WO2024090337A1 - (メタ)アクリロキシ基を有する有機ケイ素化合物の製造方法およびアクリロキシ基を有する有機ケイ素化合物 - Google Patents

(メタ)アクリロキシ基を有する有機ケイ素化合物の製造方法およびアクリロキシ基を有する有機ケイ素化合物 Download PDF

Info

Publication number
WO2024090337A1
WO2024090337A1 PCT/JP2023/037969 JP2023037969W WO2024090337A1 WO 2024090337 A1 WO2024090337 A1 WO 2024090337A1 JP 2023037969 W JP2023037969 W JP 2023037969W WO 2024090337 A1 WO2024090337 A1 WO 2024090337A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
group
acryloxy
meth
benzene
Prior art date
Application number
PCT/JP2023/037969
Other languages
English (en)
French (fr)
Inventor
雅人 川上
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2024090337A1 publication Critical patent/WO2024090337A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides

Definitions

  • the present invention relates to a method for producing an organosilicon compound having a (meth)acryloxy group and to an organosilicon compound having an acryloxy group.
  • An organosilicon compound having a hydrolyzable silyl group and an organic group can bond organic and inorganic materials that are normally difficult to bond together by forming a silanol group, which is generated by hydrolysis of the hydrolyzable silyl group, with a hydroxyl group on the surface of the inorganic material, and further reacting with the organic group, thereby providing the organic-inorganic composite material with properties such as heat resistance, water resistance, weather resistance, improved mechanical strength, adhesion, dispersibility, hydrophobicity, and rust resistance.
  • the organosilicon compounds are used in a wide range of fields and applications, such as silane coupling agents, resin additives, surface treatment agents, fiber treatment agents, adhesives, paint additives, and polymer modifiers.
  • organosilicon compounds having a (meth)acryloxy group are useful compounds as radical polymerizable monomers for obtaining silicon-containing polymers, since the (meth)acryloxy group, which is a polymerizable functional group, copolymerizes with various radical polymerizable monomers.
  • organosilicon compounds having a (meth)acryloxy group examples include 3-acryloxypropyltrichlorosilane, 3-acryloxypropyldimethylchlorosilane, 3-methacryloxypropyltrichlorosilane, 3-methacryloxypropyldimethylchlorosilane, etc.
  • (meth)acryloxyalkylmonochlorosilane compounds such as 3-acryloxypropyldimethylchlorosilane and 3-methacryloxypropyldimethylchlorosilane are also used as modifiers for anionic polymerization terminals.
  • the above-mentioned organosilicon compound having a (meth)acryloxy group is generally synthesized by subjecting a hydrohalosilane compound and a (meth)acrylate compound having an alkenyl group to a hydrosilylation reaction in the presence of a transition metal catalyst (Patent Document 1). It has also been reported that a (meth)acryloxyalkylmonochlorosilane compound such as 4-methacryloxybutyldimethylchlorosilane can be produced by reacting a cyclic organoxysilane compound with methacrylic acid chloride in the presence of zinc chloride (Non-Patent Document 1).
  • the allyl group and (meth)acryloxy group of allyl (meth)acrylate having an allyl group are functional groups that can react with hydrohalosilane compounds. Therefore, in addition to the target (meth)acryloxyalkyl halosilane compound produced by the reaction of the allyl group of allyl (meth)acrylate having an allyl group with a hydrohalosilane compound, a compound produced by the reaction of the (meth)acryloxy group of allyl (meth)acrylate with a hydrohalosilane compound (hereinafter also referred to as "(meth)acryloxy adduct”) and a compound produced by the reaction of both the allyl group and (meth)acryloxy group of allyl (meth)acrylate with a hydrohalosilane compound (hereinafter also referred to as "bis adduct").
  • the yield of the target (meth)acryloxyalkyl halosilane compound decreases.
  • compounds having an acryloxy group have little steric hindrance and are highly reactive, so that undesired acrylic adducts and bis adducts are easily produced.
  • these compounds reduce the (meth)acryloxy groups in the organosilicon compounds that contain (meth)acryloxy groups, resulting in the loss of the (meth)acryloxy groups from the molecules, making it impossible to obtain the desired performance when used in various applications.
  • (meth)acrylic adducts and bis-adducts have boiling points close to those of the desired (meth)acryloxyalkylhalosilane compound, so separating them by distillation purification requires long periods of time or multiple operations.
  • the (meth)acryloxy group is a polymerizable functional group, exposure to high temperatures for long periods of time is undesirable as it can lead to polymerization of the desired product, and multiple distillations are not only time-consuming but also result in a corresponding decrease in the yield of the desired product.
  • Non-Patent Document 1 can produce the target product in high yield, the raw material, a cyclic organoxysilane compound, is self-reactive. For this reason, if undesired self-polymerization occurs during the reaction on an industrial scale, the viscosity of the reaction solution increases significantly, and not only will the target product not be produced, but the reaction solution may also become impossible to recover from the reaction vessel. For these reasons, it is difficult to use a cyclic organoxysilane compound as a raw material.
  • the present invention has been made in consideration of the above circumstances, and aims to provide a manufacturing method for stably obtaining organosilicon compounds having (meth)acryloxy groups with high yields and high purity without, in principle, producing (meth)acrylic adducts or bis-adducts, and an organosilicon compound having an acryloxy group.
  • R 1 represents an unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms
  • each R 2 represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms which may contain at least one atom selected from the group consisting of O, S, and Si
  • each R 3 represents a hydrogen atom or an unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms
  • each R 4 represents an unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms
  • X represents a chlorine atom or a bromine atom
  • m represents 0, 1, or 2
  • n represents 0, 1, 2, or 3.
  • R5 represents a hydrogen atom, a chlorine atom or an unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms
  • X has the same meaning as above.
  • FIG. 1 shows the 1 H-NMR spectrum of (4-chlorodimethylsilylpropyl-2-methoxy-)phenyl acrylate obtained in Example 3.
  • the method for producing an organosilicon compound having a (meth)acryloxy group of the present invention comprises the steps of subjecting a siloxyalkylhalosilane compound represented by the following general formula (1) (hereinafter referred to as “compound (1)”) and a carboxylic acid halide represented by the following general formula (2) (hereinafter referred to as “compound (2)”) to a siloxy-(meth)acryloxy exchange reaction in the presence of at least one metal compound selected from the group consisting of zinc, copper and iron to obtain an organosilicon compound having a (meth)acryloxy group represented by the following general formula (3) (hereinafter referred to as "compound (3)”):
  • R 1 represents an unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 18 carbon atoms, more preferably 1 to 10 carbon atoms, and even more preferably 1 to 6 carbon atoms.
  • the monovalent hydrocarbon group for R 1 may be linear, branched, or cyclic, and specific examples thereof include linear alkyl groups such as methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, decyl, dodecyl, tetradecyl, hexadecyl, and octadecyl; branched alkyl groups such as isopropyl, isobutyl, sec-butyl, tert-butyl, neopentyl, thexyl, and 2-ethylhexyl; cyclic alkyl groups such as cyclopentyl and cyclohexyl; alkenyl groups such as vinyl, allyl (2-propenyl), 1-propenyl, butenyl, pentenyl, and octenyl
  • R 2 's each independently represent a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and more preferably 1 to 8 carbon atoms, which may contain at least one atom selected from the group consisting of O, S, and Si.
  • the divalent hydrocarbon group of R2 may be linear, branched, or cyclic.
  • linear alkylene groups such as methylene, ethylene, trimethylene, tetramethylene, hexamethylene, and octamethylene
  • branched alkylene groups such as methylethylene (propylene) and methyltrimethylene
  • cyclic alkylene groups such as cyclohexylene and methylenecyclohexylenemethylene
  • linear alkenylene groups such as propenylene, butenylene, hexenylene, and octenylene
  • branched alkenylene groups such as isopropenylene and isobutenylene
  • arylene groups such as phenylene
  • aralkylene groups such as methylenephenylene and methylenephenylenemethylene.
  • linear alkylene groups and aralkylene groups are preferred.
  • the hydrogen atoms in the divalent hydrocarbon group of R2 may be substituted, and examples of the substituent include an alkoxy group having 1 to 3 carbon atoms; a halogen atom such as a chlorine atom, a bromine atom, or an iodine atom; an aryl group having 6 to 10 carbon atoms; an aralkyl group having 7 to 10 carbon atoms; a cyano group, an amino group, an acyl group, and a carboxy group.
  • a halogen atom such as a chlorine atom, a bromine atom, or an iodine atom
  • an aryl group having 6 to 10 carbon atoms an aralkyl group having 7 to 10 carbon atoms
  • a cyano group an amino group, an acyl group, and a carboxy group.
  • the divalent hydrocarbon group containing at least one atom selected from the group consisting of O, S, and Si in R2 includes oxyalkylene, alkyleneoxyalkylene, oxyarylene, oxyaralkylene, thioalkylene, alkylenethioalkylene, thioarylene, thioaralkylene, alkylenedialkylsilylalkylene, alkylenedialkylsilylarylene, alkylenedialkylsilylaralkylene groups, etc.
  • alkylene groups, arylene groups, and aralkylene groups include the same as those mentioned above.
  • oxyalkylene groups and oxyaralkylene groups are preferred.Of these, from the viewpoint of easiness in procuring raw materials, oxyalkylene groups and oxyaralkylene groups are preferred.
  • each R 3 independently represents a hydrogen atom or an unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms.
  • the monovalent hydrocarbon group of R3 may be linear, branched, or cyclic, and specific examples thereof include linear alkyl groups such as methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, and decyl; branched alkyl groups such as isopropyl, isobutyl, sec-butyl, tert-butyl, neopentyl, thexyl, and 2-ethylhexyl; cyclic alkyl groups such as cyclopentyl and cyclohexyl; alkenyl groups such as vinyl, allyl (2-propenyl), 1-propenyl, buten
  • R 4 each independently represents an unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms.
  • Examples of the monovalent hydrocarbon group for R 4 include the same groups as those for R 3 above. From the viewpoint of ease of procurement of raw materials, a methyl group is preferred.
  • each X independently represents a chlorine atom or a bromine atom, and from the viewpoints of ease of procurement of raw materials and safety, a chlorine atom is preferred.
  • m is 0, 1 or 2, and is preferably 2.
  • n is 0, 1, 2 or 3, and is preferably 3.
  • compound (1) include trimethylsiloxypropyldimethylchlorosilane, triethylsiloxypropyldimethylchlorosilane, tert-butyldimethylsiloxypropyldimethylchlorosilane, triisopropylsiloxypropyldimethylchlorosilane, dimethylhexylsiloxypropyldimethylchlorosilane, dimethyloctylsiloxypropyldimethylchlorosilane, dimethyldecylsiloxypropyldimethylchlorosilane, dimethyldodecylsiloxypropyldimethylchlorosilane, dimethyltetradecylsiloxypropyldimethylchlorosilane, dimethylhexadecylsiloxypropyldimethylchlorosilane, dimethyloctadecylsiloxypropyldimethylchlorosi
  • Alkyldihalosilane compounds having an alkylsiloxy group trimethylsiloxypropyltrichlorosilane, triethylsiloxypropyltrichlorosilane, tert-butyldimethylsiloxypropyltrichlorosilane, triisopropylsiloxypropyltrichlorosilane, trimethylsiloxyoctyltrichlorosilane, triethylsiloxyoctyltrichlorosilane, tert-butyldimethylsiloxyoctyltrichlorosilane, triisopropylsiloxyoctyltrichlorosilane, (4-trichlorosilylpropyl-2-methoxy- 1-trimethylsiloxy)benzene, (2-trichlorosilylpropyl-1-trimethylsiloxy)benzene, (1,2-bis(trimethylsiloxy)-3-trichlor
  • R 5 represents a hydrogen atom, a chlorine atom or an unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1 carbon atom.
  • the monovalent hydrocarbon group for R5 may be the same as R3 or R4 , but from the standpoint of ease of procurement of raw materials and usefulness of the product, a hydrogen atom or a methyl group is preferred.
  • X has the same meaning as in the above general formula (1).
  • compound (2) examples include acrylic acid chloride, methacrylic acid chloride, chloroacrylic acid chloride, (trifluoromethyl)acrylic acid chloride, itaconic acid chloride, acrylic acid bromide, methacrylic acid bromide, chloroacrylic acid bromide, (trifluoromethyl)acrylic acid bromide, and itaconic acid bromide.
  • the compounding ratio of compound (1) to compound (2) is not particularly limited, but the amount of compound (2) is preferably 1 to 1.5 moles, more preferably 1 to 1.2 moles, and even more preferably 1 to 1.05 moles relative to the number of moles of siloxy groups contained in compound (1).
  • the production method of the present invention is carried out in the presence of at least one metal compound selected from the group consisting of zinc, copper and iron.
  • metal compounds include zinc compounds such as zinc oxide, zinc chloride, zinc bromide, zinc iodide, zinc acetate, and zinc trifluoromethanesulfonate; copper compounds such as copper oxide (II), copper oxide (I), copper chloride (II), copper chloride (I), copper bromide (II), copper bromide (I), copper iodide (II), copper iodide (I), copper acetate (II), copper acetate (I), and copper trifluoromethanesulfonate; and iron compounds such as iron oxide (III), iron oxide (II), iron chloride (III), iron chloride (II), iron bromide (III), iron bromide (II), iron acetate (III), iron acetate (II), iron trifluoromethanesulfonate, and iron trifluoromethanesulfon
  • zinc oxide, copper bromide, and iron (III) chloride are preferred from the viewpoints of reactivity and ease of handling, zinc compounds are more preferred, and zinc oxide is even more preferred.
  • the amount of the metal compound used is not particularly limited, but is preferably 0.01 to 10 mol %, more preferably 0.05 to 5 mol %, and even more preferably 0.1 to 2 mol %, based on the number of moles of the siloxy groups contained in compound (1).
  • the reaction temperature in the siloxy-(meth)acryloxy exchange reaction is not particularly limited, but is preferably 40 to 120°C, more preferably 60 to 100°C, and even more preferably 80 to 100°C.
  • the reaction time in the siloxy-(meth)acryloxy exchange reaction is not particularly limited, but is preferably 0.5 to 10 hours, more preferably 0.5 to 4 hours.
  • solvents that can be used include (iso)paraffin compounds such as hexane, octane, isooctane, decane, dodecane, and isododecane; aromatic hydrocarbon compounds such as toluene and xylene; ether compounds such as tetrahydrofuran, 2-methyltetrahydrofuran, 4-methyltetrahydropyran, cyclopentyl methyl ether, dioxane, ethylene glycol dimethyl ether, and propylene glycol dimethyl ether; and nitrile compounds such as acetonitrile, propionitrile, and butyronitrile. These can be used alone or in a mixture of two or more.
  • the siloxy-(meth)acryloxy exchange reaction is preferably carried out in the presence of a polymerization inhibitor in order to suppress polymerization of the target compound (3) and the substrate compound (2).
  • a polymerization inhibitor include commonly used methoxyphenol compounds, hydroxyphenol compounds, hindered phenol compounds, and phenothiazine compounds.
  • the polymerization inhibitor may be used alone or in combination of two or more kinds from each group.
  • the amount of the polymerization inhibitor used is not particularly limited, but is preferably 0.0001 to 10% by mass, more preferably 0.001 to 5% by mass, and even more preferably 0.01 to 1% by mass, based on the compound (2).
  • R 2 to R 5 , X and m have the same meanings as above.
  • Specific examples of the compound (3) obtained in the present invention include acryloxypropyldimethylchlorosilane, acryloxypentyldimethylchlorosilane, acryloxyoctyldimethylchlorosilane, acryloxyethoxypropylmethyldichlorosilane, (4-chlorodimethylsilylpropyl-2-methoxy)phenyl acrylate, (2-chlorodimethylsilylpropyl-1-acryloxy)phenyl acrylate, (1,2-bis(acryloxy)-3-chlorodimethylsilylpropyl)benzene, (1,2-bis(acryloxy)-4-chlorodimethylsilylpropyl)benzene, (1,2-bis(acryloxy)-5-chlorodimethylsilylpropyl)benzene, and (1,3-bis(acryloxy)-2-ch
  • acryloxypropyldimethylchlorosilane, acryloxypentyldimethylchlorosilane, acryloxyoctyldimethylchlorosilane, (4-chlorodimethylsilylpropyl-2-methoxy)phenyl acrylate, and (2-chlorodimethylsilylpropyl-1-acryloxy)phenyl acrylate are preferred in terms of the usefulness of the product.
  • the organosilicon compound having an acryloxy group represented by the following general formula (6) (hereinafter referred to as "compound (6)") has a benzene ring in the molecule, is highly soluble, and is a compound that is expected to be applied to various resin-modifying materials.
  • R 6 each independently represents a hydrogen atom, a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms, which may contain a heteroatom, or an acryloxy group.
  • the monovalent hydrocarbon group of R6 may be linear, branched, or cyclic, and specific examples thereof include linear alkyl groups such as methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, and decyl; branched alkyl groups such as isopropyl, isobutyl, sec-butyl, tert-butyl, neopentyl, thexyl, and 2-ethylhexyl; cyclic alkyl groups such as cyclopentyl and cyclohexyl; alkenyl groups such as vinyl, allyl (2-propenyl), 1-propenyl, butenyl, pentenyl, and octenyl; aryl groups such as phenyl and tolyl; and aralkyl groups such as benzyl and phene
  • the monovalent hydrocarbon group of R 6 may have one or more heteroatoms such as an ether group (-O-) or a thioether group (-S-) present in the molecular chain.
  • the monovalent hydrocarbon group of R6 may have some or all of the hydrogen atoms substituted with other substituents, and specific examples of the substituents include alkoxy groups having 1 to 6 carbon atoms, such as methoxy, ethoxy, and (iso)propoxy groups; halogen atoms, such as fluorine, chlorine, bromine, and iodine atoms; aryl groups having 6 to 10 carbon atoms, such as phenyl and tolyl groups; and aralkyl groups having 7 to 10 carbon atoms, such as benzyl and phenethyl groups.
  • R 7 represents a single bond or a divalent hydrocarbon group which may contain O or S and has 1 to 10 carbon atoms, preferably 3 to 8 carbon atoms, and more preferably 3 to 6 carbon atoms.
  • the divalent hydrocarbon group having 1 to 10 carbon atoms for R7 may be linear, branched, or cyclic, and specific examples thereof include linear alkylene groups such as methylene, ethylene, trimethylene, tetramethylene, hexamethylene, octamethylene, and decylene groups; branched alkylene groups such as propylene (methylethylene) and methyltrimethylene groups; cyclic alkylene groups such as cyclohexylene groups; alkenylene groups such as propenylene groups; arylene groups such as phenylene groups; and aralkylene groups such as methylenephenylene and methylenephenylenemethylene groups.
  • divalent hydrocarbon group containing O or S for R7 examples include an alkyleneoxyalkylene group, an alkylenethioalkylene group, and the like.
  • alkylene groups include the same groups as those exemplified for the linear, branched, and cyclic alkylene groups for R7 .
  • the number of acryloxy groups contained in compound (6) is at least 1, preferably 1 to 4, and more preferably 1 or 2. By containing an acryloxy group in compound (6), the acryloxy group can be copolymerized with various radical polymerizable monomers.
  • compound (6) examples include (4-chlorodimethylsilylethyl)phenyl acrylate, (1,2-bis(acryloxy)-4-chlorodimethylsilylethyl)benzene, (1,3-bis(acryloxy)-4-chlorodimethylsilylethyl)benzene, (4-chlorodimethylsilylethyl)phenyl methacrylate, (1,2-bis(methacryloxy)-4-chlorodimethylsilylethyl)benzene, (1,3-bis(methacryloxy)-4-chlorodimethylsilylethyl)benzene, (4-chlorodimethylsilylpropyl-2-(methacryloxy)-4-chlorodimethylsilylethyl)benzene, and (4-chlorodimethylsilylpropyl-2-(methacryloxy)-4-chlorodimethylsilylethyl)benzene.
  • dialkylchlorosilane compounds having a (meth)acryloxy group such as (4-dichloromethyl)acrylate, (1,2-bis(acryloxy)-4-chlorodimethylsilylpropyl)benzene, (1,3-bis(acryloxy)-4-chlorodimethylsilylpropyl)benzene, (4-chlorodimethylsilylpropyl-2-methoxy)phenyl methacrylate, (1,2-bis(methacryloxy)-4-chlorodimethylsilylpropyl)benzene, and (1,3-bis(methacryloxy)-4-chlorodimethylsilylpropyl)benzene; alkyldichlorosilane compounds having a (meth)acryloxy group, such as (1,2-bis(acryloxy)-4-dichloromethylsilylpropyl-2-methoxy)phenyl, (1,2-bis(acryloxy)-4-dichloromethylsilylpropyl)benz
  • a purification method appropriately selected from those used in ordinary organic synthesis such as filtration, distillation, vacuum stripping, various types of chromatography, and treatment with an adsorbent, can be used.
  • purification by distillation is preferred from the viewpoint of obtaining a high purity of the target product.
  • compound (3) has a polymerizable (meth)acryloxy group, it is preferred to shorten the thermal history as much as possible. For this reason, it is preferred to reduce the number of theoretical plates of the distillation apparatus, and purification by thin film distillation is preferred. If necessary, the above-mentioned polymerization inhibitor may be added in the purification step as well.
  • the compound (1) used in the present invention can be obtained by subjecting an unsaturated bond-containing organoxysilane compound represented by the following general formula (4) (hereinafter referred to as "compound (4)”) and a hydrohalosilane compound represented by the following general formula (5) (hereinafter referred to as “compound (5)”) to a hydrosilylation reaction in the presence of a platinum catalyst.
  • compound (4) unsaturated bond-containing organoxysilane compound represented by the following general formula (4)
  • compound (5) hydrohalosilane compound represented by the following general formula (5)
  • compound (4) include allyloxytrimethylsilane, allyloxytriethylsilane, allyloxytert-butyldimethylsilane, allyloxytriisopropylsilane, allyloxydimethylhexylsilane, allyloxydimethyloctylsilane, allyloxydimethyldecylsilane, allyloxydimethyldodecylsilane, allyloxydimethyltetradecylsilane, allyloxydimethylhexadecylsilane, allyloxydimethyloctadecylsilane, allyloxydiphenylmethylsilane, pentenoxytrimethylsilane, pentenoxytriethylsilane, pentenoxytert-butyldimethylsilane, pentenoxytriisopropylsilane, and octenoxytrimethylsilane.
  • arylsilane such as trimethylsilane, octenoxytriethylsilane, octenoxy-tert-butyldimethylsilane, octenoxytriisopropylsilane, (4-allyl-2-methoxy-1-trimethylsiloxy)benzene, (2-allyl-1-trimethylsiloxy)benzene, (1,2-bis(trimethylsiloxy)-3-allyl)benzene, (1,2-bis(trimethylsiloxy)-4-allyl)benzene, (1,3-bis(trimethylsiloxy)-2-allyl)benzene, (1,3-bis(trimethylsiloxy)-4-allyl)benzene, (1,3-bis(trimethylsiloxy)-5-allyl)benzene, and (1,4-bis(trimethylsiloxy)-2-allyl)benzene; trialkylsilane compounds having an nyl(oxy) group; diallyloxydimethylsilane, dial
  • compound (5) include dialkylchlorosilane compounds such as dimethylchlorosilane and diphenylchlorosilane; alkyldichlorosilane compounds such as methyldichlorosilane and phenyldichlorosilane; and trichlorosilane.
  • the compounding ratio of compound (4) and compound (5) is not particularly limited, but from the viewpoint of productivity, the compound (5) is preferably 0.8 to 2.0 moles, more preferably 0.8 to 1.5 moles, and even more preferably 0.9 to 1.1 moles per mole of unsaturated bonds contained in compound (4).
  • a platinum compound is used as a catalyst.
  • platinum compounds include chloroplatinic acid, an alcohol solution of chloroplatinic acid, a toluene or xylene solution of a platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex, tetrakistriphenylphosphine platinum, dichlorobistriphenylphosphine platinum, dichlorobisacetonitrile platinum, dichlorobisbenzonitrile platinum, dichlorocyclooctadiene platinum, and platinum-activated carbon.
  • the amount of the platinum compound used is not particularly limited, but from the viewpoint of productivity, it is preferably 0.000001 to 0.2 mol, more preferably 0.00001 to 0.1 mol, per 1 mol of unsaturated bonds contained in compound (4).
  • the reaction temperature in the hydrosilylation reaction is not particularly limited, but from the viewpoint of the stability of the product, it is preferably 0 to 200°C, and more preferably 20 to 150°C.
  • the reaction time for the hydrosilylation reaction is not particularly limited, but from the viewpoint of the stability of the product, it is preferably 1 to 40 hours, and more preferably 1 to 20 hours.
  • the hydrosilylation reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon in order to prevent deactivation of the catalyst and hydrolysis of compound (4) and compound (5).
  • the hydrosilylation reaction can proceed without a solvent, but a solvent can also be used.
  • Solvents that can be used include those similar to those used in the siloxy-(meth)acryloxy exchange reaction.
  • the present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to the following examples.
  • the production rates (area %) of the target product (A), the (meth)acryloxy adduct (B), and the bis-adduct (C) in the examples and comparative examples were determined by gas chromatography analysis (hereinafter also referred to as "GC analysis") using the following calculation.
  • Example 1 Synthesis of 3-acryloxypropyldimethylchlorosilane
  • the inside of a four-necked glass flask equipped with a stirrer, thermometer, and reflux condenser was replaced with nitrogen, and 266.9 g (1.000 mol) of triethylsiloxypropyldimethylchlorosilane, 0.083 g (0.0010 mol) of zinc oxide, and 0.1 g of 2,6-di-tert-butyl-4-methylphenol (di(tert-butyl)hydroxytoluene (hereinafter also referred to as "BHT”) were charged and heated to 70°C.
  • BHT 2,6-di-tert-butyl-4-methylphenol
  • Example 2 Synthesis of 8-acryloxyoctyldimethylchlorosilane
  • the inside of a four-necked glass flask equipped with a stirrer, a thermometer, and a reflux condenser was replaced with nitrogen, and 129 g (0.384 mol) of triethylsiloxyoctyldimethylchlorosilane, 0.302 g (0.00371 mol) of zinc oxide, and 0.06 g of BHT were charged and heated to 70°C. 35.7 g (0.394 mol) of acrylic acid chloride was added thereto and stirred at the same temperature for 1 hour.
  • the reaction solution was analyzed by GC, and it was confirmed that triethylsiloxyoctyldimethylchlorosilane had disappeared and 8-acryloxyoctyldimethylchlorosilane had been produced.
  • the production rate of each product is shown in Table 1.
  • the reaction mixture was distilled to obtain 93.8 g of 8-acryloxyoctyldimethylchlorosilane with a purity of 95% (yield 85%).
  • Example 3 Synthesis of (4-chlorodimethylsilylpropyl-2-methoxy-)phenyl acrylate
  • the inside of a four-necked glass flask equipped with a stirrer, a thermometer, and a reflux condenser was replaced with nitrogen, and 193 g (0.583 mol) of (4-chlorodimethylsilylpropyl-2-methoxy-1-trimethylsiloxy)benzene, 0.048 g (0.00059 mol) of zinc oxide, and 0.09 g of BHT were charged and heated to 80°C. 53.9 g (0.596 mol) of acrylic acid chloride was added thereto and stirred at the same temperature for 1 hour.
  • the reaction solution was analyzed by GC, and it was confirmed that (4-chlorodimethylsilylpropyl-2-methoxy-1-trimethylsiloxy)benzene had disappeared and (4-chlorodimethylsilylpropyl-2-methoxy-)phenyl acrylate had been produced.
  • the production rates of each product are shown in Table 1.
  • the reaction mixture was distilled to obtain 119 g (61% yield) of (4-chlorodimethylsilylpropyl-2-methoxy-)phenyl acrylate having a purity of 99% or more.
  • the 1 H-NMR chart of the compound obtained is shown in FIG.
  • Example 4 Synthesis of (2-chlorodimethylsilylpropyl)phenyl acrylate
  • the inside of a four-necked glass flask equipped with a stirrer, thermometer, and reflux condenser was replaced with nitrogen, and 272 g (0.904 mol) of (2-chlorodimethylsilylpropyl-1-trimethylsiloxy)benzene, 0.75 g (0.00922 mol) of zinc oxide, and 0.12 g of BHT were charged and heated to 80°C. 83.0 g (0.922 mol) of acrylic acid chloride was added thereto and stirred at the same temperature for 1 hour.
  • reaction solution was analyzed by GC, and it was confirmed that (2-chlorodimethylsilylpropyl-1-trimethylsiloxy)benzene had disappeared and (2-chlorodimethylsilylpropyl)phenyl acrylate had been produced.
  • the production rates of each product are shown in Table 1.
  • the reaction mixture was distilled to obtain 166 g (yield 61%) of (4-chlorodimethylsilylpropyl-2-methoxy-)phenyl acrylate having a purity of at least 99%.
  • Example 5 Synthesis of 3-acryloxyethoxypropyldimethylchlorosilane
  • the inside of a four-necked glass flask equipped with a stirrer, a thermometer, and a reflux condenser was replaced with nitrogen, and 31.0 g (0.0997 mol) of triethylsiloxyethoxypropyldimethylchlorosilane, 0.184 g (0.00226 mol) of zinc oxide, and 0.01 g of BHT were charged and heated to 70°C. 9.5 g (0.105 mol) of acrylic acid chloride was added thereto and stirred at the same temperature for 3 hours.
  • the reaction solution was analyzed by GC, and it was confirmed that triethylsiloxypropyldimethylchlorosilane had disappeared and 3-acryloxyethoxypropyldimethylchlorosilane had been produced.
  • the production rate of each product is shown in Table 1.
  • the reaction solution was analyzed by GC to confirm that trimethylsiloxypropyldimethylchlorosilane was produced.
  • the reaction solution was cooled to room temperature, 0.814 g (0.0100 mol) of zinc oxide and 0.1 g of BHT were added and the temperature was adjusted to 80° C. To this was added 90.5 g (1.00 mol) of acrylic acid chloride and stirred at the same temperature for 1 hour.
  • the reaction solution was analyzed by GC, and it was confirmed that trimethylsiloxypropyldimethylchlorosilane had disappeared and 3-acryloxypropyldimethylchlorosilane had been produced.
  • the production rates of each product are shown in Table 1.
  • the reaction mixture was distilled to obtain 133.1 g of 3-acryloxypropyldimethylchlorosilane with a purity of 95% (yield: 64%).
  • Example 7 Synthesis of 3-acryloxypropyldimethylchlorosilane
  • the inside of a four-necked glass flask equipped with a stirrer, a thermometer, and a reflux condenser was replaced with nitrogen, and 135.6 g (0.7829 mol) of allyloxytriethylsilane and 0.383 g (0.000393 mol as platinum atoms) of a 2-ethylhexanol solution of chloroplatinic (IV) acid were charged and heated to 80°C. 64.2 g (0.679 mol) of dimethylchlorosilane was added dropwise over 3 hours and stirred at the same temperature for 1 hour.
  • the reaction solution was analyzed by GC to confirm that chlorodimethylpropoxytriethylsilane was produced.
  • the reaction solution was cooled to room temperature, 1.38 g (0.0170 mol) of zinc oxide and 0.08 g of BHT were added and the temperature was adjusted to 80° C. To this was added 72.7 g (0.803 mol) of acrylic acid chloride and stirred at the same temperature for 1 hour.
  • the reaction solution was analyzed by GC, and it was confirmed that triethylsiloxypropyldimethylchlorosilane had disappeared and 3-acryloxypropyldimethylchlorosilane had been produced.
  • the production rate of each product is shown in Table 1.
  • the reaction mixture was distilled to obtain 99.0 g of 3-acryloxypropyldimethylchlorosilane with a purity of 95% (yield: 61%).
  • Example 8 Synthesis of 3-acryloxypropyldimethylchlorosilane The inside of a four-necked glass flask equipped with a stirrer, a thermometer, and a reflux condenser was replaced with nitrogen, and 17.1 g (0.0992 mol) of allyloxytert-butyldimethylsilane and 0.0914 g (0.00000937 mol as platinum atoms) of a 2-ethylhexanol solution of chloroplatinic (IV) acid were charged and heated to 80°C. 8.6 g (0.091 mol) of dimethylchlorosilane was added dropwise over 3 hours and stirred at the same temperature for 1 hour.
  • the reaction solution was analyzed by GC to confirm that chlorodimethylpropoxytert-butyldimethylsilane was produced.
  • 0.0814 g (0.00100 mol) of zinc chloride and 0.01 g of BHT were added and the temperature was adjusted to 100°C.
  • 9.2 g (0.10 mol) of acrylic acid chloride was added thereto and stirred at the same temperature for 1 hour.
  • the reaction solution was analyzed by GC, and it was confirmed that tert-butyldimethylsiloxypropyldimethylchlorosilane had disappeared and 3-acryloxypropyldimethylchlorosilane had been produced.
  • the production rate of each product is shown in Table 1.
  • the reaction solution was analyzed by GC to confirm that bis(chlorodimethylpropoxy)dimethylsilane was produced.
  • the reaction solution was cooled to room temperature, 0.337 g (0.00414 mol) of zinc oxide and 0.01 g of BHT were added and the temperature was adjusted to 80° C. To this was added 18.5 g (0.204 mol) of acrylic acid chloride and the mixture was stirred at the same temperature for 1 hour.
  • the reaction solution was analyzed by GC, which confirmed that bis(chlorodimethylpropoxy)dimethylsilane had disappeared and 3-acryloxypropyldimethylchlorosilane had been produced.
  • the production rates of each product are shown in Table 1.
  • Example 10 Synthesis of 5-acryloxypentyldimethylchlorosilane
  • the inside of a four-necked glass flask equipped with a stirrer, a thermometer, and a reflux condenser was replaced with nitrogen, and 40.1 g (0.200 mol) of pentenoxytriethylsilane and 0.099 g (0.000010 mol as platinum atoms) of a 2-ethylhexanol solution of chloroplatinic (IV) acid were charged and heated to 80°C. 17.2 g (0.181 mol) of dimethylchlorosilane was added dropwise to the flask over a period of 3 hours, and the mixture was stirred at the same temperature for 1 hour.
  • the reaction solution was analyzed by GC to confirm that triethylsiloxypentyldimethylchlorosilane was produced.
  • the reaction solution was cooled to room temperature, 0.343 g (0.00421 mol) of zinc oxide and 0.02 g of BHT were added and the temperature was adjusted to 80° C. To this was added 19.0 g (0.210 mol) of acrylic acid chloride and stirred at the same temperature for 1 hour.
  • the reaction solution was analyzed by GC, and it was confirmed that triethylsiloxypentyldimethylchlorosilane had disappeared and 5-acryloxypentyldimethylchlorosilane had been produced.
  • the production rates of each product are shown in Table 1.
  • the reaction mixture was distilled to obtain 32.0 g (yield 68%) of 5-acryloxypentyldimethylchlorosilane with a purity of 98%.
  • Example 11 Synthesis of 3-methacryloxypropyldimethylchlorosilane
  • the inside of a four-necked glass flask equipped with a stirrer, a thermometer, and a reflux condenser was replaced with nitrogen, and 266.9 g (1.000 mol) of triethylsiloxypropyldimethylchlorosilane, 0.083 g (0.0010 mol) of zinc oxide, and 0.1 g of BHT were charged and heated to 70°C.
  • 107 g (1.02 mol) of methacrylic acid chloride was added thereto and stirred at the same temperature for 3 hours.
  • Example 12 Synthesis of 8-acryloxyoctyltrichlorosilane
  • the inside of a four-necked glass flask equipped with a stirrer, a thermometer, and a reflux condenser was replaced with nitrogen, and 209 g (0.554 mol) of triethylsiloxyoctyltrichlorosilane, 0.90 g (0.011 mol) of zinc oxide, and 0.08 g of BHT were charged and heated to 70°C. 51.1 g (0.565 mol) of acrylic acid chloride was added thereto and stirred at the same temperature for 3 hours.
  • reaction solution was analyzed by GC, and it was confirmed that triethylsiloxyoctyltrichlorosilane had disappeared and 8-acryloxyoctyltrichlorosilane had been produced.
  • the production rate of each product is shown in Table 1.
  • Example 14 Synthesis of 3-acryloxypropyldimethylchlorosilane The inside of a four-necked glass flask equipped with a stirrer, a thermometer, and a reflux condenser was replaced with nitrogen, and 631 g (1.711 mol) of allyloxydimethyloctadecylsilane and 0.55 g (0.000085 mol as platinum atoms) of a toluene solution of platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex were charged and heated to 60°C.
  • Comparative Example 1 Synthesis of 3-acryloxypropyldimethylchlorosilane The inside of a four-necked glass flask equipped with a stirrer, a thermometer, and a reflux condenser was replaced with nitrogen, and 224.2 g (2.000 mol) of allyl acrylate, 0.975 g (0.000100 mol as platinum atoms) of a 2-ethylhexanol solution of chloroplatinic (IV) acid, and 0.2 g of BHT were charged and heated to 80°C. 208.1 g (2.200 mol) of dimethylchlorosilane was added dropwise over 3 hours and stirred at the same temperature for 1 hour.
  • the reaction solution was analyzed by GC to confirm that 3-acryloxypropyldimethylchlorosilane was produced.
  • the production rate of each product is shown in Table 1.
  • the reaction mixture was distilled to obtain 3-acryloxypropyldimethylchlorosilane with a purity of 75%, which was then distilled again to obtain 74.4 g of 3-acryloxypropyldimethylchlorosilane with a purity of 97% (yield: 18%).
  • Examples 1 to 14 which are the manufacturing method of the present invention, it is possible to selectively produce the target (meth)acryloxyhalosilane compound (A) without using a compound having self-reactivity and without producing (meth)acryloxy adduct (B) or bis-adduct (C). In this way, the manufacturing method of the present invention can stably obtain the target product with high yield and high purity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)

Abstract

一般式(1)(R1は1価炭化水素基を、R2は2価炭化水素基を、R3は水素原子または1価炭化水素基を、R4は1価炭化水素基を、Xは塩素原子または臭素原子を、mは0、1または2を、nは0、1、2または3を表す。) で表されるシロキシアルキルハロシラン化合物と、一般式(2)(R5は、水素原子、塩素原子または1価炭化水素基を表し、Xは前記と同じ。) で表されるカルボン酸ハロゲン化物を、亜鉛、銅および鉄からなる群から選ばれる少なくとも1種の金属化合物の存在下でシロキシ-(メタ)アクリロキシ交換反応させる、一般式(3)(R2~R5、Xおよびmは前記と同じ。) で表される(メタ)アクリロキシ基を有する有機ケイ素化合物を得る工程を含む、製造方法は、原理的に(メタ)アクリル付加体やビス付加体が生じずに、高収率かつ高純度で、安定的に(メタ)アクリロキシ基を有する有機ケイ素化合物を与える。

Description

(メタ)アクリロキシ基を有する有機ケイ素化合物の製造方法およびアクリロキシ基を有する有機ケイ素化合物
 本発明は、(メタ)アクリロキシ基を有する有機ケイ素化合物の製造方法およびアクリロキシ基を有する有機ケイ素化合物に関する。
 加水分解性シリル基と有機基を有する有機ケイ素化合物は、加水分解性シリル基の加水分解によって生成するシラノール基が無機材料表面の水酸基と共有結合を形成し、さらに有機基が有機材料と反応することにより、通常では結びつきにくい有機材料と無機材料を結びつけることを可能にする。これにより、有機無機複合材料に耐熱性、耐水性、耐候性、機械的強度の向上、密着性、分散性、疎水性、防錆性等の特性を付与することができる。
これらの特性を利用し、上記有機ケイ素化合物は、シランカップリング剤、樹脂添加剤、表面処理剤、繊維処理剤、接着剤、塗料添加剤、高分子変性剤等の幅広い分野、用途に使用される。
 上記有機ケイ素化合物の中でも、(メタ)アクリロキシ基を有する有機ケイ素化合物は、重合性官能基の(メタ)アクリロキシ基が種々のラジカル重合性モノマーと共重合することから、ケイ素含有ポリマーを得るためのラジカル重合性モノマーとして有用な化合物である。
 このような(メタ)アクリロキシ基を有する有機ケイ素化合物としては、例えば、3-アクリロキシプロピルトリクロロシラン、3-アクリロキシプロピルジメチルクロロシラン、3-メタクリロキシプロピルトリクロロシラン、3-メタクリロキシプロピルジメチルクロロシラン等が挙げられる。特に、3-アクリロキシプロピルジメチルクロロシラン、3-メタクリロキシプロピルジメチルクロロシラン等の(メタ)アクリロキシアルキルモノクロロシラン化合物は、アニオン重合末端の変性剤としても利用されている。
 上記(メタ)アクリロキシ基を有する有機ケイ素化合物の製造方法としては、ヒドロハロシラン化合物とアルケニル基を有する(メタ)アクリレート化合物を、遷移金属触媒を用いてヒドロシリル化反応することにより合成するのが一般的である(特許文献1)。
 また、塩化亜鉛の存在下、環状オルガノキシシラン化合物とメタクリル酸クロリドを反応させることにより、4-メタクリロキシブチルジメチルクロロシラン等の(メタ)アクリロキシアルキルモノクロロシラン化合物を製造できることが報告されている(非特許文献1)。
特開平9-202791号公報
Zhurnal Obshchei Khimii,58(9),pp.2145-2148,1988年
 特許文献1において、アリル基を有する(メタ)アクリル酸アリルのアリル基と(メタ)アクリロキシ基は、それぞれヒドロハロシラン化合物と反応し得る官能基である。このため、ヒドロハロシラン化合物とアリル基を有する(メタ)アクリル酸アリルのアリル基が反応して生じる目的物である(メタ)アクリロキシアルキルハロシラン化合物の他に、ヒドロハロシラン化合物と(メタ)アクリル酸アリルの(メタ)アクリロキシ基が反応した化合物(以下、「(メタ)アクリロキシ付加体」ともいう。)や、ヒドロハロシラン化合物と(メタ)アクリル酸アリルのアリル基と(メタ)アクリロキシ基がともに反応した化合物(以下、「ビス付加体」ともいう。)が生じる。これらの化合物が生じると、目的物である(メタ)アクリロキシアルキルハロシラン化合物の収率は低下してしまう。とりわけ、アクリロキシ基を有する化合物は立体障害が小さく反応性に富むことから、目的としないアクリル付加体やビス付加体が生成しやすい。さらに、これらの化合物は、(メタ)アクリロキシ基を有する有機ケイ素化合物中の(メタ)アクリロキシ基が還元され、分子内から(メタ)アクリロキシ基が失われてしまうため、各種用途に用いた場合に目的の性能が得られなくなる。
 また、(メタ)アクリル付加体やビス付加体は、目的とする(メタ)アクリロキシアルキルハロシラン化合物と沸点が近いため、これらを蒸留精製で分離するには長時間あるいは複数回の操作を必要とする。しかし、(メタ)アクリロキシ基は重合性官能基であるため、長時間高温に晒されることは目的物の重合を招くことから好ましくなく、複数回の蒸留は手間がかかるだけでなく、その分目的物の収率低下も招く。
 一方、非特許文献1の方法は、高収率で目的物を製造できるものの、原料である環状オルガノキシシラン化合物は自己反応性を有している。このため、工業スケールで反応を行った際に所望の反応でない自己重合が起こると、反応液の粘性が著しく増加し、目的物が生成しないのみならず、反応容器から反応溶液を回収することができなくなってしまう可能性がある。これらのことから、環状オルガノキシシラン化合物を原料として用いることは難しい。
 本発明は、上記事情に鑑みなされたものであり、原理的に(メタ)アクリル付加体やビス付加体が生じずに、高収率かつ高純度で、安定的に(メタ)アクリロキシ基を有する有機ケイ素化合物が得られる製造方法およびアクリロキシ基を有する有機ケイ素化合物を提供することを目的とする。
 本発明者は、上記目的を達成するため鋭意検討を重ねた結果、シロキシアルキルハロシラン化合物を特定の金属化合物存在下、(メタ)アクリル酸ハロゲン化物と反応させることにより、(メタ)アクリル付加体やビス付加体を生じずに、また自己反応性を有する化合物を用いることなく、(メタ)アクリロキシアルキルハロシラン化合物を高収率かつ高純度に製造できることを見出し、本発明を完成させた。
 すなわち、本発明は、
1. 下記一般式(1)
Figure JPOXMLDOC01-appb-C000006
(式中、R1は、非置換の炭素数1~20の1価炭化水素基を表し、R2は、それぞれ独立してO、SおよびSiからなる群から選ばれる少なくとも1つの原子を含んでいてもよい、置換または非置換の炭素数1~20の2価炭化水素基を表し、R3は、それぞれ独立して水素原子または非置換の炭素数1~10の1価炭化水素基を表し、R4は、それぞれ独立して非置換の炭素数1~10の1価炭化水素基を表し、Xは、塩素原子または臭素原子を表し、mは、0、1または2を表し、nは、0、1、2または3を表す。)
で表されるシロキシアルキルハロシラン化合物と、下記一般式(2)
Figure JPOXMLDOC01-appb-C000007
(式中、R5は、水素原子、塩素原子または非置換の炭素数1~10の1価炭化水素基を表し、Xは、前記と同じ意味を表す。)
で表されるカルボン酸ハロゲン化物を、亜鉛、銅および鉄からなる群から選ばれる少なくとも1種の金属化合物の存在下でシロキシ-(メタ)アクリロキシ交換反応させる、下記一般式(3)
Figure JPOXMLDOC01-appb-C000008
(式中、R2~R5、Xおよびmは、前記と同じ意味を表す。)
で表される(メタ)アクリロキシ基を有する有機ケイ素化合物を得る工程を含む、(メタ)アクリロキシ基を有する有機ケイ素化合物の製造方法、
2. 下記一般式(4)
Figure JPOXMLDOC01-appb-C000009
(式中、R1~R3およびnは、前記と同じ意味を表す。)
で表される不飽和結合含有オルガノキシシラン化合物と、下記一般式(5)
H-SiR4 m3-m   (5)
(式中、R4、Xおよびmは、前記と同じ意味を表す。)
で表されるヒドロハロシラン化合物を白金触媒存在下でヒドロシリル化反応させて、前記一般式(1)で表されるシロキシアルキルハロシラン化合物を得る工程をさらに含む1の(メタ)アクリロキシ基を有する有機ケイ素化合物の製造方法、
3. 下記一般式(6)で表されるアクリロキシ基を有する有機ケイ素化合物
Figure JPOXMLDOC01-appb-C000010
(式中、R6は、それぞれ独立して水素原子、ヘテロ原子を含んでいてもよい、置換または非置換の炭素数1~10の1価炭化水素基またはアクリロキシ基を表し、R7は、単結合またはOもしくはSを含んでいてもよい炭素数1~10の2価炭化水素基を表し、R3は、水素原子または非置換の炭素数1~10の1価炭化水素基を表し、R4は、それぞれ独立して非置換の炭素数1~10の1価炭化水素基を表し、Xは、塩素原子または臭素原子を表し、mは、0、1または2を表す。)
を提供する。
 本発明によれば、(メタ)アクリル付加体やビス付加体を生じずに、また自己反応性を有する化合物を用いることなく、高収率かつ高純度で、(メタ)アクリロキシアルキルハロシラン化合物を安定的に製造することができる。
実施例3で得られたアクリル酸(4-クロロジメチルシリルプロピル-2-メトキシ-)フェニルの1H-NMRスペクトルを示す図である。
 以下、本発明について具体的に説明する。
 本発明の(メタ)アクリロキシ基を有する有機ケイ素化合物の製造方法は、下記一般式(1)で表されるシロキシアルキルハロシラン化合物(以下、「化合物(1)」という。)と、下記一般式(2)で表されるカルボン酸ハロゲン化物(以下、「化合物(2)」という。)を、亜鉛、銅および鉄からなる群から選ばれる少なくとも一種の金属化合物の存在下でシロキシ-(メタ)アクリロキシ交換反応させ、下記一般式(3)で表される(メタ)アクリロキシ基を有する有機ケイ素化合物(以下、「化合物(3)」という。)を得る工程を含むものである。
Figure JPOXMLDOC01-appb-C000011
 上記一般式(1)において、R1は、炭素数1~20、好ましくは炭素数1~18、より好ましくは炭素数1~10、より一層好ましくは炭素数1~6の非置換の1価炭化水素基を表す。
 R1の1価炭化水素基は、直鎖状、分岐鎖状、環状のいずれでもよく、その具体例としては、メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-ヘキシル、n-へプチル、n-オクチル、デシル、ドデシル、テトラデシル、ヘキサデシル、オクタデシル基等の直鎖状のアルキル基;イソプロピル、イソブチル、sec-ブチル、tert-ブチル、ネオペンチル、テキシル、2-エチルヘキシル基等の分岐鎖状のアルキル基;シクロペンチル、シクロヘキシル基等の環状アルキル基;ビニル、アリル(2-プロペニル)、1-プロペニル、ブテニル、ペンテニル、オクテニル基等のアルケニル基;フェニル、トリル基等のアリール基;ベンジル、フェネチル基等のアラルキル基等が挙げられる。
 これらの中でも、原料調達容易性の観点から、直鎖状または分岐鎖状アルキル基が好ましい。
 上記一般式(1)において、R2は、それぞれ独立してO、SおよびSiからなる群から選ばれる少なくとも1つの原子を含んでいてもよい炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~8の置換または非置換の2価炭化水素基を表す。
 R2の2価炭化水素基は、直鎖状、分岐鎖状、環状のいずれでもよく、その具体例としては、メチレン、エチレン、トリメチレン、テトラメチレン、ヘキサメチレン、オクタメチレン基等の直鎖状アルキレン基;メチルエチレン(プロピレン)、メチルトリメチレン等の分岐鎖状アルキレン基;シクロヘキシレン、メチレンシクロヘキシレンメチレン等の環状アルキレン基;プロペニレン、ブテニレン、ヘキセニレン、オクテニレン等の直鎖状アルケニレン基;イソプロペニレン、イソブテニレン基等の分岐状アルケニレン基;フェニレン等のアリーレン基;メチレンフェニレン、メチレンフェニレンメチレン等のアラルキレン基等が挙げられる。
 これらの中でも、原料の調達容易性の観点から、直鎖状アルキレン基、アラルキレン基が好ましい。
 また、R2の2価炭化水素基中の水素原子の一部または全部が置換されていても良く、該置換基としては、例えば、炭素数1~3のアルコキシ基;塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;炭素数6~10のアリール基;炭素数7~10のアラルキル基;シアノ基、アミノ基、アシル基、カルボキシ基が挙げられる。
 R2のO、S、およびSiからなる群から選ばれる少なくとも1つの原子を含む2価炭化水素基は、オキシアルキレン、アルキレンオキシアルキレン、オキシアリーレン、オキシアラルキレン、チオアルキレン、アルキレンチオアルキレン、チオアリーレン、チオアラルキレン、アルキレンジアルキルシリルアルキレン、アルキレンジアルキルシリルアリーレン、アルキレンジアルキルシリルアラルキレン基等が挙げられる。これらのアルキレン基、アリーレン基、アラルキレン基としては、上記と同様のものが挙げられる。
 これらの中でも、原料の調達容易性の観点から、オキシアルキレン基、オキシアラルキレン基が好ましい。 これらの中でも、原料の調達容易性の観点から、オキシアルキレン基、オキシアラルキレン基が好ましい。
 上記一般式(1)において、R3は、それぞれ独立して水素原子または炭素数1~10、好ましくは炭素数1~6の非置換の1価炭化水素基を表す。
 R3の1価炭化水素基は、直鎖状、分岐鎖状、環状のいずれでもよく、その具体例としては、メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-ヘキシル、n-へプチル、n-オクチル、デシル基等の直鎖状のアルキル基;イソプロピル、イソブチル、sec-ブチル、tert-ブチル、ネオペンチル、テキシル、2-エチルヘキシル基等の分岐鎖状のアルキル基;シクロペンチル、シクロヘキシル基等の環状アルキル基;ビニル、アリル(2-プロペニル)、1-プロペニル、ブテニル、ペンテニル、オクテニル基等のアルケニル基;フェニル、トリル基等のアリール基;ベンジル、フェネチル基等のアラルキル基等が挙げられる。
 これらの中でも、原料調達容易性の観点から、メチル、エチル、イソプロピル、tert-ブチル、フェニル基が好ましい。
 上記一般式(1)において、R4は、それぞれ独立して炭素数1~10、好ましくは炭素数1~6の非置換の1価炭化水素基を表し、R4の1価炭化水素基は、上記R3と同様の基が挙げられるが、原料の調達容易性の観点から、メチル基が好ましい。
 上記一般式(1)において、Xは、それぞれ独立して塩素原子または臭素原子を表し、原料の調達容易性および安全性の観点から、塩素原子が好ましい。
 上記一般式(1)において、mは、0、1または2であり、好ましくは2である。
 上記一般式(1)において、nは、0、1、2または3であり、好ましくは3である。
 化合物(1)の具体例としては、トリメチルシロキシプロピルジメチルクロロシラン、トリエチルシロキシプロピルジメチルクロロシラン、tert-ブチルジメチルシロキシプロピルジメチルクロロシラン、トリイソプロピルシロキシプロピルジメチルクロロシラン、ジメチルヘキシルシロキシプロピルジメチルクロロシラン、ジメチルオクチルシロキシプロピルジメチルクロロシラン、ジメチルデシルシロキシプロピルジメチルクロロシラン、ジメチルドデシルシロキシプロピルジメチルクロロシラン、ジメチルテトラデシルシロキシプロピルジメチルクロロシラン、ジメチルヘキサデシルシロキシプロピルジメチルクロロシラン、ジメチルオクタデシルシロキシプロピルジメチルクロロシラン、ジフェニルメチルシロキシプロピルジメチルクロロシラン、トリメチルシロキシオクチルジメチルクロロシラン、トリエチルシロキシオクチルジメチルクロロシラン、tert-ブチルジメチルシロキシオクチルジメチルクロロシラン、トリイソプロピルシロキシオクチルジメチルクロロシラン、(4-クロロジメチルシリルプロピル-2-メトキシ-1-トリメチルシロキシ)ベンゼン、(2-クロロジメチルシリルプロピル-1-トリメチルシロキシ)ベンゼン、(1,2-ビス(トリメチルシロキシ)-3-クロロジメチルシリルプロピル)ベンゼン、(1,2-ビス(トリメチルシロキシ)-4-クロロジメチルシリルプロピル)ベンゼン、(1,2-ビス(トリメチルシロキシ)-5-クロロジメチルシリルプロピル)ベンゼン、(1,3-ビス(トリメチルシロキシ)-2-クロロジメチルシリルプロピル)ベンゼン、(1,3-ビス(トリメチルシロキシ)-4-クロロジメチルシリルプロピル)ベンゼン、(1,3-ビス(トリメチルシロキシ)-5-クロロジメチルシリルプロピル)ベンゼン、(1,4-ビス(トリメチルシロキシ)-2-クロロジメチルシリルプロピル)ベンゼン、トリメチルシロキシプロピルジメチルブロモシラン、トリエチルシロキシプロピルジメチルブロモシラン、tert-ブチルジメチルシロキシプロピルジメチルブロモシラン、トリイソプロピルシロキシプロピルジメチルブロモシラン、トリメチルシロキシオクチルジメチルブロモシラン、トリエチルシロキシオクチルジメチルブロモシラン、tert-ブチルジメチルシロキシオクチルジメチルブロモシラン、トリイソプロピルシロキシオクチルジメチルブロモシラン、(4-ブロモジメチルシリルプロピル-2-メトキシ-1-トリメチルシロキシ)ベンゼン、(2-ブロモジメチルシリルプロピル-1-トリメチルシロキシ)ベンゼン等のトリアルキルシロキシ基を有するモノハロシラン化合物;トリメチルシロキシプロピルメチルジクロロシラン、トリエチルシロキシプロピルメチルジクロロシラン、tert-ブチルジメチルシロキシプロピルメチルジクロロシラン、トリイソプロピルシロキシプロピルメチルジクロロシラン、トリメチルシロキシオクチルメチルジクロロシラン、トリエチルシロキシオクチルメチルジクロロシラン、tert-ブチルジメチルシロキシオクチルメチルジクロロシラン、トリイソプロピルシロキシオクチルメチルジクロロシラン、(4-ジクロロメチルシリルプロピル-2-メトキシ-1-トリメチルシロキシ)ベンゼン、(2-ジクロロメチルシリルプロピル-1-トリメチルシロキシ)ベンゼン、(1,2-ビス(トリメチルシロキシ)-3-ジクロロメチルシリルプロピル)ベンゼン、(1,2-ビス(トリメチルシロキシ)-4-ジクロロメチルシリルプロピル)ベンゼン、(1,2-ビス(トリメチルシロキシ)-5-ジクロロメチルシリルプロピル)ベンゼン、(1,3-ビス(トリメチルシロキシ)-2-ジクロロメチルシリルプロピル)ベンゼン、(1,3-ビス(トリメチルシロキシ)-4-ジクロロメチルシリルプロピル)ベンゼン、(1,3-ビス(トリメチルシロキシ)-5-ジクロロメチルシリルプロピル)ベンゼン、(1,4-ビス(トリメチルシロキシ)-2-ジクロロメチルシリルプロピル)ベンゼン等のトリアルキルシロキシ基を有するアルキルジハロシラン化合物;トリメチルシロキシプロピルトリクロロシラン、トリエチルシロキシプロピルトリクロロシラン、tert-ブチルジメチルシロキシプロピルトリクロロシラン、トリイソプロピルシロキシプロピルトリクロロシラン、トリメチルシロキシオクチルトリクロロシラン、トリエチルシロキシオクチルトリクロロシラン、tert-ブチルジメチルシロキシオクチルトリクロロシラン、トリイソプロピルシロキシオクチルトリクロロシラン、(4-トリクロロシリルプロピル-2-メトキシ-1-トリメチルシロキシ)ベンゼン、(2-トリクロロシリルプロピル-1-トリメチルシロキシ)ベンゼン、(1,2-ビス(トリメチルシロキシ)-3-トリクロロシリルプロピル)ベンゼン、(1,2-ビス(トリメチルシロキシ)-4-トリクロロシリルプロピル)ベンゼン、(1,2-ビス(トリメチルシロキシ)-5-トリクロロシリルプロピル)ベンゼン、(1,3-ビス(トリメチルシロキシ)-2-トリクロロシリルプロピル)ベンゼン、(1,3-ビス(トリメチルシロキシ)-4-トリクロロシリルプロピル)ベンゼン、(1,3-ビス(トリメチルシロキシ)-5-トリクロロシリルプロピル)ベンゼン、(1,4-ビス(トリメチルシロキシ)-2-トリクロロシリルプロピル)ベンゼン等のトリアルキルシロキシ基を有するトリハロシラン化合物;ビス(クロロジメチルシリルプロポキシ)ジメチルシラン、ビス(クロロジメチルシリルプロポキシ)エチルメチルシラン、ビス(クロロジメチルシリルプロポキシ)ジプロピルシランビス(クロロジメチルシリルプロポキシ)ジブチルシラン、ビス(クロロジメチルシリルプロポキシ)フェニルメチルシラン、ビス(クロロジメチルシリルプロポキシ)ジフェニルシラン、ビス(クロロジメチルシリルオクトキシ)ジメチルシラン、ビス(クロロジメチルシリルオクトキシ)エチルメチルシラン、ビス(クロロジメチルシリルオクトキシ)ジプロピルシランビス(クロロジメチルシリルオクトキシ)ジブチルシラン、ビス(クロロジメチルシリルオクトキシ)フェニルメチルシラン、ビス(クロロジメチルシリルオクトキシ)ジフェニルシラン等のビス(モノクロロジアルキルシリルアルコキシ)ジアルキルシラン化合物;ビス(ジクロロメチルシリルプロポキシ)ジメチルシラン、ビス(ジクロロメチルシリルプロポキシ)エチルメチルシラン、ビス(ジクロロメチルシリルプロポキシ)ジプロピルシランビス(ジクロロメチルシリルプロポキシ)ジブチルシラン、ビス(ジクロロメチルシリルプロポキシ)フェニルメチルシラン、ビス(ジクロロメチルシリルプロポキシ)ジフェニルシラン、ビス(ジクロロメチルシリルオクトキシ)ジメチルシラン、ビス(ジクロロメチルシリルオクトキシ)エチルメチルシラン、ビス(ジクロロメチルシリルオクトキシ)ジプロピルシランビス(ジクロロメチルシリルオクトキシ)ジブチルシラン、ビス(ジクロロメチルシリルオクトキシ)フェニルメチルシラン、ビス(ジクロロメチルシリルオクトキシ)ジフェニルシラン等のビス(ジクロロアルキルシリルアルコキシ)ジアルキルシラン化合物;ビス(トリクロロシリルプロポキシ)ジメチルシラン、ビス(トリクロロシリルプロポキシ)エチルメチルシラン、ビス(トリクロロシリルプロポキシ)ジプロピルシランビス(トリクロロシリルプロポキシ)ジブチルシラン、ビス(トリクロロシリルプロポキシ)フェニルメチルシラン、ビス(トリクロロシリルプロポキシ)ジフェニルシラン、ビス(トリクロロシリルオクトキシ)ジメチルシラン、ビス(トリクロロシリルオクトキシ)エチルメチルシラン、ビス(トリクロロシリルオクトキシ)ジプロピルシランビス(トリクロロシリルオクトキシ)ジブチルシラン、ビス(トリクロロシリルオクトキシ)フェニルメチルシラン、ビス(トリクロロシリルオクトキシ)ジフェニルシラン等のビス(トリハロシリルアルコキシ)ジアルキルシラン化合物;トリス(クロロジメチルシリルプロポキシ)メチルシラン、トリス(クロロジメチルシリルプロポキシ)ヘキシルシラン、トリス(クロロジメチルシリルプロポキシ)オクチルシラン、トリス(クロロジメチルシリルプロポキシ)フェニルシラン等のトリス(ハロジアルキルシリルアルコキシ)アルキルシラン化合物;トリス(ジクロロメチルシリルプロポキシ)メチルシラン、トリス(ジクロロメチルシリルプロポキシ)ヘキシルシラン、トリス(ジクロロメチルシリルプロポキシ)オクチルシラン、トリス(ジクロロメチルシリルプロポキシ)フェニルシラン等のトリス(ジハロアルキルシリルアルコキシ)アルキルシラン化合物;トリス(トリクロロシリルプロポキシ)メチルシラン、トリス(トリクロロシリルプロポキシ)ヘキシルシラン、トリス(トリクロロシリルプロポキシ)オクチルシラン、トリス(トリクロロシリルプロポキシ)フェニルシラン等のトリス(トリハロシリルアルコキシ)アルキルシラン化合物;テトラキス(クロロジメチルシリルプロポキシ)シラン、テトラキス(ジハロメチルシリルプロポキシ)シラン、テトラキス(トリハロシリルプロポキシ)シラン等のテトラキス(ハロシリルプロポキシ)シラン化合物が挙げられる。
 上記一般式(2)において、R5は、水素原子、塩素原子または炭素数1~10、好ましくは炭素数1~6、より好ましくは炭素数1の非置換の1価炭化水素基を表す。
 R5の1価炭化水素基は、R3またはR4と同様の基が挙げられるが、原料調達の容易性および生成物の有用性の点から、水素原子、メチル基が好ましい。
 また、上記一般式(2)において、Xは、上記一般式(1)と同じ意味を表す。
 化合物(2)の具体例としては、アクリル酸クロリド、メタアクリル酸クロリド、クロロアクリル酸クロリド、(トリフルオロメチル)アクリル酸クロリド、イタコン酸クロリド、アクリル酸ブロミド、メタアクリル酸ブロミド、クロロアクリル酸ブロミド、(トリフルオロメチル)アクリル酸ブロミド、イタコン酸ブロミド等が挙げられる。
 本発明の製造方法において、化合物(1)と化合物(2)の配合比は特に限定されないが、化合物(1)中に含まれるシロキシ基のモル数に対して、化合物(2)が、好ましくは1~1.5モル、より好ましくは1~1.2モル、より一層好ましくは1~1.05モルである。
 本発明の製造方法は、亜鉛、銅および鉄からなる群から選ばれる少なくとも一種の金属化合物の存在下で行われる。
 金属化合物の具体例としては、酸化亜鉛、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、酢酸亜鉛、トリフルオロメタンスルホン酸亜鉛等の亜鉛化合物;酸化銅(II)、酸化銅(I)、塩化銅(II)、塩化銅(I)、臭化銅(II)、臭化銅(I)、ヨウ化銅(II)、ヨウ化銅(I)、酢酸銅(II),酢酸銅(I)、トリフルオロメタンスルホン酸銅(II)等の銅化合物;酸化鉄(III)、酸化鉄(II)、塩化鉄(III)、塩化鉄(II)、臭化鉄(III)、臭化鉄(II)、酢酸鉄(III)、酢酸鉄(II)、トリフルオロメタンスルホン酸鉄(III)、トリフルオロメタンスルホン酸鉄(II)等の鉄化合物が挙げられる。
 これらの中でも、反応性と取り扱いが容易な点から、酸化亜鉛、臭化銅、塩化鉄(III)が好ましく、亜鉛化合物がより好ましく、酸化亜鉛がより一層好ましい。
 金属化合物の使用量は特に限定されないが、化合物(1)中に含まれるシロキシ基のモル数に対して、好ましくは0.01~10モル%、より好ましくは0.05~5モル%、より一層好ましくは0.1~2モル%である。
 シロキシ-(メタ)アクリロキシ交換反応における反応温度は特に限定されないが、好ましくは40~120℃、より好ましくは60~100℃、より一層好ましくは80~100℃である。
 シロキシ-(メタ)アクリロキシ交換反応における反応時間は特に限定されないが、好ましくは0.5~10時間、より好ましくは0.5~4時間である。
 上記シロキシ-(メタ)アクリロキシ交換反応は無溶媒でも進行するが、溶媒を用いることもできる。用いられる溶媒としては、ヘキサン、オクタン、イソオクタン、デカン、ドデカン、イソドデカン等の(イソ)パラフィン化合物;トルエン、キシレン等の芳香族炭化水素化合物;テトラヒドロフラン、2-メチルテトラヒドロフラン、4-メチルテトラヒドロピラン、シクロペンチルメチルエーテル、ジオキサン、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル等のエーテル化合物;アセトニトリル、プロピオニトリル、ブチロニトリル等のニトリル化合物等が挙げられ、これらは単独で用いても、2種以上を混合して用いてもよい。
 また、シロキシ-(メタ)アクリロキシ交換反応は、目的物である化合物(3)や基質である化合物(2)の重合を抑制するために、重合禁止剤を添加して行うことが好ましい。
 重合禁止剤としては、通常用いられるメトキシフェノール化合物、ヒドロキシフェノール化合物、ヒンダードフェノール化合物、フェノチアジン化合物が挙げられる。
 これらの中でも、特に入手容易性の観点から、4-メトキシフェノール、2-メチル-4-メトキシフェノール、2-tert-ブチル-4-メトキシフェノール、4-ヒドロキシフェノール、2,6-ジ-tert-ブチル-4-メチルフェノール(BHT)、4,4-メチレンビス(2,6-ジ-tert-ブチルフェノール)、2,2-メチレンビス(6-tert-ブチル-4-メチルフェノール)、2,6-ジ-tert-ブチル-4-ジメチルアミノメチルフェノール、2,6-ジ-tert-ブチル-4-メトキシフェノール、2,6-ジ-tert-ブチル-4-ヒドロキシフェノール、3,4-ジヒドロ-2,5,7,8-テトラメチル-2-(4,8,12-トリメチルトリデシル)-2H-1-ベンゾピラン-6-オール、フェノチアジン、3,7-ジオクチルフェノチアジンが好ましい。
 重合禁止剤は、それぞれの群の中から1種を単独で使用しても、2種以上を組み合わせて使用してもよい。
 重合禁止剤の使用量は特に限定されないが、化合物(2)に対して、好ましくは0.0001~10質量%、より好ましくは0.001~5質量%、より一層好ましくは0.01~1質量%である。
 上記一般式(3)において、R2~R5、Xおよびmは、上記と同じ意味を表す。
 本発明で得られる化合物(3)の具体例としては、アクリロキシプロピルジメチルクロロシラン、アクリロキシペンチルジメチルクロロシラン、アクリロキシオクチルジメチルクロロシラン、アクリロキシエトキシプロピルメチルジクロロシラン、アクリル酸(4-クロロジメチルシリルプロピル-2-メトキシ)フェニル、アクリル酸(2-クロロジメチルシリルプロピル-1-アクリロキシ)フェニル、(1,2-ビス(アクリロキシ)-3-クロロジメチルシリルプロピル)ベンゼン、(1,2-ビス(アクリロキシ)-4-クロロジメチルシリルプロピル)ベンゼン、(1,2-ビス(アクリロキシ)-5-クロロジメチルシリルプロピル)ベンゼン、(1,3-ビス(アクリロキシ)-2-クロロジメチルシリルプロピル)ベンゼン、(1,3-ビス(アクリロキシ)-4-クロロジメチルシリルプロピル)ベンゼン、(1,3-ビス(アクリロキシ)-5-クロロジメチルシリルプロピル)ベンゼン、(1,4-ビス(アクリロキシ)-2-クロロジメチルシリルプロピル)ベンゼン、メタクリロキシプロピルジメチルクロロシラン、メタクリロキシペンチルジメチルクロロシラン、メタクリロキシオクチルジメチルクロロシラン、メタクリロキシエトキシプロピルメチルジクロロシラン、メタクリル酸(4-クロロジメチルシリルプロピル-2-メトキシ)フェニル、メタクリル酸(2-クロロジメチルシリルプロピル-1-アクリロキシ)フェニル、(1,2-ビス(メタクリロキシ)-3-クロロジメチルシリルプロピル)ベンゼン、(1,2-ビス(メタクリロキシ)-4-クロロジメチルシリルプロピル)ベンゼン、(1,2-ビス(メタクリロキシ)-5-クロロジメチルシリルプロピル)ベンゼン、(1,3-ビス(メタクリロキシ)-2-クロロジメチルシリルプロピル)ベンゼン、(1,3-ビス(メタクリロキシ)-4-クロロジメチルシリルプロピル)ベンゼン、(1,3-ビス(メタクリロキシ)-5-クロロジメチルシリルプロピル)ベンゼン、(1,4-ビス(メタクリロキシ)-2-クロロジメチルシリルプロピル)ベンゼン等の(メタ)アクリロキシ基を有するジアルキルクロロシラン化合物;アクリロキシプロピルメチルジクロロシラン、アクリロキシペンチルメチルジクロロシラン、アクリロキシオクチルメチルジクロロシラン、アクリロキシエトキシプロピルメチルジクロロシラン、アクリル酸(4-ジクロロメチルシリルプロピル-2-メトキシ)フェニル、アクリル酸(2-ジクロロメチルシリルプロピル-1-アクリロキシ)フェニル、(1,2-ビス(アクリロキシ)-3-ジクロロメチルシリルプロピル)ベンゼン、(1,2-ビス(アクリロキシ)-4-ジクロロメチルシリルプロピル)ベンゼン、(1,2-ビス(アクリロキシ)-5-ジクロロメチルシリルプロピル)ベンゼン、(1,3-ビス(アクリロキシ)-2-ジクロロメチルシリルプロピル)ベンゼン、(1,3-ビス(アクリロキシ)-4-ジクロロメチルシリルプロピル)ベンゼン、(1,3-ビス(アクリロキシ)-5-ジクロロメチルシリルプロピル)ベンゼン、(1,4-ビス(アクリロキシ)-2-ジクロロメチルシリルプロピル)ベンゼン、メタクリロキシプロピルメチルジクロロシラン、メタクリロキシペンチルメチルジクロロシラン、メタクリロキシオクチルメチルジクロロシラン、メタクリロキシエトキシプロピルメチルジクロロシラン、メタクリル酸(4-ジクロロメチルシリルプロピル-2-メトキシ)フェニル、メタクリル酸(2-ジクロロメチルシリルプロピル-1-アクリロキシ)フェニル、(1,2-ビス(メタクリロキシ)-3-ジクロロメチルシリルプロピル)ベンゼン、(1,2-ビス(メタクリロキシ)-4-ジクロロメチルシリルプロピル)ベンゼン、(1,2-ビス(メタクリロキシ)-5-ジクロロメチルシリルプロピル)ベンゼン、(1,3-ビス(メタクリロキシ)-2-ジクロロメチルシリルプロピル)ベンゼン、(1,3-ビス(メタクリロキシ)-4-ジクロロメチルシリルプロピル)ベンゼン、(1,3-ビス(メタクリロキシ)-5-ジクロロメチルシリルプロピル)ベンゼン、(1,4-ビス(メタクリロキシ)-2-ジクロロメチルシリルプロピル)ベンゼン等の(メタ)アクリロキシ基を有するアルキルジクロロシラン化合物;アクリロキシプロピルトリクロロシラン、アクリロキシペンチルトリクロロシラン、アクリロキシオクチルトリクロロシラン、アクリロキシエトキシプロピルメチルジクロロシラン、アクリル酸(4-トリクロロシリルプロピル-2-メトキシ)フェニル、アクリル酸(2-トリクロロシリルプロピル-1-アクリロキシ)フェニル、(1,2-ビス(アクリロキシ)-3-トリクロロシリルプロピル)ベンゼン、(1,2-ビス(アクリロキシ)-4-トリクロロシリルプロピル)ベンゼン、(1,2-ビス(アクリロキシ)-5-トリクロロシリルプロピル)ベンゼン、(1,3-ビス(アクリロキシ)-2-トリクロロシリルプロピル)ベンゼン、(1,3-ビス(アクリロキシ)-4-トリクロロシリルプロピル)ベンゼン、(1,3-ビス(アクリロキシ)-5-トリクロロシリルプロピル)ベンゼン、(1,4-ビス(アクリロキシ)-2-トリクロロシリルプロピル)ベンゼン、メタクリロキシプロピルトリクロロシラン、メタクリロキシペンチルトリクロロシラン、メタクリロキシオクチルトリクロロシラン、メタクリロキシエトキシプロピルメチルジクロロシラン、メタクリル酸(4-トリクロロシリルプロピル-2-メトキシ)フェニル、メタクリル酸(2-トリクロロシリルプロピル-1-アクリロキシ)フェニル、(1,2-ビス(メタクリロキシ)-3-トリクロロシリルプロピル)ベンゼン、(1,2-ビス(メタクリロキシ)-4-トリクロロシリルプロピル)ベンゼン、(1,2-ビス(メタクリロキシ)-5-トリクロロシリルプロピル)ベンゼン、(1,3-ビス(メタクリロキシ)-2-トリクロロシリルプロピル)ベンゼン、(1,3-ビス(メタクリロキシ)-4-トリクロロシリルプロピル)ベンゼン、(1,3-ビス(メタクリロキシ)-5-トリクロロシリルプロピル)ベンゼン、(1,4-ビス(メタクリロキシ)-2-トリクロロシリルプロピル)ベンゼン等の(メタ)アクリロキシ基を有するトリクロロシラン化合物等が挙げられる。
 これらの中でも、生成物の有用性の点から、アクリロキシプロピルジメチルクロロシラン、アクリロキシペンチルジメチルクロロシラン、アクリロキシオクチルジメチルクロロシラン、アクリル酸(4-クロロジメチルシリルプロピル-2-メトキシ)フェニル、アクリル酸(2-クロロジメチルシリルプロピル-1-アクリロキシ)フェニルが好ましい。
 また、化合物(3)に含まれる(メタ)アクリロキシ基を有する有機ケイ素化合物の内、下記一般式(6)で表されるアクリロキシ基を有する有機ケイ素化合物(以下、「化合物(6)」という。)は、分子内にベンゼン環を有しており、溶解性が高く、各種樹脂変性材料への応用が期待される化合物である。
Figure JPOXMLDOC01-appb-C000012
(式中、R3、R4、Xおよびmは、上記と同じ意味を表す。)
 上記一般式(6)において、R6は、それぞれ独立して水素原子、ヘテロ原子を含んでいてもよい炭素数1~10、好ましくは炭素数1~6、より好ましくは炭素数1~4の置換または非置換の1価炭化水素基またはアクリロキシ基を表す。
 R6の1価炭化水素基は、直鎖状、分岐鎖状、環状のいずれでもよく、その具体例としては、メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-ヘキシル、n-へプチル、n-オクチル、デシル基等の直鎖状のアルキル基;イソプロピル、イソブチル、sec-ブチル、tert-ブチル、ネオペンチル、テキシル、2-エチルヘキシル基等の分岐鎖状のアルキル基;シクロペンチル、シクロヘキシル基等の環状アルキル基;ビニル、アリル(2-プロペニル)、1-プロペニル、ブテニル、ペンテニル、オクテニル基等のアルケニル基;フェニル、トリル基等のアリール基;ベンジル、フェネチル基等のアラルキル基等が挙げられる。
 また、R6の1価炭化水素基は、分子鎖中に、エーテル基(-O-)、チオエーテル基(-S-)等のヘテロ原子の1種または2種以上が介在していてもよい。
 さらに、R6の1価炭化水素基は、水素原子の一部または全部がその他の置換基で置換されていてもよく、この置換基の具体例としては、メトキシ、エトキシ、(イソ)プロポキシ基等の炭素数1~6のアルコキシ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;フェニル、トリル基等の炭素数6~10のアリール基;ベンジル、フェネチル基等の炭素数7~10のアラルキル基等が挙げられる。
 上記式(6)において、R7は、単結合またはOもしくはSを含んでいてもよい、炭素数1~10、好ましくは炭素数3~8、より好ましくは炭素数3~6の2価炭化水素基を表す。
 R7の炭素数1~10の2価炭化水素基は、直鎖状、分岐鎖状、環状のいずれでもよく、その具体例としては、メチレン、エチレン、トリメチレン、テトラメチレン、ヘキサメチレン、オクタメチレン、デシレン基等の直鎖状アルキレン基;プロピレン(メチルエチレン)基、メチルトリメチレン基等の分岐状アルキレン基;シクロヘキシレン基等の環状アルキレン基; プロペニレン基等のアルケニレン基; フェニレン基等のアリーレン基;メチレンフェニレン基、メチレンフェニレンメチレン基等のアラルキレン基等が挙げられる。
 これらの中でも、原料の調達容易性の観点から、直鎖状アルキレン基、アラルキレン基が好ましい。
 R7のOまたはSを含む2価炭化水素基の具体例としては、アルキレンオキシアルキレン基、アルキレンチオアルキレン基等が挙げられ、これらのアルキレン基としては、R7の直鎖状、分岐状、環状アルキレン基で例示した基と同様の基が挙げられる。
 また、化合物(6)に含まれるアクリロキシ基は、少なくとも1つ、好ましくは1~4個、より好ましくは1または2個である。化合物(6)中にアクリロキシ基を含むことにより、アクリロキシ基が種々のラジカル重合性モノマーと共重合することが可能である。
 化合物(6)の具体例としては、アクリル酸(4-クロロジメチルシリルエチル)フェニル、(1,2-ビス(アクリロキシ)-4-クロロジメチルシリルエチル)ベンゼン、(1,3-ビス(アクリロキシ)-4-クロロジメチルシリルエチル)ベンゼン、メタクリル酸(4-クロロジメチルシリルエチル)フェニル、(1,2-ビス(メタクリロキシ)-4-クロロジメチルシリルエチル)ベンゼン、(1,3-ビス(メタクリロキシ)-4-クロロジメチルシリルエチル)ベンゼン、アクリル酸(4-クロロジメチルシリルプロピル-2-メトキシ)フェニル、(1,2-ビス(アクリロキシ)-4-クロロジメチルシリルプロピル)ベンゼン、(1,3-ビス(アクリロキシ)-4-クロロジメチルシリルプロピル)ベンゼン、メタクリル酸(4-クロロジメチルシリルプロピル-2-メトキシ)フェニル、(1,2-ビス(メタクリロキシ)-4-クロロジメチルシリルプロピル)ベンゼン、(1,3-ビス(メタクリロキシ)-4-クロロジメチルシリルプロピル)ベンゼン等の(メタ)アクリロキシ基を有するジアルキルクロロシラン化合物;アクリル酸(4-ジクロロメチルシリルプロピル-2-メトキシ)フェニル、(1,2-ビス(アクリロキシ)-4-ジクロロメチルシリルプロピル)ベンゼン、(1,3-ビス(アクリロキシ)-4-ジクロロメチルシリルプロピル)ベンゼン、メタクリル酸(4-ジクロロメチルシリルプロピル-2-メトキシ)フェニル、(1,2-ビス(メタクリロキシ)-4-ジクロロメチルシリルプロピル)ベンゼン、(1,3-ビス(メタクリロキシ)-4-ジクロロメチルシリルプロピル)ベンゼン等の(メタ)アクリロキシ基を有するアルキルジクロロシラン化合物;アクリル酸(4-トリクロロシリルプロピル-2-メトキシ)フェニル、(1,2-ビス(アクリロキシ)-4-トリクロロシリルプロピル)ベンゼン、(1,3-ビス(アクリロキシ)-4-トリクロロシリルプロピル)ベンゼン、メタクリル酸(4-トリクロロシリルプロピル-2-メトキシ)フェニル、(1,2-ビス(メタクリロキシ)-4-トリクロロシリルプロピル)ベンゼン、(1,3-ビス(メタクリロキシ)-4-トリクロロシリルプロピル)ベンゼン等の(メタ)アクリロキシ基を有するトリクロロシラン化合物等が挙げられる。
 これらの中でも、生成物の有用性と合成容易性の点から、アクリル酸(4-クロロジメチルシリルプロピル-2-メトキシ)フェニル、(1,2-ビス(アクリロキシ)-4-クロロジメチルシリルプロピル)ベンゼンが好ましい。
 上記一連の反応で得られた反応液から目的の化合物(3)または化合物(6)を単離するには、ろ過、蒸留、減圧ストリップや各種クロマトグラフィー、吸着剤を用いた処理等の通常の有機合成における精製方法から適宜選択して用いることができる。
 これらの中でも、目的物を高純度化できる観点から、蒸留による精製が好ましい。また、化合物(3)は重合性の(メタ)アクリロキシ基を有していることから、熱履歴はできるだけ短くすることが好ましい。このため、蒸留装置の理論段数を低くすることが好ましく、薄膜蒸留による精製が好ましい。
 なお、必要に応じて、精製工程においても、上述した重合禁止剤を添加してもよい。
 本発明で用いられる上記化合物(1)は、下記一般式(4)で表される不飽和結合含有オルガノキシシラン化合物(以下、「化合物(4)」という。)と、下記一般式(5)で表されるヒドロハロシラン化合物(以下、「化合物(5)」という。)を白金触媒存在下でヒドロシリル化反応させて得ることができる。
Figure JPOXMLDOC01-appb-C000013
(式中、R1~R3、X、nおよびmは、上記と同じ意味を表す。)
 化合物(4)の具体例としては、アリロキシトリメチルシラン、アリロキシトリエチルシラン、アリロキシtert-ブチルジメチルシラン、アリロキシトリイソプロピルシラン、アリロキシジメチルヘキシルシラン、アリロキシジメチルオクチルシラン、アリロキシジメチルデシルシラン、アリロキシジメチルドデシルシラン、アリロキシジメチルテトラデシルシラン、アリロキシジメチルヘキサデシルシラン、アリロキシジメチルオクタデシルシラン、アリロキシジフェニルメチルシラン、ペンテノキシトリメチルシラン、ペンテノキシトリエチルシラン、ペンテノキシtert-ブチルジメチルシラン、ペンテノキシトリイソプロピルシラン、オクテノキシトリメチルシラン、オクテノキシトリエチルシラン、オクテノキシtert-ブチルジメチルシラン、オクテノキシトリイソプロピルシラン、(4-アリル-2-メトキシ-1-トリメチルシロキシ)ベンゼン、(2-アリル-1-トリメチルシロキシ)ベンゼン、(1,2-ビス(トリメチルシロキシ)-3-アリル)ベンゼン、(1,2-ビス(トリメチルシロキシ)-4-アリル)ベンゼン、(1,3-ビス(トリメチルシロキシ)-2-アリル)ベンゼン、(1,3-ビス(トリメチルシロキシ)-4-アリル)ベンゼン、(1,3-ビス(トリメチルシロキシ)-5-アリル)ベンゼン、(1,4-ビス(トリメチルシロキシ)-2-アリル)ベンゼン等のアルケニル(オキシ)基を有するトリアルキルシラン化合物;ジアリロキシジメチルシラン、ジアリロキシエチルメチルシラン、ジアリロキシジプロピルシラン、ジアリロキシジブチルシラン、ジアリロキシフェニルメチルシラン、ジアリロキシジフェニルシラン、ジペンテノキシジメチルシラン、ジペンテノキシエチルメチルシラン、ジペンテノキシジプロピルシラン、ジペンテノキシジブチルシラン、ジペンテノキシフェニルメチルシラン、ジペンテノキシジフェニルシラン、ジオクテノキシジメチルシラン、ジオクテノキシエチルメチルシラン、ジオクテノキシジプロピルシラン、ジオクテノキシジブチルシラン、ジオクテノキシフェニルメチルシラン、ジオクテノキシジフェニルシラン等のジアルケニルオキシジアルキルシラン化合物;トリアリロキシメチルシラン、トリアリロキシヘキシルシラン、トリアリロキシオクチルシラン、トリアリロキシフェニルシラン、トリペンテノキシメチルシラン、トリペンテノキシヘキシルシラン、トリペンテノキシオクチルシラン、トリペンテノキシフェニルシラン、トリオクテノキシメチルシラン、トリオクテノキシヘキシルシラン、トリオクテノキシオクチルシラン、トリオクテノキシフェニルシラン等のトリアルケニルオキシアルキルシラン化合物;テトラアリロキシシラン、テトラペンテノキシシラン、テトラオクテノキシシラン等のテトラアルケニルオキシシラン化合物が挙げられる。
 化合物(5)の具体例としては、ジメチルクロロシラン、ジフェニルクロロシラン等のジアルキルクロロシラン化合物;メチルジクロロシラン、フェニルジクロロシラン等のアルキルジクロロシラン化合物;トリクロロシランが挙げられる。
 化合物(4)と化合物(5)の配合比は特に限定されないが、生産性の観点から、化合物(5)が、化合物(4)中に含まれる不飽和結合1モルに対して、好ましくは0.8~2.0モル、より好ましくは0.8~1.5モル、より一層好ましくは0.9~1.1モルである。
 ヒドロシリル化反応では、触媒として白金化合物を用いる。白金化合物の具体例としては、塩化白金酸、塩化白金酸のアルコール溶液、白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体のトルエンまたはキシレン溶液、テトラキストリフェニルホスフィン白金、ジクロロビストリフェニルホスフィン白金、ジクロロビスアセトニトリル白金、ジクロロビスベンゾニトリル白金、ジクロロシクロオクタジエン白金、白金-活性炭等が挙げられる。
 白金化合物の使用量は特に限定されないが、生産性の点から、化合物(4)中に含まれる不飽和結合1モルに対して、好ましくは0.000001~0.2モル、より好ましくは0.00001~0.1モルである。
 ヒドロシリル化反応における反応温度は特に限定されないが、生成物の安定性の観点から、0~200℃が好ましく、20~150℃がより好ましい。
 ヒドロシリル化反応における反応時間は特に限定されないが、生成物の安定性の観点から、1~40時間が好ましく、1~20時間がより好ましい。
 なお、ヒドロシリル化反応は、触媒の失活や、化合物(4)および化合物(5)の加水分解を防ぐために窒素、アルゴン等の不活性ガス雰囲気下で行うことが好ましい。
 ヒドロシリル化反応は無溶媒でも進行するが、溶媒を用いることもできる。用いられる溶媒としては、シロキシ-(メタ)アクリロキシ交換反応に用いる溶媒と同様のものが挙げられる。
 以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 実施例および比較例における目的物(A)、(メタ)アクリロキシ付加体(B)、ビス付加体(C)の生成率(面積%)は、ガスクロマトグラフィー分析(以下、「GC分析」ともいう。)により、以下の計算で求めた。
目的物(A):(Aの面積値)/(Aの面積値+Bの面積値+Cの面積値)×100
Figure JPOXMLDOC01-appb-C000014
(メタ)アクリロキシ付加体(B):(Bの面積値)/(Aの面積値+Bの面積値+Cの面積値)×100
Figure JPOXMLDOC01-appb-C000015
ビス付加体(C):(Cの面積値)/(Aの面積値+Bの面積値+Cの面積値)×100
Figure JPOXMLDOC01-appb-C000016
[実施例1]3-アクリロキシプロピルジメチルクロロシランの合成
 撹拌機、温度計、還流冷却器を備えた四つ口ガラスフラスコの内部を窒素で置換し、トリエチルシロキシプロピルジメチルクロロシラン266.9g(1.000モル)、酸化亜鉛0.083g(0.0010モル)および2,6-ジ-tert-ブチル-4-メチルフェノール(ジ(tert-ブチル)ヒドロキシトルエン(以下、「BHT」ともいう。)0.1gを仕込み70℃に加温した。ここに、アクリル酸クロリド91.4g(1.01モル)を加えて、同じ温度で3時間撹拌した。反応液をGC分析して、トリエチルシロキシプロピルジメチルクロロシランが消失し、3-アクリロキシプロピルジメチルクロロシランが生成したことを確認した。各生成物の生成率を表1に示す。
 反応液を蒸留して、純度95%の3-アクリロキシプロピルジメチルクロロシラン176.9gを得た(収率86%)。
[実施例2]8-アクリロキシオクチルジメチルクロロシランの合成
 撹拌機、温度計、還流冷却器を備えた四つ口ガラスフラスコの内部を窒素で置換し、トリエチルシロキシオクチルジメチルクロロシラン129g(0.384モル)、酸化亜鉛0.302g(0.00371モル)およびBHT0.06gを仕込み70℃に加温した。ここに、アクリル酸クロリド35.7g(0.394モル)を加えて、同じ温度で1時間撹拌した。反応液をGC分析して、トリエチルシロキシオクチルジメチルクロロシランが消失し、8-アクリロキシオクチルジメチルクロロシランが生成したことを確認した。各生成物の生成率を表1に示す。
 反応液を蒸留して、純度95%の8-アクリロキシオクチルジメチルクロロシラン93.8gを得た(収率85%)。
[実施例3]アクリル酸(4-クロロジメチルシリルプロピル-2-メトキシ-)フェニルの合成
 撹拌機、温度計、還流冷却器を備えた四つ口ガラスフラスコの内部を窒素で置換し、(4-クロロジメチルシリルプロピル-2-メトキシ-1-トリメチルシロキシ)ベンゼン193g(0.583モル)、酸化亜鉛0.048g(0.00059モル)およびBHT0.09gを仕込み80℃に加温した。ここに、アクリル酸クロリド53.9g(0.596モル)を加えて、同じ温度で1時間撹拌した。反応液をGC分析して、(4-クロロジメチルシリルプロピル-2-メトキシ-1-トリメチルシロキシ)ベンゼンが消失し、アクリル酸(4-クロロジメチルシリルプロピル-2-メトキシ-)フェニルが生成したことを確認した。各生成物の生成率を表1に示す。
 反応液を蒸留して、純度99%以上のアクリル酸(4-クロロジメチルシリルプロピル-2-メトキシ-)フェニル119gを得た(収率61%)。得られた化合物の1H-NMRチャートを図1に示す。
[実施例4]アクリル酸(2-クロロジメチルシリルプロピル)フェニルの合成
 撹拌機、温度計、還流冷却器を備えた四つ口ガラスフラスコの内部を窒素で置換し、(2-クロロジメチルシリルプロピル-1-トリメチルシロキシ)ベンゼン272g(0.904モル)、酸化亜鉛0.75g(0.00922モル)およびBHT0.12gを仕込み80℃に加温した。ここに、アクリル酸クロリド83.0g(0.922モル)を加えて、同じ温度で1時間撹拌した。反応液をGC分析して、(2-クロロジメチルシリルプロピル-1-トリメチルシロキシ)ベンゼンが消失し、アクリル酸(2-クロロジメチルシリルプロピル)フェニルが生成したことを確認した。各生成物の生成率を表1に示す。
 反応液を蒸留して、純度99%以上のアクリル酸(4-クロロジメチルシリルプロピル-2-メトキシ-)フェニル166gを得た(収率61%)。
[実施例5]3-アクリロキシエトキシプロピルジメチルクロロシランの合成
 撹拌機、温度計、還流冷却器を備えた四つ口ガラスフラスコの内部を窒素で置換し、トリエチルシロキシエトキシプロピルジメチルクロロシラン31.0g(0.0997モル)、酸化亜鉛0.184g(0.00226モル)およびBHT0.01gを仕込み70℃に加温した。ここに、アクリル酸クロリド9.5g(0.105モル)を加えて同じ温度で3時間撹拌した。反応液をGC分析して、トリエチルシロキシプロピルジメチルクロロシランが消失し、3-アクリロキシエトキシプロピルジメチルクロロシランが生成したことを確認した。各生成物の生成率を表1に示す。
[実施例6]3-アクリロキシプロピルジメチルクロロシランの合成
 撹拌機、温度計、還流冷却器を備えた四つ口ガラスフラスコの内部を窒素で置換し、アリロキシトリメチルシラン130.4g(1.001モル)および塩化白金(IV)酸の2-エチルヘキサノール溶液0.975g(白金原子として0.0001モル)を仕込み80℃に加温した。ここに、ジメチルクロロシラン81.4g(0.860モル)を3時間かけて滴下し、同じ温度で1時間撹拌した。反応液をGC分析して、トリメチルシロキシプロピルジメチルクロロシランが生成したことを確認した。
 反応液を室温に冷却した後、酸化亜鉛0.814g(0.0100モル)およびBHT0.1gを加え、80℃に温調した。ここに、アクリル酸クロリド90.5g(1.00モル)を加えて、同じ温度で1時間撹拌した。反応液をGC分析して、トリメチルシロキシプロピルジメチルクロロシランが消失し、3-アクリロキシプロピルジメチルクロロシランが生成したことを確認した。各生成物の生成率を表1に示す。
 反応液を蒸留して、純度95%の3-アクリロキシプロピルジメチルクロロシラン133.1gを得た(収率64%)。
[実施例7]3-アクリロキシプロピルジメチルクロロシランの合成
 撹拌機、温度計、還流冷却器を備えた四つ口ガラスフラスコの内部を窒素で置換し、アリロキシトリエチルシラン135.6g(0.7829モル)および塩化白金(IV)酸の2-エチルヘキサノール溶液0.383g(白金原子として0.000393モル)を仕込み80℃に加温した。ここに、ジメチルクロロシラン64.2g(0.679モル)を3時間かけて滴下し、同じ温度で1時間撹拌した。反応液をGC分析して、クロロジメチルプロポキシトリエチルシランが生成したことを確認した。
 反応液を室温に冷却した後、酸化亜鉛1.38g(0.0170モル)およびBHT0.08gを加え、80℃に温調した。ここにアクリル酸クロリド72.7g(0.803モル)を加えて同じ温度で1時間撹拌した。反応液をGC分析して、トリエチルシロキシプロピルジメチルクロロシランが消失し、3-アクリロキシプロピルジメチルクロロシランが生成したことを確認した。各生成物の生成率を表1に示す。
 反応液を蒸留して、純度95%の3-アクリロキシプロピルジメチルクロロシラン99.0gを得た(収率61%)。
[実施例8]3-アクリロキシプロピルジメチルクロロシランの合成
 撹拌機、温度計、還流冷却器を備えた四つ口ガラスフラスコの内部を窒素で置換し、アリロキシtert-ブチルジメチルシラン17.1g(0.0992モル)および塩化白金(IV)酸の2-エチルヘキサノール溶液0.0914g(白金原子として0.00000937モル)を仕込み80℃に加温した。ここに、ジメチルクロロシラン8.6g(0.091モル)を3時間かけて滴下し、同じ温度で1時間撹拌した。反応液をGC分析して、クロロジメチルプロポキシtert-ブチルジメチルシランが生成したことを確認した。
 反応液を室温に冷却した後、塩化亜鉛0.0814g(0.00100モル)およびBHT0.01gを加え、100℃に温調した。ここに、アクリル酸クロリド9.2g(0.10モル)を加えて、同じ温度で1時間撹拌した。反応液をGC分析して、tert-ブチルジメチルシロキシプロピルジメチルクロロシランシランが消失し、3-アクリロキシプロピルジメチルクロロシランが生成したことを確認した。各生成物の生成率を表1に示す。
[実施例9]3-アクリロキシプロピルジメチルクロロシランの合成
 撹拌機、温度計、還流冷却器を備えた四つ口ガラスフラスコの内部を窒素で置換し、ジアリロキシジメチルシラン17.2g(0.100モル)および塩化白金(IV)酸の2-エチルヘキサノール溶液0.082g(白金原子として0.000084モル)を仕込み60℃に加温した。ここに、ジメチルクロロシラン17.0g(0.18モル)を3時間かけて滴下し、同じ温度で1時間撹拌した。反応液をGC分析して、ビス(クロロジメチルプロポキシ)ジメチルシランが生成したことを確認した。
 反応液を室温に冷却した後、酸化亜鉛0.337g(0.00414モル)およびBHT0.01gを加え、80℃に温調した。ここに、アクリル酸クロリド18.5g(0.204モル)を加えて、同じ温度で1時間撹拌した。反応液をGC分析して、ビス(クロロジメチルプロポキシ)ジメチルシランが消失し、3-アクリロキシプロピルジメチルクロロシランが生成したことを確認した。各生成物の生成率を表1に示す。
[実施例10]5-アクリロキシペンチルジメチルクロロシランの合成
 撹拌機、温度計、還流冷却器を備えた四つ口ガラスフラスコの内部を窒素で置換し、ペンテノキシトリエチルシラン40.1g(0.200モル)および塩化白金(IV)酸の2-エチルヘキサノール溶液0.099g(白金原子として0.000010モル)を仕込み80℃に加温した。ここに、ジメチルクロロシラン17.2g(0.181モル)を3時間かけて滴下し、同じ温度で1時間撹拌した。反応液をGC分析して、トリエチルシロキシペンチルジメチルクロロシランが生成したことを確認した。
 反応液を室温に冷却した後、酸化亜鉛0.343g(0.00421モル)およびBHT0.02gを加え、80℃に温調した。ここに、アクリル酸クロリド19.0g(0.210モル)を加えて、同じ温度で1時間撹拌した。反応液をGC分析して、トリエチルシロキシペンチルジメチルクロロシランが消失し、5-アクリロキシペンチルジメチルクロロシランが生成したことを確認した。各生成物の生成率を表1に示す。
 反応液を蒸留し、純度98%の5-アクリロキシペンチルジメチルクロロシラン32.0g(収率68%)を得た。
[実施例11]3-メタクリロキシプロピルジメチルクロロシランの合成
 撹拌機、温度計、還流冷却器を備えた四つ口ガラスフラスコの内部を窒素で置換し、トリエチルシロキシプロピルジメチルクロロシラン266.9g(1.000モル)、酸化亜鉛0.083g(0.0010モル)およびBHT0.1gを仕込み70℃に加温した。ここに、メタクリル酸クロリド107g(1.02モル)を加えて、同じ温度で3時間撹拌した。反応液をGC分析して、トリエチルシロキシプロピルジメチルクロロシランが消失し、3-メタクリロキシプロピルジメチルクロロシランが生成したことを確認した。各生成物の生成率を表1に示す。
[実施例12]8-アクリロキシオクチルトリクロロシランの合成
 撹拌機、温度計、還流冷却器を備えた四つ口ガラスフラスコの内部を窒素で置換し、トリエチルシロキシオクチルトリクロロシラン209g(0.554モル)、酸化亜鉛0.90g(0.011モル)およびBHT0.08gを仕込み70℃に加温した。ここに、アクリル酸クロリド51.1g(0.565モル)を加えて、同じ温度で3時間撹拌した。反応液をGC分析して、トリエチルシロキシオクチルトリクロロシランが消失し、8-アクリロキシオクチルトリクロロシランが生成したことを確認した。各生成物の生成率を表1に示す。
[実施例13]3-アクリロキシプロピルジメチルクロロシランの合成
 撹拌機、温度計、還流冷却器を備えた四つ口ガラスフラスコの内部を窒素で置換し、トリエチルシロキシプロピルジメチルクロロシラン266.9g(1.000モル)、臭化銅(II)2.2g(0.0098モル)およびBHT0.1gを仕込み70℃に加温した。ここに、アクリル酸クロリド91.4g(1.01モル)を加えて、同じ温度で3時間撹拌した。反応液をGC分析して、トリエチルシロキシプロピルジメチルクロロシランが消失し、3-アクリロキシプロピルジメチルクロロシランが生成したことを確認した。各生成物の生成率を表1に示す。
[実施例14]3-アクリロキシプロピルジメチルクロロシランの合成
 撹拌機、温度計、還流冷却器を備えた四つ口ガラスフラスコの内部を窒素で置換し、アリロキシジメチルオクタデシルシラン631g(1.711モル)および白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体のトルエン溶液0.55g(白金原子として0.000085モル)を仕込み60℃に加温した。ここに、ジメチルクロロシラン146g(1.54モル)を3時間かけて滴下し、同じ温度で1時間撹拌した。反応液をGC分析して、ジメチルオクタデシルシロキシプロピルジメチルクロロシランが生成したことを確認した。
 反応液を室温に冷却した後、酸化亜鉛2.79g(0.0342モル)およびBHT0.1gを加え、80℃に温調した。ここに、アクリル酸クロリド163g(1.80モル)を加えて、同じ温度で1時間撹拌した。反応液をGC分析して、ジメチルオクタデシルシロキシプロピルジメチルクロロシランが消失し、3-アクリロキシプロピルジメチルクロロシランが生成したことを確認した。各生成物の生成率を表1に示す。
 反応液を蒸留して、純度98%の3-アクリロキシプロピルジメチルクロロシラン197gを得た(収率62%)。
[比較例1]3-アクリロキシプロピルジメチルクロロシランの合成
 撹拌機、温度計、還流冷却器を備えた四つ口ガラスフラスコの内部を窒素で置換し、アリルアクリレート224.2g(2.000モル)、塩化白金(IV)酸の2-エチルヘキサノール溶液0.975g(白金原子として0.000100モル)およびBHT0.2gを仕込み80℃に加温した。ここに、ジメチルクロロシラン208.1g(2.200モル)を3時間かけて滴下し、同じ温度で1時間撹拌した。反応液をGC分析して、3-アクリロキシプロピルジメチルクロロシランが生成したことを確認した。各生成物の生成率を表1に示す。
 反応液を蒸留して、純度75%の3-アクリロキシプロピルジメチルクロロシランを得た。これを再度蒸留して、純度97%の3-アクリロキシプロピルジメチルクロロシラン74.4gを得た(収率18%)。
Figure JPOXMLDOC01-appb-T000017
 表1に示されるように、本発明の製造方法である実施例1~14では、自己反応性を有する化合物を用いることなく、(メタ)アクリロキシ付加体(B)やビス付加体(C)も生じずに、目的物である(メタ)アクリロキシハロシラン化合物(A)を選択的に製造できることがわかる。このように、本発明の製造方法では、目的物を高収率かつ高純度で、安定的に得ることができる。

Claims (3)

  1.  下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、非置換の炭素数1~20の1価炭化水素基を表し、R2は、それぞれ独立してO、SおよびSiからなる群から選ばれる少なくとも1つの原子を含んでいてもよい、置換または非置換の炭素数1~20の2価炭化水素基を表し、R3は、それぞれ独立して水素原子または非置換の炭素数1~10の1価炭化水素基を表し、R4は、それぞれ独立して非置換の炭素数1~10の1価炭化水素基を表し、Xは、塩素原子または臭素原子を表し、mは、0、1または2を表し、nは、0、1、2または3を表す。)
    で表されるシロキシアルキルハロシラン化合物と、下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R5は、水素原子、塩素原子または非置換の炭素数1~10の1価炭化水素基を表し、Xは、前記と同じ意味を表す。)
    で表されるカルボン酸ハロゲン化物を、亜鉛、銅および鉄からなる群から選ばれる少なくとも1種の金属化合物の存在下でシロキシ-(メタ)アクリロキシ交換反応させる、下記一般式(3)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R2~R5、Xおよびmは、前記と同じ意味を表す。)
    で表される(メタ)アクリロキシ基を有する有機ケイ素化合物を得る工程を含む、(メタ)アクリロキシ基を有する有機ケイ素化合物の製造方法。
  2.  下記一般式(4)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R1~R3およびnは、前記と同じ意味を表す。)
    で表される不飽和結合含有オルガノキシシラン化合物と、下記一般式(5)
    H-SiR4 m3-m   (5)
    (式中、R4、Xおよびmは、前記と同じ意味を表す。)
    で表されるヒドロハロシラン化合物を白金触媒存在下でヒドロシリル化反応させて、前記一般式(1)で表されるシロキシアルキルハロシラン化合物を得る工程をさらに含む請求項1記載の(メタ)アクリロキシ基を有する有機ケイ素化合物の製造方法。
  3.  下記一般式(6)で表されるアクリロキシ基を有する有機ケイ素化合物。
    Figure JPOXMLDOC01-appb-C000005
    (式中、R6は、それぞれ独立して水素原子、ヘテロ原子を含んでいてもよい、置換または非置換の炭素数1~10の1価炭化水素基またはアクリロキシ基を表し、R7は、単結合またはOもしくはSを含んでいてもよい炭素数1~10の2価炭化水素基を表し、R3は、水素原子または非置換の炭素数1~10の1価炭化水素基を表し、R4は、それぞれ独立して非置換の炭素数1~10の1価炭化水素基を表し、Xは、塩素原子または臭素原子を表し、mは、0、1または2を表す。)
PCT/JP2023/037969 2022-10-25 2023-10-20 (メタ)アクリロキシ基を有する有機ケイ素化合物の製造方法およびアクリロキシ基を有する有機ケイ素化合物 WO2024090337A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022170839 2022-10-25
JP2022-170839 2022-10-25

Publications (1)

Publication Number Publication Date
WO2024090337A1 true WO2024090337A1 (ja) 2024-05-02

Family

ID=90830817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037969 WO2024090337A1 (ja) 2022-10-25 2023-10-20 (メタ)アクリロキシ基を有する有機ケイ素化合物の製造方法およびアクリロキシ基を有する有機ケイ素化合物

Country Status (1)

Country Link
WO (1) WO2024090337A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008502660A (ja) * 2004-06-16 2008-01-31 ロディア・シミ オメガ−ハロアルキルジアルキルシランの製造方法
JP2013518918A (ja) * 2010-02-11 2013-05-23 ワッカー ケミー アクチエンゲゼルシャフト 白金触媒を用いるヒドロシリル化方法
JP2021075476A (ja) * 2019-11-07 2021-05-20 信越化学工業株式会社 アクリロイルオキシ基またはメタクリロイルオキシ基を有する有機ケイ素化合物の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008502660A (ja) * 2004-06-16 2008-01-31 ロディア・シミ オメガ−ハロアルキルジアルキルシランの製造方法
JP2013518918A (ja) * 2010-02-11 2013-05-23 ワッカー ケミー アクチエンゲゼルシャフト 白金触媒を用いるヒドロシリル化方法
JP2021075476A (ja) * 2019-11-07 2021-05-20 信越化学工業株式会社 アクリロイルオキシ基またはメタクリロイルオキシ基を有する有機ケイ素化合物の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K. A. ANDRIANOV, L. M. VOLKOVA, A. A. ZHDANOV, AND L. N. PODA: "SYNTHESIS OF 2,2-DIORGANO-I-OXA-2-SILACYCLOHEXANES AND OF ¬4-(ACYLOXY)BUTYL| CHLORODIORGANOSILANES FROM THE LATTER", JOURNAL OF GENERAL CHEMISTRY USSR., CONSULTANTS BUREAU, NEW YORK, NY., US, vol. 49, no. 5, 1 January 1979 (1979-01-01), US , pages 1093 - 1098, XP008157583, ISSN: 0022-1279 *
KATSURA OHASHI: "Adhesion of Resinto Ceramic SurfacesModifiedwith Phenyl Group Silane CouplingAgentsContaininga Double Bond ", vol. 24, no. 4, 1 January 2005 (2005-01-01), pages 247 - 252, XP093162022 *

Similar Documents

Publication Publication Date Title
US5296624A (en) Preparation of sterically-hindered organosilanes
JP7298446B2 (ja) アクリロイルオキシ基またはメタクリロイルオキシ基を有する有機ケイ素化合物の製造方法
US7053233B2 (en) Silane compound having at least two protected functional groups and method for preparing the same
CA2029969A1 (en) Production 0f organofunctional alkoxysilanes
US5786493A (en) Cyclic silane esters and solvolysis products thereof, and processes for the preparation of the cyclic silane esters and the solvolysis products
JP5630458B2 (ja) シリル基で保護された2級アミノ基を有するオルガノキシシラン化合物及びその製造方法
EP1278757B1 (en) Preparation of secondary aminoisobutylalkoxysilanes
WO2024090337A1 (ja) (メタ)アクリロキシ基を有する有機ケイ素化合物の製造方法およびアクリロキシ基を有する有機ケイ素化合物
US3414604A (en) Organofunctional silanes and siloxanes
CN108017663B (zh) 用于制造包含双(甲硅烷基)氨基的硅烷化合物的方法
US4469881A (en) [2-(p-t-Butylphenyl)ethyl]silanes and method of making the same
JP4296416B2 (ja) シリルケテンアセタール及びジシリルケテンアセタールの製造方法
EP1417209B1 (en) High boiling inhibitors for distillable, polymerizable monomers
JP4344936B2 (ja) 両末端アミノ基含有有機ケイ素化合物の製造方法
JP3915875B2 (ja) N−置換−3−シリルプロピルアミン類及びその誘導体の製造方法
US5723643A (en) Method for the preparation of acryloxy- or methacryloxy-functional organosilicon compounds
EP0195997B1 (en) Chlorosilane compounds
JP3856087B2 (ja) 3―アミノプロピルモノオルガノジオルガノオキシシランの製造方法
WO2023053885A1 (ja) アルコキシシリルアルキルアミノプロピル変性ポリシロキサン化合物の製造方法
US20120165565A1 (en) Synthesis of fluorocarbofunctional alkoxysilanes and chlorosilanes
JP3856050B2 (ja) 3−クロロプロピルシラン類の製造方法
JP4336970B2 (ja) 保護されたカルボキシル基を有するシラン化合物及びその製造方法
US7932412B2 (en) Method of manufacturing an aminoaryl-containing organosilicon compound and method of manufacturing an intermediate product of the aforementioned compound
EP1471069B1 (en) Preparation of silyl ketene acetals and disilyl ketene acetals
US6475347B1 (en) High boiling inhibitors for distillable, polymerizable monomers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882542

Country of ref document: EP

Kind code of ref document: A1