WO2024090423A1 - (meth)acrylate-containing composition - Google Patents

(meth)acrylate-containing composition Download PDF

Info

Publication number
WO2024090423A1
WO2024090423A1 PCT/JP2023/038309 JP2023038309W WO2024090423A1 WO 2024090423 A1 WO2024090423 A1 WO 2024090423A1 JP 2023038309 W JP2023038309 W JP 2023038309W WO 2024090423 A1 WO2024090423 A1 WO 2024090423A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
general formula
carbon atoms
polymer
Prior art date
Application number
PCT/JP2023/038309
Other languages
French (fr)
Japanese (ja)
Inventor
英明 長野
大谷 巌
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Publication of WO2024090423A1 publication Critical patent/WO2024090423A1/en

Links

Images

Definitions

  • the present invention relates to a composition containing a novel (meth)acrylate, a method for producing the composition, and a water/oil repellent using the (meth)acrylate.
  • a fluorine-based water and oil repellent composition that combines a higher alkyl (meth)acrylate and a fluorine-based polyfluoroalkyl (meth)acrylate is introduced in the following Patent Document 1.
  • JP 2002-201463 A Japanese Patent Application Laid-Open No. 08-071429 JP 2002-326974 A Japanese Patent Application Laid-Open No. 6-33043 Japanese Patent Application Laid-Open No. 11-349987 Japanese Patent Application Laid-Open No. 10-167990 Japanese Patent No. 2703752 JP 2023-78348 A
  • long-chain alkyl (meth)acrylates are used as components of water and oil repellent compositions.
  • Long-chain alkyl acrylates have melting points that solidify in winter, with acrylates with 12 alkyl carbon atoms at about 4°C, acrylates with 14 carbon atoms at about 14°C, acrylates with 16 carbon atoms at about 17°C, and acrylates with 18 carbon atoms at about 28°C. Therefore, when removing products filled in drums in winter, they must be heated to a temperature above their melting point. However, if heated to a temperature higher than the melting point, this product contains polymerizable groups, and polymerization will begin when heated, causing heat to build up inside the drum, which may lead to an explosion. For this reason, they are difficult to handle, as they must be dissolved slowly over a period of time at a temperature 20°C to 30°C higher than the melting point.
  • a novel (meth)acrylate compound represented by general formula (1) has a similar structure to long-chain alkyl (meth)acrylates, but has physical properties with a lower melting point and can be handled without heating, making it easy to handle. They have also found that the novel (meth)acrylate compound is effective as a water and oil repellent. Based on this knowledge, the inventors have completed the present invention.
  • composition containing a novel compound that is easy to handle, as well as its manufacturing method and uses.
  • FIG. 1 is a chart obtained by carrying out H-NMR measurement on the reaction product ((2-[(1-methylundecyl)oxy]ethyl acrylate) isomer mixture) obtained in Example 1.
  • FIG. 2 is a chart obtained by carrying out H-NMR measurement on the reaction product ((2-[(1-methyltridecyl)oxy]ethyl acrylate) isomer mixture) obtained in Example 3.
  • FIG. 3 is a chart obtained by carrying out H-NMR measurement on the acrylate polymer obtained in Example 4.
  • (Definition) "(Meth)acrylic” means “acrylic or methacrylic”. "(Meth)acrylate” means “acrylate or methacrylate”.
  • structural unit derived from a monomer means a structural unit formed by polymerization of a monomer, and more specifically, means a structure formed by cleavage of a carbon-carbon double bond of a monomer.
  • a (meth)acrylate-containing composition comprising two or more isomers of a (meth)acrylate represented by the following general formula (1), the isomer (A) being an isomer in which R2 is a methyl group, and the isomer (B) being an isomer in which R2 is an alkyl group having two or more carbon atoms:
  • R1 represents a hydrogen atom or a methyl group.
  • R2 and R3 represent alkyl groups, and the total number of carbon atoms of R2 and R3 is 6 to 22.
  • n is a number from 1 to 3.
  • R2 and R3 are alkyl groups, the total number of carbon atoms of R2 and R3 is 6 to 22, and n is a number from 1 to 3.
  • R2 and R3 are alkyl groups, the total number of carbon atoms of R2 and R3 is 6 to 22, and n is a number from 1 to 3.
  • R1 represents a hydrogen atom or a methyl group
  • R4 represents an alkyl group having 1 to 8 carbon atoms.
  • a method for imparting water and oil repellency to a substrate comprising a step of adhering the polymer according to [8] or [9] above to the substrate.
  • composition of the present invention relates to a composition (hereinafter also referred to as the "(meth)acrylate composition of the present invention") containing two or more isomers that are (meth)acrylate compounds (hereinafter also referred to as the "(meth)acrylate of the present invention”), and a production method thereof, and the compounds (isomers) are commonly represented by the following general formula (1).
  • R1 is a hydrogen atom or a methyl group
  • R2 and R3 are alkyl groups
  • the total number of carbon atoms of R2 and R3 is 6 to 22
  • n is a number from 1 to 3.
  • the (meth)acrylate composition of the present invention contains the above-mentioned isomer (A) in which R2 is a methyl group and the above-mentioned isomer (B) in which R2 is an alkyl group having 2 or more carbon atoms.
  • R3 in the isomers (A) and (B) is not particularly limited as long as the total carbon number of R2 and R3 is the same in the isomers (A) and (B) and is in the range of 6 to 22.
  • the (meth)acrylate composition of the present invention contains two or more types of such isomers, and thus has lower crystallinity and a lower melting point than when only one type of isomer is contained, thereby sufficiently suppressing freezing in winter and providing excellent handleability.
  • the (meth)acrylate represented by the above general formula (1) has a branched alkyl group at the ethylene glycol terminal, and therefore tends to have a higher glass transition temperature than those having a linear alkyl group.
  • the (meth)acrylate composition of the present invention preferably contains 1 to 50 mol % of the isomer (A) in which R 2 is a methyl group, and 50 to 99 mol % of the isomer (B) in which R 2 is an alkyl group having 2 or more carbon atoms. More preferably, the (meth)acrylate composition contains 2 to 40 mol % of the isomer (A) in which R 2 is a methyl group, and 60 to 98 mol % of the isomer (B) in which R 2 is an alkyl group having 2 or more carbon atoms.
  • the (meth)acrylate composition contains 5 to 30 mol % of the isomer (A) in which R 2 is a methyl group, and 70 to 95 mol % of the isomer (B) in which R 2 is an alkyl group having 2 or more carbon atoms.
  • the above-mentioned isomer (B) may be one or more kinds of compounds, so long as it is a compound corresponding to an isomer of the above-mentioned isomer (A).
  • the composition preferably consists essentially of the (meth)acrylate compound of the present invention, and contains the (meth)acrylate compound in an amount of 90 mol % or more, desirably 95 mol % or more, and more preferably 98 mol % or more.
  • the proportion of the (meth)acrylate compound of the present invention is preferably 90% by mass or more, more preferably 95% by mass or more, and even more preferably 98% by mass or more, based on 100% by mass of the composition.
  • the total number of carbon atoms in R2 and R3 in the above general formula (1) is preferably 7 to 21, more preferably 9 to 19, and even more preferably 11 to 17. If the total number of carbon atoms in R2 and R3 is less than 6, the water and oil repellency will be reduced, which is not preferable. Also, if the total number of carbon atoms in R2 and R3 exceeds 22, the availability of olefins with that number of carbon atoms will be reduced.
  • R2 and R3 are alkyl groups, and are not particularly limited as long as the total number of carbon atoms of R2 and R3 is 6 to 22.
  • the alkyl group may be any of linear, branched, and cyclic, but it is preferable that R2 and R3 are each a linear alkyl group. That is, the (meth)acrylate of the present invention preferably has a secondary alkyl group at the ethylene glycol terminal.
  • R2 in the above isomer (B) is an alkyl group having 2 or more carbon atoms, and the total number of carbon atoms of R2 and R3 may be the same as that of isomer (A), but is preferably an alkyl group having 8 to 20 carbon atoms. More preferred examples of R2 in the above isomer (B) are ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, and n-octyl.
  • n is the repeating unit (number of moles added) of the ethylene glycol chain, and is a number from 1 to 3. However, a larger n is not preferred because it increases the affinity for water. For this reason, n is preferably 1 to 2, and more preferably 1 to 1.5.
  • compositions of the present invention may include any compound.
  • the composition of the present invention may contain a compound represented by the following general formula (2).
  • the composition of the present invention is not particularly limited, but the content of the compound represented by the following general formula (2) is preferably 0 to 10 mass % relative to 100 mass % of the compound represented by the above general formula (1).
  • the composition of the present invention may contain a polymerization inhibitor.
  • the composition of the present invention is not particularly limited, but it is preferable that the polymerization inhibitor is contained in a ratio of 0.00001% or more and 5% or less by mass based on 100% by mass of the compound represented by the above general formula (1). If it is within the above range, the storage stability of the composition of the present invention tends to be improved.
  • the polymerization inhibitor is not particularly limited, but examples thereof include the compounds described below.
  • composition of the present invention may contain a polymerization initiator.
  • polymerization initiators include compounds that generate radicals when exposed to heat or light. Specific examples include the polymerization initiators described below.
  • the content ratio of the polymerization initiator is not particularly limited, but the composition of the present invention preferably contains the polymerization initiator in a ratio of 0.01% by mass or more and 5% by mass or less relative to 100% by mass of the compound represented by the above general formula (1). If it is within the above range, there is a tendency that the polymerization of the composition of the present invention will be less delayed.
  • the composition of the present invention may contain a radical polymerizable compound other than the compound represented by the above general formula (1).
  • the radical polymerizable compound include compounds that undergo radical polymerization by heat or light. Specific examples include the monomers described below.
  • the composition of the present invention is not particularly limited, but the ratio of the radical polymerizable compound other than the compound represented by the above general formula (1) to 100% by mass of the compound represented by the above general formula (1) is preferably 0% by mass or more and 99% by mass or less, more preferably 0 to 80% by mass, even more preferably 0 to 60% by mass, still more preferably 0 to 40% by mass, still more preferably 0 to 20% by mass, and particularly preferably 0 to 10% by mass.
  • the composition of the present invention may contain a polymer having a weight average molecular weight of 2000 or less, such as a polymer of (meth)acrylic acid or a polymer of alkyl (meth)acrylate, but the content of the polymer is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 1% by mass or less, based on 100% by mass of the compound represented by the above general formula (1).
  • the weight average molecular weight can be measured by gel permeation chromatography or a static light scattering method.
  • the (meth)acrylate-containing composition of the present invention can be produced by esterification or transesterification as described below.
  • the mixing ratio of the (meth)acrylate isomers in the (meth)acrylate composition of the present invention is derived from the mixing ratio of the isomers of the alcohols described below used as raw materials (and further the mixing ratio of the isomers of the olefins used as raw materials for the alcohols).
  • the present invention also relates to a method for producing a (meth)acrylate-containing composition, comprising: a step of heat-treating a mixture containing an alcohol represented by general formula (2) and a polymerization inhibitor; and a step of adding (meth)acrylic acid and an esterification catalyst to the composition containing the alcohol represented by general formula (2) obtained by the heat-treatment step, thereby carrying out an esterification reaction.
  • the present invention also relates to a method for producing a (meth)acrylate-containing composition, the method comprising: a step of heat-treating a mixture containing an alcohol represented by the above general formula (2) and a polymerization inhibitor; and a step of adding a (meth)acrylic acid ester represented by the following general formula (3) and an ester exchange catalyst to the composition containing the alcohol represented by the general formula (2) obtained by the heat treatment step, thereby carrying out an ester exchange reaction.
  • R2 and R3 are alkyl groups, the total number of carbon atoms of R2 and R3 is 6 to 22, and n is a number from 1 to 3.
  • R1 represents a hydrogen atom or a methyl group
  • R4 represents an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms may be straight-chain, branched or cyclic.
  • the alcohol used as a raw material for the (meth)acrylate represented by the general formula (1) in the present invention is the alcohol represented by the above general formula (2).
  • the total number of carbon atoms in R 2 and R 3 is preferably 7 to 21, more preferably 9 to 19, and even more preferably 11 to 17.
  • n is preferably 1 to 2, and more preferably 1 to 1.5.
  • alcohols encompassing the general formula (2) can be synthesized by various methods, such as a method of adding an alkylene oxide to a higher alcohol, a method of dehydrating and condensing a higher alcohol with a (poly)alkylene glycol, a method of condensing a chlorinated paraffin with a (poly)alkylene glycol, and a method of adding a (poly)alkylene glycol to a long-chain olefin.
  • the method of adding an alkylene oxide to a higher alcohol or the method of dehydrating and condensing a higher alcohol with a (poly)alkylene glycol generally results in a long polyethylene glycol chain length (n in general formula (2)) unlike the structure of general formula (2), which is undesirable because it increases the affinity for water.
  • the method of obtaining the structure of the general formula (2) by condensing chlorinated paraffin with (poly)alkylene glycol it is possible to synthesize the structure, but there is a concern that waste containing chlorine will be generated. For this reason, the method of adding (poly)alkylene glycol to long-chain olefin is preferable.
  • the method described in JP-A-11-349987, JP-A-10-167990, and Japanese Patent No. 2703752 can be adopted.
  • an olefin having 7 to 23 carbon atoms and ethylene glycol can be used as raw materials for synthesizing the alcohol represented by the general formula (2).
  • a 1-olefin having 7 to 23 carbon atoms and ethylene glycol can be used as the raw material for synthesizing the alcohol in which R2 is a methyl group.
  • the 1-olefin include 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, and 1-docosene.
  • the alcohol represented by the above general formula (2) is preferably an addition product of the above 1-olefin and ethylene glycol.
  • the 1-olefin may be one type, or two or more types may be appropriately mixed.
  • the 1-olefin is preferably 1-octene, 1-nonene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, or 1-docosene having 8 to 22 carbon atoms, more preferably 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, or 1-eicosene having 10 to 20 carbon atoms in total, and even more preferably 1-dodecene, 1-tetradecene, 1-hexadecene, or 1-octadecene having 12 to 18 carbon atoms.
  • n has a distribution of 1 to 3.
  • the repeating unit n of the ethylene glycol chain is the number of moles added, which is 1 to 3.
  • n is preferably 1 to 2, and more preferably 1 to 1.5.
  • the alcohol represented by the above general formula (2) is not particularly limited, but specific examples include 2-[(1-methylpentyl)oxy]ethanol, 2-[(1-methylhexyl)oxy]ethanol, 2-[(1-methylheptyl)oxy]ethanol, 2-[(1-methyloctyl)oxy]ethanol, 2-[(1-methylnonyl)oxy]ethanol, 2-[(1-methyldecyl)oxy]ethanol, 2-[(1-methylundecyl)oxy]ethanol, 2-[(1-methyldodecyl)oxy]ethanol, )oxy]ethanol, 2-[(1-methyltridecyl)oxy]ethanol, 2-[(1-methyltetradecyl)oxy]ethanol, 2-[(1-methylpentadecyl)oxy]ethanol, 2-[(1-methylhexadecyl)oxy]ethanol, 2-[(1-methylheptadecyl)oxy]ethanol, 2-[(1-methyloctadecyl)oxy]ethanol,
  • the (meth)acrylate of the present invention can be obtained by esterifying an alcohol represented by the following general formula (2) (hereinafter the same) with (meth)acrylic acid.
  • (meth)acrylic acid a toluene solvent, an acid catalyst, and a polymerization inhibitor were charged as in the case of normal esterification in the synthesis of (meth)acrylate, and the reaction was carried out at 80° C. while refluxing the toluene solvent in the presence of an oxygen-containing gas, a runaway polymerization reaction occurred immediately after the start of the reaction.
  • the inventors have found that the cause of this runaway polymerization reaction lies in the raw material alcohol of general formula (2), and have also found that the runaway polymerization can be suppressed by carrying out a pretreatment for the esterification, namely, a heat treatment in the presence of an alcohol and a polymerization inhibitor, and then adding (meth)acrylic acid and an acid catalyst to carry out the esterification.
  • a pretreatment for the esterification namely, a heat treatment in the presence of an alcohol and a polymerization inhibitor
  • the heat treatment may be performed without a solvent, but can be performed in the presence of a solvent.
  • the solvent is preferably selected from the solvents to be used in the subsequent esterification.
  • esterification a solvent that forms an azeotrope with water and forms two liquid phases with water is preferred, and benzene, toluene, xylene, hexane, heptane, octane, and cyclohexane are more preferred.
  • the heat treatment is preferably carried out at a temperature within a range of 25° C. to 100° C.
  • the heat treatment is preferably carried out for 10 minutes to 120 hours.
  • the heat treatment is carried out at a temperature in the range of 25° C. to 100° C. for 10 minutes to 120 hours. More preferably, the heat treatment is carried out at a temperature in the range of 40° C. to 90° C. for 30 minutes to 50 hours, and even more preferably, at a temperature in the range of 50° C. to 80° C. for 60 minutes to 20 hours.
  • polymerization inhibitor examples include quinone-based polymerization inhibitors such as hydroquinone, methoxyhydroquinone, benzoquinone, and p-tert-butylcatechol; alkylphenol-based polymerization inhibitors such as 2,6-di-tert-butylphenol, 2,4-di-tert-butylphenol, 2-tert-butyl-4,6-dimethylphenol, 2,6-di-tert-butyl-4-methylphenol, and 2,4,6-tri-tert-butylphenol; alkylated diphenylamine, N,N'-diphenyl-p-phenylenediamine, phenothiazine, 4-hydroquinone, and the like.
  • quinone-based polymerization inhibitors such as hydroquinone, methoxyhydroquinone, benzoquinone, and p-tert-butylcatechol
  • alkylphenol-based polymerization inhibitors such as 2,6-di
  • amine-based polymerization inhibitors such as 2,2,6,6-tetramethylpiperidine-N-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 1,4-dihydroxy-2,2,6,6-tetramethylpiperidine, and 1-hydroxy-4-benzoyloxy-2,2,6,6-tetramethylpiperidine;
  • N-oxyl-based polymerization inhibitors such as 2,2,6,6-tetramethylpiperidine-N-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, and 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl.
  • At least one selected from hydroquinone, methoxyhydroquinone, benzoquinone, p-tert-butylcatechol, phenothiazine, 2,2,6,6-tetramethylpiperidine-N-oxyl, and 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl is preferred, and hydroquinone, methoxyhydroquinone, benzoquinone, p-tert-butylcatechol, phenothiazine, 2,2,6,6-tetramethylpiperidine-N-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, and 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl are more preferred.
  • At least one polymerization inhibitor selected from the group consisting of quinone-based polymerization inhibitors, alkylphenol-based polymerization inhibitors, amine-based polymerization inhibitors, N-oxyl-based polymerization inhibitors, and phenothiazine is used as the polymerization inhibitor.
  • the amount of the polymerization inhibitor used is 10 ppm by weight to 10% by weight, preferably 100 ppm by weight to 5% by weight, more preferably 200 ppm by weight to 1% by weight, and even more preferably 500 ppm by weight to 0.5% by weight, based on 100% by weight of the alcohol represented by the above general formula (2).
  • An oxygen-containing gas may be bubbled in during the heat treatment.
  • (meth)acrylic acid and an esterification catalyst are added to carry out esterification.
  • the amount of (meth)acrylic acid is 0.5 to 5 equivalents, preferably 0.8 to 2 equivalents, more preferably 1 to 1.5 equivalents, relative to the alcohol.
  • the esterification catalyst may be a known acid catalyst, and examples of the acid catalysts that are generally used include hydrochloric acid, sulfuric acid, phosphoric acid, methanesulfonic acid, paratoluenesulfonic acid, strongly acidic ion exchange resins, heteropolyacids such as phosphotungstic acid, and metal oxides.
  • Preferred are sulfuric acid, methanesulfonic acid, paratoluenesulfonic acid, and strongly acidic ion exchange resins.
  • the amount of the acid catalyst is 0.001 mol% to 50 mol% relative to the (meth)acrylic acid, preferably 0.01 mol% to 10 mol%, and more preferably 0.1 mol% to 5 mol%.
  • a polymerization inhibitor may be added. Also, an oxygen-containing gas may be blown into the reaction liquid.
  • the esterification reaction is a dehydration reaction, it is preferable to carry out the reaction in the presence of a solvent that forms an azeotrope with water while removing water from the system.
  • the reaction temperature is preferably 50°C to 120°C. If the temperature is lower than 50°C, the reaction time will be longer, and if the temperature exceeds 120°C, the possibility of runaway polymerization increases. In order to achieve this reaction temperature, it is preferable to appropriately increase or decrease the pressure in the reaction system.
  • the desired secondary (meth)acrylate compound can be obtained by purifying it using standard methods such as washing with alkaline water, washing with water, drying, and removing the solvent. Distillation may also be used as an alternative purification method.
  • the (meth)acrylate of the present invention can be obtained by transesterifying an alcohol represented by the general formula (2) with a (meth)acrylic acid ester (alkyl (meth)acrylate) represented by the above general formula (3).
  • a (meth)acrylate, a solvent, a transesterification catalyst, and a polymerization inhibitor are charged and the reaction is carried out at 80° C. while refluxing the solvent in the presence of an oxygen-containing gas, as in the transesterification reaction in the synthesis of a normal (meth)acrylate, a runaway polymerization reaction occurs immediately after the start of the reaction.
  • the inventors have found that the cause of this runaway polymerization reaction lies in the raw material alcohol of general formula (2), and have also discovered that the runaway polymerization can be suppressed by carrying out a pretreatment for the transesterification reaction, namely, by carrying out a heat treatment in the presence of an alcohol and a polymerization inhibitor, and then adding an alkyl (meth)acrylate and an ester catalyst to carry out esterification.
  • the heat treatment may be performed without a solvent, but can be performed in the presence of a solvent, and the solvent is preferably selected from the solvents used in the subsequent transesterification reaction.
  • the transesterification reaction is preferably performed using a solvent that discharges the alkyl alcohol by-produced from the alkyl (meth)acrylate out of the system, and hexane, heptane, octane, cyclohexane, etc. are preferably used.
  • the alkyl (meth)acrylate forms an azeotropic composition with the by-produced alcohol, a method of discharging it out of the system using the alkyl (meth)acrylate as a solvent can also be adopted.
  • alkyl (meth)acrylate examples include (meth)acrylates having a linear, branched, or cyclic alkyl group having 1 to 8 carbon atoms. Among these, (meth)acrylates having an alkyl group having 1 to 4 carbon atoms are preferably used.
  • alkyl (meth)acrylates include the following compounds: (meth)acrylic acid lower alkyl esters such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, and t-butyl (meth)acrylate. These can be used alone or in combination.
  • (meth)acrylic acid lower alkyl esters such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, and t-butyl (meth)acrylate.
  • the heat treatment is preferably carried out for 10 minutes to 120 hours.
  • the heat treatment is also preferably carried out at a temperature in the range of 25°C to 100°C. More preferably, the heat treatment is carried out at a temperature in the range of 25°C to 100°C for 10 minutes to 120 hours, even more preferably at a temperature in the range of 40°C to 90°C for 30 minutes to 50 hours, and even more preferably at a temperature in the range of 50°C to 80°C for 60 minutes to 20 hours.
  • the above-mentioned polymerization inhibitors include, for example, quinone-based polymerization inhibitors such as hydroquinone, methoxyhydroquinone, benzoquinone, and p-tert-butylcatechol; alkylphenol-based polymerization inhibitors such as 2,6-di-tert-butylphenol, 2,4-di-tert-butylphenol, 2-tert-butyl-4,6-dimethylphenol, 2,6-di-tert-butyl-4-methylphenol, and 2,4,6-tri-tert-butylphenol; alkylated diphenylamine, N,N'-diphenyl-p-phenylenediamine, phenothiazine, 4-hydro amine-based polymerization inhibitors such as 2,2,6,6-tetramethylpiperidine-N-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, 4-benzoyloxy-2,2,6,6-t
  • At least one selected from hydroquinone, methoxyhydroquinone, benzoquinone, p-tert-butylcatechol, phenothiazine, 2,2,6,6-tetramethylpiperidine-N-oxyl, and 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl is preferred, with hydroquinone, methoxyhydroquinone, benzoquinone, p-tert-butylcatechol, phenothiazine, 2,2,6,6-tetramethylpiperidine-N-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, and 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl being more preferred.
  • the amount of the polymerization inhibitor used is 10 ppm by weight to 10% by weight, preferably in the range of 100 ppm by weight to 5% by weight, more preferably in the range of 200 ppm by weight to 1% by weight, and even more preferably in the range of 500 ppm by weight to 0.5% by weight, based on 100% by weight of the polyethylene glycol mono-higher alkyl ether.
  • An oxygen-containing gas may be bubbled in during the heat treatment.
  • an alkyl (meth)acrylate and an ester exchange catalyst are added to carry out an ester exchange reaction.
  • the alkyl (meth)acrylate is the alkyl (meth)acrylate described above, and the amount is 0.5 to 5 equivalents, preferably 0.8 to 2 equivalents, more preferably 1 to 1.5 equivalents, relative to the alcohol.
  • the alkyl (meth)acrylate is used as an excluding solvent for the by-produced alcohol, it may be further added.
  • a known catalyst may be used for the ester exchange, and the catalyst is not particularly limited, but specific examples thereof include oxides such as calcium oxide, barium oxide, lead oxide, zinc oxide, and zirconium oxide; hydroxides such as potassium hydroxide, sodium hydroxide, lithium hydroxide, calcium hydroxide, thallium hydroxide, tin hydroxide, lead hydroxide, and nickel hydroxide; halides such as lithium chloride, calcium chloride, tin chloride, lead chloride, zirconium chloride, and nickel chloride; carbonates such as potassium carbonate, rubidium carbonate, cesium carbonate, lead carbonate, zinc carbonate, and nickel carbonate; hydrogen carbonates such as potassium hydrogen carbonate, rubidium hydrogen carbonate, and cesium hydrogen carbonate; phosphates such as sodium phosphate, potassium phosphate, rubidium phosphate, lead phosphate, zinc phosphate, and nickel phosphate; nitrates such as lithium nitrate, calcium nitrate, lead nitrate
  • alkoxy compounds include lithium t-butoxide, calcium methoxide, calcium ethoxide, barium methoxide, barium ethoxide, tetraethoxytitanium, tetrabutoxytitanium, tetraisopropoxytitanate, and tetra(2-ethylhexanoxy)titanium; acetylacetonate complexes such as lithium acetylacetonate, zirconia acetylacetonate, zinc acetylacetonate, dibutoxytin acetylacetonate, and dibutoxytitanium acetylacetonate; quaternary ammonium alkoxides such as tetramethylammonium methoxide, tetramethylammonium t-butoxide, and trimethylbenzylammonium ethoxide; dialkyltin compounds such as dimethyltin oxide, methylbutylt
  • the amount of the transesterification catalyst used is not particularly limited, but specifically, relative to the alcohol represented by general formula (2), it is preferably 0.001 mol% or more, more preferably 0.005 mol% or more, even more preferably 0.01 mol% or more, particularly preferably 0.05 mol% or more, preferably 20 mol% or less, more preferably 15 mol% or less, even more preferably 10 mol% or less, and particularly preferably 5 mol% or less.
  • the above range of the transesterification catalyst amount is preferable in terms of yield and economy.
  • a polymerization inhibitor may be added. Also, an oxygen-containing gas may be blown into the reaction liquid.
  • the reaction temperature is preferably 50°C to 120°C. If the temperature is lower than 50°C, the reaction time will be longer, and if the temperature exceeds 120°C, the possibility of runaway polymerization increases. In order to achieve this reaction temperature, it is preferable to appropriately increase or decrease the pressure in the reaction system.
  • the target secondary (meth)acrylate compound can be obtained by purifying the product by a conventional method such as acid washing, water washing, filtration, drying, and solvent removal. As another purification method, distillation may be used.
  • the (meth)acrylate of the present invention is a (meth)acrylate represented by general formula (1) and has a carbon-carbon double bond, so that it can be used as a monomer to obtain a polymer.
  • the polymer may be composed of structural units derived from the (meth)acrylate of the present invention, but may also contain other structural units.
  • the polymer may contain 0.1 to 100 mol % of structural units derived from the (meth)acrylate of the present invention based on the total structural units.
  • the proportion of structural units derived from the (meth)acrylate of the present invention is preferably 1 to 100 mol%, more preferably 10 to 100 mol%, even more preferably 20 to 100 mol%, still more preferably 25 to 100 mol%, still more preferably 30 to 100 mol%, still more preferably 50 to 100 mol%, and particularly preferably 70 to 100 mol%.
  • Copolymerizable monomers include alkyl acrylates such as methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, t-butyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, dodecyl (meth)acrylate, hexadecyl (meth)acrylate, and octadecyl (meth)acrylate, methoxyethylene glycol (meth)acrylate, ethoxyethylene glycol (meth)acrylate, and methoxydiethylene glycol (meth)acrylate.
  • alkyl acrylates such as methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, t-butyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-e
  • alkyl polyoxyalkyl (meth)acrylates such as methoxypropylene glycol (meth)acrylate, ethoxypropylene glycol (meth)acrylate, and methoxydipropylene glycol (meth)acrylate
  • hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate
  • carboxyl group-containing monomers such as acrylic acid, methacrylic acid, maleic acid, and itaconic acid
  • ring-containing (meth)acrylates such as phenoxyethyl (meth)acrylate and isobornyl
  • Silicon-containing monomers such as 3-methacryloxypropylmethyldiethoxysilane and 3-methacryloxypropyltriethoxysilane, vinyl chloride, (meth)acrylates having an Rf group (a group in which two or more hydrogen atoms of an alkyl group are replaced with fluorine atoms) (the Rf group may contain halogen atoms other than fluorine atoms. The other halogen atoms are preferably chlorine atoms. Furthermore, an ether-type oxygen atom or a thioether-type sulfur atom may be inserted between the carbon-carbon bonds in the Rf group.) can be used as one or more of the copolymerizable monomers.
  • Rf group a group in which two or more hydrogen atoms of an alkyl group are replaced with fluorine atoms
  • the other halogen atoms are preferably chlorine atoms.
  • an ether-type oxygen atom or a thioether-type sulfur atom may be inserted between
  • polyether aliphatic urethane acrylate, polycarbonate urethane acrylate, epoxy (meth)acrylate oligomer, polyester (meth)acrylate oligomer, isobornyl (meth)acrylate, ethoxylated trimethylolpropane triacrylate, and tricyclodecane dimethanol diacrylate can also be used as copolymerizable monomers.
  • the weight average molecular weight of the polymer in the present invention is preferably, for example, 1,000 to 10,000,000 as determined by the static light scattering method.
  • the glass transition temperature of the polymer in the present invention is desirably, for example, ⁇ 40° C. or higher.
  • the upper limit of the glass transition temperature of the polymer of the present disclosure is desirably, for example, 80° C. or lower.
  • the glass transition temperature is calculated by using the glass transition temperature of a homopolymer of the monomer used in the monomer component constituting the polymer.
  • Formula (I): 1/Tg ⁇ (Wm/Tgm)/100 (I)
  • Wm is the content (mass%) of monomer m in the monomer components constituting the polymer
  • Tgm is the glass transition temperature (absolute temperature: K) of a homopolymer of monomer m.
  • the polymerization to obtain the polymer of the present invention is expected to be carried out in the presence of a polymerization initiator.
  • the polymerization initiator include azo compounds such as azobisisobutyronitrile, 2,2-azobis(2-methylbutyronitrile), 2,2-azobis(2,4-dimethylvaleronitrile), 2,2-azobis(2-diaminopropane)hydrochloride, 4,4-azobis(4-cyanovaleric acid), and 2,2-azobis(2-methylpropionamidine); persulfates such as potassium persulfate; and peroxides such as hydrogen peroxide, benzoyl peroxide, parachlorobenzoyl peroxide, lauroyl peroxide, and ammonium peroxide.
  • the polymerization initiators may be used alone or in combination of two or more.
  • the amount of polymerization initiator used may be appropriately set depending on the type of polymerization initiator, etc., and is not particularly limited, but may be, for example, 0.05 parts by mass or more, preferably 0.1 parts by mass or more, and may be, for example, 2 parts by mass or less, preferably 1 part by mass or less, relative to 100 parts by mass of the monomer component.
  • additives such as a chain transfer agent may be included in the reaction system. Any appropriate additive may be used as the additive.
  • additives such as mercaptoethanol, thioglycolic acid, and sodium disulfite may be added during polymerization.
  • the polymerization reaction may be carried out in the presence of a reducing agent (e.g., sodium hydrogen sulfite), a decomposing agent for the polymerization initiator (e.g., a transition metal salt such as ferrous sulfate), a chain transfer agent [e.g., a compound having a thiol group (e.g., tert-dodecyl mercaptan)], a pH buffer, a chelating agent, etc., as necessary.
  • a reducing agent e.g., sodium hydrogen sulfite
  • a decomposing agent for the polymerization initiator e.g., a transition metal salt such as ferrous sulfate
  • a chain transfer agent e.g., a compound having a thiol group (e.g., tert-dodecyl mercaptan)]
  • a pH buffer e.g., a chelating agent, etc.
  • a method can be employed in which a (meth)acrylate is added to a polymer having a functional group having an active hydrogen capable of being added to an olefin.
  • a method of adding a (meth)acrylate to a polymer having a primary or secondary amino group in the molecule a method of adding a (meth)acrylate to a polymer having a thiol group in the molecule, a reaction with a polymer having a hydroxyl group in the molecule, etc. can be used.
  • the polymers having active hydrogen may be used alone or in combination of two or more kinds.
  • the amount of (meth)acrylate used relative to the active hydrogen-containing polymer may be appropriately set depending on the number of active hydrogen groups contained, and is not particularly limited. However, the amount of (meth)acrylate relative to the active hydrogen group equivalent may be, for example, 0.1 to 100 equivalents, preferably 0.5 to 80 equivalents.
  • the addition of active hydrogen groups is a reaction known as Michael addition, and although a catalyst does not have to be used, it is acceptable to use one. Any known catalyst can be used.
  • the compound of the present invention can be used, for example, as a water/oil repellent for textile products.
  • the present invention also relates to a water/oil repellent comprising a polymer containing a structural unit derived from the (meth)acrylate of the present invention.
  • the water/oil repellent can be used by applying it to a substrate.
  • a polymer can be synthesized in advance using the (meth)acrylate compound of the present invention as a monomer, and a water/oil repellent containing the polymer can be applied.
  • a functional group that reacts with urethane resin, epoxy resin, etc. such as a hydroxyl group, a carboxyl group, or a silanol group, is provided to the polymer chain, and crosslinking is formed and cured to form a coating layer, which imparts water/oil repellency to the substrate.
  • the substrate is not particularly limited, but examples thereof include fibers and films.
  • the present invention is also a method for imparting water and oil repellency to a substrate, comprising the step of adhering a polymer to the substrate.
  • the step of attaching the polymer is preferably carried out by coating the polymer on the substrate.
  • the method for imparting water and oil repellency to a substrate preferably includes a step of forming a coating layer by introducing crosslinks between the polymers after the polymer adhesion step.
  • the present invention also relates to a method for producing a water- and oil-repellent substrate, the method comprising the steps of: applying a polymer containing a structural unit derived from the (meth)acrylate of the present invention onto a substrate; and, after the step of applying the polymer, introducing crosslinks between the polymers to form a coating layer.
  • a solution of the polymer diluted with water or a solvent onto the substrate it is preferable to apply a solution of the polymer diluted with water or a solvent onto the substrate by spraying.
  • the compound of the present invention can be used, for example, as ink, paint, pressure sensitive adhesive, adhesive, UV curable resin diluent, water/oil repellent, etc., and is preferably used as a water/oil repellent.
  • the water/oil repellent can be used by applying it to a substrate.
  • a polymer can be synthesized in advance using the compound of the present invention as a monomer, and a water/oil repellent containing the polymer can be applied.
  • the polymer chain is provided with a functional group that reacts with urethane resin, epoxy resin, etc., such as a hydroxyl group, a carboxyl group, or a silanol group, and crosslinked to form a coating layer that is cured to impart water/oil repellency to the substrate.
  • a functional group that reacts with urethane resin, epoxy resin, etc. such as a hydroxyl group, a carboxyl group, or a silanol group
  • the compound of the present invention is expected to be used as an adhesive or sealing material for electronic components or semiconductor elements, a raw material for a constituent material of a film or prepreg, an ink for 3D printing, a quantum dot ink, an adhesive such as a UV-curable lamination adhesive or a UV-curable hot melt adhesive, a sealant, or the like.
  • reaction liquid was cooled to room temperature, the upper dodecene phase was separated, and unreacted dodecene was distilled off, and then 155 g of an isomer mixture of secondary dodecanol monoethoxylate (alcohol (1)) was obtained at a boiling point range of 129 to 131°C (temperature at the top of the distillation tower; the same applies below) at a reduced pressure of 2 mmHg.
  • the secondary dodecanol monoethoxylate (1) contained 0.3% by mass of MEG and MEG polymers.
  • 900 g (14.52 mol) of monoethylene glycol (MEG), and BEA-type zeolite (trade name: VALFOR CP811 BL-25) manufactured by PQ Corporation as a catalyst were added.
  • BL-25 100g was charged into a 3000ml glass reactor equipped with a stirring blade and a reflux condenser, the gas phase was replaced with nitrogen, and then the mixture was maintained in a nitrogen atmosphere at normal pressure. Next, the temperature was raised to 150°C while stirring at a rotation speed of 600 rpm, and the mixture was reacted at the same temperature for 3 hours. Thereafter, the reaction liquid was cooled to room temperature, and the upper tetradecene phase was separated.
  • MEG monoethylene glycol
  • BEA-type zeolite trade name: VALFOR CP811 BL-25
  • Example 1 ⁇ Direct esterification with acrylic acid>
  • a thermometer a thermometer
  • a stirrer a condenser
  • a gas inlet tube a gas inlet tube
  • 139 g a thermometer
  • a stirrer a condenser
  • a gas inlet tube a gas inlet tube
  • 100 g of toluene as an organic solvent 100 g
  • 0.14 g of phenothiazine (1000 ppm by weight relative to the alcohol) as a polymerization inhibitor were heated at 80° C. for 4 hours.
  • the upper organic layer was transferred to a four-necked flask equipped with a thermometer, a stirrer, a cooling tube, and a gas inlet tube, and heated under reduced pressure while blowing in 7% oxygen/nitrogen gas to distill off the toluene, obtaining 159 g of a product (2-[(1-methylundecyl)oxy]ethyl acrylate isomer mixture).
  • the purity of this acrylate product was 98%, and it contained unreacted alcohol.
  • This product was stored in a refrigerator at -20°C for 70 hours, but no crystal precipitation was observed.
  • the H-NMR of the product was measured, and the NMR chart is shown in FIG.
  • Example 1 In the production method described in Example 1, the contents were charged into a flask all at once and the esterification reaction was carried out without the heat treatment at 80° C. for 4 hours. After about 1 hour, the formation of a polymer of acrylic acid was observed.
  • Example 2 ⁇ Transesterification reaction with methyl acrylate>
  • 164 g (0.63 mol) of the alcohol (2) synthesized in Synthesis Example 2 and 0.16 g (1000 ppm by weight relative to the alcohol) of 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl as a polymerization inhibitor were charged, and the mixture was heated at 80° C. for 4 hours with stirring.
  • 273 g (3.17 mol) of methyl acrylate and 9.0 g of tetraisopropoxy titanate as a catalyst were charged and heated with stirring.
  • Example 2 In the production method described in Example 2, the contents were charged into a flask all at once to carry out the transesterification reaction without the heat treatment at 80° C. for 4 hours. After about 1 hour, the reaction liquid was found to have thickened, and a polymer of methyl acrylate was formed.
  • Example 3 Into a four-neck flask equipped with a thermometer, a stirrer, a cooling tube, and a gas inlet tube, 164 g (0.57 mol) of the alcohol (3) synthesized in Synthesis Example 3, 100 g of toluene as an organic solvent, and 0.82 g of phenothiazine (5,000 ppm by weight relative to the alcohol) as a polymerization inhibitor were charged, and the mixture was heated at 40° C. for 80 hours with stirring.
  • the upper organic layer was transferred to a four-necked flask equipped with a thermometer, a stirrer, a cooling tube, and a gas inlet tube, and heated under reduced pressure while blowing in 7% oxygen/nitrogen gas to distill off the toluene, obtaining 190 g of a product (2-[(1-methylpentadecyl)oxy]ethyl acrylate) isomer mixture.
  • the purity of this acrylate product was 96%, and it contained unreacted alcohol.
  • this product was stored in a refrigerator at -20°C for 10 hours, it crystallized, but no crystal precipitation was observed at -5°C. It has been shown that it is possible to obtain the compounds of the present invention by the processes described in Examples 1 to 3 above.
  • Example 4 20 g of the (meth)acrylate synthesized in Example 3, 100 g of dioxane as an organic solvent, and 0.4 g of V-65 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) as a polymerization initiator were added to a four-neck flask equipped with a thermometer, a stirrer, a cooling tube, and a gas inlet tube, and polymerization was carried out at 70° C. After polymerization for 2 hours, the reaction solution had become viscous, and the production of a polymer was confirmed. The produced polymer was subjected to NMR measurement, and it was found to contain 2% of unpolymerized components.
  • V-65 manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • Example 5 In a reaction apparatus equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen inlet tube, 20 parts of the acrylate synthesized in Example 4 was heated and melted, and 1 part of a nonionic surfactant (product name "Noigen ES-149D", manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) and 63 parts of warm water (60°C) were mixed and emulsified using a high-pressure emulsifier to prepare an aqueous dispersion (emulsion) with a nonvolatile content of 25%.
  • a nonionic surfactant product name "Noigen ES-149D", manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • aqueous dispersion 20 parts of this aqueous dispersion was mixed with 5 parts of polyethyleneimine (product name "Epomin (registered trademark) HM-2000", manufactured by Nippon Shokubai Co., Ltd., number average molecular weight 30,000) to prepare an aqueous dispersion (water repellent composition) having a non-volatile content of 25%.
  • the water repellent composition was diluted 25 times with water, and a polyester fabric (Polyester Tropical, manufactured by Teijin Co., Ltd.) was immersed in the diluted water repellent composition.
  • the polyester fabric to which the water repellent composition was applied was dried in a dryer at 180°C for 5 minutes to obtain a water repellent fiber.
  • the amount of the water repellent composition applied to the polyester fabric was 1.3 g/ m2 .
  • the obtained fiber was tested according to the spray method of JIS L 1092 (2009) at a shower water temperature of 20° C. The results were evaluated visually and showed that some adhesion and wetness was present on the surface, but other areas were not.
  • Example 1 The same procedure as in Example 5 was carried out except that 20 parts of stearyl acrylate was used in place of 20 parts of the acrylate synthesized in Example 4, to obtain a reference polyester fiber.
  • the obtained fiber was tested according to the spray method of JIS L 1092 (2009) with shower water at a temperature of 20° C. The results were evaluated visually, and the surface was wetted, but no water droplets were observed.
  • Example 5 The evaluation of Example 5 above demonstrated that the (meth)acrylate of the present invention has a water-repellent effect.

Abstract

The purpose of the present invention is to provide: a composition which contains a novel compound that has excellent handling properties; and a production method, use or the like of this composition. The present invention provides a (meth)acrylate-containing composition which contains two or more isomers of a (meth)acrylate that is represented by general formula (1) (wherein R1 represents a hydrogen atom or a methyl group; R2 and R3 each represent an alkyl group; the total number of carbon atoms in R2 and R3 is 6 to 22; and n represents a number of 1 to 3). This (meth)acrylate-containing composition contains (A) the isomer wherein R2 is a methyl group and (B) the isomer wherein R2 is an alkyl group having 2 or more carbon atoms.

Description

(メタ)アクリレート含有組成物(Meth)acrylate-containing composition
 本発明は、新規な(メタ)アクリレートを含む組成物、およびこの製法、およびこの(メタ)アクリレートを使った撥水撥油剤に関する。 The present invention relates to a composition containing a novel (meth)acrylate, a method for producing the composition, and a water/oil repellent using the (meth)acrylate.
 高級アルキル(メタ)アクリレートとフッ素系のポリフルオロアルキル(メタ)アクリレートを組み合わせたフッ素系撥水撥油剤組成物が下記の特許文献1で紹介されている。 A fluorine-based water and oil repellent composition that combines a higher alkyl (meth)acrylate and a fluorine-based polyfluoroalkyl (meth)acrylate is introduced in the following Patent Document 1.
特開2002-201463号公報JP 2002-201463 A 特開平08-071429号公報Japanese Patent Application Laid-Open No. 08-071429 特開2002-326974号公報JP 2002-326974 A 特開平6-33043号公報Japanese Patent Application Laid-Open No. 6-33043 特開平11―349987号公報Japanese Patent Application Laid-Open No. 11-349987 特開平10-167990号公報Japanese Patent Application Laid-Open No. 10-167990 特許第2703752号公報Japanese Patent No. 2703752 特開2023-78348号公報JP 2023-78348 A
 撥水・撥油剤の組成物の成分として長鎖アルキル(メタ)アクリレートを使用することは公知である。長鎖アルキルアクリレートは冬場凝固するような融点を持っており、アルキルの炭素数が12のアクリレートは約4℃、同様に炭素数14のアクリレートは約14℃、炭素数16のアクリレートは約17℃、炭素数18のアクリレートは約28℃である。従って、冬場にドラム缶に充填された製品を取り出す際は、融点以上の温度で加熱する必要が有るが、融点よりも高い温度で加熱すると、この製品は重合性基を持っており、加熱により重合が開始されるとドラム内が発熱し、爆発に至る危険性もある。このことから、融点よりも20℃~30℃程度高温にしてゆっくりと時間をかけて溶解させるため取り扱いが煩雑である。 It is well known that long-chain alkyl (meth)acrylates are used as components of water and oil repellent compositions. Long-chain alkyl acrylates have melting points that solidify in winter, with acrylates with 12 alkyl carbon atoms at about 4°C, acrylates with 14 carbon atoms at about 14°C, acrylates with 16 carbon atoms at about 17°C, and acrylates with 18 carbon atoms at about 28°C. Therefore, when removing products filled in drums in winter, they must be heated to a temperature above their melting point. However, if heated to a temperature higher than the melting point, this product contains polymerizable groups, and polymerization will begin when heated, causing heat to build up inside the drum, which may lead to an explosion. For this reason, they are difficult to handle, as they must be dissolved slowly over a period of time at a temperature 20°C to 30°C higher than the melting point.
 本発明者は、鋭意検討した結果、一般式(1)で表される新規な(メタ)アクリレート化合物が長鎖アルキル(メタ)アクリレートと類似の構造でありながら、その融点は低下した物性を持っており、加温することなく取り扱えることから、取扱いが容易になることを見出した。また、新規な(メタ)アクリレート化合物は撥水撥油剤としても有効であることを見出した。本発明者はその知見に基づいて、本発明を完成するに至った。 After extensive research, the inventors have found that a novel (meth)acrylate compound represented by general formula (1) has a similar structure to long-chain alkyl (meth)acrylates, but has physical properties with a lower melting point and can be handled without heating, making it easy to handle. They have also found that the novel (meth)acrylate compound is effective as a water and oil repellent. Based on this knowledge, the inventors have completed the present invention.
 取り扱い性に優れる新規な化合物を含む組成物、其の製法又は用途等を提供した。 We have provided a composition containing a novel compound that is easy to handle, as well as its manufacturing method and uses.
図1は実施例1で得られた反応生成物((2-[(1-メチルウンデシル)オキシ]エチルアクリレート)異性体混合物)についてH-NMR測定を行って得られたチャートである。FIG. 1 is a chart obtained by carrying out H-NMR measurement on the reaction product ((2-[(1-methylundecyl)oxy]ethyl acrylate) isomer mixture) obtained in Example 1.
図2は実施例3で得られた反応生成物((2-[(1-メチルトリデシル)オキシ]エチルアクリレート)異性体混合物)についてH-NMR測定を行って得られたチャートである。FIG. 2 is a chart obtained by carrying out H-NMR measurement on the reaction product ((2-[(1-methyltridecyl)oxy]ethyl acrylate) isomer mixture) obtained in Example 3.
図3は実施例4で得られたアクリレートの重合体についてH-NMR測定を行って得られたチャートである。FIG. 3 is a chart obtained by carrying out H-NMR measurement on the acrylate polymer obtained in Example 4.
(定義)
 「(メタ)アクリル」は「アクリルまたはメタクリル」を意味する。「(メタ)アクリレート」は「アクリレートまたはメタクリレート」を意味する。本明細書中の「単量体に由来する構造単位」とは、単量体が重合して形成される構造単位の意味であり、より詳細には、単量体が有する炭素-炭素二重結合が開裂して形成される構造を意味している。
(Definition)
"(Meth)acrylic" means "acrylic or methacrylic". "(Meth)acrylate" means "acrylate or methacrylate". In this specification, "structural unit derived from a monomer" means a structural unit formed by polymerization of a monomer, and more specifically, means a structure formed by cleavage of a carbon-carbon double bond of a monomer.
(本発明の例示)
 本発明の好ましい構成は以下の〔1〕~〔12〕等において記述されるものである。
〔1〕下記一般式(1)で表される(メタ)アクリレートの異性体を2種類以上含む組成物であって、Rがメチル基である同異性体(A)と、Rが炭素数2以上のアルキル基である同異性体(B)とを含有する、(メタ)アクリレート含有組成物。
Figure JPOXMLDOC01-appb-C000006
(式中、Rは水素原子又はメチル基を表す。RおよびRはアルキル基であり、RとRとの合計炭素数は6~22である。nは1~3の数である。)
〔2〕上記〔1〕に記載の(メタ)アクリレート含有組成物を製造する方法であって、該製造方法は、下記一般式(2)で表されるアルコールと重合禁止剤とを含む混合物を加熱処理する工程と、該加熱処理工程により得られた一般式(2)で表されるアルコールを含む組成物に(メタ)アクリル酸とエステル化触媒を添加してエステル化反応を行う工程とを含む、(メタ)アクリレート含有組成物の製造方法。
Figure JPOXMLDOC01-appb-C000007
(式中、RおよびRはアルキル基であり、RとRの合計炭素数は6~22である。nは1~3の数である。)
〔3〕上記〔1〕に記載の(メタ)アクリレート含有組成物を製造する方法であって、該製造方法は、下記一般式(2)で表されるアルコールと重合禁止剤とを含む混合物を加熱処理する工程と、該加熱処理工程により得られた一般式(2)で表されるアルコールを含む組成物に下記一般式(3)で表される(メタ)アクリル酸エステルとエステル交換触媒を添加してエステル交換反応を行う工程とを含む、(メタ)アクリレート含有組成物の製造方法。
Figure JPOXMLDOC01-appb-C000008
(式中、RおよびRはアルキル基であり、RとRの合計炭素数は6~22である。nは1~3の数である。)
Figure JPOXMLDOC01-appb-C000009
(式中、Rは水素原子、またはメチル基を表す。Rは炭素数1~8のアルキル基を表す。)
〔4〕上記加熱処理は、キノン系重合禁止剤、アルキルフェノール系重合禁止剤、アミン系重合禁止剤、N-オキシル系重合禁止剤、フェノチアジンから選ばれる少なくとも1種の重合禁止剤を用いることを特徴とする、上記〔2〕又は〔3〕に記載の製造方法。
〔5〕上記加熱処理は、25℃~100℃の範囲内の温度で行うことを特徴とする、上記〔2〕~〔4〕のいずれかに記載の(メタ)アクリレートの製造方法。
〔6〕上記加熱処理は、10分から120時間行うことを特徴とする、上記〔2〕~〔5〕のいずれかに記載の(メタ)アクリレートの製造方法。
〔7〕上記重合禁止剤の量は、上記一般式(2)で表されるアルコール100重量%に対して、10重量ppm~10重量%の範囲内にあることを特徴とする、上記〔2〕~〔6〕のいずれかに記載の製造方法。
〔8〕下記一般式(1)で表される(メタ)アクリレート由来の構造単位を含む重合体。
Figure JPOXMLDOC01-appb-C000010
 
(式中、Rは水素原子又はメチル基を表す。RおよびRはアルキル基であり、RとRとの合計炭素数は6~22である。nは1~3の数である。)
〔9〕上記重合体は、活性水素含有官能基を有するポリマーに上記(メタ)アクリレートが付加した構造を有する、上記〔8〕に記載の重合体。
〔10〕上記〔8〕又は〔9〕に記載の重合体を含有する、撥水・撥油剤。
〔11〕上記〔8〕又は〔9〕に記載の重合体を基材に付着させる工程を含む、基材に撥水・撥油性を付与する方法。
〔12〕上記重合体の付着工程は、上記重合体を基材上に塗布することにより行い、該重合体の付着工程後に該重合体間に架橋を導入してコーティング層を形成する工程とを含む、上記〔11〕に記載の基材に撥水・撥油性を付与する方法。
(Example of the present invention)
The preferred configurations of the present invention are described in the following items [1] to [12].
[1] A (meth)acrylate-containing composition comprising two or more isomers of a (meth)acrylate represented by the following general formula (1), the isomer (A) being an isomer in which R2 is a methyl group, and the isomer (B) being an isomer in which R2 is an alkyl group having two or more carbon atoms:
Figure JPOXMLDOC01-appb-C000006
(In the formula, R1 represents a hydrogen atom or a methyl group. R2 and R3 represent alkyl groups, and the total number of carbon atoms of R2 and R3 is 6 to 22. n is a number from 1 to 3.)
[2] A method for producing the (meth)acrylate-containing composition according to the above [1], the method comprising the steps of: heat-treating a mixture containing an alcohol represented by the following general formula (2) and a polymerization inhibitor; and adding (meth)acrylic acid and an esterification catalyst to the composition containing the alcohol represented by the general formula (2) obtained by the heat treatment step, thereby carrying out an esterification reaction.
Figure JPOXMLDOC01-appb-C000007
(In the formula, R2 and R3 are alkyl groups, the total number of carbon atoms of R2 and R3 is 6 to 22, and n is a number from 1 to 3.)
[3] A method for producing the (meth)acrylate-containing composition according to the above [1], the method comprising the steps of: heat-treating a mixture containing an alcohol represented by the following general formula (2) and a polymerization inhibitor; and adding a (meth)acrylic acid ester represented by the following general formula (3) and an ester exchange catalyst to the composition containing the alcohol represented by the general formula (2) obtained by the heat treatment step, thereby carrying out an ester exchange reaction.
Figure JPOXMLDOC01-appb-C000008
(In the formula, R2 and R3 are alkyl groups, the total number of carbon atoms of R2 and R3 is 6 to 22, and n is a number from 1 to 3.)
Figure JPOXMLDOC01-appb-C000009
(In the formula, R1 represents a hydrogen atom or a methyl group, and R4 represents an alkyl group having 1 to 8 carbon atoms.)
[4] The method according to [2] or [3] above, characterized in that the heat treatment uses at least one polymerization inhibitor selected from a quinone-based polymerization inhibitor, an alkylphenol-based polymerization inhibitor, an amine-based polymerization inhibitor, an N-oxyl-based polymerization inhibitor, and a phenothiazine.
[5] The method for producing a (meth)acrylate according to any one of [2] to [4] above, wherein the heat treatment is carried out at a temperature within the range of 25° C. to 100° C.
[6] The method for producing a (meth)acrylate according to any one of [2] to [5] above, wherein the heat treatment is carried out for 10 minutes to 120 hours.
[7] The production method according to any one of the above [2] to [6], characterized in that the amount of the polymerization inhibitor is within the range of 10 ppm by weight to 10% by weight based on 100% by weight of the alcohol represented by the above general formula (2).
[8] A polymer containing a structural unit derived from a (meth)acrylate represented by the following general formula (1):
Figure JPOXMLDOC01-appb-C000010

(In the formula, R1 represents a hydrogen atom or a methyl group. R2 and R3 represent alkyl groups, and the total number of carbon atoms of R2 and R3 is 6 to 22. n is a number from 1 to 3.)
[9] The polymer according to [8] above, which has a structure in which the (meth)acrylate is added to a polymer having an active hydrogen-containing functional group.
[10] A water/oil repellent comprising the polymer according to [8] or [9] above.
[11] A method for imparting water and oil repellency to a substrate, comprising a step of adhering the polymer according to [8] or [9] above to the substrate.
[12] The method for imparting water and oil repellency to a substrate according to the above-mentioned [11], wherein the step of adhering the polymer is carried out by applying the polymer onto the substrate, and the method includes a step of introducing crosslinks between the polymers after the step of adhering the polymer to form a coating layer.
<本発明の組成物>
 本発明は、(メタ)アクリレート化合物(以下、「本発明の(メタ)アクリレート」とも呼ぶ)である異性体を2種類以上含む組成物(以下、「本発明の(メタ)アクリレート組成物」とも呼ぶ)及びその製法等に関するものであり、当該化合物(異性体)は下記一般式(1)で共通して表されるものである。
<Composition of the present invention>
The present invention relates to a composition (hereinafter also referred to as the "(meth)acrylate composition of the present invention") containing two or more isomers that are (meth)acrylate compounds (hereinafter also referred to as the "(meth)acrylate of the present invention"), and a production method thereof, and the compounds (isomers) are commonly represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000011
(式中、Rは水素原子又はメチル基、RおよびRはアルキル基であり、RとRの合計の炭素数は6~22である。nは1~3の数である。)
Figure JPOXMLDOC01-appb-C000011
(In the formula, R1 is a hydrogen atom or a methyl group, R2 and R3 are alkyl groups, the total number of carbon atoms of R2 and R3 is 6 to 22, and n is a number from 1 to 3.)
本発明の(メタ)アクリレート組成物は、Rがメチル基である上記異性体(A)とRが炭素数2以上のアルキル基である上記異性体(B)とを含むものであり、異性体(A)及び(B)におけるRは、RとRの合計の炭素数が異性体(A)及び(B)において同じであって、6~22の範囲であれば特に制限されない。
本発明の(メタ)アクリレート組成物は、このような異性体を2種類以上含むことにより、異性体が1種類の場合よりも結晶性が低下し、融点が低下することで冬場の凍結等を充分に抑制し、取り扱い性に優れる。
また、上記一般式(1)で表される(メタ)アクリレートは、エチレングリコール末端に分岐のアルキル基を有するため、直鎖アルキル基を有するものよりもガラス転移温度が高い傾向がある。
The (meth)acrylate composition of the present invention contains the above-mentioned isomer (A) in which R2 is a methyl group and the above-mentioned isomer (B) in which R2 is an alkyl group having 2 or more carbon atoms. R3 in the isomers (A) and (B) is not particularly limited as long as the total carbon number of R2 and R3 is the same in the isomers (A) and (B) and is in the range of 6 to 22.
The (meth)acrylate composition of the present invention contains two or more types of such isomers, and thus has lower crystallinity and a lower melting point than when only one type of isomer is contained, thereby sufficiently suppressing freezing in winter and providing excellent handleability.
In addition, the (meth)acrylate represented by the above general formula (1) has a branched alkyl group at the ethylene glycol terminal, and therefore tends to have a higher glass transition temperature than those having a linear alkyl group.
 本発明の(メタ)アクリレート組成物は、Rがメチル基である上記異性体(A)を1~50モル%、Rが炭素数2以上のアルキル基である同異性体(B)を50~99モル%含有することが好ましい。より好ましくは、Rがメチル基である上記異性体(A)を2~40モル%、Rが炭素数2以上のアルキル基である同異性体(B)を60~98モル%含有する。更に好ましくはRがメチル基である上記異性体(A)を5~30モル%、Rが炭素数以上のアルキル基である同異性体(B)を70~95モル%含有する形態である。
また、上記異性体(B)は、上記異性体(A)の異性体に該当する化合物であれば、1種類又は2種類以上の化合物であっても良い。
尚、当該組成物は本発明の(メタ)アクリレート化合物から実質的になることが好ましく、当該(メタ)アクリレート化合物を90モル%以上、望ましくは95モル%以上、より好ましくは98%以上含むものである。
また、本発明の(メタ)アクリレート化合物の割合は、組成物100質量%に対して、90質量%以上であることが好ましく、より好ましくは95質量%以上であり、更に好ましくは98質量%以上である。
The (meth)acrylate composition of the present invention preferably contains 1 to 50 mol % of the isomer (A) in which R 2 is a methyl group, and 50 to 99 mol % of the isomer (B) in which R 2 is an alkyl group having 2 or more carbon atoms. More preferably, the (meth)acrylate composition contains 2 to 40 mol % of the isomer (A) in which R 2 is a methyl group, and 60 to 98 mol % of the isomer (B) in which R 2 is an alkyl group having 2 or more carbon atoms. Even more preferably, the (meth)acrylate composition contains 5 to 30 mol % of the isomer (A) in which R 2 is a methyl group, and 70 to 95 mol % of the isomer (B) in which R 2 is an alkyl group having 2 or more carbon atoms.
Moreover, the above-mentioned isomer (B) may be one or more kinds of compounds, so long as it is a compound corresponding to an isomer of the above-mentioned isomer (A).
The composition preferably consists essentially of the (meth)acrylate compound of the present invention, and contains the (meth)acrylate compound in an amount of 90 mol % or more, desirably 95 mol % or more, and more preferably 98 mol % or more.
The proportion of the (meth)acrylate compound of the present invention is preferably 90% by mass or more, more preferably 95% by mass or more, and even more preferably 98% by mass or more, based on 100% by mass of the composition.
上記一般式(1)におけるRとRの炭素数の合計は好ましくは、7~21であり、より好ましくは9~19であり、更に好ましくは11~17である。RとRの炭素数の合計が6より小さい場合は撥水・撥油性が低くなり好ましくない。またRとRの炭素数の合計が22を超える場合は、その炭素数のオレフィンのアベイラビリティーが低くなる。 The total number of carbon atoms in R2 and R3 in the above general formula (1) is preferably 7 to 21, more preferably 9 to 19, and even more preferably 11 to 17. If the total number of carbon atoms in R2 and R3 is less than 6, the water and oil repellency will be reduced, which is not preferable. Also, if the total number of carbon atoms in R2 and R3 exceeds 22, the availability of olefins with that number of carbon atoms will be reduced.
上記RおよびRはアルキル基であり、RとRの合計の炭素数が6~22であれば特に制限されず、アルキル基としては、直鎖状、分枝状又は環状のいずれであってもよいが、RおよびRはそれぞれ直鎖状のアルキル基であることが好ましい。
すなわち、本発明の(メタ)アクリレートは、エチレングリコール末端に2級アルキル基を有する形態が好ましい
The above R2 and R3 are alkyl groups, and are not particularly limited as long as the total number of carbon atoms of R2 and R3 is 6 to 22. The alkyl group may be any of linear, branched, and cyclic, but it is preferable that R2 and R3 are each a linear alkyl group.
That is, the (meth)acrylate of the present invention preferably has a secondary alkyl group at the ethylene glycol terminal.
上記異性体(B)におけるRは、炭素数が2以上のアルキル基であって、RとRの合計の炭素数が異性体(A)と同じであればよいが、好ましくは炭素数8~20のアルキル基である。上記異性体(B)におけるRとしてより好ましくはエチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-へキシル基、n-へプチル基、n-オクチル基である。 R2 in the above isomer (B) is an alkyl group having 2 or more carbon atoms, and the total number of carbon atoms of R2 and R3 may be the same as that of isomer (A), but is preferably an alkyl group having 8 to 20 carbon atoms. More preferred examples of R2 in the above isomer (B) are ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, and n-octyl.
上記一般式(1)におけるnは、エチレングリコール鎖の繰り返し単位(付加モル数)であって、1~3の数であるが、nが大きくなると水への親和性が高くなることから好ましくない。このため好ましくは、nは1~2であり、より好ましくは、nは1~1.5である。 In the above general formula (1), n is the repeating unit (number of moles added) of the ethylene glycol chain, and is a number from 1 to 3. However, a larger n is not preferred because it increases the affinity for water. For this reason, n is preferably 1 to 2, and more preferably 1 to 1.5.
本発明の組成物は、任意の化合物を含んでいても良い。
本発明の組成物は、下記一般式(2)で表される化合物を含んでいても良い。
本発明の組成物は、特に限定されないが、下記一般式(2)で表される化合物の含有量が、上記一般式(1)で表される化合物100質量%に対し、0~10質量%であることが好ましい。
The compositions of the present invention may include any compound.
The composition of the present invention may contain a compound represented by the following general formula (2).
The composition of the present invention is not particularly limited, but the content of the compound represented by the following general formula (2) is preferably 0 to 10 mass % relative to 100 mass % of the compound represented by the above general formula (1).
本発明の組成物は、重合禁止剤を含んでいても良い。本発明の組成物は、特に限定されないが、上記一般式(1)で表される化合物100質量%に対し、重合禁止剤を0.00001%以上、5質量%以下の割合で含むことが好ましい。上記範囲であれば、本発明の組成物の貯蔵安定性が向上する傾向にある。
上記重合禁止剤としては、特に制限されないが、後述する化合物が例示される。
The composition of the present invention may contain a polymerization inhibitor. The composition of the present invention is not particularly limited, but it is preferable that the polymerization inhibitor is contained in a ratio of 0.00001% or more and 5% or less by mass based on 100% by mass of the compound represented by the above general formula (1). If it is within the above range, the storage stability of the composition of the present invention tends to be improved.
The polymerization inhibitor is not particularly limited, but examples thereof include the compounds described below.
本発明の組成物は、重合開始剤を含んでも良い。重合開始剤としては、熱や光でラジカルを発生する化合物が例示される。具体的には、後述する重合開始剤が例示される。 The composition of the present invention may contain a polymerization initiator. Examples of polymerization initiators include compounds that generate radicals when exposed to heat or light. Specific examples include the polymerization initiators described below.
上記重合開始剤の含有割合は特に制限されないが、本発明の組成物は、上記一般式(1)で表される化合物100質量%に対し、重合開始剤を0.01質量%以上、5質量%以下の割合で含むことが好ましい。上記範囲であれば、本発明の組成物の重合性の遅延が少ない傾向にある。 The content ratio of the polymerization initiator is not particularly limited, but the composition of the present invention preferably contains the polymerization initiator in a ratio of 0.01% by mass or more and 5% by mass or less relative to 100% by mass of the compound represented by the above general formula (1). If it is within the above range, there is a tendency that the polymerization of the composition of the present invention will be less delayed.
本発明の組成物は、上記一般式(1)で表される化合物以外のラジカル重合性化合物を含んでも良い。上記ラジカル重合性化合物としては、熱や光でラジカル重合する化合物が例示される。具体的には、後述する単量体が例示される。
本発明の組成物は、特に制限されないが、上記一般式(1)で表される化合物100質量%に対し、上記一般式(1)で表される化合物以外のラジカル重合性化合物の割合は、0質量%以上、99質量%以下であることが好ましい。より好ましくは0~80質量%であり、更に好ましくは0~60質量%であり、一層好ましくは0~40質量%であり、より一層好ましくは0~20質量%であり、特に好ましくは0~10質量%である。
The composition of the present invention may contain a radical polymerizable compound other than the compound represented by the above general formula (1). Examples of the radical polymerizable compound include compounds that undergo radical polymerization by heat or light. Specific examples include the monomers described below.
The composition of the present invention is not particularly limited, but the ratio of the radical polymerizable compound other than the compound represented by the above general formula (1) to 100% by mass of the compound represented by the above general formula (1) is preferably 0% by mass or more and 99% by mass or less, more preferably 0 to 80% by mass, even more preferably 0 to 60% by mass, still more preferably 0 to 40% by mass, still more preferably 0 to 20% by mass, and particularly preferably 0 to 10% by mass.
本発明の組成物は、(メタ)アクリル酸の重合物や、アルキル(メタ)アクリレートの重合物等の重量平均分子量が2000以下のポリマーを含んでいてもよいが、該ポリマーの含有割合は、上記一般式(1)で表される化合物100質量%に対し、10質量%以下であることが好ましい。より好ましくは5質量%以下であり、更に好ましくは1質量%以下である。
上記重量平均分子量はゲルパーミエーションクロマトグラフィーや静的光散乱法により測定することができる。
The composition of the present invention may contain a polymer having a weight average molecular weight of 2000 or less, such as a polymer of (meth)acrylic acid or a polymer of alkyl (meth)acrylate, but the content of the polymer is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 1% by mass or less, based on 100% by mass of the compound represented by the above general formula (1).
The weight average molecular weight can be measured by gel permeation chromatography or a static light scattering method.
<製法>
 本発明の(メタ)アクリレート含有組成物は、下記で説明するような、エステル化又はエステル交換によって製造することが可能である。尚、本発明の(メタ)アクリレート組成物中の該(メタ)アクリレートの異性体の混合比は、其の原料に用いられる下記アルコールの異性体の混合比(更には該アルコールの原料に用いられるオレフィンの異性体の混合比)に由来するものである。
本発明は、一般式(2)で表されるアルコールと重合禁止剤とを含む混合物を加熱処理する工程と、該加熱処理工程により得られた一般式(2)で表されるアルコールを含む組成物に(メタ)アクリル酸とエステル化触媒を添加してエステル化反応を行う工程とを含む、(メタ)アクリレート含有組成物の製造方法でもある。
本発明はまた、上記一般式(2)で表されるアルコールと重合禁止剤とを含む混合物を加熱処理する工程と、該加熱処理工程により得られた一般式(2)で表されるアルコールを含む組成物に下記一般式(3)で表される(メタ)アクリル酸エステルとエステル交換触媒を添加してエステル交換反応を行う工程とを含む、(メタ)アクリレート含有組成物の製造方法でもある。
Figure JPOXMLDOC01-appb-C000012
(式中、RおよびRはアルキル基であり、RとRの合計炭素数は6~22である。nは1~3の数である。)
Figure JPOXMLDOC01-appb-C000013
 
(式中、Rは水素原子、またはメチル基を表す。Rは炭素数1~8のアルキル基を表す。)
上記炭素数1~8のアルキル基は、直鎖状、分枝状又は環状のいずれであってもよい。
<Production Method>
The (meth)acrylate-containing composition of the present invention can be produced by esterification or transesterification as described below. The mixing ratio of the (meth)acrylate isomers in the (meth)acrylate composition of the present invention is derived from the mixing ratio of the isomers of the alcohols described below used as raw materials (and further the mixing ratio of the isomers of the olefins used as raw materials for the alcohols).
The present invention also relates to a method for producing a (meth)acrylate-containing composition, comprising: a step of heat-treating a mixture containing an alcohol represented by general formula (2) and a polymerization inhibitor; and a step of adding (meth)acrylic acid and an esterification catalyst to the composition containing the alcohol represented by general formula (2) obtained by the heat-treatment step, thereby carrying out an esterification reaction.
The present invention also relates to a method for producing a (meth)acrylate-containing composition, the method comprising: a step of heat-treating a mixture containing an alcohol represented by the above general formula (2) and a polymerization inhibitor; and a step of adding a (meth)acrylic acid ester represented by the following general formula (3) and an ester exchange catalyst to the composition containing the alcohol represented by the general formula (2) obtained by the heat treatment step, thereby carrying out an ester exchange reaction.
Figure JPOXMLDOC01-appb-C000012
(In the formula, R2 and R3 are alkyl groups, the total number of carbon atoms of R2 and R3 is 6 to 22, and n is a number from 1 to 3.)
Figure JPOXMLDOC01-appb-C000013

(In the formula, R1 represents a hydrogen atom or a methyl group, and R4 represents an alkyl group having 1 to 8 carbon atoms.)
The alkyl group having 1 to 8 carbon atoms may be straight-chain, branched or cyclic.
 本発明における一般式(1)で表される(メタ)アクリレートの原料として用いられるアルコールは上記一般式(2)で表されるアルコールである。
 上記式(2)中、RとRの合計炭素数は好ましくは、7~21であり、より好ましくは9~19であり、更に好ましくは11~17である。
更にnは1~2が好ましく、より好ましくは1~1.5である。
The alcohol used as a raw material for the (meth)acrylate represented by the general formula (1) in the present invention is the alcohol represented by the above general formula (2).
In the above formula (2), the total number of carbon atoms in R 2 and R 3 is preferably 7 to 21, more preferably 9 to 19, and even more preferably 11 to 17.
Furthermore, n is preferably 1 to 2, and more preferably 1 to 1.5.
 一般的に、一般式(2)を包括するアルコールは、種々の方法により合成することができる。例えば、高級アルコールにアルキレンオキサイドを付加して得る方法や、高級アルコールと(ポリ)アルキレングリコールとを脱水縮合して得る方法や、塩素化パラフィンと(ポリ)アルキレングリコールとを縮合して得る方法、長鎖オレフィンに(ポリ)アルキレングリコールを付加して得る方法などが挙げられる。
 しかしながら、高級アルコールにアルキレンオキサイドを付加して得る方法や、高級アルコールと(ポリ)アルキレングリコールとを脱水縮合して得る方法は一般式(2)の構造とは違い、ポリエチレングリコール鎖長(一般式(2)におけるn)が一般的には長くなる。このため、水への親和性が高くなり好ましくない。
 塩素化パラフィンと(ポリ)アルキレングリコールとを縮合して得る方法においては一般式(2)の構造を合成することは可能であるが、塩素を含有する廃棄物が出ると言う懸念がある。このことから、好適には長鎖オレフィンに(ポリ)アルキレングリコールを付加する方法が好ましい。公知な方法としては特開平11―349987号公報、特開平10-167990号公報、および特許第2703752号公報に記載の方法などを採用することが出来る。
In general, alcohols encompassing the general formula (2) can be synthesized by various methods, such as a method of adding an alkylene oxide to a higher alcohol, a method of dehydrating and condensing a higher alcohol with a (poly)alkylene glycol, a method of condensing a chlorinated paraffin with a (poly)alkylene glycol, and a method of adding a (poly)alkylene glycol to a long-chain olefin.
However, the method of adding an alkylene oxide to a higher alcohol or the method of dehydrating and condensing a higher alcohol with a (poly)alkylene glycol generally results in a long polyethylene glycol chain length (n in general formula (2)) unlike the structure of general formula (2), which is undesirable because it increases the affinity for water.
In the method of obtaining the structure of the general formula (2) by condensing chlorinated paraffin with (poly)alkylene glycol, it is possible to synthesize the structure, but there is a concern that waste containing chlorine will be generated. For this reason, the method of adding (poly)alkylene glycol to long-chain olefin is preferable. As a publicly known method, the method described in JP-A-11-349987, JP-A-10-167990, and Japanese Patent No. 2703752 can be adopted.
一般式(2)で表されるアルコールを合成するための原料としては炭素数7~23のオレフィンとエチレングリコールを用いることが出来る。
一般式(2)において、Rがメチル基であるアルコールを合成するための原料としては炭素数7~23の1-オレフィンとエチレングリコールを用いることが出来る。1-オレフィンとしては、具体的には1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、1-ドコセン等が挙げられる。
上記一般式(2)で表されるアルコールとしては、上記の1-オレフィンとエチレングリコールの付加生成物であることが好ましい。1―オレフィンは1種類のみでも良く、2種以上を適宜混合しても差し支えない。1-オレフィンとしては、好ましくは炭素数8~22の1-オクテン、1-ノネン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、1-ドコセンであり、より好ましくは合計炭素数10~20の1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンであり、更に好ましくは炭素数12~18の1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセンである。
一般式(2)において、Rが炭素数2以上のアルキル基であるアルコールを合成するための原料としては、二重結合がα位に位置しない炭素数7~23の内部オレフィンとエチレングリコールを用いることが出来る。
As raw materials for synthesizing the alcohol represented by the general formula (2), an olefin having 7 to 23 carbon atoms and ethylene glycol can be used.
In the general formula (2), as the raw material for synthesizing the alcohol in which R2 is a methyl group, a 1-olefin having 7 to 23 carbon atoms and ethylene glycol can be used. Specific examples of the 1-olefin include 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, and 1-docosene.
The alcohol represented by the above general formula (2) is preferably an addition product of the above 1-olefin and ethylene glycol. The 1-olefin may be one type, or two or more types may be appropriately mixed. The 1-olefin is preferably 1-octene, 1-nonene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, or 1-docosene having 8 to 22 carbon atoms, more preferably 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, or 1-eicosene having 10 to 20 carbon atoms in total, and even more preferably 1-dodecene, 1-tetradecene, 1-hexadecene, or 1-octadecene having 12 to 18 carbon atoms.
In the general formula (2), as a raw material for synthesizing an alcohol in which R2 is an alkyl group having 2 or more carbon atoms, an internal olefin having 7 to 23 carbon atoms and in which the double bond is not located at the α-position and ethylene glycol can be used.
 特開平11―349987号公報、特開平10-167990号公報、および特許第2703752号公報に記載の方法でオレフィンにエチレングリコールを付加した場合、反応中に異性化反応が起きることから、反応生成物は、Rがメチル基である成分(A)30~90モル%とRが炭素数2以上のアルキル基である成分(B)70~10モル%の混合物となり、nは1~3の分布を持つことになる。
 エチレングリコール鎖の繰り返し単位であるnは付加モル数であって1~3であるが、nが大きくなると水への親和性が高くなることから好ましくない。このため好ましくは、nは1~2であり、より好ましくは、nは1~1.5である。
When ethylene glycol is added to an olefin by the methods described in JP-A-11-349987, JP-A-10-167990, and Japanese Patent No. 2703752, an isomerization reaction occurs during the reaction, and the reaction product becomes a mixture of 30 to 90 mol % of component (A) in which R 2 is a methyl group and 70 to 10 mol % of component (B) in which R 2 is an alkyl group having 2 or more carbon atoms, and n has a distribution of 1 to 3.
The repeating unit n of the ethylene glycol chain is the number of moles added, which is 1 to 3. However, a larger n is not preferred because it increases the affinity for water, and therefore n is preferably 1 to 2, and more preferably 1 to 1.5.
上記一般式(2)で表されるアルコールとして、特に限定されるわけではないが、具体的には、2-[(1-メチルペンチル)オキシ]エタノール、2-[(1-メチルヘキシル)オキシ]エタノール、2-[(1-メチルヘプチル)オキシ]エタノール、2-[(1-メチルオクチル)オキシ]エタノール、2-[(1-メチルノニル)オキシ]エタノール、2-[(1-メチルデシル)オキシ]エタノール、2-[(1-メチルウンデシル)オキシ]エタノール、2-[(1-メチルドデシル)オキシ]エタノール、2-[(1-メチルトリデシル)オキシ]エタノール、2-[(1-メチルテトラデシル)オキシ]エタノール、2-[(1-メチルペンタデシル)オキシ]エタノール、2-[(1-メチルヘキサデシル)オキシ]エタノール、2-[(1-メチルヘプタデシル)オキシ]エタノール、2-[(1-メチルオクタデシル)オキシ]エタノール、2-[(1-メチルノナデシル)オキシ]エタノール、2-[(1-メチルエイコサデシル)オキシ]エタノール;2-[(1-エチルブチル)オキシ]エタノール、2-[(1-エチルペンチル)オキシ]エタノール、2-[(1-エチルヘキシル)オキシ]エタノール、2-[(1-エチルヘプチル)オキシ]エタノール、2-[(1-エチルオクチル)オキシ]エタノール、2-[(1-エチルノニル)オキシ]エタノール、2-[(1-エチルデシル)オキシ]エタノール、2-[(1-エチルウンデシル)オキシ]エタノール、2-[(1-エチルドデシル)オキシ]エタノール、2-[(1-エチルトリデシル)オキシ]エタノール、2-[(1-エチルテトラデシル)オキシ]エタノール、2-[(1-エチルペンタデシル)オキシ]エタノール、2-[(1-エチルヘキサデシル)オキシ]エタノール、2-[(1-エチルヘプタデシル)オキシ]エタノール、2-[(1-エチルオクタデシル)オキシ]エタノール、2-[(1-エチルノナデシル)オキシ]エタノール、2-[(1-エチルエイコサデシル)オキシ]エタノール;2-[(1-n-プロピルn-プロピル)オキシ]エタノール、2-[(1-n-プロピルブチル)オキシ]エタノール、2-[(1-n-プロピルペンチル)オキシ]エタノール、2-[(1-n-プロピルペンチル)オキシ]エタノール、2-[(1-n-プロピルへプチル)オキシ]エタノール、2-[(1-n-プロピルオクチル)オキシ]エタノール、2-[(1-n-プロピルノニル)オキシ]エタノール、2-[(1-n-プロピルウンデシル)オキシ]エタノール、2-[(1-n-プロピルトリデシル)オキシ]エタノール、2-[(1-n-プロピルペンタデシル)オキシ]エタノール;2-[(1-n-ブチルn-ブチル)オキシ]エタノール、2-[(1-n-ブチルペンチル)オキシ]エタノール、2-[(1-n-ブチルへキシル)オキシ]エタノール、2-[(1-n-ブチルヘプチル)オキシ]エタノール、2-[(1-n-ブチルオクチル)オキシ]エタノール、2-[(1-n-ブチルノニル)オキシ]エタノール、2-[(1-n-ブチルデシル)オキシ]エタノール、2-[(1-n-ブチルウンデシル)オキシ]エタノール、2-[(1-n-ブチルドデシル)オキシ]エタノール、2-[(1-n-ブチルテトラデシル)オキシ]エタノール;2-[(1-n-ペンチルn-ペンチル)オキシ]エタノール、2-[(1-n-ペンチルへプチル)オキシ]エタノール、2-[(1-n-ペンチルオクチル)オキシ]エタノール、2-[(1-n-ペンチルノニル)オキシ]エタノール、2-[(1-n-ペンチルウンデシル)オキシ]エタノール、2-[(1-n-ペンチルトリデシル)オキシ]エタノール、2-[(1-n-ペンチルペンタデシル)オキシ]エタノール;2-[(1-n-へキシルへキシル)オキシ]エタノール、2-[(1-n-へキシルへプチル)オキシ]エタノール、2-[(1-n-へキシルオクチル)オキシ]エタノール、2-[(1-n-へキシルノニル)オキシ]エタノール、2-[(1-n-へキシルウンデシル)オキシ]エタノール、2-[(1-n-へキシルトリデシル)オキシ]エタノール、2-[(1-n-へキシルペンタデシル)オキシ]エタノール等が挙げられる。 The alcohol represented by the above general formula (2) is not particularly limited, but specific examples include 2-[(1-methylpentyl)oxy]ethanol, 2-[(1-methylhexyl)oxy]ethanol, 2-[(1-methylheptyl)oxy]ethanol, 2-[(1-methyloctyl)oxy]ethanol, 2-[(1-methylnonyl)oxy]ethanol, 2-[(1-methyldecyl)oxy]ethanol, 2-[(1-methylundecyl)oxy]ethanol, 2-[(1-methyldodecyl)oxy]ethanol, )oxy]ethanol, 2-[(1-methyltridecyl)oxy]ethanol, 2-[(1-methyltetradecyl)oxy]ethanol, 2-[(1-methylpentadecyl)oxy]ethanol, 2-[(1-methylhexadecyl)oxy]ethanol, 2-[(1-methylheptadecyl)oxy]ethanol, 2-[(1-methyloctadecyl)oxy]ethanol, 2-[(1-methylnonadecyl)oxy]ethanol, 2-[(1-methyleicosadecyl)oxy]ethanol; 2-[(1- 2-[(1-ethylbutyl)oxy]ethanol, 2-[(1-ethylpentyl)oxy]ethanol, 2-[(1-ethylhexyl)oxy]ethanol, 2-[(1-ethylheptyl)oxy]ethanol, 2-[(1-ethyloctyl)oxy]ethanol, 2-[(1-ethylnonyl)oxy]ethanol, 2-[(1-ethyldecyl)oxy]ethanol, 2-[(1-ethylundecyl)oxy]ethanol, 2-[(1-ethyldodecyl)oxy]ethanol, 2-[(1-ethyltridecyl)oxy]ethanol, 2-[(1-ethyltetradecyl)oxy]ethanol, 2-[(1-ethylpentadecyl)oxy]ethanol, 2-[(1-ethylhexadecyl)oxy]ethanol, 2-[(1-ethylheptadecyl)oxy]ethanol, 2-[(1-ethyloctadecyl)oxy]ethanol, 2-[(1-ethylnonadecyl)oxy]ethanol, 2-[(1-ethyleicosadecyl)oxy]ethanol; 2-[(1-n-propyl n-propyl)oxy]ethanol, 2-[( 1-n-propylbutyl)oxy]ethanol, 2-[(1-n-propylpentyl)oxy]ethanol, 2-[(1-n-propylpentyl)oxy]ethanol, 2-[(1-n-propylheptyl)oxy]ethanol, 2-[(1-n-propyloctyl)oxy]ethanol, 2-[(1-n-propylnonyl)oxy]ethanol, 2-[(1-n-propylundecyl)oxy]ethanol, 2-[(1-n-propyltridecyl)oxy]ethanol, 2-[(1-n-propyl 2-[(1-n-butyl-n-butyl)oxy]ethanol, 2-[(1-n-butylpentyl)oxy]ethanol, 2-[(1-n-butylhexyl)oxy]ethanol, 2-[(1-n-butylheptyl)oxy]ethanol, 2-[(1-n-butyloctyl)oxy]ethanol, 2-[(1-n-butylnonyl)oxy]ethanol, 2-[(1-n-butyldecyl)oxy]ethanol, 2-[(1-n-butylundecyl)oxy]ethanol , 2-[(1-n-butyldodecyl)oxy]ethanol, 2-[(1-n-butyltetradecyl)oxy]ethanol; 2-[(1-n-pentyl n-pentyl)oxy]ethanol, 2-[(1-n-pentylheptyl)oxy]ethanol, 2-[(1-n-pentyloctyl)oxy]ethanol, 2-[(1-n-pentylnonyl)oxy]ethanol, 2-[(1-n-pentylundecyl)oxy]ethanol, 2-[(1-n-pentyltridecyl)oxy]ethanol, 2-[( 1-n-pentylpentadecyl)oxy]ethanol; 2-[(1-n-hexylhexyl)oxy]ethanol, 2-[(1-n-hexylheptyl)oxy]ethanol, 2-[(1-n-hexyloctyl)oxy]ethanol, 2-[(1-n-hexylnonyl)oxy]ethanol, 2-[(1-n-hexylundecyl)oxy]ethanol, 2-[(1-n-hexyltridecyl)oxy]ethanol, 2-[(1-n-hexylpentadecyl)oxy]ethanol, etc.
一般式(2)で表されるアルコールとして、上記の化合物の中でも、2-[(1-メチルウンデシル)オキシ]エタノール、2-[(1-メチルトリデシル)オキシ]エタノール、2-[(1-メチルペンタデシル)オキシ]エタノール、2-[(1-メチルヘプタデシル)オキシ]エタノール;2-[(1-エチルウンデシル)オキシ]エタノール、2-[(1-エチルトリデシル)オキシ]エタノール、2-[(1-エチルペンタデシル)オキシ]エタノール、2-[(1-エチルヘプタデシル)オキシ]エタノール等が好ましい。 As the alcohol represented by the general formula (2), among the above compounds, 2-[(1-methylundecyl)oxy]ethanol, 2-[(1-methyltridecyl)oxy]ethanol, 2-[(1-methylpentadecyl)oxy]ethanol, 2-[(1-methylheptadecyl)oxy]ethanol; 2-[(1-ethylundecyl)oxy]ethanol, 2-[(1-ethyltridecyl)oxy]ethanol, 2-[(1-ethylpentadecyl)oxy]ethanol, 2-[(1-ethylheptadecyl)oxy]ethanol, etc. are preferred.
<エステル化による合成>
 下記の一般式(2)で表される(以下同じ)アルコールと(メタ)アクリル酸をエステル化させることによって、本発明の(メタ)アクリレートを得ることができる。
 この時、通常の(メタ)アクリレート合成時のエステル化のように、(メタ)アクリル酸、トルエン溶媒、酸触媒、重合禁止剤を仕込み、酸素含有ガス存在下のもとトルエン溶媒を還流させながら80℃で反応をさせると、反応開始後直ぐに重合暴走反応が起こることが解った。
 発明者は鋭意検討の結果、この重合暴走反応の要因が一般式(2)の原料アルコールに有ることを見出し、当該エステル化をする際に、其の前処理としてアルコールと重合禁止剤の存在下に加熱処理をした後に(メタ)アクリル酸と酸触媒を添加しエステル化することで重合暴走が抑制できることを見出した。
Synthesis by Esterification
The (meth)acrylate of the present invention can be obtained by esterifying an alcohol represented by the following general formula (2) (hereinafter the same) with (meth)acrylic acid.
At this time, it was found that if (meth)acrylic acid, a toluene solvent, an acid catalyst, and a polymerization inhibitor were charged as in the case of normal esterification in the synthesis of (meth)acrylate, and the reaction was carried out at 80° C. while refluxing the toluene solvent in the presence of an oxygen-containing gas, a runaway polymerization reaction occurred immediately after the start of the reaction.
As a result of extensive investigations, the inventors have found that the cause of this runaway polymerization reaction lies in the raw material alcohol of general formula (2), and have also found that the runaway polymerization can be suppressed by carrying out a pretreatment for the esterification, namely, a heat treatment in the presence of an alcohol and a polymerization inhibitor, and then adding (meth)acrylic acid and an acid catalyst to carry out the esterification.
<熱処理>
加熱処理は、無溶媒でも良いが、溶媒存在下で行うことが可能であり、溶媒は引き続き行うエステル化に用いる溶媒から選ばれることが好ましく、更にはエステル化の場合は水と共沸し、かつ液相では水と2相を形成する溶媒が好ましく、ベンゼン、トルエン、キシレン、ヘキサン、ヘプタン、オクタン、シクロヘキサンであることがより好ましい。
<Heat treatment>
The heat treatment may be performed without a solvent, but can be performed in the presence of a solvent. The solvent is preferably selected from the solvents to be used in the subsequent esterification. In the case of esterification, a solvent that forms an azeotrope with water and forms two liquid phases with water is preferred, and benzene, toluene, xylene, hexane, heptane, octane, and cyclohexane are more preferred.
上記加熱処理は、25℃~100℃の範囲内の温度で行うことが好ましい。また加熱処理は10分から120時間行うことが好ましい。
上記加熱処理を、25℃~100℃の範囲内の温度で10分から120時間行う形態は、本発明の好ましい実施形態の1つである。より好ましくは40℃~90℃の範囲の温度で30分から50時間行うことであり、50℃~80℃の範囲の温度で60分から20時間行うことが更により好ましい。
The heat treatment is preferably carried out at a temperature within a range of 25° C. to 100° C. The heat treatment is preferably carried out for 10 minutes to 120 hours.
In one preferred embodiment of the present invention, the heat treatment is carried out at a temperature in the range of 25° C. to 100° C. for 10 minutes to 120 hours. More preferably, the heat treatment is carried out at a temperature in the range of 40° C. to 90° C. for 30 minutes to 50 hours, and even more preferably, at a temperature in the range of 50° C. to 80° C. for 60 minutes to 20 hours.
上記重合禁止剤としては、例えばヒドロキノン、メトキシヒドロキノン、ベンゾキノン、p-tert-ブチルカテコール等のキノン系重合禁止剤;2,6-ジ-tert-ブチルフェノール、2,4-ジ-tert-ブチルフェノール、2-tert-ブチル-4,6-ジメチルフェノール、2,6-ジ-tert-ブチル-4-メチルフェノール、2,4,6-トリ-tert-ブチルフェノール等のアルキルフェノール系重合禁止剤;アルキル化ジフェニルアミン、N,N′-ジフェニル-p-フェニレンジアミン、フェノチアジン、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、1,4-ジヒドロキシ-2,2,6,6-テトラメチルピペリジン、1-ヒドロキシ-4-ベンゾイリオキシ-2,2,6,6-テトラメチルピペリジン等のアミン系重合禁止剤;2,2,6,6-テトラメチルピペリジン-N-オキシル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル等のN-オキシル系重合禁止剤。これらの中でも、ヒドロキノン、メトキシヒドロキノン、ベンゾキノン、p-tert-ブチルカテコール、フェノチアジン、2,2,6,6-テトラメチルピペリジン-N-オキシル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシルから選ばれる少なくとも1種が好ましく、より好ましくはヒドロキノン、メトキシヒドロキノン、ベンゾキノン、p-tert-ブチルカテコール、フェノチアジン、2,2,6,6-テトラメチルピペリジン-N-オキシル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシルである。
重合禁止剤として、キノン系重合禁止剤、アルキルフェノール系重合禁止剤、アミン系重合禁止剤、N-オキシル系重合禁止剤、フェノチアジンから選ばれる少なくとも1種を用いる形態は本発明の好ましい実施形態の1つである。
Examples of the polymerization inhibitor include quinone-based polymerization inhibitors such as hydroquinone, methoxyhydroquinone, benzoquinone, and p-tert-butylcatechol; alkylphenol-based polymerization inhibitors such as 2,6-di-tert-butylphenol, 2,4-di-tert-butylphenol, 2-tert-butyl-4,6-dimethylphenol, 2,6-di-tert-butyl-4-methylphenol, and 2,4,6-tri-tert-butylphenol; alkylated diphenylamine, N,N'-diphenyl-p-phenylenediamine, phenothiazine, 4-hydroquinone, and the like. amine-based polymerization inhibitors such as 2,2,6,6-tetramethylpiperidine-N-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 1,4-dihydroxy-2,2,6,6-tetramethylpiperidine, and 1-hydroxy-4-benzoyloxy-2,2,6,6-tetramethylpiperidine; N-oxyl-based polymerization inhibitors such as 2,2,6,6-tetramethylpiperidine-N-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, and 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl. Among these, at least one selected from hydroquinone, methoxyhydroquinone, benzoquinone, p-tert-butylcatechol, phenothiazine, 2,2,6,6-tetramethylpiperidine-N-oxyl, and 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl is preferred, and hydroquinone, methoxyhydroquinone, benzoquinone, p-tert-butylcatechol, phenothiazine, 2,2,6,6-tetramethylpiperidine-N-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, and 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl are more preferred.
In one preferred embodiment of the present invention, at least one polymerization inhibitor selected from the group consisting of quinone-based polymerization inhibitors, alkylphenol-based polymerization inhibitors, amine-based polymerization inhibitors, N-oxyl-based polymerization inhibitors, and phenothiazine is used as the polymerization inhibitor.
 使用する重合禁止剤の量は、上記一般式(2)で表されるアルコール100重量%に対して10重量ppm~10重量%であり、好ましくは100重量ppm~5重量%の範囲内であり、より好ましくは200重量ppm~1重量%の範囲内、更により好ましくは500重量ppm~0.5重量%の範囲内にある。
 加熱処理の間に酸素含有ガスを吹き込んでも差し支えない。
The amount of the polymerization inhibitor used is 10 ppm by weight to 10% by weight, preferably 100 ppm by weight to 5% by weight, more preferably 200 ppm by weight to 1% by weight, and even more preferably 500 ppm by weight to 0.5% by weight, based on 100% by weight of the alcohol represented by the above general formula (2).
An oxygen-containing gas may be bubbled in during the heat treatment.
<エステル反応>
 加熱処理後、(メタ)アクリル酸とエステル化触媒を添加し、エステル化を行う。(メタ)アクリル酸の量はアルコールに対し、0.5等量~5等量、好ましくは0.8等量~2等量、より好ましくは1等量~1.5等量である。
当該エステル化触媒としては公知の酸触媒で良く、例えば塩酸、硫酸、リン酸、メタンスルホン酸、パラトルエンスルホン酸、強酸性イオン交換樹脂、リンタンクステン酸などのヘテロポリ酸類、金属酸化物などが一般に用いられているが、好ましくは硫酸、メタンスルホン酸、パラトルエンスルホン酸、強酸性イオン交換樹脂である。
<Esterification reaction>
After the heat treatment, (meth)acrylic acid and an esterification catalyst are added to carry out esterification. The amount of (meth)acrylic acid is 0.5 to 5 equivalents, preferably 0.8 to 2 equivalents, more preferably 1 to 1.5 equivalents, relative to the alcohol.
The esterification catalyst may be a known acid catalyst, and examples of the acid catalysts that are generally used include hydrochloric acid, sulfuric acid, phosphoric acid, methanesulfonic acid, paratoluenesulfonic acid, strongly acidic ion exchange resins, heteropolyacids such as phosphotungstic acid, and metal oxides. Preferred are sulfuric acid, methanesulfonic acid, paratoluenesulfonic acid, and strongly acidic ion exchange resins.
 酸触媒の量は(メタ)アクリル酸に対して0.001モル%~50モル%であり、好ましくは0.01モル%~10モル%であり、より好ましくは0.1モル%~5モル%である。 The amount of the acid catalyst is 0.001 mol% to 50 mol% relative to the (meth)acrylic acid, preferably 0.01 mol% to 10 mol%, and more preferably 0.1 mol% to 5 mol%.
 エステル化反応の際に、更に重合禁止剤を添加しても差し支えない。また、酸素含有ガスを反応液に吹き込んでも差し支えない。 During the esterification reaction, a polymerization inhibitor may be added. Also, an oxygen-containing gas may be blown into the reaction liquid.
 エステル化反応は脱水反応であるため、水と共沸する溶媒の存在下に行い、水を系外に出しながら反応を行うことが好ましい。反応温度は50℃~120℃が好ましい。50℃より下がると反応時間が長くなり、120℃を超えると、重合暴走の可能性が高くなる。
 この反応温度にするために反応系の圧力は適宜加圧操作、減圧操作をすることが好ましい。
Since the esterification reaction is a dehydration reaction, it is preferable to carry out the reaction in the presence of a solvent that forms an azeotrope with water while removing water from the system. The reaction temperature is preferably 50°C to 120°C. If the temperature is lower than 50°C, the reaction time will be longer, and if the temperature exceeds 120°C, the possibility of runaway polymerization increases.
In order to achieve this reaction temperature, it is preferable to appropriately increase or decrease the pressure in the reaction system.
 反応終了後、アルカリ水洗、水洗、乾燥、溶媒除去などの常法に従って精製をすることにより目的の第2級(メタ)アクリレート化合物を得ることができる。他の精製法として蒸留してもよい。 After the reaction is complete, the desired secondary (meth)acrylate compound can be obtained by purifying it using standard methods such as washing with alkaline water, washing with water, drying, and removing the solvent. Distillation may also be used as an alternative purification method.
<エステル交換による合成>
 一般式(2)で表されるアルコールと上記一般式(3)で表される(メタ)アクリル酸エステル(アルキル(メタ)アクリレート)をエステル交換させることによって、本発明の(メタ)アクリレートを得ることができる。 この時、通常の(メタ)アクリレート合成時のエステル交換反応のように、(メタ)アクリレート、溶媒、エステル交換触媒、重合禁止剤を仕込み、酸素含有ガス存在下のもと溶媒を還流させながら80℃で反応をさせると、反応開始後直ぐに重合暴走反応が起こることが解った。
 発明者は鋭意検討の結果、この重合暴走反応の要因が一般式(2)の原料アルコールに有ることを見出し、当該エステル交換反応をする際に、其の前処理としてアルコールと重合禁止剤の存在下に加熱処理をした後にアルキル(メタ)アクリレートとエステル触媒を添加しエステル化することで重合暴走が抑制できることを見出した。
Synthesis by Transesterification
The (meth)acrylate of the present invention can be obtained by transesterifying an alcohol represented by the general formula (2) with a (meth)acrylic acid ester (alkyl (meth)acrylate) represented by the above general formula (3). At this time, it was found that if a (meth)acrylate, a solvent, a transesterification catalyst, and a polymerization inhibitor are charged and the reaction is carried out at 80° C. while refluxing the solvent in the presence of an oxygen-containing gas, as in the transesterification reaction in the synthesis of a normal (meth)acrylate, a runaway polymerization reaction occurs immediately after the start of the reaction.
As a result of extensive investigations, the inventors have found that the cause of this runaway polymerization reaction lies in the raw material alcohol of general formula (2), and have also discovered that the runaway polymerization can be suppressed by carrying out a pretreatment for the transesterification reaction, namely, by carrying out a heat treatment in the presence of an alcohol and a polymerization inhibitor, and then adding an alkyl (meth)acrylate and an ester catalyst to carry out esterification.
<熱処理>
加熱処理は、無溶媒でも良いが、溶媒存在下で行うことが可能であり、溶媒は引き続き行うエステル交換反応に用いる溶媒から選ばれることが好ましい。また、エステル交換反応はアルキル(メタ)アクリレートから副生されるアルキルアルコールを系外に排出させる溶媒が好ましく、ヘキサン、ヘプタン、オクタン、シクロヘキサンなどが好適に使用される。また、アルキル(メタ)アクリレートは副生アルコールと共沸組成をつくるため、溶媒としてアルキル(メタ)アクリレートを用いて系外に排出する方法も採用出来る。
<Heat treatment>
The heat treatment may be performed without a solvent, but can be performed in the presence of a solvent, and the solvent is preferably selected from the solvents used in the subsequent transesterification reaction. In addition, the transesterification reaction is preferably performed using a solvent that discharges the alkyl alcohol by-produced from the alkyl (meth)acrylate out of the system, and hexane, heptane, octane, cyclohexane, etc. are preferably used. In addition, since the alkyl (meth)acrylate forms an azeotropic composition with the by-produced alcohol, a method of discharging it out of the system using the alkyl (meth)acrylate as a solvent can also be adopted.
アルキル(メタ)アクリレートとしては、炭素数1~8の直鎖状、分枝状又は環状のアルキル基等を有する(メタ)アクリレートが挙げられる。これらの中でも、炭素数1~4のアルキル基を有する(メタ)アクリレートが好適に用いられる。
 アルキル(メタ)アクリレートの具体例として、以下の化合物が挙げられる。メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート等の(メタ)アクリル酸低級アルキルエステルである。これらは、単独あるいは混合物として用いることができる。
Examples of the alkyl (meth)acrylate include (meth)acrylates having a linear, branched, or cyclic alkyl group having 1 to 8 carbon atoms. Among these, (meth)acrylates having an alkyl group having 1 to 4 carbon atoms are preferably used.
Specific examples of alkyl (meth)acrylates include the following compounds: (meth)acrylic acid lower alkyl esters such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, and t-butyl (meth)acrylate. These can be used alone or in combination.
上記加熱処理は、10分から120時間行うことが好ましい。また、加熱処理は、25℃~100℃の範囲内の温度で行うことが好ましい。より好ましくは、25℃~100℃の範囲内の温度で10分から120時間行うことであり、40℃~90℃の範囲の温度で30分から50時間行うことが更に好ましく、50℃~80℃の範囲の温度で60分から20時間行うことが更により好ましい。 The heat treatment is preferably carried out for 10 minutes to 120 hours. The heat treatment is also preferably carried out at a temperature in the range of 25°C to 100°C. More preferably, the heat treatment is carried out at a temperature in the range of 25°C to 100°C for 10 minutes to 120 hours, even more preferably at a temperature in the range of 40°C to 90°C for 30 minutes to 50 hours, and even more preferably at a temperature in the range of 50°C to 80°C for 60 minutes to 20 hours.
上記重合禁止剤としては、例えばヒドロキノン、メトキシヒドロキノン、ベンゾキノン、p-tert-ブチルカテコール等のキノン系重合禁止剤;2,6-ジ-tert-ブチルフェノール、2,4-ジ-tert-ブチルフェノール、2-tert-ブチル-4,6-ジメチルフェノール、2,6-ジ-tert-ブチル-4-メチルフェノール、2,4,6-トリ-tert-ブチルフェノール等のアルキルフェノール系重合禁止剤;アルキル化ジフェニルアミン、N,N′-ジフェニル-p-フェニレンジアミン、フェノチアジン、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、1,4-ジヒドロキシ-2,2,6,6-テトラメチルピペリジン、1-ヒドロキシ-4-ベンゾイリオキシ-2,2,6,6-テトラメチルピペリジン等のアミン系重合禁止剤;2,2,6,6-テトラメチルピペリジン-N-オキシル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル等のN-オキシル系重合禁止剤。これらの中でも、ヒドロキノン、メトキシヒドロキノン、ベンゾキノン、p-tert-ブチルカテコール、フェノチアジン、2,2,6,6-テトラメチルピペリジン-N-オキシル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシルから選ばれる少なくとも1種以上が挙げられ、より好ましくはヒドロキノン、メトキシヒドロキノン、ベンゾキノン、p-tert-ブチルカテコール、フェノチアジン、2,2,6,6-テトラメチルピペリジン-N-オキシル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシルである。 The above-mentioned polymerization inhibitors include, for example, quinone-based polymerization inhibitors such as hydroquinone, methoxyhydroquinone, benzoquinone, and p-tert-butylcatechol; alkylphenol-based polymerization inhibitors such as 2,6-di-tert-butylphenol, 2,4-di-tert-butylphenol, 2-tert-butyl-4,6-dimethylphenol, 2,6-di-tert-butyl-4-methylphenol, and 2,4,6-tri-tert-butylphenol; alkylated diphenylamine, N,N'-diphenyl-p-phenylenediamine, phenothiazine, 4-hydro amine-based polymerization inhibitors such as 2,2,6,6-tetramethylpiperidine-N-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 1,4-dihydroxy-2,2,6,6-tetramethylpiperidine, and 1-hydroxy-4-benzoyloxy-2,2,6,6-tetramethylpiperidine; N-oxyl-based polymerization inhibitors such as 2,2,6,6-tetramethylpiperidine-N-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, and 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl. Among these, at least one selected from hydroquinone, methoxyhydroquinone, benzoquinone, p-tert-butylcatechol, phenothiazine, 2,2,6,6-tetramethylpiperidine-N-oxyl, and 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl is preferred, with hydroquinone, methoxyhydroquinone, benzoquinone, p-tert-butylcatechol, phenothiazine, 2,2,6,6-tetramethylpiperidine-N-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, and 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl being more preferred.
使用する重合禁止剤の量は、ポリエチレングリコールモノ高級アルキルエーテル100重量%に対して10重量ppm~10重量%であり、好ましくは100重量ppm~5重量%の範囲内であり、より好ましくは200重量ppm~1重量%の範囲内、更により好ましくは500重量ppm~0.5重量%の範囲内にある。
 加熱処理の間に酸素含有ガスを吹き込んでも差し支えない。
The amount of the polymerization inhibitor used is 10 ppm by weight to 10% by weight, preferably in the range of 100 ppm by weight to 5% by weight, more preferably in the range of 200 ppm by weight to 1% by weight, and even more preferably in the range of 500 ppm by weight to 0.5% by weight, based on 100% by weight of the polyethylene glycol mono-higher alkyl ether.
An oxygen-containing gas may be bubbled in during the heat treatment.
<エステル交換反応>
 加熱処理後、アルキル(メタ)アクリレートとエステル交換触媒を添加し、エステル交換反応を行う。アルキル(メタ)アクリレートとしては、前記述のアルキル(メタ)アクリレートであり、その量はアルコールに対し、0.5等量~5等量、好ましくは0.8等量~2等量、より好ましくは1等量~1.5等量である。アルキル(メタ)アクリレートを副生するアルコールの除外溶剤として使用する場合は更に添加して差し支えない。
<Transesterification reaction>
After the heat treatment, an alkyl (meth)acrylate and an ester exchange catalyst are added to carry out an ester exchange reaction. The alkyl (meth)acrylate is the alkyl (meth)acrylate described above, and the amount is 0.5 to 5 equivalents, preferably 0.8 to 2 equivalents, more preferably 1 to 1.5 equivalents, relative to the alcohol. When the alkyl (meth)acrylate is used as an excluding solvent for the by-produced alcohol, it may be further added.
 当該エステル交換としては公知の触媒を用いてよく、触媒としては特に限定されるわけではないが、具体的には、酸化カルシウム、酸化バリウム、酸化鉛、酸化亜鉛、酸化ジルコニウム等の酸化物;水酸化カリウム、水酸化ナトリウム、水酸化リチウム、水酸化カルシウム、水酸化タリウム、水酸化スズ、水酸化鉛、水酸化ニッケル等の水酸化物;塩化リチウム、塩化カルシウム、塩化スズ、塩化鉛、塩化ジルコニウム、塩化ニッケル等のハロゲン化物;炭酸カリウム、炭酸ルビジウム、炭酸セシウム、炭酸鉛、炭酸亜鉛、炭酸ニッケル等の炭酸塩;炭酸水素カリウム、炭酸水素ルビジウム、炭酸水素セシウム等の炭酸水素塩;リン酸ナトリウム、リン酸カリウム、リン酸ルビジウム、リン酸鉛、リン酸亜鉛、リン酸ニッケル等のリン酸塩;硝酸リチウム、硝酸カルシウム、硝酸鉛、硝酸亜鉛、硝酸ニッケル等の硝酸塩;酢酸リチウム、酢酸カルシウム、酢酸鉛、酢酸亜鉛、酢酸ニッケル等のカルボン酸塩;ナトリウムメトキシド、ナトリウムエトキシド、カリウムメトキシド、カリウムエトキシド、カリウムt-ブトキシド、カルシウムメトキシド、カルシウムエトキシド、バリウムメトキシド、バリウムエトキシド、テトラエトキシチタン、テトラブトキシチタン、テトライソプロポキシチタネート、テトラ(2-エチルヘキサノキシ)チタン等のアルコキシ化合物;リチウムアセチルアセトナート、ジルコニアアセチルアセトナート、亜鉛アセチルアセトナート、ジブトキシスズアセチルアセトナート、ジブトキシチタンアセチルアセトナート等のアセチルアセトナート錯体;テトラメチルアンモニウムメトキシド、テトラメチルアンモニウムt-ブトキシド、トリメチルベンジルアンモニウムエトキシド等の4級アンモニウムアルコキシド;ジメチルスズオキサイド、メチルブチルスズオキサイド、ジブチルスズオキサイド、ジオクチルスズオキサイド等のジアルキルスズ化合物;ビス(ジブチルスズアセテート)オキサイド、ビス(ジブチルスズラウレート)オキサイド等のジスタノキサン;ジブチルスズジアセテート、ジブチルスズジラウレート等のジアルキルスズジカルボン酸塩が挙げられる。これらは、単独でも2種類以上を併用してもよい。これらのエステル交換触媒の中でも、炭酸カリウム、炭酸セシウム、テトラエトキシチタン、テトラブトキシチタン、テトライソプロポキシチタネート、テトラ(2-エチルヘキサノキシ)チタン、ジルコニアアセチルアセトナート、ジブチルスズオキサイド、ジオクチルスズオキサイド、ビス(ジブチルスズアセテート)オキサイド、ビス(ジブチルスズラウレート)オキサイド、ジブチルスズジアセテート、ジブチルスズジラウレートが好適に用いられる。 A known catalyst may be used for the ester exchange, and the catalyst is not particularly limited, but specific examples thereof include oxides such as calcium oxide, barium oxide, lead oxide, zinc oxide, and zirconium oxide; hydroxides such as potassium hydroxide, sodium hydroxide, lithium hydroxide, calcium hydroxide, thallium hydroxide, tin hydroxide, lead hydroxide, and nickel hydroxide; halides such as lithium chloride, calcium chloride, tin chloride, lead chloride, zirconium chloride, and nickel chloride; carbonates such as potassium carbonate, rubidium carbonate, cesium carbonate, lead carbonate, zinc carbonate, and nickel carbonate; hydrogen carbonates such as potassium hydrogen carbonate, rubidium hydrogen carbonate, and cesium hydrogen carbonate; phosphates such as sodium phosphate, potassium phosphate, rubidium phosphate, lead phosphate, zinc phosphate, and nickel phosphate; nitrates such as lithium nitrate, calcium nitrate, lead nitrate, zinc nitrate, and nickel nitrate; carboxylates such as lithium acetate, calcium acetate, lead acetate, zinc acetate, and nickel acetate; sodium methoxide, sodium ethoxide, potassium methoxide, potassium eth ... Examples of the alkoxy compounds include lithium t-butoxide, calcium methoxide, calcium ethoxide, barium methoxide, barium ethoxide, tetraethoxytitanium, tetrabutoxytitanium, tetraisopropoxytitanate, and tetra(2-ethylhexanoxy)titanium; acetylacetonate complexes such as lithium acetylacetonate, zirconia acetylacetonate, zinc acetylacetonate, dibutoxytin acetylacetonate, and dibutoxytitanium acetylacetonate; quaternary ammonium alkoxides such as tetramethylammonium methoxide, tetramethylammonium t-butoxide, and trimethylbenzylammonium ethoxide; dialkyltin compounds such as dimethyltin oxide, methylbutyltin oxide, dibutyltin oxide, and dioctyltin oxide; distannoxanes such as bis(dibutyltin acetate) oxide and bis(dibutyltin laurate) oxide; and dialkyltin dicarboxylates such as dibutyltin diacetate and dibutyltin dilaurate. These may be used alone or in combination of two or more. Among these transesterification catalysts, potassium carbonate, cesium carbonate, tetraethoxytitanium, tetrabutoxytitanium, tetraisopropoxytitanate, tetra(2-ethylhexanoxy)titanium, zirconia acetylacetonate, dibutyltin oxide, dioctyltin oxide, bis(dibutyltin acetate) oxide, bis(dibutyltin laurate) oxide, dibutyltin diacetate, and dibutyltin dilaurate are preferably used.
 上記エステル交換触媒の使用量は、特に限定されるものではないが、具体的には、一般式(2)で表されるアルコールに対して、0.001モル%以上が好ましく、0.005モル%以上がより好ましく、0.01モル%以上が更に好ましく、0.05モル%以上が特に好ましく、20モル%以下が好ましく、15モル%以下がより好ましく、10モル%以下が更に好ましく、5モル%以下が特に好ましい。上記エステル交換触媒使用量の範囲が、収率の点及び経済性の点で好ましい。 The amount of the transesterification catalyst used is not particularly limited, but specifically, relative to the alcohol represented by general formula (2), it is preferably 0.001 mol% or more, more preferably 0.005 mol% or more, even more preferably 0.01 mol% or more, particularly preferably 0.05 mol% or more, preferably 20 mol% or less, more preferably 15 mol% or less, even more preferably 10 mol% or less, and particularly preferably 5 mol% or less. The above range of the transesterification catalyst amount is preferable in terms of yield and economy.
エステル交換反応の際に、更に重合禁止剤を添加しても差し支えない。また、酸素含有ガスを反応液に吹き込んでも差し支えない。 During the ester exchange reaction, a polymerization inhibitor may be added. Also, an oxygen-containing gas may be blown into the reaction liquid.
エステル交換反応はアルコールが副生するため、副生アルコールを系外に除去しながら反応する方法が好ましい。反応温度は50℃~120℃が好ましい。50℃より下がると反応時間が長くなり、120℃を超えると、重合暴走の可能性が高くなる。
 この反応温度にするために反応系の圧力は適宜加圧操作、減圧操作をすることが好ましい。
 反応終了後、酸洗浄、水洗、ろ過、乾燥、溶媒除去などの常法に従って精製をすることにより目的の第2級(メタ)アクリレート化合物を得ることができる。他の精製法として蒸留してもよい。
Since the transesterification reaction produces alcohol as a by-product, it is preferable to carry out the reaction while removing the by-product alcohol from the system. The reaction temperature is preferably 50°C to 120°C. If the temperature is lower than 50°C, the reaction time will be longer, and if the temperature exceeds 120°C, the possibility of runaway polymerization increases.
In order to achieve this reaction temperature, it is preferable to appropriately increase or decrease the pressure in the reaction system.
After the reaction is completed, the target secondary (meth)acrylate compound can be obtained by purifying the product by a conventional method such as acid washing, water washing, filtration, drying, and solvent removal. As another purification method, distillation may be used.
<重合体>
 本発明の(メタ)アクリレートは、一般式(1)で表される(メタ)アクリレートであり、炭素-炭素二重結合を有するため、それを単量体として用いて重合体を得ることが可能である。
 当該重合体は、本発明の(メタ)アクリレート由来の構造単位からなるものでも良いが、その他の構造単位を含むものであっても良い。当該重合体は、例えば本発明の(メタ)アクリレート由来の構造単位を全構造単位に対して0.1~100モル%含むものであって良い。
本発明の(メタ)アクリレート由来の構造単位の割合として好ましくは1~100モル%であり、より好ましくは10~100モル%であり、更に好ましくは20~100モル%であり、一層好ましくは25~100モル%であり、より一層好ましくは30~100モル%であり、更に一層好ましくは50~100モル%であり、特に好ましくは70~100モル%である。
<Polymer>
The (meth)acrylate of the present invention is a (meth)acrylate represented by general formula (1) and has a carbon-carbon double bond, so that it can be used as a monomer to obtain a polymer.
The polymer may be composed of structural units derived from the (meth)acrylate of the present invention, but may also contain other structural units. For example, the polymer may contain 0.1 to 100 mol % of structural units derived from the (meth)acrylate of the present invention based on the total structural units.
The proportion of structural units derived from the (meth)acrylate of the present invention is preferably 1 to 100 mol%, more preferably 10 to 100 mol%, even more preferably 20 to 100 mol%, still more preferably 25 to 100 mol%, still more preferably 30 to 100 mol%, still more preferably 50 to 100 mol%, and particularly preferably 70 to 100 mol%.
共重合可能な単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート等のアルキルアクリレート類、メトキシエチレングリコール(メタ)アクリレート、エトキシエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシプロプレングリコール(メタ)アクリレート、エトキシプロピレングリコール(メタ)アクリレート、メトキシジプロプレングリコール(メタ)アクリレートなどのアルキルポリオキシアルキル(メタ)アクリレート類、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類、アクリル酸、メタクリル酸、マレイン酸、イタコン酸等のカルボキシル基含有モノマー類、グリシジル(メタ)アクリレート等のグリジジル基含有化合物類、2-(ジメチルアミノ)エチル(メタ)アクリレート、2-(ジエチルアミノ)エチル(メタ)アクリレート等のアミノアクリレート類、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の環含有(メタ)アクリレート類、スチレン、α―メチルスチレン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等のケイ素含有モノマー類、塩化ビニル、Rf基(アルキル基の水素原子の2個以上がフッ素原子に置換された基である)を有する(メタ)アクリレート(Rf基は、フッ素原子以外の他のハロゲン原子を含んでいてもよい。他のハロゲン原子としては塩素原子が好ましい。更に、Rf基中の炭素-炭素結合間には、エーテル性の酸素原子またはチオエーテル性の硫黄原子が挿入されていてもよい。)などの1種以上のものが使用出来る。また、共重合可能な単量体としては上記の他に、ポリエーテル脂肪族ウレタンアクリレート、ポリカーボネートウレタンアクリレート、エポキシ(メタ)アクリレートオリゴマー、ポリエステル(メタ)アクリレートオリゴマー、イソボルニル(メタ)アクリレート、エトキシル化トリメチロールプロパントリアクリレート、トリシクロデカンジメタノールジアクリレートも用いることが出来る。 Copolymerizable monomers include alkyl acrylates such as methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, t-butyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, dodecyl (meth)acrylate, hexadecyl (meth)acrylate, and octadecyl (meth)acrylate, methoxyethylene glycol (meth)acrylate, ethoxyethylene glycol (meth)acrylate, and methoxydiethylene glycol (meth)acrylate. acrylate, alkyl polyoxyalkyl (meth)acrylates such as methoxypropylene glycol (meth)acrylate, ethoxypropylene glycol (meth)acrylate, and methoxydipropylene glycol (meth)acrylate; hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate; carboxyl group-containing monomers such as acrylic acid, methacrylic acid, maleic acid, and itaconic acid; glycidyl (meth)acrylate; acrylate and other glycidyl group-containing compounds, aminoacrylates such as 2-(dimethylamino)ethyl (meth)acrylate and 2-(diethylamino)ethyl (meth)acrylate, ring-containing (meth)acrylates such as phenoxyethyl (meth)acrylate and isobornyl (meth)acrylate, styrene, α-methylstyrene, vinyltrimethoxysilane, vinyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, and 3-methacryloxypropyltrimethoxysilane. Silicon-containing monomers such as 3-methacryloxypropylmethyldiethoxysilane and 3-methacryloxypropyltriethoxysilane, vinyl chloride, (meth)acrylates having an Rf group (a group in which two or more hydrogen atoms of an alkyl group are replaced with fluorine atoms) (the Rf group may contain halogen atoms other than fluorine atoms. The other halogen atoms are preferably chlorine atoms. Furthermore, an ether-type oxygen atom or a thioether-type sulfur atom may be inserted between the carbon-carbon bonds in the Rf group.) can be used as one or more of the copolymerizable monomers. In addition to the above, polyether aliphatic urethane acrylate, polycarbonate urethane acrylate, epoxy (meth)acrylate oligomer, polyester (meth)acrylate oligomer, isobornyl (meth)acrylate, ethoxylated trimethylolpropane triacrylate, and tricyclodecane dimethanol diacrylate can also be used as copolymerizable monomers.
 本発明における重合体の重量平均分子量は、静的光散乱法を用いた重量平均分子量として、例えば、1,000~10,000,000であることが望ましい。 The weight average molecular weight of the polymer in the present invention is preferably, for example, 1,000 to 10,000,000 as determined by the static light scattering method.
 本発明における重合体のガラス転移温度は、例えば、-40℃以上であることが望ましい。また、本開示の重合体のガラス転移温度の上限値は、例えば、80℃以下であることが望ましい。
なお、ガラス転移温度は、ポリマーを構成するモノマー成分に使用されているモノマーの単独重合体のガラス転移温度を用いて、
式(I):1/Tg=Σ(Wm/Tgm)/100  (I)
〔式中、Wmは重合体を構成するモノマー成分における単量体mの含有率(質量%)、Tgmはモノマーmの単独重合体のガラス転移温度(絶対温度:K)を示す〕で表されるフォックス(Fox)の式に基づいて求められた温度であってもよい。
The glass transition temperature of the polymer in the present invention is desirably, for example, −40° C. or higher. The upper limit of the glass transition temperature of the polymer of the present disclosure is desirably, for example, 80° C. or lower.
The glass transition temperature is calculated by using the glass transition temperature of a homopolymer of the monomer used in the monomer component constituting the polymer.
Formula (I): 1/Tg = Σ(Wm/Tgm)/100 (I)
In the formula, Wm is the content (mass%) of monomer m in the monomer components constituting the polymer, and Tgm is the glass transition temperature (absolute temperature: K) of a homopolymer of monomer m.
<重合法>
 本発明における重合体を得るための重合は、重合開始剤の存在下で行うことが期待される。
 当該重合開始剤としては、例えば、アゾビスイソブチロニトリル、2,2-アゾビス(2-メチルブチロニトリル)、2,2-アゾビス(2,4-ジメチルバレロニトリル)、2,2-アゾビス(2―ジアミノプロパン)ハイドロクロライド、4,4-アゾビス(4-シアノ吉草酸)、2,2-アゾビス(2-メチルプロピオンアミジン)などのアゾ化合物;過硫酸カリウムなどの過硫酸塩;過酸化水素、ベンゾイルパーオキサイド、パラクロロベンゾイルパーオキサイド、ラウロイルパーオキサイド、過酸化アンモニウムなどの過酸化物などが挙げられる。
 重合開始剤は、1種又は2種以上を組み合わせて使用してもよい。
<Polymerization method>
The polymerization to obtain the polymer of the present invention is expected to be carried out in the presence of a polymerization initiator.
Examples of the polymerization initiator include azo compounds such as azobisisobutyronitrile, 2,2-azobis(2-methylbutyronitrile), 2,2-azobis(2,4-dimethylvaleronitrile), 2,2-azobis(2-diaminopropane)hydrochloride, 4,4-azobis(4-cyanovaleric acid), and 2,2-azobis(2-methylpropionamidine); persulfates such as potassium persulfate; and peroxides such as hydrogen peroxide, benzoyl peroxide, parachlorobenzoyl peroxide, lauroyl peroxide, and ammonium peroxide.
The polymerization initiators may be used alone or in combination of two or more.
 重合開始剤の使用量は、重合開始剤の種類等に応じて適宜設定すればよく、特に限定されないが、単量体成分100質量部に対して、例えば、0.05質量部以上、好ましくは0.1質量部以上等であってよく、例えば、2質量部以下、好ましくは1質量部以下等であってもよい。 The amount of polymerization initiator used may be appropriately set depending on the type of polymerization initiator, etc., and is not particularly limited, but may be, for example, 0.05 parts by mass or more, preferably 0.1 parts by mass or more, and may be, for example, 2 parts by mass or less, preferably 1 part by mass or less, relative to 100 parts by mass of the monomer component.
 上記重合反応においては、反応系内に、連鎖移動剤等の添加剤を含んでいても良い。上記添加剤としては、任意の適切な添加剤を採用し得る。例えば、メルカプトエタノール、チオグリコール酸、二亜硫酸ナトリウム等の添加剤を重合中に添加することができる。 In the above polymerization reaction, additives such as a chain transfer agent may be included in the reaction system. Any appropriate additive may be used as the additive. For example, additives such as mercaptoethanol, thioglycolic acid, and sodium disulfite may be added during polymerization.
 なお、重合反応は、必要に応じて、還元剤(例えば、亜硫酸水素ナトリウム)、重合開始剤の分解剤(例えば、硫酸第一鉄などの遷移金属塩)、連鎖移動剤[例えば、チオール基を有する化合物(例えば、tert-ドデシルメルカプタン)]、pH緩衝剤、キレート剤等の存在下で行ってもよい。 The polymerization reaction may be carried out in the presence of a reducing agent (e.g., sodium hydrogen sulfite), a decomposing agent for the polymerization initiator (e.g., a transition metal salt such as ferrous sulfate), a chain transfer agent [e.g., a compound having a thiol group (e.g., tert-dodecyl mercaptan)], a pH buffer, a chelating agent, etc., as necessary.
<付加重合体>
 本発明における重合体を得るための別の方法として、オレフィンに付加することができる活性水素を有する官能基を持ったポリマーに(メタ)アクリレートを付加する方法も採用出来る。
 例えば、1級または2級アミノ基を分子内に持つ重合体に(メタ)アクリレートを付加させる方法や、分子内にチオール基を持つ重合体に(メタ)アクリレートを付加させる方法、水酸基を分子内に持つ重合体との反応、などが採用出来る。
 活性水素気を持つ重合体は、1種又は2種以上を組み合わせて使用してもよい。
<Addition Polymer>
As an alternative method for obtaining the polymer of the present invention, a method can be employed in which a (meth)acrylate is added to a polymer having a functional group having an active hydrogen capable of being added to an olefin.
For example, a method of adding a (meth)acrylate to a polymer having a primary or secondary amino group in the molecule, a method of adding a (meth)acrylate to a polymer having a thiol group in the molecule, a reaction with a polymer having a hydroxyl group in the molecule, etc. can be used.
The polymers having active hydrogen may be used alone or in combination of two or more kinds.
 活性水素含有重合体に対する(メタ)アクリレートの使用量は、含有する活性水素基の数等に応じて適宜設定すればよく、特に限定されないが、活性水素基当量に対して、(メタ)アクリレートの当量が、例えば、0.1~100当量、好ましくは0.5~80当量であってもよい。 The amount of (meth)acrylate used relative to the active hydrogen-containing polymer may be appropriately set depending on the number of active hydrogen groups contained, and is not particularly limited. However, the amount of (meth)acrylate relative to the active hydrogen group equivalent may be, for example, 0.1 to 100 equivalents, preferably 0.5 to 80 equivalents.
 活性水素基の付加については、いわゆるマイケル付加と言われる反応であり、触媒は使用しなくても良いが、使用しても差し支えない。使用出来る触媒としては公知の触媒が採用出来る。 The addition of active hydrogen groups is a reaction known as Michael addition, and although a catalyst does not have to be used, it is acceptable to use one. Any known catalyst can be used.
<用途A>
 本発明の化合物は、例えば、繊維製品の撥水・撥油剤等として使用することができる。
本発明は本発明の(メタ)アクリレート由来の構造単位を含む重合体を含む撥水・撥油剤でもある。
 撥水・撥油剤の使用形態として、基材に塗布して使用することが可能である。その場合、予め本発明の(メタ)アクリレート化合物をモノマーとして用いてポリマーを合成しておき、当該ポリマーを含有する撥水・撥油剤を塗布することが可能である。その際に、ポリマー鎖にウレタン樹脂やエポキシ樹脂等と反応する官能基、例えば水酸基、カルボキシル基、シラノール基などをもたせておき、架橋を形成させて硬化することで、コーティング層を形成し、該基材に対して撥水・撥油性能が付与されることになる。
上記基材としては特に制限されないが、繊維やフィルム等が挙げられる。
<Application A>
The compound of the present invention can be used, for example, as a water/oil repellent for textile products.
The present invention also relates to a water/oil repellent comprising a polymer containing a structural unit derived from the (meth)acrylate of the present invention.
The water/oil repellent can be used by applying it to a substrate. In this case, a polymer can be synthesized in advance using the (meth)acrylate compound of the present invention as a monomer, and a water/oil repellent containing the polymer can be applied. In this case, a functional group that reacts with urethane resin, epoxy resin, etc., such as a hydroxyl group, a carboxyl group, or a silanol group, is provided to the polymer chain, and crosslinking is formed and cured to form a coating layer, which imparts water/oil repellency to the substrate.
The substrate is not particularly limited, but examples thereof include fibers and films.
本発明は、重合体を基材に付着させる工程を含む、基材に撥水・撥油性を付与する方法でもある。
上記重合体の付着工程は、上記重合体を基材上に塗布することにより行うことが好ましい。
上記基材に撥水・撥油性を付与する方法は、上記重合体の付着工程後に該重合体間に架橋を導入してコーティング層を形成する工程とを含むことが好ましい。
本発明は更に、本発明の(メタ)アクリレート由来の構造単位を含む重合体を基板上に塗布する工程と、該重合体の塗布工程後に、当該ポリマー間に架橋を導入してコーティング層を形成する工程とを含む、撥水・撥油性を有する基材の製造方法でもある。
上記重合体を基板上に塗布する工程は、該重合体を水又は溶剤で希釈した溶液をスプレーで基板上に塗布することが好ましい。
The present invention is also a method for imparting water and oil repellency to a substrate, comprising the step of adhering a polymer to the substrate.
The step of attaching the polymer is preferably carried out by coating the polymer on the substrate.
The method for imparting water and oil repellency to a substrate preferably includes a step of forming a coating layer by introducing crosslinks between the polymers after the polymer adhesion step.
The present invention also relates to a method for producing a water- and oil-repellent substrate, the method comprising the steps of: applying a polymer containing a structural unit derived from the (meth)acrylate of the present invention onto a substrate; and, after the step of applying the polymer, introducing crosslinks between the polymers to form a coating layer.
In the step of applying the polymer onto the substrate, it is preferable to apply a solution of the polymer diluted with water or a solvent onto the substrate by spraying.
<用途B>
 本発明の化合物は、例えば、インキ、塗料、粘着剤、接着剤、UV硬化性樹脂希釈剤撥水・撥油剤等として使用することができ、好ましくは撥水・撥油剤として使用される。
 撥水・撥油剤の使用形態として、基材に塗布して使用することが可能である。その場合、予め本発明の化合物をモノマーとして用いてポリマーを合成しておき、当該ポリマーを含有する撥水・撥油剤を塗布することが可能である。その際に、ポリマー鎖にウレタン樹脂やエポキシ樹脂等と反応する官能基、例えば水酸基、カルボキシル基、シラノール基などをもたせておき、架橋を形成させて硬化することで、コーティング層を形成し、該基材に対して撥水・撥油性能が付与されることになる。
<Application B>
The compound of the present invention can be used, for example, as ink, paint, pressure sensitive adhesive, adhesive, UV curable resin diluent, water/oil repellent, etc., and is preferably used as a water/oil repellent.
The water/oil repellent can be used by applying it to a substrate. In this case, a polymer can be synthesized in advance using the compound of the present invention as a monomer, and a water/oil repellent containing the polymer can be applied. In this case, the polymer chain is provided with a functional group that reacts with urethane resin, epoxy resin, etc., such as a hydroxyl group, a carboxyl group, or a silanol group, and crosslinked to form a coating layer that is cured to impart water/oil repellency to the substrate.
<用途C>
 本発明の化合物は、具体的な製品の観点から見た場合に、電子部品や半導体素子の接着剤もしくは封止材、フィルム又はプリプレグの構成材料の原料、3Dプリンティング用インク、量子ドットインク、UV硬化ラミネート接着剤若しくはUV硬化性ホットメルト接着剤等の接着剤、シーラント等として用いられることが想定されるものである。
<Application C>
From the viewpoint of specific products, the compound of the present invention is expected to be used as an adhesive or sealing material for electronic components or semiconductor elements, a raw material for a constituent material of a film or prepreg, an ink for 3D printing, a quantum dot ink, an adhesive such as a UV-curable lamination adhesive or a UV-curable hot melt adhesive, a sealant, or the like.
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例には限定されない。なお、特に明記しない限り、実施例における部および%は重量基準である。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. Note that, unless otherwise specified, parts and percentages in the examples are by weight.
[合成例1]
 高級第2級アルコールモノエトキシレート前駆体の合成
 1-ドデセンに対してPQ社製BEA型ゼオライト(商品名:VALFOR CP811 BL-25)5質量%を加え、150℃、10時間液相で反応させることにより得られた、ドデセン異性体混合物(1-ドデセン:25mol%、インナードデセン:75mol%からなる)810g(4.82mol)、モノエチレングリコール(MEG)900g(14.52mol)、および触媒としてPQ社製BEA型ゼオライト(商品名:VALFOR CP811 BL-25)100gを、撹拌翼および還流冷却器を備えた3000mlのガラス製反応器に仕込み、気相部を窒素で置換した後、常圧で窒素雰囲気に保持した。次いで、回転数を600rpmとして撹拌しながら、150℃まで昇温後、同温度で3時間反応させた。その後、反応液を室温まで冷却し、上層のドデセン相を分離し、未反応のドデセンを留出した後、減圧度2mmHgで129~131℃(蒸留塔の塔頂部の温度。以下同様)の沸点範囲で第2級ドデカノールモノエトキシレート(アルコール(1))の異性体混合物155gを得た。第2級ドデカノールモノエトキシレート(1)中には、MEGおよびMEGの多量体が0.3質量%含有されていた。第2級ドデカノールモノエトキシレート(アルコール(1))155gをセパラブルフラスコに加え、70℃にて水25gで撹拌羽を用い100rpmで30分撹拌し洗浄した後、水層を分離する作業を3回繰り返し更に脱水して精製第2級ドデカノールモノエトキシレート(アルコール(1))を得た。当該エトキシレート中の(ポリ)エチレングリコールの含有量は、0.02質量%であった。
[Synthesis Example 1]
Synthesis of higher secondary alcohol monoethoxylate precursor 5% by mass of BEA-type zeolite (product name: VALFOR CP811 BL-25) manufactured by PQ Corp. was added to 1-dodecene, and the mixture was reacted in a liquid phase at 150° C. for 10 hours to obtain a dodecene isomer mixture (consisting of 25 mol % of 1-dodecene and 75 mol % of inner dodecene). 810 g (4.82 mol), 900 g (14.52 mol) of monoethylene glycol (MEG), and 100 g of BEA-type zeolite (product name: VALFOR CP811 BL-25) manufactured by PQ Corp. as a catalyst were charged into a 3000 ml glass reactor equipped with a stirring blade and a reflux condenser, and the gas phase was replaced with nitrogen, and then the mixture was maintained in a nitrogen atmosphere at normal pressure. Next, the temperature was raised to 150°C while stirring at a rotation speed of 600 rpm, and the mixture was reacted at the same temperature for 3 hours. Thereafter, the reaction liquid was cooled to room temperature, the upper dodecene phase was separated, and unreacted dodecene was distilled off, and then 155 g of an isomer mixture of secondary dodecanol monoethoxylate (alcohol (1)) was obtained at a boiling point range of 129 to 131°C (temperature at the top of the distillation tower; the same applies below) at a reduced pressure of 2 mmHg. The secondary dodecanol monoethoxylate (1) contained 0.3% by mass of MEG and MEG polymers. 155 g of secondary dodecanol monoethoxylate (alcohol (1)) was added to a separable flask, and the mixture was washed by stirring with 25 g of water at 70°C for 30 minutes at 100 rpm using a stirring blade, and the operation of separating the aqueous layer was repeated three times, and further dehydration was performed to obtain purified secondary dodecanol monoethoxylate (alcohol (1)). The (poly)ethylene glycol content in the ethoxylate was 0.02% by mass.
[合成例2] 
 1-テトラデセンに対してPQ社製BEA型ゼオライト(商品名:VALFOR CP811 BL-25)5質量%を加え、150℃、13時間液相で反応させることにより得られた、テトラデセン異性体混合物(1-テトラデセン:6mol%、2-テトラデセン:15mol%、3-テトラデセン:18mol%、4-テトラデセン:20mol%、5-テトラデセン:17mol%、6,7-テトラデセン:24mol%、からなる)810g(4.13mol)、モノエチレングリコール(MEG)900g(14.52mol)、および触媒としてPQ社製BEA型ゼオライト(商品名:VALFOR CP811 BL-25)100gを、撹拌翼および還流冷却器を備えた3000mlのガラス製反応器に仕込み、気相部を窒素で置換した後、常圧で窒素雰囲気に保持した。次いで、回転数を600rpmとして撹拌しながら、150℃まで昇温後、同温度で3時間反応させた。その後、反応液を室温まで冷却し、上層のテトラデセン相を分離した。このテトラデセン相には第2級テトラデカノールモノエトキシレート(アルコール(2))が103g、MEGおよびMEGの多量体が0.4g含有されていた。このテトラデセン相840gをセパラブルフラスコに200gの水/MeOH=90/10溶液(質量比)で加え60℃にて撹拌羽を用い100rpmで30分撹拌した後、水層を分離する作業を3回繰り返した。その後、油層を蒸留した。未反応のテトラデセンを留出した後、減圧度5mmHgで170~174℃の沸点範囲で精製第2級テトラデカノールモノエトキシレート(アルコール(2))の異性体混合物102gを得た。当該エトキシレート中の(ポリ)エチレングリコールの含有量は、0.03質量%であった。
[Synthesis Example 2]
810 g (4.13 mol) of a tetradecene isomer mixture (consisting of 1-tetradecene: 6 mol%, 2-tetradecene: 15 mol%, 3-tetradecene: 18 mol%, 4-tetradecene: 20 mol%, 5-tetradecene: 17 mol%, and 6,7-tetradecene: 24 mol%) obtained by adding 5 mass% of BEA-type zeolite (trade name: VALFOR CP811 BL-25) manufactured by PQ Corporation to 1-tetradecene and reacting in a liquid phase at 150° C. for 13 hours, 900 g (14.52 mol) of monoethylene glycol (MEG), and BEA-type zeolite (trade name: VALFOR CP811 BL-25) manufactured by PQ Corporation as a catalyst were added. BL-25) 100g was charged into a 3000ml glass reactor equipped with a stirring blade and a reflux condenser, the gas phase was replaced with nitrogen, and then the mixture was maintained in a nitrogen atmosphere at normal pressure. Next, the temperature was raised to 150°C while stirring at a rotation speed of 600 rpm, and the mixture was reacted at the same temperature for 3 hours. Thereafter, the reaction liquid was cooled to room temperature, and the upper tetradecene phase was separated. This tetradecene phase contained 103g of secondary tetradecanol monoethoxylate (alcohol (2)), 0.4g of MEG and MEG polymers. 840g of this tetradecene phase was added to a separable flask as 200g of a water/MeOH=90/10 solution (mass ratio), and the mixture was stirred at 60°C for 30 minutes at 100 rpm using a stirring blade, and the operation of separating the aqueous layer was repeated three times. Then, the oil layer was distilled. After distilling off unreacted tetradecene, 102 g of a purified isomer mixture of secondary tetradecanol monoethoxylate (alcohol (2)) was obtained at a reduced pressure of 5 mmHg and a boiling point range of 170 to 174° C. The content of (poly)ethylene glycol in the ethoxylate was 0.03% by mass.
[合成例3]
 1-ヘキサデセンに対してPQ社製BEA型ゼオライト(商品名:VALFOR CP811 BL-25)5質量%を加え、150℃、13時間液相で反応させることにより得られた、ヘキサデセン異性体混合物(1-ヘキサデセン:6mol%、2-ヘキサデセン:15mol%、3-ヘキサデセン:18mol%、4-ヘキサデセン:20mol%、5-ヘキサデセン:17mol%、6,7-ヘキサデセン:24mol%、からなる)930g(4.14mol)、モノエチレングリコール(MEG)900g(14.52mol)、および触媒としてPQ社製BEA型ゼオライト(商品名:VALFOR CP811 BL-25)100gを、撹拌翼および還流冷却器を備えた3000mlのガラス製反応器に仕込み、気相部を窒素で置換した後、常圧で窒素雰囲気に保持した。次いで、回転数を600rpmとして撹拌しながら、150℃まで昇温後、同温度で3時間反応させた。その後、反応液を室温まで冷却し、上層のヘキサデセン相を分離した。このヘキサデセン相には第2級ヘキサデカノールモノエトキシレート(アルコール(3))が109.8g、MEGおよびMEGの多量体が0.4g含有されていた。このヘキサデセン相840gをセパラブルフラスコに200gの水/MeOH=90/10溶液(質量比)で加え60℃にて撹拌羽を用い100rpmで30分撹拌した後、水層を分離する作業を3回繰り返した。その後、油層を蒸留した。未反応のテトラデセンを留出した後、減圧度1mmHgで165~169℃(蒸留塔の塔頂部の温度。以下同様)の沸点範囲で精製第2級ヘキサデカノールモノエトキシレート(アルコール(3))の異性体混合物108gを得た。当該エトキシレート中の(ポリ)エチレングリコールの含有量は、0.03質量%であった。
[Synthesis Example 3]
930 g (4.14 mol) of a hexadecene isomer mixture (consisting of 1-hexadecene: 6 mol%, 2-hexadecene: 15 mol%, 3-hexadecene: 18 mol%, 4-hexadecene: 20 mol%, 5-hexadecene: 17 mol%, and 6,7-hexadecene: 24 mol%) obtained by adding 5 mass% of BEA-type zeolite (product name: VALFOR CP811 BL-25) manufactured by PQ Corporation to 1-hexadecene and reacting in a liquid phase at 150° C. for 13 hours, 900 g (14.52 mol) of monoethylene glycol (MEG), and BEA-type zeolite (product name: VALFOR CP811 BL-25) manufactured by PQ Corporation as a catalyst were added. BL-25) 100g was charged into a 3000ml glass reactor equipped with a stirring blade and a reflux condenser, the gas phase was replaced with nitrogen, and then the mixture was maintained in a nitrogen atmosphere at normal pressure. Next, the temperature was raised to 150°C while stirring at a rotation speed of 600 rpm, and the mixture was reacted at the same temperature for 3 hours. Thereafter, the reaction liquid was cooled to room temperature, and the upper hexadecene phase was separated. This hexadecene phase contained 109.8g of secondary hexadecanol monoethoxylate (alcohol (3)), 0.4g of MEG and MEG polymers. 840g of this hexadecene phase was added to a separable flask in 200g of water/MeOH = 90/10 solution (mass ratio), and the mixture was stirred at 60°C for 30 minutes at 100 rpm using a stirring blade, and the operation of separating the aqueous layer was repeated three times. Then, the oil layer was distilled. After distilling off unreacted tetradecene, 108 g of a purified secondary hexadecanol monoethoxylate (alcohol (3)) was obtained at a reduced pressure of 1 mmHg and a boiling point range of 165 to 169°C (temperature at the top of the distillation column; the same applies below). The content of (poly)ethylene glycol in the ethoxylate was 0.03% by mass.
[実施例1]
<アクリル酸による直接エステル化>
 温度計、撹拌機、冷却管、ガス吹き込み管を備えた4つ口フラスコに、合成例1で合成したアルコール(1)139g(0.60モル)、有機溶媒としてトルエン100g、重合禁止剤としてフェノチアジン0.14g(アルコールに対し1000重量ppm)80℃で4時間加熱処理をした。
 この液にアクリル酸65.3g(0.91モル)、酸触媒としてメタンスルホン酸5.3gを仕込み、7%酸素/窒素のガスを吹込みながら350mmHgの条件でトルエンを還流しながら、縮合水を除去してエステル化反応を行った。
 発生した縮合水は10.8gであった。反応液を分液ロートに移し、4%水酸化ナトリウム水溶液100gを入れて2回洗浄を行い、更に水100gで水洗を2回行った。上層の有機層を温度計、撹拌機、冷却管、ガス吹き込み管を備えた4つ口フラスコに移し、7%酸素/窒素のガスを吹込みながら減圧下に加熱してトルエンを留去して、製品(2-[(1-メチルウンデシル)オキシ]エチルアクリレート異性体混合物)159gを得た。この製品のアクリレート化物の純度は98%であり、未反応アルコールが含有されていた。
 この製品を-20℃の保冷庫に70時間保管したが、結晶の析出は見られなかった。
 当該製品についてH-NMRを測定し、其のNMRチャートを図1に示す。
[Example 1]
<Direct esterification with acrylic acid>
Into a four-neck flask equipped with a thermometer, a stirrer, a condenser, and a gas inlet tube, 139 g (0.60 mol) of the alcohol (1) synthesized in Synthesis Example 1, 100 g of toluene as an organic solvent, and 0.14 g of phenothiazine (1000 ppm by weight relative to the alcohol) as a polymerization inhibitor were heated at 80° C. for 4 hours.
To this liquid, 65.3 g (0.91 mol) of acrylic acid and 5.3 g of methanesulfonic acid as an acid catalyst were added, and esterification reaction was carried out by removing condensed water while refluxing toluene at 350 mmHg while blowing in 7% oxygen/nitrogen gas.
The amount of water of condensation generated was 10.8 g. The reaction solution was transferred to a separating funnel and washed twice with 100 g of a 4% aqueous sodium hydroxide solution, and further washed twice with 100 g of water. The upper organic layer was transferred to a four-necked flask equipped with a thermometer, a stirrer, a cooling tube, and a gas inlet tube, and heated under reduced pressure while blowing in 7% oxygen/nitrogen gas to distill off the toluene, obtaining 159 g of a product (2-[(1-methylundecyl)oxy]ethyl acrylate isomer mixture). The purity of this acrylate product was 98%, and it contained unreacted alcohol.
This product was stored in a refrigerator at -20°C for 70 hours, but no crystal precipitation was observed.
The H-NMR of the product was measured, and the NMR chart is shown in FIG.
[比較例1]
 実施例1に記載の製法に対して、80℃4時間の熱処理をせずに一括でフラスコに仕込みエステル化反応を行ったところ、約1時間経過した段階で、アクリル酸の重合物の生成が見られた。
[Comparative Example 1]
In the production method described in Example 1, the contents were charged into a flask all at once and the esterification reaction was carried out without the heat treatment at 80° C. for 4 hours. After about 1 hour, the formation of a polymer of acrylic acid was observed.
[実施例2]
<アクリル酸メチルによるエステル交換反応>
 撹拌機、温度計および分溜塔を備えたフラスコに合成例2で合成したアルコール(2)164g(0.63モル)および重合禁止剤として4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル0.16g(アルコールに対し1000重量ppm)を仕込み、撹拌しながら80℃で4時間加熱した。
 この液にメチルアクリレート273g(3.17モル)、触媒としてテトライソプロポキシチタネート9.0gを仕込み、撹拌しながら加熱した。還流開始後、分溜塔よりメタノール、アクリル酸メチルの混合物を抜きながら、抜いた液と同量のメチルアクリレートを添加し、反応を行い、製品(2-[(1-メチルトリデシル)オキシ]エチルアクリレート)異性体混合物189gを得た。反応液の分析を行ったところ、2-[(1-メチルトリデシル)オキシ]エタノールの該製品への転化率は95モル%であった。
この製品を-20℃の保冷庫に70時間保管したが、結晶の析出は見られなかった。
[Example 2]
<Transesterification reaction with methyl acrylate>
Into a flask equipped with a stirrer, a thermometer, and a fractionating column, 164 g (0.63 mol) of the alcohol (2) synthesized in Synthesis Example 2 and 0.16 g (1000 ppm by weight relative to the alcohol) of 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl as a polymerization inhibitor were charged, and the mixture was heated at 80° C. for 4 hours with stirring.
To this liquid, 273 g (3.17 mol) of methyl acrylate and 9.0 g of tetraisopropoxy titanate as a catalyst were charged and heated with stirring. After refluxing was started, a mixture of methanol and methyl acrylate was removed from the fractionating column while an equal amount of methyl acrylate was added to the removed liquid to carry out a reaction, thereby obtaining 189 g of a product (2-[(1-methyltridecyl)oxy]ethyl acrylate) isomer mixture. Analysis of the reaction liquid showed that the conversion rate of 2-[(1-methyltridecyl)oxy]ethanol to the product was 95 mol%.
This product was stored in a refrigerator at -20°C for 70 hours, but no crystal precipitation was observed.
[比較例2]
 実施例2に記載の製法に対して、80℃4時間の熱処理をせずに一括でフラスコに仕込みエステル交換反応を行ったところ、約1時間経過した段階で、反応液の増粘が見られ、アクリル酸メチルの重合物が生成していた。
[Comparative Example 2]
In the production method described in Example 2, the contents were charged into a flask all at once to carry out the transesterification reaction without the heat treatment at 80° C. for 4 hours. After about 1 hour, the reaction liquid was found to have thickened, and a polymer of methyl acrylate was formed.
[実施例3]
 温度計、撹拌機、冷却管、ガス吹き込み管を備えた4つ口フラスコに、合成例3で合成したアルコール(3)164g(0.57モル)、有機溶媒としてトルエン100g、重合禁止剤としてフェノチアジン0.82g(アルコールに対し5000重量ppm)を仕込み攪拌しながら40℃で80時間加熱処理をした。
 この液にアクリル酸68.2g(0.95モル)、酸触媒としてメタンスルホン酸5.5gを仕込み、7%酸素/窒素のガスを吹込みながら350mmHgの条件でトルエンを還流しながら、縮合水を除去してエステル化反応を行った。
 発生した縮合水は11gであった。反応液を分液ロートに移し、4%水酸化ナトリウム水溶液100gを入れて2回洗浄を行い、更に水100gで水洗を2回行った。上層の有機層を温度計、撹拌機、冷却管、ガス吹き込み管を備えた4つ口フラスコに移し、7%酸素/窒素のガスを吹込みながら減圧下に加熱してトルエンを留去して、製品(2-[(1-メチルペンタデシル)オキシ]エチルアクリレート)異性体混合物190gを得た。この製品のアクリレート化物の純度は96%であり、未反応アルコールが含有されていた。
 尚、この製品を-20℃の保冷庫に10時間保管すると結晶化したが、-5℃では結晶の析出は見られなかった。
 上記の実施例1~3に記載の製法によって本発明の化合物を得ることが可能であることが示された。
[Example 3]
Into a four-neck flask equipped with a thermometer, a stirrer, a cooling tube, and a gas inlet tube, 164 g (0.57 mol) of the alcohol (3) synthesized in Synthesis Example 3, 100 g of toluene as an organic solvent, and 0.82 g of phenothiazine (5,000 ppm by weight relative to the alcohol) as a polymerization inhibitor were charged, and the mixture was heated at 40° C. for 80 hours with stirring.
To this liquid, 68.2 g (0.95 mol) of acrylic acid and 5.5 g of methanesulfonic acid as an acid catalyst were added, and esterification reaction was carried out by removing condensed water while refluxing toluene at 350 mmHg while blowing in 7% oxygen/nitrogen gas.
The amount of condensed water generated was 11 g. The reaction liquid was transferred to a separating funnel and washed twice with 100 g of a 4% aqueous sodium hydroxide solution, and further washed twice with 100 g of water. The upper organic layer was transferred to a four-necked flask equipped with a thermometer, a stirrer, a cooling tube, and a gas inlet tube, and heated under reduced pressure while blowing in 7% oxygen/nitrogen gas to distill off the toluene, obtaining 190 g of a product (2-[(1-methylpentadecyl)oxy]ethyl acrylate) isomer mixture. The purity of this acrylate product was 96%, and it contained unreacted alcohol.
When this product was stored in a refrigerator at -20°C for 10 hours, it crystallized, but no crystal precipitation was observed at -5°C.
It has been shown that it is possible to obtain the compounds of the present invention by the processes described in Examples 1 to 3 above.
[実施例4]
 温度計、撹拌機、冷却管、ガス吹き込み管を備えた4つ口フラスコに、実施例3で合成した(メタ)アクリレート20g、有機溶媒としてジオキサン100g、重合開始剤としてV-65(富士フイルム和光純薬社製)0.4gを添加し70℃で重合を行った。2時間重合後、反応液は増粘しており、重合物の生成を確認した。生成した重合物をNMR測定したが、重合していない成分を2%含有している重合体であった。
[Example 4]
20 g of the (meth)acrylate synthesized in Example 3, 100 g of dioxane as an organic solvent, and 0.4 g of V-65 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) as a polymerization initiator were added to a four-neck flask equipped with a thermometer, a stirrer, a cooling tube, and a gas inlet tube, and polymerization was carried out at 70° C. After polymerization for 2 hours, the reaction solution had become viscous, and the production of a polymer was confirmed. The produced polymer was subjected to NMR measurement, and it was found to contain 2% of unpolymerized components.
[実施例5]
撹拌機、温度計、還流冷却器及び窒素導入管を備えた反応装置に、実施例4で合成したアクリレート20部を加熱溶融し、ノニオン性界面活性剤(商品名「ノイゲンES-149D」、第一工業製薬(株)製)1部と温水(60℃)63部とを混合し、高圧乳化機を使用して乳化することにより不揮発分濃度25%の水分散液(エマルジョン)を調製した。
 この水分散液を20部にポリエチレンイミン(商品名「エポミン(登録商標)HM-2000」、(株)日本触媒製、数平均分子量30,000)5部とを混合し、不揮発分濃度25%の水分散液(撥水剤組成物)を調製した。
 この撥水剤組成物を水で25倍に希釈し、ポリエステル織物(ポリエステルトロピカル帝人(株)製)を浸漬処理した後、該撥水性組成物が付着したポリエステル織物を乾燥機にて180℃、5分間乾燥させ、撥水性繊維を得た。なお、ポリエステル織物に対する撥水性組成物の付着量は、1.3g/mであった。
 得られた繊維をJIS L 1092(2009)のスプレー法に準じてシャワー水温を20℃として試験をした。結果は目視にて評価したところ表面に一部付着湿潤が有ったがその他は付着していなかった。
[Example 5]
In a reaction apparatus equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen inlet tube, 20 parts of the acrylate synthesized in Example 4 was heated and melted, and 1 part of a nonionic surfactant (product name "Noigen ES-149D", manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) and 63 parts of warm water (60°C) were mixed and emulsified using a high-pressure emulsifier to prepare an aqueous dispersion (emulsion) with a nonvolatile content of 25%.
20 parts of this aqueous dispersion was mixed with 5 parts of polyethyleneimine (product name "Epomin (registered trademark) HM-2000", manufactured by Nippon Shokubai Co., Ltd., number average molecular weight 30,000) to prepare an aqueous dispersion (water repellent composition) having a non-volatile content of 25%.
The water repellent composition was diluted 25 times with water, and a polyester fabric (Polyester Tropical, manufactured by Teijin Co., Ltd.) was immersed in the diluted water repellent composition. The polyester fabric to which the water repellent composition was applied was dried in a dryer at 180°C for 5 minutes to obtain a water repellent fiber. The amount of the water repellent composition applied to the polyester fabric was 1.3 g/ m2 .
The obtained fiber was tested according to the spray method of JIS L 1092 (2009) at a shower water temperature of 20° C. The results were evaluated visually and showed that some adhesion and wetness was present on the surface, but other areas were not.
[参考例1]
実施例4で合成したアクリレート20部に替えて、ステアリルアクリレート20部を用いた以外は実施例5と同様に操作を行い、参考ポリエステル繊維を得た。
 得られた繊維をJIS L 1092(2009)のスプレー法に準じてシャワー水温を20℃として試験をした。結果は目視にて評価したところ表面は湿潤し、水滴は見られなかった。
[Reference Example 1]
The same procedure as in Example 5 was carried out except that 20 parts of stearyl acrylate was used in place of 20 parts of the acrylate synthesized in Example 4, to obtain a reference polyester fiber.
The obtained fiber was tested according to the spray method of JIS L 1092 (2009) with shower water at a temperature of 20° C. The results were evaluated visually, and the surface was wetted, but no water droplets were observed.
 上記の実施例5の評価によって本発明の(メタ)アクリレートは撥水性の効果を有することが示された。 The evaluation of Example 5 above demonstrated that the (meth)acrylate of the present invention has a water-repellent effect.

Claims (11)

  1.  下記一般式(1)で表される(メタ)アクリレートの異性体を2種類以上含む組成物であって、Rがメチル基である同異性体(A)と、Rが炭素数2以上のアルキル基である同異性体(B)とを含有する、(メタ)アクリレート含有組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素原子又はメチル基を表す。RおよびRはアルキル基であり、RとRとの合計炭素数は6~22である。nは1~3の数である。)
    A (meth)acrylate-containing composition comprising two or more isomers of a (meth)acrylate represented by the following general formula (1), the composition comprising isomer (A) in which R2 is a methyl group and isomer (B) in which R2 is an alkyl group having two or more carbon atoms:
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R1 represents a hydrogen atom or a methyl group. R2 and R3 represent alkyl groups, and the total number of carbon atoms of R2 and R3 is 6 to 22. n is a number from 1 to 3.)
  2. 請求項1に記載の(メタ)アクリレート含有組成物を製造する方法であって、
    該製造方法は、下記一般式(2)で表されるアルコールと重合禁止剤とを含む混合物を加熱処理する工程と、
    該加熱処理工程により得られた一般式(2)で表されるアルコールを含む組成物に(メタ)アクリル酸とエステル化触媒を添加してエステル化反応を行う工程とを含む、
    (メタ)アクリレート含有組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式中、RおよびRはアルキル基であり、RとRの合計炭素数は6~22である。nは1~3の数である。)
    10. A method for producing the (meth)acrylate-containing composition of claim 1, comprising:
    The production method includes a step of heat-treating a mixture containing an alcohol represented by the following general formula (2) and a polymerization inhibitor,
    and adding (meth)acrylic acid and an esterification catalyst to the composition containing the alcohol represented by general formula (2) obtained by the heat treatment step, thereby carrying out an esterification reaction.
    A method for producing a (meth)acrylate-containing composition.
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R2 and R3 are alkyl groups, the total number of carbon atoms of R2 and R3 is 6 to 22, and n is a number from 1 to 3.)
  3. 請求項1に記載の(メタ)アクリレート含有組成物を製造する方法であって、
    該製造方法は、下記一般式(2)で表されるアルコールと重合禁止剤とを含む混合物を加熱処理する工程と、
    該加熱処理工程により得られた一般式(2)で表されるアルコールを含む組成物に下記一般式(3)で表される(メタ)アクリル酸エステルとエステル交換触媒を添加してエステル交換反応を行う工程とを含む、
    (メタ)アクリレート含有組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000003
         
    (式中、RおよびRはアルキル基であり、RとRの合計炭素数は6~22である。nは1~3の数である。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは水素原子、またはメチル基を表す。Rは炭素数1~8のアルキル基を表す。)
    10. A method for producing the (meth)acrylate-containing composition of claim 1, comprising:
    The production method includes a step of heat-treating a mixture containing an alcohol represented by the following general formula (2) and a polymerization inhibitor,
    and adding a (meth)acrylic acid ester represented by the following general formula (3) and an ester exchange catalyst to the composition containing the alcohol represented by the general formula (2) obtained by the heat treatment step to carry out an ester exchange reaction.
    A method for producing a (meth)acrylate-containing composition.
    Figure JPOXMLDOC01-appb-C000003

    (In the formula, R2 and R3 are alkyl groups, the total number of carbon atoms of R2 and R3 is 6 to 22, and n is a number from 1 to 3.)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, R1 represents a hydrogen atom or a methyl group, and R4 represents an alkyl group having 1 to 8 carbon atoms.)
  4.  上記加熱処理は、キノン系重合禁止剤、アルキルフェノール系重合禁止剤、アミン系重合禁止剤、N-オキシル系重合禁止剤、フェノチアジンから選ばれる少なくとも1種の重合禁止剤を用いることを特徴とする、請求項2又は3に記載の製造方法。 The manufacturing method according to claim 2 or 3, characterized in that the heat treatment uses at least one polymerization inhibitor selected from the group consisting of quinone-based polymerization inhibitors, alkylphenol-based polymerization inhibitors, amine-based polymerization inhibitors, N-oxyl-based polymerization inhibitors, and phenothiazine.
  5.  上記加熱処理は、25℃~100℃の範囲内の温度で行うことを特徴とする、請求項2~4のいずれかに記載の(メタ)アクリレートの製造方法。 The method for producing a (meth)acrylate according to any one of claims 2 to 4, characterized in that the heat treatment is carried out at a temperature within the range of 25°C to 100°C.
  6.  上記加熱処理は、10分から120時間行うことを特徴とする、請求項2~5のいずれかに記載の(メタ)アクリレートの製造方法。 The method for producing a (meth)acrylate according to any one of claims 2 to 5, characterized in that the heat treatment is carried out for 10 minutes to 120 hours.
  7.  上記重合禁止剤の量は、上記一般式(2)で表されるアルコール100重量%に対して、10重量ppm~10重量%の範囲内にあることを特徴とする、請求項2~6のいずれかに記載の製造方法。 The method of any one of claims 2 to 6, characterized in that the amount of the polymerization inhibitor is in the range of 10 ppm by weight to 10% by weight relative to 100% by weight of the alcohol represented by the general formula (2).
  8.  下記一般式(1)で表される(メタ)アクリレート由来の構造単位を含む重合体。
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rは水素原子又はメチル基を表す。RおよびRはアルキル基であり、RとRとの合計炭素数は6~22である。nは1~3の数である。)
    A polymer containing a structural unit derived from a (meth)acrylate represented by the following general formula (1):
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, R1 represents a hydrogen atom or a methyl group. R2 and R3 represent alkyl groups, and the total number of carbon atoms of R2 and R3 is 6 to 22. n is a number from 1 to 3.)
  9.  請求項8に記載の重合体を含有する、撥水・撥油剤。 A water/oil repellent containing the polymer described in claim 8.
  10.  請求項8に記載の重合体を基材に付着させる工程を含む、基材に撥水・撥油性を付与する方法。 A method for imparting water and oil repellency to a substrate, comprising a step of adhering the polymer described in claim 8 to the substrate.
  11.  前記重合体の付着工程は、前記重合体を基材上に塗布することにより行い、該重合体の付着工程後に該重合体間に架橋を導入してコーティング層を形成する工程とを含む、請求項10に記載の基材に撥水・撥油性を付与する方法。

     
    The method for imparting water and oil repellency to a substrate according to claim 10, comprising: a step of forming a coating layer by introducing crosslinks between the polymers after the polymer adhering step, the step of adhering the polymer to the substrate by coating the polymer on the substrate.

PCT/JP2023/038309 2022-10-24 2023-10-24 (meth)acrylate-containing composition WO2024090423A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022170124 2022-10-24
JP2022-170124 2022-10-24

Publications (1)

Publication Number Publication Date
WO2024090423A1 true WO2024090423A1 (en) 2024-05-02

Family

ID=90830947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038309 WO2024090423A1 (en) 2022-10-24 2023-10-24 (meth)acrylate-containing composition

Country Status (1)

Country Link
WO (1) WO2024090423A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064386A1 (en) * 1998-06-05 1999-12-16 Nippon Shokubai Co., Ltd. (poly)alkylene glycol higher-alkyl ether derivative composition, and detergent, lubricant, and external-use skin preparation each containing the same
JP2011513275A (en) * 2008-02-27 2011-04-28 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing (meth) acrylate of C10-alcohol mixture
WO2015076347A1 (en) * 2013-11-22 2015-05-28 ダイキン工業株式会社 Aqueous emulsion surface treatment agent
WO2021049492A1 (en) * 2019-09-09 2021-03-18 株式会社日本触媒 Higher secondary alcohol alkoxylate precursor, higher secondary alcohol alkoxylate adduct, and higher secondary alkyl ether sulfuric acid ester salt, and production methods therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064386A1 (en) * 1998-06-05 1999-12-16 Nippon Shokubai Co., Ltd. (poly)alkylene glycol higher-alkyl ether derivative composition, and detergent, lubricant, and external-use skin preparation each containing the same
JP2011513275A (en) * 2008-02-27 2011-04-28 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing (meth) acrylate of C10-alcohol mixture
WO2015076347A1 (en) * 2013-11-22 2015-05-28 ダイキン工業株式会社 Aqueous emulsion surface treatment agent
WO2021049492A1 (en) * 2019-09-09 2021-03-18 株式会社日本触媒 Higher secondary alcohol alkoxylate precursor, higher secondary alcohol alkoxylate adduct, and higher secondary alkyl ether sulfuric acid ester salt, and production methods therefor

Similar Documents

Publication Publication Date Title
JP5270510B2 (en) Cyclic (meth) acrylate compound, method for producing the same, and resin composition
JP5993582B2 (en) Reactive composition comprising alkylene oxide-modified dipentaerythritol acrylate
JP2546124B2 (en) Method for producing polyfunctional (meth) acrylate
WO2024090423A1 (en) (meth)acrylate-containing composition
JP2764324B2 (en) Method for producing polycarbonate acrylate resin or polycarbonate methacrylate resin
JP2004059435A (en) Method for producing dioxolane compound
WO2020218365A1 (en) Curable composition
JP5885459B2 (en) Method for producing water-insoluble ionic vinyl monomer, and antistatic agent and antistatic composition comprising the same
CN112585113A (en) Method for purifying fluorine-containing polymerizable monomer by distillation
JP2012236805A (en) Method for producing (meth)acrylic ester
JP2007084783A (en) Curable composition and cured product
JP7119773B2 (en) Curable composition
JP2001172336A (en) Activated energy ray-curing type resin composition
JP4253977B2 (en) Active energy ray-curable composition
JP7348594B2 (en) Method for producing curable composition
JPH06234699A (en) Production of @(3754/24)meth)acrylic acid esters
JP2021105170A (en) Active energy ray-curable composition and method for producing the same
JPH069496A (en) Production of @(3754/24)meth)acrylic acid esters
JP2010132817A (en) Carbazole group-containing (meth)acrylate and production method of the same
US5420341A (en) Hindered-hydroxyl functional (meth)acrylate compounds and processes for the preparation thereof
EP0909752B1 (en) Di(meth)acrylates
WO2021187381A1 (en) Curable composition
TW201022141A (en) Hydroxyl-functionalized peroxides, their preparation, and their use
JP3312806B2 (en) Method for producing tetrahydrobenzyl (meth) acrylate
JPH0615599B2 (en) Compositions containing reactive monomers derived from lactones