WO2024090318A1 - Gas barrier laminate and packaging - Google Patents

Gas barrier laminate and packaging Download PDF

Info

Publication number
WO2024090318A1
WO2024090318A1 PCT/JP2023/037800 JP2023037800W WO2024090318A1 WO 2024090318 A1 WO2024090318 A1 WO 2024090318A1 JP 2023037800 W JP2023037800 W JP 2023037800W WO 2024090318 A1 WO2024090318 A1 WO 2024090318A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas barrier
barrier laminate
resin
inorganic
Prior art date
Application number
PCT/JP2023/037800
Other languages
French (fr)
Japanese (ja)
Inventor
僚 神田
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2024090318A1 publication Critical patent/WO2024090318A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes

Definitions

  • the present invention relates to a gas barrier laminate and a packaging material obtained using the gas barrier laminate.
  • Packaging materials used for packaging food, daily necessities, medicines, etc. are required to have functions such as strength, resistance to cracking, and gas barrier properties in order to protect the contents from shocks received during distribution, deterioration due to oxygen and moisture, etc.
  • a gas barrier laminated film in which a vapor deposition layer made of an inorganic compound such as aluminum oxide is used as the first layer, and a coating agent mainly composed of a water-soluble polymer and an aqueous solution containing at least one of (a) one or more alkoxides and/or their hydrolysates or (b) tin chloride, or a water/alcohol mixed solution, is applied, and a gas barrier coating formed by heating and drying is laminated as the second layer.
  • Patent Document 1 See, for example, Patent Document 1.
  • the gas barrier film disclosed in Patent Document 1 is often used as a packaging material by, for example, laminating a heat-sealable thermoplastic resin layer or a printed layer on the gas barrier coating layer or on the substrate 2, or by laminating multiple resins via adhesive layers.
  • a gas barrier film composed only of an olefin-based resin
  • a gas barrier film which comprises a polyolefin film layer of a first substrate, a polyolefin film layer of a second substrate, and a polyolefin film sealant layer in this order, and the polyolefin film of the first substrate layer or the second substrate layer has an inorganic oxide layer on at least one surface, and exhibits a specific heat shrinkage rate, so that even if the main component is a polyolefin-based film, when it is made into a packaging bag, a laminate capable of high-temperature retort treatment is obtained (see, for example, Patent Document 2).
  • Patent Document 2 describes that it is preferable to provide an anchor coating agent such as a polyester-based polyurethane resin or a polyether-based polyurethane resin between the polyolefin film and the inorganic oxide layer in order to improve the adhesion of the olefin-based resin, which has poor adhesion (see paragraphs 0022 to 0023 of Patent Document 2).
  • this method requires a step of applying an anchor coating agent before providing an inorganic oxide layer on the polyolefin film, and is therefore not suitable for obtaining a recyclable packaging material having gas barrier properties by combining, for example, a general-purpose plastic film such as an olefin film having an inorganic oxide layer.
  • the object of the present invention is to provide a gas barrier laminate and packaging material that maintain good adhesion and gas barrier properties even when combined with a plastic film such as an olefin film having a general-purpose inorganic oxide layer, and that is suitable for obtaining a packaging material that is also recyclable.
  • a gas barrier laminate comprising (A) a general-purpose layer made of a substrate having an inorganic layer formed on at least one surface thereof, (B) a layer containing 50 mass% or more of an organometallic compound having a metal species of a Group 4 element, which is provided so as to be in contact with the surface of the substrate on which the inorganic layer is formed, and (C) a layer containing a water-soluble polymer and a metal alkoxide and/or a hydrolyzate thereof, which is provided so as to be in contact with the resin layer (B).
  • the layer consisting of a substrate having an inorganic layer formed on at least one surface thereof is not particularly limited, and a commercially available product may be used, or a substrate having an inorganic layer such as a vapor deposition layer formed by a general-purpose method may be used.
  • the layer used in this application is provided so as to contact the surface of the substrate on which the inorganic layer is formed, and contains 50 mass % or more of an organometallic compound having a metal species of a Group 4 element, thereby providing excellent adhesion to (C) a layer containing a water-soluble polymer and a metal alkoxide and/or a hydrolyzate thereof that exhibits gas barrier properties and is provided thereon.
  • the present invention is a gas barrier laminate, (A) a layer made of a substrate having an inorganic layer formed on at least one surface thereof; (B) a layer provided in contact with the surface of the base material on which the inorganic layer is formed, the layer having an organometallic compound having a Group 4 element as a metal species in an amount of 50 mass% or more based on the total solid content; (C) a layer provided in contact with the resin layer (B), the layer comprising a water-soluble polymer and a metal alkoxide and/or a hydrolysate thereof;
  • the present invention provides a gas barrier laminate comprising:
  • the present invention also provides a packaging material using the gas barrier laminate described above.
  • the present invention makes it possible to provide a gas barrier laminate that maintains good adhesion and gas barrier properties even when combined with a plastic film such as an olefin film having a general-purpose inorganic oxide layer, and is also suitable for producing recyclable packaging materials.
  • the gas barrier laminate of the present invention has (A) a layer made of a substrate having an inorganic layer formed on at least one surface thereof (hereinafter, sometimes referred to as layer (A)).
  • the substrate used in the (A) layer is not particularly limited in terms of its material, manufacturing method, or shape within the scope in which the effects of the present invention can be obtained, but in most cases, a film shape (sometimes called a sheet, but in the present invention, called a film) is used.
  • olefin-based resins such as polyethylene (PE), polypropylene (PP), cyclic olefin polymer (COP), and cyclic olefin copolymer (COC), polyester, acrylic, polycarbonate, cellulose ester, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), nylon (NY), and materials containing biomass-derived components.
  • olefin-based resins such as polyethylene (PE), polypropylene (PP), cyclic olefin polymer (COP), and cyclic olefin copolymer (COC)
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • NY nylon
  • any film made of a thermoplastic resin mainly composed of an olefin-based resin can be used without any particular limitation.
  • the olefin resin include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear (linear) low-density polyethylene, polypropylene (PP), ethylene-propylene copolymers, ⁇ -olefin polymers, ethylene-vinyl acetate copolymers, ethylene-vinyl alcohol copolymers, ethylene-acrylic acid copolymers, ethylene-methyl methacrylate copolymers, ethylene-ethyl acrylate copolymers, cyclic olefin resins, ionomer resins, and polymethylpentene; and modified olefin resins obtained by modifying olefin resins with acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, or other unsaturated carboxylic acids.
  • olefin-based resins such as polyethylene (PE), polypropylene (PP), cyclic olefin polymer (COP), and cyclic olefin copolymer (COC), and polyethylene (PE) and polypropylene (PP) are most preferable.
  • the substrate used in the (A) layer is not particularly limited, and may be a substrate having a thickness that is generally used for packaging foods, daily necessities, medicines, etc. From the viewpoint of formability and transparency, a film having a thickness in the range of 1 ⁇ m to 500 ⁇ m is sufficient, preferably 1 ⁇ m to 300 ⁇ m, and more preferably 1 ⁇ m to 100 ⁇ m. If the thickness is less than 1 ⁇ m, the strength is insufficient, and if it exceeds 500 ⁇ m, the rigidity becomes too high, which may make processing difficult.
  • the method for producing these substrates is not particularly limited, and they can be produced by various film-forming methods such as melt extrusion molding, solution casting molding, and calendar molding, and these may be further subjected to biaxial or uniaxial stretching treatment. Furthermore, films that have been subjected to various surface treatments as necessary may be used.
  • the (A) layer is a layer having a substrate layer with an inorganic layer formed on at least one side, and the inorganic layer is formed on a part or the entire surface of at least one side of the substrate.
  • the inorganic substances forming these inorganic layers are not particularly limited as long as the effects of the present invention can be obtained, but it is preferable to use one or more selected from metals and metal oxides such as aluminum oxide, silicon oxide, aluminum, zinc oxide, magnesium oxide, calcium oxide, and zirconium oxide, and it is particularly preferable to use one or more selected from aluminum oxide, silicon oxide, aluminum, zinc oxide, and magnesium oxide, as these exhibit good barrier properties.
  • the method for forming the inorganic layer is not particularly limited as long as the effects of the present invention can be obtained, but it can be formed by deposition processing, sputtering processing, CVD processing, and coating processing, and it is particularly preferable to use deposition processing and sputtering processing because they can form the inorganic layer uniformly.
  • the gas barrier laminate of the present invention comprises a layer (B) that is provided so as to be in contact with the surface of the base material on which the inorganic layer is formed and that contains 50 mass % or more of an organometallic compound having a metal species of a Group 4 element (hereinafter, sometimes referred to as layer (B)).
  • layer (B) may be laminated so that at least a part of it is in direct contact with the inorganic layer provided on layer (A).
  • the organometallic compound used in the present invention which contains a Group 4 element as the metal species
  • specific examples of the Group 4 element metal species include titanium, zirconium, hafnium, and rutherfordium. Among these, titanium or zirconium is preferable.
  • Organometallic compounds containing these Group 4 elements as metal species include metal alkoxides and/or their oligomers and/or their hydrolysates, metal acylates, metal complexes, coupling agents, etc. These organometallic compounds may be used alone or in combination of two or more.
  • the metal alkoxide and/or its oligomer and/or its hydrolysate may be one or more compounds selected from metal alkoxides and their hydrolysates in which the hydroxyl group of the hydroxide of the metal species is substituted with an alkoxyl group represented by -OC3H7 , -OC4H9 , -OCH2CH ( C2H5 ) C4H9 , -OCH( CH3 ) 2 , -OCnH2n +1, etc.
  • metal alkoxide and its hydrolysate used in the present invention examples include tetraisopropyl titanate, tetra - n-butyl titanate, butyl titanate dimer, tetraoctyl titanate, butyl titanate oligomer, tetraisopropyl zirconate, tetra-n-butyl zirconate, etc.
  • metal alkoxides selected from tetra-n-butyl titanate and tetra-n-butyl zirconate and/or hydrolysates thereof.
  • metal acylates that can be used include titanium isostearate, zirconium isoctylate, and zirconium stearate.
  • Metal complexes are sometimes called chelating agents.
  • Specific examples include titanium tetraalkylates such as titanium tetrapropylate and titanium tetrabutylate, titanium alkylacetoacetates such as titanium bis(acetylacetate)dipropylate, and zirconium tetraalkylates such as zirconium tetrabutylate.
  • Coupling agents include titanium coupling agents such as isopropyl triisostearoyl titanate, isopropyl trioctanoyl titanate, isopropyl dimethacryl isostearoyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tris(dioctyl pyrophosphate) titanate, tetraoctyl bis(ditridecyl phosphite) titanate, tetra(2,2-diallyloxymethyl-1-butyl)bis(ditridecyl)phosphite titanate, bis(dioctyl pyrophosphate)oxyacetate titanate, and bis(dioctyl pyrophosphate)ethylene titanate.
  • Zirconium coupling agents include zirconium acetate, ammonium zirconium carbonate, and zirconium fluoride.
  • the preferred lower limit of the content of the organometallic compound having a Group 4 element as the metal species relative to the total solid content of the (B) layer is 50 mass%, 55 mass%, or 60 mass%.
  • the preferred upper limit of the content is 100% relative to the total solid content.
  • Layer (B) can be obtained, for example, by a coating method.
  • a coating method There are no particular limitations on the coating method, and any known, commonly used coating method can be used. Examples include spraying, spin coating, dip coating, roll coating, blade coating, doctor roll, doctor blade, curtain coating, slit coating, screen printing, inkjet, and dispensing methods.
  • a solvent can be used to improve the suitability for coating.
  • the solvent is preferably an organic solvent, and examples of the solvent include alcohol-based organic solvents such as ethanol, n-propanol, isopropyl alcohol, and butanol; ketone-based organic solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ester-based organic solvents such as methyl acetate, ethyl acetate, propyl acetate, and butyl acetate; aliphatic hydrocarbon-based organic solvents such as n-hexane, n-heptane, and n-octane; and alicyclic hydrocarbon-based organic solvents such as cyclohexane, methylcyclohexane, ethylcyclohexane, cycloheptane, and cyclooctane.
  • alcohol-based organic solvents such as ethanol, n
  • the coating amount of the organometallic compound having a Group 4 element as a metal species is not particularly limited as long as the effects of the present invention can be obtained, but it is preferably coated in an amount of 0.001 to 0.5 g/ m2 calculated as solid content, and particularly preferably 0.003 to 0.2 g/m2 in order to obtain good barrier properties.
  • the drying process may be at room temperature, or may involve forced drying such as heating in an oven, reducing pressure, or blowing air.
  • Layer (B) in the present invention contains 50% by mass or more of an organometallic compound having a Group 4 element as the metal species relative to the total solid content, but additives such as stabilizers, resins that serve as binder components, coupling agents, plasticizers, dispersants, surfactants, stabilizers, thickeners, defoamers, wetting agents, hardeners, antiblocking agents, lubricants, preservatives, and inorganic fillers may also be blended within the range in which the effects of the present invention can be obtained.
  • additives such as stabilizers, resins that serve as binder components, coupling agents, plasticizers, dispersants, surfactants, stabilizers, thickeners, defoamers, wetting agents, hardeners, antiblocking agents, lubricants, preservatives, and inorganic fillers may also be blended within the range in which the effects of the present invention can be obtained.
  • the layer (B) contains a stabilizer.
  • acetylacetone, dehydroacetic acid, benzoylacetone, ethyl acetoacetate, diacetyl and other diketones carboxylic acids such as acetic acid, hydroxycarboxylic acids such as citric acid, malic acid, tartaric acid, mandelic acid, lactic acid, glycolic acid, hydroxyisobutyric acid, hydroxyacetone, hydroxycarbonyls such as acetoin, cellosolves such as methoxyethanol, dimethoxyethane, glycols such as ethylene glycol, substituted glycol, pentaethylene glycol, hydrazones such as acetolhydrazone, acetoinhydrazone, imines such as diethanolamine, monoketones such as acetone, and the like can be used, and among them, it is preferable to select from acetylacetone, benzoylacetone, citric acid, malic acid, mandelic acid, and acetone.
  • carboxylic acids
  • binder resins include polyvinyl butyral resin, polyvinyl acetal resins such as polyvinyl acetal resin, acrylic resin, polyester resin, styrene resin, styrene-maleic acid resin, maleic acid resin, polyamide resin, polyurethane resin, vinyl chloride-vinyl acetate copolymer resin, vinyl chloride-acrylic copolymer resin, ethylene-vinyl acetate copolymer resin, vinyl acetate resin, polyvinyl chloride resin, chlorinated polypropylene resin, cellulose-based resin, epoxy resin, alkyd resin, rosin-based resin, rosin-modified maleic acid resin, ketone resin, cyclized rubber, chlorinated rubber, butyral, and petroleum resin.
  • binder resins include polyvinyl butyral resin, polyvinyl acetal resins such as polyvinyl acetal resin, acrylic resin, polyester resin, styrene resin, styrene-male
  • the coupling agent may be any of the known and commonly used ones, such as silane coupling agents, titanium coupling agents, zirconium coupling agents, aluminum coupling agents, etc.
  • silane coupling agent such as epoxy group-containing silane coupling agents such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane; amino group-containing silane coupling agents such as 3-aminopropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-triethoxysilyl-N-(1,3-dimethylbutylidene)propylamine, and N-phenyl- ⁇ -aminopropyltrimethoxysilane; (meth)acryloyl group-containing silane coupling agents such as 3-acryloxypropyltrimethoxysilane and 3-methacryloxypropyltriethoxysilane;
  • Aluminum coupling agents include acetoalkoxyaluminum diisopropylate, aluminum diisopropoxymonoethyl acetoacetate, aluminum trisethyl acetoacetate, aluminum trisacetylacetonate, etc.
  • Silane compounds include alkoxysilanes, silazanes, siloxanes, etc.
  • Alkoxysilanes include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, 1,6-bis(trimethoxysilyl)hexane, trifluoropropyltrimethoxysilane, etc.
  • Silazanes include hexamethyldisilazane, etc.
  • Siloxanes include hydrolyzable group-containing siloxanes, etc.
  • the gas barrier laminate of the present invention has a layer (C) that is provided so as to be in contact with the layer (B) and contains a water-soluble polymer and a metal alkoxide and/or a hydrolysate thereof (hereinafter, sometimes referred to as layer (C)).
  • layer (C) it is sufficient that layer (C) is laminated so that at least a part of layer (C) is in direct contact with layer (B).
  • the water-soluble polymer used in the gas barrier laminate of the present invention is not particularly limited as long as the effects of the present invention can be obtained, and one or more water-soluble polymers selected from vinyl alcohol polymers such as polyvinyl alcohol, ethylene-vinyl alcohol polymers, vinylpyrrolidone polymers, acrylic acid polymers, starch, methyl cellulose, carboxymethyl cellulose, sodium alginate, etc. can be used. Since suitable gas barrier properties can be obtained, it is preferable to use one or more selected from vinyl alcohol polymers, ethylene-vinyl alcohol polymers, vinylpyrrolidone polymers, and acrylic acid polymers.
  • vinyl alcohol polymers such as polyvinyl alcohol, ethylene-vinyl alcohol polymers, vinylpyrrolidone polymers, acrylic acid polymers, starch, methyl cellulose, carboxymethyl cellulose, sodium alginate, etc.
  • vinyl alcohol polymers such as polyvinyl alcohol, ethylene-vinyl alcohol polymers, vinylpyrrolidone polymers, acrylic acid polymers, starch
  • metal alkoxide and/or hydrolysate thereof used in the gas barrier laminate of the present invention is not particularly limited as long as the effects of the present invention can be obtained, but metal alkoxides and/or hydrolysates thereof having one or more metal species selected from silicon, aluminum, titanium, and zirconia as the metal species are preferred, and it is more preferred to have one or more metal species selected from silicon and aluminum as the metal species, as this will result in good gas barrier properties.
  • metal alkoxides and/or hydrolysates thereof may be one or more compounds selected from metal alkoxides in which the hydroxyl group of the hydroxide of the above-mentioned metal species is substituted with an alkoxyl group represented by -OCH3 , -OC2H5 , -OC3H7 , -OCnH2n +1, etc., and hydrolysates thereof.
  • Alkoxysilanes such as tetraethoxysilane (TEOS), tetramethoxysilane, tetraproxisilane, tetrabutoxysilane, etc.
  • metal alkoxides and/or hydrolysates thereof used in the present invention can be used as the metal alkoxides and/or hydrolysates thereof used in the present invention, and one or more metal alkoxides and/or hydrolysates thereof selected from tetraethoxysilane and tetramethoxysilane are particularly preferred because they provide good gas barrier properties.
  • a sol by mixing a water-soluble polymer, a metal alkoxide and/or a hydrolysate thereof, water, and one or more organic solvents selected from the group consisting of water-soluble organic solvents such as methanol, ethanol, isopropanol, and 1-propanol, and to coat the obtained sol on layer (B) and dry it to gel and solidify it, thereby forming layer (C) containing a water-soluble polymer and a metal alkoxide and/or a hydrolysate thereof.
  • water-soluble organic solvents such as methanol, ethanol, isopropanol, and 1-propanol
  • the method for applying the mixed sol is not particularly limited, and any known and commonly used application method can be used. Examples include spraying, spin coating, dip coating, roll coating, blade coating, doctor roll, doctor blade, curtain coating, slit coating, screen printing, inkjet, and dispensing methods. In particular, application by the roll coating method using a gravure coater is preferred because it forms a good coating film.
  • the amount of the mixed sol to be applied is not particularly limited as long as the effects of the present invention can be obtained, but it is preferable to apply the sol in an amount of 0.1 to 0.5 g/ m2 , and it is particularly preferable to apply the sol in an amount of 0.2 to 0.4 g/ m2 because this forms a good coating film.
  • the drying process may be room temperature drying, or forced drying such as heating using an oven, reducing pressure, or blowing air.
  • the (C) layer in the present invention may contain a wetting agent such as a silane coupling agent or a surfactant, as long as the effects of the present invention are achieved.
  • a wetting agent such as a silane coupling agent or a surfactant
  • the (B) layer and the (C) layer may be combined in such a way that they form a strong film through a polycondensation reaction using the sol-gel method. If necessary, various catalysts and solvents may be added, and heating and drying may also be performed.
  • the method for providing the (C) layer so that it is in contact with the (B) layer is not particularly limited, but may be a general-purpose method, such as a method in which the (B) layer is formed on the (A) layer by coating, and then the (C) layer is continuously formed by coating, or a method in which the (B) layer is formed on the (A) layer by coating, and then wound up, and then unwound, and then the (C) layer is formed on the (B) layer by coating, etc.
  • the resin layer which is the base material used in the layer (A) but does not have an inorganic layer formed thereon, as described in the layer (A), may be, for example, an olefin resin such as polyethylene (PE), polypropylene (PP), cyclic olefin polymer (COP), cyclic olefin copolymer (COC), polyester, acrylic, polycarbonate, cellulose ester, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), nylon (NY), or a material containing a biomass-derived component.
  • any film made of a thermoplastic resin mainly composed of an olefin resin may be used without any particular limitation.
  • the olefin resin include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene, polypropylene, ethylene-propylene copolymers, ⁇ -olefin polymers, ethylene-vinyl acetate copolymers, ethylene-vinyl alcohol copolymers, ethylene-acrylic acid copolymers, ethylene-methyl methacrylate copolymers, ethylene-ethyl acrylate copolymers, cyclic olefin resins, ionomer resins, and polymethylpentene; and modified olefin resins obtained by modifying olefin resins with acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, or other unsaturated carboxylic acids.
  • polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density poly
  • olefin resins such as polyethylene (PE), polypropylene (PP), cyclic olefin polymers (COP), and cyclic olefin copolymers (COC), because the effects of the present invention are significantly obtained, and polyethylene (PE) and polypropylene (PP) are the most preferable.
  • the substrate may be, for example, wood, metal, metal oxide, a resin film other than the resin shown in the layer (A), paper, silicon or modified silicon, or a substrate obtained by bonding different materials.
  • the shape of the substrate and the substrate may be any shape according to the purpose, such as a flat plate, a sheet, or a three-dimensional shape having a curvature over the entire surface or part thereof.
  • the hardness, thickness, etc. of the substrate when the laminate according to the present invention is used as a packaging material, paper, plastic, metal, metal oxide, etc. may be used as the substrate.
  • Print layer From the viewpoint of recycling, it is preferable that the layer structure is as simple as possible, but from the viewpoint of distribution of the packaging material, printing is often required to display the contents of the packaging material or the description or name of the product. Liquid inks such as gravure printing inks and flexographic printing inks are often used as printing inks for this purpose.
  • the printed layer is a layer on which characters, figures, symbols, and other desired patterns are printed using liquid ink or the like.
  • the laminate may be provided at any position.
  • liquid ink is a general term for solvent-based inks used in gravure printing or flexographic printing. It may contain resin, colorant, and solvent as essential components, or it may be a so-called clear ink that contains resin and solvent but does not substantially contain colorant.
  • the resins used in the liquid ink are not particularly limited, and examples include acrylic resin, polyester resin, styrene resin, styrene-maleic acid resin, maleic acid resin, polyamide resin, polyurethane resin, vinyl chloride-vinyl acetate copolymer resin, vinyl chloride-acrylic copolymer resin, ethylene-vinyl acetate copolymer resin, vinyl acetate resin, polyvinyl chloride resin, chlorinated polypropylene resin, cellulose-based resin, epoxy resin, alkyd resin, rosin-based resin, rosin-modified maleic acid resin, ketone resin, cyclized rubber, chlorinated rubber, butyral, petroleum resin, etc., and one or more of these can be used in combination.
  • at least one or two or more selected from polyurethane resin, vinyl chloride-vinyl acetate copolymer resin, and cellulose-based resin are used.
  • Colorants used in liquid inks include inorganic pigments such as titanium oxide, red iron oxide, antimony red, cadmium red, cadmium yellow, cobalt blue, Prussian blue, ultramarine, carbon black, and graphite; organic pigments such as soluble azo pigments, insoluble azo pigments, azo lake pigments, condensed azo pigments, copper phthalocyanine pigments, and condensed polycyclic pigments; and extender pigments such as calcium carbonate, kaolin clay, barium sulfate, aluminum hydroxide, and talc.
  • inorganic pigments such as titanium oxide, red iron oxide, antimony red, cadmium red, cadmium yellow, cobalt blue, Prussian blue, ultramarine, carbon black, and graphite
  • organic pigments such as soluble azo pigments, insoluble azo pigments, azo lake pigments, condensed azo pigments, copper phthalocyanine pigments, and condensed polycyclic pigments
  • the organic solvent used in the liquid ink preferably does not contain aromatic hydrocarbon organic solvents. More specifically, examples of the organic solvents include alcohol organic solvents such as methanol, ethanol, n-propanol, isopropyl alcohol, and butanol; ketone organic solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ester organic solvents such as methyl acetate, ethyl acetate, propyl acetate, and butyl acetate; aliphatic hydrocarbon organic solvents such as n-hexane, n-heptane, and n-octane; and alicyclic hydrocarbon organic solvents such as cyclohexane, methylcyclohexane, ethylcyclohexane, cycloheptane, and cyclooctane. These can be used alone or in combination of two or more.
  • alcohol organic solvents such as
  • Examples of functional coating layers include coating agents containing various additives.
  • additives include modifiers, coupling agents, silane compounds, phosphate compounds, organic fillers, inorganic fillers, stabilizers (antioxidants, heat stabilizers, ultraviolet absorbers, etc.), plasticizers, antistatic agents, lubricants, antiblocking agents, colorants, crystal nucleating agents, oxygen scavengers (compounds having oxygen scavenging function), tackifiers, etc.
  • additives include modifiers, coupling agents, silane compounds, phosphate compounds, organic fillers, inorganic fillers, stabilizers (antioxidants, heat stabilizers, ultraviolet absorbers, etc.), plasticizers, antistatic agents, lubricants, antiblocking agents, colorants, crystal nucleating agents, oxygen scavengers (compounds having oxygen scavenging function), tackifiers, etc.
  • additives include modifiers, coupling agents, silane compounds, phosphate compounds, organic fillers, inorganic
  • the modifier may be any known or commonly used compound, such as a diol, an amine compound, a carbodiimide, or an isocyanate.
  • Coupling agents include those that are well known and commonly used, such as silane coupling agents, titanium coupling agents, zirconium coupling agents, and aluminum coupling agents.
  • silane coupling agent such as epoxy group-containing silane coupling agents such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane; amino group-containing silane coupling agents such as 3-aminopropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-triethoxysilyl-N-(1,3-dimethylbutylidene)propylamine, and N-phenyl- ⁇ -aminopropyltrimethoxysilane; (meth)acryloyl group-containing silane coupling agents such as 3-acryloxypropyltrimethoxysilane and 3-methacryloxypropyltriethoxysilane;
  • Titanium coupling agents include, for example, isopropyl triisostearoyl titanate, isopropyl trioctanoyl titanate, isopropyl dimethacryl isostearoyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tris(dioctyl pyrophosphate) titanate, tetraoctyl bis(ditridecyl phosphite) titanate, tetra(2,2-diallyloxymethyl-1-butyl)bis(ditridecyl)phosphite titanate, bis(dioctyl pyrophosphate)oxyacetate titanate, and bis(dioctyl pyrophosphate)ethylene titanate.
  • zirconium coupling agents examples include zirconium acetate, ammonium zirconium carbonate, and zirconium fluoride.
  • Aluminum coupling agents include acetoalkoxyaluminum diisopropylate, aluminum diisopropoxymonoethyl acetoacetate, aluminum trisethyl acetoacetate, aluminum trisacetylacetonate, etc.
  • Silane compounds include alkoxysilanes, silazanes, siloxanes, etc.
  • Alkoxysilanes include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, 1,6-bis(trimethoxysilyl)hexane, trifluoropropyltrimethoxysilane, etc.
  • Silazanes include hexamethyldisilazane, etc.
  • Siloxanes include hydrolyzable group-containing siloxanes, etc.
  • inorganic fillers include inorganic substances such as metals, metal oxides, resins, and minerals, as well as composites of these.
  • specific examples of inorganic fillers include silica, alumina, titanium, zirconia, copper, iron, silver, mica, talc, aluminum flakes, glass flakes, and clay minerals.
  • Examples of compounds with oxygen scavenging capabilities include low molecular weight organic compounds that react with oxygen, such as hindered phenol compounds, vitamin C, vitamin E, organic phosphorus compounds, gallic acid, and pyrogallol, as well as transition metal compounds such as cobalt, manganese, nickel, iron, and copper.
  • Tackifiers include xylene resin, terpene resin, phenol resin, rosin resin, etc. Adding a tackifier can improve adhesion to various substrates immediately after application.
  • the amount of tackifier added is preferably 0.01 to 5 parts by mass per 100 parts by mass of the total resin composition.
  • an adhesive that can be used in a general-purpose lamination method can be used for the purpose of laminating the gas barrier laminate of the present invention, particularly with a second substrate, etc.
  • the lamination method include dry lamination, wet lamination, non-solvent lamination, and extrusion lamination.
  • the adhesive used in the dry lamination may be, for example, a one-component or two-component curing or non-curing type vinyl, (meth)acrylic, polyamide, polyester, polyether, polyurethane, epoxy, rubber, or other solvent, water-based, or emulsion type adhesive.
  • a two-component curing adhesive of polyol and isocyanate compound may be used as a two-component curing adhesive.
  • the lamination adhesive may be applied by, for example, a direct gravure roll coating method, a gravure offset roll coating method, a kiss coating method, a reverse roll coating method, a Fountain method, a transfer roll coating method, or other methods.
  • pressure-sensitive adhesives include rubber-based adhesives obtained by dissolving polyisobutylene rubber, butyl rubber, or mixtures of these in organic solvents such as benzene, toluene, xylene, or hexane, or these rubber-based adhesives mixed with tackifiers such as abiethylene acid rosin ester, terpene-phenol copolymer, or terpene-indene copolymer, or acrylic-based adhesives obtained by dissolving acrylic copolymers with a glass transition point of -20°C or less, such as 2-ethylhexyl acrylate-n-butyl acrylate copolymer or 2-ethylhexyl acrylate-ethyl acrylate-methyl methacrylate copolymer, in an organic solvent.
  • the gas that the gas barrier laminate of the present invention can block is mainly oxygen, but other examples include inert gases such as carbon dioxide, nitrogen, and argon, alcohol components such as methanol, ethanol, and propanol, phenols such as phenol and cresol, and aroma components made of low molecular weight compounds, for example, the smells of soy sauce, sauce, miso, limonene, menthol, methyl salicylate, coffee, cocoa, etc.
  • inert gases such as carbon dioxide, nitrogen, and argon
  • alcohol components such as methanol, ethanol, and propanol
  • phenols such as phenol and cresol
  • aroma components made of low molecular weight compounds for example, the smells of soy sauce, sauce, miso, limonene, menthol, methyl salicylate, coffee, cocoa, etc.
  • the gas barrier laminate of the present invention can be used as a multi-layer packaging material for protecting foods, medicines, etc.
  • the layer structure can be changed depending on the contents, the environment of use, and the form of use.
  • the package of the present invention may be appropriately provided with an easy-opening treatment or a resealing means.
  • Contents to be filled into the packaging material of the present invention include, for example, foods such as rice crackers, bean snacks, nuts, biscuits and cookies, wafer snacks, marshmallows, pies, semi-dried cakes, candies, snack foods, and other confectioneries; bread, snack noodles, instant noodles, dried noodles, pasta, aseptically packaged cooked rice, porridge, porridge, packaged rice cakes, and cereal foods, as well as other staple foods; pickles, boiled beans, natto, miso, frozen tofu, tofu, nametake mushrooms, konjac, wild vegetable products, jams, peanut cream, salads, frozen vegetables, and processed potato products, as well as processed livestock products such as ham, bacon, sausages, processed chicken products, and corned beef, These include fish ham and sausages, fish paste products, fishery products such as kamaboko, nori seaweed, tsukudani (food boiled in soy sauce), dried bonito flakes, shiokara (salted fish), smoked salmon, and spicy cod ro
  • non-food items including tobacco, disposable hand warmers, medicines such as infusion packs, liquid laundry detergent, liquid kitchen detergent, liquid bath detergent, liquid bath soap, liquid shampoo, liquid conditioner, cosmetics such as lotion and milky lotion, vacuum insulation materials, batteries, etc.
  • TEOS tetraethoxysilane
  • KBE-04 Shin-Etsu Chemical Co., Ltd.
  • a coating agent (b-1) was applied onto the prepared (A) layer using bar coater #2, and the dilution solvent was evaporated using a dryer set at a temperature of 50° C. to obtain a (B-1) layer. Thereafter, a coating liquid (c) was applied using bar coater #3, and dried for 1 minute in a hot air dryer set at 80° C. to form a (C) layer, which was a gas barrier laminate.
  • Example 2 The same procedure as in Example 1 was carried out except that the composition of the coating liquid (b-1) in Example 1 was changed as shown in Tables 1 to 3, to obtain gas barrier laminates and packaging materials of Examples 2 to 22, respectively.
  • the raw materials used in Tables 1 to 3 are as follows.
  • Butyl titanate dimer (TA-23, Matsumoto Fine Chemical Co., Ltd.) Normal butyl zirconate (ZA-65, Matsumoto Fine Chemical Co., Ltd.) Titanium acetylacetonate (TC-100, Matsumoto Fine Chemical Co., Ltd.) Titanium tetraacetylacetonate (TC-401, Matsumoto Fine Chemical Co., Ltd.) Zirconium monoacetylacetonate (ZC-540, Matsumoto Fine Chemical Co., Ltd.) Citric acid (Citric acid, Kanto Chemical Co., Ltd.) Malic acid (Malic acid, Kanto Chemical Co., Ltd.) Mandelic acid (Mandelic acid, Kanto Chemical Co., Ltd.) Acetone (Acetone, Kanto Chemical Co., Ltd.) Polyvinyl butyral (BL-1, Sekisui Chemical Co., Ltd.) 3-Glycidoxypropyltrimethoxysilane (KBM-403, Shin-Etsu Chemical Co.,
  • Comparative Example 1 A gas barrier laminate and a packaging material of Comparative Example 1 were obtained in the same manner as in Example 1, except that the layer (B) of Example 1 was not provided and the layer (C) was formed on the layer (A).
  • Example 2 (Comparative Examples 2 to 6) The same procedure as in Example 1 was carried out except that the composition of the coating liquid (b-1) in Example 1 was changed as shown in Table 4, to obtain gas barrier laminates and packaging materials of Comparative Examples 2 to 6, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a gas barrier laminate obtained by laminating: (A) a layer comprising a base material having an inorganic layer formed on at least one surface thereof; (B) a layer provided so as to be in contact with the surface of the base material on which the inorganic layer is formed, the layer (B) containing, with respect to the total solids content, 50 mass% or more of an organic metal compound having a group 4 element as a metallic species; and (C) a layer provided so as to be in contact with the resin layer (B), the layer (C) containing a water-soluble polymer, as well as a metal alkoxide and/or a hydrolysis product thereof. Also provided is packaging obtained using the aforementioned gas barrier laminate. The inorganic layer in the layer (A) is preferably formed through either one of a vapor deposition treatment or a sputtering treatment.

Description

ガスバリア性積層体、及び包装材Gas barrier laminate and packaging material
 本発明は、ガスバリア性積層体、当該ガスバリア性積層体を用いて得られる包装材に関する。 The present invention relates to a gas barrier laminate and a packaging material obtained using the gas barrier laminate.
 食品や日用品、医薬品等の包装に用いられる包装材料には、流通時等に受ける衝撃、酸素や水分による劣化等から内容物を保護するため、強度や割れにくさ、ガスバリア性等の機能が要求される。ガスバリア性の機能を有する積層フィルムとしては、例えば、酸化アルミニウム等の無機化合物からなる蒸着層を第1層とし、水溶性高分子と、(a)1種以上のアルコキシドまたは/及びその加水分解物または(b)塩化錫の少なくともいずれか1つを含む水溶液、或いは水/アルコール混合溶液を主剤とするコーティング剤を塗布し、加熱乾燥してなるガスバリア被膜を第2層として積層してなるガスバリア性積層フィルムが知られている。(例えば特許文献1参照)。しかしながら、必要な機能を一種類の材料で満足するのは難しいことから、異種のポリマー材料を貼り合せた積層体が、包装材料として広く用いられている。特許文献1に開示されるようなガスバリア性フィルムも、流通させる包装材としての機能を全て備えるために、例えば、ヒートシール可能な熱可塑性樹脂層、印刷層をガスバリア性被膜層上または基材2上に積層することで包装材としたり、あるいは複数の樹脂を接着層を介して積層して包装材とすることが多い。(特許文献1 段落0029参照)。 Packaging materials used for packaging food, daily necessities, medicines, etc. are required to have functions such as strength, resistance to cracking, and gas barrier properties in order to protect the contents from shocks received during distribution, deterioration due to oxygen and moisture, etc. As a laminated film with gas barrier properties, for example, a gas barrier laminated film is known in which a vapor deposition layer made of an inorganic compound such as aluminum oxide is used as the first layer, and a coating agent mainly composed of a water-soluble polymer and an aqueous solution containing at least one of (a) one or more alkoxides and/or their hydrolysates or (b) tin chloride, or a water/alcohol mixed solution, is applied, and a gas barrier coating formed by heating and drying is laminated as the second layer. (See, for example, Patent Document 1). However, since it is difficult to satisfy the required functions with one type of material, a laminate in which different types of polymer materials are bonded together is widely used as a packaging material. In order to provide all the functions of a packaging material for distribution, the gas barrier film disclosed in Patent Document 1 is often used as a packaging material by, for example, laminating a heat-sealable thermoplastic resin layer or a printed layer on the gas barrier coating layer or on the substrate 2, or by laminating multiple resins via adhesive layers. (See Patent Document 1, paragraph 0029.)
 一方で近年、これら機能性のみならず、リサイクル可能な包装材料であることが望まれるようになった。単なる機能性だけを考慮した異樹脂種の積層フィルムはリサイクルプラスチックの品質を低下させるという声があり、同樹脂種の積層フィルム、例えばオレフィン系樹脂のみで構成される包装材料が、リサイクル可能な包装材料として期待されている。 In recent years, however, there has been a demand for packaging materials that are not only functional, but also recyclable. There are voices saying that laminated films made of different resins that are made solely with functionality in mind will lower the quality of recycled plastics, and so there are hopes that laminated films made of the same resin type, for example packaging materials made only of olefin-based resins, will be recyclable packaging materials.
 オレフィン系樹脂のみで構成されたガスバリアフィルムとして、例えば、第1基材のポリオレフィンフィルム層と第2基材のポリオレフィンフィルム層とポリオレフィンフィルムシーラント層をこの順に備え、第1基材層又は第2基材層のポリオレフィンフィルムが、少なくとも一方の表面に無機酸化物層を備え、特定の熱収縮率を示すことで、ポリオレフィン系のフィルムを主構成とする場合であっても、包装袋としたときに高温のレトルト処理が可能な積層体が得られるガスバリアフィルムが開示されている。(例えば特許文献2参照)ここで、密着性に劣るオレフィン系樹脂の密着性を向上させるために、特許文献2では、ポリオレフィンフィルムと無機酸化物層との間にポリエステル系ポリウレタン樹脂やポリエーテル系ポリウレタン樹脂等のアンカーコート剤を設けることが好ましい旨が記載されている(特許文献2 段落0022~0023参照)。
 しかしながらこの方法は、ポリオレフィンフィルムに無機酸化物層を設ける前にアンカーコート剤を塗布する工程を必要とし、例えば、汎用の、無機酸化物層を有するオレフィン等のプラスチックフィルムを組み合わせてガスバリア性を有しリサイクル可能な包装材料を得るには適した方法とはいえなかった。
As a gas barrier film composed only of an olefin-based resin, for example, a gas barrier film is disclosed which comprises a polyolefin film layer of a first substrate, a polyolefin film layer of a second substrate, and a polyolefin film sealant layer in this order, and the polyolefin film of the first substrate layer or the second substrate layer has an inorganic oxide layer on at least one surface, and exhibits a specific heat shrinkage rate, so that even if the main component is a polyolefin-based film, when it is made into a packaging bag, a laminate capable of high-temperature retort treatment is obtained (see, for example, Patent Document 2). Here, Patent Document 2 describes that it is preferable to provide an anchor coating agent such as a polyester-based polyurethane resin or a polyether-based polyurethane resin between the polyolefin film and the inorganic oxide layer in order to improve the adhesion of the olefin-based resin, which has poor adhesion (see paragraphs 0022 to 0023 of Patent Document 2).
However, this method requires a step of applying an anchor coating agent before providing an inorganic oxide layer on the polyolefin film, and is therefore not suitable for obtaining a recyclable packaging material having gas barrier properties by combining, for example, a general-purpose plastic film such as an olefin film having an inorganic oxide layer.
特許第2790054号公報Japanese Patent No. 2790054 特開2021-20391号公報JP 2021-20391 A
 本発明の課題は、汎用の無機酸化物層を有するオレフィン等のプラスチックフィルムを組み合わせても、良好な密着性とガスバリア性とを維持し、且つリサイクルも可能な包装材料を得るに適したガスバリア性積層体、及び包装材料を提供することにある。 The object of the present invention is to provide a gas barrier laminate and packaging material that maintain good adhesion and gas barrier properties even when combined with a plastic film such as an olefin film having a general-purpose inorganic oxide layer, and that is suitable for obtaining a packaging material that is also recyclable.
 本発明者らは、汎用の(A)少なくとも一面に無機層が形成された基材からなる層に、(B)前記基材の無機層が形成された面に接触するように設けられた、第4族元素を金属種とする有機金属化合物を50質量%以上有する層を設け、その上に、(C)前記樹脂層(B)に接触するように設けられた、水溶性高分子と、金属アルコキシド及び/又はその加水分解物を含んでなる層を積層してなるガスバリア性積層体が、前記課題を解決することを見出した。 The inventors have found that the above-mentioned problems can be solved by a gas barrier laminate comprising (A) a general-purpose layer made of a substrate having an inorganic layer formed on at least one surface thereof, (B) a layer containing 50 mass% or more of an organometallic compound having a metal species of a Group 4 element, which is provided so as to be in contact with the surface of the substrate on which the inorganic layer is formed, and (C) a layer containing a water-soluble polymer and a metal alkoxide and/or a hydrolyzate thereof, which is provided so as to be in contact with the resin layer (B).
 (A)少なくとも一面に無機層が形成された基材からなる層は、特に限定はなく市販品を使用することもできるし、汎用の方法で蒸着層等の無機層を形成した基材を使用することができる。これらの基材がオレフィン系樹脂であっても、本願で使用する(B)前記基材の無機層が形成された面に接触するように設けられた、第4族元素を金属種とする有機金属化合物を50質量%以上有する層を設けることで、その上に設ける、ガスバリア性を発現する(C)水溶性高分子と、金属アルコキシド及び/又はその加水分解物を含んでなる層の密着性に優れる。 (A) The layer consisting of a substrate having an inorganic layer formed on at least one surface thereof is not particularly limited, and a commercially available product may be used, or a substrate having an inorganic layer such as a vapor deposition layer formed by a general-purpose method may be used. Even if these substrates are olefin-based resins, (B) the layer used in this application is provided so as to contact the surface of the substrate on which the inorganic layer is formed, and contains 50 mass % or more of an organometallic compound having a metal species of a Group 4 element, thereby providing excellent adhesion to (C) a layer containing a water-soluble polymer and a metal alkoxide and/or a hydrolyzate thereof that exhibits gas barrier properties and is provided thereon.
 即ち本発明は、ガスバリア性積層体であって、
 (A)少なくとも一面に無機層が形成された基材からなる層、
 (B)前記基材の無機層が形成された面に接触するように設けられた、第4族元素を金属種とする有機金属化合物を全固形分に対し50質量%以上有する層
 (C)前記樹脂層(B)に接触するように設けられた、水溶性高分子と、金属アルコキシド及び/又はその加水分解物を含んでなる層、
 を積層してなるガスバリア性積層体を提供する。
That is, the present invention is a gas barrier laminate,
(A) a layer made of a substrate having an inorganic layer formed on at least one surface thereof;
(B) a layer provided in contact with the surface of the base material on which the inorganic layer is formed, the layer having an organometallic compound having a Group 4 element as a metal species in an amount of 50 mass% or more based on the total solid content; (C) a layer provided in contact with the resin layer (B), the layer comprising a water-soluble polymer and a metal alkoxide and/or a hydrolysate thereof;
The present invention provides a gas barrier laminate comprising:
 また本発明は、前記記載のガスバリア性積層体を用いてなる包装材を提供する。 The present invention also provides a packaging material using the gas barrier laminate described above.
 本発明により、汎用の無機酸化物層を有するオレフィン等のプラスチックフィルムを組み合わせても、良好な密着性とガスバリア性とを維持し、且つリサイクルも可能な包装材料を得るに適したガスバリア性積層体を提供することができる。 The present invention makes it possible to provide a gas barrier laminate that maintains good adhesion and gas barrier properties even when combined with a plastic film such as an olefin film having a general-purpose inorganic oxide layer, and is also suitable for producing recyclable packaging materials.
((A)少なくとも一面に無機層が形成された基材からなる層)
 本発明のガスバリア性積層体は、(A)少なくとも一面に無機層が形成された基材からなる層(以下、(A)層ということがある。)を有するものである。
ここにおいて、(A)層において用いられる基材は、本発明の効果が得られる範囲においてその材料や製造方法、形状が特に限定されるものではないが、多くはフィルム形状(シートとも称される場合があるが本発明においてはフィルムと称す。)のものが使用される。これらの基材の材料としては、例えばポリエチレン(PE)やポリプロピレン(PP)、環状オレフィンポリマー(COP)、環状オレフィンコポリマー(COC)等のオレフィン系樹脂、ポリエステル、アクリル、ポリカーボネート、セルロースエステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ナイロン(NY)、バイオマス由来成分を含有する材料が挙げられる。特にオレフィン系樹脂を主成分とする熱可塑性樹脂からなるフィルムであれば特に限定なく使用することができる。オレフィン系樹脂としては具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン等のポリエチレン、ポリプロピレン(PP)、エチレン-プロピレン共重合体、α-オレフィン重合体、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-アクリル酸共重合体、エチレン-メチルメタクリレート共重合体、エチレン-アクリル酸エチル共重合体、環状オレフィン樹脂、アイオノマー樹脂、ポリメチルペンテン等のオレフィン樹脂;オレフィン樹脂をアクリル酸、メタクリル酸、無水マレイン酸、フマル酸その他の不飽和カルボン酸で変性した変性オレフィン系樹脂が挙げられる。
 中でも、本発明の効果が顕著に得られることから、ポリエチレン(PE)やポリプロピレン(PP)、環状オレフィンポリマー(COP)、環状オレフィンコポリマー(COC)等のオレフィン系樹脂を使用することが好ましく、ポリエチレン(PE)やポリプロピレン(PP)が最も好ましい。
((A) Layer consisting of a substrate having an inorganic layer formed on at least one surface)
The gas barrier laminate of the present invention has (A) a layer made of a substrate having an inorganic layer formed on at least one surface thereof (hereinafter, sometimes referred to as layer (A)).
Here, the substrate used in the (A) layer is not particularly limited in terms of its material, manufacturing method, or shape within the scope in which the effects of the present invention can be obtained, but in most cases, a film shape (sometimes called a sheet, but in the present invention, called a film) is used. Materials for these substrates include, for example, olefin-based resins such as polyethylene (PE), polypropylene (PP), cyclic olefin polymer (COP), and cyclic olefin copolymer (COC), polyester, acrylic, polycarbonate, cellulose ester, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), nylon (NY), and materials containing biomass-derived components. In particular, any film made of a thermoplastic resin mainly composed of an olefin-based resin can be used without any particular limitation. Specific examples of the olefin resin include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear (linear) low-density polyethylene, polypropylene (PP), ethylene-propylene copolymers, α-olefin polymers, ethylene-vinyl acetate copolymers, ethylene-vinyl alcohol copolymers, ethylene-acrylic acid copolymers, ethylene-methyl methacrylate copolymers, ethylene-ethyl acrylate copolymers, cyclic olefin resins, ionomer resins, and polymethylpentene; and modified olefin resins obtained by modifying olefin resins with acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, or other unsaturated carboxylic acids.
Among these, since the effects of the present invention can be significantly obtained, it is preferable to use olefin-based resins such as polyethylene (PE), polypropylene (PP), cyclic olefin polymer (COP), and cyclic olefin copolymer (COC), and polyethylene (PE) and polypropylene (PP) are most preferable.
 (A)層において用いられる基材は、特に限定はなく通常食品や日用品、医薬品等の包装に用いられる厚さの基材であればよい。成型性や透明性の観点から、1μm~500μmの範囲のフィルムであればよく、好ましくは1μm~300μm、より好ましくは1μm~100μmの範囲である。1μmを下回ると強度が不足し、500μmを超えると剛性が高くなり過ぎ、加工が困難になる恐れがある。
これらの基材の製造方法としては特に限定されるものではなく溶融押出成形法、溶液キャスティング成形法、カレンダー成形法等各種成膜法を用いて製造することができ、これらを更に二軸延伸、一軸延伸処理したものを用いても良い。また、必要に応じて各種表面処理を施したフィルムを用いても良い。
The substrate used in the (A) layer is not particularly limited, and may be a substrate having a thickness that is generally used for packaging foods, daily necessities, medicines, etc. From the viewpoint of formability and transparency, a film having a thickness in the range of 1 μm to 500 μm is sufficient, preferably 1 μm to 300 μm, and more preferably 1 μm to 100 μm. If the thickness is less than 1 μm, the strength is insufficient, and if it exceeds 500 μm, the rigidity becomes too high, which may make processing difficult.
The method for producing these substrates is not particularly limited, and they can be produced by various film-forming methods such as melt extrusion molding, solution casting molding, and calendar molding, and these may be further subjected to biaxial or uniaxial stretching treatment. Furthermore, films that have been subjected to various surface treatments as necessary may be used.
 前記(A)層は、少なくとも片面に無機層が形成された基材層を有する層であり、基材の少なくとも片面の一部または全面に無機層が形成されたものである。これら無機層を形成する無機物としては、本発明の効果が得られる範囲において特に限定されるものではないが、酸化アルミニウム、酸化ケイ素、アルミニウム、酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化ジルコニウム等の金属及び金属酸化物から選択される一種以上を用いることが好ましく、バリア性が良好に発揮されることから酸化アルミニウム、酸化ケイ素、アルミニウム、酸化亜鉛、酸化マグネシウムから選択される一種以上を用いることが特に好ましい。 The (A) layer is a layer having a substrate layer with an inorganic layer formed on at least one side, and the inorganic layer is formed on a part or the entire surface of at least one side of the substrate. The inorganic substances forming these inorganic layers are not particularly limited as long as the effects of the present invention can be obtained, but it is preferable to use one or more selected from metals and metal oxides such as aluminum oxide, silicon oxide, aluminum, zinc oxide, magnesium oxide, calcium oxide, and zirconium oxide, and it is particularly preferable to use one or more selected from aluminum oxide, silicon oxide, aluminum, zinc oxide, and magnesium oxide, as these exhibit good barrier properties.
 本発明の(A)層において、無機層を形成する方法としては本発明の効果が得られる範囲において特に限定されるものではないが、蒸着処理、スパッタリング処理、CVD処理、塗工処理により形成することができ、無機層を均一に形成できることから特に蒸着処理、スパッタリング処理を用いることが好ましい。 In the (A) layer of the present invention, the method for forming the inorganic layer is not particularly limited as long as the effects of the present invention can be obtained, but it can be formed by deposition processing, sputtering processing, CVD processing, and coating processing, and it is particularly preferable to use deposition processing and sputtering processing because they can form the inorganic layer uniformly.
((B)前記基材の無機層が形成された面に接触するように設けられた、第4族元素を金属種とする有機金属化合物を50質量%以上有する層)
 本発明のガスバリア性積層体は、(B)前記基材の無機層が形成された面に接触するように設けられた、第4族元素を金属種とする有機金属化合物を50質量%以上有する層(以下、(B)層ということがある。)を有するものである。ここで(B)層は(A)層に設けられた無機層に少なくとも一部が直接接触するように積層されていれば良い。
((B) A layer having 50% by mass or more of an organometallic compound having a Group 4 element as a metal species, the layer being provided so as to be in contact with the surface of the base material on which the inorganic layer is formed)
The gas barrier laminate of the present invention comprises a layer (B) that is provided so as to be in contact with the surface of the base material on which the inorganic layer is formed and that contains 50 mass % or more of an organometallic compound having a metal species of a Group 4 element (hereinafter, sometimes referred to as layer (B)). Here, layer (B) may be laminated so that at least a part of it is in direct contact with the inorganic layer provided on layer (A).
 本発明で使用する第4族元素を金属種とする有機金属化合物において、第4族元素の金属種とは具体的には、チタン、ジルコニウム、ハフニウム、ラザホージウムが挙げられる。中でもチタン又はジルコニウムであることが好ましい。 In the organometallic compound used in the present invention, which contains a Group 4 element as the metal species, specific examples of the Group 4 element metal species include titanium, zirconium, hafnium, and rutherfordium. Among these, titanium or zirconium is preferable.
 これらの第4族元素を金属種とする有機金属化合物としては、金属アルコキシド及び/又はこれらのオリゴマー、及び/又はこれらの加水分解物や、金属アシレート、金属錯体、及びカップリング剤等が挙げられる。これらの有機金属化合物は一種または二種以上を併用してもよい。 Organometallic compounds containing these Group 4 elements as metal species include metal alkoxides and/or their oligomers and/or their hydrolysates, metal acylates, metal complexes, coupling agents, etc. These organometallic compounds may be used alone or in combination of two or more.
 金属アルコキシド及び/又はこれらのオリゴマー、及び/又はこれらの加水分解物としては、前記金属種の水酸化物の水酸基が-OC、-OC、-OCHCH(C)C、-OCH(CH、-OC2n+1等で表されるアルコキシル基に置換された金属アルコキシド及びこれらの加水分解物から選択される1種以上の化合物であれば良い。本発明において用いる金属アルコキシド及びこれらの加水分解物としては、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラオクチルチタネート、ブチルチタネートオリゴマー、テトライソプロピルジルコネート、テトラノルマルブチルジルコネート、等を用いることができ、
テトラノルマルブチルチタネート、テトラノルマルブチルジルコネートから選択される1種以上の金属アルコキシド及び/又はその加水分解物であること特にが好ましい。
The metal alkoxide and/or its oligomer and/or its hydrolysate may be one or more compounds selected from metal alkoxides and their hydrolysates in which the hydroxyl group of the hydroxide of the metal species is substituted with an alkoxyl group represented by -OC3H7 , -OC4H9 , -OCH2CH ( C2H5 ) C4H9 , -OCH( CH3 ) 2 , -OCnH2n +1, etc. Examples of the metal alkoxide and its hydrolysate used in the present invention include tetraisopropyl titanate, tetra - n-butyl titanate, butyl titanate dimer, tetraoctyl titanate, butyl titanate oligomer, tetraisopropyl zirconate, tetra-n-butyl zirconate, etc.
Particularly preferred is one or more metal alkoxides selected from tetra-n-butyl titanate and tetra-n-butyl zirconate and/or hydrolysates thereof.
 金属アシレートとしては、具体的に例えば、チタンイソステアレート、イオクチル酸ジルコニウム、ステアリン酸ジルコニウム等を用いることができる。 Specific examples of metal acylates that can be used include titanium isostearate, zirconium isoctylate, and zirconium stearate.
 金属錯体は、キレート剤と称される場合もある。具体的に例えば、チタンテトラプロピレート、チタンテトラブチレート等のチタンテトラアルキレート、チタンビス(アセチルアセテート)ジプロピレート等のチタンアルキルアセトアセテート、ジルコニウムテトラブチレート等のジルコニウムテトラアルキレート等が挙げられる。 Metal complexes are sometimes called chelating agents. Specific examples include titanium tetraalkylates such as titanium tetrapropylate and titanium tetrabutylate, titanium alkylacetoacetates such as titanium bis(acetylacetate)dipropylate, and zirconium tetraalkylates such as zirconium tetrabutylate.
 カップリング剤としては、チタンカップリング剤としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート等が挙げられる。ジルコニウムカップリング剤としては、例えば、酢酸ジルコニウム、炭酸ジルコニウムアンモニウム、フッ化ジルコニウム等が挙げられる。 Coupling agents include titanium coupling agents such as isopropyl triisostearoyl titanate, isopropyl trioctanoyl titanate, isopropyl dimethacryl isostearoyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tris(dioctyl pyrophosphate) titanate, tetraoctyl bis(ditridecyl phosphite) titanate, tetra(2,2-diallyloxymethyl-1-butyl)bis(ditridecyl)phosphite titanate, bis(dioctyl pyrophosphate)oxyacetate titanate, and bis(dioctyl pyrophosphate)ethylene titanate. Zirconium coupling agents include zirconium acetate, ammonium zirconium carbonate, and zirconium fluoride.
 本発明における(B)層の、全固形分に対する第4族元素を金属種とする有機金属化合物の好ましい含有量の下限値は、50質量%であり、55質量%であり、60質量%である。好ましい含有量の上限値は、全固形分に対して、100%である。 In the present invention, the preferred lower limit of the content of the organometallic compound having a Group 4 element as the metal species relative to the total solid content of the (B) layer is 50 mass%, 55 mass%, or 60 mass%. The preferred upper limit of the content is 100% relative to the total solid content.
 層(B)は例えば塗工法によって得ることができる。塗工方法としては特に限定はなく、公知慣用の塗工方法を用いることができる。例えばスプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法、インクジェット法、ディスペンス法等が挙げられる。 Layer (B) can be obtained, for example, by a coating method. There are no particular limitations on the coating method, and any known, commonly used coating method can be used. Examples include spraying, spin coating, dip coating, roll coating, blade coating, doctor roll, doctor blade, curtain coating, slit coating, screen printing, inkjet, and dispensing methods.
 層(B)を塗工法によって得る場合、塗工適性をあげる目的で溶媒を使用することができる。溶媒としては有機溶剤が好ましく、エタノール、n-プロパノール、イソプロピルアルコール、ブタノールなどのアルコール系有機溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系有機溶剤、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチルなどのエステル系有機溶剤、n-ヘキサン、n-ヘプタン、n-オクタンなどの脂肪族炭化水素系有機溶剤、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、シクロヘプタン、シクロオクタンなどの脂環族炭化水素系有機溶剤などが挙げられ、1種または2種以上を組合わせて用いることができる。 When layer (B) is obtained by a coating method, a solvent can be used to improve the suitability for coating. The solvent is preferably an organic solvent, and examples of the solvent include alcohol-based organic solvents such as ethanol, n-propanol, isopropyl alcohol, and butanol; ketone-based organic solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ester-based organic solvents such as methyl acetate, ethyl acetate, propyl acetate, and butyl acetate; aliphatic hydrocarbon-based organic solvents such as n-hexane, n-heptane, and n-octane; and alicyclic hydrocarbon-based organic solvents such as cyclohexane, methylcyclohexane, ethylcyclohexane, cycloheptane, and cyclooctane. One or more of these can be used in combination.
 前記第4族元素を金属種とする有機金属化合物の塗工量としては本発明の効果が得られる範囲において特に限定されるものではないが、固形分に換算し0.001~0.5g/mの量で塗工されることが好ましく、良好なバリア性が得られることから0.003~0.2g/mの量で塗工されることが特に好ましい。 The coating amount of the organometallic compound having a Group 4 element as a metal species is not particularly limited as long as the effects of the present invention can be obtained, but it is preferably coated in an amount of 0.001 to 0.5 g/ m2 calculated as solid content, and particularly preferably 0.003 to 0.2 g/m2 in order to obtain good barrier properties.
 (B)層は塗工後に乾燥工程を設けることが好ましい。乾燥工程としては、常温乾燥でもよく、オーブンなどを用いた加熱、減圧、送風といった強制乾燥を行ってもよい。 It is preferable to provide a drying process for the (B) layer after coating. The drying process may be at room temperature, or may involve forced drying such as heating in an oven, reducing pressure, or blowing air.
 本発明における(B)層は、前記したように第4族元素を金属種とする有機金属化合物を全固形分に対し50質量%以上を含むものであるが、本発明の効果が得られる範囲において、安定剤、バインダー成分となる樹脂、カップリング剤、可塑剤、分散剤、界面活性剤、安定剤、増粘剤、消泡剤、濡れ剤、硬化剤、ブロッキング防止剤、滑剤、防腐剤、無機充填剤等の添加剤を配合しても良い。 As described above, Layer (B) in the present invention contains 50% by mass or more of an organometallic compound having a Group 4 element as the metal species relative to the total solid content, but additives such as stabilizers, resins that serve as binder components, coupling agents, plasticizers, dispersants, surfactants, stabilizers, thickeners, defoamers, wetting agents, hardeners, antiblocking agents, lubricants, preservatives, and inorganic fillers may also be blended within the range in which the effects of the present invention can be obtained.
 特に、有機金属化合物として、金属アルコキシド及び/又はこれらのオリゴマー、及び/又はこれらの加水分解物を用いて、層(B)を塗工法によって得る場合、安定剤を含有することが好ましい。
 安定剤としては、アセチルアセトン、デヒドロ酢酸、ベンゾイルアセトン、アセト酢酸エチル、ジアセチル等のジケトン類、酢酸等のカルボン酸類、クエン酸、りんご酸、酒石酸、マンデル酸、乳酸、グリコール酸、ヒドロキシイソ酪酸等のヒドロキシカルボン酸類、ヒドロキシアセトン、アセトイン等のヒドロキシカルボニル類、メトキシエタノール、ジメトキシエタン等のセロソルブ、エチレングリコール、置換グリコール、ペンタエチレングリコール等のグリコール類、アセトールヒドラゾン、アセトインヒドラゾン等のヒドラゾン類、ジエタノールアミン等のイミン類、アセトン等のモノケトン類等を用いることができ、中でも、アセチルアセトン、ベンゾイルアセトン、クエン酸、りんご酸、マンデル酸、アセトンから選択されることが好ましい。なおアセトンは前述の通り溶媒としても機能する。
In particular, when a metal alkoxide and/or an oligomer thereof and/or a hydrolysate thereof is used as the organometallic compound to obtain layer (B) by a coating method, it is preferred that the layer (B) contains a stabilizer.
As the stabilizer, acetylacetone, dehydroacetic acid, benzoylacetone, ethyl acetoacetate, diacetyl and other diketones, carboxylic acids such as acetic acid, hydroxycarboxylic acids such as citric acid, malic acid, tartaric acid, mandelic acid, lactic acid, glycolic acid, hydroxyisobutyric acid, hydroxyacetone, hydroxycarbonyls such as acetoin, cellosolves such as methoxyethanol, dimethoxyethane, glycols such as ethylene glycol, substituted glycol, pentaethylene glycol, hydrazones such as acetolhydrazone, acetoinhydrazone, imines such as diethanolamine, monoketones such as acetone, and the like can be used, and among them, it is preferable to select from acetylacetone, benzoylacetone, citric acid, malic acid, mandelic acid, and acetone.In addition, acetone also functions as a solvent as mentioned above.
 また、バインダー成分となる樹脂を含有することで、塗工適性を高めることができる。バインター樹脂としては、例えば、ポリビニルブチラール樹脂、ポリビニルアセトアセタール樹脂等のポリビニルアセタール樹脂、アクリル樹脂、ポリエステル樹脂、スチレン樹脂、スチレン‐マレイン酸樹脂、マレイン酸樹脂、ポリアミド樹脂、ポリウレタン樹脂、塩化ビニル-酢酸ビニル共重合樹脂、塩化ビニル-アクリル共重合樹脂、エチレン-酢酸ビニル共重合体樹脂、酢酸ビニル樹脂、ポリ塩化ビニル樹脂、塩素化ポリプロピレン樹脂、セルロース系樹脂、エポキシ樹脂、アルキッド樹脂、ロジン系樹脂、ロジン変性マレイン酸樹脂、ケトン樹脂、環化ゴム、塩化ゴム、ブチラール、石油樹脂等が挙げられる。 In addition, the inclusion of a resin that serves as a binder component can improve suitability for coating. Examples of binder resins include polyvinyl butyral resin, polyvinyl acetal resins such as polyvinyl acetal resin, acrylic resin, polyester resin, styrene resin, styrene-maleic acid resin, maleic acid resin, polyamide resin, polyurethane resin, vinyl chloride-vinyl acetate copolymer resin, vinyl chloride-acrylic copolymer resin, ethylene-vinyl acetate copolymer resin, vinyl acetate resin, polyvinyl chloride resin, chlorinated polypropylene resin, cellulose-based resin, epoxy resin, alkyd resin, rosin-based resin, rosin-modified maleic acid resin, ketone resin, cyclized rubber, chlorinated rubber, butyral, and petroleum resin.
またカップリング剤としては公知慣用のものが挙げられ、例えばシランカップリング剤、チタンカップリング剤、ジルコニウムカップリング剤、アルミニウムカップリング剤等が挙げられる。 The coupling agent may be any of the known and commonly used ones, such as silane coupling agents, titanium coupling agents, zirconium coupling agents, aluminum coupling agents, etc.
 シランカップリング剤としては公知慣用のものを用いればよく、例えば3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有シランカップリング剤;3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン、N-フェニル-γ-アミノプロピルトリメトキシシラン等のアミノ基含有シランカップリング剤;3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等の(メタ)アクリロイル基含有シランカップリング剤;3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基含有シランカップリング剤などが挙げられる。  Any known silane coupling agent may be used, such as epoxy group-containing silane coupling agents such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane; amino group-containing silane coupling agents such as 3-aminopropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-triethoxysilyl-N-(1,3-dimethylbutylidene)propylamine, and N-phenyl-γ-aminopropyltrimethoxysilane; (meth)acryloyl group-containing silane coupling agents such as 3-acryloxypropyltrimethoxysilane and 3-methacryloxypropyltriethoxysilane; and isocyanate group-containing silane coupling agents such as 3-isocyanatepropyltriethoxysilane.
 アルミニウムカップリング剤としては、アセトアルコキシアルミニウムジイソプロピレート、アルミニウムジイソプロポキシモノエチルアセトアセテート、アルミニウムトリスエチルアセトアセテート、アルミニウムトリスアセチルアセトネート等が挙げられる。 Aluminum coupling agents include acetoalkoxyaluminum diisopropylate, aluminum diisopropoxymonoethyl acetoacetate, aluminum trisethyl acetoacetate, aluminum trisacetylacetonate, etc.
 シラン化合物としては、アルコキシシラン、シラザン、シロキサン等が挙げられる。アルコキシシランとしては、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン、トリフルオロプロピルトリメトキシシラン等が挙げられる。シラザンとしてはヘキサメチルジシラザン等が挙げられる。シロキサンとしては加水分解性基含有シロキサン等が挙げられる。  Silane compounds include alkoxysilanes, silazanes, siloxanes, etc. Alkoxysilanes include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, 1,6-bis(trimethoxysilyl)hexane, trifluoropropyltrimethoxysilane, etc. Silazanes include hexamethyldisilazane, etc. Siloxanes include hydrolyzable group-containing siloxanes, etc.
((C)前記樹脂層(B)に接触するように設けられた、水溶性高分子と、金属アルコキシド及び/又はその加水分解物を含んでなる層)
 本発明のガスバリア性積層体は、(C)前記(B)層に接触するように設けられた、水溶性高分子と、金属アルコキシド及び/又はその加水分解物を含んでなる層(以下、(C)層ということがある。)を有するものである。ここで(C)層は(B)層と少なくとも一部が直接接触するように積層されていれば良い。
((C) A layer comprising a water-soluble polymer and a metal alkoxide and/or a hydrolyzate thereof, provided in contact with the resin layer (B)
The gas barrier laminate of the present invention has a layer (C) that is provided so as to be in contact with the layer (B) and contains a water-soluble polymer and a metal alkoxide and/or a hydrolysate thereof (hereinafter, sometimes referred to as layer (C)). Here, it is sufficient that layer (C) is laminated so that at least a part of layer (C) is in direct contact with layer (B).
 本発明のガスバリア性積層体において用いられる水溶性高分子は、本発明の効果が得られる範囲において特に限定されるものではなく、ポリビニルアルコール等のビニルアルコール重合体、エチレンビニルアルコール重合体、ビニルピロリドン重合体、アクリル酸重合体、デンプン、メチルセルロース、カルボキシメチルセルロース、アルギン酸ナトリウム等から選択される1種以上の水溶性高分子を用いることができ、好適なガスバリア性が得られることからビニルアルコール重合体、エチレンビニルアルコール重合体、ビニルピロリドン重合体、アクリル酸重合体から選択される1種以上を用いることが好ましい。 The water-soluble polymer used in the gas barrier laminate of the present invention is not particularly limited as long as the effects of the present invention can be obtained, and one or more water-soluble polymers selected from vinyl alcohol polymers such as polyvinyl alcohol, ethylene-vinyl alcohol polymers, vinylpyrrolidone polymers, acrylic acid polymers, starch, methyl cellulose, carboxymethyl cellulose, sodium alginate, etc. can be used. Since suitable gas barrier properties can be obtained, it is preferable to use one or more selected from vinyl alcohol polymers, ethylene-vinyl alcohol polymers, vinylpyrrolidone polymers, and acrylic acid polymers.
 本発明のガスバリア性積層体において用いられる金属アルコキシド及び/又はその加水分解物としては本発明の効果が得られる範囲において特に限定されるものではないが、金属種としてケイ素、アルミニウム、チタン、ジルコニアから選択される一種以上の金属種を有する金属アルコキシド及び/又はこれらの加水分解物が好ましく、ガスバリア性が良好となるため金属種としてケイ素、アルミニウムから選択される一種以上を有することがより好ましい。 The metal alkoxide and/or hydrolysate thereof used in the gas barrier laminate of the present invention is not particularly limited as long as the effects of the present invention can be obtained, but metal alkoxides and/or hydrolysates thereof having one or more metal species selected from silicon, aluminum, titanium, and zirconia as the metal species are preferred, and it is more preferred to have one or more metal species selected from silicon and aluminum as the metal species, as this will result in good gas barrier properties.
 これらの金属アルコキシド及び/又はこれら加水分解物としては、前記金属種の水酸化物の水酸基が-OCH、-OC、-OC、-OC2n+1等で表されるアルコキシル基に置換された金属アルコキシド及びこれらの加水分解物から選択される1種以上の化合物であれば良い。本発明において用いる金属アルコキシド及びこれらの加水分解物としてはテトラエトキシシラン(TEOS)、テトラメトキシシラン、テトラプロキシシラン、テトラブトキシシラン等のアルコキシシラン等を用いることができ、ガスバリア性が良好なものとなることからテトラエトキシシラン、テトラメトキシシランから選択される1種以上の金属アルコキシド及び/又はその加水分解物であること特にが好ましい。 These metal alkoxides and/or hydrolysates thereof may be one or more compounds selected from metal alkoxides in which the hydroxyl group of the hydroxide of the above-mentioned metal species is substituted with an alkoxyl group represented by -OCH3 , -OC2H5 , -OC3H7 , -OCnH2n +1, etc., and hydrolysates thereof. Alkoxysilanes such as tetraethoxysilane (TEOS), tetramethoxysilane, tetraproxisilane, tetrabutoxysilane, etc. can be used as the metal alkoxides and/or hydrolysates thereof used in the present invention, and one or more metal alkoxides and/or hydrolysates thereof selected from tetraethoxysilane and tetramethoxysilane are particularly preferred because they provide good gas barrier properties.
 本発明においては、水溶性高分子と、金属アルコキシド及び/又はその加水分解物、水と、メタノール、エタノール、イソプロパノール、1-プロパノール等の水に可溶な有機溶媒からなる群から選択される1種以上の有機溶媒とを混合してゾルを調整し、得られたゾルを(B)層上に塗工し、乾燥させることでゲル化、固形化し水溶性高分子と金属アルコキシド及び/又はその加水分解物を含む(C)層を形成することが好ましい。 In the present invention, it is preferable to prepare a sol by mixing a water-soluble polymer, a metal alkoxide and/or a hydrolysate thereof, water, and one or more organic solvents selected from the group consisting of water-soluble organic solvents such as methanol, ethanol, isopropanol, and 1-propanol, and to coat the obtained sol on layer (B) and dry it to gel and solidify it, thereby forming layer (C) containing a water-soluble polymer and a metal alkoxide and/or a hydrolysate thereof.
 本発明の(C)層において、混合したゾルを塗工する方法としては特に限定されるものではなく、公知慣用の塗工方法を用いることができる。例えばスプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法、インクジェット法、ディスペンス法等が挙げられ、特にグラビアコーターを用いたロールコート法による塗工を行うと塗膜が良好に形成されることから好ましい。 In the (C) layer of the present invention, the method for applying the mixed sol is not particularly limited, and any known and commonly used application method can be used. Examples include spraying, spin coating, dip coating, roll coating, blade coating, doctor roll, doctor blade, curtain coating, slit coating, screen printing, inkjet, and dispensing methods. In particular, application by the roll coating method using a gravure coater is preferred because it forms a good coating film.
 前記混合したゾルの塗工量としては、本発明の効果が得られる範囲において特に限定されるものではないが、0.1~0.5g/mの量で塗工されることが好ましく、良好な塗膜が形成されることから0.2~0.4g/mの量で塗工されることが特に好ましい。 The amount of the mixed sol to be applied is not particularly limited as long as the effects of the present invention can be obtained, but it is preferable to apply the sol in an amount of 0.1 to 0.5 g/ m2 , and it is particularly preferable to apply the sol in an amount of 0.2 to 0.4 g/ m2 because this forms a good coating film.
 (C)層は塗工後に乾燥工程を設けることが好ましい。乾燥工程としては、常温乾燥でもよく、オーブンなどを用いた加熱、減圧、送風といった強制乾燥を行ってもよい。 It is preferable to provide a drying process for the (C) layer after coating. The drying process may be room temperature drying, or forced drying such as heating using an oven, reducing pressure, or blowing air.
 本発明における(C)層は、本発明の効果が得られる範囲においてシランカップリング剤や、界面活性剤等の濡れ剤を配合しても良い。 The (C) layer in the present invention may contain a wetting agent such as a silane coupling agent or a surfactant, as long as the effects of the present invention are achieved.
 本発明において、(B)層と(C)層はゾルゲル法による重縮合反応で強固な膜を形成する組み合わせであればよく、必要に応じて各種触媒や溶剤を添加して良く、また加熱乾燥等を行っても良い。 In the present invention, the (B) layer and the (C) layer may be combined in such a way that they form a strong film through a polycondensation reaction using the sol-gel method. If necessary, various catalysts and solvents may be added, and heating and drying may also be performed.
(C)層を(B)層に接触するように設ける方法については特に限定はないが、(A)層上に形成した(B)層を塗工により設けた後、連続して(C)層を塗工により設ける方法や、(A)層上に形成した(B)層を塗工により設けた後一旦巻き取り、その後巻きだしたのち(B)層上に(C)層を塗工により設ける方法等、汎用の方法で設ければよい。 The method for providing the (C) layer so that it is in contact with the (B) layer is not particularly limited, but may be a general-purpose method, such as a method in which the (B) layer is formed on the (A) layer by coating, and then the (C) layer is continuously formed by coating, or a method in which the (B) layer is formed on the (A) layer by coating, and then wound up, and then unwound, and then the (C) layer is formed on the (B) layer by coating, etc.
(その他の層)
 本発明のガスバリア性積層体には、前記(A)層、(B)層、(C)層以外に、前記(A)層において用いられる基材であるが無機層が形成されていない樹脂層や前記以外の材質の層(第2の基材)、印刷層、機能性を有するコーティング層、接着層等を各種組み合わせてもよい。
(Other layers)
[0043] In the gas barrier laminate of the present invention, in addition to the (A) layer, (B) layer, and (C) layer, various combinations of a resin layer which is a base material used in the (A) layer but has no inorganic layer formed thereon, a layer (second base material) made of a material other than the above, a printed layer, a functional coating layer, an adhesive layer, etc. may be used.
(第2の基材)
 本発明において、前記(A)層において用いられる基材であるが無機層が形成されていない樹脂層としては、前記(A)層において述べた通り、例えばポリエチレン(PE)やポリプロピレン(PP)、環状オレフィンポリマー(COP)、環状オレフィンコポリマー(COC)等のオレフィン系樹脂、ポリエステル、アクリル、ポリカーボネート、セルロースエステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ナイロン(NY)、バイオマス由来成分を含有する材料が挙げられる。特にオレフィン系樹脂を主成分とする熱可塑性樹脂からなるフィルムであれば特に限定なく使用することができる。オレフィン系樹脂としては具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン等のポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、α-オレフィン重合体、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-アクリル酸共重合体、エチレン-メチルメタクリレート共重合体、エチレン-アクリル酸エチル共重合体、環状オレフィン樹脂、アイオノマー樹脂、ポリメチルペンテン等のオレフィン樹脂;オレフィン樹脂をアクリル酸、メタクリル酸、無水マレイン酸、フマル酸その他の不飽和カルボン酸で変性した変性オレフィン系樹脂が挙げられる。中でも、本発明の効果が顕著に得られることから、ポリエチレン(PE)やポリプロピレン(PP)、環状オレフィンポリマー(COP)、環状オレフィンコポリマー(COC)等のオレフィン系樹脂を使用することが好ましく、ポリエチレン(PE)やポリプロピレン(PP)が最も好ましい。
(Second Substrate)
In the present invention, the resin layer which is the base material used in the layer (A) but does not have an inorganic layer formed thereon, as described in the layer (A), may be, for example, an olefin resin such as polyethylene (PE), polypropylene (PP), cyclic olefin polymer (COP), cyclic olefin copolymer (COC), polyester, acrylic, polycarbonate, cellulose ester, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), nylon (NY), or a material containing a biomass-derived component. In particular, any film made of a thermoplastic resin mainly composed of an olefin resin may be used without any particular limitation. Specific examples of the olefin resin include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene, polypropylene, ethylene-propylene copolymers, α-olefin polymers, ethylene-vinyl acetate copolymers, ethylene-vinyl alcohol copolymers, ethylene-acrylic acid copolymers, ethylene-methyl methacrylate copolymers, ethylene-ethyl acrylate copolymers, cyclic olefin resins, ionomer resins, and polymethylpentene; and modified olefin resins obtained by modifying olefin resins with acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, or other unsaturated carboxylic acids. Among these, it is preferable to use olefin resins such as polyethylene (PE), polypropylene (PP), cyclic olefin polymers (COP), and cyclic olefin copolymers (COC), because the effects of the present invention are significantly obtained, and polyethylene (PE) and polypropylene (PP) are the most preferable.
 また、例えば木材、金属、金属酸化物、前記層(A)で示した樹脂以外の樹脂フィルム、紙、シリコン又は変性シリコン等や、異なる素材を接合して得られた基材であってもよい。基材の形状は特に制限はなく、平板、シート状、又は3次元形状全面に、若しくは一部に、曲率を有するもの等目的に応じた任意の形状であってよい。また、基材の硬度、厚み等にも制限はない。また、本発明に係る積層体を包装材料として用いる場合、紙、プラスチック、金属、金属酸化物等を基材として用いてもよい。 Furthermore, the substrate may be, for example, wood, metal, metal oxide, a resin film other than the resin shown in the layer (A), paper, silicon or modified silicon, or a substrate obtained by bonding different materials. There is no particular restriction on the shape of the substrate, and the substrate may be any shape according to the purpose, such as a flat plate, a sheet, or a three-dimensional shape having a curvature over the entire surface or part thereof. There is also no restriction on the hardness, thickness, etc. of the substrate. Furthermore, when the laminate according to the present invention is used as a packaging material, paper, plastic, metal, metal oxide, etc. may be used as the substrate.
(印刷層)
 リサイクルの観点から、できるだけ層構成は簡素であることが好ましいが、包装材の流通性の観点から、包装材の内容物や製品の説明や名称を表示するための印刷は必要であることが多い。このための印刷インキとして、グラビア印刷インキやフレキソ印刷インキ等のリキッドインキが使用されることが多い。
(Printing layer)
From the viewpoint of recycling, it is preferable that the layer structure is as simple as possible, but from the viewpoint of distribution of the packaging material, printing is often required to display the contents of the packaging material or the description or name of the product. Liquid inks such as gravure printing inks and flexographic printing inks are often used as printing inks for this purpose.
 印刷層は、文字、図形、記号、その他所望の絵柄等が、リキッドインキ等を用いて印刷された層である。積層体が設けられる位置は任意である。本明細書においてリキッドインキはグラビア印刷またはフレキソ印刷に用いられる溶剤型のインキの総称である。樹脂、着色剤、溶剤を必須の成分として含むものであってもよいし、樹脂と溶剤を含み、着色剤を実質的に含まない、いわゆるクリアインキであってもよい。 The printed layer is a layer on which characters, figures, symbols, and other desired patterns are printed using liquid ink or the like. The laminate may be provided at any position. In this specification, liquid ink is a general term for solvent-based inks used in gravure printing or flexographic printing. It may contain resin, colorant, and solvent as essential components, or it may be a so-called clear ink that contains resin and solvent but does not substantially contain colorant.
 リキッドインキに用いられる樹脂は特に限定されるものではなく、例えばアクリル樹脂、ポリエステル樹脂、スチレン樹脂、スチレン‐マレイン酸樹脂、マレイン酸樹脂、ポリアミド樹脂、ポリウレタン樹脂、塩化ビニル-酢酸ビニル共重合樹脂、塩化ビニル-アクリル共重合樹脂、エチレン-酢酸ビニル共重合体樹脂、酢酸ビニル樹脂、ポリ塩化ビニル樹脂、塩素化ポリプロピレン樹脂、セルロース系樹脂、エポキシ樹脂、アルキッド樹脂、ロジン系樹脂、ロジン変性マレイン酸樹脂、ケトン樹脂、環化ゴム、塩化ゴム、ブチラール、石油樹脂等が挙げられ、1種または2種以上を併用できる。好ましくはポリウレタン樹脂、塩化ビニル-酢酸ビニル共重合樹脂、セルロース系樹脂から選ばれる少なくとも1種、あるいは2種以上である。 The resins used in the liquid ink are not particularly limited, and examples include acrylic resin, polyester resin, styrene resin, styrene-maleic acid resin, maleic acid resin, polyamide resin, polyurethane resin, vinyl chloride-vinyl acetate copolymer resin, vinyl chloride-acrylic copolymer resin, ethylene-vinyl acetate copolymer resin, vinyl acetate resin, polyvinyl chloride resin, chlorinated polypropylene resin, cellulose-based resin, epoxy resin, alkyd resin, rosin-based resin, rosin-modified maleic acid resin, ketone resin, cyclized rubber, chlorinated rubber, butyral, petroleum resin, etc., and one or more of these can be used in combination. Preferably, at least one or two or more selected from polyurethane resin, vinyl chloride-vinyl acetate copolymer resin, and cellulose-based resin are used.
 リキッドインキに用いられる着色剤としては、酸化チタン、弁柄、アンチモンレッド、カドミウムレッド、カドミウムイエロー、コバルトブルー、紺青、群青、カーボンブラック、黒鉛などの無機顔料、溶性アゾ顔料、不溶性アゾ顔料、アゾレーキ顔料、縮合アゾ顔料、銅フタロシアニン顔料、縮合多環顔料当の有機顔料、炭酸カルシウム、カオリンクレー、硫酸バリウム、水酸化アルミニウム、タルクなどの体質顔料が挙げられる。 Colorants used in liquid inks include inorganic pigments such as titanium oxide, red iron oxide, antimony red, cadmium red, cadmium yellow, cobalt blue, Prussian blue, ultramarine, carbon black, and graphite; organic pigments such as soluble azo pigments, insoluble azo pigments, azo lake pigments, condensed azo pigments, copper phthalocyanine pigments, and condensed polycyclic pigments; and extender pigments such as calcium carbonate, kaolin clay, barium sulfate, aluminum hydroxide, and talc.
 リキッドインキに用いられる有機溶剤は、芳香族炭化水素系有機溶剤を含まないことが好ましい。より具体的には、メタノール、エタノール、n-プロパノール、イソプロピルアルコール、ブタノールなどのアルコール系有機溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系有機溶剤、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチルなどのエステル系有機溶剤、n-ヘキサン、n-ヘプタン、n-オクタンなどの脂肪族炭化水素系有機溶剤、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、シクロヘプタン、シクロオクタンなどの脂環族炭化水素系有機溶剤などが挙げられ、1種または2種以上を組合わせて用いることができる。 The organic solvent used in the liquid ink preferably does not contain aromatic hydrocarbon organic solvents. More specifically, examples of the organic solvents include alcohol organic solvents such as methanol, ethanol, n-propanol, isopropyl alcohol, and butanol; ketone organic solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ester organic solvents such as methyl acetate, ethyl acetate, propyl acetate, and butyl acetate; aliphatic hydrocarbon organic solvents such as n-hexane, n-heptane, and n-octane; and alicyclic hydrocarbon organic solvents such as cyclohexane, methylcyclohexane, ethylcyclohexane, cycloheptane, and cyclooctane. These can be used alone or in combination of two or more.
(機能性を有するコーティング層)
 機能性を有するコーティング層としては、例えば各種添加剤を添加したコーティング剤等が挙げられる。添加剤としては、例えば、改質剤、カップリング剤、シラン化合物、リン酸化合物、有機フィラー、無機フィラー、安定剤(酸化防止剤、熱安定剤、紫外線吸収剤等)、可塑剤、帯電防止剤、滑剤、ブロッキング防止剤、着色剤、結晶核剤、酸素捕捉剤(酸素捕捉機能を有する化合物)、粘着付与剤等が例示できる。これらの各種添加剤は、単独で又は二種以上組み合わせて使用される。
(Functional Coating Layer)
Examples of functional coating layers include coating agents containing various additives. Examples of additives include modifiers, coupling agents, silane compounds, phosphate compounds, organic fillers, inorganic fillers, stabilizers (antioxidants, heat stabilizers, ultraviolet absorbers, etc.), plasticizers, antistatic agents, lubricants, antiblocking agents, colorants, crystal nucleating agents, oxygen scavengers (compounds having oxygen scavenging function), tackifiers, etc. These various additives may be used alone or in combination of two or more.
 改質剤としては公知慣用のものが挙げられ、例えば、ジオール、アミン化合物、カルボジイミドやイソシアネート等の各種化合物を添加して用いて良い。  The modifier may be any known or commonly used compound, such as a diol, an amine compound, a carbodiimide, or an isocyanate.
 カップリング剤としては公知慣用のものが挙げられ、例えばシランカップリング剤、チタンカップリング剤、ジルコニウムカップリング剤、アルミカップリング剤等が挙げられる。 Coupling agents include those that are well known and commonly used, such as silane coupling agents, titanium coupling agents, zirconium coupling agents, and aluminum coupling agents.
 シランカップリング剤としては公知慣用のものを用いればよく、例えば3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有シランカップリング剤;3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン、N-フェニル-γ-アミノプロピルトリメトキシシラン等のアミノ基含有シランカップリング剤;3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等の(メタ)アクリロイル基含有シランカップリング剤;3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基含有シランカップリング剤などが挙げられる。  Any known silane coupling agent may be used, such as epoxy group-containing silane coupling agents such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane; amino group-containing silane coupling agents such as 3-aminopropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-triethoxysilyl-N-(1,3-dimethylbutylidene)propylamine, and N-phenyl-γ-aminopropyltrimethoxysilane; (meth)acryloyl group-containing silane coupling agents such as 3-acryloxypropyltrimethoxysilane and 3-methacryloxypropyltriethoxysilane; and isocyanate group-containing silane coupling agents such as 3-isocyanatepropyltriethoxysilane.
 チタンカップリング剤としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート等が挙げられる。 Titanium coupling agents include, for example, isopropyl triisostearoyl titanate, isopropyl trioctanoyl titanate, isopropyl dimethacryl isostearoyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tris(dioctyl pyrophosphate) titanate, tetraoctyl bis(ditridecyl phosphite) titanate, tetra(2,2-diallyloxymethyl-1-butyl)bis(ditridecyl)phosphite titanate, bis(dioctyl pyrophosphate)oxyacetate titanate, and bis(dioctyl pyrophosphate)ethylene titanate.
 ジルコニウムカップリング剤としては、例えば、酢酸ジルコニウム、炭酸ジルコニウムアンモニウム、フッ化ジルコニウム等が挙げられる。 Examples of zirconium coupling agents include zirconium acetate, ammonium zirconium carbonate, and zirconium fluoride.
 アルミカップリング剤としては、アセトアルコキシアルミニウムジイソプロピレート、アルミニウムジイソプロポキシモノエチルアセトアセテート、アルミニウムトリスエチルアセトアセテート、アルミニウムトリスアセチルアセトネート等が挙げられる。 Aluminum coupling agents include acetoalkoxyaluminum diisopropylate, aluminum diisopropoxymonoethyl acetoacetate, aluminum trisethyl acetoacetate, aluminum trisacetylacetonate, etc.
 シラン化合物としては、アルコキシシラン、シラザン、シロキサン等が挙げられる。アルコキシシランとしては、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン、トリフルオロプロピルトリメトキシシラン等が挙げられる。シラザンとしてはヘキサメチルジシラザン等が挙げられる。シロキサンとしては加水分解性基含有シロキサン等が挙げられる。  Silane compounds include alkoxysilanes, silazanes, siloxanes, etc. Alkoxysilanes include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, 1,6-bis(trimethoxysilyl)hexane, trifluoropropyltrimethoxysilane, etc. Silazanes include hexamethyldisilazane, etc. Siloxanes include hydrolyzable group-containing siloxanes, etc.
 添加剤のうち、無機フィラーとしては、金属、金属酸化物、樹脂、鉱物等の無機物及びこれらの複合物が挙げられる。無機フィラーの具体例としては、シリカ、アルミナ、チタン、ジルコニア、銅、鉄、銀、マイカ、タルク、アルミニウムフレーク、ガラスフレーク、粘土鉱物等が挙げられる。 Among the additives, inorganic fillers include inorganic substances such as metals, metal oxides, resins, and minerals, as well as composites of these. Specific examples of inorganic fillers include silica, alumina, titanium, zirconia, copper, iron, silver, mica, talc, aluminum flakes, glass flakes, and clay minerals.
 酸素捕捉機能を有する化合物としては、例えば、ヒンダードフェノール系化合物、ビタミンC、ビタミンE、有機燐化合物、没食子酸、ピロガロール等の酸素と反応する低分子有機化合物や、コバルト、マンガン、ニッケル、鉄、銅等の遷移金属化合物等が挙げられる。 Examples of compounds with oxygen scavenging capabilities include low molecular weight organic compounds that react with oxygen, such as hindered phenol compounds, vitamin C, vitamin E, organic phosphorus compounds, gallic acid, and pyrogallol, as well as transition metal compounds such as cobalt, manganese, nickel, iron, and copper.
 粘着付与剤としては、キシレン樹脂、テルペン樹脂、フェノール樹脂、ロジン樹脂等が挙げられる。粘着付与剤を添加することで塗布直後の各種基材に対する粘着性を向上させることができる。粘着性付与剤の添加量は樹脂組成物全量100質量部に対して0.01~5質量部であることが好ましい。 Tackifiers include xylene resin, terpene resin, phenol resin, rosin resin, etc. Adding a tackifier can improve adhesion to various substrates immediately after application. The amount of tackifier added is preferably 0.01 to 5 parts by mass per 100 parts by mass of the total resin composition.
(接着層)
 接着層としては、本発明のガスバリア性積層体を、特に第2の基材等とラミネートする目的で、汎用のラミネート法に使用可能な接着剤を使用することができる。ラミネート法としては、例えば、ドライラミネーション、ウェットラミネーション、ノンソルベントラミネーション、押出ラミネーション等の方法が挙げられる。
 前記ドライラミネーションで用いる接着剤としては、例えば、1液型あるいは2液型の硬化ないし非硬化タイプのビニル系、(メタ)アクリル系、ポリアミド系、ポリエステル系、ポリエーテル系、ポリウレタン系、エポキシ系、ゴム系、その他などの溶剤型、水性型、あるいは、エマルジョン型などの接着剤を用いることができる。2液硬化型の接着剤としては、ポリオールとイソシアネート化合物との2液硬化型接着剤を用いることができる。前記のラミネート用接着剤のコーティング方法としては、例えば、ダイレクトグラビアロールコート法、グラビアオフセットロールコート法、キスコート法、リバースロールコート法、フォンテン法、トランスファーロールコート法、その他の方法で塗布することができる。
(Adhesive Layer)
As the adhesive layer, an adhesive that can be used in a general-purpose lamination method can be used for the purpose of laminating the gas barrier laminate of the present invention, particularly with a second substrate, etc. Examples of the lamination method include dry lamination, wet lamination, non-solvent lamination, and extrusion lamination.
The adhesive used in the dry lamination may be, for example, a one-component or two-component curing or non-curing type vinyl, (meth)acrylic, polyamide, polyester, polyether, polyurethane, epoxy, rubber, or other solvent, water-based, or emulsion type adhesive. A two-component curing adhesive of polyol and isocyanate compound may be used as a two-component curing adhesive. The lamination adhesive may be applied by, for example, a direct gravure roll coating method, a gravure offset roll coating method, a kiss coating method, a reverse roll coating method, a Fountain method, a transfer roll coating method, or other methods.
 また、各種の粘着剤を使用することもでき、感圧性粘着剤を用いることが好ましい。感圧性粘着剤としては、例えば、ポリイソブチレンゴム、ブチルゴム、これらの混合物をベンゼン、トルエン、キシレン、ヘキサンのような有機溶剤に溶解したゴム系粘着剤、或いは、これらゴム系粘着剤にアビエチレン酸ロジンエステル、テルペン・フェノール共重合体、テルペン・インデン共重合体などの粘着付与剤を配合したもの、或いは、2-エチルヘキシルアクリレート・アクリル酸n-ブチル共重合体、2-エチルヘキシルアクリレート・アクリル酸エチル・メタクリル酸メチル共重合体などのガラス転移点が-20℃以下のアクリル系共重合体を有機溶剤で溶解したアクリル系粘着剤などを挙げることができる。 Various types of adhesives can also be used, with pressure-sensitive adhesives being preferred. Examples of pressure-sensitive adhesives include rubber-based adhesives obtained by dissolving polyisobutylene rubber, butyl rubber, or mixtures of these in organic solvents such as benzene, toluene, xylene, or hexane, or these rubber-based adhesives mixed with tackifiers such as abiethylene acid rosin ester, terpene-phenol copolymer, or terpene-indene copolymer, or acrylic-based adhesives obtained by dissolving acrylic copolymers with a glass transition point of -20°C or less, such as 2-ethylhexyl acrylate-n-butyl acrylate copolymer or 2-ethylhexyl acrylate-ethyl acrylate-methyl methacrylate copolymer, in an organic solvent.
(透過を遮断できるガス成分種類)
 本発明のガスバリア性積層体が遮断できるガスとしては、酸素が主であり、その他、二酸化炭素、窒素、アルゴン等の不活性ガス、メタノール、エタノール、プロパノール等のアルコール成分、フェノール、クレゾール等のフェノール類の他、低分子化合物からなる香気成分類、例えば、醤油、ソース、味噌、リモネン、メントール、サリチル酸メチル、コーヒー、ココア等の臭いを例示することができる。
(Types of gas components that can be blocked from permeating)
The gas that the gas barrier laminate of the present invention can block is mainly oxygen, but other examples include inert gases such as carbon dioxide, nitrogen, and argon, alcohol components such as methanol, ethanol, and propanol, phenols such as phenol and cresol, and aroma components made of low molecular weight compounds, for example, the smells of soy sauce, sauce, miso, limonene, menthol, methyl salicylate, coffee, cocoa, etc.
(包装材)
 本発明のガスバリア性積層体は、食品や医薬品などの保護を目的とする多層包装材料として使用することができる。多層包装材料として使用する場合には、内容物や使用環境、使用形態に応じてその層構成は変化し得る。また、本発明の包装体に易開封処理や再封性手段を適宜設けてあってもよい。
(Packaging materials)
The gas barrier laminate of the present invention can be used as a multi-layer packaging material for protecting foods, medicines, etc. When used as a multi-layer packaging material, the layer structure can be changed depending on the contents, the environment of use, and the form of use. In addition, the package of the present invention may be appropriately provided with an easy-opening treatment or a resealing means.
 本発明の包装材に充填される内容物として、例えば食品としては、米菓、豆菓子、ナッツ類、ビスケット・クッキー、ウェハース菓子、マシュマロ、パイ、半生ケーキ、キャンディ、スナック菓子などの菓子類、パン、スナックめん、即席めん、乾めん、パスタ、無菌包装米飯、ぞうすい、おかゆ、包装もち、シリアルフーズなどのステープル類、漬物、煮豆、納豆、味噌、凍豆腐、豆腐、なめ茸、こんにゃく、山菜加工品、ジャム類、ピーナッツクリーム、サラダ類、冷凍野菜、ポテト加工品などの農産加工品、ハム類、ベーコン、ソーセージ類、チキン加工品、コンビーフ類などの畜産加工品、魚肉ハム・ソーセージ、水産練製品、かまぼこ、のり、佃煮、かつおぶし、塩辛、スモークサーモン、辛子明太子などの水産加工品、桃、みかん、パイナップル、りんご、洋ナシ、さくらんぼなどの果肉類、コーン、アスパラガス、マッシュルーム、玉ねぎ、人参、大根、じゃがいもなどの野菜類、ハンバーグ、ミートボール、水産フライ、ギョーザ、コロッケなどを代表とする冷凍惣菜、チルド惣菜などの調理済食品、バター、マーガリン、チーズ、クリーム、インスタントクリーミーパウダー、育児用調整粉乳などの乳製品、液体調味料、レトルトカレー、ペットフードなどの食品類が挙げられる。 Contents to be filled into the packaging material of the present invention include, for example, foods such as rice crackers, bean snacks, nuts, biscuits and cookies, wafer snacks, marshmallows, pies, semi-dried cakes, candies, snack foods, and other confectioneries; bread, snack noodles, instant noodles, dried noodles, pasta, aseptically packaged cooked rice, porridge, porridge, packaged rice cakes, and cereal foods, as well as other staple foods; pickles, boiled beans, natto, miso, frozen tofu, tofu, nametake mushrooms, konjac, wild vegetable products, jams, peanut cream, salads, frozen vegetables, and processed potato products, as well as processed livestock products such as ham, bacon, sausages, processed chicken products, and corned beef, These include fish ham and sausages, fish paste products, fishery products such as kamaboko, nori seaweed, tsukudani (food boiled in soy sauce), dried bonito flakes, shiokara (salted fish), smoked salmon, and spicy cod roe; fruit pulp such as peaches, mandarin oranges, pineapples, apples, pears, and cherries; vegetables such as corn, asparagus, mushrooms, onions, carrots, radishes, and potatoes; prepared foods such as frozen and chilled prepared foods, including hamburger steaks, meatballs, seafood fries, gyoza dumplings, and croquettes; dairy products such as butter, margarine, cheese, cream, instant creamy powder, and infant formula; liquid seasonings, retort curry, and pet food.
 また非食品としては、タバコ、使い捨てカイロ、輸液パック等の医薬品、洗濯用液体洗剤、台所用液体洗剤、浴用液体洗剤、浴用液体石鹸、液体シャンプー、液体コンディショナー、化粧水や乳液等の化粧品、真空断熱材、電池等、様々な包装材料としても使用され得る。 In addition, it can also be used as a packaging material for a variety of non-food items, including tobacco, disposable hand warmers, medicines such as infusion packs, liquid laundry detergent, liquid kitchen detergent, liquid bath detergent, liquid bath soap, liquid shampoo, liquid conditioner, cosmetics such as lotion and milky lotion, vacuum insulation materials, batteries, etc.
 以下、本発明を具体的な合成例、実施例を挙げてより詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の例において、「部」及び「%」は、特に断りがない限り、「質量部」及び「質量%」をそれぞれ表す。 The present invention will be described in more detail below with reference to specific synthesis examples and working examples, but the present invention is not limited to these examples. In the following examples, "parts" and "%" respectively represent "parts by mass" and "% by mass" unless otherwise specified.
((A)層の調製)
 二軸延伸ポリプロピレンフィルム(OPPフィルム FOR、フタムラ化学株式会社、厚さ20μm)の上に、アクリル系コート剤(GAC-013S、DIC株式会社)とポリイソシアネート系硬化剤(KR-90、DIC株式会社)を混合比が5:1になるように配合し得たアンカーコーティング液を、乾燥膜厚が約0.05μmになるようにグラビアコート法によって塗布乾燥しアンカーコート層を得た。その後、電子線加熱方式による真空蒸着装置において、金属アルミニウムを蒸着させると共に酸素ガスを導入し、OPPフィルム上にアンカーコート層を有し、その上に厚さ20nmの酸化アルミニウム蒸着層を有する(A)層を形成した。
(Preparation of Layer (A))
An anchor coating solution obtained by mixing an acrylic coating agent (GAC-013S, DIC Corporation) and a polyisocyanate curing agent (KR-90, DIC Corporation) in a mixing ratio of 5:1 was applied onto a biaxially stretched polypropylene film (OPP film FOR, Futamura Chemical Co., Ltd., thickness 20 μm) by a gravure coating method so that the dry film thickness was about 0.05 μm, and dried to obtain an anchor coat layer. Thereafter, in a vacuum deposition apparatus using an electron beam heating method, metallic aluminum was deposited and oxygen gas was introduced, forming an (A) layer having an anchor coat layer on the OPP film and an aluminum oxide deposition layer having a thickness of 20 nm thereon.
((B)層用 コーティング液(b-1)の調整)
 イソプロピルアルコール(IPA)に対しテトラノルマルブチルチタネート(TA-21、マツモトファインケミカル株式会社)を加え、攪拌してコーティング液(b-1)を得た。部数は表1に示す。なおこのとき、全固形分に対するテトラノルマルブチルチタネートの固形分は100質量%である。
(Preparation of Coating Solution (b-1) for (B) Layer)
Tetra-normal butyl titanate (TA-21, Matsumoto Fine Chemical Co., Ltd.) was added to isopropyl alcohol (IPA) and stirred to obtain a coating liquid (b-1). The number of parts is shown in Table 1. At this time, the solid content of tetra-normal butyl titanate relative to the total solid content is 100 mass%.
((C層)用 コーティング液(c)の調整)
 重合度2400のポリビニルアルコール(PVA)(PVA60-98、株式会社クラレ、完全ケン化PVA)を固形分濃度が5%となるように水/イソプロピルアルコール(IPA)=98/2(質量比)の混合溶媒にて溶解し、PVA溶液を調製した。次に、テトラエトキシシラン(Si(OC2H5)4、以下「TEOS」と称す。KBE-04、信越化学工業株式会社)に0.1N塩酸を加え、30分間攪拌し加水分解させて固形分3%(SiO2換算)のTEOS加水分解溶液を調製した。PVA溶液とTEOS加水分解溶液とを、固形分質量比でPVA/TEOS(SiO2換算)が30/70となるように混合し、コーティング液(c)を調製した 。
(Preparation of Coating Solution (c) for (C Layer))
Polyvinyl alcohol (PVA) with a degree of polymerization of 2400 (PVA60-98, Kuraray Co., Ltd., fully saponified PVA) was dissolved in a mixed solvent of water/isopropyl alcohol (IPA) = 98/2 (mass ratio) so that the solid content concentration was 5%, to prepare a PVA solution. Next, 0.1N hydrochloric acid was added to tetraethoxysilane (Si (OC2H5)4, hereinafter referred to as "TEOS"; KBE-04, Shin-Etsu Chemical Co., Ltd.), and the mixture was stirred for 30 minutes to hydrolyze the mixture, to prepare a TEOS hydrolyzed solution with a solid content of 3% (SiO2 equivalent). The PVA solution and the TEOS hydrolyzed solution were mixed so that the solid content mass ratio of PVA/TEOS (SiO2 equivalent) was 30/70, to prepare a coating liquid (c).
(ガスバリア積層体の作製)  
 調製した(A)層上に、バーコーター#2でコーティング剤(b-1)を塗工し、温度50℃に設定したドライヤーで希釈溶剤を揮発させ(B-1)層を得た。その後、バーコーター#3でコーティング液(c)を塗工し、80℃にセットした熱風乾燥機中で1分間乾燥させ(C)層を形成し、ガスバリア積層体とした。
(Preparation of Gas Barrier Laminate)
A coating agent (b-1) was applied onto the prepared (A) layer using bar coater #2, and the dilution solvent was evaporated using a dryer set at a temperature of 50° C. to obtain a (B-1) layer. Thereafter, a coating liquid (c) was applied using bar coater #3, and dried for 1 minute in a hot air dryer set at 80° C. to form a (C) layer, which was a gas barrier laminate.
(包装材の作製)
 ディックドライLX-830とKW-75(いずれもDIC株式会社)を10/1.5の配合比で配合し、不揮発分が25%となるように酢酸エチルを配合して接着剤を得た。その後、作製したガスバリア積層体の(C)層の上に、バーコーター#8で接着剤を塗工し、温度50℃に設定したドライヤーで希釈溶剤を揮発させた後、無延伸ポリプロピレンフィルム(CPPフィルム 東洋紡株式会社、P1128)と貼り合わせた。40℃で3日間エージングを行い、包装材[(A)層(基材はOPPフィルム)/(B)層/(C)層/接着剤/CPPフィルム]を得た。
(Preparation of packaging materials)
Dick Dry LX-830 and KW-75 (both from DIC Corporation) were mixed in a mixing ratio of 10/1.5, and ethyl acetate was added so that the non-volatile content was 25% to obtain an adhesive. The adhesive was then applied onto the (C) layer of the prepared gas barrier laminate using a bar coater #8, and the dilution solvent was evaporated using a dryer set at a temperature of 50°C, after which it was laminated with a non-oriented polypropylene film (CPP film, Toyobo Co., Ltd., P1128). Aging was performed for 3 days at 40°C to obtain a packaging material [(A) layer (substrate is OPP film)/(B) layer/(C) layer/adhesive/CPP film].
(実施例)
 実施例1のコーティング液(b-1)の配合を表1~表3に記載された通り変更した以外は実施例1と同様の方法で行い、それぞれ実施例2~22のガスバリア積層体と包装材を得た。なお表1~3において使用した原料は次の通りである。
ブチルチタネートダイマー(TA-23、マツモトファインケミカル株式会社)
ノルマルブチルジルコネート(ZA-65、マツモトファインケミカル株式会社)
チタンアセチルアセトネート(TC-100、マツモトファインケミカル株式会社)
チタンテトラアセチルアセトネート(TC-401、マツモトファインケミカル株式会社)
ジルコニウムモノアセチルアセトネート(ZC-540、マツモトファインケミカル株式会社)
クエン酸(クエン酸、関東化学株式会社)
りんご酸(りんご酸、関東化学株式会社)
マンデル酸(マンデル酸、関東化学株式会社)
アセトン(アセトン、関東化学株式会社)
ポリビニルブチラール(BL-1、積水化学株式会社)
3-グリシドキシプロピルトリメトキシシラン(KBM-403、信越化学工業株式会社)
(Example)
The same procedure as in Example 1 was carried out except that the composition of the coating liquid (b-1) in Example 1 was changed as shown in Tables 1 to 3, to obtain gas barrier laminates and packaging materials of Examples 2 to 22, respectively. The raw materials used in Tables 1 to 3 are as follows.
Butyl titanate dimer (TA-23, Matsumoto Fine Chemical Co., Ltd.)
Normal butyl zirconate (ZA-65, Matsumoto Fine Chemical Co., Ltd.)
Titanium acetylacetonate (TC-100, Matsumoto Fine Chemical Co., Ltd.)
Titanium tetraacetylacetonate (TC-401, Matsumoto Fine Chemical Co., Ltd.)
Zirconium monoacetylacetonate (ZC-540, Matsumoto Fine Chemical Co., Ltd.)
Citric acid (Citric acid, Kanto Chemical Co., Ltd.)
Malic acid (Malic acid, Kanto Chemical Co., Ltd.)
Mandelic acid (Mandelic acid, Kanto Chemical Co., Ltd.)
Acetone (Acetone, Kanto Chemical Co., Ltd.)
Polyvinyl butyral (BL-1, Sekisui Chemical Co., Ltd.)
3-Glycidoxypropyltrimethoxysilane (KBM-403, Shin-Etsu Chemical Co., Ltd.)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(比較例1)
 実施例1の(B)層を設けずに、(A)層の上に(C)層を作製した以外は実施例1と同様の方法で行い、比較例1のガスバリア積層体と包装材を得た。
(Comparative Example 1)
A gas barrier laminate and a packaging material of Comparative Example 1 were obtained in the same manner as in Example 1, except that the layer (B) of Example 1 was not provided and the layer (C) was formed on the layer (A).
(比較例2~6)
 実施例1のコーティング液(b-1)の配合を表4に記載された通り変更した以外は実施例1と同様の方法で行い、それぞれ比較例2~6のガスバリア積層体と包装材を得た。
(Comparative Examples 2 to 6)
The same procedure as in Example 1 was carried out except that the composition of the coating liquid (b-1) in Example 1 was changed as shown in Table 4, to obtain gas barrier laminates and packaging materials of Comparative Examples 2 to 6, respectively.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

(評価項目1:密着性)
 作製したガスバリア積層体の(C)層の上にセロテープ(登録商標)(ニチバン、12mm幅)を貼り付け、これを急速 に剥がしたときのコーティング皮膜の外観の状態を次の3段階で目視判定した。
(評価基準)
〇:印刷皮膜の70%以上がフィルムに残った。
△:印刷皮膜の30%以上~70%未満がフィルムに残った。
×:印刷皮膜が30%未満しか残らなかった。
(Evaluation item 1: Adhesion)
A piece of Cellotape (registered trademark) (Nichiban, 12 mm width) was applied onto layer (C) of the prepared gas barrier laminate, and the appearance of the coating film when it was quickly peeled off was visually judged according to the following three stages.
(Evaluation criteria)
A: 70% or more of the printed film remained on the film.
Δ: 30% to less than 70% of the printed film remained on the film.
x: Less than 30% of the printed film remained.
(評価項目2:ラミネート強度) 
 作製した包装材を、接着剤を塗工した方向と平行な方向で15mm幅毎に切断した。次いで包装材の長軸の末端(15mm幅に切断した端)を、OPPフィルムとCPPフィルムの間で剥離させた。剥離させた2層をそれぞれ(株)島津製作所社製「オートグラフAGS-X」に固定し、雰囲気温度25℃、剥離速度300mm/分の設定で、T型剥離法により剥離を行い引っ張り強度を測定した。ここで測定された引っ張り強度を各実施例、比較例の積層体のラミネート強度とした。接着強度の単位はN/15mm である。  
(Evaluation item 2: Laminate strength)
The prepared packaging material was cut into 15 mm widths in a direction parallel to the direction in which the adhesive was applied. Then, the end of the long axis of the packaging material (the end cut into 15 mm width) was peeled between the OPP film and the CPP film. The two peeled layers were fixed to an "Autograph AGS-X" manufactured by Shimadzu Corporation, and peeled by a T-type peeling method with an atmospheric temperature of 25°C and a peeling speed of 300 mm/min to measure the tensile strength. The tensile strength measured here was taken as the laminate strength of the laminate of each Example and Comparative Example. The unit of adhesive strength is N/15 mm.
(評価項目3:ガスバリア性(酸素透過率))
 酸素透過率の測定は、JIS-K7126-2:2006「プラスチックーフィルム及びシート-ガス透過度試験方法―第2部:等圧法」に準じ、モコン社製酸素透過率測定装置OX-TRAN2/21を用いて、温度23℃、湿度0%RHの雰囲気下、及び、温度23℃、湿度90%RHの雰囲気下で実施した。RHとは相対湿度を表す。尚、酸素透過率の単位は、cc/day・atm・mである。
(Evaluation item 3: Gas barrier properties (oxygen permeability))
The oxygen permeability was measured in accordance with JIS-K7126-2:2006 "Plastic films and sheets - Gas permeability test method - Part 2: Constant pressure method" using an oxygen permeability measuring device OX-TRAN2/21 manufactured by Mocon Co., Ltd., under an atmosphere of temperature 23°C and humidity 0% RH, and an atmosphere of temperature 23°C and humidity 90% RH. RH stands for relative humidity. The unit of oxygen permeability is cc/day·atm· m2 .
 結果を表5~表8に示す。 The results are shown in Tables 5 to 8.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例1~22において、密着性、ラミネート強度、及びガスバリア性が良好なガスバリア積層体が製造された。一方、(B)層を有しない比較例1、及び(B)層として本発明の規定する第4族元素を金属種とする有機金属化合物を50質量%以上用いなかった比較例2~6では十分な密着性、ラミネート強度、及びガスバリア性が得られなかった。各実施例比較例が共通のCPPフィルムを有する構成であることから、実施例及び比較例の間で確認された密着性、ラミネート強度、及びガスバリア性の差は、積層体及び包装材の構成の差異によるものであると思料される。
 以上の結果より、本発明の構成を有するガスバリア積層体及び包装材は良好な密着性、ラミネート強度、及びガスバリア性を有するものであることが確認された。
In Examples 1 to 22, gas barrier laminates with good adhesion, laminate strength, and gas barrier properties were produced. On the other hand, in Comparative Example 1, which did not have a (B) layer, and Comparative Examples 2 to 6, which did not use 50 mass% or more of an organometallic compound containing a Group 4 element as the metal species as defined in the present invention as the (B) layer, sufficient adhesion, laminate strength, and gas barrier properties were not obtained. Since each Example and Comparative Example has a common configuration of a CPP film, it is believed that the differences in adhesion, laminate strength, and gas barrier properties confirmed between the Examples and Comparative Examples are due to differences in the configurations of the laminate and packaging material.
From the above results, it was confirmed that the gas barrier laminate and packaging material having the configuration of the present invention have good adhesion, lamination strength, and gas barrier properties.

Claims (8)

  1.  ガスバリア性積層体であって、
    (A)少なくとも一面に無機層が形成された基材からなる層、
    (B)前記基材の無機層が形成された面に接触するように設けられた、第4族元素を金属種とする有機金属化合物を全固形分に対し50質量%以上有する層、
    (C)前記樹脂層(B)に接触するように設けられた、水溶性高分子と、金属アルコキシド及び/又はその加水分解物を含んでなる層、
    を積層してなることを特徴とするガスバリア性積層体。
    A gas barrier laminate comprising:
    (A) a layer made of a substrate having an inorganic layer formed on at least one surface thereof;
    (B) a layer provided in contact with the surface of the base material on which the inorganic layer is formed, the layer having an organometallic compound having a Group 4 element as a metal species in an amount of 50 mass% or more based on the total solid content;
    (C) a layer comprising a water-soluble polymer and a metal alkoxide and/or a hydrolyzate thereof, the layer being provided in contact with the resin layer (B);
    A gas barrier laminate comprising:
  2.  前記(A)層における無機層が、蒸着処理又はスパッタリング処理のいずれかにより形成されている請求項1に記載のガスバリア性積層体。 The gas barrier laminate according to claim 1, wherein the inorganic layer in layer (A) is formed by either a vapor deposition process or a sputtering process.
  3.  前記(A)層における無機層が、酸化アルミニウム、酸化ケイ素、アルミニウム、酸化亜鉛、酸化マグネシウムからなる群から選択される1種以上の無機物から形成される請求項1に記載のガスバリア性積層体。 The gas barrier laminate according to claim 1, wherein the inorganic layer in layer (A) is formed from one or more inorganic substances selected from the group consisting of aluminum oxide, silicon oxide, aluminum, zinc oxide, and magnesium oxide.
  4. 前記第4族元素がチタン又はジルコニウムである請求項1に記載のガスバリア性積層体。 The gas barrier laminate according to claim 1, wherein the Group 4 element is titanium or zirconium.
  5.  前記水溶性高分子が、ビニルアルコール重合体、エチレンビニルアルコール重合体、ビニルピロリドン重合体、アクリルアミド重合体から選択される1種以上の水溶性高分子である請求項1に記載のガスバリア性積層体。 The gas barrier laminate according to claim 1, wherein the water-soluble polymer is one or more water-soluble polymers selected from vinyl alcohol polymers, ethylene-vinyl alcohol polymers, vinylpyrrolidone polymers, and acrylamide polymers.
  6.  前記金属アルコキシド及び/又はその加水分解物が、金属種としてケイ素、アルミニウムから選択される一種以上を有する化合物である請求項1に記載のガスバリア性積層体。 The gas barrier laminate according to claim 1, wherein the metal alkoxide and/or its hydrolysate is a compound having at least one metal selected from silicon and aluminum.
  7.  請求項1~6のいずれか一項に記載のガスバリア性積層体を用いてなる包装材。 A packaging material comprising the gas barrier laminate according to any one of claims 1 to 6.
  8.  請求項1~6のいずれか一項に記載のガスバリア性積層体と、第2の基材とを、接着剤でラミネートしてなる請求項7に記載の包装材。 The packaging material according to claim 7, which is obtained by laminating the gas barrier laminate according to any one of claims 1 to 6 and a second substrate with an adhesive.
PCT/JP2023/037800 2022-10-27 2023-10-19 Gas barrier laminate and packaging WO2024090318A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-172241 2022-10-27
JP2022172241 2022-10-27

Publications (1)

Publication Number Publication Date
WO2024090318A1 true WO2024090318A1 (en) 2024-05-02

Family

ID=90830829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037800 WO2024090318A1 (en) 2022-10-27 2023-10-19 Gas barrier laminate and packaging

Country Status (1)

Country Link
WO (1) WO2024090318A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272564A (en) * 2009-05-19 2010-12-02 Toppan Printing Co Ltd Back sheet for solar battery
JP2017202624A (en) * 2016-05-11 2017-11-16 凸版印刷株式会社 Gas barrier film
JP2018094885A (en) * 2016-12-16 2018-06-21 凸版印刷株式会社 Gas barrier laminated sheet, packaging material, and molded article
WO2022138417A1 (en) * 2020-12-22 2022-06-30 Dic株式会社 Gas barrier laminate and packaging material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272564A (en) * 2009-05-19 2010-12-02 Toppan Printing Co Ltd Back sheet for solar battery
JP2017202624A (en) * 2016-05-11 2017-11-16 凸版印刷株式会社 Gas barrier film
JP2018094885A (en) * 2016-12-16 2018-06-21 凸版印刷株式会社 Gas barrier laminated sheet, packaging material, and molded article
WO2022138417A1 (en) * 2020-12-22 2022-06-30 Dic株式会社 Gas barrier laminate and packaging material

Similar Documents

Publication Publication Date Title
ES2528213T3 (en) Polyurethane Resin Composition
EP0960903B1 (en) Polyamide film and polyamide laminate film
TWI579315B (en) Epoxy resin hardener, epoxy resin composition, gas barrier adhesive and gas barrier laminate
TW201402637A (en) Epoxy resin curing agent, epoxy resin composition, gas-barrier adhesive, and gas-barrier laminate
EP2980117A1 (en) Active-energy-ray-curable resin, and gas barrier laminate comprising cured product of said resin
JP6506006B2 (en) Non-adhesive packaging container and method of manufacturing non-adhesive packaging container
WO2021039559A1 (en) Gas barrier laminate, and packaging material
JP5719534B2 (en) Printing ink composition for alumina vapor deposition film and use thereof
JP4476935B2 (en) Heat-shrinkable laminated film and package comprising the same
WO2024090318A1 (en) Gas barrier laminate and packaging
JP6973690B2 (en) Gas barrier laminate, packaging material
WO2021039337A1 (en) Gas barrier laminate and packaging material
JP7272508B2 (en) Gas barrier laminate and packaging material
JP6506007B2 (en) Non-adhesive film for food, method for producing the non-adhesive film, method for preventing or reducing adhesion of food to non-adhesive film for food, and food packaging container
EP3278981A1 (en) Antistatic sheet, packaging material including same, and electronic device
WO2022138188A1 (en) Gas barrier multilayer body and packaging material
JP6857011B2 (en) Barrier coating composition for laminating and barrier composite film for laminating
WO2024101165A1 (en) Gas barrier composition, coating agent and multilayer body
JP7136396B1 (en) Coating agents, laminates, packaging materials
JP2020142858A (en) Packaging material and pouch having packaging material
JP7201131B2 (en) Gas barrier laminates, packaging materials
JP7441857B2 (en) Multilayer structure and its manufacturing method, packaging material using the same, vacuum insulation material, and protective sheet for electronic devices
US20220388746A1 (en) Freezing packaging film, freezing packaging bag, frozen food package, and method for evaluating preservation performance of freezing packaging film
JP7088361B1 (en) Gas barrier laminates, packaging materials, packaging and packaging articles
JP7388604B1 (en) Heat-sealing agents, heat-sealable films, and packaging materials