WO2024090314A1 - ロボット及びロボットシステム - Google Patents

ロボット及びロボットシステム Download PDF

Info

Publication number
WO2024090314A1
WO2024090314A1 PCT/JP2023/037753 JP2023037753W WO2024090314A1 WO 2024090314 A1 WO2024090314 A1 WO 2024090314A1 JP 2023037753 W JP2023037753 W JP 2023037753W WO 2024090314 A1 WO2024090314 A1 WO 2024090314A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
work
identification information
unit
identifier
Prior art date
Application number
PCT/JP2023/037753
Other languages
English (en)
French (fr)
Inventor
晶登 山内
禎昭 杉村
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Publication of WO2024090314A1 publication Critical patent/WO2024090314A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators

Definitions

  • the present invention relates to a robot and a robot system.
  • Patent Document 1 discloses technology that allows the user to select specific work objects and work content to the extent that the robot can perform the task.
  • the person instructing the robot When a single robot is capable of performing multiple tasks, the person instructing the robot must select the correct work pattern from the multiple work patterns registered with the robot. For this reason, if the person instructing the robot selects (operates) the wrong work pattern, there is a risk that the robot and/or peripheral equipment may be damaged due to contact with the equipment, or the object being picked may fall or be lost. It is also expected that it will take a long time to select the correct one.
  • the object of the present invention is to provide a robot and a robot system that reduces the number of errors made by work supervisors and shortens the time it takes to issue work instructions.
  • the robot of the present invention is equipped with a working mechanism that grasps and moves a work object, a reading unit that reads the identification information of an identifier installed at a work location, a memory unit that stores a work pattern corresponding to the identification information, and a control unit that controls the working mechanism based on the work pattern corresponding to the identification information read by the reading unit.
  • FIG. 1 is a schematic configuration diagram of a robot system according to a first embodiment.
  • FIG. 2 is a block diagram showing the configuration of a robot (main body) according to the first embodiment.
  • 4 is an example of a work pattern table stored in a storage unit of the robot according to Example 1.
  • 4 is a flowchart showing the operation of the robot according to the first embodiment.
  • FIG. 11 is a schematic configuration diagram of a robot system according to a second embodiment.
  • FIG. 11 is a block diagram showing the configuration of a robot (main body) and a computer according to a second embodiment.
  • 13 is an example of a work pattern table stored in a storage unit of the robot according to Example 2.
  • 10 is a flowchart showing the operation of a robot according to a second embodiment.
  • 13 is an example of a screen displayed on an output unit of a computer according to the second embodiment.
  • 13 is an example of a two-dimensional code displayed on an identifier according to the third embodiment.
  • 13 is an example of a work pattern table stored in a storage unit of the robot according to Example 3.
  • the robot of this embodiment is placed, for example, in an examination room, and performs multiple tasks (hereinafter sometimes referred to as tasks) related to testing.
  • the examination room is also equipped with analyzers for analyzing samples such as serum, plasma, and urine, a storage cabinet for storing reagents, shelves for storing sample racks and consumables, and a workbench where an operator works.
  • Figure 1 is a table showing examples of tasks that a robot can perform in a laboratory.
  • the work object is a specimen container (test tube) that contains a specimen
  • the work includes sealing, uncapping, and loading onto a specimen rack. Note that the sealing work is performed next to the specimen loading section of the analyzer, and the uncapping and loading onto the specimen rack are performed on a work desk.
  • the work object is a reagent container (reagent bottle) that contains a reagent
  • the work includes removing the used reagent container from the analyzer and loading the unused reagent container into the analyzer.
  • the work instructor (such as an operator) must instruct the robot which task to perform.
  • the work instructor has the robot read the identification information of a specified identifier installed in the work area of the examination room, and causes the robot to perform a predetermined work pattern corresponding to the identification information. Since the work instructor only needs to move the robot in front of the identifier corresponding to the task that the robot is to perform, errors in instructions are reduced and the time required to give instructions is also shortened. A specific explanation is given below using Examples 1 to 3.
  • FIG. 2 is a schematic diagram of a robot system according to the first embodiment. As shown in FIG. 2, the robot system according to the first embodiment includes an identifier 20 and a robot 10.
  • the identifier 20 is installed in the work area of the robot 10, and displays identification information such as marks such as symbols and figures, numbers and character strings, combinations of these, barcodes and two-dimensional codes, etc.
  • identification information such as marks such as symbols and figures, numbers and character strings, combinations of these, barcodes and two-dimensional codes, etc.
  • the identifier 20 is not limited to being affixed to structures such as analytical equipment and shelves located near the work area, but may also be attached as an RFID or have identification information defined by the characteristic shape or arrangement of the structure itself.
  • a position correction marker that serves as a reference position for the robot 10 to grasp the position information required for operation may be installed in the work area.
  • This position correction marker may be provided separately from the identifier 20 that displays the identification information corresponding to the work pattern, or may be provided integrally. If the position correction marker and the identification information are displayed on the same identifier 20, the robot 10 only needs to read the identifier 20 once, which has the advantage of shortening the work time.
  • the robot 10 according to Example 1 is mainly composed of a running unit 11 and a main body unit 12.
  • the running unit 11 supports the main body unit 12 and is equipped with tires and the like so that it can be moved to the work site automatically or manually.
  • the running unit 11 may be separate from the robot 10.
  • An example of an automatic running unit 11 is an AGV (Automatic Guided Vehicle), and an example of a manual running unit 11 is a cart that is pushed or pulled by a work instructor.
  • FIG. 3 is a block diagram showing the configuration of the robot (main body) according to the first embodiment.
  • the main body 12 includes a working mechanism 13, a reading unit 14, a storage unit 15, and a control unit 16.
  • the working mechanism 13 is composed of a hand that grasps and releases the work object, and an arm that moves the hand to a predetermined position.
  • the reading unit 14 reads the identification information of the identifier 20 installed in the work area.
  • the identifier 20 is a display such as a mark or two-dimensional code
  • the reading unit 14 is a camera
  • the identifier 20 is an RFID tag
  • the reading unit 14 is an RFID reader.
  • the reading unit 14 can read not only the identification information of the identifier 20, but also a position correction marker displayed on an identifier 20 that is the same as or different from the identifier 20.
  • the reading unit 14 that reads the identification information and the reading unit 14 that reads the position correction marker may be different.
  • the memory unit 15 stores a work pattern corresponding to the identification information.
  • FIG. 4 is an example of a work pattern table stored in the memory unit of the robot according to the first embodiment. Here, it is assumed that multiple types of marks are displayed in each identifier 20 as identification information. As shown in FIG. 4, in the work pattern table, a different work pattern is defined in association with each mark. The work pattern, including the work object and work location, is defined using a programming language, etc.
  • the control unit 16 controls the operation of the working mechanism 13 by providing specific parameters to the working mechanism 13, sends reading commands to the reading unit 14, and receives read information from the reading unit 14.
  • the control unit 16 also corrects the position of the robot 10 (working mechanism 13) based on the position information of the position correction marker.
  • FIG. 5 is a flow chart showing the operation of the robot according to the first embodiment.
  • the reading unit 14 of the robot 10 reads the identification information of the identifier 20 (step S101).
  • the control unit 16 of the robot 10 checks the work pattern table of the memory unit 15 based on the identification information read by the reading unit 14, and extracts the work pattern corresponding to the identification information (step S102). For example, if the identification information read by the reading unit 14 is the star mark shown in No. 4 of FIG. 4, the control unit 16 extracts the work pattern "open the test tube". After that, the control unit 16 starts the operation of the work mechanism 13 according to the extracted work pattern (step S103).
  • the robot 10 automatically identifies the work pattern to be performed and starts the work without the work instructor having to give instructions (operations) to the robot, improving workability for the work instructor.
  • the control unit 16 also corrects the position of the robot (work mechanism) based on the position information of the position correction marker read by the reading unit 14.
  • Fig. 6 is a schematic diagram of a robot system according to Example 2.
  • the robot system of Example 2 includes an identifier 20, a robot 10, and a computer 30.
  • the robot 10 always automatically identifies the work pattern, but in Example 2, a work instructor can operate the computer 30 as necessary and intervene in identifying the work pattern.
  • FIG. 7 is a block diagram showing the configuration of the robot (main body) and computer in Example 2.
  • the robot's main body 12 includes a working mechanism 13, a reading unit 14, a memory unit 15, a control unit 16, and a communication unit 17.
  • the configurations of the working mechanism 13, the reading unit 14, and the control unit 16 are the same as in the first embodiment.
  • Figure 8 is an example of a work pattern table stored in the memory unit of the robot according to the second embodiment. As shown in Figure 8, No. 1 to No. 4 are the same as in Figure 4 of the first embodiment, but No. 5 and No. 6 have different work patterns defined for the common square mark.
  • the communication unit 17 is an interface that transmits and receives signals to and from the computer 30, and the connection method with the computer 30 may be wireless or wired.
  • the computer 30 includes an output unit 31, an input unit 32, and a communication unit 33.
  • the output unit 31, which is a display, outputs a plurality of work patterns when there are a plurality of work patterns corresponding to the identification information.
  • the input unit 32 selects a specific work pattern from the plurality of work patterns, and is a keyboard or mouse, for example.
  • the communication unit 33 is an interface that transmits and receives signals to and from the robot 10.
  • the output unit 31 and the input unit 32 may be a touch panel monitor that combines the functions of both, and the computer 30 may be a smartphone or tablet terminal.
  • FIG. 9 is a flowchart showing the operation of the robot according to the second embodiment.
  • the reading unit 14 of the robot 10 reads the identification information of the identifier 20 (step S201).
  • the control unit 16 of the robot 10 checks the work pattern table in the memory unit 15 based on the identification information read by the reading unit 14, and extracts the work pattern corresponding to the identification information (step S202). After that, the control unit 16 determines whether or not there are multiple extracted work patterns (step S203). If there are not multiple extracted work patterns, i.e., if there is only one extracted work pattern, the control unit 16 starts the operation of the work mechanism 13 according to the work pattern (step S206).
  • step S203 if it is determined in step S203 that there are multiple work patterns, the control unit 16 transmits each of the extracted work patterns to the computer 30 via the communication unit 17, and the output unit 31 of the computer 30 displays them (step S204).
  • the output unit 31 of the computer 30 displays the work pattern "Remove the used reagent bottle from the analyzer and insert the unusable reagent bottle” and the work pattern "Move the consumables from the shelf to the side of the analyzer" as shown in FIG. 10.
  • step S205 The work instructor selects a predetermined one from the multiple work patterns displayed on the output unit 31 using the input unit 32 (step S205).
  • the selection result is sent to the robot 10 by the communication unit 33, and the control unit 16 starts the operation of the working mechanism 13 according to the selected work pattern (step S206).
  • the identification information is output only when there are multiple work patterns corresponding to it, and the work instructor is prompted to make a selection; however, there may be a non-automatic mode in which the read work pattern is always displayed on the output unit 31, and the work instructor is prompted to confirm it using the input unit 32.
  • the non-automatic mode is set by the work instructor, even if there is only one work pattern corresponding to the identification information, the work instructor will confirm it, which further reduces errors in work instructions.
  • the work pattern table shown in FIG. 8 is stored in the memory unit 15 of the robot 10, but it may also be stored in the memory unit (not shown) of the computer 30.
  • the computer 30 may be an operator's PC placed in an examination room to control an analytical device, etc., or it may be a server placed in a location separate from the examination room.
  • the output unit and input unit are provided in the computer 30, but the output unit and input unit may also be provided in the robot 10.
  • Example 3 in addition to the identification information, part of the information for defining the work pattern is also included in the identifier 20. That is, in the work pattern table of Example 3, only part of the work pattern corresponding to the identification information is defined, and information defining the other part of the work pattern is displayed in the identifier 20.
  • Fig. 11 is an example of a two-dimensional code displayed on an identifier according to Example 3.
  • display information 21 of the two-dimensional code includes sentences A to E.
  • Sentence A is used to extract a specific operation pattern from the operation pattern table.
  • Sentences B to E are used to define a part of the operation pattern, and contain information such as parameters related to the operation distance and initial posture, and arguments for calling the robot to perform a specific operation.
  • FIG. 12 is an example of a work pattern table stored in the memory unit of the robot according to the third embodiment.
  • a function of the robot operation assigned to the above-mentioned argument is linked to a specific two-dimensional code as part of the information defining the work pattern.
  • the control unit 16 of the robot 10 checks the work pattern table based on the information of sentence A and extracts the work pattern of "QR1" as identification information. Furthermore, the control unit 16 combines the information of sentences B to E with the extracted work pattern to uniquely define the content of the work pattern.
  • the work pattern is defined as "PICK (function of robot operation) at XYZ coordinates X100Y-50Z350, and PLACE (function of robot operation) at XYZ coordinates X500Y250Z400.”
  • the advantage is that it is possible to leave the work pattern table as is and only change or add the identifier 20.
  • the present invention is not limited to the above-described embodiments, but includes various modified examples.
  • the above-described embodiments have been described in detail to clearly explain the present invention, and are not necessarily limited to those having all of the configurations described. It is also possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add, delete, or replace part of the configuration of each embodiment with other configurations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

本発明の目的は、作業指示者の指示ミスを抑制し、かつ、作業指示にかかる時間を短縮したロボットを提供することにある。そのために、本発明のロボットは、作業対象物を把持および移動する作業機構と、作業場所に設置された識別子の識別情報を読み取る読取部と、前記識別情報に対応する作業パターンを記憶する記憶部と、前記読取部で読み取った前記識別情報に対応する前記作業パターンに基づいて前記作業機構を制御する制御部と、を備えたことを特徴とする。

Description

ロボット及びロボットシステム
 本発明は、ロボット及びロボットシステムに関する。
 医療分野における人手不足は長く指摘されている。特に検査室業務において、検査室の省人化及び自動化の要求は高い。自動化する手段の一つとしてロボットの導入が考えられる。ロボットは高コストであるため、一台のロボットに一つの作業を担当させるのではなく、一台のロボットに複数の作業を担当させたいという要求もまた高い。例えば、特許文献1には、ロボットが実行可能な程度に、具体的な作業対象物や作業内容をユーザに選択させる技術が開示されている。
特開2015-136762号公報
 一台のロボットで複数の作業を実行可能な場合、ロボットへの作業指示者は、ロボットに登録された複数の作業パターンから、正しいものを選択する必要がある。このため、作業指示者が作業パターンを間違えて指示(操作)した場合、周辺機器への接触によるロボット及び周辺機器の破損、ピックしている対象物の落下や損失などにつながる恐れがある。また、正しいものを選択するまでにかかる時間が長くなることも想定される。
 本発明の目的は、作業指示者の指示ミスを抑制し、かつ、作業指示にかかる時間を短縮したロボット及びロボットシステムを提供することにある。
 前述の課題を解決するために、本発明のロボットは、作業対象物を把持および移動する作業機構と、作業場所に設置された識別子の識別情報を読み取る読取部と、前記識別情報に対応する作業パターンを記憶する記憶部と、前記読取部で読み取った前記識別情報に対応する前記作業パターンに基づいて前記作業機構を制御する制御部と、を備えた。
 本発明によれば、作業指示者の指示ミスを抑制し、かつ、作業指示にかかる時間を短縮したロボット及びロボットシステムを提供することができる。
  前述した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
検査室でロボットが実行するタスクの例を示す表。 実施例1に係るロボットシステムの概略構成図。 実施例1に係るロボット(本体部)の構成を示すブロック図。 実施例1に係るロボットの記憶部に記憶される作業パターンテーブルの一例。 実施例1に係るロボットの動作を示すフローチャート。 実施例2に係るロボットシステムの概略構成図。 実施例2に係るロボット(本体部)及びコンピュータの構成を示すブロック図。 実施例2に係るロボットの記憶部に記憶される作業パターンテーブルの一例。 実施例2に係るロボットの動作を示すフローチャート。 実施例2のコンピュータの出力部に表示される画面の一例。 実施例3に係る識別子に表示される二次元コードの一例。 実施例3に係るロボットの記憶部に記憶される作業パターンテーブルの一例。
 本発明の実施形態を図面に基づいて詳細に説明する。
 本実施形態のロボットは、例えば検査室に置かれ、検査に関する複数の作業(以下、タスクということがある)を実行する。検査室内には、ロボットの他、血清、血漿、尿などの検体を分析する分析装置、試薬などを保管する保管庫、検体ラックや消耗品を収容する棚、オペレータが作業する作業台、なども置かれている。
 図1は、検査室でロボットが実行するタスクの例を示す表である。作業対象物が、検体を収容する検体容器(試験管)の場合、作業内容は、封栓、開栓、検体ラックへの搭載などである。なお、封栓の作業は、分析装置の検体投入部の横で実行され、開栓及び検体ラックへの搭載の作業は、作業机で実行される。作業対象が、試薬を収容する試薬容器(試薬ボトル)の場合、作業内容は、使用後の試薬容器を分析装置から取り出し、使用前の試薬容器を分析装置に投入することなどである。
 このように、一台のロボットが複数の作業を実行することを想定している場合、作業指示者(オペレータなど)は、ロボットにどの作業を実行させるか指示する必要がある。そこで、本実施形態では、作業指示者が、検査室の作業場所に設置された所定の識別子の識別情報をロボットに読み取らせることで、識別情報に対応して予め定められた作業パターンをロボットに実行させるようにした。作業指示者は、ロボットに実行させたい作業に対応する識別子の前にロボットを移動させるだけで済むので、指示ミスが抑制され、かつ、指示に要する時間も短縮される。以下、実施例1~3を用いて具体的に説明する。
  図2は、実施例1に係るロボットシステムの概略構成図である。図2に示すように、実施例1のロボットシステムは、識別子20と、ロボット10と、を備える。
 識別子20は、ロボット10の作業場所に設置されるものであり、例えば、記号や図形などのマーク、数字や文字列、これらの組合せ、バーコードや二次元コード、などの識別情報を表示する。ただし、識別子20は、作業場所の近辺にある分析装置や棚などの構造物に貼り付けられるものに限らず、RFIDとして取り付けられるものや、構造物そのものの特徴的な形状又は配置により識別情報が定義されるものであっても良い。
 また、ロボットシステムの一要素として、ロボット10が動作に必要な位置情報を把握する上での基準位置となる位置補正マーカが、作業場所に設置されても良い。この位置補正マーカは、作業パターンに対応した識別情報を表示する識別子20と、別体で設けられても良いし、一体で設けられても良い。位置補正マーカと識別情報が同一の識別子20に表示されていると、ロボット10による識別子20の読み取り動作が一度で済み、作業時間の短縮に繋がる利点がある。
 次に、ロボット10の構成について説明する。実施例1に係るロボット10は、走行部11と、本体部12と、で主に構成される。走行部11は、本体部12を支持するとともに、自動又は手動で作業場所へ移動できるようにタイヤなどを備えている。ただし、走行部11は、ロボット10と別体であっても良い。自動の場合の走行部11の例としては、AGV(Automatic Guided Vehicle)などが挙げられ、手動の場合の走行部11の例としては、作業指示者が押したり引いたりする台車などが挙げられる。
 図3は、実施例1に係るロボット(本体部)の構成を示すブロック図である。図3に示すように、本体部12は、作業機構13と、読取部14と、記憶部15と、制御部16と、を備える。
 作業機構13は、作業対象物を把持及び解放を行うハンドや、ハンドを所定位置に移動させるアームなどで構成される。
 読取部14は、作業場所に設置された識別子20の識別情報を読み取るものである。例えば、識別子20がマークや二次元コードなどの表示であれば、読取部14はカメラであり、識別子20がRFIDタグであれば、読取部14はRFIDリーダである。読取部14は、識別子20の識別情報だけでなく、当該識別子20と同一又は別体の識別子20に表示される位置補正マーカについても読取が可能である。ただし、識別情報を読み取る読取部14と、位置補正マーカを読み取る読取部14と、は異なっていても構わない。
 記憶部15は、識別情報に対応する作業パターンを記憶する。図4は、実施例1に係るロボットの記憶部に記憶される作業パターンテーブルの一例である。ここでは、識別情報として複数種類のマークが各識別子20に表示されているものとする。図4に示すように、作業パターンテーブルでは、各マークに対して、それぞれ異なる作業パターンが紐づく形で定義されている。なお、作業パターンは、作業対象物や作業場所なども含めて、プログラミング言語などを用いて定義される。
 制御部16は、作業機構13に所定のパラメータを与えることで作業機構13の動作を制御したり、読取部14へ読取指令を送信したり、読取部14から読取情報を受信したりする。また、制御部16は、位置補正マーカの位置情報に基づいてロボット10(作業機構13)の位置を補正する。
 次に、ロボット10の動作について説明する。図5は、実施例1に係るロボットの動作を示すフローチャートである。まず、作業指示者が、検査室の作業場所に設置された複数の識別子20のうち、ロボット10に実行させたい作業に対応する識別子20の前にロボット10を移動させると、ロボット10の読取部14が、識別子20の識別情報を読み取る(ステップS101)。次に、ロボット10の制御部16が、読取部14で読み取った識別情報に基づいて記憶部15の作業パターンテーブルを照合し、識別情報に対応する作業パターンを抽出する(ステップS102)。例えば、読取部14が読み取った識別情報が図4のNo.4に示す☆のマークであった場合、制御部16は、「試験管を開栓する」という作業パターンを抽出する。その後、制御部16は、抽出された作業パターンに従い、作業機構13の動作を開始する(ステップS103)。
 本実施例では、作業指示者がロボットに対して指示(操作)をすることなく、実行すべき作業パターンをロボット10が自動的に特定して作業を開始するため、作業指示者にとって作業性が向上する。なお、図5では省略されているが、制御部16は、読取部14が読み取った位置補正マーカの位置情報に基づいて、ロボット(作業機構)の位置の補正も行う。
  図6は、実施例2に係るロボットシステムの概略構成図である。図6に示すように、実施例2のロボットシステムは、識別子20と、ロボット10と、コンピュータ30と、を備える。実施例1は、ロボット10が作業パターンを常に自動的に特定するものであったが、実施例2は、作業指示者が必要に応じてコンピュータ30を操作し、作業パターンの特定に介在できるようにしたものである。以下、実施例1と異なる点を中心に説明する。
 図7は、実施例2に係るロボット(本体部)及びコンピュータの構成を示すブロック図である。
 ロボットの本体部12は、作業機構13と、読取部14と、記憶部15と、制御部16と、通信部17と、を備える。作業機構13、読取部14及び制御部16の構成は、実施例1と同様である。図8は、実施例2に係るロボットの記憶部に記憶される作業パターンテーブルの一例である。図8に示すように、No.1~No.4までは実施例1の図4と同様であるが、No.5とNo.6は共通の□のマークに対して異なる作業パターンが定義されている。通信部17は、コンピュータ30との間で信号の送受信を行うインターフェースであり、コンピュータ30との接続方式は無線でも有線でも良い。
 コンピュータ30は、出力部31と、入力部32と、通信部33と、を備える。出力部31は、識別情報に対応する作業パターンが複数ある場合に、複数の作業パターンを出力するものであり、例えばディスプレイである。入力部32は、複数の作業パターンから特定のものを選択するものであり、例えばキーボードやマウスである。通信部33は、ロボット10との間で信号の送受信を行うインターフェースである。なお、出力部31と入力部32は、両方の機能を兼ねたタッチパネル式のモニタであっても良いし、コンピュータ30は、スマートフォンやタブレット端末でも良い。
 次に、ロボット10の動作について説明する。図9は、実施例2に係るロボットの動作を示すフローチャートである。まず、作業指示者が、検査室の作業場所に設置された複数の識別子20のうち、ロボット10に実行させたい作業に対応する識別子20の前にロボット10を移動させると、ロボット10の読取部14が、識別子20の識別情報を読み取る(ステップS201)。次に、ロボット10の制御部16が、読取部14で読み取った識別情報に基づいて記憶部15の作業パターンテーブルを照合し、識別情報に対応する作業パターンを抽出する(ステップS202)。その後、制御部16は、抽出された作業パターンが複数か否かを判定する(ステップS203)。抽出された作業パターンが複数でない、すなわち1つの場合、制御部16は、当該作業パターンに従い、作業機構13の動作を開始する(ステップS206)。
 一方、ステップS203において、作業パターンが複数と判定された場合、制御部16は、抽出された各作業パターンを通信部17によりコンピュータ30へ送信し、コンピュータ30の出力部31が表示する(ステップS204)。例えば、ロボット10の読取部14が読み取った識別情報が図8のNo.5及びNo.6に共通する□のマークであった場合、コンピュータ30の出力部31には、図10に示すように、「使用後の試薬ボトルを分析装置から取り出し、使用前の試薬前の試薬ボトルを投入」という作業パターンと、「消耗品を棚から分析装置の横に移動」という作業パターンと、が表示される。なお、マーク自体が同一であっても、対応する作業パターンが異なる場合には、それを区別できる付随情報が識別子に表示されても良く、図8では「□」マークに続く「1」又は「2」の表記が付随情報に該当する。作業指示者は、出力部31に表示された複数の作業パターンの中から所定のものを入力部32により選択する(ステップS205)。選択結果は、通信部33によりロボット10へ送信され、制御部16が、選択された作業パターンに従い、作業機構13の動作を開始する(ステップS206)。
 本実施例によれば、検査室のレイアウト上の制約などの理由で多数の識別子20が設置できない場合であっても、作業指示者による選択を介在させることで、一台のロボット10に対して多数の作業を実行させることが可能となる。なお、本実施例では、識別情報に対応する作業パターンが複数ある場合のみ出力して作業指示者に選択を促したが、読み取られた作業パターンを常に出力部31に表示して、入力部32による作業指示者の確認を促すような非自動モードがあっても良い。作業指示者によって非自動モードが設定された場合、識別情報に対応する作業パターンが1つの場合であっても、作業指示者による確認が行われるため、作業指示のミスがより抑制できる。
 また、本実施例では、図8に示す作業パターンテーブルがロボット10の記憶部15に記憶されたが、コンピュータ30の記憶部(図示せず)に記憶されても良い。コンピュータ30は、検査室に置かれて分析装置などを制御するオペレータ用PCでも良いし、検査室とは別の場所に置かれたサーバでも良い。さらに、本実施例では、出力部や入力部がコンピュータ30に設けられたが、出力部や入力部がロボット10に設けられても良い。
  実施例3は、識別情報に加えて、作業パターンを定義するための情報の一部も、識別子20に含ませたものである。すなわち、実施例3の作業パターンテーブルでは、識別情報に対応する作業パターンのうち一部のみを定義し、作業パターンの他の一部を定義する情報が、識別子20に表示される。
 図11は、実施例3に係る識別子に表示される二次元コードの一例である。図11に示すように、二次元コードの表示情報21には、センテンスA~センテンスEが含まれる。
センテンスAは、作業パターンテーブルにおいて特定の作業パターンを抽出するために使用される。センテンスB~センテンスEは、作業パターンの一部を定義するために使用され、動作距離や初期姿勢に関するパラメータや、ロボットに所定の動作を呼び出すための引数などの情報である。
 図12は、実施例3に係るロボットの記憶部に記憶される作業パターンテーブルの一例である。図12に示すように、実施例3の作業パターンテーブルでは、所定の二次元コードに対し、作業パターンを定義する情報の一部として、前述の引数に引き当てられるロボット動作の関数が紐づけられている。
 ロボット10の読取部14が、図11に示す二次元コードを読み取ると、センテンスAの情報に加えて、センテンスB~センテンスEの情報が制御部16に送られる。次に、ロボット10の制御部16は、センテンスAの情報に基づき作業パターンテーブルを照合し、識別情報として「QR1」の作業パターンを抽出する。さらに、制御部16は、抽出された作業パターンに、センテンスB~センテンスEの情報を組み合わせることで、作業パターンの内容を一意に定義する。図11及び図12の例の場合、「XYZ座標X100Y-50Z350でPICK(ロボット動作の関数)し、XYZ座標X500Y250Z400でPLACE(ロボット動作の関数)する」という作業パターンが定義される。
 本実施例によれば、作業パターンの定義を変更又は追加したい場合に、作業パターンテーブルはそのままで、識別子のみ20を変更又は追加すれば良い利点がある。
 なお、本発明は前述した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した各実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 10…ロボット、11…走行部、12…本体部、13…作業機構、14…読取部、15…記憶部、16…制御部、17…通信部、20…識別子、21…表示情報、30…コンピュータ、31…出力部、32…入力部、33…通信部。

Claims (8)

  1. 作業対象物を把持および移動する作業機構と、
    作業場所に設置された識別子の識別情報を読み取る読取部と、
    前記識別情報に対応する作業パターンを記憶する記憶部と、
    前記読取部で読み取った前記識別情報に対応する前記作業パターンに基づいて前記作業機構を制御する制御部と、
    を備えたロボット。
  2. 請求項1において、
    前記読取部は、基準位置にあるマーカも読み取り、
    前記制御部は、前記読取部で読み取った前記マーカの位置情報に基づいて位置補正することを特徴とするロボット。
  3. 請求項2において、
    前記マーカと前記識別情報が、同一の前記識別子に表示されることを特徴とするロボット。
  4. 請求項1において、
    前記識別子は、前記作業場所にある構造物そのものの形状または配置により定義されるものであることを特徴とするロボット。
  5. ロボットと、前記ロボットの作業場所に設置された識別子と、を有するロボットシステムであって、
    前記ロボットは、
    作業対象物を把持および移動する作業機構と、
    前記識別子の識別情報を読み取る読取部と、
    前記読取部で読み取った前記識別情報に対応する作業パターンに基づいて前記作業機構を制御する制御部と、を備えたロボットシステム。
  6. 請求項5において、
    前記ロボットは、前記識別情報に対応する前記作業パターンのうち一部を定義する情報を記憶する記憶部をさらに備え、
    前記識別子は、前記識別情報に加えて、前記識別情報に対応する前記作業パターンのうち他の一部を定義する情報が表示されることを特徴とするロボットシステム。
  7. 請求項5において、
    前記ロボットと通信可能なコンピュータをさらに有し、
    前記コンピュータは、
    前記識別情報に対応する前記作業パターンが複数ある場合に、複数の前記作業パターンを出力する出力部と、
    複数の前記作業パターンから特定のものを選択する入力部と、を備えたことを特徴とするロボットシステム。
  8. 請求項5において、
    前記ロボットと通信可能なコンピュータをさらに有し、
    前記コンピュータは、
    前記識別情報に対応する作業パターンを記憶する記憶部を備えたことを特徴とするロボットシステム。
PCT/JP2023/037753 2022-10-27 2023-10-18 ロボット及びロボットシステム WO2024090314A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-172246 2022-10-27
JP2022172246 2022-10-27

Publications (1)

Publication Number Publication Date
WO2024090314A1 true WO2024090314A1 (ja) 2024-05-02

Family

ID=90830822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037753 WO2024090314A1 (ja) 2022-10-27 2023-10-18 ロボット及びロボットシステム

Country Status (1)

Country Link
WO (1) WO2024090314A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212764A (ja) * 2010-03-31 2011-10-27 Toyota Motor Corp ロボットの遠隔操作システム
JP2015182211A (ja) * 2014-03-26 2015-10-22 セイコーエプソン株式会社 ロボットシステム、ロボット、制御装置、及び制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212764A (ja) * 2010-03-31 2011-10-27 Toyota Motor Corp ロボットの遠隔操作システム
JP2015182211A (ja) * 2014-03-26 2015-10-22 セイコーエプソン株式会社 ロボットシステム、ロボット、制御装置、及び制御方法

Similar Documents

Publication Publication Date Title
EP2508896B1 (en) Automatic analyzing device
US9952239B2 (en) Sample inspection automation system and sample transfer method
EP2333556B1 (en) Automatic analyzer
EP2068153B1 (en) Automatic analyzer
EP2023150A2 (en) Automatic analyzer and method for using the same
US20210270858A1 (en) Automatic analysis system
US6868308B2 (en) Operation guidance method of clinical system
US20190227090A1 (en) Automatic analyzer, automatic analysis system, and display method of reagent list
WO2020082237A1 (zh) 一种对流水线上的样本进行监控的方法及其系统
WO2021024539A1 (ja) 自動分析システム及びアラーム対処方法
US6587122B1 (en) Instruction syntax help information
US20070156278A1 (en) Monitoring device for machining apparatus
EP3422016A1 (en) Specimen-container loading/storing unit
JP2001118177A (ja) 現場点検操作支援装置とその点検操作方法
CN110967498B (zh) 一种分析仪及其查找特定样本的方法、存储介质
CN111624356A (zh) 一种样本分析系统、样本调度方法及存储介质
US9811071B2 (en) System construction support apparatus
WO2024090314A1 (ja) ロボット及びロボットシステム
CN101271121A (zh) 自动分析装置
EP2846258A1 (en) Method and analysis system for processing biological samples
US20190316994A1 (en) Histological Specimens Traceability Apparatus and Method
US8718801B2 (en) Automated programming system employing non-text user interface
JP3915741B2 (ja) データ入力支援装置およびデータ入力支援方法
JP2008241386A (ja) 分析情報管理システム
CN115904560A (zh) 样本标记方法、装置、计算机设备和样本分析仪