WO2022220151A1 - Two-pack curable adhesive composition, anchor coating material, adhesive, laminate, and packaging material - Google Patents

Two-pack curable adhesive composition, anchor coating material, adhesive, laminate, and packaging material Download PDF

Info

Publication number
WO2022220151A1
WO2022220151A1 PCT/JP2022/016451 JP2022016451W WO2022220151A1 WO 2022220151 A1 WO2022220151 A1 WO 2022220151A1 JP 2022016451 W JP2022016451 W JP 2022016451W WO 2022220151 A1 WO2022220151 A1 WO 2022220151A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyol
composition
film
acid
polyester polyol
Prior art date
Application number
PCT/JP2022/016451
Other languages
French (fr)
Japanese (ja)
Inventor
千勇 徳永
常行 手島
正光 新居
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2022547723A priority Critical patent/JP7207617B1/en
Publication of WO2022220151A1 publication Critical patent/WO2022220151A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/08Polyurethanes from polyethers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging

Definitions

  • the present invention relates to a two-part curable adhesive composition, an anchor coating agent, an adhesive, a laminate, and a packaging material.
  • Packaging materials for food and beverages protect the contents from various distributions, preservation such as refrigeration, and heat sterilization. A wide variety of functions are required, such as excellent transparency so that the contents can be confirmed. On the other hand, when a bag is sealed by heat sealing, a non-stretched polyolefin film with excellent heat processability is essential, but the unstretched polyolefin film has many functions lacking as a packaging material.
  • a composite flexible film consists of a thermoplastic film layer, etc., which serves as an outer layer for product protection and various functions, and a thermoplastic film layer, etc., which serves as a sealant layer.
  • a method in which three layers of an adhesive and a thermoplastic for a sealant layer are melt-extruded to form an unstretched laminated sheet and then stretched Patent Document 1
  • a dry lamination method (Patent Document 2) and the like are known for producing a multilayer film.
  • solvent-free adhesives reactive two-liquid type lamination adhesives
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a solventless adhesive composition having excellent gas barrier properties. Furthermore, by using a solvent-free adhesive composition with excellent gas barrier properties, it is a transparent film that can be used as a packaging material mainly for food and as a transparent barrier film for electronic materials such as solar cells and display elements. To provide a gas-barrier laminate excellent in gas barrier function and resistant to bending, or a laminate and a packaging material excellent in recyclability.
  • 0% RH converted to 3 g / m 2 value is 300 cc/m 2 /day/atm or less
  • the polyol (A2) has two or more hydroxyl groups, a density of 1.2 g/cm 3 or more, and a melting point of 20° C. or more.
  • the present invention relates to a solvent-type adhesive composition, an adhesive, an anchor coating agent, a laminate, and a packaging material using the same.
  • an adhesive composition with excellent gas barrier properties without fear of solvent discharge, and an adhesive and an anchor coating agent using the same.
  • a transparent film that can be used as a packaging material mainly for food and a transparent barrier film for electronic materials such as solar cells and display elements has a gas barrier function. It is possible to provide a gas-barrier multilayer film that is excellent and resistant to bending, a laminate, and a packaging material that are excellent in recyclability.
  • the two-component curable adhesive composition of the present invention is a polyol composition (X) containing a polyester polyol (A1) and a polyol (A2), and a polyisocyanate composition (Y) containing a polyisocyanate compound (C). Consists of The two-pack curable adhesive composition of the present invention is described in detail below.
  • Polyol composition (X) The polyol composition of the present invention contains polyester polyol (A1) and polyol (A2) as essential components.
  • the polyol composition (X) of the present invention will be described in detail below.
  • polyester polyol (A1) The polyester polyol (A1) is obtained by reacting the polyester polyol (A1) and the trimethylolpropane adduct of xylene diisocyanate at a [NCO]/[OH] ratio of 2 ⁇ 0.2.
  • the 3 g/m 2 conversion value of the oxygen permeability at % RH is 300 cc/m 2 /day/atm or less.
  • [NCO] is the number of moles of isocyanate groups possessed by the XDI-TMP adduct
  • [OH] is the number of moles of hydroxyl groups possessed by the polyester polyol (A1).
  • the oxygen permeability is measured according to JIS-K7126 (isobaric method).
  • the trimethylolpropane adduct of xylene diisocyanate is also referred to as the XDI-TMP adduct, and the oxygen transmission rate of polyester polyol (A1) measured under the above conditions, converted to 3 g/ m2 , is the oxygen transmission rate of polyester polyol (A1). Also called rate.
  • A is the oxygen permeability of the laminate
  • F1 and F2 are the oxygen permeability of each layer constituting the laminate. Therefore, for example, a mixture of the polyester polyol (A1) and the XDI-TMP adduct is coated on a plastic film, cured, and then the oxygen transmission rate A is measured. Calculate the oxygen permeability F2 of the cured coating film from the oxygen permeability A of the laminate and the oxygen permeability F1 of the plastic film, and set F2 to ((coating amount of mixture of polyester polyol (A1) and XDI-TMP adduct body (g /m 2 ))/3 (g/m 2 )) to obtain the oxygen permeability of the polyester polyol (A1).
  • the polyester polyol (A1) used in the present invention reacts with a general polyisocyanate compound to cure, and the coating exhibits good oxygen barrier properties, but is liquid under room temperature and normal pressure. Therefore, since the oxygen transmission rate of the polyester polyol (A1) alone at 23°C and 0% RH cannot be measured, the above evaluation method is substituted.
  • a polyester polyol (A1) is a reaction product of a composition (A1') containing a polyhydric carboxylic acid, a polyhydric alcohol, and an optionally used compound having reactivity with a carboxyl group or a hydroxyl group.
  • polycarboxylic acids examples include aliphatic polycarboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid and dodecanedicarboxylic acid; unsaturated bond-containing polycarboxylic acids such as maleic anhydride, maleic acid and fumaric acid; Carboxylic acid; alicyclic polycarboxylic acids such as 1,3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid; orthophthalic acid, terephthalic acid, isophthalic acid, pyromellitic acid, trimellitic acid, 1,2- Naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, 2,3-anthracenecarboxylic acid, anth
  • the use of the ortho-oriented aromatic polycarboxylic acid (a1) as the polycarboxylic acid is preferable because the gas barrier properties are improved (the oxygen permeability of the polyester polyol (A1) is reduced). Since the ortho-oriented aromatic polycarboxylic acid (a1) has an asymmetric skeleton, it is presumed that rotation suppression occurs in the molecular chain of the polyester polyol (A1), thereby improving gas barrier properties.
  • the ortho-oriented aromatic polycarboxylic acid (a1) includes orthophthalic acid or its acid anhydride, naphthalene 2,3-dicarboxylic acid or its acid anhydride, naphthalene 1,2-dicarboxylic acid or its acid anhydride, and anthraquinone.
  • the substituents include chloro, bromo, methyl, ethyl, i-propyl, hydroxyl, methoxy, ethoxy, phenoxy, methylthio, phenylthio, cyano, nitro, amino, phthalimido group, carboxyl group, carbamoyl group, N-ethylcarbamoyl group, phenyl group, naphthyl group and the like.
  • the amount of the ortho-oriented aromatic polycarboxylic acid (a1) in the composition (A1′) is preferably 20% by mass or more, more preferably 30% by mass or more.
  • the amount of the ortho-oriented aromatic polycarboxylic acid (a1) in the composition (A1') is preferably 50% by mass or less.
  • Polyhydric alcohols include methylene glycol, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, cyclohexanedimethanol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol.
  • the polyhydric alcohol has 1 to 3 carbon atoms between hydroxyl groups.
  • (a2) is preferably used.
  • the aliphatic polyol (a2) include methylene glycol, ethylene glycol, 1,2-propylene glycol and 1,3-propylene glycol.
  • the composition (A1') preferably contains a compound (a3) having an isocyanuric ring.
  • the compound (a3) preferably has two or more functional groups capable of reacting with at least one of a carboxyl group and a hydroxyl group, and preferably has 4 or less carbon atoms in the shortest methylene chain connecting the isocyanuric ring and the functional group. . When the number of carbon atoms in the methylene chain exceeds 4, gas barrier properties tend to deteriorate.
  • the functional groups possessed by the compound (a3) may be independently bonded to the isocyanuric ring via a methylene chain, or may be such that a plurality of functional groups are bonded to one methylene chain bonded to the isocyanuric ring. good.
  • the number of carbon atoms in the methylene chain between the functional group closest to the isocyanuric ring and the isocyanuric ring should be 4 or less.
  • the number of carbon atoms in the methylene chain is preferably 1 or more and 4 or less.
  • Examples of such compounds (a3) include 1,3,5-tris(aminomethyl)isocyanuric acid, 1,3,5-tris(2-aminoethyl)isocyanuric acid, 1,3-bis(2-amino ethyl)-5-methyl-isocyanuric acid, 1,3-bis(2-aminoethyl)-5-ethyl-isocyanuric acid, 1,3-bis(2-aminoethyl)-5-propyl-isocyanuric acid, 1, 3-bis(2-aminoethyl)-5-butyl-isocyanuric acid, 1,3,5-tris(3-aminopropyl)isocyanuric acid, 1,3-bis(3-aminopropyl)-5-methyl-isocyanuric acid isocyanuric acid having an amino group such as acid,
  • 1,3,5-tris(hydroxymethyl)isocyanuric acid 1,3-bis(hydroxymethyl)-5-methyl-isocyanuric acid, 1,3-bis(hydroxymethyl)-5-ethyl-isocyanuric acid, 1, 3-bis(hydroxymethyl)-5-butyl-isocyanuric acid, 1,3-bis(hydroxymethyl)-5-phenyl-isocyanuric acid, 1-(hydroxyethyl)-3,5-bis(hydroxymethyl)-isocyanuric acid acid, 1,3,5-tris(1-hydroxyethyl)isocyanuric acid, 1,3-bis(hydroxymethyl)-5-(2-hydroxypropyl)isocyanuric acid, 1,3-bis(hydroxymethyl)-5 -(2-hydroxy-1-methylpropyl)isocyanuric acid, 1,3-bis(hydroxymethyl)-5-(2-hydroxy-2-methylpropyl)isocyanuric acid, 1,3,5-tris(2-hydroxy ethyl)isocyanuric acid, 1,3-bis(2-hydroxy
  • 1,3,5-tris(2,3-epoxypropyl)isocyanuric acid 1,3-bis(2,3-epoxypropyl)-5-methyl-isocyanuric acid, 1,3-bis(2,3-epoxy propyl)-5-ethyl-isocyanuric acid, 1,3-bis(2,3-epoxypropyl)-5-propyl-isocyanuric acid, 1,3,5-tris(3,4-epoxybutyl)isocyanuric acid, etc. isocyanuric acid having a glycidyl group,
  • 1,3,5-tris(carboxy)isocyanuric acid 1,3,5-tris(carboxymethyl)isocyanuric acid, 1,3-bis(carboxymethyl)-5-methyl-isocyanuric acid, 1,3-bis( carboxymethyl)-5-ethyl-isocyanuric acid, 1,3-bis(carboxymethyl)-5-butyl-isocyanuric acid, 1,3-bis(carboxymethyl)-5-phenyl-isocyanuric acid, 1,3-bis (Carboxyethyl)-5-methyl-isocyanuric acid, 1,3-bis(carboxyethyl)-5-ethyl-isocyanuric acid, 1,3-bis(carboxypropyl)-5-methyl-isocyanuric acid, 1,3- Isocyanuric acid having a carboxyl group such as bis(carboxyethyl)-5-butyl-isocyanuric acid, 1,3,5-tris(carboxypropy
  • the polyol composition (X) of the present invention has excellent gas barrier properties.
  • the compounding amount of compound (a3) in composition (A1') is preferably 5% by mass or more, more preferably 10% by mass or more.
  • the compounding amount of the compound (a3) in the composition (A1') is preferably 60% by mass or less, more preferably 50% by mass or less.
  • the molecular weight of the compound (a3) is preferably 350 or less because the smaller the molecular weight of the compound (a3), the higher the molar concentration of the isocyanuric ring.
  • polyester polyol (A1) it is also preferable to use a linear dicarboxylic acid as the polyhydric carboxylic acid (a1) and a linear diol as the polyhydric alcohol (a2) to make the polyester polyol (A1) crystalline. This can also reduce the oxygen permeability of the polyester polyol (A1).
  • the polyester polyol (A1) preferably has a number average molecular weight of 300 or more. From the viewpoint of coatability, the polyester polyol (A1) preferably has a number average molecular weight of 800 or less.
  • the number average molecular weight (Mn) is a value calculated according to the following formula from the number of design functional groups and the actually measured hydroxyl value (mgKOH/g). The hydroxyl value can be measured by the hydroxyl value measuring method described in JIS-K0070.
  • the number of designed functional groups is the number of moles of carboxyl groups (O), the number of moles of polyvalent carboxylic acid (P), the number of moles of functional groups capable of reacting with carboxyl groups (Q), which are contained in the composition (A1′). It is calculated by (QO)/(RP) from the number of moles (R) of the compound having a functional group capable of reacting with a carboxyl group.
  • the polyol (A2) used in the present invention is a compound having two or more hydroxyl groups, a density of 1.2 g/cm 3 or more, and a melting point of 20° C. or more.
  • the density of polyol (A2) is a value at 20° C. and 1 atm.
  • the polyester polyol (A1) and the polyol (A2) together, it is possible to obtain a non-solvent adhesive having gas barrier properties superior to those of conventional adhesives.
  • the upper limit of the density of the polyol (A2) is not particularly limited, it is about 1.6 g/cm 3 as an example.
  • the upper limit of the melting point of the polyol (A2) is not particularly limited, it is 120°C as an example. From the viewpoint of coatability, the temperature is preferably 80° C. or lower, more preferably 70° C. or lower.
  • the polyol (A2) is not particularly limited as long as it satisfies the above requirements.
  • examples include isosorbide, isoidide, isomannide, furandimethanol, trans-tetrahydrofuran-3,4-diol, sorbitol, erythritol and the like.
  • Polyester polyol (A1) has excellent gas barrier properties, but has high viscosity at room temperature, so it must be heated in order to be applied to the base material without being diluted with an organic solvent such as ethyl acetate.
  • an organic solvent such as ethyl acetate.
  • the viscosity suitable for coating can be obtained without diluting with an organic solvent without impairing the gas barrier properties derived from the polyester polyol (A1). can.
  • the blending amount of the polyol (A2) is preferably 5% by mass or more, more preferably 10% by mass or more, of the total amount of the polyester polyol (A1) and the polyol (A2).
  • the blending amount of the polyol (A2) is preferably 90% by mass or less, more preferably 80% by mass or less, of the total amount of the polyester polyol (A1) and the polyol (A2). , 70% by mass or less.
  • the polyol composition (X) may contain a component (B) other than the polyester polyol (A1) and the polyol (A2) within a range that does not impair the gas barrier properties.
  • Component (B) includes inorganic filler (B1), coupling agent (B2), acid anhydride (B3), oxygen scavenger (B4), phosphoric acid (B5), tackifier (B6), urethane Examples include, but are not limited to, catalyst (B7).
  • Stabilizers antioxidants, heat stabilizers, ultraviolet absorbers, etc.
  • plasticizers antistatic agents, lubricants, antiblocking agents, coloring agents, crystal nucleating agents, antifoaming agents, leveling agents, etc. may be included. .
  • Examples of the inorganic filler (B1) include silica, alumina, aluminum flakes and glass flakes.
  • Plate-like inorganic compounds include hydrous silicates (phyllosilicate minerals, etc.), kaolinite-serpentine clay minerals (halloysite, kaolinite, endellite, dickite, nacrite, etc., antigorite, chrysotile, etc.), pyrophyllite Light-talc group (pyrophyllite, talc, kerorai, etc.), smectite group clay minerals (montmorillonite, beidellite, nontronite, saponite, hectorite, sauconite, stevensite, etc.), vermiculite group clay minerals (vermiculite, etc.), mica or Mica group clay minerals (mica such as muscovite and phlogopite, margarite, tetrasilylic mica, teniolite, etc.), chlorite group (cookieite, sudoite, clinochlore, chamosite, nimite,
  • the plate-like inorganic compound may be an ionic compound having an electric charge between layers, or may be a nonionic compound having no electric charge.
  • the presence or absence of charge between layers does not directly affect the gas barrier property of the adhesive layer.
  • ionic plate-like inorganic compounds and inorganic compounds that swell with water have poor dispersibility in solvent-based adhesives, and when the amount added increases, the adhesive becomes thicker and thixotropic. As a result, the coating suitability may deteriorate. For this reason, it is preferable that the plate-like inorganic compound is non-ionic with no interlayer electrification.
  • the average particle diameter of the plate-like inorganic compound is not particularly limited, it is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, as an example. If it is smaller than 0.1 ⁇ m, the detour path of oxygen molecules will not be long, and a sufficient improvement in gas barrier properties cannot be expected.
  • the upper limit of the average particle size is not particularly limited, but if the particle size is too large, defects such as streaks may occur on the coated surface depending on the coating method. Therefore, as an example, the average particle diameter is preferably 100 ⁇ m or less, and preferably 20 ⁇ m or less.
  • the average particle size of the plate-like inorganic compound means the particle size with the highest appearance frequency when the particle size distribution of the plate-like inorganic compound is measured with a light scattering type measuring device.
  • the aspect ratio of the plate-like inorganic compound is high in order to improve gas barrier properties due to the labyrinth effect of oxygen. Specifically, it is preferably 3 or more, more preferably 10 or more, and most preferably 40 or more.
  • the blending amount is preferably 50% by mass or less of the total amount of the polyol composition (X). This makes it possible to obtain an adhesive with an excellent balance of gas barrier properties and coatability.
  • Examples of the coupling agent (B2) include silane coupling agents, titanate-based coupling agents, aluminum-based coupling agents, and the like. Coupling agents are expected to have the effect of improving the adhesiveness to various film materials, especially metal and metal oxide deposited layers.
  • the amount thereof is preferably 5% by mass or less of the total amount of the polyol composition (X), and is 2% by mass or more and 3% by mass or less. is preferred.
  • Examples of the acid anhydride (B3) include phthalic anhydride, succinic anhydride, het acid anhydride, hymic acid anhydride, maleic anhydride, tetrahydrophthalic anhydride, hexahydraphthalic anhydride, tetra promphthalic anhydride, tetrachlorophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenotetracarboxylic anhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 5 -(2,5-oxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, styrene maleic anhydride copolymer and the like.
  • the amount thereof is preferably 5% by mass or less of the total amount of the polyol composition (X).
  • oxygen scavenger (B4) examples include hindered phenols, vitamin C, vitamin E, organic phosphorus compounds, gallic acid, pyrogallol and other low-molecular-weight organic compounds that react with oxygen, cobalt, manganese, nickel, iron, Examples include transition metal compounds such as copper.
  • Phosphoric acids (B5) include phosphoric acid, pyrophosphoric acid, triphosphoric acid, methyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, dibutyl phosphate, 2-ethylhexyl acid phosphate, bis(2-ethylhexyl) phosphate, and isododecyl acid phosphate. , butoxyethyl acid phosphate, oleyl acid phosphate, tetracosyl acid phosphate, 2-hydroxyethyl methacrylate acid phosphate, polyoxyethylene alkyl ether phosphate and the like.
  • the amount thereof is preferably 200 ppm or less based on the total amount of the polyol composition.
  • the tackifier (B6) includes xylene resin, terpene resin, phenol resin, rosin resin, and the like. By blending the tackifier (B6), it can be expected that the adhesion to the substrate will be improved.
  • Examples of the urethanization catalyst (B7) include metal-based catalysts (B7-1) and aliphatic cyclic amide compounds (B7-2).
  • the urethanization catalyst (B7) can be used alone or in combination of two or more.
  • Metal-based catalysts (B7-1) include metal complex-based, inorganic metal-based, and organic metal-based catalysts.
  • the metal complex catalyst a group consisting of Fe (iron), Mn (manganese), Cu (copper), Zr (zirconium), Th (thorium), Ti (titanium), Al (aluminum), Co (cobalt) Examples include acetylacetonate salts of metals selected from the above, such as iron acetylacetonate, manganese acetylacetonate, copper acetylacetonate, zirconia acetylacetonate and the like. From the point of view of toxicity and catalytic activity, iron acetylacetonate (Fe(acac) 3 ) or manganese acetylacetonate (Mn(acac) 2 ) are preferred.
  • inorganic metal-based catalysts examples include those selected from Sn, Fe, Mn, Cu, Zr, Th, Ti, Al, Co, and the like.
  • Organometallic catalysts include organozinc compounds such as zinc octylate, zinc neodecanoate, and zinc naphthenate; , dioctyltin dilaurate, dibutyltin oxide, dibutyltin dichloride and other organic tin compounds, nickel octylate, nickel naphthenate and other organic nickel compounds, cobalt octylate, cobalt naphthenate and other organic cobalt compounds, bismuth octylate, neodecanoic acid At least one of organic bismuth compounds such as bismuth and bismuth naphthenate, tetraisopropyloxytitanate, dibutyltitanium dichloride, tetrabutyltitanate, butoxytitanium trichloride, aliphatic diketones, aromatic diketones, and alcohols having 2 to 10 carbon atoms.
  • Examples of the aliphatic cyclic amide compound (B7-2) include ⁇ -valerolactam, ⁇ -caprolactam, ⁇ -enanthollactam, ⁇ -capryllactam, ⁇ -propiolactam and the like. Among these, ⁇ -caprolactam is more effective in accelerating hardening.
  • the amount thereof is preferably 5% by mass or less of the total amount of the polyol composition (X), and is 2% by mass or more and 3% by mass or less. is preferred.
  • the polyisocyanate composition (Y) contains an isocyanate compound (C).
  • the isocyanate compound (C) conventionally known ones can be used without particular limitation, and tetramethylene diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, Isophorone diisocyanate or trimers of these isocyanate compounds, and excess amounts of these isocyanate compounds, such as ethylene glycol, propylene glycol, metaxylylene alcohol, 1,3-bishydroxyethylbenzene, 1,4-bishydroxyethylbenzene, Low-molecular-weight active hydrogen compounds such as trimethylolpropane, glycerol, pentaerythritol,
  • a blocked isocyanate may also be used as the isocyanate compound (C).
  • isocyanate blocking agents include phenols such as phenol, thiophenol, methylthiophenol, ethylthiophenol, cresol, xylenol, resorcinol, nitrophenol and chlorophenol; oximes thereof such as acetoxime, methylethylketoxime and cyclohexanone oxime; alcohols such as ethanol, propanol and butanol; halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol; tertiary alcohols such as t-butanol and t-pentanol; Lactams such as caprolactam, ⁇ -valerolactam, ⁇ -butyrolactam and ⁇ -propyrolactam, and active methylene compounds such as aromatic amines, imides, acetylacetone,
  • the blocked isocyanate can be obtained by addition reaction of the above isocyanate compound and an isocyanate blocking agent by a known and commonly used appropriate method.
  • An isocyanate having an aromatic ring or a derivative thereof (C1) is preferably used as the isocyanate compound (C) because good gas barrier properties can be obtained.
  • Specific examples of the isocyanate compound (C1) include xylylene diisocyanate, hydrogenated xylylene diisocyanate, toluene diisocyanate, and isocyanate compounds having a skeleton derived from diphenylmethane diisocyanate.
  • the isocyanate compound (C) it is also preferable to use a urethane prepolymer (C2) which is a reaction product of the polyester polyol (c1) and the isocyanate compound (c2).
  • the polyester polyol (c1) is a cured coating film when the polyester polyol (c1) and the XDI-TMP adduct are reacted at a [NCO]/[OH] of 2 ⁇ 0.2.
  • Oxygen permeation at 23 ° C. 0% RH It is preferable that the 3 g/m 2 conversion value of the rate is 300 cc/m 2 /day/atm or less.
  • the oxygen permeability of the polyester polyol (c1) is measured in the same manner as the polyester polyol (A1).
  • the oxygen permeability measured as described above is also simply referred to as the oxygen permeability of the polyester polyol (c1).
  • a polyester polyol (c1) is a reaction product of a composition (c1') containing a polyhydric carboxylic acid, a polyhydric alcohol, and optionally a compound having reactivity with a carboxyl group or a hydroxyl group.
  • a composition (c1') containing a polyhydric carboxylic acid, a polyhydric alcohol, and optionally a compound having reactivity with a carboxyl group or a hydroxyl group.
  • the same compounds as those exemplified as the raw materials of the polyester polyol (A1) can be used.
  • the polyester polyol (c1) preferably contains a skeleton derived from an ortho-oriented aromatic polycarboxylic acid, since gas barrier properties are improved.
  • the content of the ortho-oriented aromatic polycarboxylic acid in the composition (c1') is preferably 20% by mass or more, more preferably 30% by mass or more.
  • the amount of the ortho-oriented aromatic polycarboxylic acid in the composition (c1') is preferably 50% by mass or less.
  • the polyester polyol (c1) preferably has an isocyanuric ring.
  • the amount of the compound having an isocyanuric ring in the composition (c1') is preferably 5% by mass or more, more preferably 10% by mass or more.
  • the compounding amount of the compound having an isocyanuric ring in the composition (c1') is preferably 40% by mass or less, more preferably 30% by mass or less.
  • the number average molecular weight of the polyester polyol (c1) is not particularly limited, it is preferably 300 or more and 800 or less as an example.
  • isocyanate compound (c2) those exemplified above as the isocyanate compound (C) can be used. From the viewpoint of improving gas barrier properties, it is preferable to use the same isocyanate compound (C1) as exemplified.
  • the polyisocyanate composition (Y) may contain a component (D) other than the isocyanate compound (C) as long as the gas barrier properties are not impaired.
  • component (D) those similar to the component (B) can be used.
  • the polyol composition (X) and the polyisocyanate composition (Y) may each contain the same component.
  • both the polyol composition (X) and the polyisocyanate composition (Y) may contain phosphoric acids.
  • the two-liquid curable composition of the present invention is used in a solventless form.
  • solvent-free type refers to one that is used without undergoing a step of volatilizing the solvent by heating in an oven or the like after coating the two-component curable composition of the present invention.
  • polyol composition (X) and polyisocyanate composition (Y) are toluene, xylene, methylene chloride, tetrahydrofuran, methyl acetate, ethyl acetate, n-propyl acetate, n-butyl acetate, acetone, methyl ethyl ketone (MEK).
  • the polyol composition (X) contains a low-molecular-weight alcohol
  • the low-molecular-weight alcohol reacts with the polyisocyanate composition (Y) and becomes part of the coating film, so it is not necessary to volatilize after coating. Therefore, such a form is also treated as a non-solvent type.
  • the two-component curable composition of the present invention has excellent gas barrier properties and coating suitability, and can be applied to applications such as two-component curable gas barrier adhesives and anchor coating agents with no concerns about solvent emissions.
  • the two-pack curable adhesive of the present invention contains the above-described polyol composition (X) and polyisocyanate composition (Y), and is suitable for lamination applications.
  • the adhesive of the present invention is excellent in gas barrier properties and coatability, and since it does not contain an organic solvent, there is no fear of solvent emission. By using the adhesive of the present invention, it is possible to provide a laminate having excellent gas barrier properties even if it does not contain a vapor deposited layer of metal or metal oxide, or a barrier layer such as a metal foil.
  • the adhesive of the present invention is used by mixing the polyol composition (X) and the polyisocyanate composition (Y) immediately before coating on the substrate.
  • the polyol composition (X) and the polyisocyanate composition (Y) are equivalent ratios [NCO]/[ OH] is preferably 0.5-4. If [NCO]/[OH] exceeds 4, excess isocyanate groups may bleed out from the cured coating film of the adhesive, and if it is less than 0.5, adhesive strength may be insufficient.
  • the viscosity ratio [X]/[Y] is preferably 0.1 or more and 10 or less. This makes it possible to obtain an adhesive with excellent coatability.
  • the viscosity of one of the polyol composition (X) and the polyisocyanate composition (Y) exceeds 10 times the viscosity of the other, the polyol composition (X) and the polyisocyanate composition (Y) are uniformly mixed. difficult to do
  • the laminate of the present invention is obtained by laminating a plurality of substrates (film, paper, etc.) with the adhesive of the present invention by a non-solvent lamination method.
  • the laminated laminate has excellent gas barrier properties and can be used as a gas barrier laminate.
  • the base material to be used is not particularly limited, and can be appropriately selected according to the application.
  • PET polyethylene terephthalate
  • polystyrene film polyamide film
  • polyacrylonitrile film polyethylene film
  • LLDPE low density polyethylene film
  • HDPE high density polyethylene film
  • CPP unstretched Polyolefin films such as polypropylene film, OPP (biaxially oriented polypropylene film), polyvinyl alcohol film, ethylene-vinyl alcohol copolymer film, and the like.
  • the film may be stretched.
  • a stretching treatment method it is common to melt-extrude a resin into a sheet by an extrusion film-forming method or the like, and then subject the sheet to simultaneous biaxial stretching or sequential biaxial stretching.
  • sequential biaxial stretching it is common to first perform longitudinal stretching and then laterally stretching. Specifically, a method of combining longitudinal stretching using a speed difference between rolls and lateral stretching using a tenter is often used.
  • Various surface treatments such as flame treatment and corona discharge treatment may be applied to the film surface as necessary so that an adhesive layer without defects such as film breakage and repellency is formed.
  • a known paper base material can be used without any particular limitation. Specifically, it is produced by a known paper machine using natural fibers for papermaking such as wood pulp, but the papermaking conditions are not particularly specified.
  • natural fibers for papermaking include wood pulp such as softwood pulp and hardwood pulp, non-wood pulp such as Manila hemp pulp, sisal pulp and flax pulp, and pulp obtained by chemically modifying these pulps.
  • the types of pulp that can be used include chemical pulp, ground pulp, chemi-grand pulp, thermomechanical pulp, and the like prepared by sulfate cooking, acid/neutral/alkaline sulfite cooking, soda salt cooking, and the like.
  • various types of commercially available fine paper, coated paper, lined paper, impregnated paper, cardboard, paperboard, etc. can also be used.
  • the base material is a metal such as aluminum, an inorganic oxide such as silica, a deposited layer of a metal oxide such as alumina, polyvinyl alcohol, or an ethylene-vinyl alcohol copolymer. Even if it does not contain a gas barrier layer such as vinylidene chloride, it is possible to provide a laminate having excellent gas barrier properties.
  • the base material the film or paper described above may be laminated with a metal, inorganic oxide, or metal oxide deposited layer, or may contain a gas barrier layer. By using such a base material, it is possible to obtain a laminate having even better barrier properties against water vapor, oxygen, alcohol, inert gases, volatile organic substances (fragrance), and the like.
  • Base material 1/adhesive layer 1/sealant film (2) Base material 1/adhesive layer 1/metal vapor deposition unstretched film (3) Base material 1/adhesive layer 1/metal vapor deposition stretched film (4) Transparent vapor deposition stretching Film/adhesive layer 1/sealant film (5) Substrate 1/adhesive layer 1/substrate 2/adhesive layer 2/sealant film (6) Substrate 1/adhesive layer 1/stretched metal deposition film/adhesive layer 2/sealant Film (7) Substrate 1/adhesive layer 1/transparent evaporated stretched film/adhesive layer 2/sealant film (8) Substrate 1/adhesive layer 1/metal layer/adhesive layer 2/sealant film (9) Substrate 1/ Adhesive layer 1/subsive layer 1/subsive layer
  • Examples of the base material 1 used in configuration (1) include OPP film, PET film, nylon film, paper, and the like. Further, as the base material 1, a material coated for the purpose of improving gas barrier properties and ink receptivity when providing a printing layer, which will be described later, may be used. Commercial products of the coated base film 1 include K-OPP film and K-PET film.
  • the adhesive layer 1 is a cured coating film of the adhesive of the present invention. Examples of sealant films include CPP films and LLDPE films. On the surface of the substrate 1 on the side of the adhesive layer 1 (the surface of the coating layer on the side of the adhesive layer 1 when a coated substrate film 1 is used) or the surface opposite to the adhesive layer 1, A printing layer may be provided.
  • the printing layer is formed by general printing methods conventionally used for printing on polymer films and paper using various printing inks such as gravure ink, flexographic ink, offset ink, stencil ink, and inkjet ink.
  • the base material 1 used in configurations (2) and (3) examples include OPP film, PET film, paper, and the like.
  • the adhesive layer 1 is a cured coating film of the adhesive of the present invention.
  • a VM-CPP film obtained by vapor-depositing a metal such as aluminum on a CPP film may be used as the unstretched metal vapor-deposited film, and a VM-OPP film obtained by vapor-depositing a metal such as aluminum on an OPP film may be used as the stretched metal-deposited film. can be done.
  • a printed layer may be provided on either side of the substrate 1 in the same manner as in configuration (1).
  • Examples of transparent vapor-deposited stretched films used in configuration (4) include films obtained by vapor-depositing silica or alumina on OPP films, PET films, nylon films, or the like.
  • a film obtained by coating the deposition layer may be used.
  • the adhesive layer 1 is a cured coating film of the adhesive of the present invention.
  • Examples of the sealant film include those similar to those of the configuration (1).
  • a printed layer may be provided on the adhesive layer 1 side of the transparent vapor deposited stretched film (when using a film having a coated inorganic vapor deposited layer, the surface of the coating layer on the adhesive layer 1 side). The method of forming the printed layer is the same as that of configuration (1).
  • Examples of the base material 1 used in configuration (5) include PET film, paper, and the like.
  • Examples of the base material 2 include a nylon film and the like.
  • At least one of adhesive layer 1 and adhesive layer 2 is a cured coating film of the adhesive of the present invention.
  • Examples of the sealant film include those similar to those of the configuration (1).
  • a printed layer may be provided on either side of the substrate 1 in the same manner as in configuration (1).
  • the same ones as those of configurations (2) and (3) can be mentioned.
  • the metal-deposited oriented film include VM-OPP film and VM-PET film obtained by subjecting an OPP film or PET film to metal deposition such as aluminum.
  • At least one of adhesive layer 1 and adhesive layer 2 is a cured coating film of the adhesive of the present invention.
  • the sealant film include those similar to those of the configuration (1).
  • a printed layer may be provided on either side of the substrate 1 in the same manner as in configuration (1).
  • Examples of the base material 1 of configuration (7) include PET film, paper, and the like. Examples of the transparent vapor-deposited stretched film include those similar to those of the configuration (4). At least one of the adhesive layers 1 and 2 is a cured coating film of the adhesive of the present invention. Examples of the sealant film include those similar to those of the configuration (1). A printed layer may be provided on either side of the substrate 1 in the same manner as in configuration (1).
  • Examples of the base material 1 of configuration (8) include PET film, paper, and the like. Aluminum foil etc. are mentioned as a metal layer. At least one of the adhesive layers 1 and 2 is a cured coating film of the adhesive of the present invention. Examples of the sealant film include those similar to those of the configuration (1). A printed layer may be provided on either side of the substrate 1 in the same manner as in configuration (1).
  • Examples of the substrate 1 of configurations (9) and (10) include PET film, paper, and the like.
  • Examples of the base material 2 include a nylon film and the like. Aluminum foil etc. are mentioned as a metal layer.
  • At least one of the adhesive layers 1, 2 and 3 is a cured coating film of the adhesive of the present invention.
  • Examples of the sealant film include those similar to those of the configuration (1).
  • a printed layer may be provided on either side of the substrate 1 in the same manner as in configuration (1).
  • the laminate of the present invention includes at least one of a metal vapor deposition film, a transparent vapor deposition film, and a metal layer
  • the metal vapor deposition layer, the transparent vapor deposition layer, and the adhesive layer in contact with the metal layer are cured coating films of the adhesive of the present invention. is preferably
  • the adhesive of the present invention preheated to about 40° C. to 100° C. is applied to one substrate using a roll such as a coat roll, and then the other substrate is immediately attached. Together, the laminate of the present invention is obtained. It is preferable to perform an aging treatment after lamination.
  • the aging temperature is preferably room temperature to 70° C., and the aging time is preferably 6 to 240 hours.
  • the amount of adhesive to be applied is appropriately adjusted. For example, it is 1 g/m 2 or more and 10 g/m 2 or less, preferably 1 g/m 2 or more and 5 g/m 2 or less.
  • the laminate of the present invention may further contain other films and substrates in addition to the above-described configurations (1) to (10).
  • substrates in addition to the stretched film, unstretched film, and transparent vapor-deposited film described above, porous substrates such as paper, wood, and leather can also be used.
  • the adhesive used when bonding other substrates may or may not be the adhesive of the present invention.
  • the anchor coating agent of the present invention contains the above-described polyol composition (X) and polyisocyanate composition (Y), and is suitable as an adhesion aid for extrusion lamination.
  • the anchor coating agent of the present invention is excellent in gas barrier properties and coatability, and since it does not contain an organic solvent, there is no fear of solvent emission. By using the anchor coating agent of the present invention, a substrate having excellent gas barrier properties can be provided.
  • the anchor coating agent of the present invention is used by mixing the polyol composition (X) and the polyisocyanate composition (Y) immediately before coating on the substrate.
  • the polyol composition (X) and the polyisocyanate composition (Y) are equivalent ratios [NCO]/[ OH] is preferably 0.5-4. If [NCO]/[OH] exceeds 4, excessive isocyanate groups may bleed out from the cured coating film of the coating agent, and if it is less than 0.5, adhesive strength may be insufficient.
  • the viscosity ratio [X] /[Y] is preferably 0.1 or more and 10 or less.
  • the viscosity ratio [X] /[Y] is preferably 0.1 or more and 10 or less.
  • the viscosity of one of the polyol composition (X) and the polyisocyanate composition (Y) exceeds 10 times the viscosity of the other, the polyol composition (X) and the polyisocyanate composition (Y) are uniformly mixed. difficult to do
  • the laminate of the present invention is prepared by applying the anchor coating agent of the present invention preheated to about 40° C. to 100° C. on a film using a laminator, aging the film, and then melting the polymer material using an extruder. Obtained by lamination (extrusion lamination method).
  • the film the same film as used for the laminate 1 can be used.
  • Polyolefin-based resins such as low-density polyethylene resin, linear low-density polyethylene resin, and ethylene-vinyl acetate copolymer resin are preferable as the polymer material to be melted.
  • the aging temperature is preferably room temperature to 70° C., and the aging time is preferably 6 to 240 hours.
  • the amount of the anchor coating agent to be applied is appropriately adjusted, but as an example, it is 0.03 g/m 2 or more and 0.09 g/m 2 or less (solid content).
  • the laminate of the present invention may be used alone, or may be used by laminating with another base material.
  • Other substrates include the stretched film, unstretched film, transparent deposition film, paper, wood, leather and the like exemplified for the laminate 1 .
  • the adhesive used when bonding other substrates may or may not be the adhesive of the present invention.
  • the laminates 1 and 2 of the present invention can be used as multi-layer packaging materials for the purpose of protecting foods, medicines, and the like.
  • the layer structure may vary depending on the contents, usage environment, and usage pattern.
  • the packaging material of the present invention is obtained by using the laminate of the present invention, superimposing the sealant film surfaces of the laminate on each other, and then heat-sealing the peripheral edges.
  • the laminate of the present invention is folded or overlapped so that the inner layer surface (sealant film surface) faces each other, and the peripheral edge is sealed, for example, by a side seal type, a two-sided seal type, There are three-side seal type, four-side seal type, envelope seal type, palm-joint seal type, pleated seal type, flat-bottom seal type, square-bottom seal type, gusset type, and other heat-sealing methods. be done.
  • the packaging material of the present invention can take various forms depending on the contents, environment of use, and form of use.
  • a self-supporting packaging material (standing pouch) or the like is also possible.
  • As a heat sealing method known methods such as bar sealing, rotary roll sealing, belt sealing, impulse sealing, high frequency sealing and ultrasonic sealing can be used.
  • the opening is heat-sealed to manufacture a product using the packaging material of the present invention.
  • Contents to be filled include rice crackers, bean confections, nuts, biscuits, cookies, wafer confections, marshmallows, pies, half-baked cakes, candies, snacks, bread, snack noodles, instant noodles, dried noodles, and pasta.
  • aseptic packaged rice, rice porridge, rice porridge, packaged mochi, staples such as cereal foods, pickles, boiled beans, natto, miso, frozen tofu, tofu, mushrooms, konjac, processed wild plants, jams, peanut cream, salads, frozen Vegetables, processed agricultural products such as processed potatoes, processed hams, bacon, sausages, processed chicken products, processed livestock products such as corned beef, fish hams and sausages, fish paste products, kamaboko, seaweed, tsukudani, bonito flakes, salted fish, Processed marine products such as smoked salmon and cod roe, fruits such as peaches, mandarin oranges, pineapples, apples, pears and cherries, vegetables such as corn, asparagus, mushrooms, onions, carrots, radishes, and potatoes, hamburgers, and meat.
  • Frozen and chilled prepared foods such as bowls, fried seafood, gyoza, and croquettes, prepared foods such as chilled side dishes, butter, margarine, cheese, cream, instant creamy powder, dairy products such as infant formula powder, liquid seasonings, and retort pouches Examples include foods such as curry and pet food.
  • the packaging material of the present invention can also be used as a packaging material for cigarettes, disposable body warmers, medicines such as infusion packs, cosmetics, and vacuum insulation materials.
  • polyester polyol (A1)> (Polyester polyol (A1-1)) 79.10 parts of ethylene glycol, 74.06 parts of phthalic anhydride, 73.07 parts of adipic acid and 0.01 part of titanium tetraisopropoxide were placed in a polyester reaction vessel equipped with an agitator, nitrogen gas inlet tube, Snyder tube and condenser. was charged, and the inside temperature was maintained at 220°C by gradually heating so that the temperature at the top of the rectifying tube did not exceed 100°C.
  • polyester polyol (A1-3) 33.88 parts of ethylene glycol, 98.86 parts of 1,3,5-tris(2-hydroxyethyl)isocyanuric acid, and 67 parts of phthalic anhydride were added to a polyester reaction vessel equipped with a stirrer, nitrogen gas inlet tube, Snyder tube, and condenser. .26 parts were charged, and the inside temperature was maintained at 220°C by gradually heating so that the temperature at the top of the rectifying tube did not exceed 100°C. When the acid value became 1 mgKOH/g or less, the esterification reaction was terminated to obtain a polyester polyol (A1-3) having a number average molecular weight of 420. The hydroxyl value was 378.3 mgKOH/g, and the oxygen permeability was 103.7 cc/m 2 /day/atm or less.
  • polyester polyol (c1-1) having a number average molecular weight of 500.
  • the polyester polyol (c1-1) had an oxygen permeability of 131.8 cc/m 2 /day/atm or less.
  • polyester polyol (c1-3) having a number average molecular weight of 380.
  • the oxygen permeability of polyester polyol (c1-3) was 103.8 cc/m 2 /day/atm or less.
  • the NCO% measured according to JIS-K1603 was 13.5%. All the polypropylene glycols used in synthesizing the urethane prepolymer (CH2) had an oxygen permeability exceeding 300 cc/m 2 /day/atm.
  • polyester polyol (A1) and polyol (A2) are blended in the ratio shown in Table 1-4, phosphoric acid is added so that the total amount of polyester polyol (A1) and polyol (A2) is 100 ppm, and polyol A composition (X) was prepared. Also, the isocyanate compound (C1) and the urethane prepolymer (C2) were blended at the ratio shown in Table 1-4 to prepare a polyisocyanate composition (Y). Polyol composition (X) and polyol composition (Y) were blended at the ratio shown in Table 1-4 to obtain adhesives of Examples and Comparative Examples.
  • polyol (A2) is isosorbide
  • XDI is xylylene diisocyanate
  • MDI is Millionate MN (a mixture of 4,4'-diphenylmethane diisocyanate and 2,4'-diphenylmethane diisocyanate).
  • the obtained laminate was adjusted to a size of 10 cm ⁇ 10 cm, and was subjected to JIS-K7126 (isobaric method) using OX-TRAN2/21 (manufactured by Mocon Co., Ltd.: oxygen permeability measuring device) at 23 ° C. 0% RH. Oxygen permeability was measured under ambient conditions. Note that RH represents humidity. Since the coating amount of the adhesive actually applied is not uniform, the measured oxygen permeability (cc/m 2 /day/atm) is calculated when the adhesive coating amount is 3 g/m 2 . After conversion, the results are summarized in Table 1-4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are an adhesive having excellent gas-barrier properties, a laminate, and a packaging material. Also provided is a two-pack solvent-free adhesive composition which comprises a polyol composition (X) comprising a polyester polyol (A1) and a polyol (A2) and a polyisocyanate composition (Y) including a polyisocyanate compound (C), wherein the polyester polyol (A1), when reacted with a trimethylolpropane adduct of xylylene diisocyanate under the conditions of NCO/OH of 2±0.2, gives a cured coating film which has an oxygen permeability at 23°C and 0% RH of 300 cc/m2/day/atm or less in terms of 3 g/m2, and the polyol (A2) has two or more hydroxyl groups, a density of 1.2 g/cm3 or higher, and a melting point of 20°C or greater. The adhesive, anchor coating material, laminate, and packaging material each comprise or are obtained using the adhesive composition.

Description

2液硬化型接着性組成物、アンカーコート剤、接着剤、積層体、包装材Two-component curable adhesive composition, anchor coating agent, adhesive, laminate, packaging material
 本発明は、2液硬化型接着性組成物、アンカーコート剤、接着剤、積層体、包装材に関する。 The present invention relates to a two-part curable adhesive composition, an anchor coating agent, an adhesive, a laminate, and a packaging material.
 食品や飲料等の包装材料は、様々な流通、冷蔵等の保存や加熱殺菌などの処理等から内容物を保護するため、強度や割れにくさ、耐レトルト性、耐熱性といった機能ばかりでなく、内容物を確認できるよう透明性に優れるなど多岐に渡る機能が要求されている。
 その一方で、ヒートシールにより袋を密閉する場合には、熱加工性に優れる無延伸のポリオレフィン類フィルムが必須であるが、無延伸ポリオレフィンフィルムには包装材料として不足している機能も多い。
Packaging materials for food and beverages protect the contents from various distributions, preservation such as refrigeration, and heat sterilization. A wide variety of functions are required, such as excellent transparency so that the contents can be confirmed.
On the other hand, when a bag is sealed by heat sealing, a non-stretched polyolefin film with excellent heat processability is essential, but the unstretched polyolefin film has many functions lacking as a packaging material.
 このようなことから、前記包装材料は、異種のポリマー材料を組み合わせた複合フレキシブルフィルムが広く用いられている。一般に複合フレキシブルフィルムは、商品保護や各種機能を有する外層となる熱可塑性プラスチックフィルム層等と、シーラント層となる熱可塑性プラスチックフィルム層等からなり、これらの貼り合わせには、外層用熱可塑性プラスチックと、接着剤と、シーラント層用熱可塑性プラスチックとを3層溶融押し出しし未延伸積層シートを成形後延伸する方法や(特許文献1)、ラミネートフィルム層に接着剤を塗布してシーラント層を接着させることで多層フィルムを製造するドライラミネート法(特許文献2)等が知られている。さらに、環境負荷の低減および作業環境の改善の観点から、揮発性の有機溶剤を含有しない、反応型2液タイプのラミネート接着剤(以下無溶剤型接着剤と称する)の需要が高まりつつある(特許文献3)。 For this reason, composite flexible films made by combining different types of polymer materials are widely used as the packaging material. In general, a composite flexible film consists of a thermoplastic film layer, etc., which serves as an outer layer for product protection and various functions, and a thermoplastic film layer, etc., which serves as a sealant layer. , a method in which three layers of an adhesive and a thermoplastic for a sealant layer are melt-extruded to form an unstretched laminated sheet and then stretched (Patent Document 1); A dry lamination method (Patent Document 2) and the like are known for producing a multilayer film. Furthermore, from the viewpoint of reducing the environmental burden and improving the working environment, the demand for reactive two-liquid type lamination adhesives (hereinafter referred to as solvent-free adhesives) that do not contain volatile organic solvents is increasing ( Patent document 3).
 また、近年では多層フィルムに対するさらなる高機能化が求められており、酸化を抑えるため外部からの酸素の侵入を防ぐ酸素バリア性や、二酸化炭素バリア性、各種香気成分等に対するバリア性機能も要求されている。また、食品の賞味期限、消費期限を延ばす方法の一つとして、食品の劣化、腐敗の原因である微生物類やカビ類の繁殖防止するために、不活性ガス、エチルアルコールの蒸散材やエチルアルコール蒸気、を食品と共に包装内に封入することが広く行われている。こうした包装類の場合、食品の状態を維持するために、不活性ガスやエチルアルコールの漏洩を防止するバリア機能も要求されている。 In addition, in recent years, there has been a demand for even higher functionality in multilayer films, and in order to suppress oxidation, oxygen barrier properties that prevent the intrusion of oxygen from the outside, carbon dioxide barrier properties, and barrier properties against various aroma components, etc. are also required. ing. In addition, as one of the methods to extend the expiration date and expiration date of food, in order to prevent the propagation of microorganisms and molds that cause deterioration and spoilage of food, inert gas, ethyl alcohol transpiration material and ethyl alcohol It is widely practiced to enclose steam, together with food, in packages. Such packages are required to have a barrier function to prevent leakage of inert gas and ethyl alcohol in order to maintain the state of the food.
特開2006-341423号公報JP 2006-341423 A 特開2003-13032号公報JP-A-2003-13032 特開2014-159548号公報JP 2014-159548 A
 一方近年、循環型社会の構築を求める声の高まりとともに、包装材料をリサイクルして使用することが試みられている。しかしながら、上記のような異種の樹脂フィルムを貼り合わせた積層体では種類ごとに樹脂を分離することが難しく、リサイクルに適さない。同種のフィルムを貼り合わせた積層体として、延伸ポリエチレンフィルムや延伸ポリプロピレンフィルムと、未延伸ポリエチレンや未延伸ポリプロピレンフィルムを貼り合わせた積層体が提案されているが、オレフィン樹脂同士を貼り合わせた積層体は酸素バリア性が不十分である。 On the other hand, in recent years, along with the growing demand for building a recycling-oriented society, attempts have been made to recycle and use packaging materials. However, it is difficult to separate the resins by type in the above-described laminated body in which different types of resin films are bonded together, and thus it is not suitable for recycling. As a laminate of films of the same type, a laminate of stretched polyethylene film or stretched polypropylene film and unstretched polyethylene or unstretched polypropylene film has been proposed. has insufficient oxygen barrier properties.
 本発明はこのような事情に鑑みなされたものであって、ガスバリア性に優れた無溶剤型接着性組成物を提供することにある。さらに、ガスバリア性に優れた無溶剤型接着性組成物を用いることにより、食品を中心とした包装材や、太陽電池、表示素子等の電子材料用の透明バリアフィルムに使用できる透明なフィルムで、ガスバリア機能が優れる上、折り曲げ処理にも強いガスバリア性積層体、あるいはリサイクル性に優れた積層体、包装材を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to provide a solventless adhesive composition having excellent gas barrier properties. Furthermore, by using a solvent-free adhesive composition with excellent gas barrier properties, it is a transparent film that can be used as a packaging material mainly for food and as a transparent barrier film for electronic materials such as solar cells and display elements. To provide a gas-barrier laminate excellent in gas barrier function and resistant to bending, or a laminate and a packaging material excellent in recyclability.
 ポリエステルポリオール(A1)と、ポリオール(A2)とを含むポリオール組成物(X)と、ポリイソシアネート化合物(C)を含むポリイソシアネート組成物(Y)と、を含み、ポリエステルポリオール(A1)は、ポリエステルポリオール(A1)とキシレンジイソシアネートのトリメチロールプロパンアダクト体とを、NCO/OHが2±0.2で反応させたときの硬化塗膜の23℃0%RHにおける酸素透過率の3g/m換算値が300cc/m/day/atm以下であり、ポリオール(A2)は、2以上の水酸基を有し、密度が1.2g/cm以上であり、融点が20℃以上である2液無溶剤型接着性組成物、これを用いた接着剤、アンカーコート剤、積層体、包装材に関する。 A polyol composition (X) containing a polyester polyol (A1) and a polyol (A2), and a polyisocyanate composition (Y) containing a polyisocyanate compound (C), wherein the polyester polyol (A1) is a polyester Polyol (A1) and trimethylolpropane adduct of xylene diisocyanate are reacted at NCO/OH of 2 ± 0.2. Oxygen permeability of the cured coating film at 23 ° C. 0% RH converted to 3 g / m 2 value is 300 cc/m 2 /day/atm or less, the polyol (A2) has two or more hydroxyl groups, a density of 1.2 g/cm 3 or more, and a melting point of 20° C. or more. The present invention relates to a solvent-type adhesive composition, an adhesive, an anchor coating agent, a laminate, and a packaging material using the same.
 本発明によれば、溶剤排出の懸念がなく、ガスバリア性に優れた接着性組成物、これを用いた接着剤、アンカーコート剤を提供することができる。また、本発明のガスバリア性接着性組成物を用いることにより、食品を中心とした包装材や、太陽電池、表示素子等の電子材料用の透明バリアフィルムに使用できる透明なフィルムで、ガスバリア機能が優れる上、折り曲げ処理にも強いガスバリア性多層フィルム、リサイクル性に優れた積層体、包装材を提供することができる。 According to the present invention, it is possible to provide an adhesive composition with excellent gas barrier properties without fear of solvent discharge, and an adhesive and an anchor coating agent using the same. In addition, by using the gas barrier adhesive composition of the present invention, a transparent film that can be used as a packaging material mainly for food and a transparent barrier film for electronic materials such as solar cells and display elements has a gas barrier function. It is possible to provide a gas-barrier multilayer film that is excellent and resistant to bending, a laminate, and a packaging material that are excellent in recyclability.
<2液硬化型接着性組成物>
 本発明の2液硬化型接着性組成物は、ポリエステルポリオール(A1)と、ポリオール(A2)とを含むポリオール組成物(X)と、ポリイソシアネート化合物(C)を含むポリイソシアネート組成物(Y)とからなる。以下本発明の2液硬化型接着性組成物について詳述する。
<Two-liquid curable adhesive composition>
The two-component curable adhesive composition of the present invention is a polyol composition (X) containing a polyester polyol (A1) and a polyol (A2), and a polyisocyanate composition (Y) containing a polyisocyanate compound (C). Consists of The two-pack curable adhesive composition of the present invention is described in detail below.
(ポリオール組成物(X))
 本発明のポリオール組成物は、ポリエステルポリオール(A1)と、ポリオール(A2)とを必須成分として含む。以下本発明のポリオール組成物(X)について詳述する。
(Polyol composition (X))
The polyol composition of the present invention contains polyester polyol (A1) and polyol (A2) as essential components. The polyol composition (X) of the present invention will be described in detail below.
(ポリエステルポリオール(A1))
 ポリエステルポリオール(A1)は、ポリエステルポリオール(A1)とキシレンジイソシアネートのトリメチロールプロパンアダクト体とを、[NCO]/[OH]が2±0.2で反応させたときの硬化塗膜の23℃0%RHにおける酸素透過率の3g/m換算値が300cc/m/day/atm以下である。[NCO]はXDI-TMPアダクト体が有するイソシアネート基のモル数であり、[OH]はポリエステルポリオール(A1)が有する水酸基のモル数である。酸素透過率はJIS-K7126(等圧法)に準じて測定する。なお以下ではキシレンジイソシアネートのトリメチロールプロパンアダクト体をXDI-TMPアダクト体ともいい、上記条件で測定したポリエステルポリオール(A1)の酸素透過率の3g/m換算値をポリエステルポリオール(A1)の酸素透過率ともいう。
(Polyester polyol (A1))
The polyester polyol (A1) is obtained by reacting the polyester polyol (A1) and the trimethylolpropane adduct of xylene diisocyanate at a [NCO]/[OH] ratio of 2 ± 0.2. The 3 g/m 2 conversion value of the oxygen permeability at % RH is 300 cc/m 2 /day/atm or less. [NCO] is the number of moles of isocyanate groups possessed by the XDI-TMP adduct, and [OH] is the number of moles of hydroxyl groups possessed by the polyester polyol (A1). The oxygen permeability is measured according to JIS-K7126 (isobaric method). In the following, the trimethylolpropane adduct of xylene diisocyanate is also referred to as the XDI-TMP adduct, and the oxygen transmission rate of polyester polyol (A1) measured under the above conditions, converted to 3 g/ m2 , is the oxygen transmission rate of polyester polyol (A1). Also called rate.
 積層体の酸素透過率は、以下の式で算出されることが知られている。 It is known that the oxygen permeability of the laminate is calculated by the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記式中、Aは積層体の酸素透過率であり、F1、F2はそれぞれ積層体を構成する各層の酸素透過率である。よって例えばプラスチックフィルム上にポリエステルポリオール(A1)とXDI-TMPアダクト体とを混合したものを塗布、硬化させた後、酸素透過率Aを測定する。積層体の酸素透過率A、プラスチックフィルムの酸素透過率F1から硬化塗膜の酸素透過率F2を算出し、F2に((ポリエステルポリオール(A1)とXDI-TMPアダクト体の混合物の塗布量(g/m))/3(g/m))を乗することでポリエステルポリオール(A1)の酸素透過率を得ることができる。 In the above formula, A is the oxygen permeability of the laminate, and F1 and F2 are the oxygen permeability of each layer constituting the laminate. Therefore, for example, a mixture of the polyester polyol (A1) and the XDI-TMP adduct is coated on a plastic film, cured, and then the oxygen transmission rate A is measured. Calculate the oxygen permeability F2 of the cured coating film from the oxygen permeability A of the laminate and the oxygen permeability F1 of the plastic film, and set F2 to ((coating amount of mixture of polyester polyol (A1) and XDI-TMP adduct body (g /m 2 ))/3 (g/m 2 )) to obtain the oxygen permeability of the polyester polyol (A1).
 本発明に用いられるポリエステルポリオール(A1)は、一般的なポリイソシアネート化合物と反応して硬化し、その塗膜は良好な酸素バリア性を示すが、室温、常圧の環境下では液状である。従って、ポリエステルポリオール(A1)単独での23℃0%RHにおける酸素透過率を測定することができないため、上記の評価方法で代替する。 The polyester polyol (A1) used in the present invention reacts with a general polyisocyanate compound to cure, and the coating exhibits good oxygen barrier properties, but is liquid under room temperature and normal pressure. Therefore, since the oxygen transmission rate of the polyester polyol (A1) alone at 23°C and 0% RH cannot be measured, the above evaluation method is substituted.
 ポリエステルポリオール(A1)は、多価カルボン酸、多価アルコール、および必要に応じて用いられるカルボキシル基または水酸基との反応性を有する化合物を含む組成物(A1’)の反応生成物である。多価カルボン酸としては、例えば、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等の脂肪族多価カルボン酸;無水マレイン酸、マレイン酸、フマル酸等の不飽和結合含有多価カルボン酸;1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環族多価カルボン酸;オルトフタル酸、テレフタル酸、イソフタル酸、ピロメリット酸、トリメリット酸、1,2-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、2,3-アントラセンカルボン酸、アントラキノン-2,3-ジカルボン酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸及びこれらジカルボン酸の酸無水物或いはエステル形成性誘導体、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸及びこれらのジヒドロキシカルボン酸のエステル形成性誘導体等の芳香族多価カルボン酸等が挙げられ、1種または2種以上を併用することができる。 A polyester polyol (A1) is a reaction product of a composition (A1') containing a polyhydric carboxylic acid, a polyhydric alcohol, and an optionally used compound having reactivity with a carboxyl group or a hydroxyl group. Examples of polycarboxylic acids include aliphatic polycarboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid and dodecanedicarboxylic acid; unsaturated bond-containing polycarboxylic acids such as maleic anhydride, maleic acid and fumaric acid; Carboxylic acid; alicyclic polycarboxylic acids such as 1,3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid; orthophthalic acid, terephthalic acid, isophthalic acid, pyromellitic acid, trimellitic acid, 1,2- Naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, 2,3-anthracenecarboxylic acid, anthraquinone-2 ,3-dicarboxylic acid, biphenyldicarboxylic acid, 1,2-bis(phenoxy)ethane-p,p'-dicarboxylic acid and acid anhydrides or ester-forming derivatives of these dicarboxylic acids, p-hydroxybenzoic acid, p-( 2-Hydroxyethoxy)benzoic acid and aromatic polyvalent carboxylic acids such as ester-forming derivatives of these dihydroxycarboxylic acids, and the like can be used alone or in combination of two or more.
 多価カルボン酸としてオルト配向性芳香族多価カルボン酸(a1)を用いると、ガスバリア性が向上する(ポリエステルポリオール(A1)の酸素透過率が低下する)ため好ましい。オルト配向性芳香族多価カルボン酸(a1)は、骨格が非対称であるためポリエステルポリオール(A1)の分子鎖に回転抑制が生じ、これによりガスバリア性が向上すると推定される。 The use of the ortho-oriented aromatic polycarboxylic acid (a1) as the polycarboxylic acid is preferable because the gas barrier properties are improved (the oxygen permeability of the polyester polyol (A1) is reduced). Since the ortho-oriented aromatic polycarboxylic acid (a1) has an asymmetric skeleton, it is presumed that rotation suppression occurs in the molecular chain of the polyester polyol (A1), thereby improving gas barrier properties.
 オルト配向性芳香族多価カルボン酸(a1)としては、オルトフタル酸又はその酸無水物、ナフタレン2,3-ジカルボン酸又はその酸無水物、ナフタレン1,2-ジカルボン酸又はその酸無水物、アントラキノン2,3-ジカルボン酸又はその酸無水物、及び2,3-アントラセンカルボン酸又はその酸無水物等が挙げられる。これらの化合物は、芳香環の任意の炭素原子に置換基を有していても良い。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基又はナフチル基等が挙げられる。 The ortho-oriented aromatic polycarboxylic acid (a1) includes orthophthalic acid or its acid anhydride, naphthalene 2,3-dicarboxylic acid or its acid anhydride, naphthalene 1,2-dicarboxylic acid or its acid anhydride, and anthraquinone. 2,3-dicarboxylic acid or its acid anhydride, 2,3-anthracenecarboxylic acid or its acid anhydride, and the like. These compounds may have a substituent at any carbon atom of the aromatic ring. The substituents include chloro, bromo, methyl, ethyl, i-propyl, hydroxyl, methoxy, ethoxy, phenoxy, methylthio, phenylthio, cyano, nitro, amino, phthalimido group, carboxyl group, carbamoyl group, N-ethylcarbamoyl group, phenyl group, naphthyl group and the like.
 ガスバリア性の観点から、組成物(A1’)に占めるオルト配向性芳香族多価カルボン酸(a1)の配合量は20質量%以上であることが好ましく、30質量%以上であることがより好ましい。塗工適性の観点から、組成物(A1’)に占めるオルト配向性芳香族多価カルボン酸(a1)の配合量は50質量%以下であることが好ましい。 From the viewpoint of gas barrier properties, the amount of the ortho-oriented aromatic polycarboxylic acid (a1) in the composition (A1′) is preferably 20% by mass or more, more preferably 30% by mass or more. . From the viewpoint of coatability, the amount of the ortho-oriented aromatic polycarboxylic acid (a1) in the composition (A1') is preferably 50% by mass or less.
 多価アルコールとしては、メチレングリコール、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオール、ジメチルブタンジオール、ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等の脂肪族ジオール;グリセリン、トリメチロールプロパン、トリメチロールエタン、トリス(2-ヒドロキシエチル)イソシアヌレート、1,2,4-ブタントリオール、ペンタエリスリトール、ジペンタエリスルトール等の三価以上の多価アルコール、ヒドロキノン、レゾルシノール、カテコール、ナフタレンジオール、ビフェノール、ビスフェノールA、ヒスフェノールF、テトラメチルビフェノールや、これらのエチレンオキサイド伸長物、水添化脂環族等の芳香族多価フェノール等が挙げられ、1種または2種以上を併用することができる。 Polyhydric alcohols include methylene glycol, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, cyclohexanedimethanol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol. , methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol and other aliphatic diols; glycerin, trimethylolpropane, trimethylolethane, tris (2 -Hydroxyethyl) isocyanurate, trihydric or higher polyhydric alcohols such as 1,2,4-butanetriol, pentaerythritol, dipentaerythritol, hydroquinone, resorcinol, catechol, naphthalene diol, biphenol, bisphenol A, hisphenol F, tetramethylbiphenol, ethylene oxide extensions thereof, aromatic polyhydric phenols such as hydrogenated alicyclics, etc. can be mentioned, and one or more of them can be used in combination.
 水酸基間のメチレン鎖が短いものを用いた方がポリエステルポリオール(A1)の酸素透過率を低くすることができるため、多価アルコールとしては水酸基間の炭素原子数が1以上3以下の脂肪族ポリオール(a2)を用いることが好ましい。脂肪族ポリオール(a2)としては、メチレングリコール、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール等が挙げられる。 Since the oxygen permeability of the polyester polyol (A1) can be lowered by using one having a short methylene chain between hydroxyl groups, the polyhydric alcohol has 1 to 3 carbon atoms between hydroxyl groups. (a2) is preferably used. Examples of the aliphatic polyol (a2) include methylene glycol, ethylene glycol, 1,2-propylene glycol and 1,3-propylene glycol.
 ポリエステルポリオール(A1)のガスバリア性を向上させるため、組成物(A1’)はイソシアヌル環を有する化合物(a3)を含むことが好ましい。また化合物(a3)は、カルボキシル基およびヒドロキシル基の少なくとも一方と反応可能な官能基を2以上備え、イソシアヌル環と官能基とをつなぐ最短のメチレン鎖の炭素原子数が4以下であるものが好ましい。メチレン鎖の炭素原子数が4を超えるとガスバリア性が低下する傾向にある。化合物(a3)が有する官能基は、メチレン鎖を介してイソシアヌル環にそれぞれ独立に結合していてもよいし、イソシアヌル環に結合した一つのメチレン鎖に複数が結合したようなものであってもよい。一つのメチレン鎖に結合した複数の官能基のうち、イソシアヌル環に最も近い官能基とイソシアヌル環との間のメチレン鎖の炭素原子数が4以下であればよいが、複数の官能基間をつなぐメチレン鎖の炭素原子数は1以上4以下であることが好ましい。 In order to improve the gas barrier properties of the polyester polyol (A1), the composition (A1') preferably contains a compound (a3) having an isocyanuric ring. The compound (a3) preferably has two or more functional groups capable of reacting with at least one of a carboxyl group and a hydroxyl group, and preferably has 4 or less carbon atoms in the shortest methylene chain connecting the isocyanuric ring and the functional group. . When the number of carbon atoms in the methylene chain exceeds 4, gas barrier properties tend to deteriorate. The functional groups possessed by the compound (a3) may be independently bonded to the isocyanuric ring via a methylene chain, or may be such that a plurality of functional groups are bonded to one methylene chain bonded to the isocyanuric ring. good. Of the multiple functional groups bonded to one methylene chain, the number of carbon atoms in the methylene chain between the functional group closest to the isocyanuric ring and the isocyanuric ring should be 4 or less. The number of carbon atoms in the methylene chain is preferably 1 or more and 4 or less.
 このような化合物(a3)としては例えば、1,3,5-トリス(アミノメチル)イソシアヌル酸、1,3,5-トリス(2-アミノエチル)イソシアヌル酸、1,3-ビス(2-アミノエチル)-5-メチル-イソシアヌル酸、1,3-ビス(2-アミノエチル)-5-エチル-イソシアヌル酸、1,3-ビス(2-アミノエチル)-5-プロピル-イソシアヌル酸、1,3-ビス(2-アミノエチル)-5-ブチル-イソシアヌル酸、1,3,5-トリス(3-アミノプロピル)イソシアヌル酸、1,3-ビス(3-アミノプロピル)-5-メチル-イソシアヌル酸等のアミノ基を有するイソシアヌル酸、 Examples of such compounds (a3) include 1,3,5-tris(aminomethyl)isocyanuric acid, 1,3,5-tris(2-aminoethyl)isocyanuric acid, 1,3-bis(2-amino ethyl)-5-methyl-isocyanuric acid, 1,3-bis(2-aminoethyl)-5-ethyl-isocyanuric acid, 1,3-bis(2-aminoethyl)-5-propyl-isocyanuric acid, 1, 3-bis(2-aminoethyl)-5-butyl-isocyanuric acid, 1,3,5-tris(3-aminopropyl)isocyanuric acid, 1,3-bis(3-aminopropyl)-5-methyl-isocyanuric acid isocyanuric acid having an amino group such as acid,
 1,3,5-トリス(ヒドロキシメチル)イソシアヌル酸、1,3-ビス(ヒドロキシメチル)-5-メチル-イソシアヌル酸、1,3-ビス(ヒドロキシメチル)-5-エチル-イソシアヌル酸、1,3-ビス(ヒドロキシメチル)-5-ブチル-イソシアヌル酸、1,3-ビス(ヒドロキシメチル)-5-フェニル-イソシアヌル酸、1-(ヒドロキシエチル)-3,5-ビス(ヒドロキシメチル)-イソシアヌル酸、1,3,5-トリス(1-ヒドロキシエチル)イソシアヌル酸、1,3-ビス(ヒドロキシメチル)-5-(2-ヒドロキシプロピル)イソシアヌル酸、1,3-ビス(ヒドロキシメチル)-5-(2-ヒドロキシ-1-メチルプロピル)イソシアヌル酸、1,3-ビス(ヒドロキシメチル)-5-(2-ヒドロキシ-2-メチルプロピル)イソシアヌル酸、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌル酸、1,3-ビス(2-ヒドロキシエチル)-5-メチル-イソシアヌル酸、1,3-ビス(2-ヒドロキシエチル)-5-エチル-イソシアヌル酸、1,3-ビス(2-ヒドロキシエチル)-5-(1-ヒドロキシ-1-メチルエチル)イソシアヌル酸、1,3,5-トリス(3-ヒドロキシプロピル)イソシアヌル酸、1,3,5-トリス(2-ヒドロキシプロピル)イソシアヌル酸、1,3,5-トリス(4-ヒドロキシブチル)イソシアヌル酸、1,3,5-トリス(3-ヒドロキシブチル)イソシアヌル酸、1,3,5-トリス(1,2-ヒドロキシエチル)イソシアヌル酸、1,3,5-トリス(2,3-ヒドロキシプロピル)イソシアヌル酸、1,3-ビス(2,4-ヒドロキシブチル)-5-(ヒドロキシメチル)イソシアヌル酸等のヒドロキシル基を有するイソシアヌル酸、 1,3,5-tris(hydroxymethyl)isocyanuric acid, 1,3-bis(hydroxymethyl)-5-methyl-isocyanuric acid, 1,3-bis(hydroxymethyl)-5-ethyl-isocyanuric acid, 1, 3-bis(hydroxymethyl)-5-butyl-isocyanuric acid, 1,3-bis(hydroxymethyl)-5-phenyl-isocyanuric acid, 1-(hydroxyethyl)-3,5-bis(hydroxymethyl)-isocyanuric acid acid, 1,3,5-tris(1-hydroxyethyl)isocyanuric acid, 1,3-bis(hydroxymethyl)-5-(2-hydroxypropyl)isocyanuric acid, 1,3-bis(hydroxymethyl)-5 -(2-hydroxy-1-methylpropyl)isocyanuric acid, 1,3-bis(hydroxymethyl)-5-(2-hydroxy-2-methylpropyl)isocyanuric acid, 1,3,5-tris(2-hydroxy ethyl)isocyanuric acid, 1,3-bis(2-hydroxyethyl)-5-methyl-isocyanuric acid, 1,3-bis(2-hydroxyethyl)-5-ethyl-isocyanuric acid, 1,3-bis(2 -hydroxyethyl)-5-(1-hydroxy-1-methylethyl)isocyanuric acid, 1,3,5-tris(3-hydroxypropyl)isocyanuric acid, 1,3,5-tris(2-hydroxypropyl)isocyanuric acid acid, 1,3,5-tris(4-hydroxybutyl)isocyanuric acid, 1,3,5-tris(3-hydroxybutyl)isocyanuric acid, 1,3,5-tris(1,2-hydroxyethyl)isocyanuric acid acid, isocyanuric acid having a hydroxyl group such as 1,3,5-tris(2,3-hydroxypropyl)isocyanuric acid, 1,3-bis(2,4-hydroxybutyl)-5-(hydroxymethyl)isocyanuric acid ,
 1,3,5-トリス(2,3-エポキシプロピル)イソシアヌル酸、1,3-ビス(2,3-エポキシプロピル)-5-メチル-イソシアヌル酸、1,3-ビス(2,3-エポキシプロピル)-5-エチル-イソシアヌル酸、1,3-ビス(2,3-エポキシプロピル)-5-プロピル-イソシアヌル酸、1,3,5-トリス(3,4-エポキシブチル)イソシアヌル酸等のグリシジル基を有するイソシアヌル酸、 1,3,5-tris(2,3-epoxypropyl)isocyanuric acid, 1,3-bis(2,3-epoxypropyl)-5-methyl-isocyanuric acid, 1,3-bis(2,3-epoxy propyl)-5-ethyl-isocyanuric acid, 1,3-bis(2,3-epoxypropyl)-5-propyl-isocyanuric acid, 1,3,5-tris(3,4-epoxybutyl)isocyanuric acid, etc. isocyanuric acid having a glycidyl group,
 1,3,5-トリス(カルボキシ)イソシアヌル酸、1,3,5-トリス(カルボキシメチル)イソシアヌル酸、1,3-ビス(カルボキシメチル)-5-メチル-イソシアヌル酸、1,3-ビス(カルボキシメチル)-5-エチル-イソシアヌル酸、1,3-ビス(カルボキシメチル)-5-ブチル-イソシアヌル酸、1,3-ビス(カルボキシメチル)-5-フェニル-イソシアヌル酸、1,3-ビス(カルボキシエチル)-5-メチル-イソシアヌル酸、1,3-ビス(カルボキシエチル)-5-エチル-イソシアヌル酸、1,3-ビス(カルボキシプロピル)-5-メチル-イソシアヌル酸、1,3-ビス(カルボキシエチル)-5-ブチル-イソシアヌル酸、1,3,5-トリス(カルボキシプロピル)イソシアヌル酸、1,3-ビス(カルボキシプロピル)-5-メチル-イソシアヌル酸等のカルボキシル基を有するイソシアヌル酸、等が挙げられるがこれに限定されない。これらの化合物はいずれか1種を用いてもよいし、2種以上を併用してもよい。 1,3,5-tris(carboxy)isocyanuric acid, 1,3,5-tris(carboxymethyl)isocyanuric acid, 1,3-bis(carboxymethyl)-5-methyl-isocyanuric acid, 1,3-bis( carboxymethyl)-5-ethyl-isocyanuric acid, 1,3-bis(carboxymethyl)-5-butyl-isocyanuric acid, 1,3-bis(carboxymethyl)-5-phenyl-isocyanuric acid, 1,3-bis (Carboxyethyl)-5-methyl-isocyanuric acid, 1,3-bis(carboxyethyl)-5-ethyl-isocyanuric acid, 1,3-bis(carboxypropyl)-5-methyl-isocyanuric acid, 1,3- Isocyanuric acid having a carboxyl group such as bis(carboxyethyl)-5-butyl-isocyanuric acid, 1,3,5-tris(carboxypropyl)isocyanuric acid, 1,3-bis(carboxypropyl)-5-methyl-isocyanuric acid acids, and the like, but are not limited to these. Any one of these compounds may be used, or two or more thereof may be used in combination.
 ポリエステルポリオール(A1)が化合物(a3)由来の構造を有することにより、本発明のポリオール組成物(X)はガスバリア性に優れたものとなる。ガスバリア性の観点から、組成物(A1’)に占める化合物(a3)の配合量は5質量%以上であることが好ましく、10質量%以上であることがより好ましい。塗工適性の観点から、組成物(A1’)に占める化合物(a3)の配合量は60質量%以下であることが好ましく、50質量%以下であることがより好ましい。 By having the structure derived from the compound (a3) in the polyester polyol (A1), the polyol composition (X) of the present invention has excellent gas barrier properties. From the viewpoint of gas barrier properties, the compounding amount of compound (a3) in composition (A1') is preferably 5% by mass or more, more preferably 10% by mass or more. From the viewpoint of coatability, the compounding amount of the compound (a3) in the composition (A1') is preferably 60% by mass or less, more preferably 50% by mass or less.
 ポリエステルポリオール(A1)が有するイソシアヌル環のモル濃度が高いほどポリエステルポリオール(A1)の酸素透過率は低下し、本発明の接着性組成物はガスバリア性に優れたものとなる。化合物(a3)の分子量が小さいほどイソシアヌル環のモル濃度を高くできることから、化合物(a3)の分子量は350以下であることが好ましい。 The higher the molar concentration of the isocyanuric rings in the polyester polyol (A1), the lower the oxygen permeability of the polyester polyol (A1), and the adhesive composition of the present invention has excellent gas barrier properties. The molecular weight of the compound (a3) is preferably 350 or less because the smaller the molecular weight of the compound (a3), the higher the molar concentration of the isocyanuric ring.
 あるいは、多価カルボン酸(a1)として直鎖状のジカルボン酸を用い、多価アルコール(a2)として直鎖状のジオールを用いることでポリエステルポリオール(A1)を結晶性とすることも好ましい。これにより、ポリエステルポリオール(A1)の酸素透過率を低下させることもできる。 Alternatively, it is also preferable to use a linear dicarboxylic acid as the polyhydric carboxylic acid (a1) and a linear diol as the polyhydric alcohol (a2) to make the polyester polyol (A1) crystalline. This can also reduce the oxygen permeability of the polyester polyol (A1).
 ガスバリア性の観点から、ポリエステルポリオール(A1)の数平均分子量は300以上であることが好ましい。塗工適性の観点から、ポリエステルポリオール(A1)の数平均分子量は800以下であることが好ましい。なお本願発明において数平均分子量(Mn)は、設計官能基数と、水酸基価(mgKOH/g)の実測値から以下の式に従って算出した値である。水酸基価はJIS-K0070に記載の水酸基価測定方法にて測定することができる。 From the viewpoint of gas barrier properties, the polyester polyol (A1) preferably has a number average molecular weight of 300 or more. From the viewpoint of coatability, the polyester polyol (A1) preferably has a number average molecular weight of 800 or less. In the present invention, the number average molecular weight (Mn) is a value calculated according to the following formula from the number of design functional groups and the actually measured hydroxyl value (mgKOH/g). The hydroxyl value can be measured by the hydroxyl value measuring method described in JIS-K0070.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 設計官能基数は、組成物(A1’)に含まれる、カルボキシル基のモル数(O)、多価カルボン酸のモル数(P)、カルボキシル基と反応可能な官能基のモル数(Q)、カルボキシル基と反応可能な官能基を有する化合物のモル数(R)から、(Q-O)/(R-P)にて算出する。 The number of designed functional groups is the number of moles of carboxyl groups (O), the number of moles of polyvalent carboxylic acid (P), the number of moles of functional groups capable of reacting with carboxyl groups (Q), which are contained in the composition (A1′). It is calculated by (QO)/(RP) from the number of moles (R) of the compound having a functional group capable of reacting with a carboxyl group.
(ポリオール(A2))
 本発明に用いられるポリオール(A2)は、2以上の水酸基を有し、密度が1.2g/cm以上であり、融点が20℃以上である化合物である。なおポリオール(A2)の密度は、20℃、1atmにおける値である。ポリエステルポリオール(A1)とポリオール(A2)とを併用することで、従来よりもガスバリア性に優れた無溶剤型接着剤とすることができる。ポリオール(A2)の密度の上限は特に限定されないが、一例として1.6g/cm程度である。ポリオール(A2)の融点の上限は特に限定されないが、一例として120℃である。塗工適性の観点からは、80℃以下であることが好ましく、70℃以下であることがより好ましい。
(Polyol (A2))
The polyol (A2) used in the present invention is a compound having two or more hydroxyl groups, a density of 1.2 g/cm 3 or more, and a melting point of 20° C. or more. The density of polyol (A2) is a value at 20° C. and 1 atm. By using the polyester polyol (A1) and the polyol (A2) together, it is possible to obtain a non-solvent adhesive having gas barrier properties superior to those of conventional adhesives. Although the upper limit of the density of the polyol (A2) is not particularly limited, it is about 1.6 g/cm 3 as an example. Although the upper limit of the melting point of the polyol (A2) is not particularly limited, it is 120°C as an example. From the viewpoint of coatability, the temperature is preferably 80° C. or lower, more preferably 70° C. or lower.
 ポリオール(A2)としては上述の要件を満足するものであれば特に限定されない。一例として、イソソルビド、イソイジド、イソマンニド、フランジメタノール、trans-テトラヒドロフラン-3,4-ジオール、ソルビトール、エリスリトール等が挙げられる。 The polyol (A2) is not particularly limited as long as it satisfies the above requirements. Examples include isosorbide, isoidide, isomannide, furandimethanol, trans-tetrahydrofuran-3,4-diol, sorbitol, erythritol and the like.
 ポリエステルポリオール(A1)はガスバリア性に優れる反面、室温では粘度が高く、酢酸エチルなどの有機溶剤で希釈せずに基材に塗工するには加温する必要がある。ポリオール(A2)として、相対的に融点が低いものを用いることで、ポリエステルポリオール(A1)に由来するガスバリア性を損ねることなく、有機溶剤で希釈せずとも塗工に適した粘度とすることができる。ポットライフの観点からは、2級水酸基を有するポリオール(A2)を用いることが好ましい。  Polyester polyol (A1) has excellent gas barrier properties, but has high viscosity at room temperature, so it must be heated in order to be applied to the base material without being diluted with an organic solvent such as ethyl acetate. By using a polyol (A2) having a relatively low melting point, the viscosity suitable for coating can be obtained without diluting with an organic solvent without impairing the gas barrier properties derived from the polyester polyol (A1). can. From the viewpoint of pot life, it is preferable to use a polyol (A2) having a secondary hydroxyl group.
 塗工適性の観点から、ポリオール(A2)の配合量はポリエステルポリオール(A1)とポリオール(A2)との総量の5質量%以上であることが好ましく、10質量%以上であることがより好ましい。また、ガスバリア性の観点から、ポリオール(A2)の配合量はポリエステルポリオール(A1)とポリオール(A2)との総量の90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることがより好ましい。 From the viewpoint of coatability, the blending amount of the polyol (A2) is preferably 5% by mass or more, more preferably 10% by mass or more, of the total amount of the polyester polyol (A1) and the polyol (A2). From the viewpoint of gas barrier properties, the blending amount of the polyol (A2) is preferably 90% by mass or less, more preferably 80% by mass or less, of the total amount of the polyester polyol (A1) and the polyol (A2). , 70% by mass or less.
(その他の成分(B))
 ポリオール組成物(X)は、ガスバリア性を損なわない範囲でポリエステルポリオール(A1)、ポリオール(A2)以外の成分(B)を含んでいてもよい。成分(B)としては、無機充填剤(B1)、カップリング剤(B2)、酸無水物(B3)、酸素補足剤(B4)、リン酸類(B5)、粘着付与剤(B6)、ウレタン化触媒(B7)等が挙げられるがこれに限定されない。安定剤(酸化防止剤、熱安定剤、紫外線吸収剤等)、可塑剤、帯電防止剤、滑剤、ブロッキング防止剤、着色剤、結晶核剤、消泡剤、レベリング剤等を含んでいてもよい。
(Other components (B))
The polyol composition (X) may contain a component (B) other than the polyester polyol (A1) and the polyol (A2) within a range that does not impair the gas barrier properties. Component (B) includes inorganic filler (B1), coupling agent (B2), acid anhydride (B3), oxygen scavenger (B4), phosphoric acid (B5), tackifier (B6), urethane Examples include, but are not limited to, catalyst (B7). Stabilizers (antioxidants, heat stabilizers, ultraviolet absorbers, etc.), plasticizers, antistatic agents, lubricants, antiblocking agents, coloring agents, crystal nucleating agents, antifoaming agents, leveling agents, etc. may be included. .
 無機充填剤(B1)としては、シリカ、アルミナ、アルミニウムフレーク、ガラスフレーク等が挙げられる。特に無機充填剤(B1)として板状無機化合物を用いると、接着強度、ガスバリア性、遮光性等が向上するため好ましい。板状無機化合物としては、含水ケイ酸塩(フィロケイ酸塩鉱物等)、カオリナイト-蛇紋族粘土鉱物(ハロイサイト、カオリナイト、エンデライト、ディッカイト、ナクライト等、アンチゴライト、クリソタイル等)、パイロフィライト-タルク族(パイロフィライト、タルク、ケロライ等)、スメクタイト族粘土鉱物(モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スチブンサイト等)、バーミキュライト族粘土鉱物(バーミキュライト等)、雲母又はマイカ族粘土鉱物(白雲母、金雲母等の雲母、マーガライト、テトラシリリックマイカ、テニオライト等)、緑泥石族(クッケアイト、スドーアイト、クリノクロア、シャモサイト、ニマイト等)、ハイドロタルサイト、板状硫酸バリウム、ベーマイト、ポリリン酸アルミニウム等が挙げられる。これらの鉱物は天然粘土鉱物であっても合成粘土鉱物であってもよい。板状無機化合物は1種または2種以上を併用することができる。 Examples of the inorganic filler (B1) include silica, alumina, aluminum flakes and glass flakes. In particular, it is preferable to use a plate-like inorganic compound as the inorganic filler (B1) because the adhesive strength, gas barrier properties, light shielding properties, etc. are improved. Plate-like inorganic compounds include hydrous silicates (phyllosilicate minerals, etc.), kaolinite-serpentine clay minerals (halloysite, kaolinite, endellite, dickite, nacrite, etc., antigorite, chrysotile, etc.), pyrophyllite Light-talc group (pyrophyllite, talc, kerorai, etc.), smectite group clay minerals (montmorillonite, beidellite, nontronite, saponite, hectorite, sauconite, stevensite, etc.), vermiculite group clay minerals (vermiculite, etc.), mica or Mica group clay minerals (mica such as muscovite and phlogopite, margarite, tetrasilylic mica, teniolite, etc.), chlorite group (cookieite, sudoite, clinochlore, chamosite, nimite, etc.), hydrotalcite, platy sulfuric acid barium, boehmite, aluminum polyphosphate, and the like. These minerals may be natural clay minerals or synthetic clay minerals. Plate-like inorganic compounds can be used singly or in combination of two or more.
 板状無機化合物は、層間に電荷を有するイオン性のものであってもよいし、電荷を持たない非イオン性のものであってもよい。層間の電荷の有無は接着層のガスバリア性に直接大きな影響を与えない。しかしながらイオン性の板状無機化合物や水に対して膨潤性を有する無機化合物は溶剤型接着剤への分散性が劣り、添加量を増加させると接着剤と増粘したり、チキソ性となったりして塗工適性が低下するおそれがある。このため板状無機化合物層間電化を持たない非イオン性であることが好ましい。 The plate-like inorganic compound may be an ionic compound having an electric charge between layers, or may be a nonionic compound having no electric charge. The presence or absence of charge between layers does not directly affect the gas barrier property of the adhesive layer. However, ionic plate-like inorganic compounds and inorganic compounds that swell with water have poor dispersibility in solvent-based adhesives, and when the amount added increases, the adhesive becomes thicker and thixotropic. As a result, the coating suitability may deteriorate. For this reason, it is preferable that the plate-like inorganic compound is non-ionic with no interlayer electrification.
 板状無機化合物の平均粒径は、特に制限されないが、一例として0.1μm以上であることが好ましく、1μm以上であることがより好ましい。0.1μmよりも小さいと、酸素分子の迂回経路が長くならず、ガスバリア性の向上が十分には期待できない。平均粒径の上限は特に制限されないが、粒径が大きすぎると塗工方法によっては塗工面にスジ等の欠陥が生じる場合がある。このため、一例として平均粒径は100μm以下であることが好ましく、20μm以下であることが好ましい。なお本明細書において板状無機化合物の平均粒径とは、板状無機化合物の粒度分布を光散乱式測定装置で測定した場合の出現頻度が最も高い粒径をいう。 Although the average particle diameter of the plate-like inorganic compound is not particularly limited, it is preferably 0.1 μm or more, more preferably 1 μm or more, as an example. If it is smaller than 0.1 μm, the detour path of oxygen molecules will not be long, and a sufficient improvement in gas barrier properties cannot be expected. The upper limit of the average particle size is not particularly limited, but if the particle size is too large, defects such as streaks may occur on the coated surface depending on the coating method. Therefore, as an example, the average particle diameter is preferably 100 μm or less, and preferably 20 μm or less. In this specification, the average particle size of the plate-like inorganic compound means the particle size with the highest appearance frequency when the particle size distribution of the plate-like inorganic compound is measured with a light scattering type measuring device.
 板状無機化合物のアスペクト比は酸素の迷路効果によるガスバリア性の向上のためには高い方が好ましい。具体的には3以上が好ましく、更に好ましくは10以上、最も好ましくは40以上である。 It is preferable that the aspect ratio of the plate-like inorganic compound is high in order to improve gas barrier properties due to the labyrinth effect of oxygen. Specifically, it is preferably 3 or more, more preferably 10 or more, and most preferably 40 or more.
 ポリオール組成物(X)が無機充填剤(B1)を含む場合、その配合量はポリオール組成物(X)全量の50質量%以下であることが好ましい。これにより、ガスバリア性、塗工適性のバランスに優れた接着剤とすることができる。 When the polyol composition (X) contains the inorganic filler (B1), the blending amount is preferably 50% by mass or less of the total amount of the polyol composition (X). This makes it possible to obtain an adhesive with an excellent balance of gas barrier properties and coatability.
 カップリング剤(B2)としては、シランカップリング剤、チタネート系カップリング剤、アルミニウム系等のカップリング剤等が挙げられる。カップリング剤は、各種フィルム材料、特に金属や金属酸化物の蒸着層に対する接着性を向上させる効果が期待できる。
 ポリオール組成物(X)がカップリング剤(B2)を含む場合、その配合量はポリオール組成物(X)全量の5質量%以下であることが好ましく、2質量%以上3質量%以下であることが好ましい。
Examples of the coupling agent (B2) include silane coupling agents, titanate-based coupling agents, aluminum-based coupling agents, and the like. Coupling agents are expected to have the effect of improving the adhesiveness to various film materials, especially metal and metal oxide deposited layers.
When the polyol composition (X) contains the coupling agent (B2), the amount thereof is preferably 5% by mass or less of the total amount of the polyol composition (X), and is 2% by mass or more and 3% by mass or less. is preferred.
 酸無水物(B3)としては、例えば、フタル酸無水物、コハク酸無水物、ヘット酸無水物、ハイミック酸無水物、マレイン酸無水物、テトラヒドロフタル酸無水物、ヘキサヒドラフタル酸無水物、テトラプロムフタル酸無水物、テトラクロルフタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノテトラカルボン酸無水物、2,3,6,7-ナフタリンテトラカルボン酸2無水物、5-(2,5-オキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、スチレン無水マレイン酸共重合体等が挙げられる。 Examples of the acid anhydride (B3) include phthalic anhydride, succinic anhydride, het acid anhydride, hymic acid anhydride, maleic anhydride, tetrahydrophthalic anhydride, hexahydraphthalic anhydride, tetra promphthalic anhydride, tetrachlorophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenotetracarboxylic anhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 5 -(2,5-oxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, styrene maleic anhydride copolymer and the like.
 ポリオール組成物(X)が酸無水物(B3)を含む場合、その配合量はポリオール組成物(X)全量の5質量%以下であることが好ましい。 When the polyol composition (X) contains the acid anhydride (B3), the amount thereof is preferably 5% by mass or less of the total amount of the polyol composition (X).
 酸素捕捉剤(B4)としては、例えば、ヒンダードフェノール類、ビタミンC、ビタミンE、有機燐化合物、没食子酸、ピロガロール等の酸素と反応する低分子有機化合物や、コバルト、マンガン、ニッケル、鉄、銅等の遷移金属化合物等が挙げられる。 Examples of the oxygen scavenger (B4) include hindered phenols, vitamin C, vitamin E, organic phosphorus compounds, gallic acid, pyrogallol and other low-molecular-weight organic compounds that react with oxygen, cobalt, manganese, nickel, iron, Examples include transition metal compounds such as copper.
 リン酸類(B5)としては、リン酸、ピロリン酸、トリリン酸、メチルアシッドホスフェート、エチルアシッドホスフェート、ブチルアシッドホスフェート、ジブチルホスフェート、2-エチルヘキシルアシッドホスフェート、ビス(2-エチルヘキシル)ホスフェート、イソドデシルアシッドホスフェート、ブトキシエチルアシッドホスフェート、オレイルアシッドホスフェート、テトラコシルアシッドホスフェート、2-ヒドロキシエチルメタクリレートアシッドホスフェート、ポリオキシエチレンアルキルエーテルリン酸等が挙げられる。 Phosphoric acids (B5) include phosphoric acid, pyrophosphoric acid, triphosphoric acid, methyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, dibutyl phosphate, 2-ethylhexyl acid phosphate, bis(2-ethylhexyl) phosphate, and isododecyl acid phosphate. , butoxyethyl acid phosphate, oleyl acid phosphate, tetracosyl acid phosphate, 2-hydroxyethyl methacrylate acid phosphate, polyoxyethylene alkyl ether phosphate and the like.
 ポリオール組成物(X)がリン酸類(B5)を含む場合、その配合量はポリオール組成物全量の200ppm以下であることが好ましい。 When the polyol composition (X) contains phosphoric acids (B5), the amount thereof is preferably 200 ppm or less based on the total amount of the polyol composition.
 粘着付与剤(B6)としては、キシレン樹脂、テルペン樹脂、フェノール樹脂、ロジン樹脂などが挙げられる。粘着付与剤(B6)を配合することにより基材との密着性が向上することが期待できる。 The tackifier (B6) includes xylene resin, terpene resin, phenol resin, rosin resin, and the like. By blending the tackifier (B6), it can be expected that the adhesion to the substrate will be improved.
 ウレタン化触媒(B7)としては、金属系触媒(B7-1)、脂肪族環状アミド化合物(B7-2)等が例示される。ウレタン化触媒(B7)は単独または2種以上を組み合わせて用いることができる。 Examples of the urethanization catalyst (B7) include metal-based catalysts (B7-1) and aliphatic cyclic amide compounds (B7-2). The urethanization catalyst (B7) can be used alone or in combination of two or more.
 金属系触媒(B7-1)としては、金属錯体系、無機金属系、有機金属系の触媒が挙げられる。金属錯体系の触媒としては、Fe(鉄)、Mn(マンガン)、Cu(銅)、Zr(ジルコニウム)、Th(トリウム)、Ti(チタン)、Al(アルミニウム)、Co(コバルト)からなる群より選ばれる金属のアセチルアセトナート塩、例えば鉄アセチルアセトネート、マンガンアセチルアセトネート、銅アセチルアセトネート、ジルコニアアセチルアセトネート等が例示される。毒性と触媒活性の点から、鉄アセチルアセトネート(Fe(acac))またはマンガンアセチルアセトネート(Mn(acac))が好ましい。 Metal-based catalysts (B7-1) include metal complex-based, inorganic metal-based, and organic metal-based catalysts. As the metal complex catalyst, a group consisting of Fe (iron), Mn (manganese), Cu (copper), Zr (zirconium), Th (thorium), Ti (titanium), Al (aluminum), Co (cobalt) Examples include acetylacetonate salts of metals selected from the above, such as iron acetylacetonate, manganese acetylacetonate, copper acetylacetonate, zirconia acetylacetonate and the like. From the point of view of toxicity and catalytic activity, iron acetylacetonate (Fe(acac) 3 ) or manganese acetylacetonate (Mn(acac) 2 ) are preferred.
 無機金属系の触媒としては、Sn、Fe、Mn、Cu、Zr、Th、Ti、Al、Co等から選ばれるものが挙げられる。 Examples of inorganic metal-based catalysts include those selected from Sn, Fe, Mn, Cu, Zr, Th, Ti, Al, Co, and the like.
 有機金属系触媒としては、オクチル酸亜鉛、ネオデカン酸亜鉛、ナフテン酸亜鉛等の有機亜鉛化合物、スタナスジアセテート、スタナスジオクトエート、スタナスジオレエート、スタナスジラウレート、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジオクチル錫ジラウレート、ジブチル錫オキサイド、ジブチル錫ジクロライド等の有機錫化合物、オクチル酸ニッケル、ナフテン酸ニッケル等の有機ニッケル化合物、オクチル酸コバルト、ナフテン酸コバルト等の有機コバルト化合物、オクチル酸ビスマス、ネオデカン酸ビスマス、ナフテン酸ビスマス等の有機ビスマス化合物、テトライソプロピルオキシチタネート、ジブチルチタニウムジクロライド、テトラブチルチタネート、ブトキシチタニウムトリクロライド、脂肪族ジケトン、芳香族ジケトン、炭素原子数2~10のアルコールの少なくとも1種をリガンドとするチタンキレート錯体等のチタン系化合物等が挙げられる。 Organometallic catalysts include organozinc compounds such as zinc octylate, zinc neodecanoate, and zinc naphthenate; , dioctyltin dilaurate, dibutyltin oxide, dibutyltin dichloride and other organic tin compounds, nickel octylate, nickel naphthenate and other organic nickel compounds, cobalt octylate, cobalt naphthenate and other organic cobalt compounds, bismuth octylate, neodecanoic acid At least one of organic bismuth compounds such as bismuth and bismuth naphthenate, tetraisopropyloxytitanate, dibutyltitanium dichloride, tetrabutyltitanate, butoxytitanium trichloride, aliphatic diketones, aromatic diketones, and alcohols having 2 to 10 carbon atoms. Examples include titanium-based compounds such as titanium chelate complexes used as ligands.
 脂肪族環状アミド化合物(B7-2)は、例えば、δ-バレロラクタム、ε-カプロラクタム、ω-エナントールラクタム、η-カプリルラクタム、β-プロピオラクタム等が挙げられる。これらの中でもε-カプロラクタムが硬化促進により効果的である。 Examples of the aliphatic cyclic amide compound (B7-2) include δ-valerolactam, ε-caprolactam, ω-enanthollactam, η-capryllactam, β-propiolactam and the like. Among these, ε-caprolactam is more effective in accelerating hardening.
 ポリオール組成物(X)がウレタン化触媒(B7)を含む場合、その配合量は、ポリオール組成物(X)全量の5質量%以下であることが好ましく、2質量%以上3質量%以下であることが好ましい。 When the polyol composition (X) contains the urethanization catalyst (B7), the amount thereof is preferably 5% by mass or less of the total amount of the polyol composition (X), and is 2% by mass or more and 3% by mass or less. is preferred.
(ポリイソシアネート組成物(Y))
 ポリイソシアネート組成物(Y)は、イソシアネート化合物(C)を含む。イソシアネート化合物(C)としては、従来公知のものを特に制限なく用いることができ、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、水素化ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネート或いはこれらのイソシアネート化合物の3量体、およびこれらのイソシアネート化合物の過剰量と、たとえばエチレングリコール、プロピレングリコール、メタキシリレンアルコール、1,3-ビスヒドロキシエチルベンゼン、1,4-ビスヒドロキシエチルベンゼン、トリメチロールプロパン、グリセロール、ペンタエリスリトール、エリスリトール、ソルビトール、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、メタキシリレンジアミンなどの低分子活性水素化合物およびそのアルキレンオキシド付加物、ポリエステルポリオール類、ポリエーテルポリオール類、ポリアミド類の高分子活性水素化合物などと反応させて得られるアダクト体が挙げられる。
(Polyisocyanate composition (Y))
The polyisocyanate composition (Y) contains an isocyanate compound (C). As the isocyanate compound (C), conventionally known ones can be used without particular limitation, and tetramethylene diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, Isophorone diisocyanate or trimers of these isocyanate compounds, and excess amounts of these isocyanate compounds, such as ethylene glycol, propylene glycol, metaxylylene alcohol, 1,3-bishydroxyethylbenzene, 1,4-bishydroxyethylbenzene, Low-molecular-weight active hydrogen compounds such as trimethylolpropane, glycerol, pentaerythritol, erythritol, sorbitol, ethylenediamine, monoethanolamine, diethanolamine, triethanolamine, metaxylylenediamine and their alkylene oxide adducts, polyester polyols, polyether polyols and adducts obtained by reacting with high-molecular-weight active hydrogen compounds such as polyamides.
 また、イソシアネート化合物(C)としてブロック化イソシアネートを用いてもよい。イソシアネートブロック化剤としては、例えばフェノール、チオフェノール、メチルチオフェノール、エチルチオフェノール、クレゾール、キシレノール、レゾルシノール、ニトロフェノール、クロロフェノールなどのフェノール類、アセトキシム、メチルエチルケトオキシム、シクロヘキサノンオキシムなそのオキシム類、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類、エチレンクロルヒドリン、1,3-ジクロロ-2-プロパノールなどのハロゲン置換アルコール類、t-ブタノール、t-ペンタノール、などの第3級アルコール類、ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム、β-プロピロラクタムなどのラクタム類が挙げられ、その他にも芳香族アミン類、イミド類、アセチルアセトン、アセト酢酸エステル、マロン酸エチルエステルなどの活性メチレン化合物、メルカプタン類、イミン類、尿素類、ジアリール化合物類重亜硫酸ソーダなども挙げられる。ブロック化イソシアネートは上記イソシアネート化合物とイソシアネートブロック化剤とを公知慣用の適宜の方法より付加反応させて得られる。 A blocked isocyanate may also be used as the isocyanate compound (C). Examples of isocyanate blocking agents include phenols such as phenol, thiophenol, methylthiophenol, ethylthiophenol, cresol, xylenol, resorcinol, nitrophenol and chlorophenol; oximes thereof such as acetoxime, methylethylketoxime and cyclohexanone oxime; alcohols such as ethanol, propanol and butanol; halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol; tertiary alcohols such as t-butanol and t-pentanol; Lactams such as caprolactam, δ-valerolactam, γ-butyrolactam and β-propyrolactam, and active methylene compounds such as aromatic amines, imides, acetylacetone, acetoacetate and ethyl malonate. , mercaptans, imines, ureas, diaryl compounds, sodium bisulfite, and the like. The blocked isocyanate can be obtained by addition reaction of the above isocyanate compound and an isocyanate blocking agent by a known and commonly used appropriate method.
 良好なガスバリア性が得られることから、イソシアネート化合物(C)は芳香環を有するイソシアネートまたはその誘導体(C1)を用いることが好ましい。イソシアネート化合物(C1)の具体例としては、キシリレンジイソシアネート、水素化キシリレンジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネート由来の骨格を有するイソシアネート化合物等が挙げられる。 An isocyanate having an aromatic ring or a derivative thereof (C1) is preferably used as the isocyanate compound (C) because good gas barrier properties can be obtained. Specific examples of the isocyanate compound (C1) include xylylene diisocyanate, hydrogenated xylylene diisocyanate, toluene diisocyanate, and isocyanate compounds having a skeleton derived from diphenylmethane diisocyanate.
 また、イソシアネート化合物(C)として、ポリエステルポリオール(c1)と、イソシアネート化合物(c2)との反応生成物であるウレタンプレポリマー(C2)を用いることも好ましい。ポリエステルポリオール(c1)は、ポリエステルポリオール(c1)とXDI-TMPアダクト体と[NCO]/[OH]が2±0.2で反応させたときの硬化塗膜の23℃0%RHにおける酸素透過率の3g/m換算値が300cc/m/day/atm以下であることが好ましい。このようなウレタンプレポリマー(C2)を用いることにより、よりガスバリア性を向上させることができる。 As the isocyanate compound (C), it is also preferable to use a urethane prepolymer (C2) which is a reaction product of the polyester polyol (c1) and the isocyanate compound (c2). The polyester polyol (c1) is a cured coating film when the polyester polyol (c1) and the XDI-TMP adduct are reacted at a [NCO]/[OH] of 2 ± 0.2. Oxygen permeation at 23 ° C. 0% RH It is preferable that the 3 g/m 2 conversion value of the rate is 300 cc/m 2 /day/atm or less. By using such a urethane prepolymer (C2), gas barrier properties can be further improved.
 ポリエステルポリオール(c1)の酸素透過率はポリエステルポリオール(A1)と同様にして測定する。以下では上述のようにして測定した酸素透過率を、単にポリエステルポリオール(c1)の酸素透過率ともいう。 The oxygen permeability of the polyester polyol (c1) is measured in the same manner as the polyester polyol (A1). Hereinafter, the oxygen permeability measured as described above is also simply referred to as the oxygen permeability of the polyester polyol (c1).
 ポリエステルポリオール(c1)は多価カルボン酸、多価アルコールおよび必要に応じて用いられるカルボキシル基または水酸基との反応性を有する化合物を含む組成物(c1’)の反応生成物である。これらの化合物は、ポリエステルポリオール(A1)の原料として例示したのと同様のものを用いることができる。 A polyester polyol (c1) is a reaction product of a composition (c1') containing a polyhydric carboxylic acid, a polyhydric alcohol, and optionally a compound having reactivity with a carboxyl group or a hydroxyl group. As these compounds, the same compounds as those exemplified as the raw materials of the polyester polyol (A1) can be used.
 ガスバリア性が向上することから、ポリエステルポリオール(c1)はオルト配向性芳香族多価カルボン酸に由来する骨格を含むことが好ましい。ガスバリア性の観点から、組成物(c1’)に占めるオルト配向性芳香族多価カルボン酸の配合量は20質量%以上であることが好ましく、30質量%以上であることがより好ましい。塗工適性の観点から、組成物(c1’)に占めるオルト配向性芳香族多価カルボン酸の配合量は50質量%以下であることが好ましい。 The polyester polyol (c1) preferably contains a skeleton derived from an ortho-oriented aromatic polycarboxylic acid, since gas barrier properties are improved. From the viewpoint of gas barrier properties, the content of the ortho-oriented aromatic polycarboxylic acid in the composition (c1') is preferably 20% by mass or more, more preferably 30% by mass or more. From the viewpoint of coatability, the amount of the ortho-oriented aromatic polycarboxylic acid in the composition (c1') is preferably 50% by mass or less.
 あるいは、ポリエステルポリオール(c1)はイソシアヌル環を有することが好ましい。ガスバリア性の観点から、組成物(c1’)に占めるイソシアヌル環を有する化合物の配合量は5質量%以上であることが好ましく、10質量%以上であることがより好ましい。塗工適性の観点から、組成物(c1’)に占めるイソシアヌル環を有する化合物の配合量は40質量%以下であることが好ましく、30質量%以下であることがより好ましい。 Alternatively, the polyester polyol (c1) preferably has an isocyanuric ring. From the viewpoint of gas barrier properties, the amount of the compound having an isocyanuric ring in the composition (c1') is preferably 5% by mass or more, more preferably 10% by mass or more. From the viewpoint of coatability, the compounding amount of the compound having an isocyanuric ring in the composition (c1') is preferably 40% by mass or less, more preferably 30% by mass or less.
 ポリエステルポリオール(c1)の数平均分子量は特に制限されないが、一例として300以上800以下であることが好ましい。 Although the number average molecular weight of the polyester polyol (c1) is not particularly limited, it is preferably 300 or more and 800 or less as an example.
 イソシアネート化合物(c2)としては、イソシアネート化合物(C)として上記で例示したものを用いることができる。ガスバリア性を向上させる観点からは、イソシアネート化合物(C1)として例示したのと同様のものを用いることが好ましい。 As the isocyanate compound (c2), those exemplified above as the isocyanate compound (C) can be used. From the viewpoint of improving gas barrier properties, it is preferable to use the same isocyanate compound (C1) as exemplified.
(その他の成分(D))
 ポリイソシアネート組成物(Y)は、ガスバリア性を損なわない範囲でイソシアネート化合物(C)以外の成分(D)を含んでいてもよい。成分(D)としては、成分(B)と同様のものを用いることができる。また、ポリオール組成物(X)とポリイソシアネート組成物(Y)はそれぞれ同じ成分を含んでいてもよい。例えば、ポリオール組成物(X)とポリイソシアネート組成物(Y)がともにリン酸類を含んでいてもよい。
(Other components (D))
The polyisocyanate composition (Y) may contain a component (D) other than the isocyanate compound (C) as long as the gas barrier properties are not impaired. As the component (D), those similar to the component (B) can be used. Moreover, the polyol composition (X) and the polyisocyanate composition (Y) may each contain the same component. For example, both the polyol composition (X) and the polyisocyanate composition (Y) may contain phosphoric acids.
 本発明の2液硬化型組成物は無溶剤型の形態で用いられる。本明細書において無溶剤型とは、本発明の2液硬化型組成物を塗工後に、オーブン等で加熱して溶剤を揮発させる工程を経ずに用いられるものをいう。ポリオール組成物(X)およびポリイソシアネート組成物(Y)のいずれもが、トルエン、キシレン、塩化メチレン、テトラヒドロフラン、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、アセトン、メチルエチルケトン(MEK)、シクロヘキサノン、トルオール、キシロール、n-ヘキサン、シクロヘキサン等の有機溶剤を含まない。ポリオール組成物(X)またはポリイソシアネート組成物(Y)の構成成分や、その原料の製造時に反応媒体として使用された有機溶剤が除去しきれずに、ポリオール組成物(X)やポリイソシアネート組成物(Y)中に微量の有機溶剤が残留してしまっている場合は、有機溶剤を実質的に含まないと解される。また、ポリオール組成物(X)が低分子量アルコールを含む場合、低分子量アルコールはポリイソシアネート組成物(Y)と反応して塗膜の一部となるため、塗工後に揮発させる必要はない。従ってこのような形態も無溶剤型として扱う。 The two-liquid curable composition of the present invention is used in a solventless form. In the present specification, the term "solvent-free type" refers to one that is used without undergoing a step of volatilizing the solvent by heating in an oven or the like after coating the two-component curable composition of the present invention. Both polyol composition (X) and polyisocyanate composition (Y) are toluene, xylene, methylene chloride, tetrahydrofuran, methyl acetate, ethyl acetate, n-propyl acetate, n-butyl acetate, acetone, methyl ethyl ketone (MEK). , cyclohexanone, toluol, xylol, n-hexane, cyclohexane and other organic solvents. The constituent components of the polyol composition (X) or the polyisocyanate composition (Y) and the organic solvent used as the reaction medium during the production of the raw materials cannot be completely removed, resulting in the polyol composition (X) or the polyisocyanate composition ( If a small amount of organic solvent remains in Y), it is understood that the organic solvent is not substantially contained. Further, when the polyol composition (X) contains a low-molecular-weight alcohol, the low-molecular-weight alcohol reacts with the polyisocyanate composition (Y) and becomes part of the coating film, so it is not necessary to volatilize after coating. Therefore, such a form is also treated as a non-solvent type.
 本発明の2液硬化型組成物はガスバリア性、塗工適性に優れ、溶剤排出の懸念がないガスバリア性の2液硬化型のガスバリア接着剤、アンカーコート剤等の用途に適用することができる。 The two-component curable composition of the present invention has excellent gas barrier properties and coating suitability, and can be applied to applications such as two-component curable gas barrier adhesives and anchor coating agents with no concerns about solvent emissions.
<2液硬化型接着剤、積層体1>
(2液硬化型接着剤)
 本発明の2液硬化型接着剤は、上述したポリオール組成物(X)と、ポリイソシアネート組成物(Y)とを含み、ラミネート用途に好適である。本発明の接着剤はガスバリア性、塗工適性に優れ、また有機溶剤を含まないため溶剤排出の懸念がない。本発明の接着剤を用いることにより、金属や金属酸化物の蒸着層、金属箔等のバリア層を含まない場合であってもガスバリア性に優れた積層体を提供することができる。
<Two-liquid curing adhesive, laminate 1>
(Two liquid curing adhesive)
The two-pack curable adhesive of the present invention contains the above-described polyol composition (X) and polyisocyanate composition (Y), and is suitable for lamination applications. The adhesive of the present invention is excellent in gas barrier properties and coatability, and since it does not contain an organic solvent, there is no fear of solvent emission. By using the adhesive of the present invention, it is possible to provide a laminate having excellent gas barrier properties even if it does not contain a vapor deposited layer of metal or metal oxide, or a barrier layer such as a metal foil.
 本発明の接着剤は、基材に塗工する直前にポリオール組成物(X)とポリイソシアネート組成物(Y)とを混合して用いられる。ポリオール組成物(X)とポリイソシアネート組成物(Y)とは、ポリオール組成物(X)に含まれる水酸基と、ポリイソシアネート組成物(Y)に含まれるイソシアネート基との当量比[NCO]/[OH]が0.5~4となるよう配合することが好ましい。[NCO]/[OH]が4を超えると、余剰のイソシアネート基が接着剤の硬化塗膜からブリードアウトするおそれがあり、0.5を下回ると接着強度が不足する恐れがある。 The adhesive of the present invention is used by mixing the polyol composition (X) and the polyisocyanate composition (Y) immediately before coating on the substrate. The polyol composition (X) and the polyisocyanate composition (Y) are equivalent ratios [NCO]/[ OH] is preferably 0.5-4. If [NCO]/[OH] exceeds 4, excess isocyanate groups may bleed out from the cured coating film of the adhesive, and if it is less than 0.5, adhesive strength may be insufficient.
 本発明の2液硬化型接着剤において、ポリオール組成物(X)の70℃における粘度を[X]とし、ポリイソシアネート組成物(Y)の70℃における粘度を[Y]としたとき、粘度比[X]/[Y]が0.1以上10以下であることが好ましい。これにより、塗工適性に優れた接着剤とすることができる。ポリオール組成物(X)と、ポリイソシアネート組成物(Y)のうち、一方の粘度が他方の粘度の10倍を超えるとポリオール組成物(X)とポリイソシアネート組成物(Y)とを均一に混合することが難しい。 In the two-component curable adhesive of the present invention, when the viscosity of the polyol composition (X) at 70°C is [X] and the viscosity of the polyisocyanate composition (Y) at 70°C is [Y], the viscosity ratio [X]/[Y] is preferably 0.1 or more and 10 or less. This makes it possible to obtain an adhesive with excellent coatability. When the viscosity of one of the polyol composition (X) and the polyisocyanate composition (Y) exceeds 10 times the viscosity of the other, the polyol composition (X) and the polyisocyanate composition (Y) are uniformly mixed. difficult to do
(積層体1)
 本発明の積層体は、複数の基材(フィルム、紙など)を本発明の接着剤をノンソルベントラミネート法にて貼り合せて得られる。ラミネートされた積層体はガスバリア性に優れ、ガスバリア積層体として使用することができる。用いる基材に特に制限はなく、用途に応じて適宜選択することができる。例えば、食品包装用としては、ポリエチレンテレフタレート(PET)フィルム、ポリスチレンフィルム、ポリアミドフィルム、ポリアクリロニトリルフィルム、ポリエチレンフィルム(LLDPE:低密度ポリエチレンフィルム、HDPE:高密度ポリエチレンフィルム)やポリプロピレンフィルム(CPP:無延伸ポリプロピレンフィルム、OPP:二軸延伸ポリプロピレンフィルム)等のポリオレフィンフィルム、ポリビニルアルコールフィルム、エチレン-ビニルアルコール共重合体フィルム等が挙げられる。
(Laminate 1)
The laminate of the present invention is obtained by laminating a plurality of substrates (film, paper, etc.) with the adhesive of the present invention by a non-solvent lamination method. The laminated laminate has excellent gas barrier properties and can be used as a gas barrier laminate. The base material to be used is not particularly limited, and can be appropriately selected according to the application. For example, for food packaging, polyethylene terephthalate (PET) film, polystyrene film, polyamide film, polyacrylonitrile film, polyethylene film (LLDPE: low density polyethylene film, HDPE: high density polyethylene film) and polypropylene film (CPP: unstretched Polyolefin films such as polypropylene film, OPP (biaxially oriented polypropylene film), polyvinyl alcohol film, ethylene-vinyl alcohol copolymer film, and the like.
 フィルムは延伸処理を施されたものであってもよい。延伸処理方法としては、押出製膜法等で樹脂を溶融押出してシート状にした後、同時二軸延伸あるいは逐次二軸延伸を行うことが一版的である。また逐次二軸延伸の場合は、はじめに縦延伸処理を行い、次に横延伸を行うことが一般的である。具体的には、ロール間の速度差を利用した縦延伸とテンターを用いた横延伸を組み合わせる方法が多く用いられる。 The film may be stretched. As a stretching treatment method, it is common to melt-extrude a resin into a sheet by an extrusion film-forming method or the like, and then subject the sheet to simultaneous biaxial stretching or sequential biaxial stretching. In the case of sequential biaxial stretching, it is common to first perform longitudinal stretching and then laterally stretching. Specifically, a method of combining longitudinal stretching using a speed difference between rolls and lateral stretching using a tenter is often used.
 フィルム表面には、膜切れやはじき等の欠陥のない接着層が形成されるように、必要に応じて火炎処理やコロナ放電処理等の各種表面処理を施してもよい。 Various surface treatments such as flame treatment and corona discharge treatment may be applied to the film surface as necessary so that an adhesive layer without defects such as film breakage and repellency is formed.
 紙としては、特に限定なく公知の紙基材を使用することができる。具体的には、木材パルプ等の製紙用天然繊維を用いて公知の抄紙機にて製造されるが、その抄紙条件は特に規定されるものではない。製紙用天然繊維としては、針葉樹パルプ、広葉樹パルプ等の木材パルプ、マニラ麻パルプ、サイザル麻パルプ、亜麻パルプ等の非木材パルプ、およびそれらのパルプに化学変性を施したパルプ等が挙げられる。パルプの種類としては、硫酸塩蒸解法、酸性・中性・アルカリ性亜硫酸塩蒸解法、ソーダ塩蒸解法等による化学パルプ、グランドパルプ、ケミグランドパルプ、サーモメカニカルパルプ等を使用することができる。また、市販の各種上質紙やコート紙、裏打ち紙、含浸紙、ボール紙や板紙などを用いることもできる。 As the paper, a known paper base material can be used without any particular limitation. Specifically, it is produced by a known paper machine using natural fibers for papermaking such as wood pulp, but the papermaking conditions are not particularly specified. Examples of natural fibers for papermaking include wood pulp such as softwood pulp and hardwood pulp, non-wood pulp such as Manila hemp pulp, sisal pulp and flax pulp, and pulp obtained by chemically modifying these pulps. The types of pulp that can be used include chemical pulp, ground pulp, chemi-grand pulp, thermomechanical pulp, and the like prepared by sulfate cooking, acid/neutral/alkaline sulfite cooking, soda salt cooking, and the like. Moreover, various types of commercially available fine paper, coated paper, lined paper, impregnated paper, cardboard, paperboard, etc. can also be used.
 本発明の接着剤は極めて高いガスバリア性を有するため、基材がアルミニウム等の金属や、シリカなどの無機酸化物、アルミナなどの金属酸化物の蒸着層、ポリビニルアルコールやエチレン・ビニルアルコール共重合体、塩化ビニリデン等のガスバリア層を含まない場合であってもガスバリア性に優れた積層体を提供することができる。しかしながら基材として、上述したフィルムや紙に金属、無機酸化物、金属酸化物の蒸着層を積層したもの、ガスバリア層を含有するものを用いてもよい。このような基材を用いることで、水蒸気、酸素、アルコール、不活性ガス、揮発性有機物(香り)等に対するバリア性にさらに優れる積層体とすることができる。 Since the adhesive of the present invention has extremely high gas barrier properties, the base material is a metal such as aluminum, an inorganic oxide such as silica, a deposited layer of a metal oxide such as alumina, polyvinyl alcohol, or an ethylene-vinyl alcohol copolymer. Even if it does not contain a gas barrier layer such as vinylidene chloride, it is possible to provide a laminate having excellent gas barrier properties. However, as the base material, the film or paper described above may be laminated with a metal, inorganic oxide, or metal oxide deposited layer, or may contain a gas barrier layer. By using such a base material, it is possible to obtain a laminate having even better barrier properties against water vapor, oxygen, alcohol, inert gases, volatile organic substances (fragrance), and the like.
 より具体的な積層体の構成としては、
(1)基材1/接着層1/シーラントフィルム
(2)基材1/接着層1/金属蒸着未延伸フィルム
(3)基材1/接着層1/金属蒸着延伸フィルム
(4)透明蒸着延伸フィルム/接着層1/シーラントフィルム
(5)基材1/接着層1/基材2/接着層2/シーラントフィルム
(6)基材1/接着層1/金属蒸着延伸フィルム/接着層2/シーラントフィルム
(7)基材1/接着層1/透明蒸着延伸フィルム/接着層2/シーラントフィルム
(8)基材1/接着層1/金属層/接着層2/シーラントフィルム
(9)基材1/接着層1/基材2/接着層2/金属層/接着層3/シーラントフィルム
(10)基材1/接着層1/金属層/接着層2/基材2/接着層3/シーラントフィルム
等が挙げられるがこれに限定されない。
As a more specific structure of the laminate,
(1) Base material 1/adhesive layer 1/sealant film (2) Base material 1/adhesive layer 1/metal vapor deposition unstretched film (3) Base material 1/adhesive layer 1/metal vapor deposition stretched film (4) Transparent vapor deposition stretching Film/adhesive layer 1/sealant film (5) Substrate 1/adhesive layer 1/substrate 2/adhesive layer 2/sealant film (6) Substrate 1/adhesive layer 1/stretched metal deposition film/adhesive layer 2/sealant Film (7) Substrate 1/adhesive layer 1/transparent evaporated stretched film/adhesive layer 2/sealant film (8) Substrate 1/adhesive layer 1/metal layer/adhesive layer 2/sealant film (9) Substrate 1/ Adhesive layer 1/substrate 2/adhesive layer 2/metal layer/adhesive layer 3/sealant film (10) substrate 1/adhesive layer 1/metal layer/adhesive layer 2/substrate 2/adhesive layer 3/sealant film, etc. but not limited to.
 構成(1)に用いられる基材1としては、OPPフィルム、PETフィルム、ナイロンフィルム、紙等が挙げられる。また、基材1としてガスバリア性や、後述する印刷層を設ける際のインキ受容性の向上等を目的としたコーティングが施されたものを用いてもよい。コーティングが施された基材フィルム1の市販品としては、K-OPPフィルムやK-PETフィルム等が挙げられる。接着層1は、本発明の接着剤の硬化塗膜である。シーラントフィルムとしては、CPPフィルム、LLDPEフィルム等が挙げられる。基材1の接着層1側の面(基材フィルム1としてコーティングが施されたものを用いる場合には、コーティング層の接着層1側の面)または接着層1とは反対側の面に、印刷層を設けてもよい。印刷層は、グラビアインキ、フレキソインキ、オフセットインキ、孔版インキ、インクジェットインク等各種印刷インキにより、従来ポリマーフィルムや紙への印刷に用いられてきた一般的な印刷方法で形成される。 Examples of the base material 1 used in configuration (1) include OPP film, PET film, nylon film, paper, and the like. Further, as the base material 1, a material coated for the purpose of improving gas barrier properties and ink receptivity when providing a printing layer, which will be described later, may be used. Commercial products of the coated base film 1 include K-OPP film and K-PET film. The adhesive layer 1 is a cured coating film of the adhesive of the present invention. Examples of sealant films include CPP films and LLDPE films. On the surface of the substrate 1 on the side of the adhesive layer 1 (the surface of the coating layer on the side of the adhesive layer 1 when a coated substrate film 1 is used) or the surface opposite to the adhesive layer 1, A printing layer may be provided. The printing layer is formed by general printing methods conventionally used for printing on polymer films and paper using various printing inks such as gravure ink, flexographic ink, offset ink, stencil ink, and inkjet ink.
 構成(2)、(3)に用いられる基材1としては、OPPフィルムやPETフィルム、紙等が挙げられる。接着層1は、本発明の接着剤の硬化塗膜である。金属蒸着未延伸フィルムとしては、CPPフィルムにアルミニウム等の金属蒸着を施したVM-CPPフィルムを、金属蒸着延伸フィルムとしては、OPPフィルムにアルミニウム等の金属蒸着を施したVM-OPPフィルムを用いることができる。構成(1)と同様にして、基材1のいずれかの面に印刷層を設けてもよい。 Examples of the base material 1 used in configurations (2) and (3) include OPP film, PET film, paper, and the like. The adhesive layer 1 is a cured coating film of the adhesive of the present invention. A VM-CPP film obtained by vapor-depositing a metal such as aluminum on a CPP film may be used as the unstretched metal vapor-deposited film, and a VM-OPP film obtained by vapor-depositing a metal such as aluminum on an OPP film may be used as the stretched metal-deposited film. can be done. A printed layer may be provided on either side of the substrate 1 in the same manner as in configuration (1).
 構成(4)に用いられる透明蒸着延伸フィルムとしては、OPPフィルム、PETフィルム、ナイロンフィルム等にシリカやアルミナ蒸着を施したフィルムが挙げられる。シリカやアルミナの無機蒸着層の保護等を目的として、蒸着層上にコーティングが施されたフィルムを用いてもよい。接着層1は、本発明の接着剤の硬化塗膜である。シーラントフィルムは構成(1)と同様のものが挙げられる。透明蒸着延伸フィルムの接着層1側の面(無機蒸着層上にコーティングが施されたものを用いる場合には、コーティング層の接着層1側の面)に印刷層を設けてもよい。印刷層の形成方法は構成(1)と同様である。 Examples of transparent vapor-deposited stretched films used in configuration (4) include films obtained by vapor-depositing silica or alumina on OPP films, PET films, nylon films, or the like. For the purpose of protecting the inorganic deposition layer of silica or alumina, etc., a film obtained by coating the deposition layer may be used. The adhesive layer 1 is a cured coating film of the adhesive of the present invention. Examples of the sealant film include those similar to those of the configuration (1). A printed layer may be provided on the adhesive layer 1 side of the transparent vapor deposited stretched film (when using a film having a coated inorganic vapor deposited layer, the surface of the coating layer on the adhesive layer 1 side). The method of forming the printed layer is the same as that of configuration (1).
 構成(5)に用いられる基材1としては、PETフィルム、紙等が挙げられる。基材2としては、ナイロンフィルム等が挙げられる。接着層1、接着層2の少なくとも一方は本発明の接着剤の硬化塗膜である。シーラントフィルムは構成(1)と同様のものが挙げられる。構成(1)と同様にして、基材1のいずれかの面に印刷層を設けてもよい。 Examples of the base material 1 used in configuration (5) include PET film, paper, and the like. Examples of the base material 2 include a nylon film and the like. At least one of adhesive layer 1 and adhesive layer 2 is a cured coating film of the adhesive of the present invention. Examples of the sealant film include those similar to those of the configuration (1). A printed layer may be provided on either side of the substrate 1 in the same manner as in configuration (1).
 構成(6)の基材1としては、構成(2)、(3)と同様のものが挙げられる。金属蒸着延伸フィルムとしては、OPPフィルムやPETフィルムにアルミニウム等の金属蒸着を施したVM-OPPフィルムやVM-PETフィルムが挙げられる。接着層1、接着層2の少なくとも一方は本発明の接着剤の硬化塗膜である。シーラントフィルムは構成(1)と同様のものが挙げられる。構成(1)と同様にして、基材1のいずれかの面に印刷層を設けてもよい。 As the base material 1 of configuration (6), the same ones as those of configurations (2) and (3) can be mentioned. Examples of the metal-deposited oriented film include VM-OPP film and VM-PET film obtained by subjecting an OPP film or PET film to metal deposition such as aluminum. At least one of adhesive layer 1 and adhesive layer 2 is a cured coating film of the adhesive of the present invention. Examples of the sealant film include those similar to those of the configuration (1). A printed layer may be provided on either side of the substrate 1 in the same manner as in configuration (1).
 構成(7)の基材1としては、PETフィルム、紙等が挙げられる。透明蒸着延伸フィルムとしては、構成(4)と同様のものが挙げられる。接着層1、2の少なくとも一方は本発明の接着剤の硬化塗膜である。シーラントフィルムは構成(1)と同様のものが挙げられる。構成(1)と同様にして、基材1のいずれかの面に印刷層を設けてもよい。 Examples of the base material 1 of configuration (7) include PET film, paper, and the like. Examples of the transparent vapor-deposited stretched film include those similar to those of the configuration (4). At least one of the adhesive layers 1 and 2 is a cured coating film of the adhesive of the present invention. Examples of the sealant film include those similar to those of the configuration (1). A printed layer may be provided on either side of the substrate 1 in the same manner as in configuration (1).
 構成(8)の基材1としては、PETフィルム、紙等が挙げられる。金属層としては、アルミニウム箔等が挙げられる。接着層1、2の少なくとも一方は本発明の接着剤の硬化塗膜である。シーラントフィルムは構成(1)と同様のものが挙げられる。構成(1)と同様にして、基材1のいずれかの面に印刷層を設けてもよい。 Examples of the base material 1 of configuration (8) include PET film, paper, and the like. Aluminum foil etc. are mentioned as a metal layer. At least one of the adhesive layers 1 and 2 is a cured coating film of the adhesive of the present invention. Examples of the sealant film include those similar to those of the configuration (1). A printed layer may be provided on either side of the substrate 1 in the same manner as in configuration (1).
 構成(9)、(10)の基材1としては、PETフィルム、紙等が挙げられる。基材2としては、ナイロンフィルム等が挙げられる。金属層としては、アルミニウム箔等が挙げられる。接着層1、2、3の少なくとも一層は本発明の接着剤の硬化塗膜である。シーラントフィルムは構成(1)と同様のものが挙げられる。構成(1)と同様にして、基材1のいずれかの面に印刷層を設けてもよい。 Examples of the substrate 1 of configurations (9) and (10) include PET film, paper, and the like. Examples of the base material 2 include a nylon film and the like. Aluminum foil etc. are mentioned as a metal layer. At least one of the adhesive layers 1, 2 and 3 is a cured coating film of the adhesive of the present invention. Examples of the sealant film include those similar to those of the configuration (1). A printed layer may be provided on either side of the substrate 1 in the same manner as in configuration (1).
 本発明の積層体が、金属蒸着フィルム、透明蒸着フィルム、金属層の少なくとも一つを含む場合、金属蒸着層、透明蒸着層、金属層に接する接着層は、本発明の接着剤の硬化塗膜であることが好ましい。 When the laminate of the present invention includes at least one of a metal vapor deposition film, a transparent vapor deposition film, and a metal layer, the metal vapor deposition layer, the transparent vapor deposition layer, and the adhesive layer in contact with the metal layer are cured coating films of the adhesive of the present invention. is preferably
 本発明の積層体は、一方の基材に予め40℃~100℃程度に加熱しておいた本発明の接着剤をコートロール等のロールを用いて塗布した後、直ちに他方の基材を貼り合せて本発明の積層体を得る。ラミネート後に、エージング処理を行うことが好ましい。エージング温度は室温~70℃、エージング時間は6~240時間が好ましい。 In the laminate of the present invention, the adhesive of the present invention preheated to about 40° C. to 100° C. is applied to one substrate using a roll such as a coat roll, and then the other substrate is immediately attached. Together, the laminate of the present invention is obtained. It is preferable to perform an aging treatment after lamination. The aging temperature is preferably room temperature to 70° C., and the aging time is preferably 6 to 240 hours.
 接着剤の塗布量は、適宜調整する。一例として1g/m以上10g/m以下、好ましくは1g/m以上5g/m以下である。 The amount of adhesive to be applied is appropriately adjusted. For example, it is 1 g/m 2 or more and 10 g/m 2 or less, preferably 1 g/m 2 or more and 5 g/m 2 or less.
 本発明の積層体は、上述した構成(1)~(10)に加えて、更に他のフィルムや基材を含んでいてもよい。他の基材としては、上述した延伸フィルム、未延伸フィルム、透明蒸着フィルムに加え、紙、木材、皮革等の多孔質の基材を使用することもできる。他の基材を貼り合せる際に用いる接着剤は、本発明の接着剤であってもよいし、そうでなくてもよい。 The laminate of the present invention may further contain other films and substrates in addition to the above-described configurations (1) to (10). As other substrates, in addition to the stretched film, unstretched film, and transparent vapor-deposited film described above, porous substrates such as paper, wood, and leather can also be used. The adhesive used when bonding other substrates may or may not be the adhesive of the present invention.
<アンカーコート剤、積層体2>
(アンカーコート剤)
 本発明のアンカーコート剤は、上述したポリオール組成物(X)と、ポリイソシアネート組成物(Y)とを含み、押出ラミネーションの接着補助剤として好適である。本発明のアンカーコート剤はガスバリア性、塗工適性に優れ、また有機溶剤を含まないため溶剤排出の懸念がない。本発明のアンカーコート剤を用いることにより、ガスバリア性に優れた基材を提供することができる。
<Anchor coating agent, laminate 2>
(Anchor coating agent)
The anchor coating agent of the present invention contains the above-described polyol composition (X) and polyisocyanate composition (Y), and is suitable as an adhesion aid for extrusion lamination. The anchor coating agent of the present invention is excellent in gas barrier properties and coatability, and since it does not contain an organic solvent, there is no fear of solvent emission. By using the anchor coating agent of the present invention, a substrate having excellent gas barrier properties can be provided.
 本発明のアンカーコート剤は、基材に塗工する直前にポリオール組成物(X)とポリイソシアネート組成物(Y)とを混合して用いられる。ポリオール組成物(X)とポリイソシアネート組成物(Y)とは、ポリオール組成物(X)に含まれる水酸基と、ポリイソシアネート組成物(Y)に含まれるイソシアネート基との当量比[NCO]/[OH]が0.5~4となるよう配合することが好ましい。[NCO]/[OH]が4を超えると、余剰のイソシアネート基がコーティング剤の硬化塗膜からブリードアウトするおそれがあり、0.5を下回ると接着強度が不足する恐れがある。 The anchor coating agent of the present invention is used by mixing the polyol composition (X) and the polyisocyanate composition (Y) immediately before coating on the substrate. The polyol composition (X) and the polyisocyanate composition (Y) are equivalent ratios [NCO]/[ OH] is preferably 0.5-4. If [NCO]/[OH] exceeds 4, excessive isocyanate groups may bleed out from the cured coating film of the coating agent, and if it is less than 0.5, adhesive strength may be insufficient.
 本発明のアンカーコート剤において、ポリオール組成物(X)の70℃における粘度を[X]とし、ポリイソシアネート組成物(Y)の70℃における粘度を[Y]としたとき、粘度比[X]/[Y]が0.1以上10以下であることが好ましい。これにより、塗工適性に優れたアンカーコート剤とすることができる。ポリオール組成物(X)と、ポリイソシアネート組成物(Y)のうち、一方の粘度が他方の粘度の10倍を超えるとポリオール組成物(X)とポリイソシアネート組成物(Y)とを均一に混合することが難しい。 In the anchor coating agent of the present invention, when the viscosity of the polyol composition (X) at 70°C is [X] and the viscosity of the polyisocyanate composition (Y) at 70°C is [Y], the viscosity ratio [X] /[Y] is preferably 0.1 or more and 10 or less. As a result, an anchor coating agent having excellent coatability can be obtained. When the viscosity of one of the polyol composition (X) and the polyisocyanate composition (Y) exceeds 10 times the viscosity of the other, the polyol composition (X) and the polyisocyanate composition (Y) are uniformly mixed. difficult to do
(積層体2)
 本発明の積層体は、フィルムに予め40℃~100℃程度に加熱しておいた本発明のアンカーコート剤をラミネーターにより塗布し、エージング処理を行った後に、押出し機により溶融させたポリマー材料をラミネートすることにより得られる(押出しラミネーション法)。フィルムとしては、積層体1に用いるフィルムと同様のものを用いることができる。溶融させるポリマー材料としては、低密度ポリエチレン樹脂や直線状低密度ポリエチレン樹脂、エチレン-酢酸ビニル共重合体樹脂等のポリオレフィン系樹脂が好ましい。
(Laminate 2)
The laminate of the present invention is prepared by applying the anchor coating agent of the present invention preheated to about 40° C. to 100° C. on a film using a laminator, aging the film, and then melting the polymer material using an extruder. Obtained by lamination (extrusion lamination method). As the film, the same film as used for the laminate 1 can be used. Polyolefin-based resins such as low-density polyethylene resin, linear low-density polyethylene resin, and ethylene-vinyl acetate copolymer resin are preferable as the polymer material to be melted.
 エージング温度は室温~70℃、エージング時間は6~240時間が好ましい。アンカーコート剤の塗布量は適宜調整されるが一例として0.03g/m以上0.09g/m以下(固形分)である。 The aging temperature is preferably room temperature to 70° C., and the aging time is preferably 6 to 240 hours. The amount of the anchor coating agent to be applied is appropriately adjusted, but as an example, it is 0.03 g/m 2 or more and 0.09 g/m 2 or less (solid content).
 本発明の積層体は単独で用いてもよいし、更に他の基材と貼り合わせて用いてもよい。他の基材としては、積層体1で例示した延伸フィルム、未延伸フィルム、透明蒸着フィルム、紙、木材、皮革等が挙げられる。他の基材を貼り合せる際に用いる接着剤は、本発明の接着剤であってもよいし、そうでなくてもよい。 The laminate of the present invention may be used alone, or may be used by laminating with another base material. Other substrates include the stretched film, unstretched film, transparent deposition film, paper, wood, leather and the like exemplified for the laminate 1 . The adhesive used when bonding other substrates may or may not be the adhesive of the present invention.
<包装材>
 本発明の積層体1、2は、食品や医薬品などの保護を目的とする多層包装材料として使用することができる。多層包装材料として使用する場合には、内容物や使用環境、使用形態に応じてその層構成は変化し得る。
<Packaging material>
The laminates 1 and 2 of the present invention can be used as multi-layer packaging materials for the purpose of protecting foods, medicines, and the like. When used as a multilayer packaging material, the layer structure may vary depending on the contents, usage environment, and usage pattern.
 本発明の包装材は、本発明の積層体を使用し、積層体のシーラントフィルムの面を対向して重ね合わせた後、その周辺端部をヒートシールして得られる。製袋方法としては、本発明の積層体を折り曲げるか、あるいは重ねあわせてその内層の面(シーラントフィルムの面)を対向させ、その周辺端部を、例えば、側面シール型、二方シール型、三方シール型、四方シール型、封筒貼りシール型、合掌貼りシール型、ひだ付シール型、平底シール型、角底シール型、ガゼット型、その他のヒートシール型等の形態によりヒートシールする方法が挙げられる。本発明の包装材は内容物や使用環境、使用形態に応じて種々の形態をとり得る。自立性包装材(スタンディングパウチ)等も可能である。ヒートシールの方法としては、バーシール、回転ロールシール、ベルトシール、インパルスシール、高周波シール、超音波シール等の公知の方法で行うことができる。 The packaging material of the present invention is obtained by using the laminate of the present invention, superimposing the sealant film surfaces of the laminate on each other, and then heat-sealing the peripheral edges. As a bag-making method, the laminate of the present invention is folded or overlapped so that the inner layer surface (sealant film surface) faces each other, and the peripheral edge is sealed, for example, by a side seal type, a two-sided seal type, There are three-side seal type, four-side seal type, envelope seal type, palm-joint seal type, pleated seal type, flat-bottom seal type, square-bottom seal type, gusset type, and other heat-sealing methods. be done. The packaging material of the present invention can take various forms depending on the contents, environment of use, and form of use. A self-supporting packaging material (standing pouch) or the like is also possible. As a heat sealing method, known methods such as bar sealing, rotary roll sealing, belt sealing, impulse sealing, high frequency sealing and ultrasonic sealing can be used.
 本発明の包装材に、その開口部から内容物を充填した後、開口部をヒートシールして本発明の包装材を使用した製品が製造される。充填される内容物としては、米菓、豆菓子、ナッツ類、ビスケット・クッキー、ウェハース菓子、マシュマロ、パイ、半生ケーキ、キャンディ、スナック菓子などの菓子類、パン、スナックめん、即席めん、乾めん、パスタ、無菌包装米飯、ぞうすい、おかゆ、包装もち、シリアルフーズなどのステープル類、漬物、煮豆、納豆、味噌、凍豆腐、豆腐、なめ茸、こんにゃく、山菜加工品、ジャム類、ピーナッツクリーム、サラダ類、冷凍野菜、ポテト加工品などの農産加工品、ハム類、ベーコン、ソーセージ類、チキン加工品、コンビーフ類などの畜産加工品、魚肉ハム・ソーセージ、水産練製品、かまぼこ、のり、佃煮、かつおぶし、塩辛、スモークサーモン、辛子明太子などの水産加工品、桃、みかん、パイナップル、りんご、洋ナシ、さくらんぼなどの果肉類、コーン、アスパラガス、マッシュルーム、玉ねぎ、人参、大根、じゃがいもなどの野菜類、ハンバーグ、ミートボール、水産フライ、ギョーザ、コロッケなどを代表とする冷凍惣菜、チルド惣菜などの調理済食品、バター、マーガリン、チーズ、クリーム、インスタントクリーミーパウダー、育児用調整粉乳などの乳製品、液体調味料、レトルトカレー、ペットフードなどの食品類が挙げられる。また、本発明の包装材はタバコ、使い捨てカイロ、輸液パック等の医薬品、化粧品、真空断熱材などの包装材料としても使用され得る。 After the packaging material of the present invention is filled with contents through its opening, the opening is heat-sealed to manufacture a product using the packaging material of the present invention. Contents to be filled include rice crackers, bean confections, nuts, biscuits, cookies, wafer confections, marshmallows, pies, half-baked cakes, candies, snacks, bread, snack noodles, instant noodles, dried noodles, and pasta. , aseptic packaged rice, rice porridge, rice porridge, packaged mochi, staples such as cereal foods, pickles, boiled beans, natto, miso, frozen tofu, tofu, mushrooms, konjac, processed wild plants, jams, peanut cream, salads, frozen Vegetables, processed agricultural products such as processed potatoes, processed hams, bacon, sausages, processed chicken products, processed livestock products such as corned beef, fish hams and sausages, fish paste products, kamaboko, seaweed, tsukudani, bonito flakes, salted fish, Processed marine products such as smoked salmon and cod roe, fruits such as peaches, mandarin oranges, pineapples, apples, pears and cherries, vegetables such as corn, asparagus, mushrooms, onions, carrots, radishes, and potatoes, hamburgers, and meat. Frozen and chilled prepared foods such as bowls, fried seafood, gyoza, and croquettes, prepared foods such as chilled side dishes, butter, margarine, cheese, cream, instant creamy powder, dairy products such as infant formula powder, liquid seasonings, and retort pouches Examples include foods such as curry and pet food. The packaging material of the present invention can also be used as a packaging material for cigarettes, disposable body warmers, medicines such as infusion packs, cosmetics, and vacuum insulation materials.
 以下、実施例と比較例により本発明を説明するが、本発明はこれに限定されるものではない。配合組成その他の数値は特記しない限り質量基準である。 The present invention will be described below with reference to Examples and Comparative Examples, but the present invention is not limited to these. Compositions and other numerical values are based on mass unless otherwise specified.
<接着剤の調整>
<ポリエステルポリオール(A1)の合成>
(ポリエステルポリオール(A1-1))
 攪拌機、窒素ガス導入管、スナイダー管、コンデンサーを備えたポリエステル反応容器に、エチレングリコール79.10部、無水フタル酸74.06部、アジピン酸73.07部及びチタニウムテトライソプロポキシド0.01部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量800の(A1-1)を得た。水酸基価は143.2mgKOH/g、酸素透過率は148.7cc/m/day/atm以下であった。
<Adhesive adjustment>
<Synthesis of polyester polyol (A1)>
(Polyester polyol (A1-1))
79.10 parts of ethylene glycol, 74.06 parts of phthalic anhydride, 73.07 parts of adipic acid and 0.01 part of titanium tetraisopropoxide were placed in a polyester reaction vessel equipped with an agitator, nitrogen gas inlet tube, Snyder tube and condenser. was charged, and the inside temperature was maintained at 220°C by gradually heating so that the temperature at the top of the rectifying tube did not exceed 100°C. When the acid value became 1 mgKOH/g or less, the esterification reaction was terminated to obtain (A1-1) having a number average molecular weight of 800. The hydroxyl value was 143.2 mgKOH/g, and the oxygen permeability was 148.7 cc/m 2 /day/atm or less.
(ポリエステルポリオール(A1-2))
 攪拌機、窒素ガス導入管、スナイダー管、コンデンサーを備えたポリエステル反応容器に、エチレングリコール27.02部、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌル酸110.4部、無水フタル酸62.60部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量450のポリエステルポリオール(A1-2)を得た。水酸基価は371.2mgKOH/g、酸素透過率は102.3cc/m/day/atm以下であった。
(Polyester polyol (A1-2))
27.02 parts of ethylene glycol, 110.4 parts of 1,3,5-tris(2-hydroxyethyl)isocyanuric acid, and 62 parts of phthalic anhydride were placed in a polyester reaction vessel equipped with a stirrer, nitrogen gas inlet tube, Snyder tube, and condenser. .60 parts were charged, and the inside temperature was maintained at 220°C by gradually heating so that the temperature at the top of the rectifying tube did not exceed 100°C. When the acid value became 1 mgKOH/g or less, the esterification reaction was terminated to obtain a polyester polyol (A1-2) having a number average molecular weight of 450. The hydroxyl value was 371.2 mgKOH/g, and the oxygen permeability was 102.3 cc/m 2 /day/atm or less.
(ポリエステルポリオール(A1-3))
 攪拌機、窒素ガス導入管、スナイダー管、コンデンサーを備えたポリエステル反応容器に、エチレングリコール33.88部、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌル酸98.86部、無水フタル酸67.26部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量420のポリエステルポリオール(A1-3)を得た。水酸基価は378.3mgKOH/g、酸素透過率は103.7cc/m/day/atm以下であった。
(Polyester polyol (A1-3))
33.88 parts of ethylene glycol, 98.86 parts of 1,3,5-tris(2-hydroxyethyl)isocyanuric acid, and 67 parts of phthalic anhydride were added to a polyester reaction vessel equipped with a stirrer, nitrogen gas inlet tube, Snyder tube, and condenser. .26 parts were charged, and the inside temperature was maintained at 220°C by gradually heating so that the temperature at the top of the rectifying tube did not exceed 100°C. When the acid value became 1 mgKOH/g or less, the esterification reaction was terminated to obtain a polyester polyol (A1-3) having a number average molecular weight of 420. The hydroxyl value was 378.3 mgKOH/g, and the oxygen permeability was 103.7 cc/m 2 /day/atm or less.
(ポリオール(AH1))
 攪拌機、窒素ガス導入管、スナイダー管、冷却コンデンサー、滴下漏斗を備えた反応容器にひまし油73.98部、ポリプロピレングリコール(分子量約4000)51.02部を入れて70℃に加熱しながら撹拌し、ミリオネートMN(4,4’-ジフェニルメタンジイソシアネートと2,4’-ジフェニルメタンジイソシアネートとの混合物)2.55部を、滴下漏斗を用いて滴下し、更に4時間撹拌し、ポリオール(AH1)を得た。水酸基価は115.0mgKOH/g、酸素透過率は300cc/m/day/atmを超えるものであった。
(Polyol (AH1))
73.98 parts of castor oil and 51.02 parts of polypropylene glycol (molecular weight: about 4000) are placed in a reaction vessel equipped with a stirrer, a nitrogen gas inlet tube, a Snyder tube, a cooling condenser and a dropping funnel, and the mixture is stirred while heating to 70°C. 2.55 parts of Millionate MN (a mixture of 4,4'-diphenylmethane diisocyanate and 2,4'-diphenylmethane diisocyanate) was added dropwise using a dropping funnel, and the mixture was further stirred for 4 hours to obtain polyol (AH1). The hydroxyl value was 115.0 mgKOH/g, and the oxygen permeability exceeded 300 cc/m 2 /day/atm.
<ウレタンプレポリマー(C2)の合成>
(ウレタンプレポリマー(C2-1))
 攪拌機、窒素ガス導入管、スナイダー管、コンデンサーを備えたポリエステル反応容器に、エチレングリコール92.00部、無水フタル酸118.50部、アジピン酸29.23部及びチタニウムテトライソプロポキシド0.01部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量500のポリエステルポリオール(c1-1)を得た。ポリエステルポリオール(c1-1)の酸素透過率は131.8cc/m/day/atm以下であった。
<Synthesis of urethane prepolymer (C2)>
(Urethane prepolymer (C2-1))
92.00 parts of ethylene glycol, 118.50 parts of phthalic anhydride, 29.23 parts of adipic acid and 0.01 part of titanium tetraisopropoxide were placed in a polyester reaction vessel equipped with an agitator, nitrogen gas inlet tube, Snyder tube and condenser. was charged, and the inside temperature was maintained at 220°C by gradually heating so that the temperature at the top of the rectifying tube did not exceed 100°C. When the acid value became 1 mgKOH/g or less, the esterification reaction was terminated to obtain a polyester polyol (c1-1) having a number average molecular weight of 500. The polyester polyol (c1-1) had an oxygen permeability of 131.8 cc/m 2 /day/atm or less.
 攪拌機、窒素ガス導入管、スナイダー管、冷却コンデンサー、滴下漏斗を備えた反応容器にキシリレンジイソシアネート71.45部、ミリオネートMN(4,4’-ジフェニルメタンジイソシアネートと2,4’-ジフェニルメタンジイソシアネートとの混合物)46.26部を入れて70℃に加熱しながら撹拌し、ポリエステルポリオール(c1-1)92.28部を、滴下漏斗を用いて2時間かけて滴下し、更に4時間撹拌し、ウレタンプレポリマー(C2-1)を得た。JIS-K1603に従い測定したNCO%は15.1%であった。 71.45 parts of xylylene diisocyanate, Millionate MN (a mixture of 4,4'-diphenylmethane diisocyanate and 2,4'-diphenylmethane diisocyanate) was placed in a reaction vessel equipped with a stirrer, nitrogen gas inlet tube, Snyder tube, cooling condenser, and dropping funnel. ) was added and stirred while heating to 70° C., 92.28 parts of the polyester polyol (c1-1) was added dropwise using a dropping funnel over 2 hours, and further stirred for 4 hours to obtain a urethane press. A polymer (C2-1) was obtained. The NCO% measured according to JIS-K1603 was 15.1%.
(ウレタンプレポリマー(C2-2))
 攪拌機、窒素ガス導入管、スナイダー管、コンデンサーを備えたポリエステル反応容器に、エチレングリコール100.12部、無水フタル酸148.12部、及びチタニウムテトライソプロポキシド0.02部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量400のポリエステルポリオール(c1-2)を得た。ポリエステルポリオール(c1-2)の酸素透過率は104.6cc/m/day/atm以下であった。
(Urethane prepolymer (C2-2))
100.12 parts of ethylene glycol, 148.12 parts of phthalic anhydride, and 0.02 parts of titanium tetraisopropoxide were charged into a polyester reaction vessel equipped with a stirrer, nitrogen gas inlet tube, Snyder tube, and condenser. The inner temperature was maintained at 220°C by gradually heating so that the upper temperature did not exceed 100°C. When the acid value became 1 mgKOH/g or less, the esterification reaction was terminated to obtain a polyester polyol (c1-2) having a number average molecular weight of 400. The polyester polyol (c1-2) had an oxygen permeability of 104.6 cc/m 2 /day/atm or less.
 攪拌機、窒素ガス導入管、スナイダー管、冷却コンデンサー、滴下漏斗を備えた反応容器にキシリレンジイソシアネート75.55部、ミリオネートMN(4,4’-ジフェニルメタンジイソシアネートと2,4’-ジフェニルメタンジイソシアネートとの混合物)48.07部を入れて70℃に加熱しながら撹拌し、ポリエステルポリオール(c1-2)76.37部を、滴下漏斗を用いて2時間かけて滴下し、更に4時間撹拌し、ウレタンプレポリマー(C2-2)を得た。JIS-K1603に従い測定したNCO%は16.6%であった。 75.55 parts of xylylene diisocyanate, Millionate MN (a mixture of 4,4'-diphenylmethane diisocyanate and 2,4'-diphenylmethane diisocyanate) was placed in a reaction vessel equipped with a stirrer, nitrogen gas inlet tube, Snyder tube, cooling condenser, and dropping funnel. ) was added and stirred while heating to 70° C., 76.37 parts of the polyester polyol (c1-2) was added dropwise over 2 hours using a dropping funnel, and the mixture was further stirred for 4 hours to give a urethane press. A polymer (C2-2) was obtained. The NCO% measured according to JIS-K1603 was 16.6%.
(ウレタンプレポリマー(C2-3))
 攪拌機、窒素ガス導入管、スナイダー管、冷却コンデンサー、滴下漏斗を備えた反応容器にキシリレンジイソシアネート114.91部を入れて70℃に加熱しながら撹拌し、ポリエステルポリオール(c1-2)を92.93部、滴下漏斗を用いて2時間かけて滴下し、更に4時間撹拌し、ウレタンプレポリマー(C2-3)を得た。JIS-K1603に従い測定したNCO%は15.3%であった。
(Urethane prepolymer (C2-3))
114.91 parts of xylylene diisocyanate was put into a reaction vessel equipped with a stirrer, a nitrogen gas inlet tube, a Snyder tube, a cooling condenser and a dropping funnel, and stirred while heating to 70° C., and polyester polyol (c1-2) was added to 92.5 parts. 93 parts were added dropwise over 2 hours using a dropping funnel, and further stirred for 4 hours to obtain a urethane prepolymer (C2-3). The NCO% measured according to JIS-K1603 was 15.3%.
(ウレタンプレポリマー(C2-4))
 攪拌機、窒素ガス導入管、スナイダー管、コンデンサーを備えたポリエステル反応容器に、エチレングリコール58.84部、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌル酸57.88部、無水フタル酸83.30部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量380のポリエステルポリオール(c1-3)を得た。ポリエステルポリオール(c1-3)の酸素透過率は103.8cc/m/day/atm以下であった。
(Urethane prepolymer (C2-4))
58.84 parts of ethylene glycol, 57.88 parts of 1,3,5-tris(2-hydroxyethyl)isocyanuric acid, and 83 parts of phthalic anhydride were added to a polyester reaction vessel equipped with a stirrer, nitrogen gas inlet tube, Snyder tube, and condenser. .30 parts were charged, and the inside temperature was maintained at 220°C by gradually heating so that the temperature at the top of the rectifying tube did not exceed 100°C. When the acid value became 1 mgKOH/g or less, the esterification reaction was terminated to obtain a polyester polyol (c1-3) having a number average molecular weight of 380. The oxygen permeability of polyester polyol (c1-3) was 103.8 cc/m 2 /day/atm or less.
 攪拌機、窒素ガス導入管、スナイダー管、冷却コンデンサー、滴下漏斗を備えた反応容器にキシリレンジイソシアネート120.96部を入れて70℃に加熱しながら撹拌し、ポリエステルポリオール(c1-3)79.04部を、滴下漏斗を用いて2時間かけて滴下し、更に4時間撹拌し、ウレタンプレポリマー(C2-4)を得た。JIS-K1603に従い測定したNCO%は16.5%であった。 120.96 parts of xylylene diisocyanate was added to a reaction vessel equipped with a stirrer, a nitrogen gas inlet tube, a Snyder tube, a cooling condenser and a dropping funnel, and stirred while heating to 70° C. to give polyester polyol (c1-3) 79.04. Using a dropping funnel, the mixture was added dropwise over 2 hours and stirred for 4 hours to obtain a urethane prepolymer (C2-4). The NCO% measured according to JIS-K1603 was 16.5%.
(ウレタンプレポリマー(C2-5))
 攪拌機、窒素ガス導入管、スナイダー管、コンデンサーを備えたポリエステル反応容器に、エチレングリコール73.60部、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌル酸25.06部、無水フタル酸101.36部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量360のポリエステルポリオール(c1-4)を得た。ポリエステルポリオール(c1-4)の酸素透過率は105.5cc/m/day/atm以下であった。
(Urethane prepolymer (C2-5))
73.60 parts of ethylene glycol, 25.06 parts of 1,3,5-tris(2-hydroxyethyl)isocyanuric acid, and 101 parts of phthalic anhydride were added to a polyester reaction vessel equipped with a stirrer, nitrogen gas inlet tube, Snyder tube, and condenser. .36 parts were charged, and the inside temperature was maintained at 220°C by gradually heating so that the temperature at the top of the rectifying tube did not exceed 100°C. When the acid value became 1 mgKOH/g or less, the esterification reaction was terminated to obtain a polyester polyol (c1-4) having a number average molecular weight of 360. The polyester polyol (c1-4) had an oxygen permeability of 105.5 cc/m 2 /day/atm or less.
 攪拌機、窒素ガス導入管、スナイダー管、冷却コンデンサー、滴下漏斗を備えた反応容器にキシリレンジイソシアネート136.47部を入れて70℃に加熱しながら撹拌し、ポリエステルポリオール(c1-4)83.24部を、滴下漏斗を用いて2時間かけて滴下し、更に4時間撹拌し、ウレタンプレポリマー(C2-5)を得た。JIS-K1603に従い測定したNCO%は16.7%であった。 136.47 parts of xylylene diisocyanate was added to a reaction vessel equipped with a stirrer, a nitrogen gas inlet tube, a Snyder tube, a cooling condenser and a dropping funnel, and stirred while heating to 70°C to obtain 83.24 parts of polyester polyol (c1-4). Using a dropping funnel, the mixture was added dropwise over 2 hours and stirred for 4 hours to obtain a urethane prepolymer (C2-5). The NCO% measured according to JIS-K1603 was 16.7%.
(ウレタンプレポリマー(CH2))
攪拌機、窒素ガス導入管、スナイダー管、冷却コンデンサー、滴下漏斗を備えた反応容器にミリオネートMN(4,4’-ジフェニルメタンジイソシアネートと2,4’-ジフェニルメタンジイソシアネートとの混合物)114.00部を入れて70℃に加熱しながら撹拌し、ポリプロピレングリコール(分子量約400)28.16部、ポリプロピレングリコール(分子量約1000)58.44部を、滴下漏斗を用いて2時間かけて滴下し、更に4時間撹拌し、ウレタンプレポリマー(CH2)を得た。JIS-K1603に従い測定したNCO%は13.5%であった。なお、ウレタンプレポリマー(CH2)の合成に用いたポリプロピレングリコールはいずれも酸素透過率が300cc/m/day/atmを超えるものであった。
(Urethane prepolymer (CH2))
114.00 parts of Millionate MN (mixture of 4,4'-diphenylmethane diisocyanate and 2,4'-diphenylmethane diisocyanate) was placed in a reaction vessel equipped with a stirrer, nitrogen gas inlet tube, Snyder tube, cooling condenser and dropping funnel. While stirring while heating to 70° C., 28.16 parts of polypropylene glycol (molecular weight: about 400) and 58.44 parts of polypropylene glycol (molecular weight: about 1000) were added dropwise using a dropping funnel over 2 hours, followed by further stirring for 4 hours. to obtain a urethane prepolymer (CH2). The NCO% measured according to JIS-K1603 was 13.5%. All the polypropylene glycols used in synthesizing the urethane prepolymer (CH2) had an oxygen permeability exceeding 300 cc/m 2 /day/atm.
<接着剤の調製>
 合成したポリエステルポリオール(A1)、ポリオール(A2)を表1-4に占める比率で配合し、ポリエステルポリオール(A1)、ポリオール(A2)の総量に対して100ppmになるようにリン酸を添加しポリオール組成物(X)を調整した。また、イソシアネート化合物(C1)、ウレタンプレポリマー(C2)を、表1-4に示す比率で配合してポリイソシアネート組成物(Y)を調整した。ポリオール組成物(X)、ポリオール組成物(Y)を表1-4に示す比率で配合して実施例、比較例の接着剤を得た。なお表中におけるポリオール(A2)はイソソルビドであり、XDIはキシリレンジイソシアネートであり、MDIはミリオネートMN(4,4’-ジフェニルメタンジイソシアネートと2,4’-ジフェニルメタンジイソシアネートとの混合物)である。
<Preparation of adhesive>
Synthesized polyester polyol (A1) and polyol (A2) are blended in the ratio shown in Table 1-4, phosphoric acid is added so that the total amount of polyester polyol (A1) and polyol (A2) is 100 ppm, and polyol A composition (X) was prepared. Also, the isocyanate compound (C1) and the urethane prepolymer (C2) were blended at the ratio shown in Table 1-4 to prepare a polyisocyanate composition (Y). Polyol composition (X) and polyol composition (Y) were blended at the ratio shown in Table 1-4 to obtain adhesives of Examples and Comparative Examples. In the table, polyol (A2) is isosorbide, XDI is xylylene diisocyanate, and MDI is Millionate MN (a mixture of 4,4'-diphenylmethane diisocyanate and 2,4'-diphenylmethane diisocyanate).
<積層体の製造1>
 実施例、比較例の接着剤を約70℃に加熱し、無溶剤用テストコーターを用いて、膜厚20μmのOPPフィルム(東洋紡(株)製「P2161」)塗膜量3.0g/mとなるように塗布し、次いで膜厚30μmのCPPフィルム(東洋紡(株)製「P1128」)と接着剤の塗布面とを貼り合わせた。50℃で4日間エージングを行い、実施例、比較例の積層体を得た。
<Production of laminate 1>
The adhesives of Examples and Comparative Examples were heated to about 70 ° C., and a 20 μm thick OPP film (“ P2161 ” manufactured by Toyobo Co., Ltd.) was coated using a solventless test coater. Then, a CPP film (“P1128” manufactured by Toyobo Co., Ltd.) having a film thickness of 30 μm was laminated to the coated surface of the adhesive. Aging was performed at 50° C. for 4 days to obtain laminates of Examples and Comparative Examples.
<評価>
(接着強度)
 25℃の雰囲気下で引張試験機を用い、剥離速度を300mm/minに設定し、180°の剥離方法でOPPフィルムとCPPフィルム間の接着強度(N/15mm)を測定した。結果を表1-4にまとめた。
<Evaluation>
(adhesion strength)
The adhesive strength (N/15 mm) between the OPP film and the CPP film was measured by a 180° peeling method using a tensile tester under an atmosphere of 25°C, setting the peeling speed to 300 mm/min. The results are summarized in Tables 1-4.
(酸素透過率)
 得られた積層体を10cm×10cmのサイズに調整し、OX-TRAN2/21(モコン社製:酸素透過率測定装置)を用い、JIS-K7126(等圧法)に準じ、23℃0%RHの雰囲気下で酸素透過率を測定した。なおRHとは、湿度を表す。実際に塗布された接着剤の塗膜量は一律ではないため、酸素透過率の実測値(cc/m/day/atm)を、接着剤の塗布量が3g/mであった場合に換算し、結果を表1-4にまとめた。
(Oxygen permeability)
The obtained laminate was adjusted to a size of 10 cm × 10 cm, and was subjected to JIS-K7126 (isobaric method) using OX-TRAN2/21 (manufactured by Mocon Co., Ltd.: oxygen permeability measuring device) at 23 ° C. 0% RH. Oxygen permeability was measured under ambient conditions. Note that RH represents humidity. Since the coating amount of the adhesive actually applied is not uniform, the measured oxygen permeability (cc/m 2 /day/atm) is calculated when the adhesive coating amount is 3 g/m 2 . After conversion, the results are summarized in Table 1-4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

Claims (7)

  1.  ポリエステルポリオール(A1)と、ポリオール(A2)とを含むポリオール組成物(X)と、ポリイソシアネート化合物(C)を含むポリイソシアネート組成物(Y)と、を含み、
     前記ポリエステルポリオール(A1)は、前記ポリエステルポリオール(A1)とキシレンジイソシアネートのトリメチロールプロパンアダクト体とを、NCO/OHが2±0.2で反応させたときの硬化塗膜の23℃0%RHにおける酸素透過率の3g/m換算値が300cc/m/day/atm以下であり、
     前記ポリオール(A2)は、2以上の水酸基を有し、密度が1.2g/cm以上であり、融点が20℃以上である2液無溶剤型接着性組成物。
    A polyol composition (X) containing a polyester polyol (A1) and a polyol (A2), and a polyisocyanate composition (Y) containing a polyisocyanate compound (C),
    The polyester polyol (A1) is a cured coating film obtained by reacting the polyester polyol (A1) and a trimethylolpropane adduct of xylene diisocyanate at an NCO/OH ratio of 2 ± 0.2 at 23 ° C. and 0% RH. 3 g/m 2 conversion value of oxygen permeability in is 300 cc/m 2 /day/atm or less,
    The polyol (A2) is a two-component solventless adhesive composition having two or more hydroxyl groups, a density of 1.2 g/cm 3 or more, and a melting point of 20° C. or more.
  2.  前記ポリイソシアネート化合物(C)が、ポリエステルポリオール(c1)とポリイソシアネートとの反応生成物であるウレタンプレポリマー(C2)を含み、
     前記ポリエステルポリオール(c1)は、前記ポリエステルポリオール(c1)とキシレンジイソシアネートのトリメチロールプロパンアダクト体とを、NCO/OHが2±0.2で反応させたときの硬化塗膜の23℃0%RHにおける酸素透過率の3g/m換算値が300cc/m/day/atm以下である、請求項1に記載の2液無溶剤型接着性組成物。
    The polyisocyanate compound (C) contains a urethane prepolymer (C2) which is a reaction product of a polyester polyol (c1) and a polyisocyanate,
    The polyester polyol (c1) is obtained by reacting the polyester polyol (c1) and a trimethylolpropane adduct of xylene diisocyanate at an NCO/OH ratio of 2 ± 0.2 to obtain a cured coating film at 23 ° C. and 0% RH. 2. The two-liquid solvent-free adhesive composition according to claim 1, wherein the 3 g/m 2 equivalent oxygen permeability at 300 cc/m 2 /day/atm or less.
  3.  前記ポリオール(A2)の配合量は、前記ポリエステルポリオール(A1)とポリオール(A2)との総量の5質量%以上90質量%以下である請求項1または2のいずれか一項に記載の2液無溶剤型接着性組成物。 3. The two-liquid liquid according to claim 1 or 2, wherein the blending amount of the polyol (A2) is 5% by mass or more and 90% by mass or less of the total amount of the polyester polyol (A1) and the polyol (A2). A solventless adhesive composition.
  4.  請求項1乃至3のいずれか一項に記載のポリオール組成物(X)と、
     ポリイソシアネート組成物(Y)と、を含む2液硬化型接着剤。
    The polyol composition (X) according to any one of claims 1 to 3;
    A two-part curable adhesive comprising a polyisocyanate composition (Y).
  5.  請求項1乃至3のいずれか一項に記載のポリオール組成物(X)と、
     ポリイソシアネート組成物(Y)と、を有するアンカーコート剤。
    The polyol composition (X) according to any one of claims 1 to 3;
    An anchor coating agent having a polyisocyanate composition (Y).
  6.  基材と、請求項1~3のいずれか一項に記載の2液無溶剤型接着性組成物の硬化塗膜とを有する積層体。 A laminate comprising a substrate and a cured coating film of the two-component solventless adhesive composition according to any one of claims 1 to 3.
  7.  請求項6に記載の積層体を含む包装材。 A packaging material containing the laminate according to claim 6.
PCT/JP2022/016451 2021-04-13 2022-03-31 Two-pack curable adhesive composition, anchor coating material, adhesive, laminate, and packaging material WO2022220151A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022547723A JP7207617B1 (en) 2021-04-13 2022-03-31 Two-component curable adhesive composition, anchor coating agent, adhesive, laminate, packaging material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021067632 2021-04-13
JP2021-067632 2021-04-13

Publications (1)

Publication Number Publication Date
WO2022220151A1 true WO2022220151A1 (en) 2022-10-20

Family

ID=83639748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016451 WO2022220151A1 (en) 2021-04-13 2022-03-31 Two-pack curable adhesive composition, anchor coating material, adhesive, laminate, and packaging material

Country Status (2)

Country Link
JP (1) JP7207617B1 (en)
WO (1) WO2022220151A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7332075B1 (en) 2021-11-11 2023-08-23 Dic株式会社 Adhesives, laminates, packaging materials

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018904A (en) * 2011-07-13 2013-01-31 Dic Corp Resin composition for oxygen barrier adhesive, adhesive and laminate
JP2013237154A (en) * 2012-05-11 2013-11-28 Dic Corp Multilayer film and standing pouch
JP2014159548A (en) * 2013-01-22 2014-09-04 Toyo Ink Sc Holdings Co Ltd Adhesive agent composition, laminate and method producing thereof
WO2017104639A1 (en) * 2015-12-17 2017-06-22 Dic株式会社 Gas barrier adhesive, film and gas barrier film
WO2020129668A1 (en) * 2018-12-20 2020-06-25 Dic株式会社 Two-part type adhesive, polyisocyanate composition for two-part type adhesive, layered product, and packaging material
WO2020262006A1 (en) * 2019-06-25 2020-12-30 Dic株式会社 Gas barrier laminate and packaging material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018904A (en) * 2011-07-13 2013-01-31 Dic Corp Resin composition for oxygen barrier adhesive, adhesive and laminate
JP2013237154A (en) * 2012-05-11 2013-11-28 Dic Corp Multilayer film and standing pouch
JP2014159548A (en) * 2013-01-22 2014-09-04 Toyo Ink Sc Holdings Co Ltd Adhesive agent composition, laminate and method producing thereof
WO2017104639A1 (en) * 2015-12-17 2017-06-22 Dic株式会社 Gas barrier adhesive, film and gas barrier film
WO2020129668A1 (en) * 2018-12-20 2020-06-25 Dic株式会社 Two-part type adhesive, polyisocyanate composition for two-part type adhesive, layered product, and packaging material
WO2020262006A1 (en) * 2019-06-25 2020-12-30 Dic株式会社 Gas barrier laminate and packaging material

Also Published As

Publication number Publication date
JPWO2022220151A1 (en) 2022-10-20
JP7207617B1 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
JP2013103434A (en) Multilayer film for inert gas barrier
JP6856175B2 (en) Two-component adhesive, polyisocyanate composition for two-component adhesive, laminate, packaging material
JP7207617B1 (en) Two-component curable adhesive composition, anchor coating agent, adhesive, laminate, packaging material
JP7375994B1 (en) Two-component curing coating agents, laminates, packaging materials
JP6973690B2 (en) Gas barrier laminate, packaging material
WO2021039337A1 (en) Gas barrier laminate and packaging material
JP7332075B1 (en) Adhesives, laminates, packaging materials
JP7239069B2 (en) Gas barrier laminates, packaging materials
JP7036283B2 (en) Laminate manufacturing method, laminate, packaging material
JP7468813B1 (en) Gas barrier coating agent, laminate, and packaging material
WO2020110882A1 (en) Reactive adhesive agent, laminate, and package body
JP4433153B2 (en) Manufacturing method of laminate film
JP6801828B2 (en) Polyester polyisocyanate, polyester polyisocyanate composition, adhesives, laminates, packaging materials
WO2024075529A1 (en) Multilayer body and packaging material
CN113853304B (en) Reactive adhesive, laminated film, and package
JP7201131B2 (en) Gas barrier laminates, packaging materials
JP7173389B2 (en) Reactive adhesives, laminates and packages
WO2023120203A1 (en) Laminate and packaging material
JP6733835B1 (en) Reactive adhesive, laminate, and package
WO2023112688A1 (en) Adhesive, laminate, and packaging material
WO2021256269A1 (en) Adhesive, laminate, and packaging material

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022547723

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22788076

Country of ref document: EP

Kind code of ref document: A1