WO2024090142A1 - ロータ - Google Patents

ロータ Download PDF

Info

Publication number
WO2024090142A1
WO2024090142A1 PCT/JP2023/035795 JP2023035795W WO2024090142A1 WO 2024090142 A1 WO2024090142 A1 WO 2024090142A1 JP 2023035795 W JP2023035795 W JP 2023035795W WO 2024090142 A1 WO2024090142 A1 WO 2024090142A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotor core
end plate
flow passage
core
Prior art date
Application number
PCT/JP2023/035795
Other languages
English (en)
French (fr)
Inventor
陽 松本
弘行 大野
森 琢磨
亮介 中尾
Original Assignee
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン filed Critical 株式会社アイシン
Publication of WO2024090142A1 publication Critical patent/WO2024090142A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/279Magnets embedded in the magnetic core
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium

Definitions

  • the present invention relates to a rotor.
  • JP 2020-120425 A discloses a rotor including a rotor shaft having a hollow portion through which a refrigerant is supplied, a rotor core provided with a cooling flow passage extending in the axial direction through which the refrigerant flows, and two end plates provided at one axial end of the rotor core in contact with each other.
  • the rotor core has magnet holes in which permanent magnets are disposed radially outside the cooling flow passage.
  • a flow passage is provided at the boundary between the two end plates to guide the refrigerant in the hollow portion of the rotor shaft to the cooling flow passage of the rotor core.
  • the rotor also includes a movement restriction portion that contacts the end plate on the axial outer side and restricts the axial movement of the two end plates and the rotor core.
  • This invention was made to solve the problems described above, and one object of the invention is to provide a rotor that allows for a simplified device configuration for flowing refrigerant through the core flow passage of the rotor core that extends in the axial direction, without providing multiple (two) end plates on one side in the axial direction.
  • a rotor in one aspect of the present invention includes a rotor core including a rotor shaft extending in the axial direction and having a hollow portion through which a refrigerant is supplied, a shaft insertion hole into which the rotor shaft is inserted, and an axially extending core flow passage through which the refrigerant flows, an end plate including an inner end face contacting one axial end face of the rotor core and an outer end face opposite the inner end face in the axial direction, an axial movement restriction portion provided separately from the end plate and including an end plate contact surface contacting the outer end face of the end plate, and restricting the axial movement of the end plate and the rotor core relative to the rotor shaft by contacting the outer end face, and a supply flow passage that supplies refrigerant from the hollow portion to the core flow passage, the supply flow passage including a boundary flow passage extending along the boundary between the outer end face of the end plate and the end plate contact surface of the axial movement restriction portion, a
  • an axial movement restriction portion that restricts the axial movement of the end plate and the rotor core relative to the rotor shaft, and a supply flow path that supplies refrigerant from the hollow portion to the core flow path are provided, and the supply flow path is provided with a boundary flow path that extends along the boundary between the outer end face of the end plate and the end plate contact surface of the axial movement restriction portion, a first connection flow path that is provided in the rotor shaft and connects the hollow portion and the boundary flow path, and a second connection flow path that is provided in the end plate and connects the boundary flow path and the core flow path.
  • the length from the outer circumferential surface of the rotor shaft to the outer circumferential surface of the axial movement restricting portion is less than half the length from the outer circumferential surface of the rotor shaft to the outer circumferential surface of the rotor core.
  • the end plate includes a groove recessed from the outer end face towards the rotor core, and the boundary flow passage is formed by the groove and the end plate contact surface of the axial movement restricting part.
  • the axial movement restricting portion is preferably a fixed member that is fixed to the rotor shaft and positioned in the axial direction, and a set of end plates and fixed members is provided on both one and the other axial sides of the rotor core.
  • the rotor core preferably includes magnet holes in which permanent magnets are arranged, and slits formed by through holes provided radially inside the magnet holes and extending in the axial direction of the rotor core, and the core flow passage through which the refrigerant flows is formed by the slits.
  • the slits formed by the through holes extending in the axial direction of the rotor core expand radially when the rotor is driven, thereby maintaining the position of the rotor core at the radially inner part of the slits while slightly moving the position of the rotor core at the radially outer part of the slits radially outward.
  • the slits maintain the contact state between the rotor core and the rotor shaft even when centrifugal force is applied to the rotor core.
  • the slits can be used as core flow passages while maintaining the contact state between the rotor core and the rotor shaft.
  • the rotor core according to the above aspect preferably further comprises a discharge member including a discharge flow passage that discharges the coolant supplied from the supply flow passage on one axial side of the rotor core from the other axial side, and the discharge flow passage includes an inclined surface that is inclined toward the coil end portion so that the discharged coolant is discharged toward the coil end portion of the stator.
  • the inclined surface allows the coolant to be discharged toward the coil end portion of the stator, so that not only the rotor but also the coil end portion of the stator can be cooled.
  • the slits preferably have an inner slit and an outer slit provided radially outward of the inner slit and positioned closer to the magnet holes than the inner slit, and the core flow passage through which the refrigerant flows is formed by the outer slit.
  • the refrigerant can be caused to flow through the outer slit located closer to the magnet holes located radially outward than the inner slit, so that the heat-generating permanent magnets can be effectively cooled.
  • the supply flow passage provided in the set of end plates and fixing members on one axial side of the rotor core is configured to supply the refrigerant to the rotor core from one axial side of the rotor core and flow the refrigerant toward the other axial side of the rotor core
  • the supply flow passage provided in the set of end plates and fixing members on the other axial side of the rotor core is configured to supply the refrigerant to the rotor core from the other axial side of the rotor core and flow the refrigerant toward one axial side of the rotor core.
  • the groove forming the boundary flow passage preferably has an annular groove extending annularly along the outer circumferential surface of the rotor shaft, and a plurality of radial grooves extending radially outward from the annular groove.
  • a first connection flow passage is connected to the annular groove from the radial inside, and a second connection flow passage is connected to the radially outer end of the radial groove from the rotor core side.
  • the first connection flow passage allows the refrigerant to easily flow from the hollow portion of the rotor shaft to the annular groove
  • the second connection flow passage allows the refrigerant to easily flow from the radial groove to the core flow passage of the rotor core.
  • FIG. 1 is a cross-sectional view showing a rotating electric machine including a rotor according to an embodiment, viewed from a radial direction; 2 is a view taken along line II-II in FIG. 1.
  • FIG. 2 is an enlarged view of part A in FIG.
  • FIG. 2 is an exploded perspective view of a rotor according to an embodiment.
  • the direction in which the rotor shaft 1 extends is indicated by the Z direction.
  • the "axial direction” is also the direction along the central axis C of rotation of the rotor core 2.
  • the radial direction of the rotor core 2 is indicated by the R direction.
  • the radially outer side is indicated by the R1 direction
  • the radially inner side is indicated by the R2 direction.
  • the R direction is also the radial direction of the end plate (an example of the "discharge member” in the claims) 3, the fixed member (an example of the "axial movement restriction portion” in the claims) 4, and the rotor shaft 1.
  • the circumferential direction of the rotor core 2 is indicated by the r direction. Note that the r direction is also the circumferential direction of the end plates 3, the fixing members 4, and the rotor shaft 1.
  • the rotating electric machine 100 includes a stator 101 and a rotor 102.
  • the stator 101 and the rotor 102 face each other.
  • the rotor 102 is disposed radially inward (in the direction R2) of the stator 101.
  • the rotating electric machine 100 of this embodiment is configured as an inner rotor type rotating electric machine.
  • the stator 101 includes a stator core 101a and a coil 101b arranged in the stator core 101a.
  • stator core 101a At both axial ends of the stator core 101a, coil end portions 101c of the coils 101b are provided, which protrude from the stator core 101a in the axial direction.
  • the stator core 101a is made up of multiple electromagnetic steel plates stacked in the axial direction, and is configured to allow magnetic flux to pass through.
  • the coils 101b are connected to an external power supply, and are configured to receive power (e.g., three-phase AC power). When power is supplied to the coils 101b, they are configured to generate a magnetic field.
  • power e.g., three-phase AC power
  • the rotor 102 includes a rotor shaft 1 , a rotor core 2 , end plates 3 , a fixing member 4 , and a supply flow passage 5 .
  • the end plate 3 is a single structure provided on one side (one side) of the rotor core 2 in the axial direction.
  • the end plate 3 is a single structure provided on the other side (one side) of the rotor core 2 in the axial direction.
  • the end plates 3 and the fixed members 4 are arranged in contact with each other in the axial direction.
  • Sets of end plates 3 and fixed members 4 are provided on both axial sides of the rotor core 2.
  • the sets of end plates 3 and fixed members 4 are configured as a pair.
  • the supply flow paths 5 are configured such that the rotor 102 supplies refrigerant to the rotor core 2 from the supply flow paths 5 on both axial sides by the sets of end plates 3 and fixed members 4, allowing the refrigerant to flow in both axial directions.
  • the rotor 102 is configured such that the fixing member 4, end plate 3, rotor core 2, end plate 3, and fixing member 4 are arranged in this order in the axial direction.
  • the rotor shaft 1 is inserted through the fixing member 4, end plate 3, and rotor core 2.
  • the set of end plates 3 and fixing members 4 on the Z1 side and the set of end plates 3 and fixing members 4 on the Z2 side are arranged at a predetermined angle in the circumferential direction.
  • the set of end plates 3 and fixing members 4 on the Z1 side and the set of end plates 3 and fixing members 4 on the Z2 side are arranged at a predetermined angle so that their second connection flow paths 51, which will be described later, do not overlap.
  • the set of end plates 3 and fixing members 4 on the Z1 side and the set of end plates 3 and fixing members 4 on the Z2 side are arranged at a 45 degree circumferential offset.
  • the rotor core 2 is made up of multiple electromagnetic steel plates stacked in the axial direction and is configured to allow magnetic flux to pass through.
  • the rotor core 2 includes multiple magnet holes 20 in which permanent magnets 20a are arranged.
  • the magnet holes 20 are arranged at predetermined angular intervals near the outer peripheral surface 2a on the radially outer side (R1 direction side) of the rotor core 2.
  • the magnet holes 20 penetrate the rotor core 2 in the axial direction.
  • the rotating electric machine 100 is configured as an interior permanent magnet motor (IPM motor: Interior Permanent Magnet Motor).
  • IPM motor Interior Permanent Magnet Motor
  • the multiple permanent magnets 20a form multiple magnetic poles M arranged circumferentially.
  • the rotor 102 is configured so that when the rotating electric machine 100 is driven, the refrigerant flowing through the rotor 102 cools the permanent magnets 20a, which generate heat.
  • the rotor shaft 1 is a shaft portion that serves as the rotation center of the rotating electrical machine 100.
  • the rotor shaft 1 is formed in a cylindrical (annular) shape having a circular outer circumferential surface 1a.
  • the rotor shaft 1 is formed from steel.
  • the rotor shaft 1 has a hollow portion 10 and a first connecting passage 50 that forms part of the supply passage 5.
  • the hollow portion 10 is formed by a hole extending along the central axis of rotation C that extends in the axial direction (Z direction) of the rotor shaft 1.
  • the hollow portion 10 is the location where the refrigerant is first supplied in each component of the rotor 102.
  • the hollow portion 10 is configured so that the refrigerant is sent from a refrigerant supply source (not shown) in which the refrigerant is stored.
  • the first connection flow passage 50 is formed by a through hole for allowing the refrigerant to flow out from the hollow portion 10 to the outside of the rotor shaft 1.
  • the first connection flow passage 50 extends linearly in the radial direction (R direction).
  • a plurality of first connection flow passages 50 are provided in the circumferential direction (r direction).
  • two first connection flow passages 50 are provided at equal angular intervals in the circumferential direction (r direction). Two are provided on one side and two on the other side in the axial direction of the rotor shaft 1 (a total of four).
  • the radially inner end of the first connection flow passage 50 is connected to the hollow portion 10.
  • the radially outer end of the first connection flow passage 50 is connected to the boundary flow passage 52 (annular groove portion 32a) that forms part of the supply flow passage 5.
  • the rotor core 2 includes the magnet hole 20, a shaft insertion hole 21 into which the rotor shaft 1 is inserted, a slit 22, and a core flow passage 23 extending in the axial direction through which the refrigerant flows.
  • the shaft insertion hole 21 is formed by a circular hole located at the center of the rotor core 2. Therefore, the rotor core 2 is formed in a cylindrical (annular) shape with a circular outer circumferential surface 2a.
  • the slits 22 are provided on the radially inner side of the magnet hole 20.
  • the slits 22 are formed by through holes extending in the axial direction of the rotor core 2.
  • the slits 22 are disposed near the inner circumferential surface on the radially inner side (R2 direction side) of the rotor core 2.
  • the core flow passage 23, through which the refrigerant flows, is formed by the slits 22.
  • the slit 22 has an inner slit 22a and an outer slit 22b.
  • the outer slit 22b is provided radially outward of the inner slit 22a and is positioned closer to the magnet hole 20 than the inner slit 22a. In other words, the outer slit 22b is positioned radially closer to the heat-generating permanent magnet 20a than the inner slit 22a.
  • the core flow passage 23 through which the refrigerant flows is formed by the outer slit 22b. That is, the outer slit 22b (core flow passage 23) is connected to the hollow portion 10 of the rotor shaft 1 via a supply flow passage 5 on one side in the axial direction. In addition, the outer slit 22b (core flow passage 23) is configured to discharge the refrigerant to the outside of the rotor 102 via a discharge flow passage 33 on the other side in the axial direction.
  • a pair of end plates 3 are provided to sandwich the rotor core 2 from both sides in the axial direction.
  • the end plates 3 are thin-walled disk members that are smaller in axial size than the rotor core 2.
  • the radius L10 of the end plates 3 is larger than the radius L11 of the fixing member 4 (see FIG. 1).
  • the radius L10 of the end plates 3 is approximately equal to the diameter L12 of the rotor core 2 (see FIG. 1).
  • the end plate 3 includes an inner end surface 30, an outer end surface 31, a groove portion 32, and a discharge flow passage 33.
  • the inner end face 30 is configured to contact one axial end face 2b of the rotor core 2.
  • the end of the core flow passage 23 of the rotor core 2 is disposed on the inner end face 30.
  • the outer end face 31 is disposed on the opposite side of the inner end face 30 in the axial direction. In other words, the outer end face 31 is disposed at a position farther away from the rotor core 2 than the inner end face 30.
  • the groove portion 32 is recessed from the outer end surface 31 toward the rotor core 2.
  • the groove portion 32 is configured to form the boundary flow passage 52. Details will be described later.
  • the discharge passage 33 is configured to discharge the refrigerant supplied from the supply passage 5 on one axial side of the rotor core 2 from the other axial side.
  • the discharge flow passage 33 includes an inclined surface 33a.
  • the inclined surface 33a is inclined toward the coil end portion 101c so that the refrigerant discharged from the discharge flow passage 33 is discharged toward the coil end portion 101c of the stator 101.
  • a plurality of discharge flow passages 33 are provided on the end plate 3. In detail, four discharge flow passages 33 are provided at equal angular intervals in the circumferential direction (r direction).
  • the discharge flow passages 33 are disposed between the radial groove portions 32b of adjacent supply flow passages 5 in the circumferential direction (r direction). Each discharge flow passage 33 extends radially in the radial direction.
  • the exhaust flow passage 33 is disposed at a position where its radially inner end overlaps with the core flow passage 23 of the rotor core 2, and is connected to the core flow passage 23 (outer slit 22b).
  • the exhaust flow passage 33 has its radially outer end connected to the outside of the rotor 102.
  • the exhaust flow passage 33 includes an exhaust through hole portion 33b and an exhaust groove portion 33c.
  • the discharge through hole portion 33b is disposed radially inside the discharge flow passage 33 and extends in the axial direction.
  • the discharge through hole portion 33b is connected to the core flow passage 23 (outer slit 22b).
  • the discharge groove 33c extends radially outward in a straight line from the discharge through hole 33b along the boundary between the end plate 3 and the fixed member 4.
  • the discharge groove 33c is provided in the end plate 3.
  • the radially inner portion of the discharge groove 33c is blocked by the fixed member 4 (end plate contact surface 40) (see FIG. 3).
  • the radially outer portion of the discharge groove 33c is not blocked by the fixed member 4 and is open so that the refrigerant can be discharged toward the rotor 102 (see FIG. 3).
  • the inclined surface 33a is positioned so that it is exposed to the outside of the rotor 102 without being blocked by the fixing member 4.
  • the refrigerant flows from the upstream side to the downstream side through the discharge through hole portion 33b, the discharge groove portion 33c, the inclined surface 33a, and the outside of the rotor 102 in that order.
  • the fixing members 4 are provided separately from the end plates 3.
  • the fixing members 4 include end plate contact surfaces 40 that come into contact with the outer end faces 31 of the end plates 3.
  • the fixing members 4 are configured to restrict axial movement of the end plates 3 and the rotor core 2 relative to the rotor shaft 1 by contacting the outer end faces 31 at the end plate contact surfaces 40.
  • the fixing member 4 is configured to be directly fixed to the rotor shaft 1 and positioned in the axial direction.
  • the fixing member 4 is fixed to the rotor shaft 1 by crimping.
  • the rotor shaft 1 is provided with an annular crimp groove 11 (see FIG. 3) that extends in the circumferential direction.
  • a pair of fixing members 4 are provided to sandwich the rotor core 2 from both sides in the axial direction.
  • the pair of fixing members 4 are configured to clamp the end plates 3 and rotor core 2 and be fixed to the rotor shaft 1 by crimping, thereby restricting the axial movement of the end plates 3 and rotor core 2.
  • the fixing members may be fixed to the rotor shaft by press fitting or by fastening the inner peripheral surface of the fixing members and the outer peripheral surface of the shaft with a screw shape.
  • the length L1 (see FIG. 1) from the outer peripheral surface 1a of the rotor shaft 1 to the outer peripheral surface 4a of the fixed member 4 is smaller than half the length L2 (see FIG. 1) from the outer peripheral surface 1a of the rotor shaft 1 to the outer peripheral surface 2a of the rotor core 2.
  • the outer peripheral surface 4a of the fixed member 4 is disposed radially outward of the outer end of the radial groove portion 32b of the supply flow passage 5 and in the vicinity of the outer end of the radial groove portion 32b.
  • the difference between the fixing member 4 and the end plate 3 is that the fixing member 4 is configured to be directly fixed to the rotor shaft 1, while the end plate 3 is not directly fixed to the rotor shaft 1.
  • the fixing member 4 itself has the function of determining the axial position of the fixing member 4 relative to the rotor shaft 1, while the end plate 3 itself does not have the function of determining the axial position of the end plate 3 relative to the rotor shaft 1.
  • the supply passage 5 is configured to supply the refrigerant from the hollow portion 10 of the rotor shaft 1 to the core passage 23 (the outer slit 22 b ) of the rotor core 2 .
  • the supply flow path 5 includes a first connecting flow path 50, a second connecting flow path 51, and a boundary flow path 52.
  • the first connection flow passage 50 is provided on the rotor shaft 1 and connects the hollow portion 10 and the boundary flow passage 52.
  • a plurality of first connection flow passages 50 are provided for each supply flow passage 5.
  • two first connection flow passages 50 are provided for each supply flow passage 5 on one end plate 3 side, spaced at an angle of 180 degrees in the circumferential direction.
  • the first connection flow passages 50 are also positioned at a position offset from the radial groove portion 32b in the circumferential direction.
  • the supply flow passages 5 are configured not to directly supply refrigerant from the first connection flow passages 50 to the radial groove portion 32b.
  • the second connection flow passage 51 is provided in the end plate 3 and connects the boundary flow passage 52 and the core flow passage 23.
  • the second connection flow passage 51 is formed by a through hole extending in the axial direction of the end plate 3.
  • the boundary flow passage 52 is a flow passage that connects the first connection flow passage 50 and the second connection flow passage 51.
  • the boundary flow passage 52 extends along the boundary between the outer end surface 31 of the end plate 3 and the end plate contact surface 40 of the fixing member 4.
  • the boundary flow passage 52 is formed by the groove portion 32 recessed into the rotor core 2 side of the end plate 3 and the end plate contact surface 40 of the fixed member 4.
  • the boundary flow passage 52 is formed by the end plate 3 and the fixed member 4 coming into contact with each other such that the end plate contact surface 40 of the fixed member 4 covers the open portion of the groove portion 32 of the end plate 3.
  • the groove portion 32 that forms the boundary flow passage 52 has an annular groove portion 32a and multiple radial groove portions 32b.
  • the annular groove portion 32a extends in an annular shape along the outer peripheral surface 1a of the rotor shaft 1.
  • the multiple radial groove portions 32b extend radially outward from the annular groove portion 32a.
  • four multiple radial groove portions 32b are provided at equal angular intervals in the circumferential direction (r direction).
  • the radially outer end of the radial groove portion 32b of the boundary flow passage 52 is positioned more inward than the radially outer end of the discharge flow passage 33.
  • a first connection flow passage 50 is connected to the annular groove portion 32a from the radially inner side.
  • a second connection flow passage 51 is connected to the radially outer end of the radial groove portion 32b from the rotor core 2 side.
  • the supply flow passage 5 provided in the set of end plate 3 and fixing member 4 on one axial side of the rotor core 2 is configured to supply refrigerant to the rotor core 2 from one axial side of the rotor core 2 and to flow the refrigerant toward the other axial side of the rotor core 2.
  • the refrigerant flows from upstream to downstream in the following order: hollow portion 10 of rotor shaft 1, first connecting flow passage 50 of rotor shaft 1, boundary flow passage 52, second connecting flow passage 51 of end plate 3, core flow passage 23 (outer slit 22b) of rotor core 2, discharge flow passage 33 on the other axial side of rotor core 2, outside rotor 102, and coil end portion 101c of stator 101.
  • the supply flow passage 5 provided in the set of end plate 3 and fixing member 4 on the other axial side of the rotor core 2 is configured to supply refrigerant to the rotor core 2 from the other axial side of the rotor core 2 and to flow the refrigerant toward one axial side of the rotor core 2.
  • the refrigerant flows from upstream to downstream in the following order: hollow portion 10 of rotor shaft 1, first connecting flow passage 50 of rotor shaft 1, boundary flow passage 52, second connecting flow passage 51 of end plate 3, core flow passage 23 (outer slit 22b) of rotor core 2, discharge flow passage 33 on one axial side of rotor core 2, outside rotor 102, and coil end portion 101c of stator 101.
  • a fixed member 4 that restricts the axial movement of the end plate 3 and rotor core 2 relative to the rotor shaft 1, and a supply flow passage 5 that supplies refrigerant from the hollow portion 10 to the core flow passage 23, and the supply flow passage 5 is provided with a boundary flow passage 52 that extends along the boundary between the outer end surface 31 of the end plate 3 and the end plate contact surface 40 of the fixed member 4, a first connecting flow passage 50 that is provided in the rotor shaft 1 and connects the hollow portion 10 to the boundary flow passage 52, and a second connecting flow passage 51 that is provided in the end plate 3 and connects the boundary flow passage 52 to the core flow passage 23.
  • the boundary flow passage 52 of the supply flow passage 5 for introducing refrigerant from the hollow portion 10 of the rotor shaft 1 to the core flow passage 23 extending in the axial direction of the rotor core 2 by utilizing one end plate 3 and the fixed member 4 of an existing configuration. Therefore, compared to the conventional method, the number of end plates 3 on one side in the axial direction can be reduced from two to one, so the device configuration for flowing the refrigerant through the core flow passage 23 of the rotor core 2 extending in the axial direction can be simplified by not having multiple (two) end plates 3 on one side in the axial direction.
  • the length L1 from the outer peripheral surface 1a of the rotor shaft 1 to the outer peripheral surface 4a of the fixed member 4 is smaller than half the length L2 from the outer peripheral surface 1a of the rotor shaft 1 to the outer peripheral surface 2a of the rotor core 2.
  • the end plate 3 includes a groove portion 32 recessed from the outer end face 31 toward the rotor core 2, and the boundary flow passage 52 is formed by the groove portion 32 and the end plate contact surface 40 of the fixed member 4.
  • the axial movement restricting portion is a fixed member 4 that is fixed to the rotor shaft 1 and positioned in the axial direction, and a set of end plate 3 and fixed member 4 is provided on both one side and the other side in the axial direction of the rotor core 2. This allows the configuration of one side and the other side in the axial direction of the rotor core 2 to be common, thereby simplifying the device configuration for cooling the rotor 102.
  • the rotor core 2 includes magnet holes 20 in which the permanent magnets 20a are arranged, and slits 22 formed by through holes extending in the axial direction of the rotor core 2, which are provided radially inside the magnet holes 20, and the core flow passage 23 through which the refrigerant flows is formed by the slits 22.
  • the slits 22 formed by the through holes extending in the axial direction of the rotor core 2 expand radially when the rotor 102 rotates, thereby maintaining the position of the rotor core 2 at the radially inner part of the slits 22, and moving the position of the rotor core 2 at the radially outer part of the slits 22 of the rotor core 2 slightly radially outward.
  • the slits 22 maintain the contact state between the rotor core 2 and the rotor shaft 1 even when centrifugal force is applied to the rotor core 2. Therefore, if configured as described above, the slits 22 can be used as the core flow passage 23 while maintaining the contact state between the rotor core 2 and the rotor shaft 1.
  • this embodiment further includes a discharge member (end plate 3) including a discharge flow passage 33 that discharges the refrigerant supplied from the supply flow passage 5 on one axial side of the rotor core 2 from the other axial side, and the discharge flow passage 33 includes an inclined surface 33a that is inclined toward the coil end portion 101c so that the discharged refrigerant is discharged toward the coil end portion 101c of the stator 101.
  • a discharge member end plate 3
  • the discharge flow passage 33 includes an inclined surface 33a that is inclined toward the coil end portion 101c so that the discharged refrigerant is discharged toward the coil end portion 101c of the stator 101.
  • the slits 22 have an inner slit 22a and an outer slit 22b that is provided radially outward of the inner slit 22a and is positioned closer to the magnet hole 20 than the inner slit 22a, and the core flow passage 23 through which the refrigerant flows is formed by the outer slit 22b. This allows the refrigerant to flow through the outer slit 22b that is positioned closer to the magnet hole 20 that is positioned radially outward than the inner slit 22a, so that the heat-generating permanent magnets 20a can be effectively cooled.
  • the supply flow passage 5 provided in the set of end plates 3 and fixing members 4 on one axial side of the rotor core 2 is configured to supply refrigerant to the rotor core 2 from one axial side of the rotor core 2 and flow the refrigerant toward the other axial side of the rotor core 2
  • the supply flow passage 5 provided in the set of end plates 3 and fixing members 4 on the other axial side of the rotor core 2 is configured to supply refrigerant to the rotor core 2 from the other axial side of the rotor core 2 and flow the refrigerant toward one axial side of the rotor core 2.
  • the groove portion 32 forming the boundary flow passage 52 has an annular groove portion 32a extending in an annular shape along the outer peripheral surface 1a of the rotor shaft 1, and a plurality of radial groove portions 32b extending radially outward from the annular groove portion 32a.
  • This allows the refrigerant to be easily dispersed in the circumferential direction by the annular groove portion 32a, and allows the refrigerant dispersed in the circumferential direction to easily flow radially outward by the radial groove portions 32b.
  • the rotor core 2 can be cooled uniformly in the circumferential and radial directions.
  • the first connection flow passage 50 is connected to the annular groove portion 32a from the radial inside, and the second connection flow passage 51 is connected to the radially outer end of the radial groove portion 32b from the rotor core 2 side.
  • This allows the refrigerant to easily flow from the hollow portion 10 of the rotor shaft 1 to the annular groove portion 32a through the first connection flow passage 50, and allows the refrigerant to easily flow from the radial groove portion 32b to the core flow passage 23 of the rotor core 2 through the second connection flow passage 51.
  • the rotor core has slits and the refrigerant flows through the slits (an example in which the slits serve as the core flow passage), but the present invention is not limited to this.
  • the rotor core may not have slits, and may instead have a dedicated core flow passage for the refrigerant to flow through.
  • end plates and fixing members were arranged on both axial sides of the rotor core, but the present invention is not limited to this. In the present invention, end plates and fixing members may be arranged on only one axial side of the rotor core.
  • the axial movement restricting portion of the present invention is a fixed member that is crimped, but the present invention is not limited to this.
  • the axial movement restricting portion may be configured by a flange provided on the rotor shaft. In this case, the flange contacts the end plate from the outside in the axial direction, thereby restricting the axial movement of the end plate.
  • the flange may be configured as one unit with the rotor shaft, or may be configured as a separate member.
  • the refrigerant flows in both axial directions of the rotor core, but the present invention is not limited to this. In the present invention, the refrigerant may flow in only one axial direction of the rotor core.
  • the slits included both an inner slit and an outer slit (two slits aligned in the radial direction), but the present invention is not limited to this.
  • the slits may be a single slit aligned in the radial direction.
  • the grooves forming the boundary flow passages were provided only on the end plates, but the present invention is not limited to this.
  • the grooves forming the boundary flow passages may be provided on both the end plates and the fixed member. Also, the grooves forming the boundary flow passages may be provided only on the fixed member.
  • the groove portion forming the boundary flow path had an annular groove portion and a radial groove portion, but the present invention is not limited to this.
  • the groove portion forming the boundary flow path may have only radial groove portions.
  • the fixing member is fixed to the rotor shaft by crimping, but the present invention is not limited to this.
  • the fixing member may be fixed to the rotor shaft by press fitting or tightening with a nut.
  • the number of axially extending core flow passages provided in the rotor core may be different from that in the above embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

このロータは、エンドプレートと、エンドプレートとは別個に設けられた供給流路と、を備え、供給流路は、エンドプレートの外側端面と軸方向移動規制部のエンドプレート接触面との境界に沿って延びる境界流路と、ロータシャフトに設けられ、中空部と境界流路とを接続する第1接続流路と、エンドプレートに設けられ、境界流路とコア流路とを接続する第2接続流路と、を含む。

Description

ロータ
 本発明は、ロータに関する。
 従来、冷媒が流れる流路が設けられたロータが知られている。このようなロータは、たとえば、特開2020-120425号公報に開示されている。
 上記特開2020-120425号公報には、冷媒が供給される中空部を有するロータシャフトと、冷媒が流れる軸方向に延びる冷却流路が設けられたロータコアと、ロータコアの軸方向の一端に設けられた互いに接触する2つのエンドプレートとを備えるロータが開示されている。ロータコアは、冷却流路の径方向外側に永久磁石が配置される磁石孔を有している。2つのエンドプレートの境界には、ロータシャフトの中空部の冷媒をロータコアの冷却流路に導くための流路が設けられている。また、ロータは、軸方向外側のエンドプレートに接触して、2つのエンドプレートおよびロータコアの軸方向の移動を規制する移動規制部を備えている。
特開2020-120425号公報
 上記特開2020-120425号公報に記載のロータでは、ロータシャフトの中空部の冷媒をロータコアの冷却流路に導くために、移動規制部によって軸方向への移動が規制される2つ(複数)のエンドプレートが必要となっており、軸方向に延びるロータコアの冷却流路に冷媒を流すための装置構成を簡素化することが望まれている。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、軸方向に延びるロータコアのコア流路に冷媒を流すための装置構成を、軸方向の片側においてエンドプレートを複数(2つ)設けない簡素化された装置構成にすることが可能なロータを提供することである。
 上記目的を達成するために、この発明の一の局面におけるロータは、冷媒が供給される中空部が設けられ、軸方向に延びるロータシャフトと、ロータシャフトが挿入されるシャフト挿入孔と、冷媒が流れる軸方向に延びるコア流路と、を含むロータコアと、ロータコアの軸方向の一方端面に接触する内側端面と、軸方向において内側端面とは反対側の外側端面と、を含むエンドプレートと、エンドプレートとは別個に設けられ、エンドプレートの外側端面に接触するエンドプレート接触面を含み、外側端面に接触することによりロータシャフトに対するエンドプレートおよびロータコアの軸方向の移動を規制する軸方向移動規制部と、中空部からコア流路に冷媒を供給する供給流路と、を備え、供給流路は、エンドプレートの外側端面と軸方向移動規制部のエンドプレート接触面との境界に沿って延びる境界流路と、ロータシャフトに設けられ、中空部と境界流路とを接続する第1接続流路と、エンドプレートに設けられ、境界流路とコア流路とを接続する第2接続流路と、を含む。
 この発明の一の局面によるロータでは、上記のように、ロータシャフトに対するエンドプレートおよびロータコアの軸方向の移動を規制する軸方向移動規制部と、中空部からコア流路に冷媒を供給する供給流路と、を設け、供給流路には、エンドプレートの外側端面と軸方向移動規制部のエンドプレート接触面との境界に沿って延びる境界流路と、ロータシャフトに設けられ、中空部と境界流路とを接続する第1接続流路と、エンドプレートに設けられ、境界流路とコア流路とを接続する第2接続流路と、を設ける。これによって、1つのエンドプレートと既存の構成である軸方向移動規制部とを利用して、ロータシャフトの中空部からロータコアの軸方向に延びるコア流路に冷媒を導入するための供給流路の境界流路を形成することができる。このため、従来と比較して、軸方向の片側においてエンドプレートの数を2つから1つに減らすことができるので、軸方向に延びるロータコアのコア流路に冷媒を流すための装置構成を、軸方向の片側においてエンドプレートを複数(2つ)設けない簡素化された装置構成にすることができる。
 上記一の局面によるロータコアにおいて、好ましくは、ロータコアの径方向において、ロータシャフトの外周面から軸方向移動規制部の外周面までの長さは、ロータシャフトの外周面からロータコアの外周面までの長さの半分よりも小さい。このように構成すれば、軸方向移動規制部のロータコアに対する接触面積を比較的小さくすることができるので、軸方向移動規制部のロータコアに対する接触圧力を比較的大きくすることができる。その結果、軸方向移動規制部(エンドプレート接触面)とエンドプレート(外側端面)との境界に沿って延びる境界流路から冷媒が漏れることを効果的に抑制することができる。
 上記一の局面によるロータコアにおいて、好ましくは、エンドプレートは、外側端面からロータコア側に窪む溝部を含み、境界流路は、溝部と軸方向移動規制部のエンドプレート接触面とによって形成されている。このように構成すれば、軸方向移動規制部のエンドプレート接触面側に境界流路を形成するための構成を設ける必要がないので、軸方向移動規制部とエンドプレートとの両方に溝部を設ける場合とは異なり、軸方向移動規制部と溝部を含むエンドプレートとの溝部同士の位置合わせの工程を削減することができる。
 上記一の局面によるロータコアにおいて、好ましくは、軸方向移動規制部は、ロータシャフトに対して固定されることにより軸方向において位置決めされる固定部材であり、エンドプレートおよび固定部材のセットは、ロータコアの軸方向の一方側および他方側の両方に設けられている。このように構成すれば、ロータコアの軸方向の一方側および他方側の構成の共通化を図ることができるので、ロータを冷却するための装置構成を簡素化することができる。
 上記一の局面によるロータコアにおいて、好ましくは、ロータコアは、永久磁石が配置される磁石孔と、磁石孔の径方向内側に設けられ、ロータコアの軸方向に延びる貫通孔により形成されたスリットと、を含み、冷媒が流れるコア流路は、スリットにより形成されている。ここで、ロータコアの軸方向に延びる貫通孔により形成されたスリットは、ロータの駆動時に径方向に膨らむことによって、スリットの径方向内側の部分のロータコアの位置を保持しつつ、ロータコアのスリットの径方向外側の部分のロータコアの位置を僅かに径方向外側に移動させる。その結果、スリットにより、ロータコアに遠心力が作用した状態でもロータコアとロータシャフトとの接触状態が保持される。そこで、上記のように構成すれば、スリットによって、ロータコアとロータシャフトとの接触状態を保持しながら、スリットをコア流路としても利用することができる。
 上記一の局面によるロータコアにおいて、好ましくは、ロータコアの軸方向の一方側の供給流路から供給された冷媒を、軸方向の他方側から排出する排出流路を含む排出部材をさらに備え、排出流路は、排出した冷媒がステータのコイルエンド部に向かって排出されるように、コイルエンド部側に傾斜した傾斜面を含む。このように構成すれば、傾斜面によって、ステータのコイルエンド部に向けて冷媒を排出することができるので、ロータだけでなくステータのコイルエンド部も冷却することができる。
 上記一の局面によるロータにおいて、以下のような構成も考えられる。
(付記項1)
 上記ロータコアがスリットを含む構成において、好ましくは、スリットは、内側スリットと、内側スリットの径方向外側に設けられ、内側スリットよりも磁石孔の近くに配置された外側スリットと、を有し、冷媒が流れるコア流路は、外側スリットにより形成されている。このように構成すれば、内側スリットよりも径方向外側に位置する磁石孔の近くに位置する外側スリットに冷媒を流すことができるので、発熱する永久磁石を効果的に冷却することができる。
(付記項2)
 上記エンドプレートおよび固定部材のセットがロータコアの軸方向の一方側および他方側の両方に設けられる構成において、好ましくは、ロータコアの軸方向の一方側のエンドプレートおよび固定部材のセットに設けられた供給流路は、ロータコアの軸方向の一方側からロータコアに冷媒を供給して、ロータコアの軸方向の他方側に向けて冷媒を流すように構成され、ロータコアの軸方向の他方側のエンドプレートおよび固定部材のセットに設けられた供給流路は、ロータコアの軸方向の他方側からロータコアに冷媒を供給して、ロータコアの軸方向の一方側に向けて冷媒を流すように構成されている。このように構成すれば、軸方向において双方向に冷媒を流すことができるので、バランスよくムラなくロータコアを冷却することができる。
(付記項3)
 上記エンドプレートが溝部を含む構成において、好ましくは、境界流路を形成する溝部は、ロータシャフトの外周面に沿って円環状に延びる円環状溝部と、円環状溝部から径方向外側に放射状に延びる複数の放射状溝部とを有する。このように構成すれば、円環状溝部により冷媒を周方向に容易に分散させることができるとともに、放射状溝部により周方向に分散した冷媒を容易に径方向外側に向けて流すことができる。その結果、ロータコアの周方向および径方向においてムラなく均一に冷却を行うことができる。
(付記項4)
 この場合、好ましくは、円環状溝部には、径方向内側から第1接続流路が接続されており、放射状溝部の径方向外側の端部には、ロータコア側から第2接続流路が接続されている。このように構成すれば、第1接続流路によりロータシャフトの中空部から円環状溝部に冷媒を容易に流すことができるとともに、第2接続流路により放射状溝部からロータコアのコア流路に冷媒を容易に流すことができる。
実施形態によるロータを備える回転電機を径方向から示した断面図である。 図1のII-II線に沿った矢視図である。 図1のA部の拡大図である。 実施形態によるロータの分解斜視図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 図1~図4を参照して、回転電機100に設けられる本実施形態のロータ102について説明する。
 各図では、ロータシャフト1が延びる方向(軸方向)をZ方向により示す。「軸方向」は、ロータコア2の回転中心軸線Cに沿った方向でもある。
 また、各図では、ロータコア2の径方向をR方向により示す。径方向外側をR1方向により示し、径方向内側をR2方向により示す。なお、R方向は、エンドプレート(請求の範囲の「排出部材」の一例)3、固定部材(請求の範囲の「軸方向移動規制部」の一例)4およびロータシャフト1の径方向でもある。
 また、各図では、ロータコア2の周方向をr方向により示す。なお、r方向は、エンドプレート3、固定部材4およびロータシャフト1の周方向でもある。
 図1に示すように、回転電機100は、ステータ101とロータ102とを備えている。ステータ101およびロータ102は、互いに対向している。ロータ102は、ステータ101の径方向内側(R2方向側)に配置されている。すなわち、本実施形態の回転電機100は、インナーロータ型の回転電機として構成されている。
(ステータの構成)
 ステータ101は、ステータコア101aと、ステータコア101aに配置されたコイル101bとを備えている。
 ステータコア101aの軸方向の両端部には、ステータコア101aから軸方向に突出するコイル101bのコイルエンド部101cが設けられている。ステータコア101aは、複数の電磁鋼板が軸方向に積層されており、磁束を通過可能に構成されている。コイル101bは、外部の電源部に接続されており、電力(たとえば、3相交流の電力)が供給されるように構成されている。そして、コイル101bは、電力が供給されることにより、磁界を発生させるように構成されている。
(ロータの構成)
 ロータ102は、ロータシャフト1と、ロータコア2と、エンドプレート3と、固定部材4と、供給流路5とを備えている。
 なお、エンドプレート3は、ロータコア2の軸方向の一方側(片側)において1つのみ設けられた単一の構成である。また、エンドプレート3は、ロータコア2の軸方向の他方側(片側)において1つのみ設けられた単一の構成である。
 エンドプレート3および固定部材4は、軸方向に互いに接触した状態で配置されている。エンドプレート3および固定部材4のセットは、ロータコア2の軸方向の一方側および他方側の両方に設けられている。エンドプレート3および固定部材4のセットは、一対の構成である。供給流路5は、エンドプレート3および固定部材4のセットによって、ロータ102は、軸方向の両側の供給流路5からロータコア2に冷媒を供給して、軸方向における双方向に冷媒を流すように構成されている。
 詳細には、ロータ102は、軸方向において、固定部材4、エンドプレート3、ロータコア2、エンドプレート3、固定部材4が順に配置されるように構成されている。固定部材4、エンドプレート3およびロータコア2には、ロータシャフト1が挿通されている。
 なお、Z1方向側のエンドプレート3および固定部材4のセットと、Z2方向側のエンドプレート3および固定部材4のセットとは、周方向において、所定角度ずれて配置されている。詳細には、軸方向から視て、Z1方向側のエンドプレート3および固定部材4のセットと、Z2方向側のエンドプレート3および固定部材4のセットとは、互いの後述する第2接続流路51が重ならないように、所定角度ずれて配置されている。
 一例ではあるが、Z1方向側のエンドプレート3および固定部材4のセットと、Z2方向側のエンドプレート3および固定部材4のセットとは、周方向において、45度ずれて配置されている。
 ロータコア2は、複数の電磁鋼板が軸方向に積層されており、磁束を通過可能に構成されている。ロータコア2には、永久磁石20aが配置される複数の磁石孔20を含んでいる。磁石孔20は、ロータコア2の径方向外側(R1方向側)の外周面2aの付近に所定角度間隔で配置されている。磁石孔20は、ロータコア2を軸方向に貫通している。
 回転電機100は、埋込永久磁石型モータ(IPMモータ:Interior Permanent Magnet Motor)として構成されている。複数の永久磁石20aは、周状に設けられる複数の磁極Mを構成している。ロータ102は、回転電機100が駆動する際に、ロータ102を流れる冷媒によって、発熱する永久磁石20aを冷却するように構成されている。
(ロータのロータシャフトの構成)
 ロータシャフト1は、回転電機100の回転中心となる軸部分である。ロータシャフト1は、円形状の外周面1aを有する円筒状(円環状)に形成されている。一例ではあるが、ロータシャフト1は、鋼により形成されている。
 ロータシャフト1には、中空部10と、供給流路5の一部を形成する第1接続流路50とが設けられている。
 中空部10は、ロータシャフト1の軸方向(Z方向)に延びる回転中心軸線Cに沿って延びる孔部により形成されている。中空部10は、ロータ102の各構成において、はじめに冷媒が供給される箇所である。中空部10には、冷媒が貯留された冷媒供給源(図示せず)から冷媒が送られるように構成されている。
 第1接続流路50は、中空部10からロータシャフト1の外部に冷媒を流出させるための貫通孔により形成されている。第1接続流路50は、径方向(R方向)に直線状に延びている。第1接続流路50は、周方向(r方向)に複数設けられている。一例ではあるが、第1接続流路50は、周方向(r方向)に等角度間隔で2つ設けられている。ロータシャフト1の軸方向の一方側におよび他方側に2つずつ(合計4つ)設けられている。第1接続流路50の径方向内側の端部は、中空部10に接続されている。第1接続流路50の径方向外側の端部は、供給流路5の一部を形成する境界流路52(円環状溝部32a)に接続されている。
(ロータのロータコアの構成)
 図1および図2に示すように、ロータコア2は、上記の磁石孔20と、ロータシャフト1が挿入されるシャフト挿入孔21と、スリット22と、冷媒が流れる軸方向に延びるコア流路23とを含んでいる。
 シャフト挿入孔21は、ロータコア2の中心に配置される円形状の孔部により形成されている。したがって、ロータコア2は、円形状の外周面2aを有する円筒状(円環状)に形成されている。
 スリット22は、磁石孔20の径方向内側に設けられている。スリット22は、ロータコア2の軸方向に延びる貫通孔により形成されている。スリット22は、ロータコア2の径方向内側(R2方向側)の内周面の付近に配置されている。冷媒が流れるコア流路23は、スリット22により形成されている。
 詳細には、スリット22は、内側スリット22aと、外側スリット22bとを有している。外側スリット22bは、内側スリット22aの径方向外側に設けられ、内側スリット22aよりも磁石孔20の近くに配置されている。すなわち、外側スリット22bは、径方向において、内側スリット22aよりも発熱する永久磁石20aの近くに配置されている。
 冷媒が流れるコア流路23は、外側スリット22bにより形成されている。すなわち、外側スリット22b(コア流路23)は、軸方向の一方側の供給流路5を介して、ロータシャフト1の中空部10に接続されている。また、外側スリット22b(コア流路23)は、軸方向の他方側の排出流路33を介して、ロータ102の外部に冷媒を排出するように構成されている。
 一方、内側スリット22aの軸方向の両端は、エンドプレート3(内側端面30)により塞がれている。このため、内側スリット22aには冷媒が流れることはない。
(ロータのエンドプレートの構成)
 上記の通り、エンドプレート3は、ロータコア2を軸方向の両側から挟み込むように一対設けられている。エンドプレート3は、ロータコア2と比較して、軸方向の大きさが小さい薄肉状の円板部材である。エンドプレート3の半径L10は、固定部材4の半径L11よりも大きい(図1参照)。エンドプレート3の半径L10は、ロータコア2の直径L12と略等しい(図1参照)。
 図1~図4に示すように、エンドプレート3は、内側端面30と、外側端面31と、溝部32と、排出流路33とを含んでいる。
 内側端面30は、ロータコア2の軸方向の一方端面2bに接触するように構成されている。内側端面30には、ロータコア2のコア流路23の端部が配置されている。外側端面31は、軸方向において内側端面30とは反対側に配置されている。すなわち、外側端面31は、内側端面30よりもロータコア2から離れた位置に配置されている。
 溝部32は、外側端面31からロータコア2側に窪んでいる。溝部32は、境界流路52を形成するための構成である。詳細については後述する。
 排出流路33は、ロータコア2の軸方向の一方側の供給流路5から供給された冷媒を、軸方向の他方側から排出するように構成されている。
 排出流路33は、傾斜面33aを含んでいる。傾斜面33aは、排出流路33から排出した冷媒がステータ101のコイルエンド部101cに向かって排出されるように、コイルエンド部101c側に傾斜している。排出流路33は、エンドプレート3に複数設けられている。詳細には、排出流路33は、周方向(r方向)に等角度間隔で4つ設けられている。排出流路33は、周方向(r方向)において、隣接する供給流路5の放射状溝部32bの間に配置されている。各々の排出流路33は、径方向に放射状に延びている。
 排出流路33は、径方向内側の端部がロータコア2のコア流路23と重なる位置に配置されており、コア流路23(外側スリット22b)に接続されている。排出流路33は、径方向外側の端部がロータ102の外部に接続されている。詳細には、排出流路33は、排出用貫通孔部33bと、排出用溝部33cとを含んでいる。
 排出用貫通孔部33bは、排出流路33の径方向内側に配置され、軸方向に延びている。排出用貫通孔部33bは、コア流路23(外側スリット22b)に接続されている。
 排出用溝部33cは、排出用貫通孔部33bから、エンドプレート3と固定部材4との境界に沿って径方向外側に直線状に延びている。排出用溝部33cは、エンドプレート3に設けられている。排出用溝部33cの径方向内側の部分は、固定部材4(エンドプレート接触面40)によって塞がれている(図3参照)。排出用溝部33cの径方向外側の部分は、固定部材4によって塞がれることなく、ロータ102に向けて冷媒を排出可能なように開放されている(図3参照)。
 したがって、傾斜面33aは、固定部材4によって塞がれることなく、ロータ102の外部に露出する位置に配置されている。
 排出流路33に供給される冷媒の流れについてまとめると、冷媒は、上流側から下流側に向けて、排出用貫通孔部33b、排出用溝部33c、傾斜面33a、ロータ102の外部の順に流れる。
(ロータの固定部材の構成)
 固定部材4は、エンドプレート3とは別個に設けられている。固定部材4は、エンドプレート3の外側端面31に接触するエンドプレート接触面40を含んでいる。固定部材4は、エンドプレート接触面40において外側端面31に接触することによりロータシャフト1に対するエンドプレート3およびロータコア2の軸方向の移動を規制するように構成されている。
 詳細には、固定部材4は、ロータシャフト1に対して直接固定されることにより軸方向において位置決めされるように構成されている。固定部材4は、ロータシャフト1に対してかしめによって固定されている。ロータシャフト1には、周方向に延びる環状のかしめ溝11(図3参照)が設けられている。上記の通り、固定部材4は、ロータコア2を軸方向の両側から挟み込むように一対設けられている。
 一対の固定部材4は、エンドプレート3およびロータコア2を挟み込んだ状態で、かしめによってロータシャフト1に固定されることにより、エンドプレート3およびロータコア2の軸方向への移動を規制するように構成されている。なお、固定部材は、かしめではなく、圧入や固定部材の内周面とシャフト外周面をネジ形状にすることによる締付などによりロータシャフトに固定されてもよい。
 ロータコア2の径方向において、ロータシャフト1の外周面1aから固定部材4の外周面4aまでの長さL1(図1参照)は、ロータシャフト1の外周面1aからロータコア2の外周面2aまでの長さL2(図1参照)の半分よりも小さい。なお、ロータコア2の径方向において、固定部材4の外周面4aは、供給流路5の放射状溝部32bの外側端部よりも径方向外側で、かつ、放射状溝部32bの外側端部の近傍に配置されている。
 なお、固定部材4とエンドプレート3との相違点としては、固定部材4はロータシャフト1に対して直接固定される構成である一方、エンドプレート3はロータシャフト1に対して直接固定されることはない。すなわち、固定部材4は、固定部材4自体がロータシャフト1に対する固定部材4の軸方向の位置を決める機能を有している一方、エンドプレート3はエンドプレート3自体がロータシャフト1に対するエンドプレート3の軸方向の位置を決める機能を有していない。
(ロータの供給流路の構成)
 供給流路5は、ロータシャフト1の中空部10からロータコア2のコア流路23(外側スリット22b)に冷媒を供給するように構成されている。
 供給流路5は、第1接続流路50と、第2接続流路51と、境界流路52とを含んでいる。
 第1接続流路50は、上記の通り、ロータシャフト1に設けられ、中空部10と境界流路52とを接続している。第1接続流路50は、1つの供給流路5に対して、複数設けられている。一例ではあるが、第1接続流路50は、1つのエンドプレート3側の供給流路5に対して、周方向に180度の角度間隔で2つ設けられている。また、第1接続流路50は、周方向において、放射状溝部32bからずれた位置に配置されている。すなわち、供給流路5は、第1接続流路50から放射状溝部32bに冷媒を直接供給しないように構成されている。
 第2接続流路51は、エンドプレート3に設けられ、境界流路52とコア流路23とを接続している。第2接続流路51は、エンドプレート3の軸方向に延びる貫通孔により形成されている。
 境界流路52は、第1接続流路50と第2接続流路51とを接続する流路である。境界流路52は、エンドプレート3の外側端面31と固定部材4のエンドプレート接触面40との境界に沿って延びている。
 詳細には、境界流路52は、エンドプレート3のロータコア2側に窪む溝部32と、固定部材4のエンドプレート接触面40とによって形成されている。すなわち、固定部材4のエンドプレート接触面40が、エンドプレート3の溝部32の開放部分の蓋をするように、エンドプレート3と固定部材4とが接触することによって、境界流路52が形成されている。
 境界流路52を形成する溝部32は、円環状溝部32aと、複数の放射状溝部32bとを有している。
 円環状溝部32aは、ロータシャフト1の外周面1aに沿って円環状に延びている。複数の放射状溝部32bは、円環状溝部32aから径方向外側に放射状に延びている。一例ではあるが、複数の放射状溝部32bは、周方向(r方向)に等角度間隔で4つ設けられている。ロータコア2の径方向において、境界流路52の放射状溝部32bの径方向外側の端部は、排出流路33の径方向外側の端部よりも内側に配置されている。
 円環状溝部32aには、径方向内側から第1接続流路50が接続されている。放射状溝部32bの径方向外側の端部には、ロータコア2側から第2接続流路51が接続されている。
 ロータコア2の軸方向の一方側のエンドプレート3および固定部材4のセットに設けられた供給流路5は、ロータコア2の軸方向の一方側からロータコア2に冷媒を供給して、ロータコア2の軸方向の他方側に向けて冷媒を流すように構成されている。
 ロータコア2の軸方向の一方側からロータコア2に供給される冷媒の流れについてまとめると、冷媒は、上流側から下流側に向けて、ロータシャフト1の中空部10、ロータシャフト1の第1接続流路50、境界流路52、エンドプレート3の第2接続流路51、ロータコア2のコア流路23(外側スリット22b)、ロータコア2の軸方向の他方側の排出流路33、ロータ102の外部、ステータ101のコイルエンド部101cの順に流れる。
 また、ロータコア2の軸方向の他方側のエンドプレート3および固定部材4のセットに設けられた供給流路5は、ロータコア2の軸方向の他方側からロータコア2に冷媒を供給して、ロータコア2の軸方向の一方側に向けて冷媒を流すように構成されている。
 ロータコア2の軸方向の他方側からロータコア2に供給される冷媒の流れについてまとめると、冷媒は、上流側から下流側に向けて、ロータシャフト1の中空部10、ロータシャフト1の第1接続流路50、境界流路52、エンドプレート3の第2接続流路51、ロータコア2のコア流路23(外側スリット22b)、ロータコア2の軸方向の一方側の排出流路33、ロータ102の外部、ステータ101のコイルエンド部101cの順に流れる。
(本実施形態の効果)
 本実施形態では、以下のような効果を得ることができる。
 本実施形態では、上記のように、ロータシャフト1に対するエンドプレート3およびロータコア2の軸方向の移動を規制する固定部材4と、中空部10からコア流路23に冷媒を供給する供給流路5と、を設け、供給流路5には、エンドプレート3の外側端面31と固定部材4のエンドプレート接触面40との境界に沿って延びる境界流路52と、ロータシャフト1に設けられ、中空部10と境界流路52とを接続する第1接続流路50と、エンドプレート3に設けられ、境界流路52とコア流路23とを接続する第2接続流路51と、を設ける。これによって、1つのエンドプレート3と既存の構成である固定部材4とを利用して、ロータシャフト1の中空部10からロータコア2の軸方向に延びるコア流路23に冷媒を導入するための供給流路5の境界流路52を形成することができる。このため、従来と比較して、軸方向の片側においてエンドプレート3の数を2つから1つに減らすことができるので、軸方向に延びるロータコア2のコア流路23に冷媒を流すための装置構成を、軸方向の片側においてエンドプレート3を複数(2つ)設けない簡素化された装置構成にすることができる。
 本実施形態では、上記のように、ロータコア2の径方向において、ロータシャフト1の外周面1aから固定部材4の外周面4aまでの長さL1は、ロータシャフト1の外周面1aからロータコア2の外周面2aまでの長さL2の半分よりも小さい。これによって、固定部材4のロータコア2に対する接触面積を比較的小さくすることができるので、固定部材4のロータコア2に対する接触圧力を比較的大きくすることができる。その結果、固定部材4(エンドプレート接触面40)とエンドプレート3(外側端面31)との境界に沿って延びる境界流路52から冷媒が漏れることを効果的に抑制することができる。
 本実施形態では、上記のように、エンドプレート3は、外側端面31からロータコア2側に窪む溝部32を含み、境界流路52は、溝部32と固定部材4のエンドプレート接触面40とによって形成されている。これによって、固定部材4のエンドプレート接触面40側に境界流路52を形成するための構成を設ける必要がないので、固定部材4とエンドプレート3との両方に溝部32を設ける場合とは異なり、固定部材4と溝部32を含むエンドプレート3との溝部32同士の位置合わせの工程を削減することができる。
 本実施形態では、上記のように、軸方向移動規制部は、ロータシャフト1に対して固定されることにより軸方向において位置決めされる固定部材4であり、エンドプレート3および固定部材4のセットは、ロータコア2の軸方向の一方側および他方側の両方に設けられている。これによって、ロータコア2の軸方向の一方側および他方側の構成の共通化を図ることができるので、ロータ102を冷却するための装置構成を簡素化することができる。
 本実施形態では、上記のように、ロータコア2は、永久磁石20aが配置される磁石孔20と、磁石孔20の径方向内側に設けられ、ロータコア2の軸方向に延びる貫通孔により形成されたスリット22と、を含み、冷媒が流れるコア流路23は、スリット22により形成されている。ここで、ロータコア2の軸方向に延びる貫通孔により形成されたスリット22は、ロータ102の回転時に径方向に膨らむことによって、スリット22の径方向内側の部分のロータコア2の位置を保持しつつ、ロータコア2のスリット22の径方向外側の部分のロータコア2の位置を僅かに径方向外側に移動させる。その結果、スリット22により、ロータコア2に遠心力が作用した状態でもロータコア2とロータシャフト1との接触状態が保持される。そこで、上記のように構成すれば、スリット22によって、ロータコア2とロータシャフト1との接触状態を保持しながら、スリット22をコア流路23としても利用することができる。
 本実施形態では、上記のように、ロータコア2の軸方向の一方側の供給流路5から供給された冷媒を、軸方向の他方側から排出する排出流路33を含む排出部材(エンドプレート3)をさらに備え、排出流路33は、排出した冷媒がステータ101のコイルエンド部101cに向かって排出されるように、コイルエンド部101c側に傾斜した傾斜面33aを含む。これによって、傾斜面33aによって、ステータ101のコイルエンド部101cに向けて冷媒を排出することができるので、ロータ102だけでなくステータ101のコイルエンド部101cも冷却することができる。
 上記ロータ102において、以下のような構成も考えられる。
 本実施形態では、上記のように、スリット22は、内側スリット22aと、内側スリット22aの径方向外側に設けられ、内側スリット22aよりも磁石孔20の近くに配置された外側スリット22bと、を有し、冷媒が流れるコア流路23は、外側スリット22bにより形成されている。これによって、内側スリット22aよりも径方向外側に位置する磁石孔20の近くに位置する外側スリット22bに冷媒を流すことができるので、発熱する永久磁石20aを効果的に冷却することができる。
 本実施形態では、上記のように、ロータコア2の軸方向の一方側のエンドプレート3および固定部材4のセットに設けられた供給流路5は、ロータコア2の軸方向の一方側からロータコア2に冷媒を供給して、ロータコア2の軸方向の他方側に向けて冷媒を流すように構成され、ロータコア2の軸方向の他方側のエンドプレート3および固定部材4のセットに設けられた供給流路5は、ロータコア2の軸方向の他方側からロータコア2に冷媒を供給して、ロータコア2の軸方向の一方側に向けて冷媒を流すように構成されている。これによって、軸方向において双方向に冷媒を流すことができるので、バランスよくムラなくロータコア2を冷却することができる。
 本実施形態では、上記のように、境界流路52を形成する溝部32は、ロータシャフト1の外周面1aに沿って円環状に延びる円環状溝部32aと、円環状溝部32aから径方向外側に放射状に延びる複数の放射状溝部32bとを有する。これによって、円環状溝部32aにより冷媒を周方向に容易に分散させることができるとともに、放射状溝部32bにより周方向に分散した冷媒を容易に径方向外側に向けて流すことができる。その結果、ロータコア2の周方向および径方向においてムラなく均一に冷却を行うことができる。
 本実施形態では、上記のように、円環状溝部32aには、径方向内側から第1接続流路50が接続されており、放射状溝部32bの径方向外側の端部には、ロータコア2側から第2接続流路51が接続されている。これによって、第1接続流路50によりロータシャフト1の中空部10から円環状溝部32aに冷媒を容易に流すことができるとともに、第2接続流路51により放射状溝部32bからロータコア2のコア流路23に冷媒を容易に流すことができる。
[変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
 たとえば、上記実施形態では、ロータコアがスリットを備えており、冷媒をスリットに流した例(スリットをコア流路とした例)を示したが、本発明はこれに限られない。本発明では、ロータコアがスリットを備えておらず、ロータコアが冷媒を流す専用のコア流路を備えていてもよい。
 また、上記実施形態では、ロータコアの軸方向の両側にエンドプレートおよび固定部材を配置した例を示したが、本発明はこれに限られない。本発明では、ロータコアの軸方向の片側のみにエンドプレートおよび固定部材を配置してもよい。
 また、上記実施形態では、本発明の軸方向移動規制部を、かしめを行う固定部材とした例を示したが、本発明はこれに限られない。本発明では、軸方向移動規制部を、ロータシャフトに設けられるフランジにより構成してもよい。この場合、エンドプレートに軸方向の外側からフランジが接触することによりエンドプレートの軸方向への移動が規制される。フランジは、ロータシャフトと一体の構成であってもよし、別体の構成であってもよい。
 また、上記実施形態では、ロータコアの軸方向の双方向に冷媒を流した例を示したが、本発明はこれに限られない。本発明では、ロータコアの軸方向の一方向のみに冷媒を流してもよい。
 また、上記実施形態では、スリットが、内側スリットと外側スリットとの両方(径方向に並ぶ2重のスリット)を含む例を示したが、本発明はこれに限られない。本発明では、スリットが、径方向に並ぶ1重のスリットであってもよい。
 また、上記実施形態では、境界流路を形成する溝部を、エンドプレートのみに設けた例を示したが、本発明はこれに限られない。本発明では、境界流路を形成する溝部を、エンドプレートおよび固定部材の両方に設けてもよい。また、境界流路を形成する溝部を、固定部材のみに設けてもよい。
 また、上記実施形態では、境界流路を形成する溝部が、円環状溝部と、放射状溝部とを有する例を示したが、本発明はこれに限られない。本発明では、たとえば、境界流路を形成する溝部が、放射状溝部のみを有していてもよい。
 また、上記実施形態では、固定部材を、かしめによりロータシャフトに固定される部材とした例を示したが、本発明はこれに限られない。本発明では、固定部材を、圧入やナットによる締付などによりロータシャフトに固定される部材としてもよい。
 また、上記実施形態では、ロータコアに設けられる軸方向に延びるコア流路の数は、上記実施形態とは異なる数であってもよい。
 1 ロータシャフト
 1a (ロータシャフトの)外周面
 2 ロータコア
 2a (ロータコアの)外周面
 2b (ロータコアの軸方向の)一方端面
 3 エンドプレート(排出部材)
 4 固定部材(軸方向移動規制部)
 4a (固定部材の)外周面
 5 供給流路
 10 (ロータシャフトの)中空部
 20 (ロータコアの)磁石孔
 20a 永久磁石
 21 シャフト挿入孔
 22 スリット
 23 コア流路
 30 (エンドプレートの)内側端面
 31 (エンドプレートの)外側端面
 32 (エンドプレートの)溝部
 33 排出流路
 33a (排出流路の)傾斜面
 40 (固定部材の)エンドプレート接触面
 50 (供給流路の)第1接続流路
 51 (供給流路の)第2接続流路
 52 (供給流路の)境界流路
 101 ステータ
 101c (ステータの)コイルエンド部
 102 ロータ
 L1 (ロータシャフトの外周面から固定部材の外周面までの)長さ
 L2 (ロータシャフトの外周面からロータコアの外周面までの)長さ
 

Claims (6)

  1.  冷媒が供給される中空部が設けられ、軸方向に延びるロータシャフトと、
     前記ロータシャフトが挿入されるシャフト挿入孔と、冷媒が流れる前記軸方向に延びるコア流路と、を含むロータコアと、
     前記ロータコアの前記軸方向の一方端面に接触する内側端面と、前記軸方向において前記内側端面とは反対側の外側端面と、を含むエンドプレートと、
     前記エンドプレートとは別個に設けられ、前記エンドプレートの前記外側端面に接触するエンドプレート接触面を含み、前記外側端面に接触することにより前記ロータシャフトに対する前記エンドプレートおよび前記ロータコアの前記軸方向の移動を規制する軸方向移動規制部と、
     前記中空部から前記コア流路に冷媒を供給する供給流路と、を備え、
     前記供給流路は、
      前記エンドプレートの前記外側端面と前記軸方向移動規制部の前記エンドプレート接触面との境界に沿って延びる境界流路と、
      前記ロータシャフトに設けられ、前記中空部と前記境界流路とを接続する第1接続流路と、
      前記エンドプレートに設けられ、前記境界流路と前記コア流路とを接続する第2接続流路と、を含む、ロータ。
  2.  前記ロータコアの径方向において、前記ロータシャフトの外周面から前記軸方向移動規制部の外周面までの長さは、前記ロータシャフトの外周面から前記ロータコアの外周面までの長さの半分よりも小さい、請求項1に記載のロータ。
  3.  前記エンドプレートは、前記外側端面から前記ロータコア側に窪む溝部を含み、
     前記境界流路は、前記溝部と前記軸方向移動規制部の前記エンドプレート接触面とによって形成されている、請求項1に記載のロータ。
  4.  前記軸方向移動規制部は、前記ロータシャフトに対して固定されることにより前記軸方向において位置決めされる固定部材であり、
     前記エンドプレートおよび前記固定部材のセットは、前記ロータコアの前記軸方向の一方側および他方側の両方に設けられている、請求項1に記載のロータ。
  5.  前記ロータコアは、
      永久磁石が配置される磁石孔と、
      前記磁石孔の径方向内側に設けられ、前記ロータコアの前記軸方向に延びる貫通孔により形成されたスリットと、を含み、
     冷媒が流れる前記コア流路は、前記スリットにより形成されている、請求項1に記載のロータ。
  6.  前記ロータコアの前記軸方向の一方側の前記供給流路から供給された冷媒を、前記軸方向の他方側から排出する排出流路を含む排出部材をさらに備え、
     前記排出流路は、排出した冷媒がステータのコイルエンド部に向かって排出されるように、前記コイルエンド部側に傾斜した傾斜面を含む、請求項1に記載のロータ。
     
     
PCT/JP2023/035795 2022-10-27 2023-09-29 ロータ WO2024090142A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-172271 2022-10-27
JP2022172271A JP2024064007A (ja) 2022-10-27 2022-10-27 ロータ

Publications (1)

Publication Number Publication Date
WO2024090142A1 true WO2024090142A1 (ja) 2024-05-02

Family

ID=90830583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035795 WO2024090142A1 (ja) 2022-10-27 2023-09-29 ロータ

Country Status (2)

Country Link
JP (1) JP2024064007A (ja)
WO (1) WO2024090142A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239799A (ja) * 2009-03-31 2010-10-21 Aisin Aw Co Ltd 回転電機及び回転電機用エンドプレート
JP2012165620A (ja) * 2011-02-09 2012-08-30 Ihi Corp 回転機
JP2015056966A (ja) * 2013-09-12 2015-03-23 マツダ株式会社 回転電機の冷却構造
DE102018220810A1 (de) * 2018-12-03 2020-06-04 Audi Ag Fluidgekühlter Rotor für eine elektrische Maschine
JP2020120425A (ja) * 2019-01-18 2020-08-06 本田技研工業株式会社 ロータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239799A (ja) * 2009-03-31 2010-10-21 Aisin Aw Co Ltd 回転電機及び回転電機用エンドプレート
JP2012165620A (ja) * 2011-02-09 2012-08-30 Ihi Corp 回転機
JP2015056966A (ja) * 2013-09-12 2015-03-23 マツダ株式会社 回転電機の冷却構造
DE102018220810A1 (de) * 2018-12-03 2020-06-04 Audi Ag Fluidgekühlter Rotor für eine elektrische Maschine
JP2020120425A (ja) * 2019-01-18 2020-08-06 本田技研工業株式会社 ロータ

Also Published As

Publication number Publication date
JP2024064007A (ja) 2024-05-14

Similar Documents

Publication Publication Date Title
EP2961043B1 (en) Rotor of rotary electric machine
US20220368202A1 (en) Axial flux machine
JP2012105487A (ja) 電動モータの冷却装置
JP2019161750A (ja) 回転電機のロータ
JP2008086130A (ja) 電動機
US20200280226A1 (en) Rotor of rotary electric machine
CN112039246A (zh) 旋转电机
JP2019122104A (ja) 回転電機のロータ
JP2009081953A (ja) 回転電機
WO2024090142A1 (ja) ロータ
JP7334635B2 (ja) 回転電機
CN111463941B (zh) 转子
JP2019140792A (ja) アキシャルギャップ型回転電機
JP6148206B2 (ja) 回転電機用ロータ
JP2020188561A (ja) 回転電機
JP7142072B2 (ja) 回転電機のロータ
CN111478519B (zh) 旋转电机
US20200280227A1 (en) Rotor of rotary electric machine
JP7108529B2 (ja) 回転電機
US20200127516A1 (en) Electric rotary machine
WO2019123962A1 (ja) ロータおよびモータ
JP2023096954A (ja) 回転電機
US20240006941A1 (en) Rotor and rotary electric machine
US20240195266A1 (en) Rotor
WO2021250921A1 (ja) 回転電機用ロータ