JP7088361B1 - Gas barrier laminates, packaging materials, packaging and packaging articles - Google Patents

Gas barrier laminates, packaging materials, packaging and packaging articles Download PDF

Info

Publication number
JP7088361B1
JP7088361B1 JP2021072413A JP2021072413A JP7088361B1 JP 7088361 B1 JP7088361 B1 JP 7088361B1 JP 2021072413 A JP2021072413 A JP 2021072413A JP 2021072413 A JP2021072413 A JP 2021072413A JP 7088361 B1 JP7088361 B1 JP 7088361B1
Authority
JP
Japan
Prior art keywords
gas barrier
acid
coating layer
group
packaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021072413A
Other languages
Japanese (ja)
Other versions
JP2022166955A (en
Inventor
正貴 前田
沙耶佳 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2021072413A priority Critical patent/JP7088361B1/en
Priority to PCT/JP2022/014639 priority patent/WO2022224709A1/en
Application granted granted Critical
Publication of JP7088361B1 publication Critical patent/JP7088361B1/en
Publication of JP2022166955A publication Critical patent/JP2022166955A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes

Abstract

【課題】 レトルト処理やボイル処理等の湿熱処理に対する耐内容物性に優れ、湿熱処理が施されてもガスバリア性の低下やデラミネーションの発生が抑制され、更に内容物の保存安定性に優れるガスバリア性積層体、並びに、これを用いた包装材料、包装体及び包装物品を提供すること。【解決手段】 基材と、上記基材の少なくとも一方の面上に、無機酸化物を含む無機蒸着層と、カルボキシ基含有重合体(a)、多価金属含有粒子(b)及び界面活性剤(c)を含む被覆層とをこの順序で備えたガスバリア性積層体が提供される。このガスバリア性積層体において、上記被覆層の赤外吸収スペクトルにおける、1490~1659cm-1の範囲内の-COO-に帰属する最大ピーク高さ(α)と、1660~1750cm-1の範囲内の-COOHに帰属する最大ピーク高さ(β)のα/α+βで表される比は0.3以上である。【選択図】 図1PROBLEM TO BE SOLVED: To have excellent content resistance to wet heat treatment such as retort treatment and boiling treatment, to suppress deterioration of gas barrier property and generation of delamination even when wet heat treatment is applied, and gas barrier property to further be excellent in storage stability of contents. To provide a laminate, and packaging materials, packaging bodies and packaging articles using the same. SOLUTION: An inorganic vapor deposition layer containing an inorganic oxide, a carboxy group-containing polymer (a), polyvalent metal-containing particles (b) and a surfactant on a base material and at least one surface of the base material. A gas barrier laminated body including a coating layer containing (c) in this order is provided. In this gas barrier laminate, the maximum peak height (α) attributable to −COO— in the range of 1490 to 1659 cm-1 and the maximum peak height (α) in the range of 1660 to 1750 cm-1 in the infrared absorption spectrum of the coating layer. The ratio of the maximum peak height (β) attributable to COOH expressed by α / α + β is 0.3 or more. [Selection diagram] Fig. 1

Description

本発明は、ガスバリア性積層体、包装材料、包装体及び包装物品に関する。 The present invention relates to gas barrier laminates, packaging materials, packaging bodies and packaging articles.

食品、医薬品、化粧品、農薬、及び工業製品等の物品は、長期間保存すると、酸素によって品質が劣化することがある。そのため、これらの物品の包装材料として、酸素ガスバリア性のあるフィルムやシートが使用されている。 Goods such as foods, pharmaceuticals, cosmetics, pesticides, and industrial products may deteriorate in quality due to oxygen when stored for a long period of time. Therefore, films and sheets having an oxygen gas barrier property are used as packaging materials for these articles.

そのような包装材料としては、従来、ガスバリア性被覆層としてアルミニウム箔を備えるものが多用されてきた。しかしながら、アルミニウム箔を含む包装材料を用いると、内容物が視認できず、その上、金属探知機が使用できない。そのため、特に食品分野や医薬品分野では、優れたガスバリア性を有し且つ透明な包装材料の開発が求められてきた。 As such a packaging material, a material provided with an aluminum foil as a gas barrier coating layer has been widely used in the past. However, when packaging materials containing aluminum foil are used, the contents are not visible and, moreover, metal detectors cannot be used. Therefore, especially in the fields of foods and pharmaceuticals, there has been a demand for the development of transparent packaging materials having excellent gas barrier properties.

このような要求のもと、基材の上に、ポリ塩化ビニリデン(Polyvinylidene chloride;PVDC)を含むコーティング液を塗工することによってPVDCからなる層を設けたガスバリア性積層体が使用されてきた。PVDCからなる層は、透明でガスバリア性がある。 Under such a requirement, a gas barrier laminate having a layer made of PVDC by applying a coating liquid containing polyvinylidene chloride (PVDC) on a base material has been used. The layer made of PVDC is transparent and has a gas barrier property.

しかしながら、PVDCは焼却時にダイオキシンの発生が懸念される。そのため、PVDCから非塩素系材料への移行が求められた。このような要求のもと、例えば、PVDCに代わりポリビニルアルコール(Polyvinil alcohol;PVA)系重合体を用いることが提案された。 However, PVDC is concerned about the generation of dioxins when incinerated. Therefore, the transition from PVDC to non-chlorine materials was required. Under such a requirement, it has been proposed to use, for example, a polyvinyl alcohol (PVA) -based polymer instead of PVDC.

PVA系重合体からなる層は、水酸基の水素結合によって高密度化し、低湿度雰囲気下では高いガスバリア性を発揮する。しかし、PVA系重合体からなる層は、高湿度雰囲気下では吸湿によって水素結合が緩み、ガスバリア性が大きく低下するという問題がある。そのため、PVA系重合体からなる層をガスバリア性被覆層として用いたガスバリア性積層体は、水分を多く含む食品等の包装材料には用いることができない場合が多く、用途が乾燥物の包装材料などに限られていた。 The layer made of PVA-based polymer has a high density due to hydrogen bonds of hydroxyl groups, and exhibits high gas barrier properties in a low humidity atmosphere. However, the layer made of PVA-based polymer has a problem that hydrogen bonds are loosened by moisture absorption in a high humidity atmosphere and the gas barrier property is greatly deteriorated. Therefore, a gas barrier laminate using a layer made of a PVA-based polymer as a gas barrier coating layer cannot often be used as a packaging material for foods containing a large amount of water, and is used as a packaging material for dried products. Was limited to.

ガスバリア性を更に向上させることを目的として、PVA系重合体に無機層状化合物を添加することが提案された(例えば、特許文献1参照)。しかしながら、無機層状化合物を添加しても、PVA系重合体自体の耐水性が向上した訳ではないため、依然として高湿度雰囲気下でガスバリア性が低下する問題が残る。 It has been proposed to add an inorganic layered compound to the PVA-based polymer for the purpose of further improving the gas barrier property (see, for example, Patent Document 1). However, even if the inorganic layered compound is added, the water resistance of the PVA-based polymer itself is not improved, so that there still remains a problem that the gas barrier property is lowered in a high humidity atmosphere.

高湿度雰囲気下でのガスバリア性を改善するため、PVA系重合体と、これと架橋構造を形成し得る重合体とを含有するコーティング液を基材に塗布し、熱処理することにより、ガスバリア性積層体を製造することが提案されている(例えば、特許文献2及び3参照)。 In order to improve the gas barrier property in a high humidity atmosphere, a coating liquid containing a PVA-based polymer and a polymer capable of forming a crosslinked structure is applied to a base material and heat-treated to cause a gas barrier laminating. It has been proposed to manufacture a body (see, for example, Patent Documents 2 and 3).

しかしながら、これら技術で充分なガスバリア性を得るためには、コーティング液の塗工後の熱処理を、高温、例えば150℃以上で行って、架橋構造を形成させる必要がある。そのような熱処理は、例えば、基材の材質が延伸ポリプロピレン(Oriented polypropylene;OPP)やポリエチレン(Polyethylene;PE)などのポリオレフィンである場合、基材の激しい劣化を引き起こす。そのため、基材の材質が制限されたり、より穏和な条件で製造し得るガスバリア性積層体が求められる。 However, in order to obtain sufficient gas barrier properties with these techniques, it is necessary to heat-treat the coating liquid after coating at a high temperature, for example, 150 ° C. or higher to form a crosslinked structure. Such heat treatment causes severe deterioration of the base material, for example, when the material of the base material is a polyolefin such as Oriented polypropylene (OPP) or polyethylene (Polyethylene; PE). Therefore, there is a demand for a gas barrier laminate that can be manufactured under milder conditions and the material of the base material is limited.

ガスバリア性被覆層を形成する他の方法として、ポリカルボン酸系重合体を多価金属イオンでイオン架橋することにより、ガスバリア性を発現させる方法が提案されている(例えば、特許文献4参照)。 As another method for forming a gas barrier coating layer, a method for exhibiting gas barrier properties by ion-crosslinking a polycarboxylic acid polymer with polyvalent metal ions has been proposed (see, for example, Patent Document 4).

この方法では、特許文献2及び3に記載の方法で行う高温の熱処理は不要である。そのため、基材にポリオレフィンを用いることができる。また、得られたガスバリア性被覆層は、高湿度雰囲気下でもガスバリア性に優れている。それ故、このガスバリア性被覆層を含んだガスバリア性積層体は、ボイルやレトルト等の湿熱処理を行う用途にも使用することができる。 This method does not require the high temperature heat treatment performed by the methods described in Patent Documents 2 and 3. Therefore, polyolefin can be used as the base material. Further, the obtained gas barrier coating layer has excellent gas barrier properties even in a high humidity atmosphere. Therefore, the gas barrier laminate containing the gas barrier coating layer can also be used for wet heat treatment such as boiling and retort.

しかしながら、ポリカルボン酸系重合体と多価金属化合物とをコーティング液中に共存させると、コーティング液中でポリカルボン酸系重合体と多価金属化合物とが反応して沈殿が生じ易い。液中に沈殿が生じると、均一な膜が形成できなくなる。そのためこの方法では、ガスバリア性被覆層を、ポリカルボン酸系樹脂を主成分とする第1水系層と、そのコーティング層として多価金属化合物の微粒子が分散した第2水系層とを含む多層構造体として製膜する。 However, when the polycarboxylic acid-based polymer and the polyvalent metal compound coexist in the coating liquid, the polycarboxylic acid-based polymer and the polyvalent metal compound react with each other in the coating liquid, and precipitation is likely to occur. If precipitation occurs in the liquid, a uniform film cannot be formed. Therefore, in this method, the gas barrier coating layer is a multilayer structure including a first aqueous layer containing a polycarboxylic acid-based resin as a main component and a second aqueous layer in which fine particles of a polyvalent metal compound are dispersed as the coating layer. To form a film.

特開平6-093133号公報Japanese Unexamined Patent Publication No. 6-093133 特開2000-289154号公報Japanese Unexamined Patent Publication No. 2000-289154 特開2000-336195号公報Japanese Unexamined Patent Publication No. 2000-336195 特許第5278802号公報Japanese Patent No. 5278802

ポリカルボン酸系重合体を多価金属イオンで架橋することによりガスバリア性を発現させる上記方法においては、上述のとおり、ガスバリア性被覆層を、ポリカルボン酸系樹脂を主成分とする第1水系層と、多価金属化合物の微粒子が分散した第2水系層とを含む多層構造として製膜する。この多層構造のガスバリア性被覆層は、製膜段階(レトルト処理及びボイル処理等の湿熱処理前を意味する。)においては、多価金属イオンによるポリカルボン酸系重合体の架橋反応はあまり進行していない。湿熱処理を施すことで、多層構造のガスバリア性被覆層において、第2水系層に生じた多価金属イオンが第1水系層に移行し、ポリカルボン酸系重合体をイオン架橋させることによりガスバリア性が発現する。 In the above method for exhibiting gas barrier properties by cross-linking a polycarboxylic acid polymer with polyvalent metal ions, as described above, the gas barrier coating layer is a first aqueous layer containing a polycarboxylic acid resin as a main component. And a second aqueous layer in which fine particles of the polyvalent metal compound are dispersed, and the film is formed as a multilayer structure. In this multi-layered gas barrier coating layer, the cross-linking reaction of the polycarboxylic acid-based polymer by polyvalent metal ions proceeds so much in the film forming stage (meaning before the wet heat treatment such as retort treatment and boiling treatment). Not. By performing a wet heat treatment, the polyvalent metal ions generated in the second aqueous layer are transferred to the first aqueous layer in the multi-layered gas barrier coating layer, and the polycarboxylic acid polymer is ion-crosslinked to have gas barrier properties. Is expressed.

本発明者らによる鋭意研究により、ガスバリア性被覆層が上記第1及び第2水系層からなる場合に、レトルト処理やボイル処理など、実際の内容物を充填した状態で湿熱処理を施したり、その後長期保存をした場合に、第2水系層中の多価金属イオンが内部に浸透し、例えば内容物に含まれる酢酸などと反応してポリカルボン酸系重合体の架橋反応が阻害される恐れのあることがわかった。この場合、ガスバリア性の低下やデラミネーション発生の問題を生じ得る。 As a result of diligent research by the present inventors, when the gas barrier coating layer is composed of the first and second aqueous layers, a wet heat treatment is performed with the actual contents filled, such as retort treatment and boiling treatment, and then. When stored for a long period of time, polyvalent metal ions in the second aqueous layer may permeate inside and react with, for example, acetic acid contained in the contents to inhibit the cross-linking reaction of the polycarboxylic acid polymer. It turned out that there was. In this case, problems such as deterioration of gas barrier property and generation of delamination may occur.

このように、食品等の内容物を包装体に充填してレトルト処理及びボイル処理等の湿熱処理が施されたり、その後長期保存されても、ガスバリア性被覆層中の多価金属イオンが内容物の成分と反応し、架橋反応が阻害されることによるガスバリア性の低下やデラミネーションの発生が抑制されたガスバリア性積層体の開発が所望される。 In this way, even if the contents such as foods are filled in the package and subjected to moist heat treatment such as retort treatment and boiling treatment, or then stored for a long period of time, the polyvalent metal ions in the gas barrier coating layer are the contents. It is desired to develop a gas-barrier laminate in which the deterioration of the gas barrier property and the occurrence of delamination are suppressed due to the reaction with the components of the above and the inhibition of the cross-linking reaction.

本発明は、レトルト処理やボイル処理等の湿熱処理に対する耐内容物性に優れ、湿熱処理が施されてもガスバリア性の低下やデラミネーションの発生が抑制され、更に内容物の保存安定性に優れるガスバリア性積層体、並びに、これを用いた包装材料、包装体及び包装物品を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention has excellent content resistance to wet heat treatment such as retort treatment and boiling treatment, and even if wet heat treatment is performed, deterioration of gas barrier property and generation of delamination are suppressed, and gas barrier having excellent storage stability of contents. It is an object of the present invention to provide a sex laminate, and a packaging material, a packaging body, and a packaging article using the same.

本発明の第1側面によると、基材と、上記基材の少なくとも一方の面上に、無機酸化物を含む無機蒸着層と、カルボキシ基含有重合体(a)、多価金属含有粒子(b)及び界面活性剤(c)を含む被覆層とをこの順序で備えたガスバリア性積層体であって、上記被覆層の赤外吸収スペクトルにおける、1490~1659cm-1の範囲内の-COOに帰属する最大ピーク高さ(α)と、1660~1750cm-1の範囲内の-COOHに帰属する最大ピーク高さ(β)のα/α+βで表される比が0.3以上であるガスバリア性積層体が提供される。 According to the first aspect of the present invention, the substrate, the inorganic vapor deposition layer containing an inorganic oxide, the carboxy group-containing polymer (a), and the polyvalent metal-containing particles (b) on at least one surface of the substrate. ) And a coating layer containing the surfactant (c) in this order, and in the -COO- within the range of 1490 to 1659 cm -1 in the infrared absorption spectrum of the coating layer. Gas barrier property in which the ratio of the maximum peak height (α) attributed to α / α + β of the maximum peak height (β) attributed to −COOH in the range of 1660 to 1750 cm -1 is 0.3 or more. Laminates are provided.

本発明の実施形態において、上記ガスバリア性積層体を下記条件で湿熱処理した場合において、上記被覆層の赤外吸収スペクトルにおける上記ピーク高さ比α/α+βは、0.4以上であってよい。
湿熱処理条件:120℃、30分、圧力0.2MPaでのレトルト処理。
In the embodiment of the present invention, when the gas barrier laminate is subjected to a wet heat treatment under the following conditions, the peak height ratio α / α + β in the infrared absorption spectrum of the coating layer may be 0.4 or more.
Wet heat treatment conditions: Retort treatment at 120 ° C. for 30 minutes and pressure 0.2 MPa.

また、本発明の実施形態において、上記被覆層は、ケイ素含有化合物(d)を更に含有してよい。このケイ素含有化合物(d)は、下記一般式(1)及び(2)で表されるシランカップリング剤、これらの加水分解物、およびこれらの縮合物からなる群から選択される少なくとも1種であってよい。 Further, in the embodiment of the present invention, the coating layer may further contain the silicon-containing compound (d). The silicon-containing compound (d) is at least one selected from the group consisting of silane coupling agents represented by the following general formulas (1) and (2), hydrolysates thereof, and condensates thereof. It may be there.

Si(OR …(1)
Si(R)(OR …(2)
一般式(1)において、Rは、同一であっても異なっていてもよい、炭素数が1乃至6のアルキル基であり、Zはエポキシ基を含有する基であり、一般式(2)において、Rはメチル基であり、Rは、同一であっても異なっていてもよい、炭素数が1乃至6のアルキル基であり、Zはエポキシ基を含有する基である。
Si (OR 1 ) 3 Z 1 ... (1)
Si (R 2 ) (OR 3 ) 2 Z 2 ... (2)
In the general formula (1), R 1 is an alkyl group having 1 to 6 carbon atoms, which may be the same or different, and Z 1 is a group containing an epoxy group, and is a general formula (2). ), R 2 is a methyl group, R 3 is an alkyl group having 1 to 6 carbon atoms which may be the same or different, and Z 2 is a group containing an epoxy group.

また、本発明の実施形態において、上記カルボキシ基含有重合体(a)は、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸及びフマル酸からなる群から選択される少なくとも1種のα,β-モノエチレン性不飽和カルボン酸に由来する構成単位を含んでよい。 Further, in the embodiment of the present invention, the carboxy group-containing polymer (a) is at least one α, selected from the group consisting of acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid and fumaric acid. It may contain a structural unit derived from β-monoethylenically unsaturated carboxylic acid.

また、本発明の実施形態において、上記多価金属含有粒子(b)を構成する多価金属は、2価の金属であってよい。 Further, in the embodiment of the present invention, the multivalent metal constituting the polyvalent metal-containing particles (b) may be a divalent metal.

また、本発明の実施形態において、上記ガスバリア性積層体は、上記基材と上記無機蒸着層との間にアンカーコート層を更に備えていてよい。 Further, in the embodiment of the present invention, the gas barrier laminate may further include an anchor coat layer between the base material and the inorganic vapor-deposited layer.

本発明の第2側面によると、上記ガスバリア性積層体を含んだ包装材料が提供される。 According to the second aspect of the present invention, a packaging material containing the gas barrier laminate is provided.

本発明の第3側面によると、上記包装材料を含んだ包装体が提供される。 According to the third aspect of the present invention, a package containing the above packaging material is provided.

本発明の第4側面によると、上記包装体と、上記包装体に収容された内容物とを含んだ包装物品が提供される。 According to the fourth aspect of the present invention, there is provided a packaged article containing the packaged body and the contents contained in the packaged body.

本発明によれば、レトルト処理やボイル処理等の湿熱処理に対する耐内容物性に優れ、湿熱処理が施されてもガスバリア性の低下やデラミネーションの発生が抑制され、更に内容物の保存安定性に優れるガスバリア性積層体、並びに、これを用いた包装材料、包装体及び包装物品を提供することが可能となる。 According to the present invention, the contents have excellent resistance to wet heat treatment such as retort treatment and boiling treatment, and even if the wet heat treatment is performed, deterioration of gas barrier property and generation of delamination are suppressed, and further, storage stability of the contents is improved. It becomes possible to provide an excellent gas barrier laminated body, and a packaging material, a packaging body, and a packaging article using the same.

本発明の一実施形態に係るガスバリア性積層体を概略的に示す断面図。The cross-sectional view schematically which shows the gas barrier laminated body which concerns on one Embodiment of this invention. 本発明の他の実施形態に係るガスバリア性積層体を概略的に示す断面図。FIG. 3 is a sectional view schematically showing a gas barrier laminated body according to another embodiment of the present invention.

以下に、本実施形態について、図面を参照しながら説明する。なお、同様又は類似した機能を有する要素については、同一の参照符号を付し、重複する説明は省略する。 Hereinafter, the present embodiment will be described with reference to the drawings. Elements having similar or similar functions are designated by the same reference numerals, and duplicate description will be omitted.

図1は、本発明の第1実施形態に係るガスバリア性積層体を概略的に示す断面図である。図1に示すガスバリア性積層体10は、基材1と、無機酸化物を含む無機蒸着層2と、被覆層3とを具備している。 FIG. 1 is a cross-sectional view schematically showing a gas barrier laminated body according to the first embodiment of the present invention. The gas barrier laminate 10 shown in FIG. 1 includes a base material 1, an inorganic thin-film deposition layer 2 containing an inorganic oxide, and a coating layer 3.

<被覆層>
被覆層3は、以下に詳述するカルボキシ基含有重合体(a)、多価金属含有粒子(b)及び界面活性剤(c)を含有する。多価金属含有粒子(b)由来の多価金属イオンでカルボキシ基含有重合体(a)がイオン架橋されている。
<Coating layer>
The coating layer 3 contains the carboxy group-containing polymer (a), the polyvalent metal-containing particles (b) and the surfactant (c) described in detail below. The carboxy group-containing polymer (a) is ion-crosslinked with polyvalent metal ions derived from the polyvalent metal-containing particles (b).

被覆層3は、赤外吸収スペクトルにおける1490~1659cm-1の範囲内の-COOに帰属する最大ピーク高さ(極大吸光度)(α)と、1660~1750cm-1の範囲内の-COOHに帰属する最大ピーク高さ(極大吸光度)(β)のα/α+βで表される比が、0.3以上である。以下において、このα/α+β比を「ピーク高さ比α/α+β」、又は単に「α/α+β比」などという。 The coating layer 3 has a maximum peak height (maximum absorbance) (α) belonging to −COO in the range of 1490 to 1659 cm -1 in the infrared absorption spectrum and −COOH in the range of 1660 to 1750 cm -1 . The ratio of the maximum peak height (maximum absorbance) (β) to which it belongs is expressed by α / α + β is 0.3 or more. In the following, this α / α + β ratio will be referred to as “peak height ratio α / α + β” or simply “α / α + β ratio”.

被覆層3の吸光度は、被覆層3中に存在する赤外活性を持つ化学種の量と比例関係にある。したがって、ピーク高さ比α/α+βは、被覆層3中における多価金属含有粒子(b)由来の多価金属イオンによる、カルボキシ基含有重合体(a)に対するイオン架橋反応の進行の尺度となる。 The absorbance of the coating layer 3 is proportional to the amount of infrared active chemical species present in the coating layer 3. Therefore, the peak height ratio α / α + β is a measure of the progress of the ionic cross-linking reaction on the carboxy group-containing polymer (a) by the polyvalent metal ions derived from the polyvalent metal-containing particles (b) in the coating layer 3. ..

ガスバリア性積層体10は、湿熱処理前である製膜段階において、赤外吸収スペクトルのピーク高さ比α/α+βが0.3以上とイオン架橋反応が進行している。このためガスバリア性積層体10は、内容物を収容した状態でのレトルト処理やボイル処理等の湿熱処理に対する耐内容物性に優れ、湿熱処理が施された場合の内容物の成分によるガスバリア性の劣化やデラミネーションの発生が抑制され、更に保存安定性にも優れる。 In the gas barrier laminate 10, the ion cross-linking reaction is proceeding with the peak height ratio α / α + β of the infrared absorption spectrum being 0.3 or more in the film forming stage before the wet heat treatment. Therefore, the gas barrier laminated body 10 has excellent content resistance to wet heat treatment such as retort treatment and boiling treatment in a state where the contents are contained, and deterioration of gas barrier properties due to the components of the contents when the contents are subjected to the wet heat treatment. The occurrence of heat treatment and delamination is suppressed, and the storage stability is also excellent.

ここで湿熱処理とは、レトルト処理やボイル処理など、密閉容器内で適正な温度、時間、相対湿度、又は圧力などの条件下で、内容物を収容した包装体に対し加熱処理を施すことである。 Here, moist heat treatment is a process of heat-treating a package containing contents under conditions such as retort treatment and boiling treatment at an appropriate temperature, time, relative humidity, or pressure in a closed container. be.

例えば、湿熱処理がレトルト処理である場合について説明する。レトルト処理は、一般には食品等を保存するために、カビ、酵母、及び細菌などの微生物を加圧加熱殺菌する処理である。レトルト処理では、通常は、食品を包装体に包装してなる包装物品を、0.15乃至0.3MPaの圧力下、105乃至140℃の温度で、10乃至120分間に亘って加圧殺菌加熱処理する。レトルト装置には、加熱蒸気を利用する蒸気式及び加圧過熱水を利用する熱水式等があり、それらは内容物となる食品等の殺菌条件に応じて適宜使い分ける。 For example, a case where the wet heat treatment is a retort treatment will be described. The retort treatment is generally a treatment of pressurizing and sterilizing microorganisms such as mold, yeast, and bacteria in order to store foods and the like. In the retort treatment, a packaged article, which is usually made by packaging food in a package, is sterilized under pressure for 10 to 120 minutes at a temperature of 105 to 140 ° C. under a pressure of 0.15 to 0.3 MPa. To process. The retort device includes a steam type that uses heated steam and a hot water type that uses pressurized superheated water, and these are appropriately used according to the sterilization conditions of the food or the like as the content.

また、湿熱処理がボイル処理である場合について説明する。ボイル処理は、食品等を保存するため湿熱殺菌する処理である。ボイル処理では、内容物にもよるが、通常は、食品等の内容物を包装体に包装してなる包装物品を、大気圧下、60乃至100℃の温度で、10乃至120分間に亘って湿熱殺菌処理する。ボイル処理は、通常、熱水槽を用いて行う。ボイル処理には、包装物品を一定温度の熱水槽の中に浸漬させ、一定時間後に取り出すバッチ式と、熱水槽の中に包装物品をトンネル式に通して殺菌する連続式とがある。 Further, a case where the wet heat treatment is a boiling treatment will be described. The boil treatment is a treatment of moist heat sterilization for preserving foods and the like. In the boil treatment, although it depends on the contents, usually, a packaged article obtained by packaging the contents such as food in a package is placed under atmospheric pressure at a temperature of 60 to 100 ° C. for 10 to 120 minutes. Wet heat sterilization treatment. The boiling treatment is usually performed using a hot water tank. The boil treatment includes a batch type in which the packaged article is immersed in a hot water tank at a constant temperature and taken out after a certain period of time, and a continuous type in which the packaged article is passed through a tunnel type in the hot water tank to be sterilized.

包装物品に対する湿熱処理条件が厳しかったり、包装体の耐内容物性が悪いと、湿熱処理後において内容物の成分に起因したガスバリア性の劣化や、デラミネーションが発生する。本発明の実施形態に係るガスバリア性積層体は、上記の通り、湿熱処理前である製膜段階において、赤外吸収スペクトルのピーク高さ比α/α+βが0.3以上とイオン架橋反応が進行し、耐内容物性に優れるため、例えば上述した湿熱処理条件の中から厳しい条件で湿熱処理が施されても、内容物の成分に起因したガスバリア性の劣化やデラミネーションの発生が抑制される。 If the wet heat treatment conditions for the packaged article are strict or the content resistance of the package is poor, the gas barrier property deteriorates due to the components of the content and delamination occurs after the wet heat treatment. As described above, in the gas barrier laminate according to the embodiment of the present invention, the ion cross-linking reaction proceeds when the peak height ratio α / α + β of the infrared absorption spectrum is 0.3 or more in the film forming stage before the wet heat treatment. However, since the content resistance is excellent, even if the wet heat treatment is performed under severe conditions from the above-mentioned wet heat treatment conditions, deterioration of the gas barrier property and occurrence of delamination due to the components of the content are suppressed.

湿熱処理前のガスバリア性積層体10における被覆層3のピーク高さ比α/α+βは、上記の通り0.3以上であり、好ましくは0.4以上であり、より好ましくは0.5以上である。ピーク高さ比α/α+βの上限値は、特に制限されるものではなく、1以下である。 The peak height ratio α / α + β of the coating layer 3 in the gas barrier laminate 10 before the wet heat treatment is 0.3 or more, preferably 0.4 or more, more preferably 0.5 or more as described above. be. The upper limit of the peak height ratio α / α + β is not particularly limited and is 1 or less.

また、本実施形態に係るガスバリア性積層体10は、下記条件で湿熱処理した場合において、被覆層3のピーク高さα/α+βが、0.4以上であることが好ましく、0.6以上であることがより好ましい。上記湿熱処理後における赤外吸収スペクトルのピーク高さ比α/α+βの上限値は、特に制限されるものではなく、1以下である。
湿熱処理条件:120℃、30分、圧力0.2MPaでのレトルト処理。
Further, in the gas barrier laminate 10 according to the present embodiment, when the wet heat treatment is performed under the following conditions, the peak height α / α + β of the coating layer 3 is preferably 0.4 or more, preferably 0.6 or more. It is more preferable to have. The upper limit of the peak height ratio α / α + β of the infrared absorption spectrum after the wet heat treatment is not particularly limited and is 1 or less.
Wet heat treatment conditions: Retort treatment at 120 ° C. for 30 minutes and pressure 0.2 MPa.

〔カルボキシ基含有重合体(a)〕
被覆層3に含有されるカルボキシ基含有重合体(a)は、分子内に2個以上のカルボキシ基を有する重合体であり、以下において「ポリカルボン酸系重合体」と呼ぶことがある。カルボキシ基含有重合体(a)は、上述したように、被覆層3において後述する多価金属含有粒子(b)に由来する金属イオンとイオン架橋を形成しており、優れたガスバリア性を発揮する。カルボキシ基含有重合体(a)としては、カルボキシ基含有不飽和単量体の単独重合体、2種以上のカルボキシ基含有不飽和単量体の共重合体、カルボキシ基含有不飽和単量体と他の重合性単量体との共重合体、及び分子内にカルボキシ基を含有する多糖類(「カルボキシ基含有多糖類」又は「酸性多糖類」ともいう)が代表的なものである。
[Carboxy group-containing polymer (a)]
The carboxy group-containing polymer (a) contained in the coating layer 3 is a polymer having two or more carboxy groups in the molecule, and may be hereinafter referred to as a “polycarboxylic acid-based polymer”. As described above, the carboxy group-containing polymer (a) forms an ion crosslink with the metal ion derived from the polyvalent metal-containing particles (b) described later in the coating layer 3, and exhibits excellent gas barrier properties. .. Examples of the carboxy group-containing polymer (a) include a homopolymer of a carboxy group-containing unsaturated monomer, a copolymer of two or more kinds of carboxy group-containing unsaturated monomers, and a carboxy group-containing unsaturated monomer. Typical examples are copolymers with other polymerizable monomers and polysaccharides containing a carboxy group in the molecule (also referred to as "carboxy group-containing polysaccharide" or "acidic polysaccharide").

カルボキシ基には、遊離のカルボキシ基のみならず、酸無水物基(具体的には、ジカルボン酸無水物基)も含まれる。酸無水物基は、部分的に開環してカルボキシ基となっていてもよい。カルボキシ基の一部は、アルカリで中和されていてもよい。この場合、中和度は、20%以下であることが好ましい。 The carboxy group includes not only a free carboxy group but also an acid anhydride group (specifically, a dicarboxylic acid anhydride group). The acid anhydride group may be partially ring-opened to form a carboxy group. Some of the carboxy groups may be neutralized with alkali. In this case, the degree of neutralization is preferably 20% or less.

ここで、「中和度」は、以下の方法によって得られる値である。即ち、カルボキシ基含有重合体(a)に対してアルカリ(ft)を添加することでカルボキシ基を部分中和できる。この時、カルボキシ基含有重合体(a)が含んでいるカルボキシ基のモル数(at)に対するアルカリ(f)のモル数(ft)の比が中和度である。 Here, the "neutralization degree" is a value obtained by the following method. That is, the carboxy group can be partially neutralized by adding an alkali (ft) to the carboxy group-containing polymer (a). At this time, the ratio of the number of moles (ft) of the alkali (f) to the number of moles (at) of the carboxy group contained in the carboxy group-containing polymer (a) is the degree of neutralization.

また、ポリオレフィンなどのカルボキシ基を含有していない重合体にカルボキシ基含有不飽和単量体をグラフト重合してなるグラフト重合体も、カルボキシ基含有重合体(a)として使用することができる。アルコキシカルボニル基(例えば、メトキシカルボニル基)のような加水分解性のエステル基を有する重合体を加水分解して、カルボキシ基に変換した重合体を使用することもできる。 Further, a graft polymer obtained by graft-polymerizing a carboxy group-containing unsaturated monomer to a carboxy group-free polymer such as polyolefin can also be used as the carboxy group-containing polymer (a). It is also possible to use a polymer obtained by hydrolyzing a polymer having a hydrolyzable ester group such as an alkoxycarbonyl group (for example, a methoxycarbonyl group) and converting it into a carboxy group.

カルボキシ基含有不飽和単量体としては、α,β-モノエチレン性不飽和カルボン酸が好ましい。従って、カルボキシ基含有重合体(a)には、α,β-モノエチレン性不飽和カルボン酸の単独重合体、2種以上のα,β-モノエチレン性不飽和カルボン酸の共重合体、及びα,β-モノエチレン性不飽和カルボン酸と他の重合性単量体との共重合体が含まれる。他の重合性単量体としては、エチレン性不飽和単量体が代表的なものである。 As the carboxy group-containing unsaturated monomer, α, β-monoethyl unsaturated carboxylic acid is preferable. Therefore, the carboxy group-containing polymer (a) includes a homopolymer of α, β-monoethyl unsaturated carboxylic acid, a copolymer of two or more kinds of α, β-monoethyl unsaturated carboxylic acid, and a copolymer of α, β-monoethyl unsaturated carboxylic acid. It contains a copolymer of α, β-monoethyl unsaturated carboxylic acid and other polymerizable monomers. As the other polymerizable monomer, an ethylenically unsaturated monomer is typical.

α,β-モノエチレン性不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、及びクロトン酸などの不飽和モノカルボン酸;マレイン酸、フマル酸、及びイタコン酸などの不飽和ジカルボン酸;無水マレイン酸及び無水イタコン酸などの不飽和ジカルボン酸無水物;並びに、これらの2種以上の混合物が挙げられる。これらの中でも、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、及びイタコン酸からなる群より選ばれる少なくとも1種のα,β-モノエチレン性不飽和カルボン酸が好ましく、アクリル酸、メタクリル酸、及びマレイン酸からなる群より選ばれる少なくとも1種のα,β-モノエチレン性不飽和カルボン酸がより好ましい。 Examples of the α, β-monoethylene unsaturated carboxylic acid include unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid; unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid; anhydrous. Unsaturated dicarboxylic acid anhydrides such as maleic acid and itaconic acid anhydride; and mixtures of two or more of these can be mentioned. Among these, at least one α, β-monoethyl unsaturated carboxylic acid selected from the group consisting of acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid is preferable, and acrylic acid and methacrylic acid are preferable. At least one α, β-monoethyl unsaturated carboxylic acid selected from the group consisting of acid and maleic acid is more preferable.

α,β-モノエチレン性不飽和カルボン酸と共重合可能な他の重合性単量体、特にエチレン性不飽和単量体としては、例えば、エチレン;プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、及び1-オクテンなどのα-オレフィン;酢酸ビニルなどの飽和カルボン酸ビニルエステル類;アクリル酸メチル及びアクリル酸エチルなどのアクリル酸アルキルエステル類;メタクリル酸メチル及びメタクリル酸エチルなどのメタクリル酸アルキルエステル類;塩化ビニル及び塩化ビニリデンなどの塩素含有ビニル単量体;フッ化ビニル及びフッ化ビニリデンなどのフッ素含有ビニル単量体;アクリロニトリル及びメタクリロニトリルなどの不飽和ニトリル類;スチレン及びα-メチルスチレンなどの芳香族ビニル単量体;並びに、イタコン酸アルキルエステル類を挙げることができる。これらのエチレン性不飽和単量体は、それぞれ単独で又は2種以上を組み合わせて使用することができる。また、カルボキシ基含有重合体がα,β-モノエチレン性不飽和カルボン酸と酢酸ビニルなどの飽和カルボン酸ビニルエステル類との共重合体である場合は、この共重合体をケン化して飽和カルボン酸ビニルエステル単位をビニルアルコール単位に変換してなる共重合体も使用することができる。 Other polymerizable monomers copolymerizable with the α, β-monoethylenically unsaturated carboxylic acid, particularly ethylenically unsaturated monomers include, for example, ethylene; propylene, 1-butene, 1-pentene, 1 -Α-olefins such as hexene and 1-octene; saturated carboxylic acid vinyl esters such as vinyl acetate; acrylic acid alkyl esters such as methyl acrylate and ethyl acrylate; methacrylic acids such as methyl methacrylate and ethyl methacrylate Alkyl esters; Chlorine-containing vinyl monomers such as vinyl chloride and vinylidene chloride; Fluorine-containing vinyl monomers such as vinyl fluoride and vinylidene fluoride; Unsaturated nitriles such as acrylonitrile and methacrylonitrile; styrene and α- Aromatic vinyl monomers such as methylstyrene; as well as itaconic acid alkyl esters can be mentioned. These ethylenically unsaturated monomers can be used alone or in combination of two or more. When the carboxy group-containing polymer is a copolymer of α, β-monoethyl unsaturated carboxylic acid and saturated carboxylic acid vinyl esters such as vinyl acetate, the copolymer is saponified to saturate carboxylic acid. A copolymer obtained by converting an acid vinyl ester unit into a vinyl alcohol unit can also be used.

カルボキシ基含有多糖類としては、例えば、アルギン酸、カルボキシメチルセルロース、及びペクチンなどの分子内にカルボキシ基を有する酸性多糖類を挙げることができる。これらの酸性多糖類は、それぞれ単独で又は2種以上を組み合わせて使用することができる。また、酸性多糖類を、α,β-モノエチレン性不飽和カルボン酸の(共)重合体と組み合わせて使用することもできる。 Examples of the carboxy group-containing polysaccharide include acidic polysaccharides having a carboxy group in the molecule such as alginic acid, carboxymethyl cellulose, and pectin. These acidic polysaccharides can be used alone or in combination of two or more. Acidic polysaccharides can also be used in combination with (co) polymers of α, β-monoethyl unsaturated carboxylic acids.

カルボキシ基含有重合体が、α,β-モノエチレン性不飽和カルボン酸とその他のエチレン性不飽和単量体との共重合体である場合には、得られるフィルムのガスバリア性、耐熱水性、及び耐水蒸気性の観点から、その共重合体において、それら単量体の合計モル数に占めるα,β-モノエチレン性不飽和カルボン酸単量体のモル数の割合は、60モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることが特に好ましい。 When the carboxy group-containing polymer is a copolymer of α, β-monoethylene unsaturated carboxylic acid and other ethylenically unsaturated monomers, the gas barrier property, heat resistance and water resistance of the obtained film, and From the viewpoint of water resistance, the ratio of the number of moles of α, β-monoethyl unsaturated carboxylic acid monomer to the total number of moles of those monomers is 60 mol% or more in the polymer. It is preferably 80 mol% or more, more preferably 90 mol% or more, and particularly preferably 90 mol% or more.

カルボキシ基含有重合体(a)は、ガスバリア性、耐湿性、耐水性、耐熱水性、及び耐水蒸気性に優れ、高湿条件下でのガスバリア性にも優れたフィルムが得られやすい点で、α,β-モノエチレン性不飽和カルボン酸のみの重合によって得られる単独重合体又は共重合体であることが好ましい。カルボキシ基含有重合体(a)がα,β-モノエチレン性不飽和カルボン酸のみからなる(共)重合体の場合、その好ましい具体例は、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、及びイタコン酸からなる群から選ばれる少なくとも1種のα,β-モノエチレン性不飽和カルボン酸の重合によって得られる単独重合体、共重合体、及びそれらの2種以上の混合物である。これらの中でも、アクリル酸、メタクリル酸、及びマレイン酸からなる群より選ばれる少なくとも1種のα,β-モノエチレン性不飽和カルボン酸の単独重合体及び共重合体がより好ましい。 The carboxy group-containing polymer (a) is excellent in gas barrier property, moisture resistance, water resistance, heat resistance and water resistance, and is easy to obtain a film having excellent gas barrier property under high humidity conditions. , A homopolymer or copolymer obtained by polymerizing only β-monoethyl unsaturated carboxylic acid is preferable. When the carboxy group-containing polymer (a) is a (co) polymer consisting of only α, β-monoethyl unsaturated carboxylic acid, preferred specific examples thereof are acrylic acid, methacrylic acid, crotonic acid, maleic acid, and fumal. It is a homopolymer, a copolymer, and a mixture of two or more thereof obtained by polymerization of at least one α, β-monoethylene unsaturated carboxylic acid selected from the group consisting of acid and itaconic acid. Among these, homopolymers and copolymers of at least one α, β-monoethyl unsaturated carboxylic acid selected from the group consisting of acrylic acid, methacrylic acid, and maleic acid are more preferable.

カルボキシ基含有重合体(a)としては、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸、及びこれらの2種以上の混合物が特に好ましい。酸性多糖類としては、アルギン酸が好ましい。これらの中でも、入手が比較的容易で、諸物性に優れたフィルムが得られやすい点で、ポリアクリル酸が特に好ましい。 As the carboxy group-containing polymer (a), polyacrylic acid, polymethacrylic acid, polymaleic acid, and a mixture of two or more thereof are particularly preferable. As the acidic polysaccharide, alginic acid is preferable. Among these, polyacrylic acid is particularly preferable because it is relatively easy to obtain and it is easy to obtain a film having excellent various physical characteristics.

カルボキシ基含有重合体(a)の数平均分子量は、特に制限されないが、フィルム形成性及びフィルム物性の観点から、数平均分子量が2,000乃至10,000,000の範囲内にあることが好ましく、5,000乃至1,000,000の範囲内にあることがより好ましく、10,000~500,000の範囲内にあることが更に好ましい。 The number average molecular weight of the carboxy group-containing polymer (a) is not particularly limited, but the number average molecular weight is preferably in the range of 2,000 to 10,000,000 from the viewpoint of film formability and film physical characteristics. , 5,000 to 1,000,000, more preferably 10,000 to 500,000.

ここで、「数平均分子量」は、ゲルパーミエーションクロマトグラフィ(Gel permeation chromatography;GPC)による測定によって得られる値である。GPC測定では、一般に、標準ポリスチレン換算で重合体の数平均分子量を測定する。 Here, the "number average molecular weight" is a value obtained by measurement by gel permeation chromatography (GPC). In GPC measurement, the number average molecular weight of the polymer is generally measured in terms of standard polystyrene.

〔多価金属含有粒子(b)〕
被覆層3に含有される多価金属含有粒子(b)は、金属イオンの価数が2以上の多価金属を1種以上含んだ粒子であることが好ましい。多価金属含有粒子(b)は、金属イオンの価数が2以上の多価金属からなる粒子であってもよく、金属イオンの価数が2以上の多価金属の化合物からなる粒子であってもよく、それらの混合物であってもよい。
[Multivalent metal-containing particles (b)]
The polyvalent metal-containing particles (b) contained in the coating layer 3 are preferably particles containing at least one type of polyvalent metal having a metal ion valence of 2 or more. The polyvalent metal-containing particles (b) may be particles made of a polyvalent metal having a metal ion valence of 2 or more, and are particles made of a polyvalent metal compound having a metal ion valence of 2 or more. It may be a mixture thereof.

多価金属の具体例としては、ベリリウム、マグネシウム、及びカルシウムなどの短周期型周期表2A族の金属;チタン、ジルコニウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、及び亜鉛などの遷移金属;並びにアルミニウムを挙げることができるが、これらに限定されない。 Specific examples of polyvalent metals include short-period periodic table 2A metals such as beryllium, magnesium, and calcium; transition metals such as titanium, zirconium, chromium, manganese, iron, cobalt, nickel, copper, and zinc; And aluminum, but is not limited to these.

多価金属は、2価の金属であることが好ましい。また、多価金属は、化合物を形成していることが好ましい。 The polyvalent metal is preferably a divalent metal. Further, it is preferable that the polyvalent metal forms a compound.

多価金属の化合物の具体例としては、多価金属の酸化物、水酸化物、炭酸塩、有機酸塩、及び無機酸塩が挙げられるが、これらに限定されない。有機酸塩としては、例えば、酢酸塩、シュウ酸塩、クエン酸塩、乳酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、ステアリン酸塩、モノエチレン性不飽和カルボン酸塩が挙げられるが、これらに限定されない。無機酸塩としては、例えば、塩化物、硫酸塩、硝酸塩を挙げることができるが、これらに限定されない。多価金属のアルキルアルコキシドも多価金属化合物として使用することができる。これらの多価金属化合物は、それぞれ単独で又は2種以上を組み合わせて使用することができる。 Specific examples of the compound of the polyvalent metal include, but are not limited to, oxides, hydroxides, carbonates, organic acid salts, and inorganic acid salts of the polyvalent metal. Examples of the organic acid salt include acetate, oxalate, citrate, lactate, phosphate, phosphite, hypophosphite, stearate, and monoethylene unsaturated carboxylate. However, but not limited to these. Examples of the inorganic acid salt include, but are not limited to, chlorides, sulfates, and nitrates. The polyvalent metal alkyl alkoxide can also be used as the polyvalent metal compound. These polyvalent metal compounds can be used alone or in combination of two or more.

多価金属化合物の中でも、ガスバリア性積層体10のガスバリア性の観点から、ベリリウム、マグネシウム、カルシウム、銅、コバルト、ニッケル、亜鉛、アルミニウム、及びジルコニウムの化合物が好ましく、ベリリウム、マグネシウム、カルシウム、銅、亜鉛、コバルト、及びニッケルなどの2価金属の化合物がより好ましい。 Among the polyvalent metal compounds, compounds of beryllium, magnesium, calcium, copper, cobalt, nickel, zinc, aluminum, and zirconium are preferable from the viewpoint of gas barrier properties of the gas barrier laminate 10, and berylium, magnesium, calcium, copper, etc. Compounds of divalent metals such as zinc, cobalt, and nickel are more preferred.

好ましい2価金属化合物としては、例えば、酸化亜鉛、酸化マグネシウム、酸化銅、酸化ニッケル、及び酸化コバルトなどの酸化物;炭酸カルシウムなどの炭酸塩;乳酸カルシウム、乳酸亜鉛、及びアクリル酸カルシウムなどの有機酸塩;並びにマグネシウムメトキシドなどのアルコキシドを挙げることができるが、これらに限定されない。 Preferred divalent metal compounds include, for example, oxides such as zinc oxide, magnesium oxide, copper oxide, nickel oxide, and cobalt oxide; carbonates such as calcium carbonate; organics such as calcium lactate, zinc lactate, and calcium acrylate. Examples include, but are not limited to, alkoxides such as acid salts; as well as magnesium methoxydos.

多価金属又は多価金属化合物は、粒子として用いられる。多価金属粒子(b)としては、被覆層3の形成に用いられる後述するコーティング液(以下において、「被覆層形成用コーティング液」又は単に「コーティング液」という。)の分散安定性、及び、ガスバリア性積層体10のガスバリア性の観点から、コーティング液中の平均粒子径として、10nm乃至10μm(又は10,000nm)の範囲内にあるものが好適に用いられる。多価金属粒子(b)は、コーティング液中の平均粒子径として、12nm乃至1μm(又は1,000nm)の範囲内にあることがより好ましく、15nm乃至500nmの範囲内にあることが更に好ましく、15nm乃至50nmの範囲内にあることが特に好ましい。 The polyvalent metal or the polyvalent metal compound is used as particles. The polyvalent metal particles (b) include the dispersion stability of the coating liquid (hereinafter, referred to as “coating liquid for forming the coating layer” or simply “coating liquid”) used for forming the coating layer 3 described later, and the dispersion stability. Gas barrier properties From the viewpoint of gas barrier properties, those having an average particle size in the coating liquid in the range of 10 nm to 10 μm (or 10,000 nm) are preferably used. The polyvalent metal particles (b) are more preferably in the range of 12 nm to 1 μm (or 1,000 nm), and further preferably in the range of 15 nm to 500 nm, as the average particle size in the coating liquid. It is particularly preferably in the range of 15 nm to 50 nm.

多価金属含有粒子(b)の平均粒子径が大きすぎると、被覆層3の膜厚の均一性、表面の平坦性、カルボキシ基含有重合体(a)とのイオン架橋反応性などが不十分となり易い。多価金属含有粒子(b)の平均粒子径が小さすぎると、カルボキシ基含有重合体(a)とのイオン架橋反応が早期に進行するおそれがある。また、多価金属含有粒子(b)の平均粒子径が小さすぎると、コーティング液中に均一分散させることが困難となる場合がある。 If the average particle size of the polyvalent metal-containing particles (b) is too large, the uniformity of the film thickness of the coating layer 3, the flatness of the surface, the ionic cross-linking reactivity with the carboxy group-containing polymer (a), and the like are insufficient. It is easy to become. If the average particle size of the polyvalent metal-containing particles (b) is too small, the ionic cross-linking reaction with the carboxy group-containing polymer (a) may proceed at an early stage. Further, if the average particle size of the polyvalent metal-containing particles (b) is too small, it may be difficult to uniformly disperse the polyvalent metal-containing particles (b) in the coating liquid.

多価金属含有粒子(b)の平均粒子径は、試料が乾燥した固体である場合には、走査型電子顕微鏡又は透過型電子顕微鏡を用いて計測と計数とを行うことにより測定することができる。コーティング液中の多価金属含有粒子(b)の平均粒子径は、光散乱法により測定することができる〔参考文献:「微粒子工学体系」第I巻、第362~365頁、フジテクノシステム(2001)〕。 The average particle size of the polyvalent metal-containing particles (b) can be measured by measuring and counting using a scanning electron microscope or a transmission electron microscope when the sample is a dry solid. .. The average particle size of the polyvalent metal-containing particles (b) in the coating liquid can be measured by a light scattering method. 2001)].

コーティング液中における多価金属含有粒子は、一次粒子、二次粒子、又はこれらの混合物として存在するが、多くの場合、平均粒子径からみて二次粒子として存在するものと推定される。 The polyvalent metal-containing particles in the coating liquid exist as primary particles, secondary particles, or a mixture thereof, but in many cases, it is presumed that they exist as secondary particles in view of the average particle size.

〔界面活性剤(c)〕
被覆層3は、多価金属含有粒子(b)の分散性を高めるため、界面活性剤(c)を含有する。界面活性剤とは、分子内に親水性基と親油性基の両方を持つ化合物である。界面活性剤には、アニオン性、カチオン性、及び両性のイオン性界面活性剤並びに非イオン性界面活性剤がある。被覆層3では、何れの界面活性剤を使用してもよい。
[Surfactant (c)]
The coating layer 3 contains a surfactant (c) in order to enhance the dispersibility of the polyvalent metal-containing particles (b). Surfactants are compounds that have both hydrophilic and lipophilic groups in the molecule. Surfactants include anionic, cationic, and amphoteric ionic and nonionic surfactants. Any surfactant may be used in the coating layer 3.

アニオン系界面活性剤には、例えば、カルボン酸型、スルホン酸型、硫酸エステル型、及びリン酸エステル型がある。カルボン酸型のアニオン系界面活性剤としては、例えば、脂肪族モノカルボン酸塩、ポリオキシエチレンアルキルエーテルカルボン酸塩、N-アシルサルコシン酸塩、及びN-アシルグルタミン酸塩がある。スルホン酸型のアニオン系界面活性剤としては、例えば、ジアルキルスルホコハク酸塩、アルカンスルホン酸塩、アルファオレフィンスルホン酸塩、直鎖アルキルベンゼンスルホン酸塩、アルキル(分岐鎖)ベンゼンスルホン酸塩、ナフタレンスルホン酸塩-ホルムアルデヒド縮合物、アルキルナフタレンスルホン酸塩、及びN-メチル-N-アシルタウリン酸塩が挙げられる。硫酸エステル型のアニオン系界面活性剤としては、例えば、アルキル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩及び油脂硫酸エステル塩が挙げられる。リン酸エステル型のアニオン系界面活性剤としては、例えば、アルキルリン酸塩型、ポリオキシエチレンアルキルエーテルリン酸塩、及びポリオキシエチレンアルキルフェニルエーテルリン酸塩が挙げられる。 The anionic surfactant includes, for example, a carboxylic acid type, a sulfonic acid type, a sulfate ester type, and a phosphoric acid ester type. Examples of the carboxylic acid type anionic surfactant include an aliphatic monocarboxylate, a polyoxyethylene alkyl ether carboxylate, an N-acylsarcosate, and an N-acylglutamate. Examples of the sulfonic acid type anionic surfactant include dialkyl sulfosuccinate, alkane sulfonate, alpha olefin sulfonate, linear alkyl benzene sulfonate, alkyl (branched chain) benzene sulfonate, and naphthalene sulfonic acid. Included are salt-formaldehyde condensates, alkylnaphthalene sulfonates, and N-methyl-N-acyltaurate. Examples of the sulfate ester type anionic surfactant include alkyl sulfates, polyoxyethylene alkyl ether sulfates, and oil and fat sulfates. Examples of the phosphoric acid ester type anionic surfactant include an alkyl phosphate type, a polyoxyethylene alkyl ether phosphate, and a polyoxyethylene alkyl phenyl ether phosphate.

カチオン系界面活性剤(c)としては、例えば、アルキルアミン塩型及び第4級アンモニウム塩型がある。アルキルアミン塩型のカチオン系界面活性剤としては、例えば、モノアルキルアミン塩、ジアルキルアミン塩、及びトリアルキルアミン塩が挙げられる。第四級アンモニウム塩型のカチオン系界面活性剤としては、例えば、ハロゲン化(塩化、臭化又はヨウ化)アルキルトリメチルアンモニウム塩及び塩化アルキルベンザルコニウムが挙げられる。 Examples of the cationic surfactant (c) include an alkylamine salt type and a quaternary ammonium salt type. Examples of the alkylamine salt type cationic surfactant include monoalkylamine salts, dialkylamine salts, and trialkylamine salts. Examples of the quaternary ammonium salt type cationic surfactant include halogenated (chloride, bromide or iodide) alkyltrimethylammonium salt and alkylbenzalkonium chloride.

両性界面活性剤としては、例えば、カルボキシベタイン型、2-アルキルイミダゾリンの誘導体型、グリシン型、及びアミンオキシド型がある。カルボキシベタイン型の両性界面活性剤としては、例えば、アルキルベタイン及び脂肪酸アミドプロピルベタインが挙げられる。2-アルキルイミダゾリンの誘導体型の両性界面活性剤としては、例えば、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタインが挙げられる。グリシン型の両性界面活性剤としては、例えば、アルキル又はジアルキルジエチレントリアミノ酢酸が挙げられる。アミノオキシド型の両性界面活性剤としては、例えば、アルキルアミンオキシドが挙げられる。 The amphoteric tenside includes, for example, a carboxybetaine type, a derivative type of 2-alkylimidazoline, a glycine type, and an amine oxide type. Examples of the carboxybetaine type amphoteric tenside agent include alkyl betaine and fatty acid amide propyl betaine. Examples of the amphoteric surfactant of the derivative form of 2-alkylimidazolin include 2-alkyl-N-carboxymethyl-N-hydroxyethyl imidazolinium betaine. Examples of the glycine-type amphoteric surfactant include alkyl or dialkyldiethylenetriaminoacetic acid. Examples of the amino oxide type amphoteric surfactant include alkylamine oxides.

非イオン性の界面活性剤としては、例えば、エステル型、エーテル型、エステルエーテル型、及びアルカノールアミド型がある。エステル型の非イオン性界面活性剤としては、例えば、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、及びしょ糖脂肪酸エステルが挙げられる。エーテル型の非イオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、及びポリオキシエチレンポリオキシプロピレングリコールが挙げられる。エステルエーテル型の非イオン性界面活性剤としては、例えば、脂肪酸ポリエチレングリコール及び脂肪酸ポリオキシエチレンソルビタンが挙げられる。アルカノールアミド型の非イオン性界面活性剤としては、例えば、脂肪酸アルカノールアミドが挙げられる。 Nonionic surfactants include, for example, ester type, ether type, ester ether type, and alkanolamide type. Examples of the ester-type nonionic surfactant include glycerin fatty acid ester, sorbitan fatty acid ester, and sucrose fatty acid ester. Examples of the ether type nonionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene polyoxypropylene glycol. Examples of the ester ether type nonionic surfactant include fatty acid polyethylene glycol and fatty acid polyoxyethylene sorbitan. Examples of the alkanolamide type nonionic surfactant include fatty acid alkanolamide.

スチレン-アクリル酸共重合体などのポリマー骨格を有する界面活性剤も使用することができる。 Surfactants having a polymer skeleton, such as styrene-acrylic acid copolymers, can also be used.

これらの界面活性剤の中でも、リン酸エステルなどのアニオン系界面活性剤、及びスチレン-アクリル酸共重合体などのポリマー骨格を有する界面活性剤などが好ましい。 Among these surfactants, anionic surfactants such as phosphate esters and surfactants having a polymer skeleton such as styrene-acrylic acid copolymers are preferable.

〔ケイ素含有化合物(d)〕
被覆層3は、剥離強度を高めるため、ケイ素含有化合物(d)を含有することが好ましい。ケイ素含有化合物(d)は、下記一般式(1)で表されるシランカップリング剤、下記一般式(2)で表されるシランカップリング剤、これらの加水分解物、及びこれらの縮合物からなる群から選択される少なくとも1種の化合物である。
Si(OR …(1)
Si(R)(OR …(2)
一般式(1)において、Rは、同一であっても異なっていてもよい、炭素数が1乃至6のアルキル基であり、Z1はエポキシ基を含有する基である。そして、一般式(2)において、Rはメチル基であり、Rは、同一であっても異なっていてもよい、炭素数が1乃至6のアルキル基であり、Zはエポキシ基を含有する基である。
[Silicon-containing compound (d)]
The coating layer 3 preferably contains the silicon-containing compound (d) in order to increase the peel strength. The silicon-containing compound (d) is derived from a silane coupling agent represented by the following general formula (1), a silane coupling agent represented by the following general formula (2), hydrolysates thereof, and condensates thereof. At least one compound selected from the group consisting of.
Si (OR 1 ) 3 Z 1 ... (1)
Si (R 2 ) (OR 3 ) 2 Z 2 ... (2)
In the general formula (1), R 1 is an alkyl group having 1 to 6 carbon atoms, which may be the same or different, and Z 1 is a group containing an epoxy group. Then, in the general formula (2), R 2 is a methyl group, R 3 is an alkyl group having 1 to 6 carbon atoms which may be the same or different, and Z 2 is an epoxy group. It is a group contained.

シランカップリング剤は、加水分解を容易に生じ、また、酸又はアルカリ存在下では縮合反応を容易に生じる。そのため、被覆層3において、ケイ素含有化合物(d)は、一般式(1)又は(2)で表されるシランカップリング剤の形態でのみ、その加水分解物の形態でのみ、又はその縮合物の形態でのみで存在することは稀である。即ち、被覆層3において、ケイ素含有化合物(d)は、通常、一般式(1)で表されるシランカップリング剤及び一般式(2)で表されるシランカップリング剤の少なくとも一方と、その加水分解物と、その縮合物との混合物として混在している。 The silane coupling agent easily undergoes hydrolysis and also easily undergoes a condensation reaction in the presence of an acid or alkali. Therefore, in the coating layer 3, the silicon-containing compound (d) is contained only in the form of the silane coupling agent represented by the general formula (1) or (2), only in the form of its hydrolyzate, or its condensate. It rarely exists only in the form of. That is, in the coating layer 3, the silicon-containing compound (d) is usually at least one of the silane coupling agent represented by the general formula (1) and the silane coupling agent represented by the general formula (2), and the silane coupling agent thereof. It is mixed as a mixture of the hydrolyzate and its condensate.

一般式(1)及び(2)中のR及びRの各々は、炭素原子数が1乃至6のアルキル基であればよく、メチル基又はエチル基であることが好ましい。Z及びZの各々は、エポキシ基を含有する基であればよく、例えば、グリシジルオキシ基を有する有機基であってよい。 Each of R 1 and R 3 in the general formulas (1) and (2) may be an alkyl group having 1 to 6 carbon atoms, and is preferably a methyl group or an ethyl group. Each of Z 1 and Z 2 may be a group containing an epoxy group, and may be, for example, an organic group having a glycidyloxy group.

一般式(1)又は(2)で表されるシランカップリング剤の具体例としては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、及び3-グリシドキシプロピルトリエトキシシランが挙げられ、3-グリシドキシプロピルメチルジメトキシシラン及び3-グリシドキシプロピルトリメトキシシランが好ましい。シランカップリング剤としては、一種を用いても、二種以上を用いてもよい。 Specific examples of the silane coupling agent represented by the general formula (1) or (2) include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 3-. Examples thereof include glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropyltriethoxysilane, and 3-glycidoxypropylmethyldimethoxysilane and 3-glycidoxypropyltri. Propyl methoxysilane is preferred. As the silane coupling agent, one kind or two or more kinds may be used.

一般式(1)又は(2)で表されるシランカップリング剤の加水分解物は、部分加水分解物であってもよく、完全加水分解物であってもよく、それらの混合物であってもよい。 The hydrolyzate of the silane coupling agent represented by the general formula (1) or (2) may be a partial hydrolyzate, a complete hydrolyzate, or a mixture thereof. good.

被覆層3がケイ素含有化合物(d)の少なくとも一部として含み得る縮合物は、一般式(1)で表されるシランカップリング剤の加水分解縮合物、一般式(2)で表されるシランカップリング剤の加水分解縮合物、及び、一般式(1)で表されるシランカップリング剤の加水分解物と一般式(2)で表されるシランカップリング剤の加水分解物との縮合物の2以上である。これら加水分解縮合物は、以下の反応によって生じる。即ち、先ず、シランカップリング剤を加水分解させる。これにより、シランカップリング剤は、その分子が含んでいるアルコキシ基の1以上が水酸基によって置換されて、加水分解物となる。続いて、これら加水分解物を縮合させることによって、ケイ素原子(Si)が酸素を介して結合した化合物が形成される。この縮合が繰り返されることにより、加水分解縮合物が得られる。 The condensate that the coating layer 3 can contain as at least a part of the silicon-containing compound (d) is a hydrolyzed condensate of a silane coupling agent represented by the general formula (1) and a silane represented by the general formula (2). Hydrolyzed condensate of coupling agent and condensate of hydrolyzed product of silane coupling agent represented by general formula (1) and hydrolyzed product of silane coupling agent represented by general formula (2). 2 or more. These hydrolyzed condensates are produced by the following reactions. That is, first, the silane coupling agent is hydrolyzed. As a result, the silane coupling agent becomes a hydrolyzate by substituting one or more of the alkoxy groups contained in the molecule with the hydroxyl group. Subsequently, by condensing these hydrolysates, a compound in which silicon atoms (Si) are bonded via oxygen is formed. By repeating this condensation, a hydrolyzed condensate is obtained.

〔組成〕
被覆層3は、カルボキシ基含有重合体(a)と多価金属含有粒子(b)を、以下の配合比で含有することが好ましい。すなわち、カルボキシ基含有重合体(a)が含んでいるカルボキシ基のモル数(a)に対する、多価金属含有粒子(b)が含んでいる多価金属のモル数と価数との積(b)の比((b)/(a))(以下、当量比ともいう)は、0.4以上であることが好ましい。この比は、より好ましくは0.8以上、特に好ましくは1.0以上である。この比の上限は、通常は10.0以下、好ましくは2.0以下である。この比を小さくしすぎると、ガスバリア性積層体10のガスバリア性、耐熱水性、及び耐水蒸気性などの諸特性が低下する傾向がみられる。
〔composition〕
The coating layer 3 preferably contains the carboxy group-containing polymer (a) and the polyvalent metal-containing particles (b) in the following compounding ratios. That is, the product of the number of moles of the polyvalent metal contained in the polyvalent metal-containing particles (b) and the number of valences with respect to the number of moles (at) of the carboxy group contained in the carboxy group-containing polymer (a). The ratio of b t ) (( bt ) / ( at)) (hereinafter, also referred to as equivalent ratio) is preferably 0.4 or more. This ratio is more preferably 0.8 or more, and particularly preferably 1.0 or more. The upper limit of this ratio is usually 10.0 or less, preferably 2.0 or less. If this ratio is made too small, various properties such as gas barrier property, heat resistance and water vapor resistance of the gas barrier layered body 10 tend to be deteriorated.

上記の当量比は、例えば、以下のようにして求めることができる。カルボキシ基含有重合体(a)がポリアクリル酸であり、多価金属化合物粒子(b)が酸化マグネシウムである場合を例に挙げて説明する。 The above equivalent ratio can be obtained, for example, as follows. The case where the carboxy group-containing polymer (a) is polyacrylic acid and the polyvalent metal compound particles (b) are magnesium oxide will be described as an example.

ポリアクリル酸は、単量体単位の分子量が72であり、単量体1分子当たり1個のカルボキシ基を有する。それ故、ポリアクリル酸100g中のカルボキシ基の量は、1.39モルである。ポリアクリル酸100gを含んだコーティング液における上記の当量比が1.0であるということは、この被覆層3には、1.39モルのカルボキシ基を中和する量の酸化マグネシウムが含まれていることを意味する。従って、ポリアクリル酸100gを含んだ被覆層3における上記の当量比を0.6とするには、この被覆層3に、0.834モルのカルボキシ基を中和する量の酸化マグネシウムを配合すればよい。ここで、マグネシウムの価数は2価であり、酸化マグネシウムの分子量は40である。従って、ポリアクリル酸100gを含んだ被覆層3における上記の当量比を0.6とするには、この被覆層3に、16.68g(0.417モル)の酸化マグネシウムを配合すればよい。 Polyacrylic acid has a molecular weight of 72 in a monomer unit and has one carboxy group per monomer molecule. Therefore, the amount of carboxy groups in 100 g of polyacrylic acid is 1.39 mol. The above equivalent ratio of 1.0 in the coating solution containing 100 g of polyacrylic acid means that the coating layer 3 contains 1.39 mol of magnesium oxide in an amount that neutralizes the carboxy group. Means that you are. Therefore, in order to make the above equivalent ratio in the coating layer 3 containing 100 g of polyacrylic acid 0.6, magnesium oxide in an amount that neutralizes 0.834 mol of carboxy groups should be added to the coating layer 3. Just do it. Here, the valence of magnesium is divalent, and the molecular weight of magnesium oxide is 40. Therefore, in order to set the above equivalent ratio in the coating layer 3 containing 100 g of polyacrylic acid to 0.6, 16.68 g (0.417 mol) of magnesium oxide may be added to the coating layer 3.

界面活性剤(c)は、コーティング液中に多価金属含有粒子が安定して分散するに足る量で用いられる。したがって、その配合量を、被覆層形成用コーティング液中の濃度として説明すると、コーティング液中、通常は0.0001乃至70質量%、好ましくは0.001乃至60質量%、より好ましくは0.1乃至50質量%の範囲内とする。 The surfactant (c) is used in an amount sufficient to stably disperse the polyvalent metal-containing particles in the coating liquid. Therefore, when the blending amount is explained as the concentration in the coating liquid for forming a coating layer, it is usually 0.0001 to 70% by mass, preferably 0.001 to 60% by mass, more preferably 0.1 in the coating liquid. It shall be in the range of 50% by mass.

界面活性剤(c)を添加しないと、コーティング液中で多価金属含有粒子(b)をそれらの平均粒子径が十分に小さくなるように分散させることが困難になる。その結果、多価金属含有粒子(b)が均一に分散したコーティング液を得ることが難しくなる。その場合、無機蒸着層2上にコーティング液を塗布、乾燥して得られる被覆層3において、均一な膜厚を有する被覆層3を得ることが難しくなる。 Without the addition of the surfactant (c), it becomes difficult to disperse the polyvalent metal-containing particles (b) in the coating liquid so that their average particle size is sufficiently small. As a result, it becomes difficult to obtain a coating liquid in which the multivalent metal-containing particles (b) are uniformly dispersed. In that case, it becomes difficult to obtain a coating layer 3 having a uniform film thickness in the coating layer 3 obtained by applying a coating liquid on the inorganic thin-film deposition layer 2 and drying it.

被覆層3は、ガスバリア性積層体10における高度のガスバリア性と透明性を両立させる観点から、ケイ素含有化合物(d)を、カルボキシ基含有重合体(a)に含まれるカルボキシ基のモル数(at)に対するケイ素含有化合物(d)のモル数(dt)のモル比(dt)/(at)が0.15%以上6.10%以下となる量において含有することが好ましい。ここで、モル比(dt)/(at)における(dt)は、ケイ素含有化合物(d)をシランカップリング剤に換算したモル数である。 The coating layer 3 contains the silicon-containing compound (d) in the molar number of carboxy groups (at) contained in the carboxy group-containing polymer (a) from the viewpoint of achieving both high gas barrier properties and transparency in the gas barrier laminate 10. ), The molar ratio (dt) / (at) of the number of moles (dt) of the silicon-containing compound (d) is preferably 0.15% or more and 6.10% or less. Here, (dt) in the molar ratio (dt) / (at) is the number of moles of the silicon-containing compound (d) converted into a silane coupling agent.

ケイ素含有化合物(d)の添加量が少なすぎ、上記モル比(dt)/(at)が0.15%より低くなると、ガスバリア性積層体10の剥離強度が低くなる傾向がみられる。そのため、層間剥離を防止するための慎重な取り扱いが必要となり、生産性の低下にもつながる。 When the amount of the silicon-containing compound (d) added is too small and the molar ratio (dt) / (at) is lower than 0.15%, the peel strength of the gas barrier laminate 10 tends to decrease. Therefore, careful handling is required to prevent delamination, which leads to a decrease in productivity.

カルボキシ基含有重合体(a)に含まれるカルボキシ基のモル数(at)に対するケイ素含有化合物(d)のモル数(dt)のモル比(dt)/(at)は、上記観点から、0.3%以上であることが好ましく、0.46%以上であることがより好ましく、0.61%以上であることが特に好ましい。 From the above viewpoint, the molar ratio (dt) / (at) of the number of moles (dt) of the silicon-containing compound (d) to the number of moles (at) of the carboxy group contained in the carboxy group-containing polymer (a) is 0. It is preferably 3% or more, more preferably 0.46% or more, and particularly preferably 0.61% or more.

一方、ケイ素含有化合物(d)の添加量が多すぎ、上記モル比(dt)/(at)が6.10%より高くなると、ガスバリア性積層体10における透明性が低下する傾向がみられる。また、ケイ素含有化合物(d)はガスバリア性を持たない。そのため、上記モル比(dt)/(at)が6.10%より高くなると、積層体の透明性が低下するだけでなく、ガスバリア性も低下する傾向がみられる。 On the other hand, when the amount of the silicon-containing compound (d) added is too large and the molar ratio (dt) / (at) is higher than 6.10%, the transparency of the gas barrier laminate 10 tends to decrease. Further, the silicon-containing compound (d) does not have a gas barrier property. Therefore, when the molar ratio (dt) / (at) is higher than 6.10%, not only the transparency of the laminate is lowered, but also the gas barrier property tends to be lowered.

カルボキシ基含有重合体(a)に含まれるカルボキシ基のモル数(at)に対するケイ素含有化合物(d)のモル数(dt)のモル比(dt)/(at)は、上記観点から、4.57%以下であることが好ましく、3.66%以下であることがより好ましく、2.13%以下であることが特に好ましい。 From the above viewpoint, the molar ratio (dt) / (at) of the number of moles (dt) of the silicon-containing compound (d) to the number of moles (at) of the carboxy group contained in the carboxy group-containing polymer (a) is 4. It is preferably 57% or less, more preferably 3.66% or less, and particularly preferably 2.13% or less.

被覆層3の膜厚は、透明性とガスバリア性の両立の観点から、230nm以上600nm以下である。ここで被覆層3の膜厚は、具体的には、後述する被覆層の膜厚の測定方法により測定される膜厚である。被覆層3の膜厚は、250nm以上500nm以下であることが好ましく、300nm以上450nm以下であることがより好ましい。 The film thickness of the coating layer 3 is 230 nm or more and 600 nm or less from the viewpoint of achieving both transparency and gas barrier properties. Here, the film thickness of the coating layer 3 is specifically a film thickness measured by a method for measuring the film thickness of the coating layer, which will be described later. The film thickness of the coating layer 3 is preferably 250 nm or more and 500 nm or less, and more preferably 300 nm or more and 450 nm or less.

<無機蒸着層>
本実施形態に係るガスバリア性積層体10は、基材1と被覆層3との間に無機蒸着層2を備える。これにより、被覆層3を備えるガスバリア性積層体10におけるガスバリア性を更に高めることができ、透明性と高度のガスバリア性の両立が可能となる。
<Inorganic vapor deposition layer>
The gas barrier laminate 10 according to the present embodiment includes an inorganic thin-film deposition layer 2 between the base material 1 and the coating layer 3. As a result, the gas barrier property of the gas barrier layered body 10 provided with the coating layer 3 can be further enhanced, and both transparency and a high degree of gas barrier property can be achieved at the same time.

無機蒸着層2は、無機酸化物を含む。無機酸化物としては、例えば酸化アルミニウム、酸化ケイ素、酸化マグネシウム、酸化錫等が挙げられる。これらの中でも、透明性とガスバリア性の両立の観点から、酸化アルミニウム、酸化ケイ素、酸化マグネシウム又はそれらのいずれか2種以上の混合物が好ましい。 The inorganic vapor deposition layer 2 contains an inorganic oxide. Examples of the inorganic oxide include aluminum oxide, silicon oxide, magnesium oxide, tin oxide and the like. Among these, aluminum oxide, silicon oxide, magnesium oxide, or a mixture of any two or more thereof is preferable from the viewpoint of achieving both transparency and gas barrier property.

無機蒸着層2の厚さは、例えば、5~100nmの範囲であってよく、10~50nmの範囲であってよい。無機蒸着層2の厚さが5nm以上であることは、均一な薄膜形成の観点から好ましい。ガスバリア材としての薄膜が均一であると、ガスバリア材に求められる機能を充分に果たすことができる。無機蒸着層2の厚さが100nm以下であることは、薄膜のフレキシビリティの観点から好ましい。ガスバリア材においてフレキシビリティが悪いと、折り曲げ、引っ張りなどの外的要因により亀裂を生じる恐れがある。 The thickness of the inorganic thin-film deposition layer 2 may be, for example, in the range of 5 to 100 nm, and may be in the range of 10 to 50 nm. It is preferable that the thickness of the inorganic thin-film layer 2 is 5 nm or more from the viewpoint of forming a uniform thin film. If the thin film as the gas barrier material is uniform, the functions required for the gas barrier material can be sufficiently fulfilled. It is preferable that the thickness of the inorganic thin-film layer 2 is 100 nm or less from the viewpoint of the flexibility of the thin film. If the gas barrier material has poor flexibility, cracks may occur due to external factors such as bending and pulling.

<基材>
本実施形態に係るガスバリア性積層体10が備える基材1に特に制限はなく、様々な種類のものが使用できる。基材1を構成する材質は、特に限定されず、様々な種類のものが使用でき、例えばプラスチック又は紙が挙げられる。
<Base material>
The base material 1 included in the gas barrier laminate 10 according to the present embodiment is not particularly limited, and various types can be used. The material constituting the base material 1 is not particularly limited, and various types can be used, and examples thereof include plastic and paper.

基材1は、単一の材料からなる単層であってもよく、複数の材料からなる多層であってもよい。多層の基材の例としては、プラスチックから構成されるフィルムが紙にラミネートされたものが挙げられる。 The base material 1 may be a single layer made of a single material, or may be a multilayer made of a plurality of materials. An example of a multi-layered substrate is a film made of plastic laminated on paper.

基材1を構成する材質としては、上記の中でも、様々な形状に成形でき、ガスバリア性を付与することで更に用途が広がることから、プラスチックが好ましい。 Among the above-mentioned materials, plastic is preferable as the material constituting the base material 1 because it can be molded into various shapes and its use is further expanded by imparting gas barrier properties.

プラスチックとしては、特に限定されないが、例えば、ポリエチレン及びポリプロピレン等のポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリブチレンテレフタレート、及びこれらの共重合体等のポリエステル系樹脂;ナイロン-6、ナイロン-66、ナイロン-12、メタキシリレンアジパミド、及びこれらの共重合体等のポリアミド系樹脂;ポリスチレン、スチレン-ブタジエン共重合体、及びスチレン-ブタジエン-アクリロニトリル共重合体等のスチレン系樹脂;ポリ(メタ)アクリル酸エステル;ポリアクリロニトリル;ポリ酢酸ビニル;エチレン-酢酸ビニル共重合体;エチレン-ビニルアルコール共重合体;ポリカーボネート;ポリアリレート;再生セルロース;ポリイミド;ポリエーテルイミド;ポリスルフォン;ポリエーテルスルフォン;ポリエーテルケトン;並びにアイオノマー樹脂が挙げられる。 The plastic is not particularly limited, but for example, a polyolefin resin such as polyethylene and polypropylene; a polyester resin such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate, and a copolymer thereof; nylon-6. , Nylon-66, Nylon-12, Metaxylylene adipamide, and polyamide-based resins such as copolymers thereof; styrene-based resins such as polystyrene, styrene-butadiene copolymer, and styrene-butadiene-acrylonitrile copolymer. Resin; poly (meth) acrylic acid ester; polyacrylonitrile; polyvinyl acetate; ethylene-vinyl acetate copolymer; ethylene-vinyl alcohol copolymer; polycarbonate; polyarylate; regenerated cellulose; polyimide; polyetherimide; polysulphon; Polymer sulphon; polyether ketones; and ionomer resins can be mentioned.

ガスバリア性積層体が食品用包装材料に用いられる場合、基材1としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ナイロン-6又はナイロン-66からなるものが好ましい。 When the gas barrier laminate is used as a food packaging material, the base material 1 is preferably made of polyethylene, polypropylene, polyethylene terephthalate, nylon-6 or nylon-66.

基材1を構成するプラスチックとして、1種を単独で使用してもよく、2種以上をブレンドして使用してもよい。 As the plastic constituting the base material 1, one type may be used alone, or two or more types may be blended and used.

プラスチックには、添加剤が配合されていてもよい。添加剤としては、用途に応じて、顔料、酸化防止剤、帯電防止剤、紫外線吸収剤、及び滑剤等の公知の添加剤から適宜選択できる。添加剤としては、1種を単独で用いてもよく、2種以上を併用してもよい。 Additives may be blended in the plastic. The additive can be appropriately selected from known additives such as pigments, antioxidants, antistatic agents, ultraviolet absorbers, and lubricants, depending on the intended use. As the additive, one type may be used alone, or two or more types may be used in combination.

基材1の形態は、特に限定されず、例えば、フィルム、シート、カップ、トレー、チューブ、及びボトルが挙げられる。これらの中でも、フィルムが好ましい。 The form of the base material 1 is not particularly limited, and examples thereof include films, sheets, cups, trays, tubes, and bottles. Among these, the film is preferable.

基材1がフィルムである場合、このフィルムは、延伸フィルムであってもよいし、未延伸フィルムであってもよい。 When the base material 1 is a film, this film may be a stretched film or an unstretched film.

フィルムの厚さに特に制限はないが、得られるガスバリア性積層体の機械的強度や加工適性の観点で、1乃至200μmの範囲内にあることが好ましく、5乃至100μmの範囲内にあることがより好ましい。 The thickness of the film is not particularly limited, but it is preferably in the range of 1 to 200 μm, preferably in the range of 5 to 100 μm, from the viewpoint of the mechanical strength and processability of the obtained gas barrier laminate. More preferred.

基材1の表面には、コーティング液を、基材によって弾かれることなく塗布できるようにするために、プラズマ処理、コロナ処理、オゾン処理、火炎処理、又は紫外線(UV)若しくは電子線によるラジカル活性化処理等が施されていてもよい。処理方法は、基材の種類によって適宜選択される。 Radical activity by plasma treatment, corona treatment, ozone treatment, flame treatment, or ultraviolet (UV) or electron beam so that the coating liquid can be applied to the surface of the base material 1 without being repelled by the base material. It may have been subjected to a chemical treatment or the like. The treatment method is appropriately selected depending on the type of the base material.

〔他の層〕
本実施形態に係るガスバリア性積層体は、必要に応じて、基材1、無機蒸着層2及び被覆層3以外の他の1以上の層を更に備えていてもよい。
[Other layers]
If necessary, the gas barrier laminate according to the present embodiment may further include one or more layers other than the base material 1, the inorganic vapor deposition layer 2, and the coating layer 3.

例えば、本実施形態に係るガスバリア性積層体は、ガスバリア性コート層として、上述した被覆層3のみを具備するものであってもよいが、被覆層3に加えて他の1以上の層を更に含んでいてもよい。例えば、酸化アルミニウム、酸化ケイ素、及びアルミニウム等の無機化合物からなる層が、基材の表面に、スパッタリング法又はイオンプレーディング法等により形成されていてもよい。 For example, the gas barrier laminate according to the present embodiment may include only the above-mentioned coating layer 3 as the gas barrier coating layer, but in addition to the coating layer 3, another one or more layers may be further added. It may be included. For example, a layer made of an inorganic compound such as aluminum oxide, silicon oxide, and aluminum may be formed on the surface of the base material by a sputtering method, an ion plating method, or the like.

また、本実施形態に係るガスバリア性積層体は、層間の密着性を高めること、あるいは、被覆層形成用コーティング液を無機蒸着層に弾かれずに塗れるようにすることを目的として、基材1と無機蒸着層2との間、あるいは、無機蒸着層2と被覆層3との間に、アンカーコート層を更に備えていてもよい。 Further, the gas barrier laminate according to the present embodiment has an object of improving the adhesion between layers or allowing the coating liquid for forming a coating layer to be applied to the inorganic vapor deposition layer without being repelled by the base material 1. An anchor coat layer may be further provided between the inorganic thin-film layer 2 or between the inorganic thin-film layer 2 and the coating layer 3.

図2は、本発明の第2実施形態に係るガスバリア性積層体を概略的に示す断面図である。図2に示すガスバリア性積層体20は、上述した第1実施形態に係るガスバリア性積層体10に対し、基材1と、無機蒸着層2との間にアンカーコート層4を更に備えている。 FIG. 2 is a cross-sectional view schematically showing a gas barrier laminate according to a second embodiment of the present invention. The gas barrier laminate 20 shown in FIG. 2 further includes an anchor coat layer 4 between the base material 1 and the inorganic vapor deposition layer 2 with respect to the gas barrier laminate 10 according to the first embodiment described above.

アンカーコート層4は、公知のアンカーコート液を用いて常法により形成することができる。アンカーコート液としては、例えば、ポリウレタン樹脂、アクリル樹脂、メラミン樹脂、ポリエステル樹脂、フェノール樹脂、アミノ樹脂、及びフッ素樹脂等の樹脂を含むものが挙げられる。 The anchor coat layer 4 can be formed by a conventional method using a known anchor coat liquid. Examples of the anchor coating liquid include those containing resins such as polyurethane resin, acrylic resin, melamine resin, polyester resin, phenol resin, amino resin, and fluororesin.

アンカーコート液は、樹脂に加えて、密着性や耐熱水性を高める目的で、イソシアネート化合物を更に含んでもよい。イソシアネート化合物は、分子中に1以上のイソシアネート基を有するものであればよく、例えば、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、及びトリレンジイソシアネートが挙げられる。
アンカーコート液は、樹脂やイソシアネート化合物を溶解又は分散させるための液体媒体を更に含有してもよい。
In addition to the resin, the anchor coating liquid may further contain an isocyanate compound for the purpose of improving adhesion and heat resistance. The isocyanate compound may be any compound having one or more isocyanate groups in the molecule, and examples thereof include hexamethylene diisocyanate, xylylene diisocyanate, isophorone diisocyanate, and tolylene diisocyanate.
The anchor coating liquid may further contain a liquid medium for dissolving or dispersing the resin or the isocyanate compound.

アンカーコート層4の厚さは特に限定されない。アンカーコート層4の厚さは、例えば、0.01~2μmの範囲内であってよく、0.05~1μmの範囲内であってよい。膜厚が0.01μm未満になると非常に薄いため、アンカーコート層としての性能が充分に発揮されないおそれがある。一方、膜厚が2μm以下であることは、フレキシビリティの観点から好ましい。フレキシビリティが低下すると、外的要因によりアンカーコート層に亀裂を生じるおそれがある。 The thickness of the anchor coat layer 4 is not particularly limited. The thickness of the anchor coat layer 4 may be, for example, in the range of 0.01 to 2 μm, and may be in the range of 0.05 to 1 μm. If the film thickness is less than 0.01 μm, it is very thin, so that the performance as an anchor coat layer may not be fully exhibited. On the other hand, it is preferable that the film thickness is 2 μm or less from the viewpoint of flexibility. When flexibility is reduced, external factors can cause cracks in the anchor coat layer.

本実施形態に係るガスバリア性積層体は、必要に応じて、被覆層3上に、又は基材1もしくは無機蒸着層2の表面上に、接着剤を介してラミネートされた他の層を更に備えていてもよく、接着性樹脂を押し出しラミネートしてなる他の層を更に備えていてもよい。 The gas-barrier laminated body according to the present embodiment further includes another layer laminated via an adhesive on the coating layer 3 or on the surface of the base material 1 or the inorganic vapor-deposited layer 2, if necessary. It may be provided, and may be further provided with another layer formed by extruding and laminating the adhesive resin.

ラミネートされる他の層は、強度付与、シール性付与、シール時の易開封性付与、意匠性付与、光遮断性付与、及び防湿性付与等の目的に合わせて適宜選択することができ、特に限定されないが、例えば、基材について上述したプラスチックと同様の材質のものを挙げることができる。それ以外にも、紙やアルミ箔等を用いてもよい。 The other layer to be laminated can be appropriately selected according to the purpose of imparting strength, imparting sealing property, imparting easy-opening property at the time of sealing, imparting design property, imparting light blocking property, imparting moisture resistance, and the like, and in particular. Although not limited, for example, the base material may be made of the same material as the above-mentioned plastic. In addition, paper, aluminum foil, or the like may be used.

ラミネートされる他の層の厚みは、1乃至1000μmの範囲内にあることが好ましく、5乃至500μmの範囲内にあることがより好ましく、5乃至200μmの範囲内にあることが更に好ましく、5乃至150μmの範囲内にあることが特に好ましい。
ラミネートされる他の層は1種でも2種以上でもよい。
The thickness of the other layer to be laminated is preferably in the range of 1 to 1000 μm, more preferably in the range of 5 to 500 μm, still more preferably in the range of 5 to 200 μm, and 5 to 200 μm. It is particularly preferable that it is within the range of 150 μm.
The other layers to be laminated may be one type or two or more types.

本実施形態に係るガスバリア性積層体は、必要に応じて、印刷層を更に備えていてもよい。印刷層は、基材上に設けられたコート層上に形成されてもよく、コート層が設けられていない基材の表面上に形成されてもよい。また、他の層がラミネートされる場合は、ラミネートされる他の層の上に形成されてもよい。 The gas barrier laminate according to the present embodiment may further include a printing layer, if necessary. The printed layer may be formed on the coat layer provided on the substrate, or may be formed on the surface of the substrate on which the coat layer is not provided. Further, when another layer is laminated, it may be formed on the other layer to be laminated.

〔ガスバリア性積層体の製造方法〕
本実施形態に係るガスバリア性積層体は、無機蒸着層を形成する工程、下記に示す被覆層形成用コーティング液を用いて被覆層を形成する工程を含む製造方法により製造することができる。この製造方法は、必要に応じて、アンカーコート層などの他の層を形成する工程および/または印刷層を形成する工程等を更に含むことができる。
[Manufacturing method of gas barrier laminate]
The gas barrier laminate according to the present embodiment can be produced by a production method including a step of forming an inorganic vapor deposition layer and a step of forming a coating layer using the coating liquid for forming a coating layer shown below. This manufacturing method can further include, if necessary, a step of forming another layer such as an anchor coat layer and / or a step of forming a printed layer.

本実施形態に係るガスバリア性積層体の製造方法の一例として、図2に示すガスバリア性積層体20の製造方法を以下に説明する。 As an example of the method for producing the gas barrier laminate according to the present embodiment, the method for producing the gas barrier laminate 20 shown in FIG. 2 will be described below.

ガスバリア性積層体20の製造方法において、アンカーコート層4は、基材1上に形成される。アンカーコート層4は、上述したアンカーコート液を基材1上に塗工し、形成された塗膜を乾燥することにより形成することができる。アンカーコート液の塗工方法は特に限定されず、オフセット印刷法、グラビア印刷法、シルクスクリーン印刷法等の周知の印刷方式や、ロールコート、ナイフエッジコート、グラビアコートなどの周知の塗布方式を用いて実施できる。形成された塗膜を乾燥することで、溶媒の除去と硬化が進み、アンカーコート層4が形成される。 In the method for producing the gas barrier laminate 20, the anchor coat layer 4 is formed on the base material 1. The anchor coat layer 4 can be formed by applying the above-mentioned anchor coat liquid onto the base material 1 and drying the formed coating film. The method of applying the anchor coating liquid is not particularly limited, and a well-known printing method such as an offset printing method, a gravure printing method, or a silk screen printing method, or a well-known coating method such as a roll coat, a knife edge coat, or a gravure coat is used. Can be carried out. By drying the formed coating film, removal and curing of the solvent proceed, and the anchor coat layer 4 is formed.

ガスバリア性積層体20の製造方法において、無機蒸着層2は、アンカーコート層4上に形成される。無機蒸着層2の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、化学気相成長法(Chemical vapor deposition;CVD)など種々の方法が知られており、いずれの方法を用いてもよいが、真空蒸着法により形成することが一般的である。
真空蒸着法による真空蒸着装置の加熱手段としては、電子線加熱方式、抵抗加熱方式、誘導加熱方式等が挙げられ、いずれを用いてもよい。
また、無機蒸着層2のアンカーコート層4への密着性及び無機蒸着層2の緻密性を向上させるために、プラズマアシスト法やイオンビームアシスト法を用いることも可能である。
また、無機蒸着層2の透明性を上げるために蒸着の際、酸素ガスなどを吹き込んだりする反応蒸着を行ってもよい。
In the method for producing the gas barrier laminated body 20, the inorganic thin-film deposition layer 2 is formed on the anchor coat layer 4. As a method for forming the inorganic vapor deposition layer 2, various methods such as a vacuum deposition method, a sputtering method, an ion plating method, and a chemical vapor deposition (CVD) method are known, and any method is used. Although it may be used, it is generally formed by a vacuum deposition method.
Examples of the heating means of the vacuum vapor deposition apparatus by the vacuum vapor deposition method include an electron beam heating method, a resistance heating method, an induction heating method, and the like, and any of them may be used.
It is also possible to use a plasma assist method or an ion beam assist method in order to improve the adhesion of the inorganic thin-film layer 2 to the anchor coat layer 4 and the denseness of the inorganic vapor-film layer 2.
Further, in order to increase the transparency of the inorganic thin-film vapor deposition layer 2, reaction vapor deposition may be performed by blowing oxygen gas or the like during the vapor deposition.

ガスバリア性積層体20の製造方法において、被覆層3は、無機蒸着層2上に形成される。被覆層3は、以下に説明する方法により調製される被覆層形成用コーティング液を無機蒸着層2上に塗工し、形成された塗膜を乾燥することにより形成することができる。 In the method for producing the gas barrier laminate 20, the coating layer 3 is formed on the inorganic vapor deposition layer 2. The coating layer 3 can be formed by applying a coating liquid for forming a coating layer prepared by the method described below on the inorganic vapor-filmed layer 2 and drying the formed coating film.

・被覆層形成用コーティング液の調製方法
被覆層形成用コーティング液では、溶媒又は分散媒として有機溶媒(e)を使用する。すなわち、このコーティング液は、カルボキシ基含有重合体(a)、多価金属含有粒子(b)、界面活性剤(c)及び有機溶媒を含有し、多価金属含有粒子(b)が分散している分散液である。被覆層形成用コーティング液は、一形態において、更にケイ素含有化合物(d)を含有していることが好ましい。以下、被覆層形成用コーティングが任意成分であるケイ素含有化合物(d)を含有する場合の調製方法について説明する。
-Method of preparing a coating liquid for forming a coating layer In the coating liquid for forming a coating layer, an organic solvent (e) is used as a solvent or a dispersion medium. That is, this coating liquid contains a carboxy group-containing polymer (a), polyvalent metal-containing particles (b), a surfactant (c) and an organic solvent, and the polyvalent metal-containing particles (b) are dispersed. It is a dispersion liquid. The coating liquid for forming a coating layer preferably further contains the silicon-containing compound (d) in one form. Hereinafter, the preparation method when the coating for forming the coating layer contains the silicon-containing compound (d) which is an optional component will be described.

有機溶媒(e)は、カルボキシ基含有重合体(a)が均一に溶解し且つ多価金属含有粒子が均一に分散するに足る量で用いられる。従って、有機溶媒としては、カルボキシ基含有重合体は溶解するが、多価金属化合物を実質的に溶解せず、それを粒子の形状で分散させることができるものが用いられる。 The organic solvent (e) is used in an amount sufficient to uniformly dissolve the carboxy group-containing polymer (a) and uniformly disperse the polyvalent metal-containing particles. Therefore, as the organic solvent, a solvent that dissolves the carboxy group-containing polymer but does not substantially dissolve the polyvalent metal compound and can disperse it in the form of particles is used.

また、有機溶媒(e)としては、一般に、カルボキシ基含有重合体(a)を溶解する極性有機溶媒が用いられるが、極性有機溶媒とともに、極性基(ヘテロ原子又はヘテロ原子を有する原子団)をもたない有機溶媒を併用してもよい。 Further, as the organic solvent (e), a polar organic solvent that dissolves the carboxy group-containing polymer (a) is generally used, but a polar group (an atomic group having a hetero atom or a hetero atom) is used together with the polar organic solvent. An organic solvent having no polarity may be used in combination.

好ましく使用できる有機溶媒(e)としては、例えば、メタノール、エタノール、イソプロパノール、n-プロパノール、及びn-ブタノールなどのアルコール類;ジメチルスルホキシド、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、テトラメチル尿素、ヘキサメチルリン酸トリアミド、並びにγ-ブチロラクトンなどの極性有機溶媒を挙げることができる。 Examples of the organic solvent (e) that can be preferably used include alcohols such as methanol, ethanol, isopropanol, n-propanol, and n-butanol; dimethylsulfoxide, N, N-dimethylacetamide, N, N-dimethylformamide, N. Examples include polar organic solvents such as -methyl-2-pyrrolidone, tetramethylurea, hexamethylphosphoric acid triamide, and γ-butyrolactone.

有機溶媒(e)として、上記の極性有機溶媒の他に、ベンゼン、トルエン、キシレン、ヘキサン、ヘプタン、及びオクタンなどの炭化水素類;アセトン及びメチルエチルケトンなどのケトン類;ジクロロメタンなどのハロゲン化炭化水素類;酢酸メチルなどのエステル類;並びにジエチルエーテルなどのエーテル類を適宜用いることができる。極性基を持たないベンゼンなどの炭化水素類は、一般に、極性有機溶媒と併用する。 As the organic solvent (e), in addition to the above-mentioned polar organic solvent, hydrocarbons such as benzene, toluene, xylene, hexane, heptane, and octane; ketones such as acetone and methyl ethyl ketone; halogenated hydrocarbons such as dichloromethane. ; Esters such as methyl acetate; and ethers such as diethyl ether can be appropriately used. Hydrocarbons such as benzene, which do not have a polar group, are generally used in combination with a polar organic solvent.

上記のコーティング液は、溶媒又は分散媒として、有機溶媒(e)のみを含んでいてもよいが、水を更に含んでもよい。水を含有させることにより、カルボキシ基含有重合体(a)の溶解性を向上させ、コーティング液の塗工性や作業性を改善することができる。このコーティング液の含水率は、質量分率で、100ppm以上であってもよく、1,000ppm以上であってもよく、1,500ppm以上であってもよく、2,000ppm以上であってもよい。 The above coating liquid may contain only the organic solvent (e) as the solvent or the dispersion medium, but may further contain water. By containing water, the solubility of the carboxy group-containing polymer (a) can be improved, and the coatability and workability of the coating liquid can be improved. The water content of this coating liquid may be 100 ppm or more, 1,000 ppm or more, 1,500 ppm or more, or 2,000 ppm or more in terms of mass fraction. ..

このコーティング液の含水率は、質量分率で、好ましくは50,000ppm以下、より好ましくは10,000ppm以下、更に好ましくは5,000ppm以下である。 The water content of this coating liquid is preferably 50,000 ppm or less, more preferably 10,000 ppm or less, still more preferably 5,000 ppm or less in terms of mass fraction.

被覆層形成用コーティング液を調製するには、一方で、カルボキシ基含有重合体(a)を有機溶媒(e)に均一に溶解させた後に、これにケイ素含有化合物(d)を添加し、カルボキシ基含有重合体溶液を調製する。 To prepare a coating solution for forming a coating layer, on the other hand, the carboxy group-containing polymer (a) is uniformly dissolved in the organic solvent (e), and then the silicon-containing compound (d) is added thereto to carboxy. Prepare a group-containing polymer solution.

そして、他方で、多価金属含有粒子(b)、界面活性剤(c)、有機溶媒(e)を混合し、必要に応じて分散処理を施すことで分散液を調製する。分散処理は、多価金属含有粒子(b)の平均粒子径が所定の値となるように行われる。分散処理前の混合液中の多価金属含有粒子(b)の平均粒子径が10μm以下である場合は、分散処理は行わなくてもよいが、その場合でも、分散処理を行うことが好ましい。分散処理を行うことで多価金属含有粒子(b)の凝集が解け、コーティング液が安定化すると共に、コーティング液を塗工して得られるガスバリア性積層体の透明性が高まる。更には、コーティング液を塗工し、塗膜を乾燥させたときに、カルボキシ基含有重合体(a)と多価金属含有粒子(b)に由来する多価金属イオンとの架橋形成が進み易くなり、良好なガスバリア性を有するガスバリア性積層体が得られ易い。 Then, on the other hand, a dispersion liquid is prepared by mixing the polyvalent metal-containing particles (b), the surfactant (c), and the organic solvent (e) and subjecting them to a dispersion treatment as necessary. The dispersion treatment is performed so that the average particle size of the polyvalent metal-containing particles (b) becomes a predetermined value. When the average particle size of the polyvalent metal-containing particles (b) in the mixed solution before the dispersion treatment is 10 μm or less, the dispersion treatment may not be performed, but it is preferable to perform the dispersion treatment even in that case. By performing the dispersion treatment, the aggregation of the multivalent metal-containing particles (b) is dissolved, the coating liquid is stabilized, and the transparency of the gas barrier laminate obtained by applying the coating liquid is enhanced. Furthermore, when the coating liquid is applied and the coating film is dried, crosslink formation between the carboxy group-containing polymer (a) and the polyvalent metal ions derived from the polyvalent metal-containing particles (b) is likely to proceed. Therefore, it is easy to obtain a gas barrier laminate having good gas barrier properties.

分散処理の方法としては、高速撹拌機、ホモジナイザー、ボールミル、又はビーズミルを用いる方法が挙げられる。特に、ボールミル又はビーズミルを用いて分散を行うと、高い効率で分散させることができ、それ故、分散状態が安定なコーティング液を比較的短時間で得ることができる。この場合、ボール又はビーズの径は小さいものがよく、0.1乃至1mmであることが好ましい。 Examples of the dispersion treatment method include a method using a high-speed stirrer, a homogenizer, a ball mill, or a bead mill. In particular, when dispersion is performed using a ball mill or a bead mill, dispersion can be performed with high efficiency, and therefore a coating liquid having a stable dispersion state can be obtained in a relatively short time. In this case, the diameter of the ball or bead is preferably small, preferably 0.1 to 1 mm.

以上のようにして調製したカルボキシ基含有重合体溶液と多価金属含有粒子(b)の分散液とを混合することにより、コーティング液を作製することができる。なお、上述した調製方法では、ケイ素含有化合物(d)を予めカルボキシル基含有重合体溶液に添加したが、カルボキシル基含有重合体用得液にケイ素含有化合物(d)を添加せず、例えば、カルボキシ基含有重合体溶液と多価金属含有粒子(b)の分散液とを混合する際にケイ素含有化合物(d)を混合してもよい。 A coating liquid can be prepared by mixing the carboxy group-containing polymer solution prepared as described above with the dispersion liquid of the polyvalent metal-containing particles (b). In the above-mentioned preparation method, the silicon-containing compound (d) was added to the carboxyl group-containing polymer solution in advance, but the silicon-containing compound (d) was not added to the obtained solution for the carboxyl group-containing polymer, for example, carboxy. The silicon-containing compound (d) may be mixed when the group-containing polymer solution and the dispersion liquid of the polyvalent metal-containing particles (b) are mixed.

上記のコーティング液は、上記有機溶媒(e)以外の成分の合計濃度が、好ましくは0.1乃至60質量%、より好ましくは0.5乃至25質量%、特に好ましくは1乃至20質量%の範囲内にあることが、所望の膜厚の塗膜及び被覆層を高い作業性で得る上で好ましい。 The coating liquid has a total concentration of components other than the organic solvent (e) of preferably 0.1 to 60% by mass, more preferably 0.5 to 25% by mass, and particularly preferably 1 to 20% by mass. It is preferable that it is within the range in order to obtain a coating film and a coating layer having a desired film thickness with high workability.

上記のコーティング液には、必要に応じて、他の重合体、増粘剤、安定剤、紫外線吸収剤、アンチブロッキング剤、柔軟剤、無機層状化合物(例えば、モンモリロナイト)、及び着色剤(染料、顔料)などの各種添加剤を含有させることができる。 The above coating liquid may contain other polymers, thickeners, stabilizers, UV absorbers, antiblocking agents, softeners, inorganic layered compounds (eg, montmorillonite), and colorants (dye, as needed). Various additives such as (pigment) can be contained.

コーティング液の塗工方法としては、特に限定されないが、例えば、エアーナイフコーター、ダイレクトグラビアコーター、グラビアオフセット、アークグラビアコーター、トップフィードリバースコーター、ボトムフィードリバースコーター及びノズルフィードリバースコーター等のリバースロールコーター、5本ロールコーター、リップコーター、バーコーター、バーリバースコーター、ダイコーターを用いて塗工する方法が挙げられる。 The method for applying the coating liquid is not particularly limited, but for example, a reverse roll coater such as an air knife coater, a direct gravure coater, a gravure offset, an arc gravure coater, a top feed reverse coater, a bottom feed reverse coater, and a nozzle feed reverse coater. A method of coating using a five-roll coater, a lip coater, a bar coater, a bar reverse coater, and a die coater can be mentioned.

塗膜の乾燥方法としては、特に限定されないが、例えば、自然乾燥による方法や、所定の温度に設定したオーブン中で乾燥させる方法、及び、コーター付属の乾燥機、例えばアーチドライヤー、フローティングドライヤー、ドラムドライヤー、又は赤外線ドライヤー等を用いる方法を挙げることができる。 The method for drying the coating film is not particularly limited, but for example, a method by natural drying, a method of drying in an oven set to a predetermined temperature, and a dryer attached to the coater, such as an arch dryer, a floating dryer, and a drum. A method using a dryer, an infrared dryer, or the like can be mentioned.

乾燥条件は、乾燥方法等により適宜選択することできる。例えば、オーブン中で乾燥させる方法においては、乾燥温度は、40乃至150℃の範囲内にあることが好ましく、45乃至150℃の範囲内にあることがより好ましく、50乃至140℃の範囲内にあることが特に好ましい。乾燥時間は、乾燥温度によっても異なるが、0.5秒乃至~10分の範囲内にあることが好ましく、1秒乃至5分の範囲内にあることがより好ましく、1秒乃至1分の範囲内にあることが特に好ましい。 The drying conditions can be appropriately selected depending on the drying method and the like. For example, in the method of drying in an oven, the drying temperature is preferably in the range of 40 to 150 ° C, more preferably in the range of 45 to 150 ° C, and in the range of 50 to 140 ° C. It is particularly preferable to have. The drying time varies depending on the drying temperature, but is preferably in the range of 0.5 seconds to 10 minutes, more preferably in the range of 1 second to 5 minutes, and in the range of 1 second to 1 minute. It is especially preferable to be inside.

乾燥中又は乾燥後に、塗膜中に含まれるカルボキシ基含有重合体(a)と多価金属含有粒子(b)とが反応して、イオン架橋構造が導入されると推定される。イオン架橋反応を十分に進行させるには、乾燥後のフィルムを、好ましくは20%以上、より好ましくは40乃至100%の範囲内の相対湿度の雰囲気中、好ましくは5乃至200℃、より好ましくは20乃至150℃の範囲内の温度条件下で、1秒乃至10日程度熟成させることが好ましい。 It is presumed that the carboxy group-containing polymer (a) contained in the coating film reacts with the polyvalent metal-containing particles (b) during or after drying to introduce an ionic crosslinked structure. In order for the ionic cross-linking reaction to proceed sufficiently, the dried film is preferably placed in an atmosphere of relative humidity in the range of preferably 20% or more, more preferably 40 to 100%, preferably 5 to 200 ° C., more preferably. It is preferably aged for about 1 second to 10 days under a temperature condition in the range of 20 to 150 ° C.

このようにして得られるガスバリア性積層体は、イオン架橋しているため、耐湿性、耐水性、耐熱水性、及び耐水蒸気性に優れている。そして、このガスバリア性積層体は、低湿条件下はもとより、高湿条件下でのガスバリア性にも優れている。このガスバリア性積層体は、JIS K-7126 B法(等圧法)及びASTM D3985に記載された方法に準拠して、温度30℃及び相対湿度70%の条件下で測定した酸素透過度が、好ましくは10cm3/(m2・day・MPa)以下である。 Since the gas barrier laminate thus obtained is ion-crosslinked, it is excellent in moisture resistance, water resistance, heat resistance and water resistance, and water vapor resistance. The gas barrier laminate is excellent not only in low humidity conditions but also in high humidity conditions. The gas barrier laminate preferably has an oxygen permeability measured under the conditions of a temperature of 30 ° C. and a relative humidity of 70% in accordance with the method described in JIS K-7126 B method (isopressure method) and ASTM D3985. Is 10 cm3 / (m2, day, MPa) or less.

<包装材料、包装体及び包装物品>
本実施形態に係る包装材料は、上記のガスバリア性積層体を含むものである。この包装材料は、例えば、物品を包装する包装体の製造に使用する。
<Packaging materials, packaging bodies and packaging articles>
The packaging material according to the present embodiment includes the above-mentioned gas barrier laminate. This packaging material is used, for example, in the manufacture of a package for packaging an article.

本実施形態に係る包装体は、上記の包装材料を含むものである。
この包装体は、上記の包装材料からなるものであってもよく、上記の包装材料と他の部材とを含むものであってもよい。前者の場合、包装体は、例えば、上記の包装材料を袋状に成形したものである。後者の場合、包装体は、例えば、蓋体としての上記包装材料と、有底筒状の容器本体とを含んだ容器である。
The package according to the present embodiment includes the above-mentioned packaging material.
This package may be made of the above-mentioned packaging material, or may include the above-mentioned packaging material and other members. In the former case, the packaging body is, for example, a bag-shaped molding of the above-mentioned packaging material. In the latter case, the packaging body is, for example, a container including the above-mentioned packaging material as a lid and a bottomed tubular container body.

この包装体において、上記の包装材料は、成形品であってもよい。この成形品は、上記の通り、袋などの容器であってもよく、蓋体などの容器の一部であってもよい。包装体又はその一部の具体例としては、製袋品、スパウト付きパウチ、ラミネートチューブ、輸液バッグ、容器用蓋材、及び紙容器が挙げられる。 In this package, the above-mentioned packaging material may be a molded product. As described above, this molded product may be a container such as a bag or a part of a container such as a lid. Specific examples of the package or a part thereof include bag-making products, pouches with spouts, laminated tubes, infusion bags, container lids, and paper containers.

この包装体には、適用される用途に特に制限はない。この包装体は、様々な物品の包装に使用することができる。 There is no particular limitation on the applicable use of this package. This package can be used for packaging various articles.

本実施形態に係る包装物品は、上記の包装体と、これに収容された内容物とを含むものである。 The packaged article according to the present embodiment includes the above-mentioned packaged body and the contents contained therein.

上述した通り、上記のガスバリア性積層体は、優れたガスバリア性と透明性を有する。そのため、このガスバリア性積層体を含んだ包装材料及び包装体は、それぞれ、酸素及び水蒸気等の影響により劣化し易い物品のための包装材料及び包装体として、特には食品用包装材料及び食品用包装体として好ましく用いられる。これら包装材料及び包装体は、それぞれ、農薬や医薬などの薬品、医療用具、機械部品、及び精密材料などの産業資材を包装するための包装材料及び包装体としても好ましく用いることができる。 As described above, the above gas barrier laminate has excellent gas barrier properties and transparency. Therefore, the packaging materials and packaging bodies containing the gas barrier laminate are used as packaging materials and packaging bodies for articles that are easily deteriorated by the influence of oxygen, steam, etc., respectively, and particularly food packaging materials and food packaging. It is preferably used as a body. These packaging materials and packaging bodies can also be preferably used as packaging materials and packaging bodies for packaging chemicals such as pesticides and pharmaceuticals, medical devices, mechanical parts, and industrial materials such as precision materials, respectively.

上記のガスバリア性積層体は、ボイル処理及びレトルト処理等の加熱殺菌処理を施したときに、ガスバリア性や層間密着性が劣化せず、逆に高まる傾向にある。そのため、これら包装材料及び包装体は、それぞれ、加熱殺菌用包装材料及び加熱殺菌用包装体であってもよい。 When the above-mentioned gas barrier laminate is subjected to heat sterilization treatment such as boiling treatment and retort treatment, the gas barrier property and interlayer adhesion do not deteriorate, and on the contrary, they tend to increase. Therefore, these packaging materials and packaging bodies may be heat sterilization packaging materials and heat sterilization packaging bodies, respectively.

加熱殺菌用包装材料及び加熱殺菌用包装体は、包装後に加熱殺菌処理が行われる物品の包装に用いられる。
包装後に加熱殺菌処理が行われる物品としては、例えば、カレー、シチュー、スープ、ソース、及び畜肉加工品等の食品が挙げられる。
The heat sterilization packaging material and the heat sterilization package are used for packaging articles that are heat sterilized after packaging.
Examples of articles that are heat sterilized after packaging include foods such as curry, stew, soup, sauce, and processed livestock meat.

加熱殺菌処理としては、例えば、ボイル処理及びレトルト処理が挙げられる。ボイル処理及びレトルト処理については上掲で説明した通りである。 Examples of the heat sterilization treatment include boiling treatment and retort treatment. The boil treatment and retort treatment are as described above.

以下に、本発明の具体例を記載する。
<被覆層形成用コーティング液の調製>
各実施例及び各比較例で用いる被覆層用コーティング液を以下の方法で調製した。
(例1:コーティング液1)
カルボキシ基含有重合体を、イソプロパノールに加熱溶解させた。カルボキシ基含有重合体としては、ポリアクリル酸(PAA)(東亜合成(株)製ジュリマー(登録商標)AC-10LP、数平均分子量50,000)を使用した。以上のようにして、ポリアクリル酸を10質量%の濃度で含んだポリアクリル酸溶液を調製した。
Specific examples of the present invention will be described below.
<Preparation of coating liquid for coating layer formation>
The coating liquid for the coating layer used in each Example and each Comparative Example was prepared by the following method.
(Example 1: Coating liquid 1)
The carboxy group-containing polymer was dissolved in isopropanol by heating. As the carboxy group-containing polymer, polyacrylic acid (PAA) (Julimer (registered trademark) AC-10LP manufactured by Toagosei Co., Ltd., number average molecular weight 50,000) was used. As described above, a polyacrylic acid solution containing polyacrylic acid at a concentration of 10% by mass was prepared.

ポリエーテル燐酸エステル(楠本化成(株)製ディスパロン(登録商標)DA-375、固形分100質量%)1.8gを、イソプロパノール26.2gに溶解させた。次いで、これに、一次粒子の平均径が35nmの酸化亜鉛(堺化学工業(株)製FINEX(登録商標)-30)12gを加えて攪拌した。得られた液を、遊星ボールミル(フリッチュ社製P-7)で1時間分散処理した。この分散処理には、直径0.2mmのジルコニアビーズを使用した。その後、この液からビーズを篩分けて、酸化亜鉛を30質量%の濃度で含んだ分散液(ZnO分散液)を得た。 1.8 g of a polyether phosphoric acid ester (Disparon (registered trademark) DA-375 manufactured by Kusumoto Kasei Co., Ltd., solid content 100% by mass) was dissolved in 26.2 g of isopropanol. Next, 12 g of zinc oxide (FINEX® (registered trademark) -30 manufactured by Sakai Chemical Industry Co., Ltd.) having an average primary particle diameter of 35 nm was added thereto and stirred. The obtained liquid was dispersed and treated with a planetary ball mill (P-7 manufactured by Fritsch) for 1 hour. Zirconia beads having a diameter of 0.2 mm were used for this dispersion treatment. Then, beads were sieved from this liquid to obtain a dispersion liquid (ZnO dispersion liquid) containing zinc oxide at a concentration of 30% by mass.

次に、ポリアクリル酸(PAA)溶液50.00gと、酸化亜鉛分散液4.71gと、イソプロパノール9.29gとを混合して、コーティング液1を調製した。このコーティング液1では、ポリアクリル酸(PAA)に含まれるカルボキシル基のモル数(a)対する、酸化亜鉛に含まれる亜鉛のモル数と価数の積(b)の当量比b/aは0.5であった。 Next, 50.00 g of a polyacrylic acid (PAA) solution, 4.71 g of a zinc oxide dispersion liquid, and 9.29 g of isopropanol were mixed to prepare a coating liquid 1. In this coating liquid 1, the equivalent ratio of the product of the number of moles of zinc contained in zinc oxide and the valence ( bt ) to the number of moles (at) of the carboxyl group contained in polyacrylic acid ( PAA ) bt / at was 0.5 .

(例2:コーティング液2)
上述したコーティング液1の調製方法に対し、上記酸化亜鉛分散液(ZnO分散液)及びイソプロパノールの添加量を表1に記載の添加量に変更した以外は、コーティング液1と同様の方法により、コーティング液2を調製した。
(Example 2: Coating liquid 2)
Coating by the same method as the coating liquid 1 except that the addition amounts of the zinc oxide dispersion liquid (ZnO dispersion liquid) and the isopropanol were changed to the addition amounts shown in Table 1 with respect to the above-mentioned preparation method of the coating liquid 1. Liquid 2 was prepared.

(例3:コーティング液3)
上述したコーティング液1の調製方法に対し、ポリアクリル酸溶液と酸化亜鉛分散液とイソプロパノールの混合工程において、ケイ素含有化合物としてシランカップリング剤(SC剤)(信越化学工業(株)製KBM-403、3-グリシドキシプロピルトリメトキシシラン)0.10gを添加したこと以外は、コーティング液1と同様の方法により、コーティング液3を調製した。
(Example 3: Coating liquid 3)
In contrast to the method for preparing the coating liquid 1 described above, in the step of mixing the polyacrylic acid solution, the zinc oxide dispersion and the isopropanol, a silane coupling agent (SC agent) as a silicon-containing compound (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) , 3-Glycydoxypropyltrimethoxysilane) The coating liquid 3 was prepared by the same method as that of the coating liquid 1 except that 0.10 g was added.

(例4:コーティング液4)
上述したコーティング液2の調製方法に対し、ポリアクリル酸溶液と酸化亜鉛分散液とイソプロパノールの混合工程において、ケイ素含有化合物としてシランカップリング剤(SC剤)(信越化学工業(株)製KBM-403、3-グリシドキシプロピルトリメトキシシラン)0.1gを添加したこと以外は、コーティング液2と同様の方法により、コーティング液4を調製した。
(Example 4: Coating liquid 4)
In contrast to the method for preparing the coating liquid 2 described above, in the step of mixing the polyacrylic acid solution, the zinc oxide dispersion and the isopropanol, a silane coupling agent (SC agent) as a silicon-containing compound (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) , 3-Glycydoxypropyltrimethoxysilane) The coating liquid 4 was prepared by the same method as the coating liquid 2 except that 0.1 g was added.

(例C1:コーティング液C1)
上述したコーティング液3の調製方法に対し、上記酸化亜鉛分散液及びイソプロパノールの添加量を表1に記載の添加量に変更した以外は、コーティング液3と同様の方法により、コーティング液C1を調製した。
(Example C1: Coating liquid C1)
The coating liquid C1 was prepared by the same method as the coating liquid 3 except that the addition amounts of the zinc oxide dispersion liquid and isopropanol were changed to the addition amounts shown in Table 1 with respect to the above-mentioned preparation method of the coating liquid 3. ..

(例C2:コーティング液C2)
上記酸化亜鉛分散液をイソプロパノールで表1に記載の配合により希釈し、コーティング液C2を調整した。
(Example C2: Coating liquid C2)
The zinc oxide dispersion was diluted with isopropanol according to the formulation shown in Table 1 to prepare a coating liquid C2.

Figure 0007088361000002
Figure 0007088361000002

<ガスバリア性積層体の製造>
(アンカーコート液の調製)
希釈溶媒(酢酸エチル)中、γ-イソシアネートプロピルトリメトキシシラン1質量部に対し、アクリルポリオール5質量部を混合し、攪拌した。ついで、イソシアネート化合物としてトリレンジイソシアネート(TDI)を、アクリルポリオールのOH基に対しNCO基が等量となるように加えた。得られた混合溶液を2質量%の濃度に上記希釈溶媒で希釈することによりアンカーコート液1を得た。
アクリルポリオールとしては、三菱レイヨン(株)製、GS-5756を使用した。
<Manufacturing of gas barrier laminate>
(Preparation of anchor coat liquid)
In a diluting solvent (ethyl acetate), 5 parts by mass of an acrylic polyol was mixed with 1 part by mass of γ-isocyanatepropyltrimethoxysilane and stirred. Then, toluene diisocyanate (TDI) was added as an isocyanate compound so that the amount of NCO groups was equal to that of the OH groups of the acrylic polyol. Anchor coat liquid 1 was obtained by diluting the obtained mixed solution to a concentration of 2% by mass with the above-mentioned diluting solvent.
As the acrylic polyol, GS-5756 manufactured by Mitsubishi Rayon Co., Ltd. was used.

[実施例1]
2軸延伸ポリプロピレンフィルム(三井化学東セロ株式会社製、商品名:ME-1、厚さ20μm)の一方の面に、アンカーコート液1を、乾燥後の厚さが0.2μmになるようにバーコーターを用いて塗工し、60℃で1分間乾燥させることによってアンカーコート層を形成した。
[Example 1]
Anchor coating liquid 1 is applied to one surface of a biaxially stretched polypropylene film (manufactured by Mitsui Chemicals Tocello Co., Ltd., trade name: ME-1, thickness 20 μm) so that the thickness after drying becomes 0.2 μm. An anchor coat layer was formed by coating with a coater and drying at 60 ° C. for 1 minute.

このアンカーコート層上に、アルミナを蒸着して厚さ20nmの無機蒸着層を形成した。 Alumina was vapor-deposited on the anchor coat layer to form an inorganic thin-film film having a thickness of 20 nm.

この無機蒸着層上にコーティング液1を、バーコーター(ワイヤーバー)を用いて塗布した。この塗膜を50℃のオーブンで1分間乾燥させて、膜厚400nmの被覆層を形成した。以上のようにして積層体1を得た。 The coating liquid 1 was applied onto the inorganic thin-film deposition layer using a bar coater (wire bar). This coating film was dried in an oven at 50 ° C. for 1 minute to form a coating film having a film thickness of 400 nm. The laminated body 1 was obtained as described above.

なお、得られた積層体1から被覆層を分離し、後掲の方法で赤外吸収スペクトルのピーク高さ比α/α+βを測定した。また、製膜後の積層体1を、下記条件で湿熱処理した後の被覆層についても、同様に赤外吸収スペクトルのピーク強度を測定した。
湿熱処理条件:120℃、30分、圧力0.2MPaでのレトルト処理。
The coating layer was separated from the obtained laminate 1, and the peak height ratio α / α + β of the infrared absorption spectrum was measured by the method described later. Further, the peak intensity of the infrared absorption spectrum was similarly measured for the coating layer after the film-forming laminated body 1 was subjected to a wet heat treatment under the following conditions.
Wet heat treatment conditions: Retort treatment at 120 ° C. for 30 minutes and pressure 0.2 MPa.

[実施例2~4、比較例1]
実施例1に対し、被覆層の形成に使用するコーティング液1を表2に記載のコーティング液に変更した以外は、実施例1と同様の方法により、積層体2~4及びC1を製造した。積層体1と同様、これら積層体についても、上記湿熱処理前と湿熱処理後について被覆層の赤外吸収スペクトルのピーク強度を測定した。
[Examples 2 to 4, Comparative Example 1]
Laminates 2 to 4 and C1 were produced by the same method as in Example 1 except that the coating liquid 1 used for forming the coating layer was changed to the coating liquid shown in Table 2. Similar to the laminated body 1, the peak intensities of the infrared absorption spectra of the coating layer were measured before and after the wet heat treatment for these laminated bodies.

[比較例2]
実施例1に対して、被覆層の形成にコーティング液C1とC2を使用し2層の被覆層を形成した以外は、実施例1と同様の方法により、積層体C2を製造した。すなわち、無機蒸着層上にコーティング液C1を、バーコーター(ワイヤーバー)を用いて塗布し、得られた塗膜を50℃のオーブンで1分間乾燥させて第1の被覆層を形成した。次に、第1の被覆層上にコーティング液C2を同様に塗布し、同様の条件で乾燥して第2の被覆層を形成した。積層体1と同様、積層体C2についても、上記湿熱処理前と湿熱処理後について第1の被覆層及び第2の被覆層の赤外吸収スペクトルのピーク強度を測定した。
[Comparative Example 2]
The laminated body C2 was produced by the same method as in Example 1 except that the coating liquids C1 and C2 were used to form the coating layer with respect to Example 1 to form the two coating layers. That is, the coating liquid C1 was applied onto the inorganic thin-film vapor deposition layer using a bar coater (wire bar), and the obtained coating film was dried in an oven at 50 ° C. for 1 minute to form a first coating film. Next, the coating liquid C2 was similarly applied onto the first coating layer and dried under the same conditions to form the second coating layer. Similar to the laminate 1, for the laminate C2, the peak intensities of the infrared absorption spectra of the first coating layer and the second coating layer were measured before and after the wet heat treatment.

<赤外吸収スペクトルの測定>
上記湿熱処理前と湿熱処理後の各積層体から被覆層を分離し、被覆層の固形物を得た。この被覆層の固形物をフーリエ変換赤外分光装置(FT-IR:日本分光製(FT/IR-4600))による全反射測定法(ATR)によって測定して赤外吸収スペクトルを得た。得られた赤外吸収スペクトルから、1490~1659cm-1の範囲内の-COOに帰属する最大ピーク高さ(極大吸光度)(α)と、1660~1750cm-1の範囲内の-COOHに帰属する最大ピーク高さ(極大吸光度)(β)についての比α/α+βを求めた。
<Measurement of infrared absorption spectrum>
The coating layer was separated from each of the laminates before and after the wet heat treatment to obtain a solid substance of the coating layer. The solid matter of this coating layer was measured by a total reflection measurement method (ATR) by a Fourier transform infrared spectroscope (FT-IR: manufactured by Nippon Spectroscopy (FT / IR-4600)) to obtain an infrared absorption spectrum. From the obtained infrared absorption spectrum, the maximum peak height (maximum absorbance) (α) belonging to -COO - in the range of 1490 to 1659 cm -1 and -COOH in the range of 1660 to 1750 cm -1 are attributed. The ratio α / α + β for the maximum peak height (maximum absorbance) (β) was determined.

<耐内容物性>
各積層体を折りたたみ、三辺を熱接着して袋を作製した。この袋内に、内容物として水、4質量%酢酸、又は6質量%酢酸を150g充填し、残る一辺を熱接着により封止することにより、内容物が充填された4方シール袋を作製した。得られた4方シール袋を、120℃、30分、0.2MPaの条件で湿熱処理した。この湿熱処理後の各試料について、以下に説明する方法で酸素透過度、ラミネート強度、及び保存安定性を測定/評価した。結果を表2に示す。
<Content resistance>
Each laminate was folded and the three sides were heat-bonded to prepare a bag. This bag was filled with 150 g of water, 4% by mass acetic acid, or 6% by mass acetic acid as the contents, and the remaining side was sealed by heat adhesion to prepare a four-way seal bag filled with the contents. .. The obtained 4-way seal bag was subjected to a wet heat treatment under the conditions of 120 ° C., 30 minutes and 0.2 MPa. Oxygen permeability, laminate strength, and storage stability were measured / evaluated for each sample after this wet heat treatment by the method described below. The results are shown in Table 2.

<酸素透過度(Oxygen Transmission Rate:OTR)>
各試料の酸素透過度(OTR)を、Modern Control社製の酸素透過試験器OX-TRAN(登録商標)2/20を用いて、温度30℃、相対湿度70%の条件下で測定した。測定方法は、JIS K-7126 B法(等圧法)、及びASTM D3985に準拠し、測定値は、単位cc/m/day/atmで表記した。
<Oxygen Transmission Rate (OTR)>
The oxygen permeability (OTR) of each sample was measured using an oxygen permeation tester OX-TRAN (registered trademark) 2/20 manufactured by Modern Control under the conditions of a temperature of 30 ° C. and a relative humidity of 70%. The measurement method was based on JIS K-7126 B method (isopressure method) and ASTM D3985, and the measured values were expressed in units of cc / m 2 / day / atm.

<ラミネート強度>
各試料の被覆層側の表面に、ドライラミネーション加工により、ポリエステルウレタン系接着剤(商品名:タケラックA-969、タケネートA-5;三井化学社製)を介して、厚さ30μmの未延伸ポリプロピレンフィルムCPP(casted polypropylene)(商品名:CPP GLC、三井化学東セロ社製)をラミネートした。これを50℃にて48時間養生し、積層体フィルムを得た。この積層体フィルムを15mm幅の短冊状にカットし、テンシロン引張試験機(商品名:テンシロンRTC-1250、オリエンテック社製)により、CCPから積層体フィルムを300mm/分の速度で90°剥離(T型剥離)させて、ラミネート強度(N/15mm)を測定した。
<Laminate strength>
Unstretched polypropylene with a thickness of 30 μm via a polyester urethane adhesive (trade name: Takelac A-969, Takenate A-5; manufactured by Mitsui Chemicals, Inc.) on the surface of each sample on the coating layer side by dry lamination processing. A film CPP (casted polypropylene) (trade name: CPP GLC, manufactured by Mitsui Chemicals Tohcello Co., Ltd.) was laminated. This was cured at 50 ° C. for 48 hours to obtain a laminated film. This laminated film is cut into strips with a width of 15 mm, and the laminated film is peeled from the CCP by 90 ° at a speed of 300 mm / min using a Tensilon tensile tester (trade name: Tensilon RTC-1250, manufactured by Orientec). T-type peeling) was performed, and the laminate strength (N / 15 mm) was measured.

<保存安定性>
各試料を、温度40℃、湿度90%の環境下にて1か月保存した後、上記方法にて酸素透過度(OTR)及びラミネート強度を測定した。
<Storage stability>
Each sample was stored for 1 month in an environment of a temperature of 40 ° C. and a humidity of 90%, and then the oxygen permeability (OTR) and the laminating strength were measured by the above method.

Figure 0007088361000003
Figure 0007088361000003

表2から分かるように、実施例1~4のガスバリア性積層体は、湿熱処理による内容物の成分に起因する劣化がなく、耐内容物性、ガスバリア性、耐層間剥離性及び保存安定性のすべてに優れていることがわかる。 As can be seen from Table 2, the gas barrier laminates of Examples 1 to 4 have no deterioration due to the components of the contents due to the wet heat treatment, and all of the contents resistance, the gas barrier property, the delamination resistance and the storage stability. It turns out that it is excellent.

なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。 The present invention is not limited to the above embodiment, and can be variously modified at the implementation stage without departing from the gist thereof. In addition, each embodiment may be carried out in combination as appropriate, in which case the combined effect can be obtained. Further, the above-described embodiment includes various inventions, and various inventions can be extracted by a combination selected from a plurality of disclosed constituent requirements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment, if the problem can be solved and the effect is obtained, the configuration in which the constituent elements are deleted can be extracted as an invention.

1・・・基材2・・・無機蒸着層3・・・被覆層4・・・アンカーコート層10、20・・・ガスバリア性積層体
1 ... Substrate 2 ... Inorganic vapor deposition layer 3 ... Coating layer 4 ... Anchor coat layer 10, 20 ... Gas barrier laminate

Claims (12)

基材と、前記基材の少なくとも一方の面上に、無機酸化物を含む無機蒸着層と、カルボキシ基含有重合体(a)、多価金属含有粒子(b)及び界面活性剤(c)を含む被覆層とをこの順序で備えたガスバリア性積層体であって、前記被覆層の赤外吸収スペクトルにおける、1490~1659cm-1の範囲内の-COOに帰属する最大ピーク高さ(α)と、1660~1750cm-1の範囲内の-COOHに帰属する最大ピーク高さ(β)のα/α+βで表される比が0.3以上であり、前記多価金属含有粒子(b)として前記被覆層の形成用コーティング液中の平均粒子径が12nm乃至1μmの範囲内のものが使用されているガスバリア性積層体。 An inorganic vapor-deposited layer containing an inorganic oxide, a carboxy group-containing polymer (a), polyvalent metal-containing particles (b), and a surfactant (c) are placed on the base material and at least one surface of the base material. A gas-barrier laminate comprising a coating layer in this order, the maximum peak height (α) attributable to −COO in the range of 1490 to 1659 cm -1 in the infrared absorption spectrum of the coating layer. The ratio of the maximum peak height (β) attributable to −COOH in the range of 1660 to 1750 cm -1 expressed by α / α + β is 0.3 or more, and the polyvalent metal-containing particles (b). A gas barrier laminated body in which the average particle size in the coating liquid for forming the coating layer is in the range of 12 nm to 1 μm . 前記被覆層がケイ素含有化合物(d)を更に含有し、前記ケイ素含有化合物(d)が下記一般式(1)及び(2)で表されるシランカップリング剤、これらの加水分解物、およびこれらの縮合物からなる群から選択される少なくとも1種である、請求項1に記載のガスバリア性積層体。
Si(OR …(1)
Si(R)(OR …(2)
一般式(1)において、Rは、同一であっても異なっていてもよい、炭素数が1乃至6のアルキル基であり、Zはエポキシ基を含有する基であり、一般式(2)において、Rはメチル基であり、Rは、同一であっても異なっていてもよい、炭素数が1乃至6のアルキル基であり、Zはエポキシ基を含有する基である。
The coating layer further contains a silicon-containing compound (d), and the silicon-containing compound (d) is a silane coupling agent represented by the following general formulas (1) and (2), hydrolysates thereof, and these. The gas barrier laminate according to claim 1, which is at least one selected from the group consisting of the condensates of the above.
Si (OR 1 ) 3 Z 1 ... (1)
Si (R 2 ) (OR 3 ) 2 Z 2 ... (2)
In the general formula (1), R 1 is an alkyl group having 1 to 6 carbon atoms, which may be the same or different, and Z 1 is a group containing an epoxy group, and is a general formula (2). ), R 2 is a methyl group, R 3 is an alkyl group having 1 to 6 carbon atoms which may be the same or different, and Z 2 is a group containing an epoxy group.
前記カルボキシ基含有重合体(a)が、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸及びフマル酸からなる群から選択される少なくとも1種のα,β-モノエチレン性不飽和カルボン酸に由来する構成単位を含む、請求項1又は2に記載のガスバリア性積層体。 The carboxy group-containing polymer (a) is at least one α, β-monoethyl unsaturated carboxylic acid selected from the group consisting of acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid and fumaric acid. The gas barrier laminate according to claim 1 or 2, which comprises a structural unit derived from. 前記多価金属含有粒子(b)を構成する多価金属が2価の金属である、請求項1~3の何れか1項に記載のガスバリア性積層体。 The gas barrier laminate according to any one of claims 1 to 3, wherein the polyvalent metal constituting the polyvalent metal-containing particles (b) is a divalent metal. 前記基材と前記無機蒸着層との間にアンカーコート層を更に備えた請求項1~4の何れか1項に記載のガスバリア性積層体。 The gas barrier laminate according to any one of claims 1 to 4, further comprising an anchor coat layer between the base material and the inorganic thin-film deposition layer. 前記界面活性剤(c)が燐酸エステル又はスチレン-アクリル酸共重合体である、請求項1~の何れか1項に記載のガスバリア性積層体。 The gas barrier laminate according to any one of claims 1 to 5 , wherein the surfactant (c) is a phosphoric acid ester or a styrene-acrylic acid copolymer. 120℃、30分、圧力0.2MPaでのレトルト処理後におけるα/α+βで表される前記比が0.4以上である、請求項1乃至の何れか1項に記載のガスバリア性積層体。 The gas barrier laminate according to any one of claims 1 to 6 , wherein the ratio represented by α / α + β after retort treatment at 120 ° C. for 30 minutes and a pressure of 0.2 MPa is 0.4 or more. .. 酢酸成分含有食品の包装材料として用いられる、請求項1~の何れか1項に記載のガスバリア性積層体。 The gas barrier laminate according to any one of claims 1 to 7 , which is used as a packaging material for foods containing an acetic acid component. 請求項1~の何れか1項に記載のガスバリア性積層体を含んだ包装材料。 A packaging material containing the gas barrier laminate according to any one of claims 1 to 8 . 請求項に記載の包装材料を含んだ包装体。 A package containing the packaging material according to claim 9 . 請求項10に記載の包装体と、前記包装体に収容された内容物とを含んだ包装物品。 A packaged article including the package according to claim 10 and the contents contained in the package. 前記内容物が酢酸成分を含有している請求項11に記載の包装物品。
The packaged article according to claim 11 , wherein the content contains an acetic acid component.
JP2021072413A 2021-04-22 2021-04-22 Gas barrier laminates, packaging materials, packaging and packaging articles Active JP7088361B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021072413A JP7088361B1 (en) 2021-04-22 2021-04-22 Gas barrier laminates, packaging materials, packaging and packaging articles
PCT/JP2022/014639 WO2022224709A1 (en) 2021-04-22 2022-03-25 Gas barrier laminate, packaging material, packaging body, and packaging article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021072413A JP7088361B1 (en) 2021-04-22 2021-04-22 Gas barrier laminates, packaging materials, packaging and packaging articles

Publications (2)

Publication Number Publication Date
JP7088361B1 true JP7088361B1 (en) 2022-06-21
JP2022166955A JP2022166955A (en) 2022-11-04

Family

ID=82100053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021072413A Active JP7088361B1 (en) 2021-04-22 2021-04-22 Gas barrier laminates, packaging materials, packaging and packaging articles

Country Status (2)

Country Link
JP (1) JP7088361B1 (en)
WO (1) WO2022224709A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278802A (en) * 2004-03-29 2005-10-13 Toshihiko Nohara Spectacle cover
JP5278802B2 (en) * 2006-04-26 2013-09-04 凸版印刷株式会社 COATING LIQUID, GAS BARRIER FILM USING SAME, GAS BARRIER LAMINATE, GAS BARRIER MULTILAYER FILM, AND METHOD FOR PRODUCING THEM
JP2014188944A (en) * 2013-03-28 2014-10-06 Mitsubishi Paper Mills Ltd Gas barrier film
WO2016167181A1 (en) * 2015-04-14 2016-10-20 凸版印刷株式会社 Coating liquid for gas barriers, packaging material with gas barrier properties and packaging bag for hydrothermal treatment
JP2016193509A (en) * 2015-03-31 2016-11-17 凸版印刷株式会社 Gas-barrier packaging material and manufacturing method thereof
JP2017087616A (en) * 2015-11-12 2017-05-25 東洋製罐グループホールディングス株式会社 Gas barrier laminated body
JP2020114637A (en) * 2019-01-17 2020-07-30 凸版印刷株式会社 Gas barrier laminate and package comprising the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278802A (en) * 2004-03-29 2005-10-13 Toshihiko Nohara Spectacle cover
JP5278802B2 (en) * 2006-04-26 2013-09-04 凸版印刷株式会社 COATING LIQUID, GAS BARRIER FILM USING SAME, GAS BARRIER LAMINATE, GAS BARRIER MULTILAYER FILM, AND METHOD FOR PRODUCING THEM
JP2014188944A (en) * 2013-03-28 2014-10-06 Mitsubishi Paper Mills Ltd Gas barrier film
JP2016193509A (en) * 2015-03-31 2016-11-17 凸版印刷株式会社 Gas-barrier packaging material and manufacturing method thereof
WO2016167181A1 (en) * 2015-04-14 2016-10-20 凸版印刷株式会社 Coating liquid for gas barriers, packaging material with gas barrier properties and packaging bag for hydrothermal treatment
JP2017087616A (en) * 2015-11-12 2017-05-25 東洋製罐グループホールディングス株式会社 Gas barrier laminated body
JP2020114637A (en) * 2019-01-17 2020-07-30 凸版印刷株式会社 Gas barrier laminate and package comprising the same

Also Published As

Publication number Publication date
WO2022224709A1 (en) 2022-10-27
JP2022166955A (en) 2022-11-04

Similar Documents

Publication Publication Date Title
JP4373797B2 (en) Film and manufacturing method thereof
JP6131570B2 (en) Gas barrier coating liquid, method for producing the same, method for producing gas barrier laminate, method for producing packaging material, and method for producing packaging material for heat sterilization
JP2015150836A (en) gas barrier laminate
WO2021256545A1 (en) Gas barrier multilayer body, coating liquid for producing same, packaging material, package, and packaged article
WO2012093597A1 (en) Gas barrier laminate, method for producing same, and gas barrier laminate film
WO2019142923A1 (en) Gas barrier laminate and package provided with same
JP6862815B2 (en) Manufacturing method and molded product of gas barrier laminate for thermoforming, coating liquid, gas barrier laminate for thermoforming
US20230365768A1 (en) Gas barrier laminate, coating liquid for producing same, packaging material, package, and packaged article
JP7003468B2 (en) Gas barrier laminates and moldings for thermoforming
JP7088361B1 (en) Gas barrier laminates, packaging materials, packaging and packaging articles
JP7467937B2 (en) Gas barrier laminate, coating liquid for producing the same, packaging material, packaging body and packaged article
WO2022107858A1 (en) Gas barrier layered product, packaging material, package and packaged article
US20230048009A1 (en) Coating liquid for producing gas barrier laminate
JP2019119132A (en) Laminate film and molded article
WO2023074494A1 (en) Gas barrier laminate, packaging body, and packaging article
JP2023068474A (en) Gas barrier laminate, package body and package article
CN114981375B (en) Gas barrier laminate, coating liquid for producing same, packaging material, package, and packaged article
TWI542467B (en) Gas barrier film
JP2019059052A (en) Gas barrier laminate for infusion bag and package for infusion bag
JP2023049299A (en) Laminate, package material, package and packaged article
JP2021020363A (en) Laminate, packaging container using the same, and method for producing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210422

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220228

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220304

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220330

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7088361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150