WO2021039559A1 - Gas barrier laminate, and packaging material - Google Patents

Gas barrier laminate, and packaging material Download PDF

Info

Publication number
WO2021039559A1
WO2021039559A1 PCT/JP2020/031385 JP2020031385W WO2021039559A1 WO 2021039559 A1 WO2021039559 A1 WO 2021039559A1 JP 2020031385 W JP2020031385 W JP 2020031385W WO 2021039559 A1 WO2021039559 A1 WO 2021039559A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
group
gas barrier
resin
laminate
Prior art date
Application number
PCT/JP2020/031385
Other languages
French (fr)
Japanese (ja)
Inventor
友昭 原田
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2021542797A priority Critical patent/JP7228107B2/en
Priority to CN202080054342.5A priority patent/CN114206612A/en
Publication of WO2021039559A1 publication Critical patent/WO2021039559A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging

Definitions

  • the present invention relates to a gas barrier laminate and a packaging material obtained by using the gas barrier laminate.
  • Packaging materials used for packaging foods, pharmaceuticals, etc. are required to prevent deterioration of their contents, especially oxidation by oxygen.
  • a barrier film made of a resin having a relatively high oxygen barrier property and a laminate (laminated film) using the barrier film as a film base material have been used.
  • the oxygen barrier resin a resin containing a highly hydrophilic hydrogen-bonding group in the molecule represented by polyacrylic acid or polyvinyl alcohol has been used.
  • research has been conducted to further improve the barrier properties of these oxygen barrier resins.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a laminate having better gas barrier properties than a conventional gas barrier laminate, and a packaging material using the laminate.
  • the present invention comprises a base material made of biaxially stretched polypropylene, an aluminum oxide layer arranged on the base material, a gas barrier coating agent layer arranged on the aluminum oxide layer, and a gas barrier coating agent layer. With respect to a laminate having a gas barrier adhesive layer arranged in.
  • the gas barrier coating agent is a coating agent containing a resin (A) having a carboxyl group, a divalent metal compound (B), and an alcohol (C), and the alcohol (C) in the composition. It is preferable that the content is 85 to 98 wt% and the water content in the composition is 1% or less.
  • the resin (A) having a carboxyl group is at least one selected from homopolymers or copolymers of monomers selected from acrylic acid, methacrylic acid, maleic acid, itaconic acid and aspartic acid. It is preferable to have.
  • the divalent metal compound (B) is at least one selected from a zinc compound, a magnesium compound and a calcium compound.
  • the alcohol (C) is at least one selected from methanol, ethanol, propanol and butanol.
  • the present invention also relates to a packaging material made of the laminate.
  • the laminate of the present invention it is possible to provide a packaging material having excellent gas barrier properties.
  • the laminate of the present invention comprises a base material made of biaxially stretched polypropylene, an aluminum oxide layer arranged on the base material, a gas barrier coating agent layer arranged on the aluminum oxide layer, and the gas barrier coating agent. It has a gas barrier adhesive layer arranged on the layer.
  • a sealant layer, a printing layer, an anchor coat layer and the like may be provided.
  • the base material used for the laminate of the present invention is made of biaxially stretched polypropylene.
  • the raw material include a propylene homopolymer, a propylene resin composed of a copolymer of propylene and another monomer, and a mixture of a propylene homopolymer and a copolymer.
  • a film or sheet made of these raw materials (unless otherwise specified below, the film is also a general term for a film and a sheet) is formed by a single layer or a coextrusion method of two or more layers and stretched in the biaxial direction. Can be used.
  • a conventionally known method can be used.
  • the raw material is melted by an extruder, extruded by an annular die or a T die, and rapidly cooled to be oriented substantially indefinitely.
  • Produce no unstretched film is produced.
  • this unstretched film is stretched by a method such as tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, and tubular simultaneous biaxial stretching, and is perpendicular to the film flow direction and the film flow direction. It can be manufactured by stretching in the (horizontal axis) direction.
  • the draw ratio can be appropriately selected depending on the polypropylene raw material, but is usually preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction, respectively.
  • the film thickness of the base material is not particularly limited, and may be appropriately selected in the range of 1 to 300 ⁇ m from the viewpoint of moldability and transparency. Since suitable strength, rigidity, and ease of processing can be obtained, the film thickness of the base material is preferably 1 to 100 ⁇ m, more preferably 20 to 50 ⁇ m.
  • the substrate used in the present invention preferably has a plane orientation coefficient ⁇ according to the phase difference measurement method in the range of 0.005 to 0.020. This makes it possible to improve the adhesion between the aluminum oxide layer and the base material, which will be described later, to a level that can sufficiently withstand boiling and retort treatment.
  • a heat fixing step is performed after biaxial stretching, and conditions for biaxial stretching and heat fixing are appropriately selected.
  • a method of controlling the plane orientation coefficient ⁇ can be mentioned.
  • the plane orientation coefficient ⁇ can be adjusted within a desired range by performing heat fixation at a low temperature for a long time after biaxial stretching. It is also possible to modify the surface so that the surface orientation coefficient ⁇ is in the range of 0.005 to 0.020 by surface treatment such as reactive ion etching (RIE) treatment described later.
  • RIE reactive ion etching
  • a commercially available product in which the surface orientation coefficient ⁇ is adjusted in the range of 0.005 to 0.020 in advance may be used, or the surface of the base material may be modified immediately before the aluminum oxide layer is formed.
  • the base material used in the present invention preferably has an orientation angle measured by the phase difference measurement method of 50 ° to 90 ° or ⁇ 50 ° to ⁇ 90 ° with respect to the flow direction.
  • the orientation angle is defined as + if the molecular chains are tilted to the left and aligned to the right, and-if the molecular chains are tilted to the right, with the flow direction as 0 °.
  • the orientation angle in the flow direction can be obtained by using a method such as a phase difference measurement method using visible light or a molecular orientation measurement method using a microwave, but in the case of a molecular orientation measurement method using a microwave.
  • the variation of the measured value by the measurer becomes large.
  • the phase difference measuring method can perform stable measurement regardless of the measurer, has little variation in the measurer, and can accurately measure the orientation angle. Therefore, it is preferable to adopt the phase difference measurement method for measuring the orientation angle with respect to the flow direction.
  • Such a substrate is obtained through biaxial stretching and thermal fixation.
  • the orientation angle can be controlled by appropriately selecting the conditions of biaxial stretching and thermal fixation. For example, by cutting out the central portion with respect to the flow direction after biaxial stretching and using it, the orientation angle of the base material can be selected within a desired range.
  • the base material may contain additives as needed. Specifically, improve workability, heat resistance, weather resistance, mechanical properties, dimensional stability, antioxidant properties, slipperiness, mold releasability, flame retardancy, antifungal properties, electrical properties, strength, etc.
  • plastic compounding agents and additives such as lubricants, cross-linking agents, antioxidants, ultraviolet absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents and pigments can be added.
  • the amount of additive added should be adjusted within a range that does not affect other performance.
  • the substrate is physically treated with some surface treatment, such as corona discharge treatment, ozone treatment, low temperature plasma treatment using oxygen gas or nitrogen gas, glow discharge treatment, etc. Treatment, chemical treatment such as oxidation treatment using chemicals, and other treatments may be performed.
  • the discharge treatment is preferable because the surface orientation coefficient ⁇ of the base material can be adjusted within a desired range.
  • the discharge treatment is not particularly limited, but the RIE treatment is preferable.
  • the RIE processing can be performed using, for example, a take-up type in-line device, and a planar type processing device that applies a voltage to the cooling drum on which the base material is installed can be used.
  • a planar type processing device that applies a voltage to the cooling drum on which the base material is installed can be used.
  • an electrode cathode
  • ions in plasma are transferred to the surface of the base material while being conveyed along the treatment roll. Let it act and perform RIE treatment.
  • the base material can be placed at a position close to the cathode, and the RIE treatment can be performed by obtaining a high self-bias.
  • the RIE treatment can be performed using a hollow anode plasma processing device.
  • the holoanode plasma processing apparatus includes, for example, a processing roll that functions as an anode.
  • the cathode and the shielding plates arranged at both ends of the cathode are arranged outside the processing roll so as to face the processing roll, and the cathode is formed in a box shape having an opening.
  • the opening of the cathode is opened so as to face the processing roll, and the shielding plate has a curved surface shape along the processing roll.
  • a gas introduction nozzle is arranged above the cathode to introduce gas into the gap between the processing roll and the cathode and between the processing roll 7 shielding plate.
  • the matching box is located behind the cathode.
  • a voltage is applied from the matching box to the cathode while transporting the base material along the treatment roll, and the treatment roll and cathode into which gas is introduced and the cathode and The plasma is generated between the shielding plates, and the radicals in the plasma are attracted toward the processing roll which is the anode, so that the radicals act on the surface of the base material.
  • a magnet in the holo anode electrode and use a magnetically assisted holo anode. This makes it possible to perform more powerful and stable plasma surface treatment at high speed.
  • the magnetic field generated from the magnetic electrode further enhances the plasma confinement effect, and a high ionic current density can be obtained with a large self-bias.
  • argon, oxygen, nitrogen, and hydrogen can be used as the gas type for pretreatment by RIE. These gases may be used alone or in combination of two or more.
  • the processing can be continuously performed by using two or more processing devices. At this time, the two or more processing devices used do not have to be the same.
  • an anchor coat layer may be provided on the base material prior to the formation of the aluminum oxide layer.
  • the anchor coat layer can be formed by applying an anchor coat agent on a substrate and drying it.
  • the adhesion between the base material and the aluminum oxide layer can be improved, and the flatness of the formed surface of the aluminum oxide layer can be improved by the leveling action of the anchor coating agent, and uniform aluminum oxide with few film defects such as cracks can be improved.
  • a thin film can be formed.
  • anchor coating agent examples include solvent-soluble or water-soluble polyester resin, isocyanate resin, urethane resin, acrylic resin, vinyl alcohol resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, oxazoline group-containing resin, and modified styrene.
  • examples thereof include resins, modified silicone resins and alkyl titanates. These can be used alone or in combination of two or more.
  • the film thickness of the anchor coat layer is not particularly limited, but is preferably about 5 nm to 5 ⁇ m, and more preferably 10 nm to 1 ⁇ m. As a result, a uniform layer in which internal stress is suppressed can be formed on the base material.
  • the anchor coat layer When the anchor coat layer is provided, it is also preferable to perform a discharge treatment on the surface of the base material prior to forming the anchor coat layer in order to improve the coatability and adhesiveness of the anchor coat agent.
  • the aluminum oxide layer is a layer whose main component is aluminum oxide.
  • the main component means that more than 50% by mass of the components constituting the aluminum oxide layer is aluminum oxide. It is preferable that 70% by mass or more of the components constituting the aluminum oxide layer is aluminum oxide, more preferably 90% by mass or more, and ideally 100% by mass.
  • Aluminum oxide, AlO consists Al 2 O, at least one or more kinds of various aluminum oxides such as Al 2 O 3, the content of various aluminum oxide can be adjusted by making the conditions of thin layer.
  • the aluminum oxide layer preferably has an oxygen to aluminum ratio (O / Al ratio) calculated by the XPS measurement method of 1.0 to 1.5. As a result, it is transparent and exhibits high adhesion to the substrate. When the O / Al ratio is in the above range, sufficient barrier properties can be ensured, good transparency can be obtained, and film defects such as cracks are less likely to occur.
  • O / Al ratio oxygen to aluminum ratio
  • the aluminum oxide layer may have an oxygen atom concentration gradient in the layer in the stacking direction.
  • the O / Al ratio may increase from the surface of the aluminum oxide layer on the substrate side to the surface opposite to the substrate. Only one layer of the aluminum oxide layer may be provided, or two or more layers formed by the same or different methods may be provided.
  • the film thickness of the aluminum oxide layer is preferably 5 nm to 300 nm, and more preferably 10 nm to 300 nm. When the film thickness of aluminum oxide is within the above range, a uniform layer can be formed, and sufficient barrier properties can be ensured.
  • the surface roughness of the aluminum oxide layer is preferably 3.5 ⁇ m or less, more preferably 2.5 ⁇ m or less, and even more preferably 2.0 ⁇ m or less.
  • the lower limit of the surface roughness Rm is not particularly limited, but is 1.0 ⁇ m or more as an example.
  • the surface roughness of the aluminum oxide layer means the surface roughness on the surface of the aluminum oxide layer opposite to the base material, and the AFM unevenness image measured by an atomic force microscope (hereinafter referred to as “AFM”) is roughened. It is a value of roughness Rms (square mean square root roughness) obtained by Sas analysis.
  • the surface roughness of the aluminum oxide layer is affected by the surface roughness of the base material, the presence or absence of the anchor coat layer, the particle size of the particles forming the aluminum oxide layer, the film thickness of the aluminum oxide layer, etc.
  • the surface roughness of the received aluminum oxide layer is within the above range, the gas barrier property of the laminated body can be improved.
  • the average particle size of the particles forming the aluminum oxide layer is preferably 20 nm or less.
  • the aluminum oxide layer can be filled with a high density, and the unevenness of the surface of the base material can be efficiently covered without gaps, so that a laminated body having excellent gas barrier properties can be obtained.
  • the average particle size of the particles forming the aluminum oxide layer is more preferably 15 nm or less, and further preferably 10 nm or less. The lower limit is not particularly limited.
  • the average particle size of the particles forming the aluminum oxide layer can be obtained by analyzing the AFM uneven image as well as the measurement of the surface roughness of the aluminum oxide layer.
  • the aluminum oxide layer can be formed by a vacuum deposition method, a sputtering method, an ion plating method, a chemical vapor deposition method (CVD), or the like.
  • the vacuum deposition method is preferable when productivity is taken into consideration.
  • a means for generating high-density plasma may be used in combination.
  • As a heating method for the vapor-deposited raw material an electron beam (EB) method, a high-frequency induction heating method, a resistance heating method, or the like is used.
  • high-density plasma having high energy By applying high-density plasma having high energy to the vaporized particles vaporized or sublimated by the vacuum vapor deposition method, the film quality of the aluminum oxide layer such as density can be improved and the barrier property can be improved.
  • means for generating high-density plasma include inductively coupled (ICP) plasma, helicon wave plasma, microwave plasma, and hollow cathode discharge.
  • a gas barrier coating agent layer is formed on the aluminum oxide layer to improve the gas barrier property of the laminate, protect the aluminum oxide layer, and form a gas barrier adhesive layer or an arbitrarily formed printing layer. Improves adhesion.
  • the gas barrier coating agent of the present invention is a coating agent containing a resin (A) having a carboxyl group, a divalent metal compound (B), and an alcohol (C), and the alcohol (C) in the composition.
  • the content is 85 to 98 wt%, and the water content in the composition is 1% or less.
  • the resin (A) having a carboxyl group of the present invention may contain carboxylic acid anhydride as a carboxyl group.
  • the resin (A) having a carboxyl group is preferably at least one selected from homopolymers or copolymers of monomers selected from acrylic acid, methacrylic acid, maleic acid, itaconic acid and aspartic acid. ..
  • the resin (A) having a carboxylic acid group preferably has an acid value of 50 to 800 mgKOH / g because the barrier performance is improved. Particularly preferably, it is 80 to 800 mgKOH / g. If the acid value is 80 mgKOH / g or more, ionic bonding is sufficiently advanced and high barrier performance can be obtained.
  • the acid value is the number of mg of potassium hydroxide required to neutralize the acid content present in 1 g of the sample.
  • the resin acid value (mgKOH / g) can be calculated by the following formula.
  • the acid value can also be measured by the following method.
  • Acid value measurement method-2 The acid value (mgKOH / g-resin) is a coefficient (f) obtained from a calibration line prepared with a chloroform solution of maleic anhydride using FT-IR (FT-IR4200 manufactured by Nippon Kogaku Co., Ltd.), maleic anhydride. Calculated by the following formula using the absorbance (I) of the expansion and contraction peak (1780 cm-1) of the anhydrous ring of maleic anhydride and the absorbance (II) of the expansion and contraction peak (1720 cm-1) of the carbonyl group of maleic acid in an acid-modified polyolefin solution. Is the value.
  • Acid value [(Absorptiometry (I) ⁇ (f) ⁇ 2 ⁇ Molecular weight of potassium hydroxide ⁇ 1000 (mg) + Absorbance (II) ⁇ (f) ⁇ Molecular weight of potassium hydroxide ⁇ 1000 (Mg)) / Molecular weight of maleic anhydride]
  • the resin (A) having a carboxyl group of the present invention is not particularly limited in molecular weight, but is preferable from the viewpoint of coating film moldability having a number average molecular weight of 300 to 2,000,000. Particularly preferably, it is 500 to 1,000,000.
  • the weight average molecular weight of the resin (A) having a carboxyl group of the present invention can be calculated by measuring by the method of gel permeation chromatography (GPC).
  • the resin (A) having a carboxyl group of the present invention is not particularly limited as long as it is a resin having a carboxyl group in its structure, but is preferably a carboxyl group-containing vinyl resin.
  • Carboxyl group-containing vinyl resin examples include polymers of polymerizable unsaturated monomers having a carboxyl group. Examples of the polymerizable unsaturated monomer having a carboxyl group include unsaturated carboxylic acids such as (meth) acrylic acid, 2-carboxyethyl (meth) acrylate, crotonic acid, itaconic acid, maleic acid and fumaric acid;
  • unsaturated dicarboxylic acids such as monomethyl itaconic acid, mono-n-butyl itaconic acid, monomethyl maleate, mono-n-butyl maleate, monomethyl fumarate, mono-n-butyl fumarate, and saturated monohydric alcohols.
  • Monovinyl esters of various saturated dicarboxylic acids such as monovinyl adipic acid or monovinyl succinate;
  • Addition reaction products of various saturated polycarboxylic acid anhydrides such as succinic anhydride, glutaric anhydride, phthalic anhydride or trimellitic anhydride and various hydroxyl group-containing vinyl monomers; Examples thereof include various monomers obtained by addition-reacting various carboxyl group-containing monomers as described above with lactones.
  • the resin (A) having a carboxyl group of the present invention may be a homopolymer of the above-mentioned polymerizable unsaturated monomer having a carboxyl group, or the polymerizable unsaturated monomer having a carboxyl group. It may be a copolymer using a plurality. Further, it may be a copolymer of a polymerizable unsaturated monomer having a carboxyl group and another monomer copolymerizable.
  • Examples of the monomer copolymerizable with the polymerizable unsaturated monomer having a carboxyl group include the following.
  • Unsaturated dicarboxylic acid esters such as dimethyl fumarate, diethyl fumarate, dibutyl fumarate, dimethyl itaconic acid, dibutyl itaconic acid, methyl ethyl fumarate, methyl butyl fumarate, and methyl ethyl itaconic acid;
  • Styrene derivatives such as styrene, ⁇ -methylstyrene and chlorostyrene
  • Diene compounds such as butadiene, isoprene, piperylene, and dimethyl butadiene;
  • Vinyl halides such as vinyl chloride and vinyl bromide and vinylidene halides
  • Vinyl esters such as vinyl acetate and vinyl butyrate
  • Vinyl ethers such as methyl vinyl ether and butyl vinyl ether
  • Vinyl cyanides such as acrylonitrile, methacrylonitrile, and vinylidene cyanide
  • N-substituted maleimides such as N-phenylmaleimide and N-cyclohexylmaleimide
  • Fluorine-containing ⁇ -olefins such as vinyl fluoride, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, bromotrifluoroethylene, pentafluoropropylene or hexafluoropropylene; or trifluoromethyltrifluorovinyl ether, penta.
  • Fluoroalkyl perfluorovinyl ethers having 1 to 18 carbon atoms in a (per) fluoroalkyl group such as fluoroethyl trifluorovinyl ether or heptafluoropropyl trifluorovinyl ether; 2,2,2-trifluoroethyl (meth) ) Acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, 1H, 1H, 2H, 2H-heptadecafluorodecyl (meth) acrylate or Fluorine-containing ethylenically unsaturated monomers such as (per) fluoroalkyl (meth) acrylates having 1 to 18 carbon atoms in a (per) fluoroalkyl group such as perfluoroethyloxyethyl (meth)
  • Cyril group-containing (meth) acrylates such as ⁇ -methacryloxypropyltrimethoxysilane
  • N, N-dialkylaminoalkyl (meth) acrylate such as N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate or N, N-diethylaminopropyl (meth) acrylate, etc.
  • N, N-dialkylaminoalkyl (meth) acrylate such as N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate or N, N-diethylaminopropyl (meth) acrylate, etc.
  • These polymerizable unsaturated monomers may be used alone or in combination of two or more.
  • the resin (A) having a carboxyl group can be obtained by polymerizing (copolymerizing) using a known and commonly used method, and the copolymerization form thereof is not particularly limited. It can be produced by addition polymerization in the presence of a catalyst (polymerization initiator), and may be any of a random copolymer, a block copolymer, a graft copolymer and the like. Further, as the copolymerization method, known polymerization methods such as a massive polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method can be used.
  • the metal compound (B) of the present invention is characterized by being a divalent metal compound.
  • the divalent metal compound (B) is a compound of a divalent metal.
  • Examples of the divalent metal compound (B) include zinc compounds, magnesium compounds, calcium compounds, manganese compounds, iron compounds, cobalt compounds, nickel compounds, copper compounds and the like, and zinc compounds, magnesium compounds and calcium compounds are particularly preferable. is there. These metal compounds may be used alone or in combination of two or more.
  • the divalent metal compound (B) is preferably a divalent metal oxide, a hydroxide, or a carbonate, and may be a mixture thereof.
  • Specific compounds of the divalent metal compound (B) are preferably zinc oxide, magnesium oxide and calcium oxide, and particularly preferably zinc oxide and magnesium oxide.
  • the divalent metal compound (B) is preferably in the form of particles. More preferably, the fine particles have an average particle diameter of 500 nm or less and 10 nm or more. Particularly preferably, it is fine particles of 20 nm to 300 nm.
  • the average particle size here can be measured using a dynamic light scattering type particle size distribution measuring device, for example, LB-500 (manufactured by HORIBA, Ltd.).
  • Alcohol (C) of the present invention a known and commonly used alcohol can be used. Specific examples thereof include methanol, ethanol, propanol, butanol, hexanol, pentanol and the like. Methanol, ethanol, propanol and butanol are preferable, and propanol is particularly preferable.
  • the gas barrier coating agent of the present invention is characterized by containing the above-mentioned resin (A) having a carboxyl group, a divalent metal compound (B), and an alcohol (C).
  • the content of alcohol (C) is 85 to 98 wt%, and the water content in the composition is 1% or less.
  • the divalent metal compound (B) is stably present in the composition and forms an ionic bond with the resin (A) having a carboxyl group for the first time when the coating is dried.
  • the non-volatile content is 1 wt% to 15 wt% in the composition.
  • the total amount of the resin (A) having a carboxyl group and the divalent metal compound (B) in the total amount of the non-volatile content is preferably 90 to 100 wt%. Within this range, the gas barrier property can be sufficiently exhibited. Particularly preferably, it is 95 to 100 wt%.
  • the ratio of the resin (A) having a carboxyl group and the divalent metal compound (B) is the divalent metal compound with respect to the total amount of the resin (A) having a carboxyl group and the divalent metal compound (B).
  • (B) is preferably 15 to 60 wt%. Within this range, gas barrier properties and coatability can be well compatible. Particularly preferably, it is 20 to 50 wt%.
  • the gas barrier coating agent of the present invention may contain a material other than the resin (A) having a carboxyl group, the divalent metal compound (B), and the alcohol (C) described above.
  • the gas barrier coating agent of the present invention may contain a solvent other than alcohol (C), and is preferably a solvent compatible with alcohol (C), and examples thereof include ethylene glycol, propylene glycol, and glycerin.
  • composition of the present invention may contain various additives as long as the effects of the present invention are not impaired.
  • Additives include, for example, coupling agents, silane compounds, phosphoric acid compounds, organic fillers, inorganic fillers, stabilizers (antioxidants, heat stabilizers, UV absorbers, etc.), plasticizers, antistatic agents, lubricants, etc. Examples thereof include antiblocking agents, colorants, crystal nucleating agents, oxygen trapping agents (compounds having an oxygen trapping function), tackifiers and the like. These various additives are used alone or in combination of two or more.
  • Examples of the coupling agent include known and commonly used ones, and examples thereof include a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, and an aluminum coupling agent.
  • silane coupling agent known and commonly used agents may be used, for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2-( 3,4 Epoxycyclohexyl) Epyl group-containing silane coupling agent such as ethyltrimethoxysilane; 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-triethoxysilyl Amino group-containing silane coupling agent such as -N- (1,3-dimethylbutylidene) propylamine, N-phenyl- ⁇ -aminopropyltrimethoxysilane; 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyl Examples thereof include (meth) acryloyl group-containing silane,
  • titanium coupling agent examples include isopropyltriisostearoyl titanate, isopropyltrioctanoyl titanate, isopropyldimethacrylisostearoyl titanate, isopropylisostearoyl diacrylic titanate, isopropyltris (dioctylpyrophosphate) titanate, and tetraoctylbis (ditridecyl).
  • Examples thereof include phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, and bis (dioctylpyrophosphate) ethylene titanate.
  • zirconium coupling agent examples include zirconium acetate, ammonium zirconium carbonate, zirconium fluoride and the like.
  • Examples of the aluminum cup rig include acetalkoxyaluminum diisopropyrate, aluminum diisopropoxymonoethylacetate, aluminumtrisethylacetate, and aluminumtrisacetylacetonate.
  • Examples of the silane compound include alkoxysilane, silazane, and siloxane.
  • alkoxysilanes include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, and hexyltri.
  • Examples thereof include methoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, 1,6-bis (trimethoxysilyl) hexane, trifluoropropyltrimethoxysilane and the like.
  • Examples of the silazane include hexamethyldisilazane and the like.
  • Examples of the siloxane include hydrolyzable group-containing siloxane.
  • examples of the inorganic filler include inorganic substances such as metals, metal oxides, resins, and minerals, and composites thereof.
  • specific examples of the inorganic filler include silica, alumina, titanium, zirconia, copper, iron, silver, mica, talc, aluminum flakes, glass flakes, clay minerals and the like.
  • Examples of the compound having an oxygen trapping function include low molecular weight organic compounds that react with oxygen such as hindered phenol compounds, vitamin C, vitamin E, organic phosphorus compounds, gallic acid, and pyrogallol, and cobalt, manganese, nickel, and iron. , Transition metal compounds such as copper and the like.
  • tackifier examples include xylene resin, terpene resin, phenol resin, rosin resin and the like. By adding a tackifier, the adhesiveness to various substrates immediately after application can be improved.
  • the amount of the tackifier added is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the total amount of the resin composition.
  • the gas barrier adhesive layer is a cured coating film of the gas barrier adhesive and is arranged on the gas aria coating layer.
  • the gas barrier adhesive that can be used is not particularly limited as long as it has gas barrier properties.
  • the gas barrier adhesive means that the cured coating film of the adhesive applied at 5 g / m 2 (solid content) has an oxygen barrier property of 300 cc / m 2 / day / atm or less, or a steam barrier property. It means one that satisfies at least one of the conditions of 120 g / m 2 / day or less.
  • Examples of commercially available products include the "PASLIM” series such as PASLIM VM001 and PASLIM J350X manufactured by DIC Corporation, and the "Maxive" manufactured by Mitsubishi Gas Chemical Company.
  • the adhesive having gas barrier properties used in the present invention includes a polyol composition (A) containing at least one of the following polyester polyols (A1) to (A5), and at least two isocyanate groups in one molecule.
  • a two-component adhesive composed of a polyisocyanate composition (B) containing a compound (hereinafter, also simply referred to as an isocyanate compound) is preferably used.
  • a polyester polyol (A1) obtained by reacting a polyester polyol having three or more hydroxyl groups with a carboxylic acid anhydride or a polycarboxylic acid.
  • Polyester polyol (A2) having a polymerizable carbon-carbon double bond (3) Polyester polyol having a glycerol skeleton (A3) (4) Polyester polyol (A4) obtained by polycondensing an ortho-oriented polyvalent carboxylic acid and a polyhydric alcohol.
  • Polyester polyol having an isocyanul ring A5)
  • the polyester polyol (A1) is obtained by reacting a polyester polyol (a1) having three or more hydroxyl groups with a carboxylic acid anhydride or a polyvalent carboxylic acid, and has at least one carboxyl group and two or more hydroxyl groups. Have.
  • the polyester polyol (a1) can be obtained by making a part of the polyvalent carboxylic acid or polyhydric alcohol trivalent or higher.
  • the polyvalent carboxylic acid used for preparing the polyester polyol (A1) preferably contains at least one of orthophthalic acid and orthophthalic anhydride.
  • the polyester polyol obtained by using these compounds as a polyvalent carboxylic acid has excellent gas barrier properties and adhesiveness. It is presumed that the reason why the gas barrier property of the adhesive is excellent by using orthophthalic acid and orthophthalic anhydride is that the rotation of the polyester chain obtained by using orthophthalic acid and its acid anhydride is suppressed. It is presumed that the reason why the adhesiveness is excellent is that the polyester chain exhibits non-crystallinity due to the asymmetry, and sufficient substrate adhesion is imparted.
  • trivalent or higher polyvalent carboxylic acid examples include trimellitic acid and its acid anhydride, pyromellitic acid and its acid anhydride. In order to prevent gelation during synthesis, it is preferable to use a trivalent carboxylic acid as a trivalent or higher polyvalent carboxylic acid.
  • polyvalent carboxylic acids may be copolymerized as long as the effects of the present invention are not impaired.
  • aliphatic polyvalent carboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, and dodecanediocarboxylic acid; unsaturated bond-containing polyvalent carboxylic acids such as maleic anhydride, maleic acid, and fumaric acid; , 3-Cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and other alicyclic polyvalent carboxylic acids; terephthalic acid, isophthalic acid, pyromellitic acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5 -Naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-p,
  • the polyhydric alcohol used for preparing the polyester polyol (A1) preferably contains at least one selected from the group consisting of ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexanedimethanol. It is presumed that the smaller the number of carbon atoms between oxygen atoms, the less flexible the molecular chain is and the more difficult it is for oxygen to permeate. Therefore, it is particularly preferable to use ethylene glycol.
  • trihydric or higher polyhydric alcohol examples include glycerin, trimethylolpropane, trimethylolethane, tris (2-hydroxyethyl) isocyanurate, 1,2,4-butanetriol, pentaerythritol, dipentaerythritol and the like. Be done. In order to prevent gelation during synthesis, it is preferable to use a trihydric alcohol as a trihydric or higher polyhydric alcohol.
  • polyvalent carboxylic acids may be copolymerized as long as the effects of the present invention are not impaired. Specifically, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, triethylene glycol, tetra.
  • Aliphatic diols such as ethylene glycol, dipropylene glycol and tripropylene glycol; hydroquinone, resorcinol, catechol, naphthalenediol, biphenol, bisphenol A, hisphenol F, tetramethylbiphenol, these ethylene oxide extensions, hydrogenated fats
  • Aromatic polyvalent phenols such as ring family can be exemplified.
  • the polyester polyol (A1) reacts the polyvalent carboxylic acid or its acid anhydride with the polyester polyol (a1) having three or more hydroxyl groups, which is a reaction product of the above-mentioned polyvalent carboxylic acid and polyhydric alcohol. You can get it.
  • the ratio of the hydroxyl group to be reacted with the polyvalent carboxylic acid is preferably 1/3 or less of the hydroxyl group contained in the polyester polyol (a1).
  • the polyvalent carboxylic acid or its acid anhydride to be reacted with the polyester polyol (a1) is preferably divalent or trivalent.
  • Succinic anhydride maleic anhydride, 1,2-cyclohexanedicarboxylic acid anhydride, 4-cyclohexene-1,2-dicarboxylic acid anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride, phthalic anhydride, 2, Examples thereof include, but are not limited to, 3-naphthalenedicarboxylic acid anhydride and trimellitic acid anhydride.
  • the polyester polyol (A2) having a polymerizable carbon-carbon double bond can be obtained by using a component having a polymerizable carbon-carbon double bond as a polyvalent carboxylic acid and a polyhydric alcohol.
  • maleic anhydride maleic acid, fumaric acid, 4-cyclohexene-1,2-dicarboxylic acid and its acid anhydride, 3-methyl-4-cyclohexene-1, as polyvalent carboxylic acids having a polymerizable carbon-carbon double bond.
  • 2-Dicarboxylic acid and its acid anhydride and the like maleic anhydride, maleic acid, and fumaric acid are preferable because it is presumed that the smaller the number of carbon atoms is, the less flexible the molecular chain is and the less oxygen is permeated.
  • polyvalent carboxylic acids may be copolymerized as long as the effects of the present invention are not impaired.
  • aliphatic polyvalent carboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, and dodecanedicarboxylic acid; alicyclic groups such as 1,3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid.
  • Polyvalent carboxylic acid Polyvalent carboxylic acid; orthophthalic acid, terephthalic acid, isophthalic acid, pyromellitic acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyl Dicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p'-dicarboxylic acid and acid anhydride or ester-forming derivative of these dicarboxylic acids, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid
  • aromatic polyvalent carboxylic acids such as ester-forming derivatives of these dihydroxycarboxylic acids can be mentioned, and one or more of them can be used in combination.
  • these acid anhydrides can also be used.
  • succinic acid, 1,3-cyclopentanedicarboxylic acid, orthophthalic acid, acid anhydrides of orthophthalic acid, and isophthalic acid are preferable, and orthophthalic acid and its acid anhydride are more preferable, in order to obtain gas barrier properties.
  • Examples of the polyhydric alcohol having a polymerizable carbon-carbon double bond include 2-butene-1,4-diol and the like.
  • polyhydric alcohols may be copolymerized as long as the effects of the present invention are not impaired. Specifically, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, cyclohexanedimethanol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol.
  • Dimethylbutanediol, Butylethylpropanediol Diethylene glycol, Triethylene glycol, Tetraethylene glycol, Dipropylene glycol, Tripropylene glycol and other aliphatic diols; Hydroquinone, resorcinol, catechol, naphthalenediol, biphenol, bisphenol A, hisphenol F , Tetramethylbiphenol, these ethylene oxide extenders, aromatic polyvalent phenols such as hydrogenated alicyclic group, and the like can be exemplified. Among them, it is presumed that the smaller the number of carbon atoms between oxygen atoms, the less flexible the molecular chain is and the more difficult it is for oxygen to permeate. Therefore, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexanedim Methanol is preferred, and ethylene glycol is more preferred.
  • the polyester polyol (A2) having a polymerizable carbon-carbon double bond is a reaction product of a polyester polyol (a2) having a hydroxyl group and a carboxylic acid having a polymerizable double bond or a carboxylic acid anhydride.
  • a carboxylic acid having a polymerizable double bond or an acid anhydride thereof include a carboxylic acid having a polymerizable double bond such as maleic acid, maleic anhydride, or fumaric acid, and unsaturated fatty acids such as oleic acid and sorbic acid.
  • the polyester polyol (a2) preferably has three or more hydroxyl groups.
  • the polyester polyol (a2) has two or less hydroxyl groups
  • the number of hydroxyl groups contained in the polyester polyol (A2) is 0 to 1, and molecular elongation is unlikely to occur during the reaction with the polyisocyanate composition (B) described later. As a result, the adhesive strength and the like may decrease.
  • the polyester polyol (A2) preferably has a double bond component ratio of 5 to 60% by mass. If it is less than 5% by mass, the number of cross-linking points between the polymerizable double bonds is reduced, and it becomes difficult to obtain gas barrier properties. If it exceeds 60% by mass, the number of cross-linking points increases, and the flexibility of the cured coating film may decrease, making it difficult to obtain adhesive strength.
  • the double bond component ratio in the polyester polyol (A2) is calculated using the following formula (a).
  • the monomer refers to a polyvalent carboxylic acid and a polyhydric alcohol used in the synthesis of polyester polyol (A2).
  • polyester polyol (A2) a drying oil or a semi-drying oil can be mentioned.
  • drying oil or the semi-drying oil include known and commonly used drying oils and semi-drying oils having a carbon-carbon double bond.
  • the polyester polyol (A3) having a glycerol skeleton has a glycerol skeleton represented by the following general formula (1).
  • R 1 to R 3 are independently hydrogen atoms or the following general formula (2). However, at least one of R 1 to R 3 is the following general formula (2). ) Represents a group represented by.)
  • n represents an integer of 1 to 5
  • X is a 1,2-phenylene group, a 1,2-naphthylene group, a 2,3-naphthylene group which may have a substituent. It represents an arylene group selected from the group consisting of a 2,3-anthraquinonediyl group and a 2,3-anthracendyl group, and Y represents an alkylene group having 2 to 6 carbon atoms.
  • Polyester polyol (A3) is a compound any one of R 1, R 2 and R 3 is a group represented by the general formula (2), R 1, R 2 and one of R 3 2 two generally formula A mixture of two or more compounds of the compound which is the group represented by (2) and the compound which is the group in which all of R 1 , R 2 and R 3 are represented by the general formula (2). May be. It is more preferable that all of R 1 to R 3 are groups represented by the general formula (2).
  • X when X is substituted with a substituent, it may be substituted with one or more substituents, and the substituent is any carbon atom on X different from the free radical. Is bound to.
  • substituents include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group and an amino group.
  • substituent include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group
  • Y in the general formula (2) include an ethylene group, a propylene group, a butylene group, a neopentylene group, a 1,5-pentylene group, a 3-methyl-1,5-pentylene group, and a 1,6-hexylene group. It is an alkylene group having 2 to 6 carbon atoms, such as a methylpentylene group and a dimethylbutylene group. A propylene group and an ethylene group are preferable, and an ethylene group is more preferable.
  • the polyester polyol (A3) is obtained by reacting glycerol, an aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted at the ortho position or an acid anhydride thereof, and a polyhydric alcohol as essential components.
  • Examples of the aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted at the ortho position or an acid anhydride thereof include orthophthalic acid or an acid anhydride thereof, naphthalene 2,3-dicarboxylic acid or an acid anhydride thereof, naphthalene 1,2-dicarboxylic acid. Examples thereof include an acid or an acid anhydride thereof, anthraquinone 2,3-dicarboxylic acid or an acid anhydride thereof, and 2,3-anthracenecarboxylic acid or an acid anhydride thereof. These compounds may have a substituent on any carbon atom of the aromatic ring.
  • Examples of the substituent include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group and an amino group.
  • substituent include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group or a naphthyl group.
  • polyvalent carboxylic acid another polyvalent carboxylic acid may be copolymerized as long as the effect of the present invention is not impaired.
  • aliphatic polyvalent carboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, and dodecanediocarboxylic acid; unsaturated bond-containing polyvalent carboxylic acids such as maleic anhydride, maleic acid, and fumaric acid; , 3-Cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and other alicyclic polyvalent carboxylic acids; terephthalic acid, isophthalic acid, pyromellitic acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5 -Naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, diphenic acid and
  • Species or two or more species can be used together.
  • succinic acid 1,3-cyclopentanedicarboxylic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalic acid, and diphenic acid are preferable.
  • polyhydric alcohol examples include an alkylene diol having 2 to 6 carbon atoms.
  • diols such as ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, and dimethylbutanediol.
  • diols such as ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, and dimethylbutanediol.
  • a polyhydric alcohol other than glycerol and an alkylene diol having 2 to 6 carbon atoms may be copolymerized as long as the effect of the present invention is not impaired.
  • aliphatic polyhydric alcohols such as erythritol, pentaerythol, dipentaerythritol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, tetraethylene glycol and tripropylene glycol, cyclohexanedi.
  • Aliphatic polyhydric alcohols such as methanol and tricyclodecanedimethanol, aromatic polyhydric phenols such as hydroquinone, resorcinol, catechol, naphthalenediol, biphenol, bisphenol A, hisphenol F, tetramethylbiphenol, or ethylene oxide thereof. Elongates and hydrolyzed aliphatic ring groups can be exemplified.
  • the content of the glycerol residue contained in the polyester polyol (A3) in the solid content of the gas barrier adhesive is 5% by mass or more.
  • P refers to the polyester polyol (A3).
  • the resin solid content mass of the gas barrier adhesive is determined from the total mass of the polyol composition (A) and the polyisocyanate composition (B) to be used, the diluting solvent (in the case of the dry lamination adhesive), and the polyisocyanate composition (B).
  • the mass shall be the mass excluding the mass of volatile components and inorganic components contained in.
  • the polyester polyol (A4) obtained by polycondensing an ortho-oriented polyvalent carboxylic acid and a polyhydric alcohol is a polyvalent carboxylic acid containing at least one orthophthalic acid and its acid anhydride, ethylene glycol, and propylene. It consists of a polyhydric alcohol containing at least one selected from the group consisting of glycols, butylene glycols, neopentyl glycols, and cyclohexanedimethanol.
  • a polyester polyol in which the usage rate of the orthophthalic acid and its acid anhydride with respect to the total amount of the polyvalent carboxylic acid is 70 to 100% by mass is preferable.
  • the polyvalent carboxylic acid requires either orthophthalic acid or an acid anhydride thereof, but other polyvalent carboxylic acids may be copolymerized as long as the effects of the present invention are not impaired.
  • the aliphatic polyvalent carboxylic acid includes succinic acid, adipic acid, azelaic acid, sebacic acid, dodecandicarboxylic acid and the like, and the unsaturated bond-containing polyvalent carboxylic acid includes maleic anhydride and maleic acid.
  • Fumaric acid and the like 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and the like as the alicyclic polyvalent carboxylic acid, and terephthalic acid, isophthalic acid and frangicarboxylic acid as the aromatic polyvalent carboxylic acid.
  • Acid pyromellitic acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane -P, p'-dicarboxylic acids and acid anhydrides or ester-forming derivatives of these dicarboxylic acids; p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid and ester-forming derivatives of these dihydroxycarboxylic acids, etc.
  • the polybasic acids of can be used alone or in admixture of two or more. Of these, succinic acid, 1,3-cyclopentanedicarboxylic acid, and isophthalic acid are preferable.
  • the polyhydric alcohol includes at least one selected from the group consisting of ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexanedimethanol, but other polyhydric alcohols can be used as long as the effects of the present invention are not impaired. It may be copolymerized. Specifically, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, triethylene glycol, tetra.
  • Aliphatic diols such as ethylene glycol, dipropylene glycol and tripropylene glycol; hydroquinone, resorcinol, catechol, naphthalenediol, biphenol, bisphenol A, hisphenol F, tetramethylbiphenol and their ethylene oxide extensions, hydrogenated Aromatic polyhydric phenols such as alicyclics can be exemplified.
  • the polyester polyol (A5) having an isocyanul ring is represented by the following general formula (3).
  • R 1 to R 3 are independently represented by-(CH 2 ) n1 -OH (where n1 represents an integer of 2 to 4) or the following general formula (4). However , at least one of R 1 , R 2 and R 3 is a group represented by the general formula (4).
  • n2 represents an integer of 2 to 4
  • n3 represents an integer of 1 to 5
  • X is a 1,2-phenylene group, a 1,2-naphthylene group, and a 2,3-naphthylene group.
  • Y represents an alkylene group having 2 to 6 carbon atoms. Represent.
  • Polyester polyol (A5) includes a compound any one of R 1, R 2 and R 3 is a group represented by the general formula (4), R 1, R 2 and one of R 3 2 two generally formula A mixture of two or more compounds of the compound which is the group represented by (4) and the compound which is the group in which all of R 1 , R 2 and R 3 are represented by the general formula (4). May be. It is more preferable that all of R 1 to R 3 are groups represented by the general formula (4).
  • the alkylene group represented by ⁇ (CH2) n1 ⁇ may be linear or branched.
  • n1 is preferably 2 or 3, and most preferably 2.
  • X when X is substituted with a substituent, it may be substituted with one or more substituents, and the substituent is any carbon atom on X different from the free radical. Is bound to.
  • substituents include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group and an amino group.
  • substituent include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group
  • a hydroxyl group, a cyano group, a nitro group, an amino group, a phthalimide group, a carbamoyl group, an N-ethylcarbamoyl group and a phenyl group are preferable, and a hydroxyl group, a phenoxy group, a cyano group, a nitro group and a phthalimide group, A phenyl group is more preferred.
  • Y in the general formula (4) include an ethylene group, a propylene group, a butylene group, a neopentylene group, a 1,5-pentylene group, a 3-methyl-1,5-pentylene group, and a 1,6-hexylene group. It is an alkylene group having 2 to 6 carbon atoms, such as a methylpentylene group and a dimethylbutylene group. A propylene group and an ethylene group are preferable, and an ethylene group is more preferable.
  • the polyester polyol (A5) is obtained by reacting a triol having an isocyanul ring, an aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted at the ortho position or an acid anhydride thereof, and a polyhydric alcohol as essential components.
  • triols having an isocyanuric ring include alkylene oxide adducts of isocyanuric acid such as 1,3,5-tris (2-hydroxyethyl) isocyanuric acid and 1,3,5-tris (2-hydroxypropyl) isocyanuric acid. And so on.
  • Examples of the aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted at the ortho position or its acid anhydride include orthophthalic acid or its acid anhydride, naphthalene 2,3-dicarboxylic acid or its acid anhydride, and naphthalene 1,2-dicarboxylic acid. Examples thereof include an acid or an acid anhydride thereof, anthraquinone 2,3-dicarboxylic acid or an acid anhydride thereof, and 2,3-anthracenecarboxylic acid or an acid anhydride thereof. These compounds may have a substituent on any carbon atom of the aromatic ring.
  • Examples of the substituent include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group and an amino group.
  • substituent include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group or a naphthyl group.
  • Polyhydric alcohols include alkylenediols having 2 to 6 carbon atoms, specifically ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, Diols such as 1,6-hexanediol, methylpentanediol, and dimethylbutanediol can be exemplified.
  • 1,3,5-tris (2-hydroxyethyl) isocyanuric acid or 1,3,5-tris (2-hydroxypropyl) isocyanuric acid is used as the triol compound having an isocyanul ring, and the carboxylic acid is in the ortho position.
  • a polyester polyol (A5) having an isocyanul ring using an aromatic polyvalent carboxylic acid substituted with or using orthophthalic anhydride as the acid anhydride and ethylene glycol as the polyhydric alcohol has improved gas barrier properties and adhesiveness. Excellent and preferable.
  • the isocyanul ring is highly polar and does not form hydrogen bonds.
  • a method for improving adhesiveness a method of blending highly polar functional groups such as a hydroxyl group, a urethane bond, a ureido bond, and an amide bond is known, and a resin having these bonds forms an intermolecular hydrogen bond. It is easy and may impair the solubility in solvents such as ethyl acetate and 2-butanone, which are often used for solvent-based adhesives, but polyester resins having an isocyanul ring do not impair the solubility, so it is easy. It can be diluted.
  • the isocyanul ring is trifunctional, a polyester polyol compound having the isocyanul ring as the center of the resin skeleton and a polyester skeleton having a specific structure in the branched chain can obtain a high crosslink density. It is presumed that by increasing the crosslink density, the gap through which a gas such as oxygen passes can be reduced. As described above, it is presumed that the isocyanul ring has high polarity and high crosslink density without forming an intermolecular hydrogen bond, so that gas barrier properties and adhesiveness can be ensured.
  • the content of the isocyanuric ring contained in the polyester polyol (A5) in the solid content of the gas barrier adhesive is 5% by mass.
  • P refers to the polyester polyol (A5).
  • the resin solid content mass of the gas barrier adhesive is determined from the total mass of the polyol composition (A) and the polyisocyanate composition (B) to be used, the diluting solvent (in the case of the dry lamination adhesive), and the polyisocyanate composition (B).
  • the mass shall be the mass excluding the mass of volatile components and inorganic components contained in.
  • the hydroxyl value of the polyester polyol is preferably 20 mgKOH / g or more and 250 mgKOH / g or less.
  • the hydroxyl value is smaller than 20 mgKOH / g, the viscosity of the polyol composition (A) becomes high because the molecular weight is too large, and good coating suitability cannot be obtained.
  • the hydroxyl value exceeds 250 mgKOH / g, the molecular weight is too small and the crosslink density of the cured coating film becomes too high, so that good adhesive strength cannot be obtained.
  • the acid value is preferably 200 mgKOH / g or less.
  • the acid value exceeds 200 mgKOH / g, the reaction between the polyol composition (A) and the polyisocyanate composition (B) becomes too fast, and good coating suitability cannot be obtained.
  • the lower limit of the acid value of the polyester polyol is not particularly limited, but as an example, it is 20 mgKOH / g or more.
  • the acid value is 20 mgKOH / g or more, good gas barrier properties and initial cohesive force can be obtained by intermolecular interaction.
  • the hydroxyl value of the polyester polyol can be measured by the hydroxyl value measuring method described in JIS-K0070, and the acid value can be measured by the acid value measuring method described in JIS-K0070.
  • the number average molecular weight of the polyester polyol as described above is 300 to 5000 because a crosslink density having an excellent balance between adhesiveness and gas barrier property can be obtained. More preferably, the number average molecular weight is 350 to 3000. If the molecular weight is less than 300, the cohesive force of the adhesive at the time of coating becomes too small, and there is a possibility that the film may be displaced during laminating or the bonded film may be lifted. On the other hand, if the molecular weight is higher than 5000, the viscosity at the time of coating becomes too high and coating cannot be performed, or the adhesiveness is low and laminating may not be possible. The number average molecular weight is calculated from the obtained hydroxyl value and the number of functional groups of the designed hydroxyl group.
  • the glass transition temperature of the polyester polyol is preferably ⁇ 30 ° C. or higher and 80 ° C. or lower, more preferably 0 ° C. or higher and 60 ° C. or lower, and further preferably 25 ° C. or higher and 60 ° C. or lower. If the glass transition temperature exceeds 80 ° C., the flexibility of the polyester polyol at around room temperature is low, so that the adhesion to the substrate is poor and the adhesiveness may be lowered. On the other hand, if the temperature is lower than -30 ° C, the molecular motion of the polyester polyol at around room temperature is intense, so that sufficient gas barrier properties may not be obtained.
  • the polyester polyol may be a polyester polyurethane polyol having a number average molecular weight of 1000 to 15000 by urethane elongation of polyester polyols (A1) to (A5) by reaction with a diisocyanate compound. Since the urethane-extended polyester polyol has a molecular weight component of a certain level or more and a urethane bond, it has excellent gas barrier properties, excellent initial cohesive force, and is excellent as an adhesive for laminating.
  • an isocyanate compound conventionally known compounds can be used without particular limitation, and tetramethylene diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, hydride diphenylmethane diisocyanate, xylylene diisocyanate, hydride xylylene diisocyanate, isophorone diisocyanate or Dimeric and trimeric of these isocyanate compounds, and excess amounts of these isocyanate compounds, such as ethylene glycol, propylene glycol, metaxylylene alcohol, 1,3-bishydroxyethylbenzene, 1,4-bishydroxyethylbenzene.
  • blocked isocyanate may be used as the isocyanate compound.
  • the isocyanate blocking agent include phenols such as phenol, thiophenol, methylthiophenol, ethylthiophenol, cresol, xylenol, resorcinol, nitrophenol, and chlorophenol, acetoxime, methylethylketooxime, cyclohexanone oxime, and methanol.
  • Alcohols such as ethanol, propanol and butanol, halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol, tertiary alcohols such as t-butanol and t-pentanol, ⁇ - Examples include lactams such as caprolactam, ⁇ -valerolactam, ⁇ -butyrolactam and ⁇ -propyrrolactam, and other active methylene compounds such as aromatic amines, imides, acetylacetone, acetoacetic acid ester and malonic acid ethyl ester. , Mercaptans, imines, ureas, diaryl compounds, sodium bicarbonate and the like.
  • the blocked isocyanate is obtained by subjecting the above-mentioned isocyanate compound and an isocyanate blocking agent to an addition reaction by an appropriate method known and commonly used.
  • xylylene diisocyanate hydrogenated xylylene diisocyanate, toluene diisocyanate, and diphenylmethane diisocyanate are preferable because good gas barrier properties can be obtained, and isocyanate compounds having a metaxylene skeleton such as metaxylylene diisocyanate and metahydrogenated xylylene diisocyanate are preferable. Is more preferable to use.
  • Examples of the isocyanate compound having a metaxylene skeleton include a trimer of xylene diisocyanate, a burette compound synthesized by reaction with an amine, and an adduct compound formed by reacting with an alcohol.
  • the adhesive is a solvent type, it is preferable to use an adduct body because the solubility in the organic solvent used for the solvent type adhesive is better than that of the trimer body and the burette body.
  • an adduct formed by reacting with an alcohol appropriately selected from the above low molecular weight active hydrogen compounds can be used, and among them, ethylene oxide adducts of trimethylolpropane, glycerol, triethanolamine, and metaxylylenediamine can be used.
  • An adduct body with an object is preferable.
  • the polyisocyanate composition (B) contains an epoxy compound.
  • epoxy compounds include diglycidyl ether of bisphenol A and its oligomer, diglycidyl ether of bisphenol A and its oligomer, orthophthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, and p-oxybenzoic acid di.
  • Glycidyl ester tetrahydrophthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, succinic acid diglycidyl ester, adipate diglycidyl ester, sebacic acid diglycidyl ester, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1 , 4-Butandiol diglycidyl ether, 1,6-hexanediol diglycidyl ether and polyalkylene glycol diglycidyl ethers, trimeric acid triglycidyl ester, triglycidyl isocyanurate, 1,4-diglycidyloxybenzene, diglycidyl Examples thereof include propylene urea, glycerol triglycidyl ether, trimethylol ethane triglycidyl ether, trimethylol propane triglycidyl ether
  • epoxy curing accelerator When an epoxy compound is used, a widely known epoxy curing accelerator may be appropriately added for the purpose of accelerating curing as long as the object of the present invention is not impaired.
  • a composition containing a polyol having a polymerizable carbon-carbon double bond such as the polyester polyol (A2) is used as the polyol composition (A)
  • a known polymerization catalyst can be used in combination, and a transition metal complex is mentioned as an example.
  • the transition metal complex is not particularly limited as long as it is a compound having an ability to oxidatively polymerize a polymerizable double bond.
  • metals such as cobalt, manganese, lead, calcium, cerium, zirconium, zinc, iron, copper, octyl acid, naphthenic acid, neodecanoic acid, stearic acid, resin acid, tall oil fatty acid, tung oil fatty acid, linseed oil fatty acid, Salts with soybean oil fatty acids and the like can be used.
  • the blending amount of the transition metal complex is preferably 0 to 10 parts by mass, more preferably 0 to 3 parts by mass with respect to the resin solid content contained in the polyol composition (A).
  • the polyol composition (A) and the polyisocyanate composition (B) have an equivalent ratio of the hydroxyl group contained in the polyol composition (A) to the isocyanate group contained in the polyisocyanate composition (B) of 1/0. It is preferably blended so as to be 5 to 1/10, and more preferably to be blended so as to be 1/1 to 1/5.
  • the isocyanate compound is excessive, the excess isocyanate compound remaining in the cured coating film of the adhesive may bleed out from the adhesive layer.
  • the reactive functional groups contained in the polyisocyanate composition (B) are insufficient, the adhesive strength may be insufficient.
  • gas barrier adhesive Various additives may be added to the gas barrier adhesive as long as the adhesiveness and gas barrier properties are not impaired.
  • Inorganic filler may be used as such an additive.
  • the inorganic filler include silica, alumina, aluminum flakes, glass flakes and the like.
  • Plate-like inorganic compounds include hydrous silicates (phyllocate minerals, etc.), kaolinite-serpentine clay minerals (haloisite, kaolinite, enderite, dikite, nacrite, etc., antigolite, chrysotile, etc.), pyrophyllium.
  • Light-Tark (pyrophyllite, talc, kerolai, etc.), smectite clay minerals (montmorillonite, biderite, nontronite, saponite, hectrite, saconite, stivuncite, etc.), vermiculite clay minerals (vermiculite, etc.), mica or Mica clay minerals (white mica, gold mica, etc., margarite, tetracylic mica, teniolite, etc.), green mudstones (cookate, sudoite, clinochloa, chamosite, nimite, etc.), hydrotalcite, plate sulfate Examples thereof include barium, boehmite and aluminum polyphosphate. These minerals may be natural clay minerals or synthetic clay minerals.
  • the plate-like inorganic compound may be used alone or in combination of two or more.
  • the plate-like inorganic compound may be an ionic compound having an electric charge between layers, or a nonionic compound having no electric charge.
  • the presence or absence of electric charge between layers does not directly affect the gas barrier property of the adhesive layer.
  • ionic plate-like inorganic compounds and inorganic compounds that have swelling properties with respect to water are inferior in dispersibility in solvent-type adhesives, and when the amount added is increased, they become thicker with the adhesives or become chysole. As a result, the coating suitability may decrease. Therefore, the plate-like inorganic compound is preferably nonionic without interlayer electrification.
  • the average particle size of the plate-shaped inorganic compound is not particularly limited, but as an example, it is preferably 0.1 ⁇ m or more, and more preferably 1 ⁇ m or more. If it is smaller than 0.1 ⁇ m, the detour route of oxygen molecules will not be long, and improvement of gas barrier property cannot be expected sufficiently.
  • the upper limit of the average particle size is not particularly limited, but if the particle size is too large, defects such as streaks may occur on the coated surface depending on the coating method. Therefore, as an example, the average particle size is preferably 100 ⁇ m or less, and preferably 20 ⁇ m or less.
  • the average particle size of the plate-shaped inorganic compound means the particle size that appears most frequently when the particle size distribution of the plate-shaped inorganic compound is measured by a light scattering type measuring device.
  • the aspect ratio of the plate-like inorganic compound is preferably high in order to improve the gas barrier property due to the maze effect of oxygen. Specifically, it is preferably 3 or more, more preferably 10 or more, and most preferably 40 or more.
  • the blending amount of the plate-shaped inorganic compound is arbitrary, but as an example, when the total solid content of the polyol composition (A), the polyisocyanate composition (B), and the plate-shaped inorganic compound is 100 mass, the plate-shaped inorganic compound is formed.
  • the blending amount of the inorganic compound is 5 to 50 parts by mass.
  • the gas barrier adhesive may contain an adhesion promoter.
  • adhesion accelerator include silane coupling agents such as hydrolyzable alkoxysilane compounds, titanate-based coupling agents, aluminum-based coupling agents, epoxy resins and the like. Silane coupling agents and titanate-based coupling agents can be expected to have the effect of improving the adhesiveness to various film materials.
  • the gas barrier adhesive may contain a known acid anhydride.
  • the acid anhydride include phthalic acid anhydride, succinic acid anhydride, het acid anhydride, hymic acid anhydride, maleic acid anhydride, tetrahydrophthalic acid anhydride, hexahydraphthalic acid anhydride, and tetrapromphthalic acid.
  • Anhydride tetrachlorphthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenotetracarboxylic acid anhydride, 2,3,6,7-naphthalintetracarboxylic acid dianhydride, 5- (2) , 5-Oxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride, maleic anhydride copolymer, and the like.
  • a compound having an oxygen trapping function or the like may be further added.
  • the compound having an oxygen trapping function include low molecular weight organic compounds that react with oxygen such as hindered phenols, vitamin C, vitamin E, organic phosphorus compounds, gallic acid, and pyrogallol, cobalt, manganese, nickel, iron, and the like.
  • transition metal compounds such as copper.
  • a tackifier such as xylene resin, terpene resin, phenol resin, rosin resin may be added as needed.
  • the blending amount thereof is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the total solid content of the polyol composition (A) and the polyisocyanate composition (B).
  • active energy rays can also be used as a method for reacting the polymerizable carbon-carbon double bond.
  • a known technique can be used as the active energy ray, and it can be cured by irradiating it with ionizing radiation such as an electron beam, ultraviolet rays, or ⁇ rays.
  • ionizing radiation such as an electron beam, ultraviolet rays, or ⁇ rays.
  • a known ultraviolet irradiation device equipped with a high-pressure mercury lamp, an excimer lamp, a metal halide lamp, or the like can be used.
  • a light (polymerization) initiator that generates radicals or the like by irradiation with ultraviolet rays is added to 100 parts by mass of polyester polyol (A2), if necessary. It is preferable to add to some extent.
  • Radical-generating light (polymerization) initiators include hydrogen abstraction types such as benzyl, benzophenone, Michler's ketone, 2-chlorothioxanthone, and 2,4-diethylthioxanthone, and benzoin ethyl ether, diethoxyacetophenone, benzylmethylketal, and hydroxy.
  • examples thereof include photocleavable types such as cyclohexylphenyl ketone and 2-hydroxy-2-methylphenyl ketone. Among these, one or a plurality of them can be used alone or in combination.
  • the gas barrier adhesive may contain stabilizers (antioxidants, heat stabilizers, UV absorbers, etc.), plasticizers, antistatic agents, lubricants, blocking inhibitors, colorants, crystal nucleating agents, and the like. .. These various additives may be added to either or both of the polyol composition (A) and the polyisocyanate composition (B) in advance, or the polyol composition (A) and the polyisocyanate composition ( It may be added when mixing with B).
  • the gas barrier adhesive used in the present invention may be in either a solvent type or a solventless type.
  • the solvent-based adhesive is a method in which an adhesive is applied to a base material, then heated in an oven or the like to volatilize the organic solvent in the coating film, and then bonded to another base material, so-called dry. A form used in the laminating method.
  • the solvent used examples include toluene, xylene, methylene chloride, tetrahydrofuran, methyl acetate, ethyl acetate, n-propyl acetate, n-butyl acetate, acetone, methyl ethyl ketone (MEK), cyclohexanone, toluol, xylol, n-hexane, cyclohexane and the like.
  • MEK methyl ethyl ketone
  • Either one or both of the polyol composition (A) and the polyisocyanate composition (B) contains the above-mentioned organic solvent.
  • the solvent used as the reaction medium in the production of the constituent components of the polyol composition (A) or the polyisocyanate composition (B) may be further used as a diluent in coating.
  • the solvent-free adhesive is used in the so-called non-solvent laminating method, which is a method in which an adhesive is applied to a base material and then bonded to another base material without the process of heating in an oven or the like to volatilize the solvent.
  • non-solvent laminating method is a method in which an adhesive is applied to a base material and then bonded to another base material without the process of heating in an oven or the like to volatilize the solvent.
  • the constituent components of the polyol composition (A) or the polyisocyanate composition (B) and the organic solvent used as the reaction medium in the production of the raw material thereof could not be completely removed, and the polyol composition (A) or the polyisocyanate composition (A) or the polyisocyanate composition ( If a small amount of organic solvent remains in B), it is understood that the organic solvent is substantially not contained.
  • the polyol composition (A) contains a low molecular weight alcohol
  • the low molecular weight alcohol reacts with the polyisocyanate composition (B) and becomes a part of the coating film, so that it is not necessary to volatilize after coating. Therefore, such a form is also treated as a solvent-free adhesive.
  • the laminate of the present invention may have a sealant layer on the gas barrier adhesive layer.
  • the sealant layer is a heat-sealing resin layer that can be melted by heat and fused to each other.
  • Suitable resins for the sealant layer include polyethylene, low density polyethylene, medium density polyethylene, high density polyethylene, linear (linear) low density polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ionomer resin, ethylene- ( Olefin resins such as meta) acrylate copolymer, ethylene- (meth) ethyl acrylate copolymer, ethylene-propylene copolymer, methylpentene polymer, polyethylene or polypropylene are used as acrylic acid, methacrylic acid, maleic anhydride, etc.
  • Fumaric acid and other modified olefin resins modified with unsaturated carboxylic acid ternary copolymer of ethylene- (meth) acrylic acid ester-unsaturated carboxylic acid, cyclic polyolefin, cyclic olefin copolymer, polyethylene terephthalate (PET), polyacrylonitrile (PAN) and the like.
  • a resin film, sheet, or other coating film made of one or more of these resins can be used as the sealant layer.
  • any unstretched, uniaxially stretched, or biaxially stretched film can be used as the film to be the sealant layer.
  • the stretched film stretched in the biaxial direction is, for example, vertically stretched 2 to 4 times by a roll stretching machine at 50 to 100 ° C., and further laterally stretched 3 to 5 times by a tenter stretching machine in an atmosphere of 90 to 150 ° C. Subsequently, it is obtained by heat treatment with a tenter stretching machine in an atmosphere of 100 to 240 ° C.
  • simultaneous biaxial stretching and sequential biaxial stretching may be used.
  • An easily peelable sealant film may be used for the sealant layer.
  • the easily peelable sealant film any of an interface peeling type, a cohesive peeling type, and an interlayer peeling type can be applied, and can be appropriately selected according to the type of packaging material and the required characteristics described later.
  • the index of easy peelability is appropriately set according to the type of packaging material and the required characteristics, and as an example, the seal strength is 2 to 20 N / 15 mm.
  • easy peelability can be exhibited by a phase-separated polymer blend in which polypropylene is combined with high-density polyethylene, low-density polyethylene, an ethylene-vinyl acetate copolymer, or the like.
  • the film thickness of the sealant layer can be arbitrarily selected, but when applied to a packaging material described later, for example, it is selected in the range of 5 to 500 ⁇ m. It is more preferably 10 to 250 ⁇ m, and even more preferably 15 to 100 ⁇ m. If it is less than 5 ⁇ m, sufficient laminating strength as a packaging material cannot be obtained, and there is a risk that piercing resistance and the like will be lowered. If it exceeds 250 ⁇ m, the cost will increase and the film will become hard, resulting in reduced workability.
  • the laminate of the present invention may have a printed layer, if necessary.
  • the position of the printing layer is arbitrary, but as an example, gas barrier property is provided on the surface opposite to the gas barrier adhesive layer of the base material, or between the gas barrier coating layer and the gas barrier adhesive layer. It is provided in contact with the coating layer.
  • the printing layer is formed by various printing inks such as gravure ink, flexo ink, offset ink, stencil ink, and inkjet ink by a general printing method conventionally used for printing on a polymer film.
  • the laminate of the present invention may have other layers, if necessary.
  • a film may be arranged between the gas barrier adhesive layer and the sealant layer.
  • the same film as that exemplified as the base material can be used.
  • Uniaxial or biaxially stretched polyester film such as polyethylene terephthalate and polyethylene naphthalate
  • uniaxial or biaxially stretched polyamide film such as nylon 6, nylon 66 and MXD6 (polymethoxylylen adipamide), biaxially stretched polypropylene film and the like. It can be preferably used.
  • the film and the sealant layer may be bonded to each other via an adhesive.
  • the adhesive used at this time may or may not be the gas barrier adhesive described above.
  • the film may be bonded to the base material via a gas barrier adhesive layer, or another layer may be arranged between the film and the gas barrier adhesive layer.
  • the laminate of the present invention is obtained by laminating a base material provided with an aluminum oxide layer and a gas barrier coating layer and a sealant layer by a dry laminating method or a non-solvent laminating method using a gas barrier adhesive. ..
  • the laminated laminate has excellent gas barrier properties and can be used as a gas barrier laminate.
  • the method for forming the gas barrier coating layer is not particularly limited, and the spray method, spin coating method, dip method, roll coating method, blade coating method, doctor roll method, doctor blade method, curtain coating method, slit coating method, etc. Examples include a screen printing method and an inkjet method. After coating, the organic solvent is volatilized by heating in an oven or the like.
  • the gas barrier adhesive is a solvent type
  • the gas barrier adhesive is applied to either the base material or the sealant layer using a roll such as a gravure roll, and the organic solvent is volatilized by heating in an oven or the like. , The other is bonded to obtain the laminate of the present invention. It is preferable to perform an aging treatment after laminating.
  • the aging temperature is preferably room temperature to 80 ° C., and the aging time is preferably 12 to 240 hours.
  • the gas barrier adhesive is a solvent-free type
  • a gas barrier adhesive that has been preheated to about 40 ° C. to 100 ° C. is applied to either the base material or the sealant layer using a roll such as a gravure roll. After that, the other is immediately bonded to obtain the laminate of the present invention. It is preferable to perform an aging treatment after laminating.
  • the aging temperature is preferably room temperature to 70 ° C., and the aging time is preferably 6 to 240 hours.
  • the amount of the gas barrier adhesive applied is adjusted as appropriate.
  • the solid content is adjusted to be 1 g / m 2 or more and 10 g / m 2 or less, preferably 1 g / m 2 or more and 5 g / m 2 or less.
  • the amount of the adhesive applied is, for example, 1 g / m 2 or more and 10 g / m 2 or less, preferably 1 g / m 2 or more and 5 g / m 2 or less.
  • the laminate of the present invention can be used as a multi-layer packaging material for the purpose of protecting foods, pharmaceuticals and the like.
  • its layer structure may change depending on the contents, usage environment, and usage pattern.
  • the packaging material of the present invention is obtained by using the laminate of the present invention, laminating the surfaces of the sealant films of the laminate facing each other, and then heat-sealing the peripheral end portions thereof.
  • the laminate of the present invention is bent or overlapped so that the inner layer surface (the surface of the sealant film) faces each other, and the peripheral end thereof is, for example, a side seal type or a two-way seal type.
  • the packaging material of the present invention can take various forms depending on the contents, the environment of use, and the form of use. Free-standing packaging materials (standing pouches), etc. are also possible.
  • a heat sealing method a known method such as a bar seal, a rotary roll seal, a belt seal, an impulse seal, a high frequency seal, and an ultrasonic seal can be used.
  • the opening After filling the packaging material of the present invention with the contents from the opening, the opening is heat-sealed to manufacture a product using the packaging material of the present invention.
  • the contents to be filled include rice confectionery, bean confectionery, nuts, biscuits / cookies, wafer confectionery, marshmallows, pies, half-baked cakes, candy, snack confectionery and other confectionery, bread, snack noodles, instant noodles, dried noodles, pasta.
  • Sterile packaged rice, elephant, porridge, packaged rice, staples such as cereal foods, pickles, boiled beans, natto, miso, frozen tofu, tofu, licked mushrooms, konjac, processed wild vegetables, jams, peanut cream, salads, frozen Processed agricultural products such as vegetables and processed potatoes, hams, bacon, sausages, processed chicken products, processed livestock products such as confectionery, fish meat hams and sausages, marine products, kamaboko, glue, boiled vegetables, sardines, salted spicy, Processed marine products such as smoked salmon and spicy cod roe, peaches, tangerines, pineapples, apples, pears, cherries and other fruit meats, corn, asparagus, mushrooms, onions, carrots, radishes, potatoes and other vegetables, hamburgers, meat Cooked foods such as balls, fried fish, gyoza, croquette and other frozen side dishes, chilled side dishes, butter, margarine, cheese, cream, instant creamy powder, dairy products such as baby-prepared powdered milk
  • Examples of the gas that can be blocked by the resin composition of the present invention and the laminate containing the resin composition include oxygen, an inert gas such as carbon dioxide, nitrogen and argon, an alcohol component such as methanol, ethanol and propanol, and phenol.
  • an inert gas such as carbon dioxide, nitrogen and argon
  • an alcohol component such as methanol, ethanol and propanol
  • phenol phenol
  • aroma components composed of low molecular weight compounds such as soy sauce, sauce, miso, limonene, menthol, methyl salicylate, coffee, cocoa shampoo, and rinse can be exemplified.
  • the laminate of the present invention has excellent gas barrier properties, it can be suitably used as a packaging material that requires gas barrier properties. In particular, foods, daily necessities, electronic materials, medical materials, etc. require high barrier properties, so that the packaging material of the present invention can be preferably used. Furthermore, since it is excellent in heat resistance and moisture heat resistance, it can be suitably used as a packaging material for heat sterilization such as boiling and retort.
  • the packaging material of the present invention may be a lid material using the laminate of the present invention.
  • the unit is weight conversion.
  • the molecular weight of a unit of polyacrylic acid is 72.
  • one molecule of zinc oxide (molecular weight 81.4) (hereinafter, may be abbreviated as ZnO) contributes to the reaction and forms a salt with respect to two molecules of a unit unit of PAA (molecular weight 72 ⁇ 2).
  • PAA adjustment example 1 PAA powder having a number average molecular weight of 9000 (Julimer AC-10P, manufactured by Toa Synthetic Co., Ltd.): 20 g was dissolved in isopropyl alcohol (manufactured by Kanto Chemical Co., Inc.): 980 g while stirring and boiling, and the solid content concentration was 2%. A PAA solution 1 having a molecular weight of 9000 was obtained.
  • PAA adjustment example 2 In a flask, PAA powder having a number average molecular weight of 250,000 (Julimer AC-10LHPK, manufactured by Toa Synthetic Co., Ltd.): 20 g of isopropyl alcohol (hereinafter sometimes abbreviated as IPA) manufactured by Kanto Chemical Co., Inc .: while stirring and boiling in 980 g. It was dissolved to obtain a PAA solution 2 having a molecular weight of 250,000 and having a solid content concentration of 2%.
  • IPA isopropyl alcohol
  • PAA adjustment example 3 In a flask, 20 g of PAA powder having a number average molecular weight of 800,000 (Aqualic AS-58, manufactured by Nippon Catalyst Co., Ltd.) was dissolved in 980 g of isopropyl alcohol (manufactured by Kanto Chemical Co., Inc.) while stirring and boiling, and the solid content concentration was 2. A PAA solution 3 having a molecular weight of 800,000% was obtained.
  • ZnO adjustment example 1 Regarding the dispersion solution of ZnO, ZnO (manufactured by Sakai Chemical Industry Co., Ltd., FINEX-50): 200 g and IPA: 800 g are mixed and contained in a bead mill (manufactured by Kotobuki Co., Ltd .: Ultra Aspek Mill UAM-015). After dispersion treatment for 1 hour using zirconia beads having a diameter of 0.3 mm, the beads were sifted to obtain a ZnO solution having a solid content concentration of 20%. This solution was diluted with IPA to obtain an IPA dispersion of ZnO having a solid content concentration of 2%. The particle size of ZnO in this dispersion was 88 nm.
  • polyester polyol "polyester A1" having a number average molecular weight of 900 and a hydroxyl value of 124.7 mgKOH / g.
  • polyester polyol "polyester A2" having a number average molecular weight of about 500, a hydroxyl value of 224.4 mgKOH / g, and an acid value of 0.9 mgKOH / g.
  • polyester polyol "polyester A3" having a number average molecular weight of about 600, a hydroxyl value of 182 mgKOH / g, and an acid value of 0.9 mgKOH / g.
  • polyester polyol "polyester A4" having a number average molecular weight of 500, a hydroxyl value of 220.4 mgKOH / g, and an acid value of 0.8 mgKOH / g.
  • the esterification reaction was terminated when the acid value became 1 mgKOH / g or less to obtain a polyester polyol "polyester A5" having a number average molecular weight of 668.60, a hydroxyl value of 250 mgKOH / g, and an acid value of 0.5 mgKOH / g.
  • the esterification reaction was terminated when the acid value became 1 mgKOH / g or less to obtain a polyester polyol "polyester A8" having a number average molecular weight of 2000, a hydroxyl value of 56.1 mgKOH / g, and an acid value of 1.0 mgKOH / g.
  • Hardener B2 71.45 parts of xylylene diisocyanate, a mixture of 4,4'-diphenylmethane diisocyanate and 2,4'-diphenylmethane diisocyanate in a reaction vessel equipped with a stirrer, nitrogen gas introduction tube, snider tube, cooling condenser, and dropping funnel. ) 46.26 parts were added and stirred while heating at 70 ° C., 92.28 parts of "polyol A2" was added dropwise using a dropping funnel over 2 hours, and the mixture was further stirred for 4 hours to obtain "polyisocyanate”. Hardener B2 ”was obtained. The NCO% measured according to JIS-K1603 was 15.1%.
  • Harddener B3 24.72 parts of ethylene glycol, 60.10 parts of diethylene glycol, 2.49 parts of neopentyl glycol, 125.3 parts of adipate and titanium tetraiso in a polyester reaction vessel equipped with a stirrer, a nitrogen gas introduction tube, a snyder tube, and a condenser. 0.02 part of propoxide was charged and gradually heated so that the temperature of the upper part of the rectification tube did not exceed 100 ° C. to maintain the internal temperature at 220 ° C. When the acid value became 1 mgKOH / g or less, the esterification reaction was terminated to obtain an intermediate.
  • Harder B4" 71.45 parts of xylylene diisocyanate, a mixture of 4,4'-diphenylmethane diisocyanate and 2,4'-diphenylmethane diisocyanate in a reaction vessel equipped with a stirrer, nitrogen gas introduction tube, snider tube, cooling condenser, and dropping funnel. ) 46.26 parts were added and stirred while heating at 70 ° C., 92.28 parts of "polypoly A4" was added dropwise using a dropping funnel over 2 hours, and the mixture was further stirred for 4 hours to obtain "hardener B4". Got The NCO% measured according to JIS-K1603 was 15.1%.
  • Harder B5 Mitsui Chemicals "Takenate D-110N” (trimethylolpropane adduct of metaxylylene diisocyanate non-volatile component 75.0% NCO% 11.5%) and Mitsui Chemicals "Takenate 500" (metaxylylene diisocyanate non-volatile content> 99 %, NCO% 44.6%) were mixed at a ratio of 50/50 (mass ratio) to obtain "hardener B5".
  • the non-volatile content of the curing agent B1 is 87.5%, and the NCO% is 28.05%.
  • the viscosity of the water-based liquid ink becomes 16 seconds (25 ° C.) with Zahn Cup # 4 (manufactured by Rigosha).
  • Water was added in the same manner to obtain a water-based liquid ink.
  • the amount of water used for adjusting the viscosity was 5 parts
  • the non-volatile content of the water-based liquid ink was 58%
  • the surface tension at 25 ° C. was 35 mN / m.
  • the surface tension was measured using an automatic surface tension meter DY-300 manufactured by Kyowa Interface Science Co., Ltd. based on the Whyhelmy method.
  • the composition of the obtained water-based liquid ink is as follows. [Mixing of water-based liquid ink] FASTPGEN BLUE LA5380 Indigo pigment (manufactured by DIC) 15 parts Resin for water-based liquid ink 50 parts Nonionic pigment dispersant (manufactured by BYK) 10 parts Isopropyl alcohol 3 parts Water 17 parts Silicon-based defoamer (manufactured by BYK) 0. Part 2
  • OPP films 2 and 2' having an aluminum oxide layer
  • a gas barrier coating agent adjusted according to the formulations shown in Tables 2 and 3 or a coating agent adjusted according to the formulations shown in Table 4 is applied in a coating amount of 1.0 g / m 2 using a bar coater. It was coated so that it became (solid content).
  • the OPP film is heated in a dryer at 60 ° C. for 1 minute to have a gas barrier coating layer on the aluminum oxide layer (hereinafter also referred to as OPP film 2), and an OPP film having a coating layer on the aluminum oxide layer. (Hereinafter also referred to as OPP film 2') was obtained.
  • OPP film 3 having an aluminum oxide layer Water-based liquid ink is printed on OPP film 1 using a Flexoprof100 test printing machine (Testing Machines, Inc., Anilox 200 lines / inch) with a solid pattern of 240 mm in length and 80 mm in width, and then dried with a dryer to dry the OPP film.
  • a printing layer was provided on the aluminum oxide layer of No. 3 to form an OPP film 3.
  • the coating amount of the printing layer (solid content of the coated water-based liquid ink) was 1.0 g / m 2 .
  • the OPP film 2 was used instead of the OPP film 1, and the OPP film 4 was obtained in the same manner as in the production of the OPP film 3 except that the printing layer was provided on the gas barrier coating layer. Further, OPP film 2' was used instead of OPP film 1, and OPP film 4'was obtained in the same manner as in the production of OPP film 3 except that a printing layer was provided on the coating layer.
  • Method 1 Using a bar coater, apply the adjusted adhesive on the aluminum oxide layer of OPP film 1, the gas barrier coating layer of OPP film 2, and the OPP film so that the coating film amount is 3.0 g / m 2 (solid content). It was applied on the coating layer of 2'and on the printing layers of the OPP films 3, 4, and 4', respectively, and the diluting solvent was volatilized and dried by a dryer set at a temperature of 70 ° C. Next, the adhesive surface of the OPP film coated with the adhesive and the LLDPE film (TUX-HC manufactured by Mitsui Chemicals Tohcello Co., Ltd., thickness 40 ⁇ m) were bonded together. Aging was carried out at 40 ° C. for 2 days to obtain a laminate.
  • Method 1 Using a bar coater, apply the adjusted adhesive on the aluminum oxide layer of OPP film 1, the gas barrier coating layer of OPP film 2, and the OPP film so that the coating film amount is 3.0 g / m 2 (solid content). It was applied on
  • Method 2 The prepared adhesive is heated to about 70 ° C., and a solvent-free test coater is used on the aluminum oxide layer of the OPP film 1, the gas barrier coating layer of the OPP film 2, the coating layer of the OPP film 2', and the OPP. A coating amount of 2.5 g / m 2 (solid content) was applied onto the print layers of the films 3, 4 and 4', respectively, and the adhesive surfaces of the OPP films 1 to 4 to which the adhesive was applied were applied. An LLDPE film (TUX-HC manufactured by Mitsui Kagaku Tohcello, thickness 40 ⁇ m) was bonded. Aging was carried out at 40 ° C. for 2 days to obtain a laminate.
  • OTR oxygen transmission rate
  • OX-TRAN1 / 50 manufactured by Mocon Co., Ltd. in an atmosphere of temperature 23 ° C. and humidity 0% RH.
  • the temperature was 23 ° C. and the humidity was 90% RH.
  • RH represents relative humidity.
  • the unit of oxygen permeability is cc / day, atm, and m 2 . The results are summarized in Tables 2-4.
  • the evaluation laminate of OPP film 2 or OPP film 2'and LLDPE film is cut to a width of 15 mm parallel to the coating direction, and the biaxially stretched OPP film and LLDPE film are sandwiched between A & Co., Ltd.
  • the ambient temperature was set to 25 ° C.
  • the peeling speed was set to 300 mm / min
  • the tensile strength when peeled by the 180 degree peeling method was defined as the lamination strength.
  • the unit of adhesive strength was N / 15 mm.
  • "OPP cut" in the table means that the material of the adherend (OPP film in this case) is destroyed due to the strong adhesive strength, that is, the adhesive strength itself is good.
  • the laminated body of the present invention has low oxygen and water vapor transmittances, is excellent in barrier properties, and maintains its characteristics even after a bending test.
  • the laminates of Comparative Examples 1 to 3 are inferior in gas barrier property and the performance is significantly deteriorated after the bending test.
  • the laminate of the present invention exhibits excellent gas barrier properties as compared with conventional gas barrier laminates due to its composition. From this, the laminate of the present invention can be suitably used as a packaging material, particularly as a packaging material that requires barrier properties such as food, daily necessities, electronic materials, and medical use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

The purpose of the present invention is to provide: a laminate having better gas barrier properties than a conventional gas barrier laminate; and a packaging material using said laminate. To achieve the purpose, the present invention provides a laminate comprising: a base material made of biaxially stretched polypropylene; an aluminum oxide layer disposed on the base material; a gas barrier coating agent layer disposed on the aluminum oxide layer; and a gas barrier adhesive layer disposed on the gas barrier coating agent layer.

Description

ガスバリア性積層体、包装材Gas barrier laminate, packaging material
 本発明は、ガスバリア性積層体、当該ガスバリア性積層体を用いて得られる包装材に関する。 The present invention relates to a gas barrier laminate and a packaging material obtained by using the gas barrier laminate.
 食品、医薬品等の包装に用いられる包装材料は、内容物の変質、特に酸素による酸化を防止する事が求められている。この要求に対し、従来、比較的酸素バリア性が高いとされる樹脂で構成されるバリア性フィルムや、当該バリア性フィルムをフィルム基材として用いた積層体(積層フィルム)が用いられている。
 従来、酸素バリア性樹脂としては、ポリアクリル酸やポリビニルアルコールに代表される分子内に親水性の高い水素結合性基を含有する樹脂が用いられてきた。近年これらの酸素バリア性樹脂のバリア性を更に向上させる研究が行われている。
Packaging materials used for packaging foods, pharmaceuticals, etc. are required to prevent deterioration of their contents, especially oxidation by oxygen. In response to this demand, conventionally, a barrier film made of a resin having a relatively high oxygen barrier property and a laminate (laminated film) using the barrier film as a film base material have been used.
Conventionally, as the oxygen barrier resin, a resin containing a highly hydrophilic hydrogen-bonding group in the molecule represented by polyacrylic acid or polyvinyl alcohol has been used. In recent years, research has been conducted to further improve the barrier properties of these oxygen barrier resins.
特開2019-130737号公報Japanese Unexamined Patent Publication No. 2019-130737 特開2019-34460号公報Japanese Unexamined Patent Publication No. 2019-34460
 しかしながら従来のガスバリア性積層体では、必ずしも十分なガスバリア性が得られず、また、良好なコーティング外観を達成することができず、ガスバリア性積層体に対する需要を満たすことが出来ていなかった。 However, with the conventional gas barrier laminate, sufficient gas barrier properties cannot always be obtained, a good coating appearance cannot be achieved, and the demand for the gas barrier laminate cannot be satisfied.
 本発明はこのような事情に鑑みなされたものであって、従来のガスバリア積層体より更に良好なガスバリア性を有する積層体、該積層体を用いた包装材を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a laminate having better gas barrier properties than a conventional gas barrier laminate, and a packaging material using the laminate.
 本発明は、2軸延伸ポリプロピレンからなる基材と、前記基材上に配置された酸化アルミニウム層と、前記酸化アルミニウム層上に配置されたガスバリア性コーティング剤層と、前記ガスバリア性コーティング剤層上に配置されたガスバリア性接着剤層と、を有する積層体に関する。 The present invention comprises a base material made of biaxially stretched polypropylene, an aluminum oxide layer arranged on the base material, a gas barrier coating agent layer arranged on the aluminum oxide layer, and a gas barrier coating agent layer. With respect to a laminate having a gas barrier adhesive layer arranged in.
 本発明は前記ガスバリアコーティング剤が、カルボキシル基を有する樹脂(A)と、2価金属化合物(B)、アルコール(C)とを含有するコーティング剤であって、組成物中におけるアルコール(C)の含有量が85~98wt%であって、組成物中における水分量が1%以下であることが好ましい。 In the present invention, the gas barrier coating agent is a coating agent containing a resin (A) having a carboxyl group, a divalent metal compound (B), and an alcohol (C), and the alcohol (C) in the composition. It is preferable that the content is 85 to 98 wt% and the water content in the composition is 1% or less.
 本発明は、前記カルボキシル基を有する樹脂(A)が、アクリル酸、メタクリル酸、マレイン酸、イタコン酸およびアスパラギン酸から選ばれる単量体の単独重合体または共重合体から選ばれる少なくとも1種であることが好ましい。 In the present invention, the resin (A) having a carboxyl group is at least one selected from homopolymers or copolymers of monomers selected from acrylic acid, methacrylic acid, maleic acid, itaconic acid and aspartic acid. It is preferable to have.
 本発明は、前記2価金属化合物(B)が、亜鉛化合物、マグネシウム化合物及びカルシウム化合物から選ばれる少なくとも1種であることが好ましい。 In the present invention, it is preferable that the divalent metal compound (B) is at least one selected from a zinc compound, a magnesium compound and a calcium compound.
 本発明は、前記アルコール(C)が、メタノール、エタノール、プロパノール、ブタノールから選ばれる少なくとも1種であることが好ましい。 In the present invention, it is preferable that the alcohol (C) is at least one selected from methanol, ethanol, propanol and butanol.
 また、本発明は前記積層体からなる包装材に関する。 The present invention also relates to a packaging material made of the laminate.
 本発明の積層体によれば、ガスバリア性に優れた包装材の提供が可能となる。 According to the laminate of the present invention, it is possible to provide a packaging material having excellent gas barrier properties.
<積層体>
 本発明の積層体は、2軸延伸ポリプロピレンからなる基材と、基材上に配置された酸化アルミニウム層と、前記酸化アルミニウム層上に配置されたガスバリア性コーティング剤層と、前記ガスバリア性コーティング剤層上に配置されたガスバリア性接着剤層と、を有する。これらの層に加えて、シーラント層、印刷層、アンカーコート層などを有していてもよい。以下、本発明の構成について詳述する。
<Laminated body>
The laminate of the present invention comprises a base material made of biaxially stretched polypropylene, an aluminum oxide layer arranged on the base material, a gas barrier coating agent layer arranged on the aluminum oxide layer, and the gas barrier coating agent. It has a gas barrier adhesive layer arranged on the layer. In addition to these layers, a sealant layer, a printing layer, an anchor coat layer and the like may be provided. Hereinafter, the configuration of the present invention will be described in detail.
(基材)
 本発明の積層体に用いられる基材は2軸延伸ポリプロピレンからなる。原料としては、プロピレンの単独重合体、プロピレンと他のモノマーとの共重合体からなるプロピレン系樹脂、プロピレンの単独重合体と共重合体との混合物が挙げられる。これらの原料からなるフィルムまたはシート(なお以下では特記しない限り、フィルムはフィルムとシートの総称でもある)を単層、または2層以上の共押し出し方で製膜し、二軸方向に延伸したものを用いることができる。
(Base material)
The base material used for the laminate of the present invention is made of biaxially stretched polypropylene. Examples of the raw material include a propylene homopolymer, a propylene resin composed of a copolymer of propylene and another monomer, and a mixture of a propylene homopolymer and a copolymer. A film or sheet made of these raw materials (unless otherwise specified below, the film is also a general term for a film and a sheet) is formed by a single layer or a coextrusion method of two or more layers and stretched in the biaxial direction. Can be used.
 二方向に延伸する方法としては従来公知の方法を用いることができ、例えば、原料を押し出し機により溶融し、環状ダイやTダイにより押し出して、急冷することにより実質的に無定型で配向していない未延伸フィルムを製造する。その後、この未延伸フィルムをテンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの方法により、フィルムの流れ(縦軸)方向及びフィルムの流れ方向とそれに直角な(横軸)方向に延伸することにより製造することができる。延伸倍率は、ポリプロピレン原料により適宜選択することができるが、通常、縦軸方向及び横軸方向にそれぞれ2~10倍が好ましい。 As a method of stretching in two directions, a conventionally known method can be used. For example, the raw material is melted by an extruder, extruded by an annular die or a T die, and rapidly cooled to be oriented substantially indefinitely. Produce no unstretched film. After that, this unstretched film is stretched by a method such as tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, and tubular simultaneous biaxial stretching, and is perpendicular to the film flow direction and the film flow direction. It can be manufactured by stretching in the (horizontal axis) direction. The draw ratio can be appropriately selected depending on the polypropylene raw material, but is usually preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction, respectively.
 基材の膜厚は特に限定されず、成型性や透明性の観点から、1~300μmの範囲で適宜選択すればよい。好適な強度、剛性、加工容易性が得られるため、基材の膜厚は1~100μmであることが好ましく、20~50μmの範囲であることがより好ましい。 The film thickness of the base material is not particularly limited, and may be appropriately selected in the range of 1 to 300 μm from the viewpoint of moldability and transparency. Since suitable strength, rigidity, and ease of processing can be obtained, the film thickness of the base material is preferably 1 to 100 μm, more preferably 20 to 50 μm.
 本発明に用いられる基材は、位相差測定法による面配向係数Δが、0.005~0.020の範囲であることが好ましい。これにより、ボイルやレトルト処理にも十分耐え得るレベルまで後述する酸化アルミニウム層と基材との密着性を向上させることができる。 The substrate used in the present invention preferably has a plane orientation coefficient Δ according to the phase difference measurement method in the range of 0.005 to 0.020. This makes it possible to improve the adhesion between the aluminum oxide layer and the base material, which will be described later, to a level that can sufficiently withstand boiling and retort treatment.
 基材の面配向係数Δを0.005から0.020の範囲に調整する方法としては、例えば、二軸延伸後に熱固定工程を行い、二軸延伸および熱固定の条件を適切に選択することによって、面配向係数Δを制御する方法が挙げられる。例えば、二軸延伸後に低温で長時間による熱固定を行うことによって、前記面配向係数Δを所望の範囲内に調整することができる。また、後述するリアクティブイオンエッチング(RIE)処理などの表面処理により、面配向係数Δが0.005から0.020の範囲となるように表面を改質することも可能である。予め面配向係数Δを0.005から0.020の範囲に調整された市販品を用いてもよいし、酸化アルミニウム層を形成する直前に基材の表面に改質処理を施してもよい。 As a method of adjusting the surface orientation coefficient Δ of the base material in the range of 0.005 to 0.020, for example, a heat fixing step is performed after biaxial stretching, and conditions for biaxial stretching and heat fixing are appropriately selected. A method of controlling the plane orientation coefficient Δ can be mentioned. For example, the plane orientation coefficient Δ can be adjusted within a desired range by performing heat fixation at a low temperature for a long time after biaxial stretching. It is also possible to modify the surface so that the surface orientation coefficient Δ is in the range of 0.005 to 0.020 by surface treatment such as reactive ion etching (RIE) treatment described later. A commercially available product in which the surface orientation coefficient Δ is adjusted in the range of 0.005 to 0.020 in advance may be used, or the surface of the base material may be modified immediately before the aluminum oxide layer is formed.
 また、本発明に用いられる基材は、位相差測定法により測定される配向角が、流れ方向に対して50°から90°または-50°から-90°であることが好ましい。これにより、ボイルやレトルト処理にも十分耐え得るレベルまで後述する酸化アルミニウム層と基材との密着性を向上させることができる。ここで、配向角は、流れ方向を0°として、左側に傾いて分子鎖が並んでいれば+、右側に傾いて分子鎖が並んでいれば-と定義する。 Further, the base material used in the present invention preferably has an orientation angle measured by the phase difference measurement method of 50 ° to 90 ° or −50 ° to −90 ° with respect to the flow direction. This makes it possible to improve the adhesion between the aluminum oxide layer and the base material, which will be described later, to a level that can sufficiently withstand boiling and retort treatment. Here, the orientation angle is defined as + if the molecular chains are tilted to the left and aligned to the right, and-if the molecular chains are tilted to the right, with the flow direction as 0 °.
 流れ方向の配向角は可視光を用いた位相差測定法、マイクロウエーブを用いた分子配向測定法などの手法を用いて求めることができるが、マイクロウエーブを用いた分子配向測定法の場合には測定者による測定値のバラつきが大きくなる。これに対し、位相差測定法は測定者によらず安定して測定でき、測定者のバラつきも少なく、正確に配向角を測定することができる。このため、流れ方向に対する配向角の測定には位相差測定法を採用するのが良い。 The orientation angle in the flow direction can be obtained by using a method such as a phase difference measurement method using visible light or a molecular orientation measurement method using a microwave, but in the case of a molecular orientation measurement method using a microwave. The variation of the measured value by the measurer becomes large. On the other hand, the phase difference measuring method can perform stable measurement regardless of the measurer, has little variation in the measurer, and can accurately measure the orientation angle. Therefore, it is preferable to adopt the phase difference measurement method for measuring the orientation angle with respect to the flow direction.
 このような基材は、二軸延伸および熱固定を経て得られる。二軸延伸および熱固定の条件を適切に選択することによって、配向角を制御することができる。例えば、二軸延伸後に流れ方向に対して中央部分を切り出して使用することによって、基材の配向角を所望の範囲内で選択することが可能になる。 Such a substrate is obtained through biaxial stretching and thermal fixation. The orientation angle can be controlled by appropriately selecting the conditions of biaxial stretching and thermal fixation. For example, by cutting out the central portion with respect to the flow direction after biaxial stretching and using it, the orientation angle of the base material can be selected within a desired range.
 基材には、必要に応じて添加剤が含まれていてもよい。具体的には、加工性、耐熱性、耐候性、機械的性質、寸法安定性、抗酸化性、滑り性、離型性、難燃性、抗カビ性、電気的特性、強度等を改良、改質する目的で、滑剤、架橋剤、酸化防止剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料等のプラスチック配合剤や添加剤等を添加することができる。添加剤の添加量は、他の性能に影響を与えない範囲で調整する。 The base material may contain additives as needed. Specifically, improve workability, heat resistance, weather resistance, mechanical properties, dimensional stability, antioxidant properties, slipperiness, mold releasability, flame retardancy, antifungal properties, electrical properties, strength, etc. For the purpose of modification, plastic compounding agents and additives such as lubricants, cross-linking agents, antioxidants, ultraviolet absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents and pigments can be added. The amount of additive added should be adjusted within a range that does not affect other performance.
(表面処理)
 酸化アルミニウム層の密着性を向上させるため、基材には何等かの表面処理、例えばコロナ放電処理、オゾン処理、酸素ガス若しくは窒素ガス等を用いた低温プラズマ処理、グロー放電処理等の物理的な処理や、化学薬品を用いた酸化処理等の化学的な処理、その他処理が施されていてもよい。特に放電処理は基材の面配向係数Δを所望の範囲内に調整することができるため好ましい。放電処理としては特に限定されないが、RIE処理が好ましい。
(surface treatment)
In order to improve the adhesion of the aluminum oxide layer, the substrate is physically treated with some surface treatment, such as corona discharge treatment, ozone treatment, low temperature plasma treatment using oxygen gas or nitrogen gas, glow discharge treatment, etc. Treatment, chemical treatment such as oxidation treatment using chemicals, and other treatments may be performed. In particular, the discharge treatment is preferable because the surface orientation coefficient Δ of the base material can be adjusted within a desired range. The discharge treatment is not particularly limited, but the RIE treatment is preferable.
 RIE処理は、例えば巻取り式のインライン装置を用いて行うことができ、基材が設置される冷却ドラムに電圧を印加するプレーナ型処理装置を用いることができる。プレーナ型処理装置で基材をRIE処理する方法は、処理ロール(冷却ロール)の内側に電極(陰極)を配置し、基材を処理ロールに沿って搬送しながらその表面にプラズマ中のイオンを作用させてRIE処理を行う。このような方法によれば、基材を陰極に近い位置に設置することができ、高い自己バイアスを得ることによってRIE処理を行うことができる。 The RIE processing can be performed using, for example, a take-up type in-line device, and a planar type processing device that applies a voltage to the cooling drum on which the base material is installed can be used. In the method of RIE-treating a base material with a planar type treatment device, an electrode (cathode) is placed inside a treatment roll (cooling roll), and ions in plasma are transferred to the surface of the base material while being conveyed along the treatment roll. Let it act and perform RIE treatment. According to such a method, the base material can be placed at a position close to the cathode, and the RIE treatment can be performed by obtaining a high self-bias.
 あるいは、RIE処理はホロアノード・プラズマ処理装置を用いて行うこともできる。ホロアノード・プラズマ処理装置は、例えば、陽極として機能する処理ロールを備える。陰極及び陰極の両端に配置された遮蔽板は、処理ロールの外部に処理ロールと対向するように配置され、陰極は開口部を有するボックス形状に形成される。陰極の開口部は、処理ロールに対向するように開口し、遮蔽板は、処理ロールに沿った曲面形状を有する。ガス導入ノズルが陰極の上方に配置され、処理ロールと陰極の間及び処理ロール7遮蔽板との間の空隙にガスを導入する。マッチングボックスは、陰極の背面に配置される。 Alternatively, the RIE treatment can be performed using a hollow anode plasma processing device. The holoanode plasma processing apparatus includes, for example, a processing roll that functions as an anode. The cathode and the shielding plates arranged at both ends of the cathode are arranged outside the processing roll so as to face the processing roll, and the cathode is formed in a box shape having an opening. The opening of the cathode is opened so as to face the processing roll, and the shielding plate has a curved surface shape along the processing roll. A gas introduction nozzle is arranged above the cathode to introduce gas into the gap between the processing roll and the cathode and between the processing roll 7 shielding plate. The matching box is located behind the cathode.
 このようなホロアノード・プラズマ処理装置で基材をRIE処理するには、基材を処理ロールに沿って搬送しながら、マッチングボックスから陰極に電圧を印加し、ガスが導入される処理ロールと陰極および遮蔽板の間にプラズマを発生させ、陽極である処理ロールに向けてプラズマ中のラジカルを引き寄せることによって、基材の表面にラジカルを作用させる。 In order to perform RIE treatment of a base material with such a holoanode plasma processing device, a voltage is applied from the matching box to the cathode while transporting the base material along the treatment roll, and the treatment roll and cathode into which gas is introduced and the cathode and The plasma is generated between the shielding plates, and the radicals in the plasma are attracted toward the processing roll which is the anode, so that the radicals act on the surface of the base material.
 RIE処理において、ホロアノード電極中に磁石を組み込んで、磁気アシスト・ホロアノードを用いることが好ましい。これによって、より強力で安定したプラズマ表面処理を高速で行うことが可能となる。磁気電極から発生される磁界により、プラズマ閉じ込め効果をさらに高め、大きな自己バイアスで高いイオン電流密度を得ることができる。 In the RIE treatment, it is preferable to incorporate a magnet in the holo anode electrode and use a magnetically assisted holo anode. This makes it possible to perform more powerful and stable plasma surface treatment at high speed. The magnetic field generated from the magnetic electrode further enhances the plasma confinement effect, and a high ionic current density can be obtained with a large self-bias.
 RIEによる前処理を行うためのガス種としては、例えば、アルゴン、酸素、窒素、水素を使用することができる。これらのガスは単独でも2種以上を組み合わせて用いてもよい。RIE処理において、2基以上の処理装置を用いて、連続して処理を行うこともできる。このとき、使用される2基以上の処理装置は同じである必要はない。例えば、プレーナ型処理装置で基材を処理し、その後に連続してホロアノード・プラズマ処理装置を用いて処理を行うこともできる。 For example, argon, oxygen, nitrogen, and hydrogen can be used as the gas type for pretreatment by RIE. These gases may be used alone or in combination of two or more. In the RIE processing, the processing can be continuously performed by using two or more processing devices. At this time, the two or more processing devices used do not have to be the same. For example, it is also possible to process the base material with a planar type processing apparatus and then continuously perform the processing with a holoanodic plasma processing apparatus.
(アンカーコート層)
 本発明の積層体では、酸化アルミニウム層の形成に先立ち、基材上にアンカーコート層を設けてもよい。アンカーコート層は基材上にアンカーコート剤を塗布、乾燥することにより形成することができる。これにより、基材と酸化アルミニウム層の密着性を高めるとともに、アンカーコート剤のレベリング作用により酸化アルミニウム層の形成面が平坦性を向上させることができ、クラック等の膜欠陥が少なく均一な酸化アルミニウム薄膜を形成とすることができる。
(Anchor coat layer)
In the laminate of the present invention, an anchor coat layer may be provided on the base material prior to the formation of the aluminum oxide layer. The anchor coat layer can be formed by applying an anchor coat agent on a substrate and drying it. As a result, the adhesion between the base material and the aluminum oxide layer can be improved, and the flatness of the formed surface of the aluminum oxide layer can be improved by the leveling action of the anchor coating agent, and uniform aluminum oxide with few film defects such as cracks can be improved. A thin film can be formed.
 アンカーコート剤としては、例えば、溶剤溶解性または水溶性のポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、ビニルアルコール樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、オキサゾリン基含有樹脂、変性スチレン樹脂、変性シリコン樹脂またはアルキルチタネート等が挙げられる。これらは単独または2種類以上組み合わせて使用することができる。 Examples of the anchor coating agent include solvent-soluble or water-soluble polyester resin, isocyanate resin, urethane resin, acrylic resin, vinyl alcohol resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, oxazoline group-containing resin, and modified styrene. Examples thereof include resins, modified silicone resins and alkyl titanates. These can be used alone or in combination of two or more.
 アンカーコート層の膜厚は特に制限されないが、5nm~5μm程度であることが好ましく、10nm~1μmであることがより好ましい。これにより、基材上に内部応力が抑制された均一な層を形成することができる。 The film thickness of the anchor coat layer is not particularly limited, but is preferably about 5 nm to 5 μm, and more preferably 10 nm to 1 μm. As a result, a uniform layer in which internal stress is suppressed can be formed on the base material.
 アンカーコート層を設ける場合、アンカーコート剤の塗布性、接着性を改良するために、アンカーコート層形成に先立ち基材の表面に放電処理を施すことも好ましい。 When the anchor coat layer is provided, it is also preferable to perform a discharge treatment on the surface of the base material prior to forming the anchor coat layer in order to improve the coatability and adhesiveness of the anchor coat agent.
(酸化アルミニウム層)
 酸化アルミニウム層は、主たる成分が酸化アルミニウムからなる層である。ここで主たる成分とは、酸化アルミニウム層を構成する成分の50質量%超が酸化アルミニウムであることを意味する。酸化アルミニウム層を構成する成分の70質量%以上が酸化アルミニウムであることが好ましく、90質量%以上であることがより好ましく、理想的には100質量%である。酸化アルミニウムは、AlO、AlO、Al等の各種アルミニウム酸化物の少なくとも1種以上からなり、各種アルミニウム酸化物の含有率は薄膜層の作製条件によって調整することができる。
(Aluminum oxide layer)
The aluminum oxide layer is a layer whose main component is aluminum oxide. Here, the main component means that more than 50% by mass of the components constituting the aluminum oxide layer is aluminum oxide. It is preferable that 70% by mass or more of the components constituting the aluminum oxide layer is aluminum oxide, more preferably 90% by mass or more, and ideally 100% by mass. Aluminum oxide, AlO, consists Al 2 O, at least one or more kinds of various aluminum oxides such as Al 2 O 3, the content of various aluminum oxide can be adjusted by making the conditions of thin layer.
 酸化アルミニウム層は、XPS測定法によって算出される酸素とアルミニウムの比(O/Al比)が1.0~1.5であることが好ましい。これにより、透明で、かつ基材に対して高い密着性を示す。O/Al比が前記範囲の場合は、十分なバリア性を確保でき、しかも良好な透明性が得られ、クラック等の膜欠陥が生じにくくなる。 The aluminum oxide layer preferably has an oxygen to aluminum ratio (O / Al ratio) calculated by the XPS measurement method of 1.0 to 1.5. As a result, it is transparent and exhibits high adhesion to the substrate. When the O / Al ratio is in the above range, sufficient barrier properties can be ensured, good transparency can be obtained, and film defects such as cracks are less likely to occur.
 酸化アルミニウム層は、層中、積層方向において酸素原子の濃度勾配が存在していてもよい。例えば、酸化アルミニウム層の基材側の面から、基材とは反対側の面にかけてO/Al比が増加していてもよい。酸化アルミニウム層は一層のみ設けられていてもよいし、互いに同じ、または異なる手法で形成された二層以上が設けられていてもよい。 The aluminum oxide layer may have an oxygen atom concentration gradient in the layer in the stacking direction. For example, the O / Al ratio may increase from the surface of the aluminum oxide layer on the substrate side to the surface opposite to the substrate. Only one layer of the aluminum oxide layer may be provided, or two or more layers formed by the same or different methods may be provided.
 酸化アルミニウム層の膜厚は、5nm~300nmであることが好ましく、10nm~300nmであることがより好ましい。酸化アルミニウムの膜厚が前記範囲であると均一な層を形成することができ、十分なバリア性を確保できる。 The film thickness of the aluminum oxide layer is preferably 5 nm to 300 nm, and more preferably 10 nm to 300 nm. When the film thickness of aluminum oxide is within the above range, a uniform layer can be formed, and sufficient barrier properties can be ensured.
 酸化アルミニウム層の表面粗さは3.5μm以下であることが好ましく、2.5μm以下であることがより好ましく、2.0μm以下であることがさらに好ましい。表面粗さRmの下限は特に制限されないが、一例として1.0μm以上である。なおここで酸化アルミニウム層表面粗さとは、酸化アルミニウム層の基材とは反対側の面に表面粗さをいい、原子間力顕微鏡(以下「AFM」という。)により測定したAFM凹凸像を粗さ解析により求めた粗さRms(自乗平均平方根粗さ)の値である。 The surface roughness of the aluminum oxide layer is preferably 3.5 μm or less, more preferably 2.5 μm or less, and even more preferably 2.0 μm or less. The lower limit of the surface roughness Rm is not particularly limited, but is 1.0 μm or more as an example. Here, the surface roughness of the aluminum oxide layer means the surface roughness on the surface of the aluminum oxide layer opposite to the base material, and the AFM unevenness image measured by an atomic force microscope (hereinafter referred to as “AFM”) is roughened. It is a value of roughness Rms (square mean square root roughness) obtained by Sas analysis.
 酸化アルミニウム層の表面粗さは、基材の表面粗さ、アンカーコート層の有無、酸化アルミニウム層を形成する粒子の粒子径、酸化アルミニウム層の膜厚等に影響を受けるが、これらの影響を受けた酸化アルミニウム層の表面粗さが上述の範囲にあると、積層体のガスバリア性を良好なものとすることができる。 The surface roughness of the aluminum oxide layer is affected by the surface roughness of the base material, the presence or absence of the anchor coat layer, the particle size of the particles forming the aluminum oxide layer, the film thickness of the aluminum oxide layer, etc. When the surface roughness of the received aluminum oxide layer is within the above range, the gas barrier property of the laminated body can be improved.
 また、酸化アルミニウム層を形成する粒子の平均粒子径は20nm以下であることが好ましい。これにより、酸化アルミニウム層を高密度で充填し、また基材の表面の凹凸を隙間なく効率的に被覆でき、ガスバリア性に優れた積層体とすることができる。なお酸化アルミニウム層を形成する粒子の平均粒子径は15nm以下であることがより好ましく、10nm以下であることがさらに好ましい。下限は特に制限されない。酸化アルミニウム層を形成する粒子の平均粒子径は、酸化アルミニウム層の表面粗さの測定と同様にAFM凹凸像の解析により得られる。 Further, the average particle size of the particles forming the aluminum oxide layer is preferably 20 nm or less. As a result, the aluminum oxide layer can be filled with a high density, and the unevenness of the surface of the base material can be efficiently covered without gaps, so that a laminated body having excellent gas barrier properties can be obtained. The average particle size of the particles forming the aluminum oxide layer is more preferably 15 nm or less, and further preferably 10 nm or less. The lower limit is not particularly limited. The average particle size of the particles forming the aluminum oxide layer can be obtained by analyzing the AFM uneven image as well as the measurement of the surface roughness of the aluminum oxide layer.
 酸化アルミニウム層は、真空蒸着法、スパッタリング法、イオンプレーティング方、化学気相成長法(CVD)等により形成することができる。生産性を考慮する場合は真空蒸着法が好ましい。真空蒸着法により酸化アルミニウム層を形成する場合、高密度プラズマを発生させる手段を併用してもよい。蒸着原料の加熱方式としては、エレクトロンビ-ム(EB)方式、高周波誘導加熱方式、抵抗加熱方式等を用いられる。真空蒸着法にて気化、あるいは昇華した蒸着粒子に、高エネルギーを有する高密度プラズマを充てることで、緻密性等の酸化アルミニウム層の膜質を向上させ、バリア性を向上させることができる。高密度プラズマを発生させる手段としては、誘導結合(ICP)プラズマ、ヘリコン波プラズマ、マイクロ波プラズマ、ホロカソード放電等が挙げられる。 The aluminum oxide layer can be formed by a vacuum deposition method, a sputtering method, an ion plating method, a chemical vapor deposition method (CVD), or the like. The vacuum deposition method is preferable when productivity is taken into consideration. When the aluminum oxide layer is formed by the vacuum vapor deposition method, a means for generating high-density plasma may be used in combination. As a heating method for the vapor-deposited raw material, an electron beam (EB) method, a high-frequency induction heating method, a resistance heating method, or the like is used. By applying high-density plasma having high energy to the vaporized particles vaporized or sublimated by the vacuum vapor deposition method, the film quality of the aluminum oxide layer such as density can be improved and the barrier property can be improved. Examples of means for generating high-density plasma include inductively coupled (ICP) plasma, helicon wave plasma, microwave plasma, and hollow cathode discharge.
(ガスバリア性コーティング剤層)
 本発明の積層体では、酸化アルミニウム層上にガスバリア性コーティング剤層を形成し、積層体のガスバリア性の向上や、酸化アルミニウム層の保護、ガスバリア性接着剤層や任意に形成される印刷層との密着性を向上させる。
(Gas barrier coating agent layer)
In the laminate of the present invention, a gas barrier coating agent layer is formed on the aluminum oxide layer to improve the gas barrier property of the laminate, protect the aluminum oxide layer, and form a gas barrier adhesive layer or an arbitrarily formed printing layer. Improves adhesion.
 本発明のガスバリア性コーティング剤は、カルボキシル基を有する樹脂(A)と、2価金属化合物(B)、アルコール(C)とを含有するコーティング剤であって、組成物中におけるアルコール(C)の含有量が85~98wt%であって、組成物中における水分量が1%以下であることを特徴とする。 The gas barrier coating agent of the present invention is a coating agent containing a resin (A) having a carboxyl group, a divalent metal compound (B), and an alcohol (C), and the alcohol (C) in the composition. The content is 85 to 98 wt%, and the water content in the composition is 1% or less.
<カルボキシル基を有する樹脂(A)>
 本発明のカルボキシル基を有する樹脂(A)は、カルボキシル基として、無水カルボン酸を含んでよい。前記カルボキシル基を有する樹脂(A)は、アクリル酸、メタクリル酸、マレイン酸、イタコン酸およびアスパラギン酸から選ばれる単量体の単独重合体または共重合体から選ばれる少なくとも1種であることが好ましい。
<Resin (A) having a carboxyl group>
The resin (A) having a carboxyl group of the present invention may contain carboxylic acid anhydride as a carboxyl group. The resin (A) having a carboxyl group is preferably at least one selected from homopolymers or copolymers of monomers selected from acrylic acid, methacrylic acid, maleic acid, itaconic acid and aspartic acid. ..
また、カルボン酸基を有する樹脂(A)は、酸価が50~800mgKOH/gであると、バリア性能が向上する為好ましい。特に好ましくは80~800mgKOH/gである。酸価が80mgKOH/g以上であればイオン結合が十分進み高いバリア性能が得られる。 Further, the resin (A) having a carboxylic acid group preferably has an acid value of 50 to 800 mgKOH / g because the barrier performance is improved. Particularly preferably, it is 80 to 800 mgKOH / g. If the acid value is 80 mgKOH / g or more, ionic bonding is sufficiently advanced and high barrier performance can be obtained.
(酸価測定方法)
 酸価とは、試料1g中に存在する酸分を、中和するのに必要な水酸化カリウムのmg数である。具体的には、秤量した試料を試料が溶解する適当な溶媒、例えば体積比でトルエン/メタノール=70/30の溶媒に溶かし、1%フェノールフタレインアルコール溶液を数滴滴下しておき、そこに0.1mol/Lの水酸化カリウムアルコール溶液を滴下して、変色点を確認する方法により測定することができ、下記の計算式で求めることができる。
(Acid value measurement method)
The acid value is the number of mg of potassium hydroxide required to neutralize the acid content present in 1 g of the sample. Specifically, the weighed sample is dissolved in an appropriate solvent in which the sample dissolves, for example, a solvent of toluene / methanol = 70/30 in volume ratio, and a few drops of a 1% phenolphthalein alcohol solution are added dropwise thereto. It can be measured by a method of dropping a 0.1 mol / L potassium hydroxide alcohol solution and confirming the discoloration point, and can be calculated by the following formula.
酸価測定方法-1
酸価(mgKOH/g)=(V×F×5.61)/S
V:0.1mol/L水酸化カリウムアルコール溶液の使用量(mL)
F:0.1mol/L水酸化カリウムアルコール溶液の力価
S:試料の採取量(g)
5.61:0.1mol/L水酸化カリウムアルコール溶液1mL中の水酸化カリウム相当量(mg)
Acid value measurement method-1
Acid value (mgKOH / g) = (V × F × 5.61) / S
V: Amount of 0.1 mol / L potassium hydroxide alcohol solution used (mL)
F: Titer of 0.1 mol / L potassium hydroxide alcohol solution S: Sample collection amount (g)
5.61: Potassium hydroxide equivalent amount (mg) in 1 mL of 0.1 mol / L potassium hydroxide alcohol solution
試料が樹脂溶液の場合は、下記の計算式で樹脂酸価(mgKOH/g)を求めることができる。 When the sample is a resin solution, the resin acid value (mgKOH / g) can be calculated by the following formula.
樹脂酸価(mgKOH/g)=樹脂溶液の酸価(mgKOH/g)/NV(%)×100NV:不揮発分(%) Resin acid value (mgKOH / g) = Acid value of resin solution (mgKOH / g) / NV (%) x 100 NV: Non-volatile content (%)
 また、有機溶媒への試料の溶解性が低く、析出などをして、測定困難な場合は、以下の方法でも酸価を測定することができる。 In addition, if the solubility of the sample in an organic solvent is low and it is difficult to measure due to precipitation, etc., the acid value can also be measured by the following method.
酸価測定方法-2
酸価(mgKOH/g-resin)とは、FT-IR(日本分光社製、FT-IR4200)を使用し、無水マレイン酸のクロロホルム溶液によって作成した検量線から得られる係数(f)、無水マレイン酸変性ポリオレフィン溶液における無水マレイン酸の無水環の伸縮ピーク(1780cm-1)の吸光度(I)とマレイン酸のカルボニル基の伸縮ピーク(1720cm-1)の吸光度(II)を用いて下記式により算出した値である。
酸価(mgKOH/g-regin)=[(吸光度(I)×(f)×2×水酸化カリウムの分子量×1000(mg)+吸光度(II)×(f)×水酸化カリウムの分子量×1000(mg))/無水マレイン酸の分子量]
無水マレイン酸の分子量:98.06、水酸化カリウムの分子量:56.11
Acid value measurement method-2
The acid value (mgKOH / g-resin) is a coefficient (f) obtained from a calibration line prepared with a chloroform solution of maleic anhydride using FT-IR (FT-IR4200 manufactured by Nippon Kogaku Co., Ltd.), maleic anhydride. Calculated by the following formula using the absorbance (I) of the expansion and contraction peak (1780 cm-1) of the anhydrous ring of maleic anhydride and the absorbance (II) of the expansion and contraction peak (1720 cm-1) of the carbonyl group of maleic acid in an acid-modified polyolefin solution. Is the value.
Acid value (mgKOH / g-regin) = [(Absorptiometry (I) × (f) × 2 × Molecular weight of potassium hydroxide × 1000 (mg) + Absorbance (II) × (f) × Molecular weight of potassium hydroxide × 1000 (Mg)) / Molecular weight of maleic anhydride]
Maleic anhydride molecular weight: 98.06, potassium hydroxide molecular weight: 56.11
 本発明のカルボキシル基を有する樹脂(A)としては、分子量に特に限定はないが、数平均分子量が300~2,000,000である塗膜成形性の観点から好ましい。特に好ましくは500~1,000,000である。
 本発明のカルボキシル基を有する樹脂(A)の重量平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)の方法で測定を行うことで算出することができる。
The resin (A) having a carboxyl group of the present invention is not particularly limited in molecular weight, but is preferable from the viewpoint of coating film moldability having a number average molecular weight of 300 to 2,000,000. Particularly preferably, it is 500 to 1,000,000.
The weight average molecular weight of the resin (A) having a carboxyl group of the present invention can be calculated by measuring by the method of gel permeation chromatography (GPC).
 本発明のカルボキシル基を有する樹脂(A)としてはカルボキシル基を構造中に有する樹脂であれば特に限定されるものではないが、好ましくは、カルボキシル基含有ビニル樹脂である。 The resin (A) having a carboxyl group of the present invention is not particularly limited as long as it is a resin having a carboxyl group in its structure, but is preferably a carboxyl group-containing vinyl resin.
(カルボキシル基含有ビニル樹脂)
 カルボキシル基含有ビニル樹脂としては、例えばカルボキシル基を有する重合性不飽和単量体の重合体が挙げられる。カルボキシル基を有する重合性不飽和単量体としては、(メタ)アクリル酸、2-カルボキシエチル(メタ)アクリレート、クロトン酸、イタコン酸、マレイン酸またはフマル酸等の不飽和カルボン酸類;
(Carboxyl group-containing vinyl resin)
Examples of the carboxyl group-containing vinyl resin include polymers of polymerizable unsaturated monomers having a carboxyl group. Examples of the polymerizable unsaturated monomer having a carboxyl group include unsaturated carboxylic acids such as (meth) acrylic acid, 2-carboxyethyl (meth) acrylate, crotonic acid, itaconic acid, maleic acid and fumaric acid;
 イタコン酸モノメチル、イタコン酸モノ-n-ブチル、マレイン酸モノメチル、マレイン酸モノ-n-ブチル、フマル酸モノメチル、フマル酸モノ-n-ブチル等の各種の不飽和ジカルボン酸類と、飽和1価アルコール類とのモノエステル類(ハーフエステル類);  Various unsaturated dicarboxylic acids such as monomethyl itaconic acid, mono-n-butyl itaconic acid, monomethyl maleate, mono-n-butyl maleate, monomethyl fumarate, mono-n-butyl fumarate, and saturated monohydric alcohols. Monoesters (half esters);
 アジピン酸モノビニルまたはコハク酸モノビニル等の各種の飽和ジカルボン酸のモノビニルエステル類; Monovinyl esters of various saturated dicarboxylic acids such as monovinyl adipic acid or monovinyl succinate;
 無水コハク酸、無水グルタル酸、無水フタル酸または無水トリメリット酸等の各種の、飽和ポリカルボン酸の無水物類と、各種の水酸基含有ビニル系単量体類との付加反応生成物;さらには、前掲したような各種のカルボキシル基含有単量体類と、ラクトン類とを付加反応せしめて得られるような種々の単量体類などが挙げられる。 Addition reaction products of various saturated polycarboxylic acid anhydrides such as succinic anhydride, glutaric anhydride, phthalic anhydride or trimellitic anhydride and various hydroxyl group-containing vinyl monomers; Examples thereof include various monomers obtained by addition-reacting various carboxyl group-containing monomers as described above with lactones.
 本発明のカルボキシル基を有する樹脂(A)としては、前記したカルボキシル基を有する重合性不飽和単量体の単独重合体であってもよいし、カルボキシル基を有する重合性不飽和単量体を複数使用した共重合体であってもよい。また、カルボキシル基を有する重合性不飽和単量体と共重合可能なその他の単量体との共重合体であってもよい。 The resin (A) having a carboxyl group of the present invention may be a homopolymer of the above-mentioned polymerizable unsaturated monomer having a carboxyl group, or the polymerizable unsaturated monomer having a carboxyl group. It may be a copolymer using a plurality. Further, it may be a copolymer of a polymerizable unsaturated monomer having a carboxyl group and another monomer copolymerizable.
 カルボキシル基を有する重合性不飽和単量体と共重合可能な単量体としては、例えば以下のようなものが挙げられる。 Examples of the monomer copolymerizable with the polymerizable unsaturated monomer having a carboxyl group include the following.
 (1)(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸-n-ブチル、(メタ)アクリル酸-t-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸ドコシル等の炭素数1~22のアルキル基を持つ(メタ)アクリル酸エステル類; (1) Methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, -n-butyl (meth) acrylate, -t-butyl (meth) acrylate, hexyl (meth) acrylate , (Meta) hepcil acrylate, (meth) octyl acrylate, (meth) nonyl acrylate, (meth) decyl acrylate, (meth) dodecyl acrylate, (meth) tetradecyl acrylate, (meth) hexadecyl acrylate, (Meta) acrylic acid esters having an alkyl group having 1 to 22 carbon atoms such as stearyl (meth) acrylate, octadecyl (meth) acrylate, and docosyl (meth) acrylate;
 (2)(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボロニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル等の脂式のアルキル基を有する(メタ)アクリル酸エステル類; (2) (Meta) acrylic having a fat-type alkyl group such as cyclohexyl (meth) acrylate, isoboronyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, etc. Acrylic acids;
 (3)(メタ)アクリル酸ベンゾイルオキシエチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニルエチル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸フェノキシジエチレングリコール、(メタ)アクリル酸2-ヒドロキシ-3-フェノキシプロピル等の芳香環を有する(メタ)アクリル酸エステル類; (3) Benoxyethyl benzoyl (meth) acrylate, benzyl (meth) acrylate, phenylethyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, 2- (meth) acrylate (Meta) acrylic acid esters having an aromatic ring such as hydroxy-3-phenoxypropyl;
(4)(メタ)アクリル酸ヒドロキエチル;(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸グリセロール;ラクトン変性(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ポリエチレングリコール、(メタ)アクリル酸ポリプロピレングリコールなどのポリアルキレングリコール基を有する(メタ)アクリル酸エステル等のヒドロキシアルキル基を有するアクリル酸エステル類;  (4) Hydrochiethyl (meth) acrylate; hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, glycerol (meth) acrylate; lactone-modified hydroxyethyl (meth) acrylate, polyethylene (meth) acrylate Acrylic acid esters having a hydroxyalkyl group such as (meth) acrylic acid ester having a polyalkylene glycol group such as glycol and (meth) acrylic acid polypropylene glycol;
(5)フマル酸ジメチル、フマル酸ジエチル、フマル酸ジブチル、イタコン酸ジメチル、イタコン酸ジブチル、フマル酸メチルエチル、フマル酸メチルブチル、イタコン酸メチルエチルなどの不飽和ジカルボン酸エステル類; (5) Unsaturated dicarboxylic acid esters such as dimethyl fumarate, diethyl fumarate, dibutyl fumarate, dimethyl itaconic acid, dibutyl itaconic acid, methyl ethyl fumarate, methyl butyl fumarate, and methyl ethyl itaconic acid;
(6)スチレン、α-メチルスチレン、クロロスチレンなどのスチレン誘導体類; (6) Styrene derivatives such as styrene, α-methylstyrene and chlorostyrene;
(7)ブタジエン、イソプレン、ピペリレン、ジメチルブタジエンなどのジエン系化合物類; (7) Diene compounds such as butadiene, isoprene, piperylene, and dimethyl butadiene;
(8)塩化ビニル、臭化ビニルなどのハロゲン化ビニルやハロゲン化ビニリデン類; (8) Vinyl halides such as vinyl chloride and vinyl bromide and vinylidene halides;
(9)メチルビニルケトン、ブチルビニルケトンなどの不飽和ケトン類; (9) Unsaturated ketones such as methyl vinyl ketone and butyl vinyl ketone;
(10)酢酸ビニル、酪酸ビニルなどのビニルエステル類; (10) Vinyl esters such as vinyl acetate and vinyl butyrate;
(11)メチルビニルエーテル、ブチルビニルエーテルなどのビニルエーテル類; (11) Vinyl ethers such as methyl vinyl ether and butyl vinyl ether;
(12)アクリロニトリル、メタクリロニトリル、シアン化ビニリデンなどのシアン化ビ
ニル類;
(12) Vinyl cyanides such as acrylonitrile, methacrylonitrile, and vinylidene cyanide;
(13)アクリルアミドやそのアルキド置換アミド類; (13) Acrylamide and its alkyd-substituted amides;
(14)N-フェニルマレイミド、N-シクロヘキシルマレイミドなどのN-置換マレイミド類; (14) N-substituted maleimides such as N-phenylmaleimide and N-cyclohexylmaleimide;
(15)フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン、ブロモトリフルオロエチレン、ペンタフルオロプロピレン若しくはヘキサフルオロプロピレンの如きフッ素含有α-オレフィン類;またはトリフルオロメチルトリフルオロビニルエーテル、ペンタフルオロエチルトリフルオロビニルエーテル若しくはヘプタフルオロプロピルトリフルオロビニルエーテルの如き(パー)フルオロアルキル基の炭素数が1から18なる(パー)フルオロアルキル・パーフルオロビニルエーテル類;2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、1H,1H,2H,2H-ヘプタデカフルオロデシル(メタ)アクリレート若しくはパーフルオロエチルオキシエチル(メタ)アクリレートの如き(パー)フルオロアルキル基の炭素数が1から18なる(パー)フルオロアルキル(メタ)アクリレート類等のフッ素含有エチレン性不飽和単量体類; (15) Fluorine-containing α-olefins such as vinyl fluoride, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, bromotrifluoroethylene, pentafluoropropylene or hexafluoropropylene; or trifluoromethyltrifluorovinyl ether, penta. Fluoroalkyl perfluorovinyl ethers having 1 to 18 carbon atoms in a (per) fluoroalkyl group, such as fluoroethyl trifluorovinyl ether or heptafluoropropyl trifluorovinyl ether; 2,2,2-trifluoroethyl (meth) ) Acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, 1H, 1H, 2H, 2H-heptadecafluorodecyl (meth) acrylate or Fluorine-containing ethylenically unsaturated monomers such as (per) fluoroalkyl (meth) acrylates having 1 to 18 carbon atoms in a (per) fluoroalkyl group such as perfluoroethyloxyethyl (meth) acrylate;
(16)γ-メタクリロキシプロピルトリメトキシシラン等のシリル基含有(メタ)アクリレート類; (16) Cyril group-containing (meth) acrylates such as γ-methacryloxypropyltrimethoxysilane;
(17)N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート若しくはN,N-ジエチルアミノプロピル(メタ)アクリレート等のN,N-ジアルキルアミノアルキル(メタ)アクリレート等が挙げられる。 (17) N, N-dialkylaminoalkyl (meth) acrylate such as N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate or N, N-diethylaminopropyl (meth) acrylate, etc. Can be mentioned.
 これらの重合性不飽和単量体は、単独で用いても良いし、2種以上を併用しても良い。 These polymerizable unsaturated monomers may be used alone or in combination of two or more.
 前記カルボキシル基を有する樹脂(A)は、公知慣用の方法を用いて重合(共重合)させれば得られ、その共重合形態は特に制限されない。触媒(重合開始剤)の存在下に、付加重合により製造することができ、ランダム共重合体、ブロック共重合体、グラフト共重合体等のいずれでもよい。また共重合方法も塊状重合法、溶液重合法、懸濁重合法、乳化重合法等の公知の重合方法が使用できる。 The resin (A) having a carboxyl group can be obtained by polymerizing (copolymerizing) using a known and commonly used method, and the copolymerization form thereof is not particularly limited. It can be produced by addition polymerization in the presence of a catalyst (polymerization initiator), and may be any of a random copolymer, a block copolymer, a graft copolymer and the like. Further, as the copolymerization method, known polymerization methods such as a massive polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method can be used.
<2価金属化合物(B)>
 本発明の金属化合物(B)は、2価金属化合物であることを特徴とする。
 2価金属化合物(B)とは、2価金属の化合物である。2価金属化合物(B)としては、亜鉛化合物、マグネシウム化合物、カルシウム化合物、マンガン化合物、鉄化合物、コバルト化合物、ニッケル化合物、銅化合物等が挙げられ、特に好ましくは亜鉛化合物、マグネシウム化合物、カルシウム化合物である。これらの金属化合物は、単独で用いても、2種以上を併用しても構わない。
<Divalent metal compound (B)>
The metal compound (B) of the present invention is characterized by being a divalent metal compound.
The divalent metal compound (B) is a compound of a divalent metal. Examples of the divalent metal compound (B) include zinc compounds, magnesium compounds, calcium compounds, manganese compounds, iron compounds, cobalt compounds, nickel compounds, copper compounds and the like, and zinc compounds, magnesium compounds and calcium compounds are particularly preferable. is there. These metal compounds may be used alone or in combination of two or more.
 2価金属化合物(B)としては、2価金属の酸化物、水酸化物、炭酸塩であることが好ましいく、これらの混合物であっても構わない。
 2価金属化合物(B)の具体的な化合物として、好ましくは酸化亜鉛、酸化マグネシウム、酸化カルシウムであり、特に好ましくは酸化亜鉛と酸化マグネシウムである。
The divalent metal compound (B) is preferably a divalent metal oxide, a hydroxide, or a carbonate, and may be a mixture thereof.
Specific compounds of the divalent metal compound (B) are preferably zinc oxide, magnesium oxide and calcium oxide, and particularly preferably zinc oxide and magnesium oxide.
 2価金属化合物(B)としては、粒子状であることが好ましい。さらに好ましくは、平均粒子径が500nm以下10nm以上の微粒子である。特に好ましくは20nm~300nmの微粒子である。
 ここでの平均粒子径は、動的光散乱式粒径分布測定装置、例えばLB-500(堀場製作所製)を用いて測定することができる。
The divalent metal compound (B) is preferably in the form of particles. More preferably, the fine particles have an average particle diameter of 500 nm or less and 10 nm or more. Particularly preferably, it is fine particles of 20 nm to 300 nm.
The average particle size here can be measured using a dynamic light scattering type particle size distribution measuring device, for example, LB-500 (manufactured by HORIBA, Ltd.).
<アルコール(C)>
 本発明のアルコール(C)としては、公知慣用のアルコールを使用することができる。具体的には、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、ペンタノール等が挙げられる。好ましくは、メタノール、エタノール、プロパノール、ブタノールであり、特に好ましくはプロパノールである。
<Alcohol (C)>
As the alcohol (C) of the present invention, a known and commonly used alcohol can be used. Specific examples thereof include methanol, ethanol, propanol, butanol, hexanol, pentanol and the like. Methanol, ethanol, propanol and butanol are preferable, and propanol is particularly preferable.
<ガスバリア性コーティング剤>
 本発明のガスバリア性コーティング剤は、前述したカルボキシル基を有する樹脂(A)と、2価金属化合物(B)と、アルコール(C)とを含有することを特徴とする。そのうち、アルコール(C)の含有量が85~98wt%であって、組成物中における水分量が1%以下であることを特徴とする。アルコール(C)と水がこの範囲にあるとき、2価金属化合物(B)が組成物中で安定して存在し、塗工乾燥時に初めてカルボキシル基を有する樹脂(A)とイオン結合を形成してガスバリア性を発揮する。組成物の常態で安定に保存できることから、ガスバリア用コーティング剤として非常に好適に使用可能であり、1液型でガスバリア性のコート層を形成することができる。
<Gas barrier coating agent>
The gas barrier coating agent of the present invention is characterized by containing the above-mentioned resin (A) having a carboxyl group, a divalent metal compound (B), and an alcohol (C). Among them, the content of alcohol (C) is 85 to 98 wt%, and the water content in the composition is 1% or less. When the alcohol (C) and water are in this range, the divalent metal compound (B) is stably present in the composition and forms an ionic bond with the resin (A) having a carboxyl group for the first time when the coating is dried. Demonstrates gas barrier properties. Since the composition can be stably stored in a normal state, it can be very suitably used as a coating agent for a gas barrier, and a one-component coat layer having a gas barrier property can be formed.
 本発明のガスバリア性コーティング剤において、不揮発分は組成物中の1wt%~15wt%である。不揮発分全量中、カルボキシル基を有する樹脂(A)と、2価金属化合物(B)との合計量は、90~100wt%であることが好ましい。この範囲であると、ガスバリア性を十分に発揮することができる。特に好ましくは95~100wt%である。 また、カルボキシル基を有する樹脂(A)と、2価金属化合物(B)の比率としては、カルボキシル基を有する樹脂(A)と2価金属化合物(B)の合計量に対し、2価金属化合物(B)が15~60wt%であることが好ましい。この範囲であると、ガスバリア性と塗工性が良好に両立できる。特に好ましくは20~50wt%である。 In the gas barrier coating agent of the present invention, the non-volatile content is 1 wt% to 15 wt% in the composition. The total amount of the resin (A) having a carboxyl group and the divalent metal compound (B) in the total amount of the non-volatile content is preferably 90 to 100 wt%. Within this range, the gas barrier property can be sufficiently exhibited. Particularly preferably, it is 95 to 100 wt%. The ratio of the resin (A) having a carboxyl group and the divalent metal compound (B) is the divalent metal compound with respect to the total amount of the resin (A) having a carboxyl group and the divalent metal compound (B). (B) is preferably 15 to 60 wt%. Within this range, gas barrier properties and coatability can be well compatible. Particularly preferably, it is 20 to 50 wt%.
 本発明のガスバリア性コーティング剤は、前述したカルボキシル基を有する樹脂(A)と、2価金属化合物(B)と、アルコール(C)以外の材料を含有していても構わない。 The gas barrier coating agent of the present invention may contain a material other than the resin (A) having a carboxyl group, the divalent metal compound (B), and the alcohol (C) described above.
(溶剤)
 本発明のガスバリア性コーティング剤は、アルコール(C)以外の溶剤を含有してもよく、好ましくはアルコール(C)と相溶する溶剤であり、例えばエチレングリコール、プロピレングリコール、グリセリン等が挙げられる。
(solvent)
The gas barrier coating agent of the present invention may contain a solvent other than alcohol (C), and is preferably a solvent compatible with alcohol (C), and examples thereof include ethylene glycol, propylene glycol, and glycerin.
(添加剤)
 本発明の組成物は、本発明の効果を損なわない範囲で、各種の添加剤を含有してもよい。添加剤としては、例えば、カップリング剤、シラン化合物、リン酸化合物、有機フィラー、無機フィラー、安定剤(酸化防止剤、熱安定剤、紫外線吸収剤等)、可塑剤、帯電防止剤、滑剤、ブロッキング防止剤、着色剤、結晶核剤、酸素捕捉剤(酸素捕捉機能を有する化合物)、粘着付与剤等が例示できる。これらの各種添加剤は、単独で又は二種以上組み合わせて使用される。
(Additive)
The composition of the present invention may contain various additives as long as the effects of the present invention are not impaired. Additives include, for example, coupling agents, silane compounds, phosphoric acid compounds, organic fillers, inorganic fillers, stabilizers (antioxidants, heat stabilizers, UV absorbers, etc.), plasticizers, antistatic agents, lubricants, etc. Examples thereof include antiblocking agents, colorants, crystal nucleating agents, oxygen trapping agents (compounds having an oxygen trapping function), tackifiers and the like. These various additives are used alone or in combination of two or more.
 カップリング剤としては公知慣用のものが挙げられ、例えばシランカップリング剤、チタンカップリング剤、ジルコニウムカップリング剤、アルミカップリング剤等が挙げられる。 Examples of the coupling agent include known and commonly used ones, and examples thereof include a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, and an aluminum coupling agent.
 シランカップリング剤としては公知慣用のものを用いればよく、例えば3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有シランカップリング剤;3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン、N-フェニル-γ-アミノプロピルトリメトキシシラン等のアミノ基含有シランカップリング剤;3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等の(メタ)アクリロイル基含有シランカップリング剤;3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基含有シランカップリング剤などが挙げられる。 As the silane coupling agent, known and commonly used agents may be used, for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2-( 3,4 Epoxycyclohexyl) Epyl group-containing silane coupling agent such as ethyltrimethoxysilane; 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-triethoxysilyl Amino group-containing silane coupling agent such as -N- (1,3-dimethylbutylidene) propylamine, N-phenyl-γ-aminopropyltrimethoxysilane; 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyl Examples thereof include (meth) acryloyl group-containing silane coupling agents such as triethoxysilane; isocyanate group-containing silane coupling agents such as 3-isocyanatepropyltriethoxysilane.
 チタンカップリング剤としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート等が挙げられる。 Examples of the titanium coupling agent include isopropyltriisostearoyl titanate, isopropyltrioctanoyl titanate, isopropyldimethacrylisostearoyl titanate, isopropylisostearoyl diacrylic titanate, isopropyltris (dioctylpyrophosphate) titanate, and tetraoctylbis (ditridecyl). Examples thereof include phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, and bis (dioctylpyrophosphate) ethylene titanate.
 ジルコニウムカップリング剤としては、例えば、酢酸ジルコニウム、炭酸ジルコニウムアンモニウム、フッ化ジルコニウム等が挙げられる。 Examples of the zirconium coupling agent include zirconium acetate, ammonium zirconium carbonate, zirconium fluoride and the like.
 アルミカップリグ剤としては、アセトアルコキシアルミニウムジイソプロピレート、アルミニウムジイソプロポキシモノエチルアセトアセテート、アルミニウムトリスエチルアセトアセテート、アルミニウムトリスアセチルアセトネート等が挙げられる。 Examples of the aluminum cup rig include acetalkoxyaluminum diisopropyrate, aluminum diisopropoxymonoethylacetate, aluminumtrisethylacetate, and aluminumtrisacetylacetonate.
 シラン化合物としては、アルコキシシラン、シラザン、シロキサン等が挙げられる。アルコキシシランとしては、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン、トリフルオロプロピルトリメトキシシラン等が挙げられる。シラザンとしてはヘキサメチルジシラザン等が挙げられる。シロキサンとしては加水分解性基含有シロキサン等が挙げられる。  Examples of the silane compound include alkoxysilane, silazane, and siloxane. Examples of alkoxysilanes include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, and hexyltri. Examples thereof include methoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, 1,6-bis (trimethoxysilyl) hexane, trifluoropropyltrimethoxysilane and the like. Examples of the silazane include hexamethyldisilazane and the like. Examples of the siloxane include hydrolyzable group-containing siloxane.
 添加剤のうち、無機フィラーとしては、金属、金属酸化物、樹脂、鉱物等の無機物及びこれらの複合物が挙げられる。無機フィラーの具体例としては、シリカ、アルミナ、チタン、ジルコニア、銅、鉄、銀、マイカ、タルク、アルミニウムフレーク、ガラスフレーク、粘土鉱物等が挙げられる。 Among the additives, examples of the inorganic filler include inorganic substances such as metals, metal oxides, resins, and minerals, and composites thereof. Specific examples of the inorganic filler include silica, alumina, titanium, zirconia, copper, iron, silver, mica, talc, aluminum flakes, glass flakes, clay minerals and the like.
 酸素捕捉機能を有する化合物としては、例えば、ヒンダードフェノール系化合物、ビタミンC、ビタミンE、有機燐化合物、没食子酸、ピロガロール等の酸素と反応する低分子有機化合物や、コバルト、マンガン、ニッケル、鉄、銅等の遷移金属化合物等が挙げられる。 Examples of the compound having an oxygen trapping function include low molecular weight organic compounds that react with oxygen such as hindered phenol compounds, vitamin C, vitamin E, organic phosphorus compounds, gallic acid, and pyrogallol, and cobalt, manganese, nickel, and iron. , Transition metal compounds such as copper and the like.
 粘着付与剤としては、キシレン樹脂、テルペン樹脂、フェノール樹脂、ロジン樹脂等が挙げられる。粘着付与剤を添加することで塗布直後の各種基材に対する粘着性を向上させることができる。粘着性付与剤の添加量は樹脂組成物全量100質量部に対して0.01~5質量部であることが好ましい。 Examples of the tackifier include xylene resin, terpene resin, phenol resin, rosin resin and the like. By adding a tackifier, the adhesiveness to various substrates immediately after application can be improved. The amount of the tackifier added is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the total amount of the resin composition.
(ガスバリア性接着剤層)
 ガスバリア性接着剤層は、ガスバリア性接着剤の硬化塗膜であり、ガスアリア性コーティング層上に配置される。使用できるガスバリア性接着剤は、ガスバリア性を有するものであれば特に限定されない。なお、本明細書においてガスバリア性接着剤とは、5g/m(固形分)で塗布した接着剤の硬化塗膜の酸素バリア性が300cc/m/day/atm以下、または水蒸気バリア性が120g/m/day以下の、少なくとも一方の条件を満足するものをいう。市販品としてはDIC株式会社製のPASLIM VM001やPASLIM J350X等の「PASLIM」シリーズや、三菱ガス化学社製の「マクシーブ」が挙げられる。
(Gas barrier adhesive layer)
The gas barrier adhesive layer is a cured coating film of the gas barrier adhesive and is arranged on the gas aria coating layer. The gas barrier adhesive that can be used is not particularly limited as long as it has gas barrier properties. In the present specification, the gas barrier adhesive means that the cured coating film of the adhesive applied at 5 g / m 2 (solid content) has an oxygen barrier property of 300 cc / m 2 / day / atm or less, or a steam barrier property. It means one that satisfies at least one of the conditions of 120 g / m 2 / day or less. Examples of commercially available products include the "PASLIM" series such as PASLIM VM001 and PASLIM J350X manufactured by DIC Corporation, and the "Maxive" manufactured by Mitsubishi Gas Chemical Company.
 本発明に用いられるガスバリア性を有する接着剤としては、下記(A1)~(A5)の少なくとも1種のポリエステルポリオールを含むポリオール組成物(A)と、1分子中に少なくとも2つのイソシアネート基を有する化合物(以下単にイソシアネート化合物ともいう)を含むポリイソシアネート組成物(B)とからなる2液型接着剤が好ましく挙げられる。 The adhesive having gas barrier properties used in the present invention includes a polyol composition (A) containing at least one of the following polyester polyols (A1) to (A5), and at least two isocyanate groups in one molecule. A two-component adhesive composed of a polyisocyanate composition (B) containing a compound (hereinafter, also simply referred to as an isocyanate compound) is preferably used.
(1)3個以上の水酸基を有するポリエステルポリオールにカルボン酸無水物又はポリカルボン酸を反応させることにより得られるポリエステルポリオール(A1)
(2)重合性炭素-炭素二重結合を有するポリエステルポリオール(A2)
(3)グリセロール骨格を有するポリエステルポリオール(A3)
(4)オルト配向性多価カルボン酸と、多価アルコールとを重縮合して得られるポリエステルポリオール(A4)
(5)イソシアヌル環を有するポリエステルポリオール(A5)
(1) A polyester polyol (A1) obtained by reacting a polyester polyol having three or more hydroxyl groups with a carboxylic acid anhydride or a polycarboxylic acid.
(2) Polyester polyol (A2) having a polymerizable carbon-carbon double bond
(3) Polyester polyol having a glycerol skeleton (A3)
(4) Polyester polyol (A4) obtained by polycondensing an ortho-oriented polyvalent carboxylic acid and a polyhydric alcohol.
(5) Polyester polyol having an isocyanul ring (A5)
 ポリエステルポリオール(A1)は、3個以上の水酸基を有するポリエステルポリオール(a1)にカルボン酸無水物又は多価カルボン酸を反応させることにより得られ、少なくとも1個のカルボキシル基と2個以上の水酸基を有する。ポリエステルポリオール(a1)は多価カルボン酸または多価アルコールの一部を三価以上とすることで得られる。 The polyester polyol (A1) is obtained by reacting a polyester polyol (a1) having three or more hydroxyl groups with a carboxylic acid anhydride or a polyvalent carboxylic acid, and has at least one carboxyl group and two or more hydroxyl groups. Have. The polyester polyol (a1) can be obtained by making a part of the polyvalent carboxylic acid or polyhydric alcohol trivalent or higher.
 ポリエステルポリオール(A1)の調整に用いられる多価カルボン酸は、オルトフタル酸、オルトフタル酸無水物の少なくとも1種を含むことが好ましい。多価カルボン酸としてこれらの化合物を用いて得られるポリエステルポリオールはガスバリア性と接着性とに優れる。オルトフタル酸、オルトフタル酸無水物を用いることにより接着剤のガスバリア性が優れる理由は、オルトフタル酸やその酸無水物を用いて得られるポリエステル鎖の回転が抑制されるためと推察される。接着性が優れる理由は、ポリエステル鎖が非対称であることに起因して非結晶性を示し、十分な基材密着性が付与されるためと推察される。 The polyvalent carboxylic acid used for preparing the polyester polyol (A1) preferably contains at least one of orthophthalic acid and orthophthalic anhydride. The polyester polyol obtained by using these compounds as a polyvalent carboxylic acid has excellent gas barrier properties and adhesiveness. It is presumed that the reason why the gas barrier property of the adhesive is excellent by using orthophthalic acid and orthophthalic anhydride is that the rotation of the polyester chain obtained by using orthophthalic acid and its acid anhydride is suppressed. It is presumed that the reason why the adhesiveness is excellent is that the polyester chain exhibits non-crystallinity due to the asymmetry, and sufficient substrate adhesion is imparted.
 三価以上の多価カルボン酸としては、トリメリット酸およびその酸無水物、ピロメリット酸及びその酸無水物等が挙げられる。合成時のゲル化を防ぐ為には三価以上の多価カルボン酸として三価のカルボン酸を用いることが好ましい。 Examples of the trivalent or higher polyvalent carboxylic acid include trimellitic acid and its acid anhydride, pyromellitic acid and its acid anhydride. In order to prevent gelation during synthesis, it is preferable to use a trivalent carboxylic acid as a trivalent or higher polyvalent carboxylic acid.
 本発明の効果を損なわない範囲において、他の多価カルボン酸を共重合させてもよい。具体的には、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等の脂肪族多価カルボン酸;無水マレイン酸、マレイン酸、フマル酸等の不飽和結合含有多価カルボン酸;1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環族多価カルボン酸;テレフタル酸、イソフタル酸、ピロメリット酸、トリメリット酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸及びこれらジカルボン酸の酸無水物或いはエステル形成性誘導体、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸及びこれらのジヒドロキシカルボン酸のエステル形成性誘導体等の芳香族多価カルボン酸等が挙げられ、1種または2種以上を併用することができる。中でも、コハク酸、1,3-シクロペンタンジカルボン酸、イソフタル酸及びその酸無水物が好ましい。 Other polyvalent carboxylic acids may be copolymerized as long as the effects of the present invention are not impaired. Specifically, aliphatic polyvalent carboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, and dodecanediocarboxylic acid; unsaturated bond-containing polyvalent carboxylic acids such as maleic anhydride, maleic acid, and fumaric acid; , 3-Cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and other alicyclic polyvalent carboxylic acids; terephthalic acid, isophthalic acid, pyromellitic acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5 -Naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p'-dicarboxylic acid and acid anhydrides or ester-forming derivatives of these dicarboxylic acids , P-Hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid and aromatic polyvalent carboxylic acids such as ester-forming derivatives of these dihydroxycarboxylic acids, and one or more are used in combination. be able to. Of these, succinic acid, 1,3-cyclopentanedicarboxylic acid, isophthalic acid and acid anhydrides thereof are preferable.
 ポリエステルポリオール(A1)の調整に用いられる多価アルコールは、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、及びシクロヘキサンジメタノールからなる群から選ばれる少なくとも1種を含むことが好ましい。酸素原子間の炭素原子数が少ないほど、分子鎖が過剰に柔軟にならずに、酸素透過しにくいと推定されることから、エチレングリコールを使用することが特に好ましい。 The polyhydric alcohol used for preparing the polyester polyol (A1) preferably contains at least one selected from the group consisting of ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexanedimethanol. It is presumed that the smaller the number of carbon atoms between oxygen atoms, the less flexible the molecular chain is and the more difficult it is for oxygen to permeate. Therefore, it is particularly preferable to use ethylene glycol.
 三価以上の多価アルコールとしては、グリセリン、トリメチロールプロパン、トリメチロールエタン、トリス(2-ヒドロキシエチル)イソシアヌレート、1,2,4-ブタントリオール、ペンタエリスリトール、ジペンタエリスルトール等が挙げられる。合成時のゲル化を防ぐ為には三価以上の多価アルコールとしては三価アルコールを用いることが好ましい。 Examples of the trihydric or higher polyhydric alcohol include glycerin, trimethylolpropane, trimethylolethane, tris (2-hydroxyethyl) isocyanurate, 1,2,4-butanetriol, pentaerythritol, dipentaerythritol and the like. Be done. In order to prevent gelation during synthesis, it is preferable to use a trihydric alcohol as a trihydric or higher polyhydric alcohol.
 本発明の効果を損なわない範囲において、他の多価カルボン酸を共重合させてもよい。具体的には、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオール、ジメチルブタンジオール、ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等の脂肪族ジオール;ヒドロキノン、レゾルシノール、カテコール、ナフタレンジオール、ビフェノール、ビスフェノールA、ヒスフェノールF、テトラメチルビフェノールや、これらのエチレンオキサイド伸長物、水添化脂環族等の芳香族多価フェノール等を例示することができる。 Other polyvalent carboxylic acids may be copolymerized as long as the effects of the present invention are not impaired. Specifically, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, triethylene glycol, tetra. Aliphatic diols such as ethylene glycol, dipropylene glycol and tripropylene glycol; hydroquinone, resorcinol, catechol, naphthalenediol, biphenol, bisphenol A, hisphenol F, tetramethylbiphenol, these ethylene oxide extensions, hydrogenated fats Aromatic polyvalent phenols such as ring family can be exemplified.
 ポリエステルポリオール(A1)は、上述の多価カルボン酸と多価アルコールとの反応生成物である3個以上の水酸基を有するポリエステルポリオール(a1)に、多価カルボン酸またはその酸無水物を反応させることで得られる。多価カルボン酸と反応させる水酸基の割合は、ポリエステルポリオール(a1)が備える水酸基の1/3以下とすることが好ましい。ポリエステルポリオール(a1)と反応させる多価カルボン酸またはその酸無水物は、二価または三価であることが好ましい。無水コハク酸、無水マレイン酸、1,2-シクロヘキサンジカルボン酸無水物、4-シクロヘキセン-1,2-ジカルボン酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、無水フタル酸、2,3-ナフタレンジカルボン酸無水物、トリメリット酸無水物等が挙げられるがこれに限定されない。 The polyester polyol (A1) reacts the polyvalent carboxylic acid or its acid anhydride with the polyester polyol (a1) having three or more hydroxyl groups, which is a reaction product of the above-mentioned polyvalent carboxylic acid and polyhydric alcohol. You can get it. The ratio of the hydroxyl group to be reacted with the polyvalent carboxylic acid is preferably 1/3 or less of the hydroxyl group contained in the polyester polyol (a1). The polyvalent carboxylic acid or its acid anhydride to be reacted with the polyester polyol (a1) is preferably divalent or trivalent. Succinic anhydride, maleic anhydride, 1,2-cyclohexanedicarboxylic acid anhydride, 4-cyclohexene-1,2-dicarboxylic acid anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride, phthalic anhydride, 2, Examples thereof include, but are not limited to, 3-naphthalenedicarboxylic acid anhydride and trimellitic acid anhydride.
 重合性炭素-炭素二重結合を有するポリエステルポリオール(A2)は、多価カルボン酸、多価アルコールとして重合性炭素-炭素二重結合をもつ成分を使用することにより得られる。 The polyester polyol (A2) having a polymerizable carbon-carbon double bond can be obtained by using a component having a polymerizable carbon-carbon double bond as a polyvalent carboxylic acid and a polyhydric alcohol.
 重合性炭素-炭素二重結合をもつ多価カルボン酸として無水マレイン酸、マレイン酸、フマル酸、4-シクロヘキセン-1,2-ジカルボン酸及びその酸無水物、3-メチル-4-シクロヘキセン-1,2-ジカルボン酸及びその酸無水物等が挙げられる。中でも、炭素原子数が少ないほど、分子鎖が過剰に柔軟にならずに、酸素透過しにくいと推定されることから、無水マレイン酸、マレイン酸、フマル酸が好ましい。 Maleic anhydride, maleic acid, fumaric acid, 4-cyclohexene-1,2-dicarboxylic acid and its acid anhydride, 3-methyl-4-cyclohexene-1, as polyvalent carboxylic acids having a polymerizable carbon-carbon double bond. , 2-Dicarboxylic acid and its acid anhydride and the like. Among them, maleic anhydride, maleic acid, and fumaric acid are preferable because it is presumed that the smaller the number of carbon atoms is, the less flexible the molecular chain is and the less oxygen is permeated.
 本発明の効果を損なわない範囲において、他の多価カルボン酸を共重合させてもよい。具体的には、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等の脂肪族多価カルボン酸;1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環族多価カルボン酸;オルトフタル酸、テレフタル酸、イソフタル酸、ピロメリット酸、トリメリット酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸及びこれらジカルボン酸の酸無水物或いはエステル形成性誘導体、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸及びこれらのジヒドロキシカルボン酸のエステル形成性誘導体等の芳香族多価カルボン酸等が挙げられ、1種または2種以上を併用することができる。また、これらの酸無水物も使用することができる。中でも、ガスバリア性を得る為にはコハク酸、1,3-シクロペンタンジカルボン酸、オルトフタル酸、オルトフタル酸の酸無水物、イソフタル酸が好ましく、更にはオルトフタル酸及びその酸無水物がより好ましい。 Other polyvalent carboxylic acids may be copolymerized as long as the effects of the present invention are not impaired. Specifically, aliphatic polyvalent carboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, and dodecanedicarboxylic acid; alicyclic groups such as 1,3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid. Polyvalent carboxylic acid; orthophthalic acid, terephthalic acid, isophthalic acid, pyromellitic acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyl Dicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p'-dicarboxylic acid and acid anhydride or ester-forming derivative of these dicarboxylic acids, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid And aromatic polyvalent carboxylic acids such as ester-forming derivatives of these dihydroxycarboxylic acids can be mentioned, and one or more of them can be used in combination. Moreover, these acid anhydrides can also be used. Of these, succinic acid, 1,3-cyclopentanedicarboxylic acid, orthophthalic acid, acid anhydrides of orthophthalic acid, and isophthalic acid are preferable, and orthophthalic acid and its acid anhydride are more preferable, in order to obtain gas barrier properties.
 重合性炭素-炭素二重結合をもつ多価アルコールとしては、2-ブテン-1,4-ジオール等があげられる。 Examples of the polyhydric alcohol having a polymerizable carbon-carbon double bond include 2-butene-1,4-diol and the like.
 本発明の効果を損なわない範囲において、他の多価アルコールを共重合させてもよい。具体的には、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオール、ジメチルブタンジオール、ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等の脂肪族ジオール;ヒドロキノン、レゾルシノール、カテコール、ナフタレンジオール、ビフェノール、ビスフェノールA、ヒスフェノールF、テトラメチルビフェノールや、これらの、エチレンオキサイド伸長物、水添化脂環族等の芳香族多価フェノール等を例示することができる。中でも酸素原子間の炭素原子数が少ないほど、分子鎖が過剰に柔軟にならずに、酸素透過しにくいと推定されることから、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、及びシクロヘキサンジメタノールが好ましく、更にはエチレングクリコールがより好ましい。 Other polyhydric alcohols may be copolymerized as long as the effects of the present invention are not impaired. Specifically, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, cyclohexanedimethanol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol. , Dimethylbutanediol, Butylethylpropanediol, Diethylene glycol, Triethylene glycol, Tetraethylene glycol, Dipropylene glycol, Tripropylene glycol and other aliphatic diols; Hydroquinone, resorcinol, catechol, naphthalenediol, biphenol, bisphenol A, hisphenol F , Tetramethylbiphenol, these ethylene oxide extenders, aromatic polyvalent phenols such as hydrogenated alicyclic group, and the like can be exemplified. Among them, it is presumed that the smaller the number of carbon atoms between oxygen atoms, the less flexible the molecular chain is and the more difficult it is for oxygen to permeate. Therefore, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexanedim Methanol is preferred, and ethylene glycol is more preferred.
 また、重合性炭素-炭素二重結合を有するポリエステルポリオール(A2)は、水酸基を有するポリエステルポリオール(a2)と重合性二重結合を有するカルボン酸、またはカルボン酸無水物との反応生成物であってもよい。重合性二重結合を有するカルボン酸またはその酸無水物としては、マレイン酸、無水マレイン酸、又はフマル酸等の重合性二重結合を有するカルボン酸、オレイン酸、ソルビン酸等の不飽和脂肪酸等が挙げられる。ポリエステルポリオール(a2)は、3個以上の水酸基を有することが好ましい。ポリエステルポリオール(a2)が備える水酸基が2個以下の場合、ポリエステルポリオール(A2)が備える水酸基の数が0~1個となり、後述するポリイソシアネート組成物(B)との反応時に分子伸張が起こり難くなり、接着強度等が低下する恐れがある。 The polyester polyol (A2) having a polymerizable carbon-carbon double bond is a reaction product of a polyester polyol (a2) having a hydroxyl group and a carboxylic acid having a polymerizable double bond or a carboxylic acid anhydride. You may. Examples of the carboxylic acid having a polymerizable double bond or an acid anhydride thereof include a carboxylic acid having a polymerizable double bond such as maleic acid, maleic anhydride, or fumaric acid, and unsaturated fatty acids such as oleic acid and sorbic acid. Can be mentioned. The polyester polyol (a2) preferably has three or more hydroxyl groups. When the polyester polyol (a2) has two or less hydroxyl groups, the number of hydroxyl groups contained in the polyester polyol (A2) is 0 to 1, and molecular elongation is unlikely to occur during the reaction with the polyisocyanate composition (B) described later. As a result, the adhesive strength and the like may decrease.
 ポリエステルポリオール(A2)は二重結合成分比率が5~60質量%であることが好ましい。5質量%を下回ると重合性二重結合間の架橋点が少なくなり、ガスバリア性が得難くなる。60質量%を超えると架橋点が多くなり、硬化塗膜の柔軟性が低下して接着強度が得難くなるおそれがある。なお本明細書においてポリエステルポリオール(A2)における二重結合成分比率は下記式(a)を用いて計算する。下記式においてモノマーとはポリエステルポリオール(A2)の合成に用いる多価カルボン酸、多価アルコールを指す。 The polyester polyol (A2) preferably has a double bond component ratio of 5 to 60% by mass. If it is less than 5% by mass, the number of cross-linking points between the polymerizable double bonds is reduced, and it becomes difficult to obtain gas barrier properties. If it exceeds 60% by mass, the number of cross-linking points increases, and the flexibility of the cured coating film may decrease, making it difficult to obtain adhesive strength. In the present specification, the double bond component ratio in the polyester polyol (A2) is calculated using the following formula (a). In the following formula, the monomer refers to a polyvalent carboxylic acid and a polyhydric alcohol used in the synthesis of polyester polyol (A2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 さらにポリエステルポリオール(A2)として、乾性油、又は半乾性油を挙げることができる。乾性油、又は半乾性油としては、炭素-炭素二重結合を有する公知慣用の乾性油、半乾性油等を挙げることができる。 Further, as the polyester polyol (A2), a drying oil or a semi-drying oil can be mentioned. Examples of the drying oil or the semi-drying oil include known and commonly used drying oils and semi-drying oils having a carbon-carbon double bond.
 グリセロール骨格を有するポリエステルポリオール(A3)は、下記一般式(1)で表されるグリセロール骨格を有するものである。 The polyester polyol (A3) having a glycerol skeleton has a glycerol skeleton represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
(一般式(1)中、R~Rは各々独立に、水素原子、または下記一般式(2)である。但し、R~Rのうち少なくとも一つは、下記一般式(2)で表される基を表す。)
Figure JPOXMLDOC01-appb-C000002
(In the general formula (1), R 1 to R 3 are independently hydrogen atoms or the following general formula (2). However, at least one of R 1 to R 3 is the following general formula (2). ) Represents a group represented by.)
Figure JPOXMLDOC01-appb-C000003
(一般式(2)中、nは1~5の整数を表し、Xは、置換基を有してもよい1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基、及び2,3-アントラセンジイル基から成る群から選ばれるアリーレン基を表し、Yは炭素原子数2~6のアルキレン基を表す。)
Figure JPOXMLDOC01-appb-C000003
(In the general formula (2), n represents an integer of 1 to 5, and X is a 1,2-phenylene group, a 1,2-naphthylene group, a 2,3-naphthylene group which may have a substituent. It represents an arylene group selected from the group consisting of a 2,3-anthraquinonediyl group and a 2,3-anthracendyl group, and Y represents an alkylene group having 2 to 6 carbon atoms.)
 ポリエステルポリオール(A3)は、R、R及びRのいずれか1つが一般式(2)で表される基である化合物と、R、R及びRのいずれか2つが一般式(2)で表される基である化合物と、R、R及びRの全てが一般式(2)で表される基である化合物の、いずれか2つ以上の化合物が混合物となっていてもよい。R~Rの全てが一般式(2)で表される基であることがより好ましい。 Polyester polyol (A3) is a compound any one of R 1, R 2 and R 3 is a group represented by the general formula (2), R 1, R 2 and one of R 3 2 two generally formula A mixture of two or more compounds of the compound which is the group represented by (2) and the compound which is the group in which all of R 1 , R 2 and R 3 are represented by the general formula (2). May be. It is more preferable that all of R 1 to R 3 are groups represented by the general formula (2).
 一般式(2)において、Xが置換基によって置換されている場合、1又は複数の置換基で置換されていてもよく、該置換基は、X上の、遊離基とは異なる任意の炭素原子に結合している。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基又はナフチル基等が挙げられる。 In the general formula (2), when X is substituted with a substituent, it may be substituted with one or more substituents, and the substituent is any carbon atom on X different from the free radical. Is bound to. Examples of the substituent include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group and an amino group. Examples thereof include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group or a naphthyl group.
 一般式(2)におけるYの具体例としては、エチレン基、プロピレン基、ブチレン基、ネオペンチレン基、1,5-ペンチレン基、3-メチル-1,5-ペンチレン基、1,6-ヘキシレン基、メチルペンチレン基、ジメチルブチレン基等の、炭素原子数2~6のアルキレン基である。プロピレン基、エチレン基が好ましく、エチレン基がより好ましい。 Specific examples of Y in the general formula (2) include an ethylene group, a propylene group, a butylene group, a neopentylene group, a 1,5-pentylene group, a 3-methyl-1,5-pentylene group, and a 1,6-hexylene group. It is an alkylene group having 2 to 6 carbon atoms, such as a methylpentylene group and a dimethylbutylene group. A propylene group and an ethylene group are preferable, and an ethylene group is more preferable.
 ポリエステルポリオール(A3)は、グリセロールと、カルボン酸がオルト位に置換された芳香族多価カルボン酸又はその酸無水物と、多価アルコールとを必須成分として反応させて得られる。 The polyester polyol (A3) is obtained by reacting glycerol, an aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted at the ortho position or an acid anhydride thereof, and a polyhydric alcohol as essential components.
 カルボン酸がオルト位に置換された芳香族多価カルボン酸又はその酸無水物としては、オルトフタル酸又はその酸無水物、ナフタレン2,3-ジカルボン酸又はその酸無水物、ナフタレン1,2-ジカルボン酸又はその酸無水物、アントラキノン2,3-ジカルボン酸又はその酸無水物、及び2,3-アントラセンカルボン酸又はその酸無水物等が挙げられる。これらの化合物は、芳香環の任意の炭素原子に置換基を有していても良い。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基又はナフチル基等が挙げられる。 Examples of the aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted at the ortho position or an acid anhydride thereof include orthophthalic acid or an acid anhydride thereof, naphthalene 2,3-dicarboxylic acid or an acid anhydride thereof, naphthalene 1,2-dicarboxylic acid. Examples thereof include an acid or an acid anhydride thereof, anthraquinone 2,3-dicarboxylic acid or an acid anhydride thereof, and 2,3-anthracenecarboxylic acid or an acid anhydride thereof. These compounds may have a substituent on any carbon atom of the aromatic ring. Examples of the substituent include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group and an amino group. Examples thereof include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group or a naphthyl group.
 多価カルボンとして、本発明の効果を損なわない範囲において、他の多価カルボン酸を共重合させてもよい。具体的には、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等の脂肪族多価カルボン酸;無水マレイン酸、マレイン酸、フマル酸等の不飽和結合含有多価カルボン酸;1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環族多価カルボン酸;テレフタル酸、イソフタル酸、ピロメリット酸、トリメリット酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、ジフェン酸及びその酸無水物、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸及びこれらジカルボン酸の酸無水物或いはエステル形成性誘導体、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸及びこれらのジヒドロキシカルボン酸のエステル形成性誘導体等の芳香族多価カルボン酸等が挙げられ、1種または2種以上を併用することができる。中でも、コハク酸、1,3-シクロペンタンジカルボン酸、イソフタル酸、2,6-ナフタレンジカルボン酸、1,8-ナフタル酸、ジフェン酸が好ましい。 As the polyvalent carboxylic acid, another polyvalent carboxylic acid may be copolymerized as long as the effect of the present invention is not impaired. Specifically, aliphatic polyvalent carboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, and dodecanediocarboxylic acid; unsaturated bond-containing polyvalent carboxylic acids such as maleic anhydride, maleic acid, and fumaric acid; , 3-Cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and other alicyclic polyvalent carboxylic acids; terephthalic acid, isophthalic acid, pyromellitic acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5 -Naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, diphenic acid and its acid anhydride, 1,2-bis (phenoxy) ethane-p, p'-dicarboxylic acid and these dicarboxylic acids Examples thereof include aromatic polyvalent carboxylic acids such as acid anhydrides or ester-forming derivatives, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid and ester-forming derivatives of these dihydroxycarboxylic acids. Species or two or more species can be used together. Of these, succinic acid, 1,3-cyclopentanedicarboxylic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalic acid, and diphenic acid are preferable.
 多価アルコールとしては炭素原子数2~6のアルキレンジオールが挙げられる。例えば、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオール、ジメチルブタンジオール等のジオールを例示することができる。 Examples of the polyhydric alcohol include an alkylene diol having 2 to 6 carbon atoms. For example, diols such as ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, and dimethylbutanediol. Can be exemplified.
 また、グリセロール、炭素原子数が2~6のアルキレンジオール以外の多価アルコールを、本発明の効果を損なわない範囲において共重合させてもよい。具体的には、エリスリトール、ペンタエリトール、ジペンタエリスリトール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラエチレングリコール、トリプロピレングリコール等の脂肪族多価アルコール、シクロヘキサンジメタノール、トリシクロデカンジメタノール等の脂環族多価アルコール、ヒドロキノン、レゾルシノール、カテコール、ナフタレンジオール、ビフェノール、ビスフェノールA、ヒスフェノールF、テトラメチルビフェノール等の芳香族多価フェノール、或いはこれらのエチレンオキサイド伸長物、水添化脂環族を例示することができる。 Further, a polyhydric alcohol other than glycerol and an alkylene diol having 2 to 6 carbon atoms may be copolymerized as long as the effect of the present invention is not impaired. Specifically, aliphatic polyhydric alcohols such as erythritol, pentaerythol, dipentaerythritol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, tetraethylene glycol and tripropylene glycol, cyclohexanedi. Aliphatic polyhydric alcohols such as methanol and tricyclodecanedimethanol, aromatic polyhydric phenols such as hydroquinone, resorcinol, catechol, naphthalenediol, biphenol, bisphenol A, hisphenol F, tetramethylbiphenol, or ethylene oxide thereof. Elongates and hydrolyzed aliphatic ring groups can be exemplified.
 ポリオール組成物(A)がポリエステルポリオール(A3)を主成分とする場合、ガスバリア性接着剤の固形分に占めるポリエステルポリオール(A3)が有するグリセロール残基の含有量が5質量%以上であることが好ましい。グリセロール残基とは一般式(1)におけるR~Rを除いた残基(C=89.07)をいい、下記式(b)を用いて計算する。 When the polyol composition (A) contains the polyester polyol (A3) as a main component, the content of the glycerol residue contained in the polyester polyol (A3) in the solid content of the gas barrier adhesive is 5% by mass or more. preferable. The glycerol residue refers to a residue (C 3 H 5 O 3 = 89.07) excluding R 1 to R 3 in the general formula (1), and is calculated using the following formula (b).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 なお上記式(b)においてPはポリエステルポリオール(A3)を指す。ガスバリア性接着剤の樹脂固形分質量は、用いるポリオール組成物(A)とポリイソシアネート組成物(B)の合計質量から、希釈溶剤(ドライラミネーション用接着剤の場合)、ポリイソシアネート組成物(B)に含まれる揮発成分、無機成分の質量を除いた質量とする。 In the above formula (b), P refers to the polyester polyol (A3). The resin solid content mass of the gas barrier adhesive is determined from the total mass of the polyol composition (A) and the polyisocyanate composition (B) to be used, the diluting solvent (in the case of the dry lamination adhesive), and the polyisocyanate composition (B). The mass shall be the mass excluding the mass of volatile components and inorganic components contained in.
 オルト配向性多価カルボン酸と、多価アルコールとを重縮合して得られるポリエステルポリオール(A4)は、オルトフタル酸及びその酸無水物を少なくとも1種以上含む多価カルボン酸と、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、及びシクロヘキサンジメタノールからなる群から選ばれる少なくとも1種を含む多価アルコールからなる。特に、前記オルトフタル酸及びその酸無水物の、多価カルボン酸全量に対する使用率が70~100質量%であるポリエステルポリオールが好ましい。 The polyester polyol (A4) obtained by polycondensing an ortho-oriented polyvalent carboxylic acid and a polyhydric alcohol is a polyvalent carboxylic acid containing at least one orthophthalic acid and its acid anhydride, ethylene glycol, and propylene. It consists of a polyhydric alcohol containing at least one selected from the group consisting of glycols, butylene glycols, neopentyl glycols, and cyclohexanedimethanol. In particular, a polyester polyol in which the usage rate of the orthophthalic acid and its acid anhydride with respect to the total amount of the polyvalent carboxylic acid is 70 to 100% by mass is preferable.
 多価カルボン酸はオルトフタル酸及びその酸無水物のいずれかを必須とするが、本発明の効果を損なわない範囲において、他の多価カルボン酸を共重合させてもよい。具体的には、脂肪族多価カルボン酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等を、不飽和結合含有多価カルボン酸としては、無水マレイン酸、マレイン酸、フマル酸等を、脂環族多価カルボン酸としては1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等を、芳香族多価カルボン酸としては、テレフタル酸、イソフタル酸、フランジカルボン酸、ピロメリット酸、トリメリット酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸及びこれらジカルボン酸の酸無水物或いはエステル形成性誘導体;p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸及びこれらのジヒドロキシカルボン酸のエステル形成性誘導体等の多塩基酸を単独で或いは二種以上の混合物で使用することができる。中でも、コハク酸、1,3-シクロペンタンジカルボン酸、イソフタル酸が好ましい。 The polyvalent carboxylic acid requires either orthophthalic acid or an acid anhydride thereof, but other polyvalent carboxylic acids may be copolymerized as long as the effects of the present invention are not impaired. Specifically, the aliphatic polyvalent carboxylic acid includes succinic acid, adipic acid, azelaic acid, sebacic acid, dodecandicarboxylic acid and the like, and the unsaturated bond-containing polyvalent carboxylic acid includes maleic anhydride and maleic acid. Fumaric acid and the like, 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and the like as the alicyclic polyvalent carboxylic acid, and terephthalic acid, isophthalic acid and frangicarboxylic acid as the aromatic polyvalent carboxylic acid. Acid, pyromellitic acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane -P, p'-dicarboxylic acids and acid anhydrides or ester-forming derivatives of these dicarboxylic acids; p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid and ester-forming derivatives of these dihydroxycarboxylic acids, etc. The polybasic acids of can be used alone or in admixture of two or more. Of these, succinic acid, 1,3-cyclopentanedicarboxylic acid, and isophthalic acid are preferable.
 多価アルコールはエチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、及びシクロヘキサンジメタノールからなる群から選ばれる少なくとも1種を含むが、本発明の効果を損なわない範囲において、他の多価アルコールを共重合させてもよい。具体的には、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオール、ジメチルブタンジオール、ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等の脂肪族ジオール;ヒドロキノン、レゾルシノール、カテコール、ナフタレンジオール、ビフェノール、ビスフェノールA、ヒスフェノールF、テトラメチルビフェノールや、これらの、エチレンオキサイド伸長物、水添化脂環族等の芳香族多価フェノール等を例示することができる。 The polyhydric alcohol includes at least one selected from the group consisting of ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexanedimethanol, but other polyhydric alcohols can be used as long as the effects of the present invention are not impaired. It may be copolymerized. Specifically, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, triethylene glycol, tetra. Aliphatic diols such as ethylene glycol, dipropylene glycol and tripropylene glycol; hydroquinone, resorcinol, catechol, naphthalenediol, biphenol, bisphenol A, hisphenol F, tetramethylbiphenol and their ethylene oxide extensions, hydrogenated Aromatic polyhydric phenols such as alicyclics can be exemplified.
 イソシアヌル環を有するポリエステルポリオール(A5)は、下記一般式(3)で表されるものである。 The polyester polyol (A5) having an isocyanul ring is represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000005
(一般式(3)中、R~Rは各々独立して、-(CHn1-OH(但しn1は2~4の整数を表す)、又は下記一般式(4)で表される基を表す。但しR、R及びRの少なくとも1つは一般式(4)で表される基である。)
Figure JPOXMLDOC01-appb-C000005
(In the general formula (3), R 1 to R 3 are independently represented by-(CH 2 ) n1 -OH (where n1 represents an integer of 2 to 4) or the following general formula (4). However , at least one of R 1 , R 2 and R 3 is a group represented by the general formula (4).)
Figure JPOXMLDOC01-appb-C000006
(一般式(4)中、n2は2~4の整数を表し、n3は1~5の整数を表し、Xは1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基、及び2,3-アントラセンジイル基から成る群から選ばれ、置換基を有していてもよいアリーレン基を表し、Yは炭素原子数2~6のアルキレン基を表す。)
Figure JPOXMLDOC01-appb-C000006
(In the general formula (4), n2 represents an integer of 2 to 4, n3 represents an integer of 1 to 5, and X is a 1,2-phenylene group, a 1,2-naphthylene group, and a 2,3-naphthylene group. , 2,3-Anthraquinonediyl group, and 2,3-Anthracendyl group selected from the group and may have a substituent, Y represents an alkylene group having 2 to 6 carbon atoms. Represent.)
 ポリエステルポリオール(A5)は、R、R及びRのいずれか1つが一般式(4)で表される基である化合物と、R、R及びRのいずれか2つが一般式(4)で表される基である化合物と、R、R及びRの全てが一般式(4)で表される基である化合物の、いずれか2つ以上の化合物が混合物となっていてもよい。R~Rの全てが一般式(4)で表される基であることがより好ましい。 Polyester polyol (A5) includes a compound any one of R 1, R 2 and R 3 is a group represented by the general formula (4), R 1, R 2 and one of R 3 2 two generally formula A mixture of two or more compounds of the compound which is the group represented by (4) and the compound which is the group in which all of R 1 , R 2 and R 3 are represented by the general formula (4). May be. It is more preferable that all of R 1 to R 3 are groups represented by the general formula (4).
 一般式(3)において、-(CH2)n1-で表されるアルキレン基は、直鎖状であっても分岐状でもよい。n1は、中でも2又は3が好ましく、2が最も好ましい。 In the general formula (3), the alkylene group represented by − (CH2) n1 − may be linear or branched. Of these, n1 is preferably 2 or 3, and most preferably 2.
 一般式(4)において、Xが置換基によって置換されている場合、1又は複数の置換基で置換されていてもよく、該置換基は、X上の、遊離基とは異なる任意の炭素原子に結合している。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基又はナフチル基等が挙げられる。 In the general formula (4), when X is substituted with a substituent, it may be substituted with one or more substituents, and the substituent is any carbon atom on X different from the free radical. Is bound to. Examples of the substituent include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group and an amino group. Examples thereof include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group or a naphthyl group.
 Xの置換基は、ヒドロキシル基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルバモイル基、N-エチルカルバモイル基、フェニル基が好ましく、ヒドロキシル基、フェノキシ基、シアノ基、ニトロ基、フタルイミド基、フェニル基がより好ましい。 As the substituent of X, a hydroxyl group, a cyano group, a nitro group, an amino group, a phthalimide group, a carbamoyl group, an N-ethylcarbamoyl group and a phenyl group are preferable, and a hydroxyl group, a phenoxy group, a cyano group, a nitro group and a phthalimide group, A phenyl group is more preferred.
 一般式(4)におけるYの具体例としては、エチレン基、プロピレン基、ブチレン基、ネオペンチレン基、1,5-ペンチレン基、3-メチル-1,5-ペンチレン基、1,6-ヘキシレン基、メチルペンチレン基、ジメチルブチレン基等の、炭素原子数2~6のアルキレン基である。プロピレン基、エチレン基が好ましく、エチレン基がより好ましい。 Specific examples of Y in the general formula (4) include an ethylene group, a propylene group, a butylene group, a neopentylene group, a 1,5-pentylene group, a 3-methyl-1,5-pentylene group, and a 1,6-hexylene group. It is an alkylene group having 2 to 6 carbon atoms, such as a methylpentylene group and a dimethylbutylene group. A propylene group and an ethylene group are preferable, and an ethylene group is more preferable.
 ポリエステルポリオール(A5)は、イソシアヌル環を有するトリオールと、カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその酸無水物と、多価アルコールとを必須成分として反応させて得る。 The polyester polyol (A5) is obtained by reacting a triol having an isocyanul ring, an aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted at the ortho position or an acid anhydride thereof, and a polyhydric alcohol as essential components.
 イソシアヌル環を有するトリオールとしては、例えば、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌル酸、1,3,5-トリス(2-ヒドロキシプロピル)イソシアヌル酸等のイソシアヌル酸のアルキレンオキサイド付加物等が挙げられる。 Examples of triols having an isocyanuric ring include alkylene oxide adducts of isocyanuric acid such as 1,3,5-tris (2-hydroxyethyl) isocyanuric acid and 1,3,5-tris (2-hydroxypropyl) isocyanuric acid. And so on.
 カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその酸無水物としては、オルトフタル酸またはその酸無水物、ナフタレン2,3-ジカルボン酸またはその酸無水物、ナフタレン1,2-ジカルボン酸またはその酸無水物、アントラキノン2,3-ジカルボン酸またはその酸無水物、及び2,3-アントラセンカルボン酸またはその酸無水物等が挙げられる。これらの化合物は、芳香環の任意の炭素原子に置換基を有していても良い。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基またはナフチル基等が挙げられる。 Examples of the aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted at the ortho position or its acid anhydride include orthophthalic acid or its acid anhydride, naphthalene 2,3-dicarboxylic acid or its acid anhydride, and naphthalene 1,2-dicarboxylic acid. Examples thereof include an acid or an acid anhydride thereof, anthraquinone 2,3-dicarboxylic acid or an acid anhydride thereof, and 2,3-anthracenecarboxylic acid or an acid anhydride thereof. These compounds may have a substituent on any carbon atom of the aromatic ring. Examples of the substituent include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group and an amino group. Examples thereof include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group or a naphthyl group.
 多価アルコールとしては炭素原子数2~6のアルキレンジオール、具体的にはエチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオール、ジメチルブタンジオール等のジオールを例示することができる。 Polyhydric alcohols include alkylenediols having 2 to 6 carbon atoms, specifically ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, Diols such as 1,6-hexanediol, methylpentanediol, and dimethylbutanediol can be exemplified.
 中でも、イソシアヌル環を有するトリオール化合物として1,3,5-トリス(2-ヒドロキシエチル)イソシアヌル酸、または1,3,5-トリス(2-ヒドロキシプロピル)イソシアヌル酸を使用し、カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその酸無水物としてオルトフタル酸無水物を使用し、多価アルコールとしてエチレングリコールを使用したイソシアヌル環を有するポリエステルポリオール(A5)が、ガスバリア性や接着性に優れ好ましい。 Among them, 1,3,5-tris (2-hydroxyethyl) isocyanuric acid or 1,3,5-tris (2-hydroxypropyl) isocyanuric acid is used as the triol compound having an isocyanul ring, and the carboxylic acid is in the ortho position. A polyester polyol (A5) having an isocyanul ring using an aromatic polyvalent carboxylic acid substituted with or using orthophthalic anhydride as the acid anhydride and ethylene glycol as the polyhydric alcohol has improved gas barrier properties and adhesiveness. Excellent and preferable.
 イソシアヌル環は高極性であり、且つ水素結合を形成しない。一般に接着性を高める手法として、水酸基、ウレタン結合、ウレイド結合、アミド結合などの高極性の官能基を配合させる方法が知られているが、これらの結合を有する樹脂は分子間水素結合を形成しやすく、溶剤型接着剤に良く使用される酢酸エチル、2-ブタノン等の溶剤への溶解性を損ねてしまうことがあるが、イソシアヌル環を有するポリエステル樹脂は該溶解性を損なわないので、容易に希釈可能である。 The isocyanul ring is highly polar and does not form hydrogen bonds. Generally, as a method for improving adhesiveness, a method of blending highly polar functional groups such as a hydroxyl group, a urethane bond, a ureido bond, and an amide bond is known, and a resin having these bonds forms an intermolecular hydrogen bond. It is easy and may impair the solubility in solvents such as ethyl acetate and 2-butanone, which are often used for solvent-based adhesives, but polyester resins having an isocyanul ring do not impair the solubility, so it is easy. It can be diluted.
 また、イソシアヌル環は3官能であるため、イソシアヌル環を樹脂骨格の中心とし、且つその分岐鎖に特定の構造のポリエステル骨格を有するポリエステルポリオール化合物は高い架橋密度を得ることができる。架橋密度を高めることで、酸素等のガスが通過する隙間を減らすことができると推定される。このように、イソシアヌル環は分子間水素結合を形成せずに高極性であり且つ高い架橋密度が得られるので、ガスバリア性と接着性とを担保できると推定している。 Further, since the isocyanul ring is trifunctional, a polyester polyol compound having the isocyanul ring as the center of the resin skeleton and a polyester skeleton having a specific structure in the branched chain can obtain a high crosslink density. It is presumed that by increasing the crosslink density, the gap through which a gas such as oxygen passes can be reduced. As described above, it is presumed that the isocyanul ring has high polarity and high crosslink density without forming an intermolecular hydrogen bond, so that gas barrier properties and adhesiveness can be ensured.
 このような観点から、ポリオール組成物(A)がポリエステルポリオール(A5)を主成分とする場合、ガスバリア性接着剤の固形分に占めるポリエステルポリオール(A5)が有するイソシアヌル環の含有量が5質量%以上であることが好ましい。イソシアヌル環とは一般式(3)におけるR~Rを除いた残基(C=126.05)をいい、下記式(b)を用いて計算する。 From this point of view, when the polyol composition (A) contains the polyester polyol (A5) as a main component, the content of the isocyanuric ring contained in the polyester polyol (A5) in the solid content of the gas barrier adhesive is 5% by mass. The above is preferable. The isocyanul ring refers to the residue (C 3 N 3 O 3 = 126.05) excluding R 1 to R 3 in the general formula (3), and is calculated using the following formula (b).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 なお上記式(c)においてPはポリエステルポリオール(A5)を指す。ガスバリア性接着剤の樹脂固形分質量は、用いるポリオール組成物(A)とポリイソシアネート組成物(B)の合計質量から、希釈溶剤(ドライラミネーション用接着剤の場合)、ポリイソシアネート組成物(B)に含まれる揮発成分、無機成分の質量を除いた質量とする。 In the above formula (c), P refers to the polyester polyol (A5). The resin solid content mass of the gas barrier adhesive is determined from the total mass of the polyol composition (A) and the polyisocyanate composition (B) to be used, the diluting solvent (in the case of the dry lamination adhesive), and the polyisocyanate composition (B). The mass shall be the mass excluding the mass of volatile components and inorganic components contained in.
 ポリエステルポリオールの水酸基価は、20mgKOH/g以上250mgKOH/g以下であることが好ましい。水酸基価が20mgKOH/gより小さい場合、分子量が大きすぎるためポリオール組成物(A)の粘度が高くなり、良好な塗工適性が得られない。水酸基価が250mgKOH/gを超える場合、分子量が小さすぎて硬化塗膜の架橋密度が高くなりすぎ、良好な接着強度が得られない。 The hydroxyl value of the polyester polyol is preferably 20 mgKOH / g or more and 250 mgKOH / g or less. When the hydroxyl value is smaller than 20 mgKOH / g, the viscosity of the polyol composition (A) becomes high because the molecular weight is too large, and good coating suitability cannot be obtained. When the hydroxyl value exceeds 250 mgKOH / g, the molecular weight is too small and the crosslink density of the cured coating film becomes too high, so that good adhesive strength cannot be obtained.
 ポリエステルポリオールが酸基を有する場合、酸価は200mgKOH/g以下であることが好ましい。酸価が200mgKOH/gを超える場合、ポリオール組成物(A)とポリイソシアネート組成物(B)との反応が早くなり過ぎ、良好な塗工適性が得られない。ポリエステルポリオールの酸価の下限は特に制限されないが、一例として20mgKOH/g以上である。酸価が20mgKOH/g以上であると分子間の相互作用により良好なガスバリア性や初期凝集力が得られる。ポリエステルポリオールの水酸基価はJIS-K0070に記載の水酸基価測定方法にて、酸価はJIS-K0070に記載の酸価測定法にて測定することができる。 When the polyester polyol has an acid group, the acid value is preferably 200 mgKOH / g or less. When the acid value exceeds 200 mgKOH / g, the reaction between the polyol composition (A) and the polyisocyanate composition (B) becomes too fast, and good coating suitability cannot be obtained. The lower limit of the acid value of the polyester polyol is not particularly limited, but as an example, it is 20 mgKOH / g or more. When the acid value is 20 mgKOH / g or more, good gas barrier properties and initial cohesive force can be obtained by intermolecular interaction. The hydroxyl value of the polyester polyol can be measured by the hydroxyl value measuring method described in JIS-K0070, and the acid value can be measured by the acid value measuring method described in JIS-K0070.
 上述したようなポリエステルポリオールの数平均分子量は300~5000であると接着性とガスバリア性とのバランスに優れる程度の架橋密度が得られるため特に好ましい。より好ましくは数平均分子量が350~3000である。分子量が300よりも小さいと塗工時の接着剤の凝集力が小さくなりすぎ、ラミネート時にフィルムがズレたり、貼り合せたフィルムが浮き上がるといった不具合が生じるおそれがある。一方、分子量が5000よりも高いと塗工時の粘度が高くなり過ぎて塗工が出来ない、あるいは粘着性が低くラミネートができないといった不具合が生じるおそれがある。なお、数平均分子量は得られた水酸基価と設計上の水酸基の官能基数から計算により求める。 It is particularly preferable that the number average molecular weight of the polyester polyol as described above is 300 to 5000 because a crosslink density having an excellent balance between adhesiveness and gas barrier property can be obtained. More preferably, the number average molecular weight is 350 to 3000. If the molecular weight is less than 300, the cohesive force of the adhesive at the time of coating becomes too small, and there is a possibility that the film may be displaced during laminating or the bonded film may be lifted. On the other hand, if the molecular weight is higher than 5000, the viscosity at the time of coating becomes too high and coating cannot be performed, or the adhesiveness is low and laminating may not be possible. The number average molecular weight is calculated from the obtained hydroxyl value and the number of functional groups of the designed hydroxyl group.
 ポリエステルポリオールのガラス転移温度は-30℃以上80℃以下であることが好ましく、0℃以上60℃以下であることがより好ましく、25℃以上60℃以下であることがさらに好ましい。ガラス転移温度が80℃を超えると室温付近でのポリエステルポリオールの柔軟性が低いために基材への密着性が劣り、接着性が低下するおそれがある。一方-30℃よりも低いと、常温付近でのポリエステルポリオールの分子運動が激しいため十分なガスバリア性が得られないおそれがある。 The glass transition temperature of the polyester polyol is preferably −30 ° C. or higher and 80 ° C. or lower, more preferably 0 ° C. or higher and 60 ° C. or lower, and further preferably 25 ° C. or higher and 60 ° C. or lower. If the glass transition temperature exceeds 80 ° C., the flexibility of the polyester polyol at around room temperature is low, so that the adhesion to the substrate is poor and the adhesiveness may be lowered. On the other hand, if the temperature is lower than -30 ° C, the molecular motion of the polyester polyol at around room temperature is intense, so that sufficient gas barrier properties may not be obtained.
 ポリエステルポリオールは、ポリエステルポリオール(A1)~(A5)をジイソシアネート化合物との反応によるウレタン伸長により数平均分子量1000~15000としたポリエステルポリウレタンポリオール、であってもよい。ウレタン伸長したポリエステルポリオールには一定以上の分子量成分とウレタン結合とが存在するため、優れたガスバリア性を持ち、初期凝集力に優れ、ラミネート用の接着剤として優れる。 The polyester polyol may be a polyester polyurethane polyol having a number average molecular weight of 1000 to 15000 by urethane elongation of polyester polyols (A1) to (A5) by reaction with a diisocyanate compound. Since the urethane-extended polyester polyol has a molecular weight component of a certain level or more and a urethane bond, it has excellent gas barrier properties, excellent initial cohesive force, and is excellent as an adhesive for laminating.
 ガスバリア性を有する2液型接着剤の一成分であるポリイソシアネート組成物(B)は、イソシアネート化合物を含む。イソシアネート化合物としては、従来公知のものを特に制限なく用いることができ、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、水素化ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネート或いはこれらのイソシアネート化合物の2量体、3量体、およびこれらのイソシアネート化合物の過剰量と、たとえばエチレングリコール、プロピレングリコール、メタキシリレンアルコール、1,3-ビスヒドロキシエチルベンゼン、1,4-ビスヒドロキシエチルベンゼン、トリメチロールプロパン、グリセロール、ペンタエリスリトール、エリスリトール、ソルビトール、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、メタキシリレンジアミンなどの低分子活性水素化合物およびそのアルキレンオキシド付加物、各種ポリエステル樹脂類、ポリエーテルポリオール類、ポリアミド類の高分子活性水素化合物などと反応させて得られるアダクト体が挙げられる。ポリエステルポリオール(A1)~(A5)とジイソシアネート化合物とを、水酸基とイソシアネート基の比率をイソシアネート過剰で反応させて得られるポリエステルポリイソシアネートを用いてもよい。これらは1種または2種以上を併用することができる。 The polyisocyanate composition (B), which is a component of a two-component adhesive having a gas barrier property, contains an isocyanate compound. As the isocyanate compound, conventionally known compounds can be used without particular limitation, and tetramethylene diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, hydride diphenylmethane diisocyanate, xylylene diisocyanate, hydride xylylene diisocyanate, isophorone diisocyanate or Dimeric and trimeric of these isocyanate compounds, and excess amounts of these isocyanate compounds, such as ethylene glycol, propylene glycol, metaxylylene alcohol, 1,3-bishydroxyethylbenzene, 1,4-bishydroxyethylbenzene. , Trimethylol propane, glycerol, pentaerythritol, erythritol, sorbitol, ethylenediamine, monoethanolamine, diethanolamine, triethanolamine, metaxylylene diisocyanate and other low molecular weight active hydrogen compounds and their alkylene oxide adducts, various polyester resins, poly Examples thereof include an adduct obtained by reacting with a high molecular weight active hydrogen compound of ether polyols and polyamides. Polyester polyisocyanate obtained by reacting polyester polyols (A1) to (A5) with a diisocyanate compound in an excess ratio of hydroxyl groups and isocyanate groups may be used. These can be used alone or in combination of two or more.
 また、イソシアネート化合物としてブロック化イソシアネートを用いてもよい。イソシアネートブロック化剤としては、例えばフェノール、チオフェノール、メチルチオフェノール、エチルチオフェノール、クレゾール、キシレノール、レゾルシノール、ニトロフェノール、クロロフェノールなどのフェノール類、アセトキシム、メチルエチルケトオキシム、シクロヘキサノンオキシムなそのオキシム類、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類、エチレンクロルヒドリン、1,3-ジクロロ-2-プロパノールなどのハロゲン置換アルコール類、t-ブタノール、t-ペンタノール、などの第3級アルコール類、ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム、β-プロピロラクタムなどのラクタム類が挙げられ、その他にも芳香族アミン類、イミド類、アセチルアセトン、アセト酢酸エステル、マロン酸エチルエステルなどの活性メチレン化合物、メルカプタン類、イミン類、尿素類、ジアリール化合物類重亜硫酸ソーダなども挙げられる。ブロック化イソシアネートは上記イソシアネート化合物とイソシアネートブロック化剤とを公知慣用の適宜の方法より付加反応させて得られる。 Alternatively, blocked isocyanate may be used as the isocyanate compound. Examples of the isocyanate blocking agent include phenols such as phenol, thiophenol, methylthiophenol, ethylthiophenol, cresol, xylenol, resorcinol, nitrophenol, and chlorophenol, acetoxime, methylethylketooxime, cyclohexanone oxime, and methanol. Alcohols such as ethanol, propanol and butanol, halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol, tertiary alcohols such as t-butanol and t-pentanol, ε- Examples include lactams such as caprolactam, δ-valerolactam, γ-butyrolactam and β-propyrrolactam, and other active methylene compounds such as aromatic amines, imides, acetylacetone, acetoacetic acid ester and malonic acid ethyl ester. , Mercaptans, imines, ureas, diaryl compounds, sodium bicarbonate and the like. The blocked isocyanate is obtained by subjecting the above-mentioned isocyanate compound and an isocyanate blocking agent to an addition reaction by an appropriate method known and commonly used.
 中でも、良好なガスバリア性が得られることからキシリレンジイソシアネート、水素化キシリレンジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネートが好ましく、メタキシリレンジイソシアネート、メタ水素化キシリレンジイソシアネートのようなメタキシレン骨格を有するイソシアネート化合物を用いることがより好ましい。 Of these, xylylene diisocyanate, hydrogenated xylylene diisocyanate, toluene diisocyanate, and diphenylmethane diisocyanate are preferable because good gas barrier properties can be obtained, and isocyanate compounds having a metaxylene skeleton such as metaxylylene diisocyanate and metahydrogenated xylylene diisocyanate are preferable. Is more preferable to use.
 メタキシレン骨格を有するイソシアネート化合物としては、キシリレンジイソシアネートの3量体、アミンとの反応により合成されるビューレット体、アルコールと反応してなるアダクト体が挙げられる。3量体、ビューレット体と比べ、溶剤型接着剤に用いられる有機溶剤への溶解性が良好なことから、接着剤が溶剤型の場合はアダクト体を用いることが好ましい。アダクト体としては、上記の低分子活性水素化合物の中から適宜選択されるアルコールと反応してなるアダクト体が使用できるが、中でも、トリメチロールプロパン、グリセロール、トリエタノールアミン、メタキシレンジアミンのエチレンオキシド付加物とのアダクト体が好ましい。 Examples of the isocyanate compound having a metaxylene skeleton include a trimer of xylene diisocyanate, a burette compound synthesized by reaction with an amine, and an adduct compound formed by reacting with an alcohol. When the adhesive is a solvent type, it is preferable to use an adduct body because the solubility in the organic solvent used for the solvent type adhesive is better than that of the trimer body and the burette body. As the adduct, an adduct formed by reacting with an alcohol appropriately selected from the above low molecular weight active hydrogen compounds can be used, and among them, ethylene oxide adducts of trimethylolpropane, glycerol, triethanolamine, and metaxylylenediamine can be used. An adduct body with an object is preferable.
 また、ポリオール組成物(A)として、ポリエステルポリオール(A1)のようにカルボン酸基が残存しているポリエステルポリオールを含む組成物を用いる場合には、ポリイソシアネート組成物(B)がエポキシ化合物を含んでいてもよい。エポキシ化合物としてはビスフェノールAのジグリシジルエーテルおよびそのオリゴマー、水素化ビスフェノールAのジグリシジルエーテルおよびそのオリゴマー、オルソフタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、p-オキシ安息香酸ジグリシジルエステル、テトラハイドロフタル酸ジグリシジルエステル、ヘキサハイドロフタル酸ジグリシジルエステル、コハク酸ジグリシジルエステル、アジピン酸ジグリシジルエステル、セバシン酸ジグリシジルエステル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテルおよびポリアルキレングリコールジグリシジルエーテル類、トリメリット酸トリグリシジルエステル、トリグリシジルイソシアヌレート、1,4-ジグリシジルオキシベンゼン、ジグリシジルプロピレン尿素、グリセロールトリグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、グリセロールアルキレンオキサイド付加物のトリグリシジルエーテルなどを挙げることができる。 Further, when a composition containing a polyester polyol having a carboxylic acid group remaining like the polyester polyol (A1) is used as the polyol composition (A), the polyisocyanate composition (B) contains an epoxy compound. You may be. Examples of epoxy compounds include diglycidyl ether of bisphenol A and its oligomer, diglycidyl ether of bisphenol A and its oligomer, orthophthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, and p-oxybenzoic acid di. Glycidyl ester, tetrahydrophthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, succinic acid diglycidyl ester, adipate diglycidyl ester, sebacic acid diglycidyl ester, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1 , 4-Butandiol diglycidyl ether, 1,6-hexanediol diglycidyl ether and polyalkylene glycol diglycidyl ethers, trimeric acid triglycidyl ester, triglycidyl isocyanurate, 1,4-diglycidyloxybenzene, diglycidyl Examples thereof include propylene urea, glycerol triglycidyl ether, trimethylol ethane triglycidyl ether, trimethylol propane triglycidyl ether, pentaerythritol tetraglycidyl ether, and triglycidyl ether as a glycerol alkylene oxide adduct.
 エポキシ化合物を用いる場合には、硬化を促進する目的で汎用公知のエポキシ硬化促進剤を本発明の目的が損なわれない範囲で適宜添加してもよい。 When an epoxy compound is used, a widely known epoxy curing accelerator may be appropriately added for the purpose of accelerating curing as long as the object of the present invention is not impaired.
 ポリオール組成物(A)として、ポリエステルポリオール(A2)のように重合性炭素-炭素二重結合を有するポリオールを含む組成物を用いる場合には、炭素-炭素二重結合の重合を促進するために公知の重合触媒を併用することができ、一例として遷移金属錯体が挙げられる。遷移金属錯体は、重合性二重結合を酸化重合させる能力を備える化合物であれば特に限定されない。例えば、コバルト、マンガン、鉛、カルシウム、セリウム、ジルコニウム、亜鉛、鉄、銅等の金属と、オクチル酸、ナフテン酸、ネオデカン酸、ステアリン酸、樹脂酸、トール油脂肪酸、桐油脂肪酸、アマニ油脂肪酸、大豆油脂肪酸等との塩を用いることができる。遷移金属錯体の配合量はポリオール組成物(A)に含まれる樹脂固形分に対して0~10質量部が好ましく、より好ましくは0~3質量部である。 When a composition containing a polyol having a polymerizable carbon-carbon double bond such as the polyester polyol (A2) is used as the polyol composition (A), in order to promote the polymerization of the carbon-carbon double bond, A known polymerization catalyst can be used in combination, and a transition metal complex is mentioned as an example. The transition metal complex is not particularly limited as long as it is a compound having an ability to oxidatively polymerize a polymerizable double bond. For example, metals such as cobalt, manganese, lead, calcium, cerium, zirconium, zinc, iron, copper, octyl acid, naphthenic acid, neodecanoic acid, stearic acid, resin acid, tall oil fatty acid, tung oil fatty acid, linseed oil fatty acid, Salts with soybean oil fatty acids and the like can be used. The blending amount of the transition metal complex is preferably 0 to 10 parts by mass, more preferably 0 to 3 parts by mass with respect to the resin solid content contained in the polyol composition (A).
 ポリオール組成物(A)とポリイソシアネート組成物(B)とは、ポリオール組成物(A)に含まれる水酸基と、ポリイソシアネート組成物(B)に含まれるイソシアネート基との当量比が1/0.5~1/10となるよう配合することが好ましく、1/1~1/5となるよう配合することがより好ましい。イソシアネート化合物が過剰の場合、接着剤の硬化塗膜に残留した余剰のイソシアネート化合物が接着剤層からブリードアウトするおそれがある。一方、ポリイソシアネート組成物(B)に含まれる反応性の官能基が不足すると、接着強度が不足するおそれがある。 The polyol composition (A) and the polyisocyanate composition (B) have an equivalent ratio of the hydroxyl group contained in the polyol composition (A) to the isocyanate group contained in the polyisocyanate composition (B) of 1/0. It is preferably blended so as to be 5 to 1/10, and more preferably to be blended so as to be 1/1 to 1/5. When the isocyanate compound is excessive, the excess isocyanate compound remaining in the cured coating film of the adhesive may bleed out from the adhesive layer. On the other hand, if the reactive functional groups contained in the polyisocyanate composition (B) are insufficient, the adhesive strength may be insufficient.
 ガスバリア性接着剤には、接着性およびガスバリア性を損なわない範囲で各種添加剤を配合してもよい。 Various additives may be added to the gas barrier adhesive as long as the adhesiveness and gas barrier properties are not impaired.
 このような添加剤として、無機充填剤を用いてもよい。無機充填剤としては、シリカ、アルミナ、アルミニウムフレーク、ガラスフレーク等が挙げられる。特に無機充填剤として板状無機化合物を用いると、接着強度、ガスバリア性、遮光性等が向上するため好ましい。板状無機化合物としては、含水ケイ酸塩(フィロケイ酸塩鉱物等)、カオリナイト-蛇紋族粘土鉱物(ハロイサイト、カオリナイト、エンデライト、ディッカイト、ナクライト等、アンチゴライト、クリソタイル等)、パイロフィライト-タルク族(パイロフィライト、タルク、ケロライ等)、スメクタイト族粘土鉱物(モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スチブンサイト等)、バーミキュライト族粘土鉱物(バーミキュライト等)、雲母又はマイカ族粘土鉱物(白雲母、金雲母等の雲母、マーガライト、テトラシリリックマイカ、テニオライト等)、緑泥石族(クッケアイト、スドーアイト、クリノクロア、シャモサイト、ニマイト等)、ハイドロタルサイト、板状硫酸バリウム、ベーマイト、ポリリン酸アルミニウム等が挙げられる。これらの鉱物は天然粘土鉱物であっても合成粘土鉱物であってもよい。板状無機化合物は1種または2種以上を併用することができる。 Inorganic filler may be used as such an additive. Examples of the inorganic filler include silica, alumina, aluminum flakes, glass flakes and the like. In particular, it is preferable to use a plate-shaped inorganic compound as the inorganic filler because the adhesive strength, gas barrier property, light-shielding property and the like are improved. Plate-like inorganic compounds include hydrous silicates (phyllocate minerals, etc.), kaolinite-serpentine clay minerals (haloisite, kaolinite, enderite, dikite, nacrite, etc., antigolite, chrysotile, etc.), pyrophyllium. Light-Tark (pyrophyllite, talc, kerolai, etc.), smectite clay minerals (montmorillonite, biderite, nontronite, saponite, hectrite, saconite, stivuncite, etc.), vermiculite clay minerals (vermiculite, etc.), mica or Mica clay minerals (white mica, gold mica, etc., margarite, tetracylic mica, teniolite, etc.), green mudstones (cookate, sudoite, clinochloa, chamosite, nimite, etc.), hydrotalcite, plate sulfate Examples thereof include barium, boehmite and aluminum polyphosphate. These minerals may be natural clay minerals or synthetic clay minerals. The plate-like inorganic compound may be used alone or in combination of two or more.
 板状無機化合物は、層間に電荷を有するイオン性のものであってもよいし、電荷を持たない非イオン性のものであってもよい。層間の電荷の有無は接着剤層のガスバリア性に直接大きな影響を与えない。しかしながらイオン性の板状無機化合物や水に対して膨潤性を有する無機化合物は溶剤型接着剤への分散性が劣り、添加量を増加させると接着剤と増粘したり、チキソ性となったりして塗工適性が低下するおそれがある。このため板状無機化合物層間電化を持たない非イオン性であることが好ましい。 The plate-like inorganic compound may be an ionic compound having an electric charge between layers, or a nonionic compound having no electric charge. The presence or absence of electric charge between layers does not directly affect the gas barrier property of the adhesive layer. However, ionic plate-like inorganic compounds and inorganic compounds that have swelling properties with respect to water are inferior in dispersibility in solvent-type adhesives, and when the amount added is increased, they become thicker with the adhesives or become chysole. As a result, the coating suitability may decrease. Therefore, the plate-like inorganic compound is preferably nonionic without interlayer electrification.
 板状無機化合物の平均粒径は、特に制限されないが、一例として0.1μm以上であることが好ましく、1μm以上であることがより好ましい。0.1μmよりも小さいと、酸素分子の迂回経路が長くならず、ガスバリア性の向上が十分には期待できない。平均粒径の上限は特に制限されないが、粒径が大きすぎると塗工方法によっては塗工面にスジ等の欠陥が生じる場合がある。このため、一例として平均粒径は100μm以下であることが好ましく、20μm以下であることが好ましい。なお本明細書において板状無機化合物の平均粒径とは、板状無機化合物の粒度分布を光散乱式測定装置で測定した場合の出現頻度が最も高い粒径をいう。 The average particle size of the plate-shaped inorganic compound is not particularly limited, but as an example, it is preferably 0.1 μm or more, and more preferably 1 μm or more. If it is smaller than 0.1 μm, the detour route of oxygen molecules will not be long, and improvement of gas barrier property cannot be expected sufficiently. The upper limit of the average particle size is not particularly limited, but if the particle size is too large, defects such as streaks may occur on the coated surface depending on the coating method. Therefore, as an example, the average particle size is preferably 100 μm or less, and preferably 20 μm or less. In the present specification, the average particle size of the plate-shaped inorganic compound means the particle size that appears most frequently when the particle size distribution of the plate-shaped inorganic compound is measured by a light scattering type measuring device.
 板状無機化合物のアスペクト比は酸素の迷路効果によるガスバリア性の向上のためには高い方が好ましい。具体的には3以上が好ましく、更に好ましくは10以上、最も好ましくは40以上である。 The aspect ratio of the plate-like inorganic compound is preferably high in order to improve the gas barrier property due to the maze effect of oxygen. Specifically, it is preferably 3 or more, more preferably 10 or more, and most preferably 40 or more.
 板状無機化合物の配合量は任意であるが、一例として、ポリオール組成物(A)、ポリイソシアネート組成物(B)、板状無機化合物の固形分総質量を100質量としたときに、板状無機化合物の配合量が5~50質量部である。 The blending amount of the plate-shaped inorganic compound is arbitrary, but as an example, when the total solid content of the polyol composition (A), the polyisocyanate composition (B), and the plate-shaped inorganic compound is 100 mass, the plate-shaped inorganic compound is formed. The blending amount of the inorganic compound is 5 to 50 parts by mass.
 ガスバリア性接着剤が接着促進剤を含んでいてもよい。接着促進剤としては、加水分解性アルコキシシラン化合物等のシランカップリング剤、チタネート系カップリング剤、アルミニウム系等のカップリング剤、エポキシ樹脂等が挙げられる。シランカップリング剤やチタネート系カップリング剤は、各種フィルム材料に対する接着性を向上させる効果が期待できる。 The gas barrier adhesive may contain an adhesion promoter. Examples of the adhesion accelerator include silane coupling agents such as hydrolyzable alkoxysilane compounds, titanate-based coupling agents, aluminum-based coupling agents, epoxy resins and the like. Silane coupling agents and titanate-based coupling agents can be expected to have the effect of improving the adhesiveness to various film materials.
 ガスバリア性接着剤層に耐酸性が必要な場合には、ガスバリア性接着剤が公知の酸無水物を含んでいてもよい。酸無水物としては、例えば、フタル酸無水物、コハク酸無水物、ヘット酸無水物、ハイミック酸無水物、マレイン酸無水物、テトラヒドロフタル酸無水物、ヘキサヒドラフタル酸無水物、テトラプロムフタル酸無水物、テトラクロルフタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノテトラカルボン酸無水物、2,3,6,7-ナフタリンテトラカルボン酸2無水物、5-(2,5-オキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、スチレン無水マレイン酸共重合体等が挙げられる。 When the gas barrier adhesive layer needs to be acid resistant, the gas barrier adhesive may contain a known acid anhydride. Examples of the acid anhydride include phthalic acid anhydride, succinic acid anhydride, het acid anhydride, hymic acid anhydride, maleic acid anhydride, tetrahydrophthalic acid anhydride, hexahydraphthalic acid anhydride, and tetrapromphthalic acid. Anhydride, tetrachlorphthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenotetracarboxylic acid anhydride, 2,3,6,7-naphthalintetracarboxylic acid dianhydride, 5- (2) , 5-Oxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride, maleic anhydride copolymer, and the like.
 必要に応じて、更に酸素捕捉機能を有する化合物等を添加してもよい。酸素捕捉機能を有する化合物としては、例えば、ヒンダードフェノール類、ビタミンC、ビタミンE、有機燐化合物、没食子酸、ピロガロール等の酸素と反応する低分子有機化合物や、コバルト、マンガン、ニッケル、鉄、銅等の遷移金属化合物等が挙げられる。 If necessary, a compound having an oxygen trapping function or the like may be further added. Examples of the compound having an oxygen trapping function include low molecular weight organic compounds that react with oxygen such as hindered phenols, vitamin C, vitamin E, organic phosphorus compounds, gallic acid, and pyrogallol, cobalt, manganese, nickel, iron, and the like. Examples thereof include transition metal compounds such as copper.
 塗布直後の各種フィルム材料に対する粘着性を向上させるために、必要に応じてキシレン樹脂、テルペン樹脂、フェノール樹脂、ロジン樹脂などの粘着付与剤を添加しても良い。これらを添加する場合にその配合量は、ポリオール組成物(A)とポリイソシアネート組成物(B)の固形分総量100質量部に対して0.01~5質量部の範囲が好ましい。 In order to improve the adhesiveness to various film materials immediately after application, a tackifier such as xylene resin, terpene resin, phenol resin, rosin resin may be added as needed. When these are added, the blending amount thereof is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the total solid content of the polyol composition (A) and the polyisocyanate composition (B).
 ポリオール組成物(A)がポリエステルポリオール(A2)を含む場合、重合性炭素-炭素二重結合を反応させる方法として活性エネルギー線を使用することもできる。活性エネルギー線としては公知の技術が使用でき、電子線、紫外線、或いはγ線等の電離放射線等を照射して硬化させることができる。紫外線で硬化させる場合、高圧水銀灯、エキシマランプ、メタルハライドランプ等を備えた公知の紫外線照射装置を使用することができる。 When the polyol composition (A) contains a polyester polyol (A2), active energy rays can also be used as a method for reacting the polymerizable carbon-carbon double bond. A known technique can be used as the active energy ray, and it can be cured by irradiating it with ionizing radiation such as an electron beam, ultraviolet rays, or γ rays. When curing with ultraviolet rays, a known ultraviolet irradiation device equipped with a high-pressure mercury lamp, an excimer lamp, a metal halide lamp, or the like can be used.
 紫外線を照射して硬化させる場合には、必要に応じて、紫外線の照射によりラジカル等を発生する光(重合)開始剤をポリエステルポリオール(A2)100質量部に対して0.1~20質量部程度添加することが好ましい。 When curing by irradiating with ultraviolet rays, 0.1 to 20 parts by mass of a light (polymerization) initiator that generates radicals or the like by irradiation with ultraviolet rays is added to 100 parts by mass of polyester polyol (A2), if necessary. It is preferable to add to some extent.
 ラジカル発生型の光(重合)開始剤としては、ベンジル、ベンゾフェノン、ミヒラーズケトン、2-クロロチオキサントン、2,4-ジエチルチオキサントン等の水素引き抜きタイプや、ベンゾインエチルエーテル、ジエトキシアセトフェノン、ベンジルメチルケタール、ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチルフェニルケトン等の光開裂タイプが挙げられる。これらの中から単独或いは複数のものを組み合わせて使用することができる。 Radical-generating light (polymerization) initiators include hydrogen abstraction types such as benzyl, benzophenone, Michler's ketone, 2-chlorothioxanthone, and 2,4-diethylthioxanthone, and benzoin ethyl ether, diethoxyacetophenone, benzylmethylketal, and hydroxy. Examples thereof include photocleavable types such as cyclohexylphenyl ketone and 2-hydroxy-2-methylphenyl ketone. Among these, one or a plurality of them can be used alone or in combination.
 その他、ガスバリア性接着剤が安定剤(酸化防止剤、熱安定剤、紫外線吸収剤等)、可塑剤、帯電防止剤、滑剤、ブロッキング防止剤、着色剤、結晶核剤等を含んでいてもよい。これらの各種添加剤は予めポリオール組成物(A)およびポリイソシアネート組成物(B)のいずれか一方、または両方に添加しておいてもよいし、ポリオール組成物(A)とポリイソシアネート組成物(B)とを混合する際に添加してもよい。 In addition, the gas barrier adhesive may contain stabilizers (antioxidants, heat stabilizers, UV absorbers, etc.), plasticizers, antistatic agents, lubricants, blocking inhibitors, colorants, crystal nucleating agents, and the like. .. These various additives may be added to either or both of the polyol composition (A) and the polyisocyanate composition (B) in advance, or the polyol composition (A) and the polyisocyanate composition ( It may be added when mixing with B).
 本発明で用いられるガスバリア性接着剤は、溶剤型、無溶剤型いずれの形態であってもよい。本明細書において溶剤型接着剤とは、接着剤を基材に塗工した後に、オーブン等で加熱して塗膜中の有機溶剤を揮発させた後に他の基材と貼り合せる方法、いわゆるドライラミネート法に用いられる形態をいう。用いられる溶剤としては、トルエン、キシレン、塩化メチレン、テトラヒドロフラン、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、アセトン、メチルエチルケトン(MEK)、シクロヘキサノン、トルオール、キシロール、n-ヘキサン、シクロヘキサン等が挙げられる。ポリオール組成物(A)およびポリイソシアネート組成物(B)のいずれか一方、もしくは両方が上述した有機溶剤を含む。溶剤型の場合、ポリオール組成物(A)またはポリイソシアネート組成物(B)の構成成分の製造時に反応媒体として使用された溶剤が、更に塗装時に希釈剤として使用される場合もある。 The gas barrier adhesive used in the present invention may be in either a solvent type or a solventless type. In the present specification, the solvent-based adhesive is a method in which an adhesive is applied to a base material, then heated in an oven or the like to volatilize the organic solvent in the coating film, and then bonded to another base material, so-called dry. A form used in the laminating method. Examples of the solvent used include toluene, xylene, methylene chloride, tetrahydrofuran, methyl acetate, ethyl acetate, n-propyl acetate, n-butyl acetate, acetone, methyl ethyl ketone (MEK), cyclohexanone, toluol, xylol, n-hexane, cyclohexane and the like. Can be mentioned. Either one or both of the polyol composition (A) and the polyisocyanate composition (B) contains the above-mentioned organic solvent. In the case of the solvent type, the solvent used as the reaction medium in the production of the constituent components of the polyol composition (A) or the polyisocyanate composition (B) may be further used as a diluent in coating.
 無溶剤型接着剤とは、接着剤を基材に塗工した後に、オーブン等で加熱して溶剤を揮発させる工程を経ずに他の基材と貼り合せる方法、いわゆるノンソルベントラミネート法に用いられる形態をいう。ポリオール組成物(A)およびポリイソシアネート組成物(B)のいずれもが、上述した有機溶剤を実質的に含まない。ポリオール組成物(A)またはポリイソシアネート組成物(B)の構成成分や、その原料の製造時に反応媒体として使用された有機溶剤が除去しきれずに、ポリオール組成物(A)やポリイソシアネート組成物(B)中に微量の有機溶剤が残留してしまっている場合は、有機溶剤を実質的に含まないと解される。また、ポリオール組成物(A)が低分子量アルコールを含む場合、低分子量アルコールはポリイソシアネート組成物(B)と反応して塗膜の一部となるため、塗工後に揮発させる必要はない。従ってこのような形態も無溶剤型接着剤として扱う。 The solvent-free adhesive is used in the so-called non-solvent laminating method, which is a method in which an adhesive is applied to a base material and then bonded to another base material without the process of heating in an oven or the like to volatilize the solvent. Refers to the form to be used. Neither the polyol composition (A) nor the polyisocyanate composition (B) is substantially free of the organic solvents described above. The constituent components of the polyol composition (A) or the polyisocyanate composition (B) and the organic solvent used as the reaction medium in the production of the raw material thereof could not be completely removed, and the polyol composition (A) or the polyisocyanate composition (A) or the polyisocyanate composition ( If a small amount of organic solvent remains in B), it is understood that the organic solvent is substantially not contained. Further, when the polyol composition (A) contains a low molecular weight alcohol, the low molecular weight alcohol reacts with the polyisocyanate composition (B) and becomes a part of the coating film, so that it is not necessary to volatilize after coating. Therefore, such a form is also treated as a solvent-free adhesive.
(シーラント層)
 本発明の積層体は、ガスバリア性接着剤層上に、シーラント層を有していてもよい。シーラント層は熱により溶融し相互に融着し得る、ヒートシール性の樹脂の層である。シーラント層に好適な樹脂としては、ポリエチレン、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エチル共重合体、エチレン-プロピレン共重合体、メチルペンテンポリマー、ポリエチレンまたはポリプロピレン等のオレフィン系樹脂をアクリル酸、メタクリル酸、無水マレイン酸、フマル酸、その他不飽和カルボン酸で変性した変性オレフィン樹脂、エチレン-(メタ)アクリル酸エステル-不飽和カルボン酸の三元共重合体、環状ポリオレフィン、環状オレフィンコポリマー、ポリエチレンテレフタレート(PET)、ポリアクリロニトリル(PAN)等が挙げられる。これらの樹脂の1種または2種以上からなる樹脂のフィルム、シート、その他塗布膜等をシーラント層として使用することができる。
(Sealant layer)
The laminate of the present invention may have a sealant layer on the gas barrier adhesive layer. The sealant layer is a heat-sealing resin layer that can be melted by heat and fused to each other. Suitable resins for the sealant layer include polyethylene, low density polyethylene, medium density polyethylene, high density polyethylene, linear (linear) low density polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ionomer resin, ethylene- ( Olefin resins such as meta) acrylate copolymer, ethylene- (meth) ethyl acrylate copolymer, ethylene-propylene copolymer, methylpentene polymer, polyethylene or polypropylene are used as acrylic acid, methacrylic acid, maleic anhydride, etc. Fumaric acid and other modified olefin resins modified with unsaturated carboxylic acid, ternary copolymer of ethylene- (meth) acrylic acid ester-unsaturated carboxylic acid, cyclic polyolefin, cyclic olefin copolymer, polyethylene terephthalate (PET), polyacrylonitrile (PAN) and the like. A resin film, sheet, or other coating film made of one or more of these resins can be used as the sealant layer.
 シーラント層となるフィルムとしては、未延伸、1軸延伸、2軸延伸のフィルムのいずれも使用することができる。 As the film to be the sealant layer, any unstretched, uniaxially stretched, or biaxially stretched film can be used.
 2軸方向に延伸した延伸フィルムは、例えば50~100℃のロール延伸機により2~4倍に縦延伸し、更に90~150℃の雰囲気下でテンター延伸機により3~5倍に横延伸し、引き続いて100~240℃の雰囲気下でテンター延伸機により熱処理することで得られる。あるいは、同時2軸延伸、逐次2軸延伸したものを用いてもよい。 The stretched film stretched in the biaxial direction is, for example, vertically stretched 2 to 4 times by a roll stretching machine at 50 to 100 ° C., and further laterally stretched 3 to 5 times by a tenter stretching machine in an atmosphere of 90 to 150 ° C. Subsequently, it is obtained by heat treatment with a tenter stretching machine in an atmosphere of 100 to 240 ° C. Alternatively, simultaneous biaxial stretching and sequential biaxial stretching may be used.
 シーラント層に易剥離性のシーラントフィルム(イージーピールフィルム)を用いてもよい。易剥離性のシーラントフィルムとしては、界面剥離タイプ、凝集剥離タイプ、層間剥離タイプの何れも適用可能であり、後述する包装材の種類や要求特性に応じて適宜選択することができる。易剥離性の指標としては、包装材の種類や要求特性に応じて適宜設定されるが、一例としてシール強度が2~20N/15mmである。例えばポリプロピレンと高密後ポリエチレン、低密度ポリエチレン、エチレン-酢酸ビニル共重合体などを組み合わせた相分離系のポリマーブレンドにより易剥離性を発現させることができる。 An easily peelable sealant film (easy peel film) may be used for the sealant layer. As the easily peelable sealant film, any of an interface peeling type, a cohesive peeling type, and an interlayer peeling type can be applied, and can be appropriately selected according to the type of packaging material and the required characteristics described later. The index of easy peelability is appropriately set according to the type of packaging material and the required characteristics, and as an example, the seal strength is 2 to 20 N / 15 mm. For example, easy peelability can be exhibited by a phase-separated polymer blend in which polypropylene is combined with high-density polyethylene, low-density polyethylene, an ethylene-vinyl acetate copolymer, or the like.
 シーラント層の膜厚は任意に選択し得るが、例えば後述する包装材に適用する場合には5~500μmの範囲で選択される。10~250μmであることがより好ましく、15~100μmであることがさらに好ましい。5μmを下回ると包装材料として充分なラミネート強度が得られず、さらに耐突き刺し性等も低下する恐れがある。250μmを超えるとコスト上昇を招くと共にフィルムが硬くなり、作業性が低下する。 The film thickness of the sealant layer can be arbitrarily selected, but when applied to a packaging material described later, for example, it is selected in the range of 5 to 500 μm. It is more preferably 10 to 250 μm, and even more preferably 15 to 100 μm. If it is less than 5 μm, sufficient laminating strength as a packaging material cannot be obtained, and there is a risk that piercing resistance and the like will be lowered. If it exceeds 250 μm, the cost will increase and the film will become hard, resulting in reduced workability.
(印刷層)
 本発明の積層体は、必要に応じて印刷層を有していてもよい。印刷層の位置は任意であるが、一例として基材のガスバリア性接着剤層が設けられるのとは反対側の面上や、ガスバリア性コーティング層とガスバリア性接着剤層との間に、ガスバリア性コーティング層と接して設けられる。印刷層は、グラビアインキ、フレキソインキ、オフセットインキ、孔版インキ、インクジェットインク等各種印刷インキにより、従来ポリマーフィルムへの印刷に用いられてきた一般的な印刷方法で形成される。
(Print layer)
The laminate of the present invention may have a printed layer, if necessary. The position of the printing layer is arbitrary, but as an example, gas barrier property is provided on the surface opposite to the gas barrier adhesive layer of the base material, or between the gas barrier coating layer and the gas barrier adhesive layer. It is provided in contact with the coating layer. The printing layer is formed by various printing inks such as gravure ink, flexo ink, offset ink, stencil ink, and inkjet ink by a general printing method conventionally used for printing on a polymer film.
(積層体 その他の層)
 本発明の積層体は、必要に応じて他の層を有していてもよい。例えば、ガスバリア性接着剤層とシーラント層との間に、フィルムが配置されていてもよい。当該フィルムとしては、基材として例示したものと同様のものを用いることができる。ポリエチレンテレフタレート、ポリエチレンナフタレート等の1軸または2軸延伸ポリエステルフィルム、ナイロン6、ナイロン66、MXD6(ポリメタキシリレンアジパミド)等の1軸または2軸延伸ポリアミドフィルム、2軸延伸ポリプロピレンフィルム等を好適に用いることができる。
(Laminated body and other layers)
The laminate of the present invention may have other layers, if necessary. For example, a film may be arranged between the gas barrier adhesive layer and the sealant layer. As the film, the same film as that exemplified as the base material can be used. Uniaxial or biaxially stretched polyester film such as polyethylene terephthalate and polyethylene naphthalate, uniaxial or biaxially stretched polyamide film such as nylon 6, nylon 66 and MXD6 (polymethoxylylen adipamide), biaxially stretched polypropylene film and the like. It can be preferably used.
 ガスバリア性接着剤層とシーラント層との間にフィルムが配置される場合、当該フィルムとシーラント層とは接着剤を介して貼り合せられていてもよい。この際用いる接着剤は上述したガスバリア性接着剤であってもよいし、そうでなくてもよい。当該フィルムは、ガスバリア性接着剤層を介して基材と貼り合せられていてもよいし、フィルムとガスバリア性接着剤層との間に更に他の層が配置されていてもよい。 When a film is arranged between the gas barrier adhesive layer and the sealant layer, the film and the sealant layer may be bonded to each other via an adhesive. The adhesive used at this time may or may not be the gas barrier adhesive described above. The film may be bonded to the base material via a gas barrier adhesive layer, or another layer may be arranged between the film and the gas barrier adhesive layer.
(積層体の製造方法)
 本発明の積層体は、酸化アルミニウム層およびガスバリア性コーティング層が設けられた基材と、シーラント層とを、ガスバリア性接着剤を用い、ドライラミネート法もしくはノンソルベントラミネート法にて貼り合せて得られる。ラミネートされた積層体はガスバリア性に優れ、ガスバリア積層体として使用することができる。
(Manufacturing method of laminated body)
The laminate of the present invention is obtained by laminating a base material provided with an aluminum oxide layer and a gas barrier coating layer and a sealant layer by a dry laminating method or a non-solvent laminating method using a gas barrier adhesive. .. The laminated laminate has excellent gas barrier properties and can be used as a gas barrier laminate.
ガスバリア性コーティング層を形成する方法はとしては特に限定はなく、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法、インクジェット法等が挙げられる。塗工後、オーブン等での加熱により有機溶剤を揮発させる。 The method for forming the gas barrier coating layer is not particularly limited, and the spray method, spin coating method, dip method, roll coating method, blade coating method, doctor roll method, doctor blade method, curtain coating method, slit coating method, etc. Examples include a screen printing method and an inkjet method. After coating, the organic solvent is volatilized by heating in an oven or the like.
 ガスバリア性接着剤が溶剤型である場合、基材とシーラント層のどちらか一方にガスバリア性接着剤をグラビアロール等のロールを用いて塗布し、オーブン等での加熱により有機溶剤を揮発させた後、他方を貼り合せて本発明の積層体を得る。ラミネート後にエージング処理を行うことが好ましい。エージング温度は室温~80℃、エージング時間は12~240時間が好ましい。 When the gas barrier adhesive is a solvent type, the gas barrier adhesive is applied to either the base material or the sealant layer using a roll such as a gravure roll, and the organic solvent is volatilized by heating in an oven or the like. , The other is bonded to obtain the laminate of the present invention. It is preferable to perform an aging treatment after laminating. The aging temperature is preferably room temperature to 80 ° C., and the aging time is preferably 12 to 240 hours.
 ガスバリア性接着剤が無溶剤型である場合、基材とシーラント層のどちらか一方に予め40℃~100℃程度に加熱しておいたガスバリア性接着剤をグラビアロール等のロールを用いて塗布した後、直ちに他方を貼り合せて本発明の積層体を得る。ラミネート後にエージング処理を行うことが好ましい。エージング温度は室温~70℃、エージング時間は6~240時間が好ましい。 When the gas barrier adhesive is a solvent-free type, a gas barrier adhesive that has been preheated to about 40 ° C. to 100 ° C. is applied to either the base material or the sealant layer using a roll such as a gravure roll. After that, the other is immediately bonded to obtain the laminate of the present invention. It is preferable to perform an aging treatment after laminating. The aging temperature is preferably room temperature to 70 ° C., and the aging time is preferably 6 to 240 hours.
 ガスバリア性接着剤の塗布量は、適宜調整する。溶剤型の場合、一例として固形分量が1g/m以上10g/m以下、好ましくは1g/m以上5g/m以下となるよう調整する。無溶剤型の場合、接着剤の塗布量が一例として1g/m以上10g/m以下、好ましくは1g/m以上5g/m以下である。 The amount of the gas barrier adhesive applied is adjusted as appropriate. In the case of the solvent type, as an example, the solid content is adjusted to be 1 g / m 2 or more and 10 g / m 2 or less, preferably 1 g / m 2 or more and 5 g / m 2 or less. In the case of the solvent-free type, the amount of the adhesive applied is, for example, 1 g / m 2 or more and 10 g / m 2 or less, preferably 1 g / m 2 or more and 5 g / m 2 or less.
<包装材>
 本発明の積層体は、食品や医薬品などの保護を目的とする多層包装材料として使用することができる。多層包装材料として使用する場合には、内容物や使用環境、使用形態に応じてその層構成は変化し得る。
<Packaging material>
The laminate of the present invention can be used as a multi-layer packaging material for the purpose of protecting foods, pharmaceuticals and the like. When used as a multi-layer packaging material, its layer structure may change depending on the contents, usage environment, and usage pattern.
 本発明の包装材は、本発明の積層体を使用し、積層体のシーラントフィルムの面を対向して重ね合わせた後、その周辺端部をヒートシールして得られる。製袋方法としては、本発明の積層体を折り曲げるか、あるいは重ねあわせてその内層の面(シーラントフィルムの面)を対向させ、その周辺端部を、例えば、側面シール型、二方シール型、三方シール型、四方シール型、封筒貼りシール型、合掌貼りシール型(縦ピロー、横ピロー)、ひだ付シール型、平底シール型、角底シール型、ガゼット型、その他のヒートシール型等の形態によりヒートシールする方法が挙げられる。本発明の包装材は内容物や使用環境、使用形態に応じて種々の形態をとり得る。自立性包装材(スタンディングパウチ)等も可能である。ヒートシールの方法としては、バーシール、回転ロールシール、ベルトシール、インパルスシール、高周波シール、超音波シール等の公知の方法で行うことができる。 The packaging material of the present invention is obtained by using the laminate of the present invention, laminating the surfaces of the sealant films of the laminate facing each other, and then heat-sealing the peripheral end portions thereof. As a bag-making method, the laminate of the present invention is bent or overlapped so that the inner layer surface (the surface of the sealant film) faces each other, and the peripheral end thereof is, for example, a side seal type or a two-way seal type. Three-way seal type, four-way seal type, envelope-attached seal type, gassho-attached seal type (vertical pillow, horizontal pillow), fold-attached seal type, flat-bottom seal type, square-bottom seal type, gusset type, and other heat-seal types There is a method of heat-sealing. The packaging material of the present invention can take various forms depending on the contents, the environment of use, and the form of use. Free-standing packaging materials (standing pouches), etc. are also possible. As a heat sealing method, a known method such as a bar seal, a rotary roll seal, a belt seal, an impulse seal, a high frequency seal, and an ultrasonic seal can be used.
 本発明の包装材に、その開口部から内容物を充填した後、開口部をヒートシールして本発明の包装材を使用した製品が製造される。充填される内容物としては、米菓、豆菓子、ナッツ類、ビスケット・クッキー、ウェハース菓子、マシュマロ、パイ、半生ケーキ、キャンディ、スナック菓子などの菓子類、パン、スナックめん、即席めん、乾めん、パスタ、無菌包装米飯、ぞうすい、おかゆ、包装もち、シリアルフーズなどのステープル類、漬物、煮豆、納豆、味噌、凍豆腐、豆腐、なめ茸、こんにゃく、山菜加工品、ジャム類、ピーナッツクリーム、サラダ類、冷凍野菜、ポテト加工品などの農産加工品、ハム類、ベーコン、ソーセージ類、チキン加工品、コンビーフ類などの畜産加工品、魚肉ハム・ソーセージ、水産練製品、かまぼこ、のり、佃煮、かつおぶし、塩辛、スモークサーモン、辛子明太子などの水産加工品、桃、みかん、パイナップル、りんご、洋ナシ、さくらんぼなどの果肉類、コーン、アスパラガス、マッシュルーム、玉ねぎ、人参、大根、じゃがいもなどの野菜類、ハンバーグ、ミートボール、水産フライ、ギョーザ、コロッケなどを代表とする冷凍惣菜、チルド惣菜などの調理済食品、バター、マーガリン、チーズ、クリーム、インスタントクリーミーパウダー、育児用調整粉乳などの乳製品、液体調味料、レトルトカレー、ペットフードなどの食品類が挙げられる。また、本発明の包装材はタバコ、使い捨てカイロ、輸液パック等の医薬品、化粧品、真空断熱材などの包装材料としても使用され得る。 After filling the packaging material of the present invention with the contents from the opening, the opening is heat-sealed to manufacture a product using the packaging material of the present invention. The contents to be filled include rice confectionery, bean confectionery, nuts, biscuits / cookies, wafer confectionery, marshmallows, pies, half-baked cakes, candy, snack confectionery and other confectionery, bread, snack noodles, instant noodles, dried noodles, pasta. , Sterile packaged rice, elephant, porridge, packaged rice, staples such as cereal foods, pickles, boiled beans, natto, miso, frozen tofu, tofu, licked mushrooms, konjac, processed wild vegetables, jams, peanut cream, salads, frozen Processed agricultural products such as vegetables and processed potatoes, hams, bacon, sausages, processed chicken products, processed livestock products such as confectionery, fish meat hams and sausages, marine products, kamaboko, glue, boiled vegetables, sardines, salted spicy, Processed marine products such as smoked salmon and spicy cod roe, peaches, tangerines, pineapples, apples, pears, cherries and other fruit meats, corn, asparagus, mushrooms, onions, carrots, radishes, potatoes and other vegetables, hamburgers, meat Cooked foods such as balls, fried fish, gyoza, croquette and other frozen side dishes, chilled side dishes, butter, margarine, cheese, cream, instant creamy powder, dairy products such as baby-prepared powdered milk, liquid seasonings, retorts Examples include foods such as curry and pet food. The packaging material of the present invention can also be used as a packaging material for cigarettes, disposable body warmers, pharmaceuticals such as infusion packs, cosmetics, and vacuum heat insulating materials.
(透過を遮断できるガス成分種類)
 本発明の樹脂組成物や本樹脂組成物を含む積層体が遮断できるガスとしては、酸素の他、二酸化炭素、窒素、アルゴン等の不活性ガス、メタノール、エタノール、プロパノール等のアルコール成分、フェノール、クレゾール等のフェノール類の他、低分子化合物からなる香気成分類、例えば、醤油、ソース、味噌、リモネン、メントール、サリチル酸メチル、コーヒー、ココアシャンプー、リンス、等を例示することができる。
(Types of gas components that can block permeation)
Examples of the gas that can be blocked by the resin composition of the present invention and the laminate containing the resin composition include oxygen, an inert gas such as carbon dioxide, nitrogen and argon, an alcohol component such as methanol, ethanol and propanol, and phenol. In addition to phenols such as cresol, aroma components composed of low molecular weight compounds such as soy sauce, sauce, miso, limonene, menthol, methyl salicylate, coffee, cocoa shampoo, and rinse can be exemplified.
<包装材料、および加熱殺菌用包装材料>
 本発明の積層体は、ガスバリア性に優れることから、ガスバリア性が要求される包装材料として好適に使用可能である。特に食品・日用品・電子材料・医療用等は高いバリア性を必要とすることから、本発明の包装材料を好適に使用可能である。
 さらには耐熱性・耐湿熱性にも優れることから、ボイルやレトルトといった加熱殺菌用の包装材料としても好適に使用可能である。
<Packaging material and packaging material for heat sterilization>
Since the laminate of the present invention has excellent gas barrier properties, it can be suitably used as a packaging material that requires gas barrier properties. In particular, foods, daily necessities, electronic materials, medical materials, etc. require high barrier properties, so that the packaging material of the present invention can be preferably used.
Furthermore, since it is excellent in heat resistance and moisture heat resistance, it can be suitably used as a packaging material for heat sterilization such as boiling and retort.
 本発明の包装材は、本発明の積層体を使用した蓋材であってもよい。 The packaging material of the present invention may be a lid material using the laminate of the present invention.
 以下実施例を示し本発明を説明するが、本発明は実施例に限定されるものではない。なお、特に記述のない場合、単位は重量換算である。 The present invention will be described below with reference to examples, but the present invention is not limited to the examples. Unless otherwise specified, the unit is weight conversion.
言葉の定義:ポリアクリル酸(以下:PAAと省略する事がある)の単位ユニットの分子量は72である。通常、PAAの単位ユニット2分子(分子量72×2)に対して酸化亜鉛(分子量81.4)(以下:ZnOと省略する事がある)1分子が反応に寄与し塩形成する。PAA重量:ZnO重量=144/82.4=100/57で配合する処方を、ZnOを1当量配合すると称する。 Definition of terms: The molecular weight of a unit of polyacrylic acid (hereinafter sometimes abbreviated as PAA) is 72. Usually, one molecule of zinc oxide (molecular weight 81.4) (hereinafter, may be abbreviated as ZnO) contributes to the reaction and forms a salt with respect to two molecules of a unit unit of PAA (molecular weight 72 × 2). A formulation blended with PAA weight: ZnO weight = 144 / 82.4 = 100/57 is referred to as blending 1 equivalent of ZnO.
<PAA溶液の調整方法>
(PAA調整例1)
 フラスコにて数平均分子量9000のPAA粉末(ジュリマーAC―10P、東亜合成社製):20gをイソプロピルアルコール(関東化学社製):980g中で撹拌、沸騰させながら溶解し、固形分濃度が2%となる分子量9000のPAA溶液1を得た。
<How to prepare PAA solution>
(PAA adjustment example 1)
In a flask, PAA powder having a number average molecular weight of 9000 (Julimer AC-10P, manufactured by Toa Synthetic Co., Ltd.): 20 g was dissolved in isopropyl alcohol (manufactured by Kanto Chemical Co., Inc.): 980 g while stirring and boiling, and the solid content concentration was 2%. A PAA solution 1 having a molecular weight of 9000 was obtained.
(PAA調整例2)
 フラスコにて数平均分子量25万のPAA粉末(ジュリマーAC―10LHPK、東亜合成社製):20gをイソプロピルアルコール(以下IPAと省略する事がある)関東化学社製:980g中で撹拌、沸騰させながら溶解し、固形分濃度が2%となる分子量25万のPAA溶液2を得た。
(PAA adjustment example 2)
In a flask, PAA powder having a number average molecular weight of 250,000 (Julimer AC-10LHPK, manufactured by Toa Synthetic Co., Ltd.): 20 g of isopropyl alcohol (hereinafter sometimes abbreviated as IPA) manufactured by Kanto Chemical Co., Inc .: while stirring and boiling in 980 g. It was dissolved to obtain a PAA solution 2 having a molecular weight of 250,000 and having a solid content concentration of 2%.
(PAA調整例3)
 フラスコにて数平均分子量80万のPAA粉末(アクアリックAS-58、日本触媒製):20gをイソプロピルアルコール(関東化学社製):980g中で撹拌、沸騰させながら溶解し、固形分濃度が2%となる分子量80万のPAA溶液3を得た。
(PAA adjustment example 3)
In a flask, 20 g of PAA powder having a number average molecular weight of 800,000 (Aqualic AS-58, manufactured by Nippon Catalyst Co., Ltd.) was dissolved in 980 g of isopropyl alcohol (manufactured by Kanto Chemical Co., Inc.) while stirring and boiling, and the solid content concentration was 2. A PAA solution 3 having a molecular weight of 800,000% was obtained.
<ZnO分散液の調整方法>
(ZnO調整例1)
 ZnOの分散液について、一次粒子径20nmのZnO(堺化学工業株式会社製、FINEX-50):200gとIPA:800gを混合し、ビーズミル(寿株式会社製:ウルトラアスペックミルUAM-015)中で直径0.3mmのジルコニアビーズを使って1時間分散処理した後、ビーズをふるい分け、固形分濃度:20%のZnO溶液を得た。この溶液をIPAで希釈し、固形分濃度が2%となるZnOのIPA分散液を得た。この分散液中のZnOの粒径は88nmであった。
<How to adjust ZnO dispersion>
(ZnO adjustment example 1)
Regarding the dispersion solution of ZnO, ZnO (manufactured by Sakai Chemical Industry Co., Ltd., FINEX-50): 200 g and IPA: 800 g are mixed and contained in a bead mill (manufactured by Kotobuki Co., Ltd .: Ultra Aspek Mill UAM-015). After dispersion treatment for 1 hour using zirconia beads having a diameter of 0.3 mm, the beads were sifted to obtain a ZnO solution having a solid content concentration of 20%. This solution was diluted with IPA to obtain an IPA dispersion of ZnO having a solid content concentration of 2%. The particle size of ZnO in this dispersion was 88 nm.
<比較用コーティング剤の調整方法>
 「バイロンGK880」(東洋紡製)30部をメチルエチルケトン70部に溶解させた溶液7.3部に対し、硬化剤としてタケネートD-110N(三井化学(株)製)2.7部を混合し、さらにメチルエチルケトン19部を加え固形分濃度10%の比較用コーティング剤を得た。
<How to adjust the coating agent for comparison>
2.7 parts of Takenate D-110N (manufactured by Mitsui Chemicals, Inc.) as a curing agent was mixed with 7.3 parts of a solution prepared by dissolving 30 parts of "Byron GK880" (manufactured by Toyobo) in 70 parts of methyl ethyl ketone, and further. 19 parts of methyl ethyl ketone was added to obtain a comparative coating agent having a solid content concentration of 10%.
<接着剤調整例>
[ポリオール]
(EGoPA 0.9K)「ポリオールA1」
攪拌機、窒素ガス導入管、スナイダー管、コンデンサーを備えたポリエステル反応容器に、エチレングリコール80.12部、無水フタル酸148.12部、及びチタニウムテトライソプロポキシド0.02部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量900、水酸基価124.7mgKOH/gのポリエステルポリオール「ポリオールA1」を得た。
<Adhesive adjustment example>
[Polycarbonate]
(EGoPA 0.9K) "Polycarbonate A1"
80.12 parts of ethylene glycol, 148.12 parts of phthalic anhydride, and 0.02 parts of titanium tetraisopropoxide were charged in a polyester reaction vessel equipped with a stirrer, a nitrogen gas introduction tube, a snider tube, and a condenser, and the temperature of the upper part of the rectification tube was increased. Was gradually heated so as not to exceed 100 ° C., and the internal temperature was maintained at 220 ° C. When the acid value became 1 mgKOH / g or less, the esterification reaction was terminated to obtain a polyester polyol "polyester A1" having a number average molecular weight of 900 and a hydroxyl value of 124.7 mgKOH / g.
 (EGoPA/AA 0.5K) 「ポリオールA2」
攪拌機、窒素ガス導入管、精留管、水分分離器等を備えたポリエステル反応容器に、無水フタル酸207.37部、エチレングリコール184.0部、アジピン酸87.68部及びチタニウムテトライソプロポキシド0.014部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量約500、水酸基価224.4mgKOH/g、酸価0.9mgKOH/gのポリエステルポリオール「ポリオールA2」を得た。
(EGoPA / AA 0.5K) "Polycarbonate A2"
207.37 parts of phthalic anhydride, 184.0 parts of ethylene glycol, 87.68 parts of adipic acid and titanium tetraisopropoxide in a polyester reaction vessel equipped with a stirrer, a nitrogen gas introduction tube, a rectification tube, a water separator, etc. 0.014 parts were charged and gradually heated so that the temperature of the upper part of the rectification tube did not exceed 100 ° C. to maintain the internal temperature at 220 ° C. The esterification reaction was terminated when the acid value became 1 mgKOH / g or less to obtain a polyester polyol "polyester A2" having a number average molecular weight of about 500, a hydroxyl value of 224.4 mgKOH / g, and an acid value of 0.9 mgKOH / g.
 (EGoPA/MA 0.6K) 「ポリオールA3」
攪拌機、窒素ガス導入管、精留管、水分分離器等を備えたポリエステル反応容器に、無水マレイン酸98.1部、エチレングリコール78.5部及びチタニウムテトライソプロポキシドを多価カルボン酸と多価アルコールとの合計量に対して100ppmに相当する量を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を205℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量約600、水酸基価182mgKOH/g、酸価0.9mgKOH/gのポリエステルポリオール「ポリオールA3」を得た。
(EGoPA / MA 0.6K) "Polycarbonate A3"
In a polyester reaction vessel equipped with a stirrer, a nitrogen gas introduction tube, a rectification tube, a water separator, etc., 98.1 parts of maleic anhydride, 78.5 parts of ethylene glycol and titanium tetraisopropoxide are added as a polyvalent carboxylic acid. An amount corresponding to 100 ppm with respect to the total amount with the valent alcohol was charged, and the internal temperature was maintained at 205 ° C. by gradually heating the rectification tube so that the upper temperature did not exceed 100 ° C. The esterification reaction was terminated when the acid value became 1 mgKOH / g or less to obtain a polyester polyol "polyester A3" having a number average molecular weight of about 600, a hydroxyl value of 182 mgKOH / g, and an acid value of 0.9 mgKOH / g.
 (EGoPA/FDCA 0.5K) 「ポリオールA4」
攪拌機、窒素ガス導入管、スナイダー管、コンデンサーを備えたポリエステル反応容器に、エチレングリコール80.12部、無水フタル酸74.06部、フランジカルボン酸78.05及びチタニウムテトライソプロポキシド0.02部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量500、水酸基価220.4mgKOH/g、酸価0.8mgKOH/gのポリエステルポリオール「ポリオールA4」を得た。
(EGoPA / FDCA 0.5K) "Polycarbonate A4"
80.12 parts of ethylene glycol, 74.06 parts of phthalic anhydride, 78.05 of frangylcarboxylic acid and 0.02 parts of titanium tetraisopropoxide are charged in a polyester reaction vessel equipped with a stirrer, a nitrogen gas introduction pipe, a snider pipe, and a condenser. , The internal temperature was maintained at 220 ° C. by gradually heating so that the temperature of the upper part of the rectification tube did not exceed 100 ° C. The esterification reaction was terminated when the acid value became 1 mgKOH / g or less to obtain a polyester polyol "polyester A4" having a number average molecular weight of 500, a hydroxyl value of 220.4 mgKOH / g, and an acid value of 0.8 mgKOH / g.
 (GLY(EGoPA)3) 「ポリオールA5」
攪拌機、窒素ガス導入管、スナイダー管、コンデンサーを備えたポリエステル反応容器に、グリセロールを92.09部、無水フタル酸444.36部、エチレングリコール186.21部、及びチタニウムテトライソプロポキシド0.07部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量668.60、水酸基価250mgKOH/g、酸価0.5mgKOH/gのポリエステルポリオール「ポリオールA5」を得た。
(GLY (EGoPA) 3) "Polycarbonate A5"
92.09 parts of glycerol, 444.36 parts of phthalic anhydride, 186.21 parts of ethylene glycol, and 0.07 of titanium tetraisopropoxide in a polyester reaction vessel equipped with a stirrer, a nitrogen gas introduction tube, a snyder tube, and a condenser. The portion was charged and gradually heated so that the temperature of the upper part of the rectification tube did not exceed 100 ° C. to maintain the internal temperature at 220 ° C. The esterification reaction was terminated when the acid value became 1 mgKOH / g or less to obtain a polyester polyol "polyester A5" having a number average molecular weight of 668.60, a hydroxyl value of 250 mgKOH / g, and an acid value of 0.5 mgKOH / g.
 (GLY(EGoPA)3 + MICA) 「ポリオールA6」
 撹拌機を備えた容器に「ポリオールA5」70部を仕込み、90℃で加熱撹拌しポリオールが十分に流動性を保つ状態とした。撹拌しながらHM6025(HENGHAO社製、天然マイカ/非膨潤性、板状、平均粒径10μm、アスペクト比100以上)30部を加え、90℃で均一となるまで撹拌した。これを冷却することで無機化合物を「ポリオールA5」に分散させた「ポリオールA6」を得た。
(GLY (EGoPA) 3 + MICA) "Polycarbonate A6"
70 parts of "polypoly A5" was charged into a container equipped with a stirrer and heated and stirred at 90 ° C. to bring the polyol into a state of sufficiently maintaining fluidity. While stirring, 30 parts of HM6025 (manufactured by HENGHAO, natural mica / non-swellable, plate-shaped, average particle size 10 μm, aspect ratio 100 or more) was added, and the mixture was stirred at 90 ° C. until uniform. By cooling this, "polypoly A6" in which an inorganic compound was dispersed in "polyol A5" was obtained.
 (EGoPA/AA 0.5K+MICA)「ポリオールA7」
撹拌機を備えた容器に「ポリオールA2」70部を仕込み、90℃で加熱撹拌しポリオールが十分に流動性を保つ状態とした。撹拌しながらHM6025(HENGHAO社製、天然マイカ/非膨潤性、板状、平均粒径10μm、アスペクト比100以上)30部を加え、90℃で均一となるまで撹拌した。これを冷却することで無機化合物を「ポリオールA2」に分散させた「ポリオールA7」を得た。
(EGoPA / AA 0.5K + MICA) "Polycarbonate A7"
70 parts of "polypoly A2" was charged into a container equipped with a stirrer and heated and stirred at 90 ° C. to bring the polyol into a state of sufficiently maintaining fluidity. While stirring, 30 parts of HM6025 (manufactured by HENGHAO, natural mica / non-swellable, plate-shaped, average particle size 10 μm, aspect ratio 100 or more) was added, and the mixture was stirred at 90 ° C. until uniform. By cooling this, "polypoly A7" in which an inorganic compound was dispersed in "polyol A2" was obtained.
(DEG/AA2.0K)「ポリオールA8」
 攪拌機、窒素ガス導入管、スナイダー管、コンデンサーを備えたポリエステル反応容器に、ジエチレングリコール125.33部、アジピン酸146.14部、及びチタニウムテトライソプロポキシド0.02部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量2000、水酸基価56.1mgKOH/g、酸価1.0mgKOH/gのポリエステルポリオール「ポリオールA8」を得た。
(DEG / AA2.0K) "Polycarbonate A8"
125.33 parts of diethylene glycol, 146.14 parts of adipic acid, and 0.02 parts of titanium tetraisopropoxide were charged in a polyester reaction vessel equipped with a stirrer, a nitrogen gas introduction tube, a snider tube, and a condenser, and the temperature of the upper part of the rectification tube was increased. Was gradually heated so as not to exceed 100 ° C., and the internal temperature was maintained at 220 ° C. The esterification reaction was terminated when the acid value became 1 mgKOH / g or less to obtain a polyester polyol "polyester A8" having a number average molecular weight of 2000, a hydroxyl value of 56.1 mgKOH / g, and an acid value of 1.0 mgKOH / g.
(ポリイソシアネート組成物の調整)
「硬化剤 B1」
 攪拌機、窒素ガス導入管、スナイダー管、コンデンサーを備えたポリエステル反応容器に、エチレングリコール80.12部、無水フタル酸148.12部、及びチタニウムテトライソプロポキシド0.02部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量400のポリオール中間体を得た。次に攪拌機、窒素ガス導入管、スナイダー管、冷却コンデンサー、滴下漏斗を備えた反応容器にキシリレンジイソシアネート71.45部、ミリオネートMN(4,4’-ジフェニルメタンジイソシアネートと2,4’-ジフェニルメタンジイソシアネートとの混合物)46.26部を入れて70℃に加熱しながら撹拌し、ポリオール中間体73.82部を、滴下漏斗を用いて2時間かけて滴下し、更に4時間撹拌し、ポリイソシアネートである「硬化剤B1」を得た。JIS-K1603に従い測定したNCO%は15.1%であった。
(Preparation of polyisocyanate composition)
"Hardener B1"
A polyester reaction vessel equipped with a stirrer, a nitrogen gas introduction tube, a snyder tube, and a condenser is charged with 80.12 parts of ethylene glycol, 148.12 parts of phthalic anhydride, and 0.02 parts of titanium tetraisopropoxide, and a rectification tube. The internal temperature was maintained at 220 ° C. by gradually heating so that the upper temperature did not exceed 100 ° C. When the acid value became 1 mgKOH / g or less, the esterification reaction was terminated to obtain a polyol intermediate having a number average molecular weight of 400. Next, 71.45 parts of xylylene diisocyanate, millionate MN (4,4'-diphenylmethane diisocyanate and 2,4'-diphenylmethane diisocyanate) were added to a reaction vessel equipped with a stirrer, a nitrogen gas introduction tube, a snider tube, a cooling condenser, and a dropping funnel. 46.26 parts of the mixture was added and stirred while heating at 70 ° C., and 73.82 parts of the polyol intermediate was added dropwise using a dropping funnel over 2 hours, and the mixture was further stirred for 4 hours to obtain polyisocyanate. "Hardener B1" was obtained. The NCO% measured according to JIS-K1603 was 15.1%.
「硬化剤 B2」
 攪拌機、窒素ガス導入管、スナイダー管、冷却コンデンサー、滴下漏斗を備えた反応容器にキシリレンジイソシアネート71.45部、ミリオネートMN(4,4’-ジフェニルメタンジイソシアネートと2,4’-ジフェニルメタンジイソシアネートとの混合物)46.26部を入れて70℃に加熱しながら撹拌し、「ポリオールA2」92.28部を、滴下漏斗を用いて2時間かけて滴下し、更に4時間撹拌し、ポリイソシアネートである「硬化剤 B2」を得た。JIS-K1603に従い測定したNCO%は15.1%であった。
"Hardener B2"
71.45 parts of xylylene diisocyanate, a mixture of 4,4'-diphenylmethane diisocyanate and 2,4'-diphenylmethane diisocyanate in a reaction vessel equipped with a stirrer, nitrogen gas introduction tube, snider tube, cooling condenser, and dropping funnel. ) 46.26 parts were added and stirred while heating at 70 ° C., 92.28 parts of "polyol A2" was added dropwise using a dropping funnel over 2 hours, and the mixture was further stirred for 4 hours to obtain "polyisocyanate". Hardener B2 ”was obtained. The NCO% measured according to JIS-K1603 was 15.1%.
「硬化剤 B3」
 攪拌機、窒素ガス導入管、スナイダー管、コンデンサーを備えたポリエステル反応容器に、エチレングリコール24.72部、ジエチレングリコール60.10部、ネオペンチルグリコール2.49部、アジピン酸125.3部及びチタニウムテトライソプロポキシド0.02部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し中間体を得た。攪拌機、窒素ガス導入管、冷却コンデンサー、滴下漏斗を備えた反応容器にミリオネートMT83.45部、ルプラネートMI83.5部を入れて70℃に加熱しながら攪拌し、中間体を滴下漏斗を用いて2時間かけてゆっくり滴下し、更に4時攪拌し、ポリイソシアネートである「硬化剤B3」を得た。JIS-K1603に従い測定したNCO%は13.2%であった。
"Hardener B3"
24.72 parts of ethylene glycol, 60.10 parts of diethylene glycol, 2.49 parts of neopentyl glycol, 125.3 parts of adipate and titanium tetraiso in a polyester reaction vessel equipped with a stirrer, a nitrogen gas introduction tube, a snyder tube, and a condenser. 0.02 part of propoxide was charged and gradually heated so that the temperature of the upper part of the rectification tube did not exceed 100 ° C. to maintain the internal temperature at 220 ° C. When the acid value became 1 mgKOH / g or less, the esterification reaction was terminated to obtain an intermediate. Put 83.45 parts of Millionate MT and 83.5 parts of Luplanate MI in a reaction vessel equipped with a stirrer, a nitrogen gas introduction tube, a cooling condenser, and a dropping funnel, and stir while heating to 70 ° C., and use a dropping funnel to stir the intermediate. The mixture was slowly added dropwise over time and further stirred at 4 o'clock to obtain a polyisocyanate "hardener B3". The NCO% measured according to JIS-K1603 was 13.2%.
「硬化剤 B4」
 攪拌機、窒素ガス導入管、スナイダー管、冷却コンデンサー、滴下漏斗を備えた反応容器にキシリレンジイソシアネート71.45部、ミリオネートMN(4,4’-ジフェニルメタンジイソシアネートと2,4’-ジフェニルメタンジイソシアネートとの混合物)46.26部を入れて70℃に加熱しながら撹拌し、「ポリオールA4」92.28部を、滴下漏斗を用いて2時間かけて滴下し、更に4時間撹拌し、「硬化剤B4」を得た。JIS-K1603に従い測定したNCO%は15.1%であった。
"Hardener B4"
71.45 parts of xylylene diisocyanate, a mixture of 4,4'-diphenylmethane diisocyanate and 2,4'-diphenylmethane diisocyanate in a reaction vessel equipped with a stirrer, nitrogen gas introduction tube, snider tube, cooling condenser, and dropping funnel. ) 46.26 parts were added and stirred while heating at 70 ° C., 92.28 parts of "polypoly A4" was added dropwise using a dropping funnel over 2 hours, and the mixture was further stirred for 4 hours to obtain "hardener B4". Got The NCO% measured according to JIS-K1603 was 15.1%.
「硬化剤 B5」
 三井化学製「タケネートD-110N」(メタキシリレンジイソシアネートのトリメチロールプロパンアダクト体 不揮発成分75.0% NCO% 11.5%)と三井化学製「タケネート500」(メタキシリレンジイソシアネート不揮発分>99%,NCO% 44.6%)を50/50(質量比)の割合で混合し「硬化剤 B5」とした。硬化剤B1の不揮発分は、87.5%、NCO%は28.05%である。
"Hardener B5"
Mitsui Chemicals "Takenate D-110N" (trimethylolpropane adduct of metaxylylene diisocyanate non-volatile component 75.0% NCO% 11.5%) and Mitsui Chemicals "Takenate 500" (metaxylylene diisocyanate non-volatile content> 99 %, NCO% 44.6%) were mixed at a ratio of 50/50 (mass ratio) to obtain "hardener B5". The non-volatile content of the curing agent B1 is 87.5%, and the NCO% is 28.05%.
「硬化剤 B6」
 DIC株式会社製「PASLIM VM108CP」を「硬化剤 B6」とした。   
"Hardener B6"
"PASLIM VM108CP" manufactured by DIC Corporation was designated as "curing agent B6".
(接着剤の調整)
 調整したポリオールA1~A8、硬化剤B1~B6を表1に示す比率で配合して接着剤1~15を調整した。
(Adhesive adjustment)
The adjusted polyols A1 to A8 and the curing agents B1 to B6 were blended in the ratios shown in Table 1 to prepare the adhesives 1 to 15.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
<水性リキッドインキの調整方法>
(水性インキ用樹脂の調整)
 温度計、窒素ガス導入管、攪拌器を備えた窒素置換された容器中で、ポリオキシテトラメチレングリコール(分子量2000)191質量部、イソホロンジイソシアネート141質量部、2,2-ジメチロールプロピオン酸26質量部、及び1,4-シクロヘキサンジメタノール28質量部、メチルエチルケトン200質量部の混合溶剤中で反応させることによって、分子末端にイソシアネート基を有するウレタンプレポリマーの有機溶剤溶液を得た。
<How to adjust water-based liquid ink>
(Adjustment of resin for water-based ink)
In a nitrogen-substituted container equipped with a thermometer, a nitrogen gas introduction tube, and a stirrer, 191 parts by mass of polyoxytetramethylene glycol (molecular weight 2000), 141 parts by mass of isophorone diisocyanate, and 26 parts by mass of 2,2-dimethylolpropionic acid. By reacting in a mixed solvent of 28 parts by mass, 1,4-cyclohexanedimethanol and 200 parts by mass of methyl ethyl ketone, an organic solvent solution of a urethane prepolymer having an isocyanate group at the molecular terminal was obtained.
 次いで、50%水酸化カリウム水溶液20質量部加えることで前記ウレタンプレポリマーが有するカルボキシル基の一部または全部を中和し、さらに水700質量部と80%ヒドラジン水溶液9.0質量部を加え十分に攪拌することにより、ウレタン樹脂の水分散体を得、次いでエージング・脱溶剤することによって、不揮発分40質量%の水性リキッドインキ用樹脂を得た。 Next, 20 parts by mass of a 50% potassium hydroxide aqueous solution was added to neutralize a part or all of the carboxyl groups of the urethane prepolymer, and 700 parts by mass of water and 9.0 parts by mass of an 80% hydrazine aqueous solution were added sufficiently. An aqueous dispersion of a urethane resin was obtained by stirring the mixture, and then aging and solvent removal were performed to obtain a resin for an aqueous liquid ink having a non-volatile content of 40% by mass.
(水性リキッドインキの調整)
 得られた水性リキッドインキ用樹脂を用い以下の組成で撹拌混合した後、ビーズミルで練肉して練肉ベースを作成した。
〔練肉ベース配合〕
   FASTPGEN BLUE LA5380藍顔料(DIC社製) 15部
   水性リキッドインキ用樹脂     40部
   ノニオン系顔料分散剤(BYK社製)10部
   イソプロピルアルコール       3部
   水                 8部
   シリコン系消泡剤(BYK社製) 0.2部
(Adjustment of water-based liquid ink)
Using the obtained resin for water-based liquid ink, the mixture was stirred and mixed with the following composition, and then kneaded with a bead mill to prepare a kneaded meat base.
[Meat base combination]
FASTPGEN BLUE LA5380 Indigo pigment (manufactured by DIC) 15 parts Resin for water-based liquid ink 40 parts Nonionic pigment dispersant (manufactured by BYK) 10 parts Isopropyl alcohol 3 parts Water 8 parts Silicone defoamer (manufactured by BYK) 0. Part 2
 得られた練肉ベースに、さらに水性リキッドインキ用樹脂10部、水4部を加えた後、さらに水性リキッドインキの粘度がザーンカップ#4(離合社製)で16秒(25℃)になる様に水を加えて水性リキッドインキを得た。粘度調整に用いた水は5部、水性リキッドインキの不揮発分は58%、25℃における表面張力は35mN/mであった。表面張力はWhihelmy法に基付き、協和界面科学(株)社製 自動表面張力計DY-300を用いて測定した。得られた水性リキッドインキの配合は以下の通りである。
〔水性リキッドインキの配合〕
   FASTPGEN BLUE LA5380藍顔料(DIC社製) 15部
   水性リキッドインキ用樹脂        50部
   ノニオン系顔料分散剤(BYK社製)   10部
   イソプロピルアルコール          3部
   水                   17部
   シリコン系消泡剤(BYK社製)    0.2部
After adding 10 parts of the resin for water-based liquid ink and 4 parts of water to the obtained kneaded meat base, the viscosity of the water-based liquid ink becomes 16 seconds (25 ° C.) with Zahn Cup # 4 (manufactured by Rigosha). Water was added in the same manner to obtain a water-based liquid ink. The amount of water used for adjusting the viscosity was 5 parts, the non-volatile content of the water-based liquid ink was 58%, and the surface tension at 25 ° C. was 35 mN / m. The surface tension was measured using an automatic surface tension meter DY-300 manufactured by Kyowa Interface Science Co., Ltd. based on the Whyhelmy method. The composition of the obtained water-based liquid ink is as follows.
[Mixing of water-based liquid ink]
FASTPGEN BLUE LA5380 Indigo pigment (manufactured by DIC) 15 parts Resin for water-based liquid ink 50 parts Nonionic pigment dispersant (manufactured by BYK) 10 parts Isopropyl alcohol 3 parts Water 17 parts Silicon-based defoamer (manufactured by BYK) 0. Part 2
<評価用積層体の製造方法>
(酸化アルミニウム層を有するOPPフィルム1の製造)
 2軸延伸処理により面配向係数Δを0.011に調製した厚み20μmのOPPフィルムの一方の面に、シランカップリング剤、アクリルポリオール、およびイソシアネート硬化剤を混合したアンカーコート剤を塗布し、厚み0.3μmのアンカーコート層を形成した後、電子線加熱方式により厚み15nmの酸化アルミニウム層を形成した。このフィルムを以下ではOPPフィルム1とも称する。
<Manufacturing method of laminate for evaluation>
(Manufacture of OPP film 1 having an aluminum oxide layer)
An anchor coating agent mixed with a silane coupling agent, an acrylic polyol, and an isocyanate curing agent is applied to one surface of an OPP film having a thickness of 20 μm whose surface orientation coefficient Δ is adjusted to 0.011 by biaxial stretching treatment to obtain a thickness. After forming a 0.3 μm anchor coat layer, an aluminum oxide layer having a thickness of 15 nm was formed by an electron beam heating method. This film will also be referred to as OPP film 1 below.
(酸化アルミニウム層を有するOPPフィルム2、2’の製造)
 OPPフィルム1の酸化アルミニウム層上に、表2、3に示す配合で調整したガスバリア性コーティング剤または表4に示す配合で調整したコーティング剤を、バーコーターを用いて塗布量1.0g/m(固形分)となるよう塗工した。塗工後すぐに60℃の乾燥機中で1分間加熱し、酸化アルミニウム層上にガスバリア性コーティング層を有するOPPフィルム(以下OPPフィルム2とも称する)、酸化アルミニウム層上にコーティング層を有するOPPフィルム(以下OPPフィルム2’とも称する)を得た。
(Manufacturing of OPP films 2 and 2'having an aluminum oxide layer)
On the aluminum oxide layer of the OPP film 1, a gas barrier coating agent adjusted according to the formulations shown in Tables 2 and 3 or a coating agent adjusted according to the formulations shown in Table 4 is applied in a coating amount of 1.0 g / m 2 using a bar coater. It was coated so that it became (solid content). Immediately after coating, the OPP film is heated in a dryer at 60 ° C. for 1 minute to have a gas barrier coating layer on the aluminum oxide layer (hereinafter also referred to as OPP film 2), and an OPP film having a coating layer on the aluminum oxide layer. (Hereinafter also referred to as OPP film 2') was obtained.
(酸化アルミニウム層を有するOPPフィルム3の製造)
 OPPフィルム1に、Flexoproof100テスト印刷機(Testing Machines,Inc.社製、アニロックス200線/inch)を用いて水性リキッドインキを縦240mm×横80mmのベタ柄で印刷後、ドライヤーで乾燥してOPPフィルムの酸化アルミニウム層上に印刷層を設け、OPPフィルム3とした。印刷層の塗布量(塗布した水性リキッドインキの固形分量)は1.0g/mであった。
(Manufacturing of OPP film 3 having an aluminum oxide layer)
Water-based liquid ink is printed on OPP film 1 using a Flexoprof100 test printing machine (Testing Machines, Inc., Anilox 200 lines / inch) with a solid pattern of 240 mm in length and 80 mm in width, and then dried with a dryer to dry the OPP film. A printing layer was provided on the aluminum oxide layer of No. 3 to form an OPP film 3. The coating amount of the printing layer (solid content of the coated water-based liquid ink) was 1.0 g / m 2 .
 OPPフィルム1に換えてOPPフィルム2を用い、ガスバリア性コーティング層上に印刷層を設けた以外はOPPフィルム3の製造と同様にしてOPPフィルム4を得た。また、OPPフィルム1に換えてOPPフィルム2’を用い、コーティング層上に印刷層を設けた以外はOPPフィルム3の製造と同様にしてOPPフィルム4’を得た。 The OPP film 2 was used instead of the OPP film 1, and the OPP film 4 was obtained in the same manner as in the production of the OPP film 3 except that the printing layer was provided on the gas barrier coating layer. Further, OPP film 2'was used instead of OPP film 1, and OPP film 4'was obtained in the same manner as in the production of OPP film 3 except that a printing layer was provided on the coating layer.
(評価用積層体の製造方法)
 上記のようにして得られたOPPフィルムを用い、以下の接着剤塗工方法1または2のいずれかの方法で実施例1~19、比較例1~3の評価用積層体を製造した。積層体の製造に用いた接着剤、接着剤塗工方法は表2~4に記載のものである。
(Manufacturing method of laminate for evaluation)
Using the OPP film obtained as described above, the evaluation laminates of Examples 1 to 19 and Comparative Examples 1 to 3 were produced by any of the following adhesive coating methods 1 or 2. The adhesives and adhesive coating methods used in the production of the laminate are shown in Tables 2 to 4.
<接着剤塗工方法>
(方法1)
 調整した接着剤を、バーコーターを用いて、塗膜量3.0g/m(固形分)となるようにOPPフィルム1の酸化アルミニウム層上、OPPフィルム2のガスバリア性コーティング層上、OPPフィルム2’のコーティング層上、OPPフィルム3、4、4’の印刷層上にそれぞれ塗布し、温度70℃に設定したドライヤーで希釈溶剤を揮発させ乾燥した。次に前記接着剤が塗布されたOPPフィルムの接着剤面とLLDPEフィルム(三井化学東セロ製TUX-HC、厚さ40μm)とを貼り合せた。40℃/2日間のエージングを行い、積層体を得た。
<Adhesive coating method>
(Method 1)
Using a bar coater, apply the adjusted adhesive on the aluminum oxide layer of OPP film 1, the gas barrier coating layer of OPP film 2, and the OPP film so that the coating film amount is 3.0 g / m 2 (solid content). It was applied on the coating layer of 2'and on the printing layers of the OPP films 3, 4, and 4', respectively, and the diluting solvent was volatilized and dried by a dryer set at a temperature of 70 ° C. Next, the adhesive surface of the OPP film coated with the adhesive and the LLDPE film (TUX-HC manufactured by Mitsui Chemicals Tohcello Co., Ltd., thickness 40 μm) were bonded together. Aging was carried out at 40 ° C. for 2 days to obtain a laminate.
(方法2)
 調整した接着剤を約70℃に加熱し、無溶剤用テストコーターを用いて、OPPフィルム1の酸化アルミニウム層上、OPPフィルム2のガスバリア性コーティング層上、OPPフィルム2’のコーティング層上、OPPフィルム3、4、4’の印刷層上に塗膜量2.5g/m(固形分)となるようにそれぞれ塗布し、前記接着剤が塗布されたOPPフィルム1~4の接着剤面とLLDPEフィルム(三井化学東セロ製TUX-HC、厚さ40μm)とを貼り合せた。40℃/2日間のエージングを行い、積層体を得た。
(Method 2)
The prepared adhesive is heated to about 70 ° C., and a solvent-free test coater is used on the aluminum oxide layer of the OPP film 1, the gas barrier coating layer of the OPP film 2, the coating layer of the OPP film 2', and the OPP. A coating amount of 2.5 g / m 2 (solid content) was applied onto the print layers of the films 3, 4 and 4', respectively, and the adhesive surfaces of the OPP films 1 to 4 to which the adhesive was applied were applied. An LLDPE film (TUX-HC manufactured by Mitsui Kagaku Tohcello, thickness 40 μm) was bonded. Aging was carried out at 40 ° C. for 2 days to obtain a laminate.
<評価>
(ガスバリア性の評価:酸素透過率)
 酸素透過率(OTR)の測定は、JIS-K7126(等圧法)に準じ、モコン社製酸素透過率測定装置OX-TRAN1/50を用いて、温度23℃、湿度0%RHの雰囲気下、及び、温度23℃、湿度90%RHの雰囲気下で実施した。RHとは相対湿度を表す。尚、酸素透過率の単位は、cc/day・atm・mである。結果を表2~4にまとめた。
<Evaluation>
(Evaluation of gas barrier property: Oxygen permeability)
The oxygen transmission rate (OTR) is measured according to JIS-K7126 (isopressure method) using the oxygen transmission rate measurement device OX-TRAN1 / 50 manufactured by Mocon Co., Ltd. in an atmosphere of temperature 23 ° C. and humidity 0% RH. , The temperature was 23 ° C. and the humidity was 90% RH. RH represents relative humidity. The unit of oxygen permeability is cc / day, atm, and m 2 . The results are summarized in Tables 2-4.
(ガスバリア性の評価:水蒸気透過率)
 水蒸気透過率(MVTR)の測定は、JIS-K7129に準じ、イリノイ社製水蒸気透過率測定装置7001を用いて、温度40℃、湿度90%RHの雰囲気下で測定した。尚、酸素透過率の単位は、g/m・dayである。結果を表2~4にまとめた。
(Evaluation of gas barrier property: Water vapor permeability)
The water vapor transmittance (MVTR) was measured according to JIS-K7129 in an atmosphere of a temperature of 40 ° C. and a humidity of 90% RH using a water vapor permeability measuring device 7001 manufactured by Irinoi. The unit of oxygen permeability is g / m 2 · day. The results are summarized in Tables 2-4.
(屈曲試験後の酸素透過率)
 エージングが終了した積層体を30cm×20cmのサイズに調整し、ASTM F392に準じてゲルボフレックステスター(BE-1006恒温槽付ゲルボフレックステスター、テスター産業(株))にて屈曲試験を行った。尚、屈曲試験は440°/90mm、直動65mm、23℃にて屈曲回数5回の条件で実施し、ゲルボフレックス処理後の酸素透過率を測定した。単位はcc/m・day・atmである。結果を表2~4にまとめた。
(Oxygen permeability after bending test)
The aging-finished laminate was adjusted to a size of 30 cm x 20 cm, and a bending test was conducted with a Gelboflex tester (BE-1006 Gelboflex tester with constant temperature bath, Tester Sangyo Co., Ltd.) according to ASTM F392. .. The bending test was carried out at 440 ° / 90 mm, linear motion 65 mm, and 23 ° C. under the conditions of 5 times of bending, and the oxygen permeability after the gelboflex treatment was measured. The unit is cc / m 2 , day, atm. The results are summarized in Tables 2-4.
(屈曲試験後の水蒸気透過率)
 エージングが終了した積層体を30cm×20cmのサイズに調整し、ASTM F392に準じてゲルボフレックステスター(BE-1006恒温槽付ゲルボフレックステスター、テスター産業(株))にて屈曲試験を行った。尚、屈曲試験は440°/90mm、直動65mm、23℃にて屈曲回数5回の条件で実施し、ゲルボフレックス処理後の水蒸気透過率を測定した。単位はg/m・dayである。結果を表2~4にまとめた。
(Water vapor permeability after bending test)
The aging-finished laminate was adjusted to a size of 30 cm x 20 cm, and a bending test was conducted with a Gelboflex tester (BE-1006 Gelboflex tester with constant temperature bath, Tester Sangyo Co., Ltd.) according to ASTM F392. .. The bending test was carried out at 440 ° / 90 mm, linear motion 65 mm, and 23 ° C. under the conditions of 5 times of bending, and the water vapor transmittance after the gelboflex treatment was measured. The unit is g / m 2 · day. The results are summarized in Tables 2-4.
(ラミネート強度の測定方法)
 OPPフィルム2またはOPPフィルム2’とLLDPEフィルムとの評価用積層体を塗工方向と平行に15mm幅に切断し、2軸延伸OPPフィルムとLLDPEフィルムとの間を、(株)エー・アンド・ディー製「テンシロン万能試験機STB―01」を用いて、雰囲気温度25℃、剥離速度を300mm/分に設定し、180度剥離方法で剥離した際の引っ張り強度をラミネート強度とした。接着強度の単位はN/15mmとした。また、表中の「OPP切れ」とは接着強度が強いために被着体(この場合はOPPフィルム)の材料破壊が生じた状態、すなわち接着強度自体は良好であることを表す。
(Measuring method of laminate strength)
The evaluation laminate of OPP film 2 or OPP film 2'and LLDPE film is cut to a width of 15 mm parallel to the coating direction, and the biaxially stretched OPP film and LLDPE film are sandwiched between A & Co., Ltd. Using "Tencilon universal testing machine STB-01" manufactured by D., the ambient temperature was set to 25 ° C., the peeling speed was set to 300 mm / min, and the tensile strength when peeled by the 180 degree peeling method was defined as the lamination strength. The unit of adhesive strength was N / 15 mm. Further, "OPP cut" in the table means that the material of the adherend (OPP film in this case) is destroyed due to the strong adhesive strength, that is, the adhesive strength itself is good.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 実施例、比較例から明らかなように、本発明の積層体は酸素、水蒸気透過率が低く抑えられており、バリア性に優れ、且つ屈曲試験後であってもその特性を維持している。一方比較例1~3の積層体は、ガスバリア性に劣り、且つ屈曲試験後に性能が著しく劣化することが分かる。 As is clear from Examples and Comparative Examples, the laminated body of the present invention has low oxygen and water vapor transmittances, is excellent in barrier properties, and maintains its characteristics even after a bending test. On the other hand, it can be seen that the laminates of Comparative Examples 1 to 3 are inferior in gas barrier property and the performance is significantly deteriorated after the bending test.
 本発明の積層体は、その組成により従来のガスバリア性積層体と比較し、優れたガスバリア性を示す。このことから本発明の積層体は、包装材料、特に食品・日用品・電子材料・医療用等のバリア性を必要とする包装材料として好適に使用可能である。 The laminate of the present invention exhibits excellent gas barrier properties as compared with conventional gas barrier laminates due to its composition. From this, the laminate of the present invention can be suitably used as a packaging material, particularly as a packaging material that requires barrier properties such as food, daily necessities, electronic materials, and medical use.

Claims (6)

  1.  2軸延伸ポリプロピレンからなる基材と、
     前記基材上に配置された酸化アルミニウム層と、
     前記酸化アルミニウム層上に配置されたガスバリア性コーティング剤層と、
     前記ガスバリア性コーティング剤層上に配置されたガスバリア性接着剤層と、を有する積層体。
    A substrate made of biaxially stretched polypropylene and
    The aluminum oxide layer arranged on the base material and
    The gas barrier coating agent layer arranged on the aluminum oxide layer and
    A laminate having a gas barrier adhesive layer arranged on the gas barrier coating agent layer.
  2.  前記ガスバリアコーティング剤が、カルボキシル基を有する樹脂(A)と、2価金属化合物(B)、アルコール(C)とを含有するコーティング剤であって、組成物中におけるアルコール(C)の含有量が85~98wt%であって、組成物中における水分量が1%以下であることを特徴とする、請求項1に記載の積層体。 The gas barrier coating agent is a coating agent containing a resin (A) having a carboxyl group, a divalent metal compound (B), and an alcohol (C), and the content of the alcohol (C) in the composition is high. The laminate according to claim 1, wherein the content is 85 to 98 wt% and the water content in the composition is 1% or less.
  3.  前記カルボキシル基を有する樹脂(A)が、アクリル酸、メタクリル酸、マレイン酸およびイタコン酸、およびアスパラギン酸から選ばれる単量体の単独重合体または共重合体から選ばれる少なくとも1種である、請求項1または2のいずれか一項に記載の積層体。 The resin (A) having a carboxyl group is at least one selected from homopolymers or copolymers of monomers selected from acrylic acid, methacrylic acid, maleic acid and itaconic acid, and aspartic acid. Item 2. The laminate according to any one of Items 1 and 2.
  4.  前記2価金属化合物(B)が、亜鉛化合物、マグネシウム化合物及びカルシウム化合物から選ばれる少なくとも1種である、請求項1~3のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the divalent metal compound (B) is at least one selected from a zinc compound, a magnesium compound, and a calcium compound.
  5.  前記アルコール(C)が、メタノール、エタノール、プロパノール、ブタノールから選ばれる少なくとも1種である、請求項1~4のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the alcohol (C) is at least one selected from methanol, ethanol, propanol, and butanol.
  6.  請求項1~5のいずれか一項に記載の積層体からなる包装材。 A packaging material made of the laminate according to any one of claims 1 to 5.
PCT/JP2020/031385 2019-08-27 2020-08-20 Gas barrier laminate, and packaging material WO2021039559A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021542797A JP7228107B2 (en) 2019-08-27 2020-08-20 Gas barrier laminates, packaging materials
CN202080054342.5A CN114206612A (en) 2019-08-27 2020-08-20 Gas barrier laminate and packaging material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-154366 2019-08-27
JP2019154366 2019-08-27

Publications (1)

Publication Number Publication Date
WO2021039559A1 true WO2021039559A1 (en) 2021-03-04

Family

ID=74685469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031385 WO2021039559A1 (en) 2019-08-27 2020-08-20 Gas barrier laminate, and packaging material

Country Status (3)

Country Link
JP (1) JP7228107B2 (en)
CN (1) CN114206612A (en)
WO (1) WO2021039559A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021252080A1 (en) * 2020-06-10 2021-12-16 Dow Global Technologies Llc Composition having polyol and isocyanate
JP7392213B1 (en) 2022-05-31 2023-12-06 東洋インキScホールディングス株式会社 Method for manufacturing laminate
JP7480625B2 (en) 2020-07-31 2024-05-10 Toppanホールディングス株式会社 Laminated film, its manufacturing method, and packaging bag

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173631A (en) * 2000-09-28 2002-06-21 Jsr Corp Gas barrier coating composition, method for producing the same and gas barrier coating film
JP2013129735A (en) * 2011-12-21 2013-07-04 Dic Corp Gas barrier coating agent, and film using the same
WO2013146323A1 (en) * 2012-03-30 2013-10-03 東洋製罐グループホールディングス株式会社 Gas barrier material and gas barrier laminate

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573929B2 (en) * 1999-09-06 2010-11-04 中国塗料株式会社 Polysiloxane-acrylic resin block copolymer composition, antifouling agent composition, antifouling coating film, antifouling treatment substrate, and antifouling treatment method for substrate
JP4254453B2 (en) * 2002-09-27 2009-04-15 東洋インキ製造株式会社 Gas barrier paint and gas barrier laminate using the paint
JP2004115776A (en) * 2003-04-02 2004-04-15 Toyo Ink Mfg Co Ltd Gas barrier coating
CN100411869C (en) * 2003-04-09 2008-08-20 东洋油墨制造株式会社 Method for producing gas barrier multilayer body
JP2005081699A (en) * 2003-09-09 2005-03-31 Toyo Ink Mfg Co Ltd Manufacturing method for gas barrier laminate
JP4305139B2 (en) * 2003-11-12 2009-07-29 東洋インキ製造株式会社 Gas barrier laminate and method for producing the laminate
TWI411618B (en) * 2004-05-10 2013-10-11 Tohcello Co Ltd Air barrier film, gas barrier layered body and manufacturing method thereof
JP2006219518A (en) * 2005-02-08 2006-08-24 Toyo Ink Mfg Co Ltd Gas barrier coating and gas barrier laminate using the same coating
JP5081416B2 (en) * 2005-09-26 2012-11-28 ユニチカ株式会社 Gas barrier laminate
JP5966821B2 (en) * 2012-09-28 2016-08-10 凸版印刷株式会社 Gas barrier laminated film
JP6131570B2 (en) * 2012-11-07 2017-05-24 凸版印刷株式会社 Gas barrier coating liquid, method for producing the same, method for producing gas barrier laminate, method for producing packaging material, and method for producing packaging material for heat sterilization
JP6511944B2 (en) * 2015-05-08 2019-05-15 三菱ケミカル株式会社 Resin composition for antifouling paint and antifouling coating film
CN106928908A (en) * 2017-02-19 2017-07-07 广州市芯检康生物科技有限公司 A kind of new aeroge multifunctional material and preparation method thereof
CN106832439A (en) * 2017-03-26 2017-06-13 广州市芯检康生物科技有限公司 A kind of multi-functional instant composite of new aeroge for blood components protection and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173631A (en) * 2000-09-28 2002-06-21 Jsr Corp Gas barrier coating composition, method for producing the same and gas barrier coating film
JP2013129735A (en) * 2011-12-21 2013-07-04 Dic Corp Gas barrier coating agent, and film using the same
WO2013146323A1 (en) * 2012-03-30 2013-10-03 東洋製罐グループホールディングス株式会社 Gas barrier material and gas barrier laminate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021252080A1 (en) * 2020-06-10 2021-12-16 Dow Global Technologies Llc Composition having polyol and isocyanate
JP7480625B2 (en) 2020-07-31 2024-05-10 Toppanホールディングス株式会社 Laminated film, its manufacturing method, and packaging bag
JP7392213B1 (en) 2022-05-31 2023-12-06 東洋インキScホールディングス株式会社 Method for manufacturing laminate

Also Published As

Publication number Publication date
JPWO2021039559A1 (en) 2021-03-04
CN114206612A (en) 2022-03-18
JP7228107B2 (en) 2023-02-24

Similar Documents

Publication Publication Date Title
JP7228107B2 (en) Gas barrier laminates, packaging materials
TWI425022B (en) Amine-based epoxy resin hardener, gas barrier epoxy resin composition containing the same, coating, and adhesive for laminating
EP2980117B1 (en) Active-energy-ray-curable resin, and gas barrier laminate comprising cured product of said resin
JP6868309B2 (en) Laminated body and its manufacturing method
JP6856175B2 (en) Two-component adhesive, polyisocyanate composition for two-component adhesive, laminate, packaging material
WO2021039337A1 (en) Gas barrier laminate and packaging material
JP2020168837A (en) Gas barrier laminate, and packaging material
JP6973690B2 (en) Gas barrier laminate, packaging material
TW202210305A (en) Gas barrier laminate and packaging material to provide a laminate having better gas barrier properties in contrast to the conventional gas barrier laminate
WO2022220151A1 (en) Two-pack curable adhesive composition, anchor coating material, adhesive, laminate, and packaging material
JP7239069B2 (en) Gas barrier laminates, packaging materials
JP7036283B2 (en) Laminate manufacturing method, laminate, packaging material
JP2020100024A (en) Gas barrier laminate and packaging medium
WO2022102490A1 (en) Gas barrier laminate, and packaging material
WO2024101165A1 (en) Gas barrier composition, coating agent and multilayer body
JP7468813B1 (en) Gas barrier coating agent, laminate, and packaging material
JP7272520B1 (en) Gas barrier films and packaging materials
JP6801828B2 (en) Polyester polyisocyanate, polyester polyisocyanate composition, adhesives, laminates, packaging materials
JP2005161690A (en) Manufacturing method of laminated film
WO2023106096A1 (en) Gas barrier film and packaging material
JP2023039577A (en) Method for manufacturing laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542797

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857320

Country of ref document: EP

Kind code of ref document: A1