抗体および二価抗体の混合物を含有する溶液をカラムに添加して、担体に保持される未修飾抗体および一価抗体をカラムに保持させ、担体に保持されない二価抗体を通過させる。ここで、保持工程で通過した溶液は第二の抗体組成物の一部を構成する。未修飾抗体および一価抗体をカラムに保持しやすくするため、また、これらの凝集若しくは変性を防ぐために、ペプチド修飾抗体の混合溶液を適切な希釈溶媒で希釈してカラムに添加することが好ましい。希釈溶媒としては、ペプチド修飾抗体が溶解し、溶媒中で凝集又は変性しにくい溶媒であれば特に限定されず、水、生理食塩水、又は酢酸ナトリウム緩衝液、酢酸アンモニウム緩衝液、リン酸緩衝液、リン酸緩衝生理食塩水、2-アミノ-2-(ヒドロキシメチル)プロパン-1,3-ジオール(Tris)緩衝液、2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]-エタンスルホン酸(HEPES)緩衝液等の緩衝液等を用いることができ、上述したいずれかの緩衝液を用いることが好ましく、酢酸ナトリウム緩衝液を用いることがより好ましい。希釈溶媒に緩衝液を用いる場合は、緩衝剤の濃度は、下限として10mmol/L以上、好ましくは15mmol/L以上、より好ましくは20mmol/L以上、上限として1000mmol/L以下、好ましくは500mmol/L以下、より好ましくは100mmol/L以下である。また、二価抗体や抗体修飾ペプチドのカラム担体への非特異的結合の低減の観点から、溶出溶媒は塩化ナトリウム、塩化カリウム等の添加剤を含有してもよい。溶出溶媒が含有する添加剤の濃度は特に限定されないが、例えば0.15mol/Lを用いることができる。
 洗浄工程では、洗浄溶媒を用いてカラム内に残存している修飾抗体をカラムから溶出する。上述の保持工程でカラムを通過した溶液と、洗浄工程でカラムから溶出した溶液は、二価抗体を相対的に多く含むので、これらを合わせて第二の抗体組成物として用いることができる。
 洗浄溶媒としては、ペプチド修飾抗体が溶解し、溶媒中で凝集又は変性しにくく、適切なpH緩衝能を持つ緩衝液であれば特に限定されず、酢酸ナトリウム緩衝液、酢酸アンモニウム緩衝液、リン酸緩衝液、リン酸緩衝生理食塩水、2-アミノ-2-(ヒドロキシメチル)プロパン-1,3-ジオール(Tris)緩衝液、2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]-エタンスルホン酸(HEPES)緩衝液等の緩衝液等を用いることができ、上述したいずれかの緩衝液を用いることが好ましく、酢酸ナトリウム緩衝液を用いることがより好ましい。洗浄溶媒に用いる緩衝剤の濃度は、下限として、20mmol/L以上、好ましくは30mmol/L以上、上限としては200mmol/L以下、好ましくは70mmol/L以下である。また、洗浄溶媒のpHは、下限として4.0以上、好ましくは4.5以上、より好ましくは4.8以上、上限として7.4以下、好ましくは6.0以下、より好ましくは5.2以下である。さらに、二価抗体や抗体修飾ペプチドのカラム担体への非特異的結合の低減の観点から、溶出溶媒は塩化ナトリウム、塩化カリウム等の添加剤を含有してもよい。溶出溶媒が含有する添加剤の濃度は特に限定されないが、例えば0.15mol/Lを用いることができる。
 溶出工程では、担体に保持された修飾抗体を溶出溶媒を用いてカラムから溶出する。すなわち未修飾抗体および一価抗体を相対的に多く含む第一の抗体組成物を溶出溶媒を用いてカラムから溶出する。
 溶出溶媒としては、酢酸ナトリウム緩衝液、酢酸アンモニウム緩衝液、クエン酸緩衝液等の緩衝液等を用いることができる。また、抗体修飾リンカー、未修飾抗体及び修飾抗体のカラム担体への非特異的結合の低減の観点から、溶出溶媒は塩化ナトリウム、塩化カリウム等の添加剤を含有してもよい。溶出溶媒が含有する添加剤の濃度は特に限定されないが、例えば0.15mol/Lを用いることができる。
 溶出溶媒が緩衝剤を含む場合は、緩衝剤の濃度は、下限として、20mmol/L以上、好ましくは30mmol/L以上、上限としては200mmol/L以下、好ましくは70mmol/L以下である。また、溶出溶媒のpHは、未修飾抗体および一価抗体と、イムノグロブリン結合性タンパク質との相互作用を弱めるため、また、抗体の変性および凝集を防ぐ観点から、下限としてpH3.0以上、上限としてpH4.2以下が好ましい。
 抗体精製工程で取得した第一の抗体組成物又は第二の抗体組成物は、そのまま以降の工程(B)におけるクリック反応に用いてもよく、含有するペプチド修飾抗体のタンパク質濃度を調節してから工程(B)におけるクリック反応に用いてもよい。
 工程(B)におけるクリック反応は、キレート剤が有するクリック反応可能な第1原子団と、ペプチド修飾抗体が有するクリック反応可能な第2原子団との間で実行されるものである。かかるクリック反応によりキレート剤と抗体とを連結する結合基(抗体との複合化を可能とする置換基)が形成される。
 ペプチド修飾抗体と工程(A)で得られた錯体とがクリック反応可能であれば、これらの添加順序は問わず、例えば、溶媒を収容した反応容器に、該錯体及び該ペプチド修飾抗体の一方を添加し、次いで他方を添加して反応させてもよく、該キレート剤及び該抗体の一方を溶媒に分散した分散液に他方を添加して反応させてもよい。あるいは、溶媒を収容した反応容器に、これらを同時に添加して反応させてもよい。
 工程(B)のクリック反応に用いられる溶媒としては、水を含む溶媒を用いることができ、例えば、水、生理食塩水、又は酢酸ナトリウム緩衝液、酢酸アンモニウム緩衝液、リン酸緩衝液、リン酸緩衝生理食塩水、Tris緩衝液、HEPES緩衝液、若しくはテトラメチルアンモニウム酢酸緩衝液等の緩衝液等を用いることができる。緩衝液を用いる場合、錯体及び抗体の安定性と、これらの結合効率とを両立する観点から、25℃におけるpHを好ましくは4.0以上10.0以下、更に好ましくは5.5以上8.5以下とする。
 反応液量は、特に限定されないが、製造工程における実用性の観点から、工程(B)の開始時において、下限は、0.001mL以上が好ましく、0.01mL以上がより好ましく、0.1mL以上がさらに好ましく、1mL以上がよりさらに好ましく、上限は、1000mL以下が好ましく、100mL以下がより好ましく、10mL以下がさらに好ましく、1mL以下がよりさらに好ましく、例えば0.001mL以上1000mL以下の範囲が好ましく、0.1mL以上10mL以下の範囲がより好ましい。
 また、キレート剤及び抗体の反応液中の濃度は、それぞれ独立して、工程(B)の開始時において、下限として、0.001μmol/L以上が好ましく、0.01μmol/L以上がより好ましく、0.1μmol/L以上がさらに好ましく、1.0μmol/L以上がよりさらに好ましく、上限として、1000μmol/L以下が好ましく、100μmol/L以下がより好ましく、例えば、0.1μmol/L以上1000μmol/L以下の範囲が好ましく、1μmol/L以上100μmol/L以下の範囲であることが、目的とするキレート複合体の収量の観点からより好ましい。
 抗体の意図しない変性を防ぎつつ、反応効率を高める観点から、工程(B)におけるクリック反応は、反応温度の上限は、50℃以下が好ましく、40℃以下がより好ましい。また、反応温度の下限は、反応が進行する温度であれば特に制限はないが、15℃以上が好ましい。クリック反応の反応時間は、上述の反応温度であることを条件として、好ましくは5分以上、より好ましくは10分以上であり、24時間以下が好ましく、より好ましくは20時間以下であり、例えば、5分以上24時間以下の範囲が好ましく、より好ましくは10分以上20時間以下の範囲である。
 工程(A)及び(B)によって製造される放射性標識抗体は、抗原に特異的に結合する抗体の特定の部位(例えば抗体のFc領域のリシン残基)がキレート剤により特異的に修飾されたものである。この放射性標識抗体は、該抗体1分子に対し、前記キレート剤を1分子又は2分子備える。キレート剤は、リンカーを介して、抗体のFc領域を部位特異的に修飾している。該リンカーは、キレート剤に接続するキレートリンカー、該リンカーに接続する第1原子団、第1原子団とクリック反応し得る第2原子団、第2原子団に接続する抗体修飾リンカー(上記式(i)で表される抗体修飾ペプチドを含む)で構成される。従って、該リンカーは、第1原子団と第2原子団とに由来する化学構造を有する。このような化学構造としては、下記式(10a)又は(10b)で表されるトリアゾール骨格含有構造又は下記式(10c)で表されるピリダジン骨格含有構造が考えられる。式(10a)と式(10b)は異性体の関係にあるため任意の割合で含まれていてもよい。
 式(10a)及び式(10b)中、R1Aはキレートリンカーとの結合部位を示し、R2Aは抗体修飾リンカーとの結合部位を示す。式(10c)中、R3A及びR4Aのうち一方は水素原子、メチル基、フェニル基又はピリジル基を示し、他方はキレートリンカーとの結合部位を示し、R5Aは抗体修飾リンカーとの結合部位を示す。
 かくして放射性標識抗体の粗生成物の溶液が得られる。
工程2:工程1で得られた粗生成物の溶液を陽イオン交換材料と接触させて放射性標識抗体を陽イオン交換材料に吸着させる工程
(2-1)陽イオン交換材料
 「陽イオン交換材料」とは、負に荷電している固相であって、固相上又は固相中を通過する溶液中の陽イオンと交換される遊離の陽イオンを有する固相を意味する。荷電は、固相に一又は複数の荷電リガンドを例えば共有結合により付着させることにより得られうる。荷電は、固相に固有の性質であってもよい(例、シリカ)。いくつかの実施態様において、陽イオン交換材料は、膜、モノリス、又は樹脂であってもよい。本発明において、好ましい陽イオン交換材料は、樹脂担体に荷電基を備えるものである。荷電基としては、カルボキシル基、スルホ基又はリン酸基であるが、例えば、スルホナート基、カルボキシメチル基、スルホイソブチル基、スルホエチル基、カルボキシル基、スルホプロピル基、スルホニル基、スルホキシエチル基、ベンゼンスルホン酸基又はオルトホスファート基を含んでもよく、スルホプロピル基又はカルボキシメチル基がより好ましい。樹脂担体としては、例えば、カルボキシメチルセルロース又はアガロースが挙げられる。上記のいくつかの実施態様において、陽イオン交換材料は、陽イオン交換クロマトグラフィー材料であり、特に該材料がカラムに充填されてなる陽イオン交換クロマトグラフィーカラムの態様で提供され得る。商業的に入手可能な陽イオン交換材料には、カルボキシメチルセルロース、BAKERBOND ABXTM、アガロースに固定されたスルホプロピル(SP)(例えば、GE HealthcareのSP-SEPHAROSE FAST FLOWTM、SP-SEPHAROSE FAST FLOW XLTM、又はSP-SEPHAROSE HIGH PERFORMANCETMやCytivaのHiTrap SP FFTM等)、CAPTO STM(GE Healthcare)、FRACTOGEL-SO3TM、FRACTOGEL-SE HICAPTM、及びFRACTOPREPTM(EMD Merck)、アガロースに固定されたスルホニル(例えば、GE HealthcareのS-SEPHAROSE FAST FLOWTM)、及びSUPER SPTM(Tosoh Biosciences)が含まれる。
 陽イオン交換材料は後述の「放射性標識抗体と陽イオン交換材料との接触」の前に洗浄することができ、また、洗浄することが好ましい(いわゆる平衡化)。平衡化液は、放射性標識抗体の粗生成物の溶液を陽イオン交換材料と接触させる前に、陽イオン交換材料を平衡にするために使用される液である。平衡化液としては、工程3で用いる「溶離液」と同じ組成の溶液を用いることが好ましく、「(2-3)洗浄工程」で後述する洗浄液と同じ組成の液、および、工程3で用いる「溶離液」と同じ組成の溶液の2種を用いることがより好ましい。平衡化液のpHは4以上8以下の範囲にあり、好ましくは5以上6以下である。
 また、上記陽イオン交換材料の使用量は抗体1mgあたり0.01mL以上であることが好ましく、1mL以下が好ましい。
(2-2)放射性標識抗体と陽イオン交換材料との接触
 工程2では、工程1で得られた放射性標識抗体の粗生成物の溶液を陽イオン交換材料(上述)と接触させて該放射性標記抗体を該陽イオン交換材料に吸着させる。ここで「接触」または「接触させる」とは、該放射性標識抗体と陽イオン交換材料の荷電基または荷電基群との間のイオン相互作用により、陽イオン交換材料内または材料上に、該放射性標識抗体が可逆的に固定化(即ち吸着)されるように、適切な条件下で、該放射標識抗体を陽イオン交換材料に暴露することを意味する。例えば、陽イオン交換材料がカラムに充填されてなる陽イオン交換クロマトグラフィーカラムの態様である場合、該接触は、放射性標識抗体の粗生成物の溶液を陽イオン交換クロマトグラフィーカラムに通液することを意味する。
 放射性標識抗体の粗生成物の溶液は、放射性標識抗体が陽イオン交換材料に吸着させることができるように調製されていれば特に限定されない。例えば、放射性標識抗体の粗生成物の溶液のpHは、放射性標識抗体の等電点より低くすることができる。また、後述する「正電荷を有する添加剤」(一例として、アルギニン)を放射性標識抗体の粗生成物の溶液に含ませてもよい。この場合、好ましくは、放射性標識抗体の粗生成物の溶液中に含まれる正電荷を有する添加剤(一例として、アルギニン)の濃度を30mmol/L以下とすることができる。
 かくして、放射性標識抗体が陽イオン交換材料に吸着される。
 本発明の一実施態様において、工程2実施後、後述の工程3実施前に、放射性標識抗体が吸着した陽イオン交換材料を洗浄液で洗浄することが好ましい(以下、「洗浄工程」とも称する)。
(2-3)洗浄工程
 本工程で使用する洗浄液は、所望の放射性標識抗体を実質的に溶出させることなく、陽イオン交換材料から1または2以上の夾雑物質を除去する為に用いられる。夾雑物質は、所望される放射標識抗体とは異なる物質であり、例えば放射性標識抗体の粗生成物の溶液中に存在している未反応の放射性核種や抗体、キレート剤等が挙げられる。
 洗浄液は、好ましくは、1種類以上のpH調節剤を含み、該pH調節剤としては、特に限定されるものではないが、ヒスチジン、2-モルホリノエタンスルホン酸(MES)、2-[ビス(2-ヒドロキシエチル)アミノ]-2-(ヒドロキシメチル)プロパン-1,3-ジオール(Bis-Tris)、N-(2-アセトアミド)イミノ二酢酸(ADA)、ピペラジン-1,4-ビス(2-エタンスルホン酸)(PIPES)、N-(2-アセトアミド)-2-アミノエタンスルホン酸(ACES)、2-ヒドロキシ-3-モルホリノプロパンスルホン酸(MOPSO)、N,N-ビス(2-ヒドロキシエチル)-2-アミノエタンスルホン酸(BES)、3-モルホリノプロパン-1-スルホン酸(MOPS)、N-トリス(ヒドロキシメチル)メチル-2-アミノエタンスルホン酸(TES)および2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]エタンスルホン酸(HEPES)からなる群から選択される少なくとも1種の緩衝剤である。後述の工程3で用いる通常、放射性標識抗体と陽イオン交換材料との接触の際に用いた溶液のpHと比較して高いpHを有する。洗浄液のpHは、4以上が好ましく、より好ましくは5以上であり、7以下が好ましく、6.5以下がより好ましい。
 洗浄工程は1回実施されてもよいし、所望により2~5回実施することもできる。好ましくは、洗浄工程1回あたり陽イオン交換材料容量の3倍以上の液量を用いる。
工程3:1種以上の添加剤を含む溶離液を用いて工程2で陽イオン交換材料に吸着した放射性標識抗体を溶出する工程
(3-1)溶離液
 本発明において「溶離液」とは、放射性標識抗体が吸着した陽イオン交換材料から該抗体を溶出させるために使用される溶液を意味する。ここで、溶離液は、放射性標識抗体が陽イオン交換材料から溶出されるように設定される。溶離液には、本発明の製造方法の最終生成物である放射性医薬組成物の組成に含まれる添加剤(以下、「第1の添加剤」とも称する、添加剤(A)に相当)が添加される。第1の添加剤は、医薬品添加剤であり、かつ、陽イオン交換材料から放射性標識抗体を溶離させるものであれば限定されないが、放射化学的収率を高める観点から、正電荷を有する添加剤(添加剤(a1)に相当)とpH調節剤とを含むことが好ましい。
 「正電荷を有する添加剤」とは、水と接触したときに正電荷を帯びる化合物からなるか、またはそれを含む物質を意図している。水と接触したときに正電荷を帯びる化合物は、通常分子内にカチオン性基を有しており、かかるカチオン性基としては、例えば、1級アミノ基、2級アミノ基、3級アミノ基等のアミノ基、4級アンモニウム基、ホスホニウム基等のオニウム塩基、アルギニル基、リシル基、ヒスチジル基、グアニジル基等のアミノ酸残基、イミダゾール基等の複素環基を挙げることができるが、好ましくは、グアニジン骨格を有する化合物である。グアニジン骨格を有する化合物としては、例えば、アルギニン、または、アシル化アルギニンおよびアグマチン等のアルギニン誘導体が挙げられるが、アルギニンが好ましい。この場合、溶離液中のアルギニンの濃度は、10mmol/L以上が好ましく、より好ましくは30mmol/L以上であり、さらに好ましくは50mmol/L以上であり、500mmol/L以下が好ましく、より好ましくは400mmol/L以下であり、さらに好ましくは300mmol/L以下である。
 正電荷を有する添加剤は、上記したアルギニン等の水と接触したときに正電荷を帯びる化合物に加えて、伝導率を高めることを意図して塩を含んでいてもよい。利用可能な塩としては、塩化ナトリウム、酢酸ナトリウム、塩化カリウム等が挙げられ、それらのうちの少なくとも1種を、正電荷を有する添加剤に含めることができる。塩化ナトリウムの場合、好ましくは100mmol/L以上、より好ましくは150mmol/L以上、好ましくは300mmol/L以下、より好ましくは200mmol/L以下の濃度で用いられる。
 「pH調節剤」としては、溶離液を所望のpHに調節するという目的が達成される医薬品添加剤を使用することができるが、具体的には、ヒスチジン緩衝液が好ましく、ヒスチジン緩衝液に加えて、あるいは、ヒスチジン緩衝液に代えて、2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]エタンスルホン酸(HEPES)緩衝液、リン酸緩衝液、クエン酸緩衝液からなる群から選択される少なくとも1種の緩衝剤を使用することができる。
 pH調節剤としてヒスチジン緩衝液を用いる場合、溶離液中のヒスチジンの濃度は10mmol/L以上が好ましく、より好ましくは20mmol/L以上であり、さらに好ましくは30mmol/L以上であり、300mmol/L以下が好ましく、より好ましくは250mmol/L以下が好ましく、200mmol/L以下がさらに好ましい。
 溶離液のpHは、6より高いことが好ましく、好ましくは8以下であり、より好ましくは7以下である。
 本発明の溶離液は、放射性医薬組成物の処方組成となり得る。
(3-2)溶出
 陽イオン交換材料からの該材料に吸着した放射性標識抗体の溶出は、例えば陽イオン交換材料が陽イオンクロマトグラフィーカラムの場合、放射性標識抗体が吸着したカラムに上記溶離液を通液することにより実施することができる。通液は1回実施されてもよいし、所望により2~3回実施することもできる。ただし、溶出工程1回あたり陽イオン交換材料容量の3倍以上の液量を用いる。
 本発明において、放射性医薬組成物を製造するにあたって、工程3の実施後に、該放射性標識抗体を含む溶出液に希釈液を添加してもよい。本発明の溶離液が処方組成となり得ることから、溶出液に希釈液を添加することで溶媒交換を行うことなく製剤化が可能となる。希釈液としては、注射用水や生理食塩液が用いられる。
 また、溶出液には、更なる添加剤(以下、「第2の添加剤」とも称する。添加剤(B)に相当)を添加してもよい。第2の添加剤は、医薬品添加剤であれば限定されないが、安定剤、界面活性剤、酸化防止剤、キレート剤、pH調整剤などを例示することができる。第2の添加剤は、例えば、希釈液に溶解して添加することができる。
(3-3)液状医薬組成物
 上記工程1~工程3、所望により工程2と工程3の間の洗浄工程や工程3の後の希釈工程を実施することにより、「放射性核種で抗体を標識した放射性標識抗体を有効成分とし、1種以上の添加剤を含む液状の放射性医薬組成物」が得られる。ここで、「液状」とは、通常の条件(例えば、大気中、室温/常温)で液体状又は流体状であることをいい、若干の粘性を有する状態も含まれる。具体的には、溶液、懸濁液、分散液、乳状液等が挙げられるがこれらに限定されない。液状医薬組成物は、例えば上述の方法で製造された本発明のキレート複合体を、水を主体とし、且つ生体と略等張の溶媒に溶解させて製造することができる。この場合、必要に応じて、薬学的に許容される他の成分を含んでいてもよい。
 液状医薬組成物は、その有効量が、経口的に、又は静脈内、皮下、腹腔内若しくは筋肉内等の非経口的に生体に投与され、疾患の治療、疾患の診断、あるいは病巣の検出等に用いられる。
 ここで投与対象としてはヒト、またはマウス、ラット、サル、モルモット、チンパンジー、ヒツジ、ヤギ、イヌ、ネコ、ブタ、ウシもしくはウマなどの動物であるが、特に限定されるものではない。好ましくはヒトである。
 放射性核種として治療効果を有するもの、具体的にはα粒子放出核種を選択することにより、本発明の液状医薬組成物は、放射性核種内用療法に用いることができる。放射性核種内用療法は、放射性医薬を静注や経口で投与し、がん原発巣や転移巣のような病巣部位にこの放射性薬剤を集積させ、放射性薬剤から放出される放射線により、病巣部位のがん細胞を破壊するというものである。従って、本発明の液状医薬組成物はがんの放射性核種内用療法に好ましく用いることができる。この場合、当該医薬組成物の投与量、用量は、放射性核種の種類、有効成分の有効性、投与の形態・経路、疾患(特にがん)の進行ステージ、患者の体型・体重・年齢、併用する他の疾患の治療薬の種類や量に応じ、適宜選択される。
 また、当該医薬組成物の投与量、用量は、マウスの投与量をヒトに体表面積換算したヒト等価用量(HED;Human Equivalent dose)を用いることができる。HEDは、下記式によって求められる。
HED=animal dose in MBq/kg × (animal weight in kg/human weight in kg)0.33
 例えば、体重20gのマウスの投与量を用いて、体重60kgのヒトのHEDを算出すると、放射性核種がヨウ素-131である場合は、通常1回あたり100MBq/kg以下で投与され得る。1回あたり50MBq/kg以下の用量でも効果を発揮し得る。例えば、放射性核種がイットリウム-90である場合は、通常1回あたり50MBq/kg以下で投与され得る。1回あたり30MBq/kg以下の用量でも効果を発揮し得る。例えば、放射性核種がルテチウム-177である場合は、通常1回あたり50MBq/kg以下で投与され得る。1回あたり40MBq/kg以下の用量でも効果を発揮し得る。このような投与量は本発明の一実施形態の例示であり、当業者はマウス及びヒトの体重に応じて適宜上記式で換算することができる。
 また、放射性核種がヨウ素-131である場合は、非放射性ヨウ素製剤(安定ヨウ素剤)を事前投与することにより、ヨウ素が生理的に集積する甲状腺への毒性を低減させることができる。安定ヨウ素剤としては、ヨウ化カリウム、ヨウ素酸カリウムなどを用いることができる。
 また、本発明の他の態様として、前述した放射性標識抗体において、放射性核種として、β線放出核種からポジトロンやγ線を放出する放射性核種を用いた場合には、得られた放射性医薬組成物は、がんの放射性核種内用療法におけるがんの診断に用いてもよい。本発明のがんの診断用医薬組成物は、がんのRI内用療法を行う前の診断に用いてもよいし、がんの放射性核種内用療法を行った後の診断に用いてもよい。がんの放射性核種内用療法を行う前の診断に用いられることによって、β線を放出する放射性核種を備えた本発明の液状医薬組成物を用いたがんの放射性核種内用療法を実行するかどうかの治療選択の判断に用いることができる。また、がんの放射性核種内用療法を行った後の診断に用いられることによって、β線を放出する放射性核種を備えた本発明の液状医薬組成物を用いたがんの放射性核種内用療法の効果があるかどうかの判定や投与量の増減などの治療計画の適正化に用いることができる。
(2)放射性標識抗体の精製方法
 本発明は、
(工程A)放射性核種で抗体を標識して放射性標識抗体の粗生成物の溶液を得る工程、
(工程B)前記工程Aで得られた前記粗生成物の溶液を陽イオン交換材料と接触させて前記放射性標識抗体を前記陽イオン交換材料に吸着させる工程、及び
(工程C)1種以上の添加剤を含む溶離液を用いて前記工程Bで陽イオン交換材料に吸着した前記放射性標識抗体を溶出する工程と、
を含む、
放射性標識抗体の精製方法を提供する。
 工程Aは上記「(1)医薬組成物及びその製造方法」の工程1と同様にして実施することができる。
 工程Bは上記「(1)医薬組成物及びその製造方法」の工程2と同様にして実施することができる。
 工程Cは上記「(1)医薬組成物及びその製造方法」の工程3と同様にして実施することができる。
 工程Cを経て得られる溶出液は、高濃度で放射性標識抗体を含有し、従って高い放射化学的収率が見込まれる。また、高い放射化学的純度を維持することができる。
 本発明の液状医薬組成物は、室温で保管したとき、その液状医薬組成物に含まれる放射性標識抗体を構成する放射性金属核種の半減期を基準として、半減期の1以上5以下の倍数の期間経過時点において、一定の割合以上の放射化学的純度を有する。上記の放射性金属核種がポジトロン放出核種(例えば、Zr-89)であるとき、好ましくは、室温で製造終了から7日間保管した時の複合体の放射化学的純度が90%以上であり、より好ましくは95%以上である。また、放射性金属核種がα粒子核種(例えば、Ac-225)であるときに、好ましくは、室温で製造終了から14日間保管した時の複合体の放射化学的純度が90%以上であり、より好ましくは95%以上である。ここで本明細書における「室温」とは、好ましくは日本薬局方で定義される「常温」をいい、具体的には15~25℃である。また、保管中や医療現場への輸送中には、設定した貯蔵条件の温度から逸脱する可能性があり、温度逸脱が生じた場合でも放射化学的純度の変化が少ないことが、液状医薬組成物としては好ましい。
 ここで、放射化学的純度は、試料を市販の放射線検出器で分析した場合に検出された全放射能(カウント)に対する、複合体に相当するピークの放射能(カウント)の百分率をいう。放射化学的純度の分析には高速液体クロマトグラフィーや薄層クロマトグラフィーを用いることができるが、薄層クロマトグラフィーを用いることが好ましい。より好ましくは後述する実施例に記載の条件を用いた薄層クロマトグラフィーを用いる。
 本発明の上記の実施形態は、以下の技術思想を包含するものである。
 [1]放射性核種で抗体を標識した放射性標識抗体を有効成分とし、1種以上の添加剤(A)を含む液状の放射性医薬組成物の製造方法であって、
 (工程1)放射性核種で抗体を標識して前記放射性標識抗体の粗生成物の溶液を得る工程と、
 (工程2)前記工程1で得られた前記粗生成物の溶液を陽イオン交換材料と接触させて前記放射性標識抗体を前記陽イオン交換材料に吸着させる工程と、
 (工程3)前記添加剤(A)を含む溶離液を用いて前記工程2で前記陽イオン交換材料に吸着した前記放射性標識抗体を溶出する工程と、
 を含む、
 放射性医薬組成物の製造方法。
 [2]前記放射性医薬組成物が前記添加剤(A)である第1の添加剤に加えて第2の添加剤(B)を含み、
  工程3の実施後に、前記放射性標識抗体を含む溶出液に前記第2の添加剤(B)を含む希釈液を添加する工程を行う、[1]に記載の方法。
 [3]放射性核種が、放射性金属核種又は放射性ハロゲン核種である、[1]または[2]に記載の方法。
 [4]放射性核種が、Al18F、89Zr、90Y、111In、177Lu、又は225Acである、[1]または[2]に記載の方法。
 [5]前記陽イオン交換材料が、荷電基としてスルホプロピル基又はカルボキシメチル基を有する、[1]~[4]のいずれかに記載の方法。
 [6]前記陽イオン交換材料が、カラムに充填されてなる、[1]~[5]のいずれかに記載の方法。
 [7]前記工程3の実施前に、前記放射性標識抗体が吸着した前記陽イオン交換材料に洗浄液を通液して該陽イオン交換材料を洗浄する工程を行う、[1]~[6]のいずれかに記載の方法。
 [8]前記洗浄液が、1種類以上のpH調節剤を含む、[7]記載の方法。
 [9]前記pH調節剤が、ヒスチジン、2-モルホリノエタンスルホン酸(MES)、2-[ビス(2-ヒドロキシエチル)アミノ]-2-(ヒドロキシメチル)プロパン-1,3-ジオール(Bis-Tris)、N-(2-アセトアミド)イミノ二酢酸(ADA)、ピペラジン-1,4-ビス(2-エタンスルホン酸)(PIPES)、N-(2-アセトアミド)-2-アミノエタンスルホン酸(ACES)、2-ヒドロキシ-3-モルホリノプロパンスルホン酸(MOPSO)、N,N-ビス(2-ヒドロキシエチル)-2-アミノエタンスルホン酸(BES)、3-モルホリノプロパン-1-スルホン酸(MOPS)、N-トリス(ヒドロキシメチル)メチル-2-アミノエタンスルホン酸(TES)および2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]エタンスルホン酸(HEPES)からなる群から選択される少なくとも1種の緩衝剤である、[8]記載の方法。
 [10]前記洗浄液のpHが4~7である、[7]~[9]のいずれかに記載の方法。
 [11]前記放射性医薬組成物が、前記添加剤(A)として、正電荷を有する添加剤(a1)とpH調節剤とを含み、
  前記溶離液が、前記放射性医薬組成物に含まれる前記正電荷を有する添加剤(a1)と前記pH調節剤とを含む、[1]~[10]のいずれかに記載の方法。
 [12]前記正電荷を有する添加剤(a1)が、グアニジン骨格を有する化合物を含む、[11]記載の方法。
 [13]前記グアニジン骨格を有する化合物が、アルギニン、アシル化アルギニンおよびアグマチンからなる群から選択される少なくとも1種の化合物である、[12]に記載の方法。
 [14]前記正電荷を有する添加剤(a1)が、塩化ナトリウム、塩化カリウムおよび酢酸ナトリウムからなる群から選択される少なくとも1種の化合物をさらに含む、[12]または[13]に記載の方法。
 [15]前記pH調節剤がヒスチジン、2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]エタンスルホン酸(HEPES)、リン酸及びクエン酸からなる群から選択される少なくとも1種の緩衝剤を含む、[11]~[14]のいずれかに記載の方法。
 [16]前記添加剤(A)を含む前記溶離液が、アルギニンを含有するヒスチジン緩衝液を含む、[1]~[15]のいずれかに記載の方法。
 [17]前記溶離液に含まれるアルギニンが10~500mmоl/L、ヒスチジンが10~300mmоl/Lである、[16]に記載の方法。
 [18]前記溶離液が6<pH≦8である、[1]~[17]のいずれかに記載の方法。
 [19](工程A)放射性核種で抗体を標識して放射性標識抗体の粗生成物の溶液を得る工程、
 (工程B)前記工程Aで得られた前記粗生成物の溶液を陽イオン交換材料と接触させて前記放射性標識抗体を前記陽イオン交換材料に吸着させる工程、及び
 (工程C)1種以上の添加剤を含む溶離液を用いて前記工程Bで陽イオン交換材料に吸着した前記放射性標識抗体を溶出する工程と、
 を含む、
放射性標識抗体の精製方法。
 [20]前記放射性標識抗体が、放射性核種がキレートしたキレート剤と抗体との複合体であり、該キレート剤が、リンカーを介して、前記抗体のFc領域を部位特異的に修飾している、[1]~[19]記載の方法。
 [21]該リンカーが、下記式(i)で表される、13以上17以下のアミノ酸残基からなる抗体修飾ペプチドを含む、[20]に記載の複合体。
 (Xa)-Xaa1-(Xb)-Xaa2-(Xc)-Xaa3-(Xd)・・・(i)
 (式中、Xa、Xb、Xc及びXdは、それぞれ、連続するa個のX、連続するb個のX、連続するc個のX、及び連続するd個のXを表し、
 Xは、側鎖にチオール基及びハロアセチル基のいずれも有しないアミノ酸残基であり、
 a、b、c及びdはそれぞれ独立に1以上5以下の整数で、かつa+b+c+d≦14を満たし、
 Xaa及びXaaは、それぞれ独立に、
 側鎖にチオール基を有するアミノ酸に由来するアミノ酸残基を表し、かつ、ジスルフィド結合を介して結合しているか若しくはスルフィド基がリンカーを介して結合しており、又は、
 一方が、側鎖にチオール基を有するアミノ酸に由来するアミノ酸残基を表し、他方が、側鎖にハロアセチル基を有するアミノ酸に由来するアミノ酸残基を表し、かつ、チオエーテル結合を介して結合しており、
 Xaaは、リシン残基、アルギニン残基、システイン残基、アスパラギン酸残基、グルタミン酸残基、2-アミノスベリン酸、又はジアミノプロピオン酸である。)
 [22]該リンカーが、上記式(10a)又は上記式(10b)で示す構造を有する、[20]または[21]記載の方法。
 [23]前記抗体がヒト抗体である、[1]~[22]のいずれかに記載の方法。
 [24]前記放射性標識抗体において、抗体1分子に対して抗体修飾ペプチド1分子または2分子が結合している、[1]~[22]のいずれかに記載の方法。
 以下、実施例等により、本発明を詳しく説明するが、本発明はこれらに限定されるものではない。
製造例1:ペプチドリンカーによる部位特異的抗体修飾
(1)抗体修飾工程
 抗体修飾ペプチドを国際公開第2017/217347号に記載の方法で製造して、下記式(P3)で表される17個のアミノ酸残基を含むペプチドを得た。このペプチドのアミノ酸配列は、配列番号10のXaaがリシン残基である配列と同一であり、リシン残基の側鎖末端アミノ基がR1で示される構造で修飾されていた。また、2つのシステイン残基で互いにジスルフィド結合を形成しており、ペプチドのN末端はジグリコール酸及び8つのPEGを有するリンカー構造を介して、第2原子団であるアジド基を含む原子団として、エチルアジドが結合しているものであった。
(式(P3)中、Glyはグリシンを、Proはプロリンを、Aspはアスパラギン酸を、Cysはシステインを、Alaはアラニンを、Tyrはチロシンを、Hisはヒスチジンを、Gluはグルタミン酸を、Leuはロイシンを、Valはバリンを、Trpはトリプトファンを、Pheはフェニルアラニンを示す。)
 このペプチドと、表2に示す抗体医薬とを酢酸ナトリウム緩衝液(pH6.0)に混合した混合液を、室温で30分間反応させて、ペプチド修飾抗体を含む溶液を得た。このペプチド修飾抗体は、上記のペプチドによって各抗体のFc領域が部位特異的に修飾されたものである。
(2)ペプチド修飾抗体分離工程
 このペプチド修飾抗体を、20mmol/L酢酸ナトリウム緩衝液(pH6.0)で希釈してから、国際公開第2020/075670号の実施例2に記載された方法に準じて調製したIgG-BPカラムに通液し、未標識抗体及び一価抗体を相対的に多く含む抗体組成物を得た。未標識抗体及び一価抗体を相対的に多く含む溶液を後述の標識工程に供した。回収したペプチド修飾抗体の純度は疎水カラムクロマトグラフィーで分析し、表3に示す回収量、未修飾抗体:一価抗体:二価抗体比でペプチド修飾抗体を得た。
 なお、疎水カラムクロマトグラフィーの条件は、以下の通りである。
 カラム:BioPro HIC BF(4.6mm×10cm,4.0μm)
 検出器:紫外吸光光度計(測定波長:280nm)
移動相A:1.5mol/L硫酸アンモニウム含有50mmol/Lリン酸緩衝液(pH7.0)
移動相B:50mmol/Lリン酸緩衝液(pH7.0)
移動相C:水
移動相の送液:移動相A,移動相B及び移動相Cの混合比を次のように変えて濃度勾配制御する。
実施例1: 89 Zr標識リツキシマブを有効成分とする放射性医薬組成物の製造
(1)錯体形成工程
 本実施例に用いられるキレート部(DOTA-GA-DBCO)の構造を、以下の式(L1-5)に示す。89Yターゲットにプロトン照射し、0.1mol/L塩酸水溶液に溶解させて調製した89Zrイオン含有溶液(放射能濃度4200MBq/mL、液量0.100mL)を加熱条件下で、溶媒留去した。キレート部を、100mmol/L酢酸-酢酸ナトリウム緩衝液(pH5.0)に分散させて、キレート部を0.3mmol/L含む分散液(89Zr用キレート部分散液)とした。この89Zr用分散液0.074mLと、150mmol/Lゲンチジン酸溶液(100mmol/L酢酸-酢酸ナトリウム緩衝液(pH5.0)に溶解)0.099mLとを、溶媒留去した放射性金属源に加え、加熱条件下で反応させて、89Zr錯体溶液を得た。キレート部と放射性金属イオンとのモル比率は、キレート部:89Zrイオン=約78.1:1であり、反応液の加熱温度は70℃、加熱時間は60分間とした。
 TLC分析にて89Zr錯体溶液中の89Zr錯体の放射化学的純度を測定し、96.5%の放射化学的純度で89Zr錯体を得た。TLC分析は、薄層クロマトグラフィー(Agilent社製、型番:SGI0001、展開溶媒はアセトニトリル:水(体積比1:1))をラジオγ-TLCアナライザー(raytest製、MODELGITA Star PS)で測定し、検出された全放射能(カウント)に対する、溶媒先端付近に検出されたピークの放射能(カウント)の百分率を放射化学的純度(%)とした。
(2)標識工程
 上述の工程(1)を経て得られた89Zr錯体の溶液と、製造例1を経て製造したペプチド修飾リツキシマブ(一価抗体)を含む溶液とを混合し、37℃で2.0時間クリック反応させて、89Zr標識リツキシマブを得た。放射化学的純度は、展開溶媒にアセトニトリル:0.1mol/L EDTA溶液(体積比1:1)、検出された全放射能(カウント)に対する、原点付近に検出されたピークの放射能(カウント)の百分率を放射化学的純度(%)としたほかは工程(1)と同様に測定し、65.8%の放射化学的純度で89Zr標識リツキシマブが得られていることがわかった。
(3)精製工程
 工程(2)で得られた89Zr標識リツキシマブを含む溶液120μLと、上述の工程(1)で得られた89Zr錯体溶液80μLと、89Zr塩酸溶液5μLとを混和し、89Zr標識リツキシマブを26.5%、遊離89Zr成分を10.1%含む精製検討用の疑似反応溶液を作成した(TLCで検出される疑似反応溶液中の全放射能成分の割合を100%としている)。
 アガロース担体に荷電基としてスルホプロピル基を備える陽イオン交換樹脂を充填したカラム(HiTrapTM SP FF 1mL)を、5mLの20mmol/Lヒスチジン緩衝液(pH5.5)(以下、「His5.5」という。)、5mLの100mmol/Lアルギニン含有50mmol/Lヒスチジン緩衝液(pH6.1)(以下、「RH6.1」という。)、10mLのHis5.5の順で平衡化した。
 疑似反応溶液10μL(11.7MBq)を平衡化済みの上記カラムに通液し、89Zr標識抗体をカラムに保持させた。その後、5mLのHis5.5をカラムに2回通液して洗浄した。次いで、3mLのRH6.1を通液し、溶出液(1.16MBq)を回収した。工程(2)と同様に溶出液の放射化学的純度をTLCによって解析し、それぞれ放射能を測定して目的の89Zr標識リツキシマブの放射化学的収率を計算した。その結果、放射化学的収率が37.3%、放射化学的純度が78.4%であった。なお、放射化学的収率とは、溶出液3mL中に含まれる89Zr標識抗体の放射能をカラムに通液した疑似反応溶液中の89Zr標識抗体の放射能で除し、百分率で表した値である。
比較例1: 89 Zr標識リツキシマブを有効成分とする放射性医薬組成物の製造
 陽イオン交換樹脂を、5mLのHis5.5、5mLの160mmol/LNaCl含有19mmol/LMES緩衝液(pH5.5)(以下、「NaMES5.5」という。)の順で平衡化し、溶離液として、3mLのNaMES5.5を用いた以外は、実施例1と同様にして、疑似反応溶液から89Zr標識リツキシマブの精製を行った。なお、MES緩衝液は、医薬品の添加剤として用いられた実績がないものである。その結果、放射化学的収率が13.6%、放射化学的純度が50.9%であった。
実施例2~5:種々の放射性標識抗体を有効成分とする放射性医薬組成物の製造
(1)錯体形成工程
 実施例1の工程(1)と同様に実施した。
(2)標識工程
 上述の工程(1)を経て得られた89Zr錯体の溶液と、製造例1を経て製造した各ペプチド修飾抗体(一価抗体)を含む溶液とを混合し、37℃で2.0時間クリック反応させて、89Zr標識抗体を得た。
(3)精製工程
 アガロース担体に荷電基としてスルホプロピル基を備える陽イオン交換樹脂を充填したカラム(HiTrap SP FF 1mL)を5mLのHis5.5、5mLのRH6.1、10mLのHis5.5で平衡化した。上記のカラムに工程(2)で得られた反応液を全量通液し、89Zr標識抗体をカラムに保持させた。上記カラムに1mLのHis5.5を5回通液し洗浄した。このカラムに1mLのRH6.1を3回通液し、溶出液を回収した。工程(2)と同様に溶出液の放射化学的純度をTLCによって解析し、それぞれ放射能を測定して目的の89Zr標識抗体の放射化学的収率を計算した。なお、放射化学的収率とは、溶出液3mL中に含まれる89Zr標識抗体の放射能をカラムに通液した反応溶液中の89Zr標識抗体の放射能で除し、百分率で表した値である。得られた放射性医薬組成物の放射化学的収率と放射化学的純度を表5に示す。
実施例6: 225 Ac標識パニツムマブを有効成分とする放射性医薬組成物の製造
(1)錯体形成工程
 実施例1と同様のキレート部(DOTA-GA-DBCO)を、156mmol/L酢酸-酢酸ナトリウム緩衝液(pH5.5)に分散させて、キレート部を0.3mmol/L含む分散液(225Ac用キレート部分散液)とした。この225Ac用分散液139.7μLと、225Acイオン含有溶液(0.1mol/L塩酸に溶解、放射能濃度192MBq/mL、13.415MBq)69.9μLとを、1.5mLエッペンチューブ(eppendorf社製、Protein LoBind Tube)に加え、加熱条件下で反応させて、225Ac錯体溶液を得た。キレート部と放射性金属イオンとのモル比率は、キレート部:225Acイオン=約1521:1であり、反応液の加熱温度は70℃、加熱時間は30分間とした。
 TLC分析にて225Ac錯体溶液中の225Ac錯体の放射化学的純度を測定し、97.3%の放射化学的純度で225Ac錯体を得た。TLC分析は、検出器にラジオγ-TLCアナライザー(raytest製、MODEL:GITA Star)を用いた以外は、実施例1(1)と同様に測定した。
(2)標識工程
 上述の工程(1)を経て得られた225Ac錯体の溶液と、製造例1を経て製造したペプチド修飾パニツムマブ(一価抗体)を含む溶液をHis5.5に溶媒置換した溶液799μLとを混合し、37℃で2.0時間クリック反応させて、225Ac標識パニツムマブを得た。放射化学的純度は、展開溶媒にアセトニトリル:0.1mol/L EDTA溶液(体積比1:1)、検出された全放射能(カウント)に対する、原点付近に検出されたピークの放射能(カウント)の百分率を放射化学的純度(%)としたほかは工程(1)と同様に測定し、60.3%の放射化学的純度で225Ac標識パニツムマブが得られていることがわかった。
(3)精製工程
 精製用カラムの平衡化は実施例1(3)と同様のカラムと手順で実施した。
 工程(2)で得られた225Ac標識パニツムマブを含む溶液986.6μLを、平衡化済みの上記カラムに通液し、225Ac標識パニツムマブをカラムに保持させた。その後、5mLのHis5.5をカラムに2回通液して洗浄した。次いで、3mLのRH6.1を通液し、溶離液(6.678MBq)を回収した。工程(2)と同様に溶離液の放射化学的純度をTLCによって解析し、それぞれ放射能を測定して目的の225Ac標識パニツムマブの放射化学的収率を計算した。その結果、放射化学的収率が49.78%、回収率が82.55%、放射化学的純度が99.9%であった。なお、放射化学的収率とは、溶離液3mL中に含まれる225Ac標識抗体の放射能を、反応に用いた225Acの放射能で除し、百分率で表した値である。また、回収率とは、溶離液3mL中に含まれる225Ac標識抗体の放射能を、反応に用いた225Acの放射能を標識工程の放射化学的純度で乗した値(225Ac標識抗体の放射能)で除し、百分率で表した値である。
(4)製剤化工程
 工程(3)で得られた溶離液を0.9mLずつ3本に分注し、それぞれentry1~3として以降の手順で製剤化した。
 entry1は、分注した溶液(放射能濃度2.23MBq/mL)をそのまま製剤として保管した。entry2は、分注した溶液にRH6.1を加え、放射能濃度が1.71MBq/mLなるように希釈したものを製剤として保管した。entry3は、分注した溶液をフィルター(Merck社製、型番:UFC505096)を用いた限外ろ過により濃縮したのち、RH6.1を加え、放射能濃度が4.00MBq/mLなるように希釈したものを製剤として保管した。
比較例2: 225 Ac標識パニツムマブを有効成分とする放射性医薬組成物の製造
(1)錯体形成工程
 実施例6の工程(1)と同様に実施した。反応に用いた225Acイオン含有溶液の放射能は13.584MBqであった。
(2)標識工程
 実施例6の工程(2)と同様に実施した。放射化学的純度は、展開溶媒にアセトニトリル:0.1mol/L EDTA溶液(体積比1:1)、検出された全放射能(カウント)に対する、原点付近に検出されたピークの放射能(カウント)の百分率を放射化学的純度(%)としたほかは工程(1)と同様に測定し、74.8%の放射化学的純度で225Ac標識パニツムマブが得られていることがわかった。
(3)精製工程
 精製用カラムを、5mLのHis5.5、5mLのNaMES5.5、10mLのHis5.5の順で平衡化し、溶離液として、3mLのNaMES5.5を用いた以外は、実施例6と同様にして、225Ac標識パニツムマブの精製を行った。その結果、溶離液(5.132MBq)を回収した。工程(2)と同様に溶離液の放射化学的純度をTLCによって解析し、それぞれ放射能を測定して目的の225Ac標識パニツムマブの放射化学的収率を計算した。その結果、放射化学的収率が37.78%、回収率が50.51%、放射化学的純度が97.2%であった。なお、放射化学的収率とは、溶離液3mL中に含まれる225Ac標識抗体の放射能を、反応に用いた225Acの放射能で除し、百分率で表した値である。また、回収率とは、溶離液3mL中に含まれる225Ac標識抗体の放射能を、反応に用いた225Acの放射能を標識工程の放射化学的純度で乗した値(225Ac標識抗体の放射能)で除し、百分率で表した値である。
(4)製剤化工程
 工程(3)で得られた溶離液を0.9mLずつ3本に分注し、それぞれentry4~6として以降の手順で製剤化した。
 entry4は、分注した溶液をフィルター(Merck社製、型番:UFC505096)を用いた限外ろ過により濃縮したのち、NaMES5.5を加え、放射能濃度が2.23MBq/mLなるように希釈したものを製剤として保管した。entry5は、分注した溶液(放射能濃度1.71MBq/mL)をそのまま製剤として保管した。entry6は、分注した溶液をフィルター(Merck社製、型番:UFC505096)を用いた限外ろ過により濃縮したのち、NaMES5.5を加え、放射能濃度が4.00MBq/mLなるように希釈したものを製剤として保管した。
試験例1:製剤の保管安定性に与える溶離液の組成の影響の評価
 実施例6および比較例2で調製したentry1~6の放射性医薬組成物(放射性製剤)について、製造直後から14日後までの室温保管における保管安定性を検証した。また、製造10日後以降は37℃保管における保管安定性も検証した。その結果を表6に示す。
 表6の結果から、RH6.1を組成としたentry1~3の方が、NaMES5.5を組成としたentry4~6と比較して、いずれの放射能濃度においても放射化学的純度の経時的な低下を抑制する効果があることが示された。また、10日後以降におこなった37℃下での保管においても、同様の傾向を認め、entry1~3の方が、entry4~6と比較して、放射化学的純度の経時的な低下を抑制する効果があった。
 本出願は、日本で出願された特願2022-171833(出願日:2022年10月26日)を基礎としており、その内容は本明細書に全て包含されるものである。

Claims (19)

  1.  放射性核種で抗体を標識した放射性標識抗体を有効成分とし、1種以上の添加剤(A)を含む液状の放射性医薬組成物の製造方法であって、
    (工程1)放射性核種で抗体を標識して前記放射性標識抗体の粗生成物の溶液を得る工程と、
    (工程2)前記工程1で得られた前記粗生成物の溶液を陽イオン交換材料と接触させて前記放射性標識抗体を前記陽イオン交換材料に吸着させる工程と、
    (工程3)前記添加剤(A)を含む溶離液を用いて前記工程2で前記陽イオン交換材料に吸着した前記放射性標識抗体を溶出する工程と、
    を含む、
    放射性医薬組成物の製造方法。
  2.  前記放射性医薬組成物が前記添加剤(A)である第1の添加剤に加えて第2の添加剤(B)を含み、
     工程3の実施後に、前記放射性標識抗体を含む溶出液に前記第2の添加剤(B)を含む希釈液を添加する工程を行う、請求項1に記載の方法。
  3.  放射性核種が、放射性金属核種又は放射性ハロゲン核種である、請求項1または2に記載の方法。
  4.  放射性核種が、Al18F、89Zr、90Y、111In、177Lu、又は225Acである、請求項1または2に記載の方法。
  5.  前記陽イオン交換材料が、荷電基としてスルホプロピル基又はカルボキシメチル基を有する、請求項1または2に記載の方法。
  6.  前記陽イオン交換材料が、カラムに充填されてなる、請求項1または2に記載の方法。
  7.  前記工程3の実施前に、前記放射性標識抗体が吸着した前記陽イオン交換材料に洗浄液を通液して該陽イオン交換材料を洗浄する工程を行う、請求項1または2に記載の方法。
  8.  前記洗浄液が、1種類以上のpH調節剤を含む、請求項7に記載の方法。
  9.  前記pH調節剤が、ヒスチジン、2-モルホリノエタンスルホン酸(MES)、2-[ビス(2-ヒドロキシエチル)アミノ]-2-(ヒドロキシメチル)プロパン-1,3-ジオール(Bis-Tris)、N-(2-アセトアミド)イミノ二酢酸(ADA)、ピペラジン-1,4-ビス(2-エタンスルホン酸)(PIPES)、N-(2-アセトアミド)-2-アミノエタンスルホン酸(ACES)、2-ヒドロキシ-3-モルホリノプロパンスルホン酸(MOPSO)、N,N-ビス(2-ヒドロキシエチル)-2-アミノエタンスルホン酸(BES)、3-モルホリノプロパン-1-スルホン酸(MOPS)、N-トリス(ヒドロキシメチル)メチル-2-アミノエタンスルホン酸(TES)および2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]エタンスルホン酸(HEPES)からなる群から選択される少なくとも1種の緩衝剤である、請求項8に記載の方法。
  10.  前記洗浄液のpHが4~7である、請求項7に記載の方法。
  11.  前記放射性医薬組成物が、前記添加剤(A)として、正電荷を有する添加剤(a1)とpH調節剤とを含み、
     前記溶離液が、前記放射性医薬組成物に含まれる前記正電荷を有する添加剤(a1)と前記pH調節剤とを含む、請求項1または2に記載の方法。
  12.  前記正電荷を有する添加剤(a1)が、グアニジン骨格を有する化合物を含む、請求項11に記載の方法。
  13.  前記グアニジン骨格を有する化合物が、アルギニン、アシル化アルギニンおよびアグマチンからなる群から選択される少なくとも1種の化合物である、請求項12に記載の方法。
  14.  前記正電荷を有する添加剤(a1)が、塩化ナトリウム、塩化カリウムおよび酢酸ナトリウムからなる群から選択される少なくとも1種の化合物をさらに含む、請求項12に記載の方法。
  15.  前記pH調節剤がヒスチジン、2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]エタンスルホン酸(HEPES)、リン酸及びクエン酸からなる群から選択される少なくとも1種の緩衝剤を含む、請求項11に記載の方法。
  16.  前記添加剤(A)を含む前記溶離液が、アルギニンを含有するヒスチジン緩衝液を含む、請求項1または2に記載の方法。
  17.  前記溶離液に含まれるアルギニンが10~500mmоl/L、ヒスチジンが10~300mmоl/Lである、請求項16に記載の方法。
  18.  前記溶離液が6<pH≦8である、請求項1または2に記載の方法。
  19. (工程A)放射性核種で抗体を標識して放射性標識抗体の粗生成物の溶液を得る工程、
    (工程B)前記工程Aで得られた前記粗生成物の溶液を陽イオン交換材料と接触させて前記放射性標識抗体を前記陽イオン交換材料に吸着させる工程、及び
    (工程C)1種以上の添加剤を含む溶離液を用いて前記工程Bで陽イオン交換材料に吸着した前記放射性標識抗体を溶出する工程と、
    を含む、
    放射性標識抗体の精製方法。
PCT/JP2023/038582 2022-10-26 2023-10-25 放射性医薬組成物の製造方法 WO2024090489A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-171833 2022-10-26
JP2022171833 2022-10-26

Publications (1)

Publication Number Publication Date
WO2024090489A1 true WO2024090489A1 (ja) 2024-05-02

Family

ID=90830853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038582 WO2024090489A1 (ja) 2022-10-26 2023-10-25 放射性医薬組成物の製造方法

Country Status (1)

Country Link
WO (1) WO2024090489A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502161A (ja) * 2007-10-30 2011-01-20 ジェネンテック, インコーポレイテッド 陽イオン交換クロマトグラフィーによる抗体の精製
JP2013500244A (ja) * 2009-07-24 2013-01-07 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト 抗体製造の最適化
CN112574296A (zh) * 2020-12-30 2021-03-30 中国医学科学院输血研究所 一种模拟IVIg的多人份混合人血浆IgG样品的分离纯化方法
WO2021075544A1 (ja) * 2019-10-18 2021-04-22 日本メジフィジックス株式会社 Ri標識されたヒト化抗体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502161A (ja) * 2007-10-30 2011-01-20 ジェネンテック, インコーポレイテッド 陽イオン交換クロマトグラフィーによる抗体の精製
JP2013500244A (ja) * 2009-07-24 2013-01-07 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト 抗体製造の最適化
WO2021075544A1 (ja) * 2019-10-18 2021-04-22 日本メジフィジックス株式会社 Ri標識されたヒト化抗体
CN112574296A (zh) * 2020-12-30 2021-03-30 中国医学科学院输血研究所 一种模拟IVIg的多人份混合人血浆IgG样品的分离纯化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PETE GAGNON: "Technology trends in antibody purification", JOURNAL OF CHROMATOGRAPHY A, ELSEVIER, AMSTERDAM, NL, vol. 1221, 20 January 2012 (2012-01-20), AMSTERDAM, NL, pages 57 - 70, XP055027812, ISSN: 0021-9673, DOI: 10.1016/j.chroma.2011.10.034 *

Similar Documents

Publication Publication Date Title
BR112020012099A2 (pt) radiomarcação de polipeptídeos
WO2021075544A1 (ja) Ri標識されたヒト化抗体
WO2021075546A1 (ja) 放射性金属標識抗体の製造方法
US5082928A (en) Method of preparing conjugated antibodies
WO2024090489A1 (ja) 放射性医薬組成物の製造方法
WO2024090488A1 (ja) 放射性医薬組成物
WO2022225006A1 (ja) β線を放出する核種で標識されたヒト化抗体
WO2022224980A1 (ja) 抗cd20抗体の放射性複合体、及び、放射性医薬
WO2023157822A1 (ja) 抗vegf抗体の放射性複合体、及び、放射性医薬
WO2022080481A1 (ja) 抗her2抗体の放射性複合体、及び、放射性医薬
WO2022211051A1 (ja) 抗egfr抗体の放射性複合体、及び、放射性医薬
WO2023033022A1 (ja) 脱グリコシル化抗体の放射性複合体、及び、放射性医薬
WO2022225007A1 (ja) 放射性抗腫瘍剤
CN117769440A (zh) 抗cd20抗体的放射性复合物和放射性药物
CN116456992A (zh) 抗her2抗体的放射性复合物和放射性药物
KR20240051240A (ko) 응집체 분리 방법