WO2024090084A1 - Resin composition and composite material - Google Patents

Resin composition and composite material Download PDF

Info

Publication number
WO2024090084A1
WO2024090084A1 PCT/JP2023/034312 JP2023034312W WO2024090084A1 WO 2024090084 A1 WO2024090084 A1 WO 2024090084A1 JP 2023034312 W JP2023034312 W JP 2023034312W WO 2024090084 A1 WO2024090084 A1 WO 2024090084A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mass
meth
resin composition
acid
Prior art date
Application number
PCT/JP2023/034312
Other languages
French (fr)
Japanese (ja)
Inventor
尚人 岡田
健一 小林
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2024090084A1 publication Critical patent/WO2024090084A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/01Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G

Definitions

  • the present invention relates to a resin composition and a composite material.
  • a method for repairing existing pipes such as gas pipes, water pipes, sewer pipes, and agricultural water pipes involves using a pipe repair material in which a resin composition is impregnated into a fiber base material.
  • the pipe is repaired by installing the pipe repair material at a predetermined position inside the existing pipe and then curing the resin composition contained in the pipe repair material.
  • This method includes a heat curing method that uses a thermosetting resin as the resin composition, and a photocuring method that uses a photocuring resin.
  • the resin composition is cured using a heat medium such as hot water or steam.
  • the photocuring method the resin composition is cured by irradiating the pipe repair material with light such as ultraviolet light or visible light.
  • Patent Document 1 describes a thermosetting resin composition for pipe lining material, which contains as essential components an unsaturated polyester resin (a), a polymerizable monomer (b), and a thixotropy imparting agent (c) such as silica powder.
  • Patent Document 2 describes a resin composition for repairing pipes and culverts, which contains (A) a vinyl ester resin composition, (B) a urethane (meth)acrylate composition, (C) an unsaturated polyester resin composition having an acid value of 90 KOHmg/g or more, and (D) a curing agent containing cumene hydroperoxide and t-butyl peroxybenzoate.
  • Patent Document 3 describes a tubular photocurable lining material that contains a photocurable resin composition that contains a polymerizable resin such as an unsaturated polyester resin or a vinyl ester resin, an unsaturated polymerizable monomer such as styrene, and a photopolymerization initiator.
  • a photocurable resin composition that contains a polymerizable resin such as an unsaturated polyester resin or a vinyl ester resin, an unsaturated polymerizable monomer such as styrene, and a photopolymerization initiator.
  • the length of construction using the light-curing method in repair work on existing pipes has been increasing. This is because the resin composition cures faster and the construction time is shorter than with the heat-curing method.
  • the light-curing method has the advantages of allowing long-term storage of pipe repair materials, a smaller risk of construction defects due to environmental impacts, and less odor during construction compared to the heat-curing method.
  • Patent Document 4 describes a pipe lining method in which a resin layer is irradiated with light from a photocuring device using light-emitting diodes (LEDs) whose main irradiation wavelength is ultraviolet light. LEDs generate little heat, are energy-saving, have a long life, and are excellent as light sources.
  • LEDs light-emitting diodes
  • JP 2001-62921 A International Publication No. 2015/056585 JP 2013-223939 A JP 2008-142996 A
  • Unsaturated polyester resins have traditionally been used for pipe rehabilitation, but in recent years, there has been a demand for thinner constituent materials and improved corrosion resistance, heat resistance, and strength properties to ensure the flow capacity of pipelines. These performance properties can be improved by mixing and using resins containing (meth)acryloyloxy groups, but at low temperatures, etc., the resin becomes cloudy due to phase separation, so curing may be insufficient when using photocuring methods, and there are limitations from the standpoint of compatibility.
  • the present invention has been made in consideration of the above circumstances, and aims to provide a resin composition and a composite material containing the same that are highly transparent, have excellent compatibility and curing properties, and are less likely to cause curing defects, even when an unsaturated polyester resin and a (meth)acryloyloxy group-containing resin are mixed.
  • a resin composition comprising an unsaturated polyester resin (A), a (meth)acryloyloxy group-containing resin (B), an ethylenically unsaturated group-containing monomer (C), a compatibilizer (D), and a polymerization initiator (E), wherein the (meth)acryloyloxy group-containing resin (B) is a resin having two or more (meth)acryloyloxy groups in one molecule and a weight average molecular weight (Mw) of 500 to 3,000, and the (meth)acryloyloxy group-containing resin (B) contains a vinyl ester resin (B1), and the vinyl ester resin (B1) is an addition product of a raw material containing an epoxy compound (b1-1) and an unsaturated monobasic acid (b1-3).
  • the compatibilizer (D) is an organometallic compound containing at least one metal element selected from the group consisting of metal elements of Groups 1, 12, and 14; and the content of the compatibilizer (D) in terms of metal is 800 to 1,850 ppm by mass relative to the total of the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), the ethylenically unsaturated group-containing monomer (C), the compatibilizer (D), and the polymerization initiator (E).
  • the unsaturated polyester resin (A) is an unsaturated polyester resin obtained by esterification reaction of a diol (a1), an ethylenically unsaturated group-containing dibasic acid (a2-1), and a saturated dibasic acid (a2-2).
  • a composite material comprising the resin composition according to any one of [1] to [9] above, a fiber base material (F), and at least one selected from a filler (G).
  • the present invention provides a resin composition that is highly transparent, has excellent compatibility and curability, and is less prone to curing defects, even when an unsaturated polyester resin (A) and a (meth)acryloyloxy group-containing resin (B) are mixed, and a composite material containing the resin composition.
  • (Meth)acrylic acid is a general term for acrylic acid and methacrylic acid.
  • (meth)acrylate is a general term for acrylate and methacrylate
  • (meth)acryloyl is a general term for acryloyl and methacryloyl.
  • the "weight average molecular weight Mw” (hereinafter, also simply referred to as “Mw) and the “number average molecular weight Mn” (hereinafter, also simply referred to as "Mn”) are standard polystyrene equivalent molecular weights determined by gel permeation chromatography (GPC).
  • the "viscosity" of the vinyl ester resin is represented by the viscosity of a mixture of the vinyl ester resin and the ethylenically unsaturated group-containing monomer (C).
  • the viscosity is a value measured at a temperature of 25°C using an E-type viscometer. Specifically, it is measured by the method described in the examples below.
  • the resin composition of the present embodiment contains an unsaturated polyester resin (A), a (meth)acryloyloxy group-containing resin (B), an ethylenically unsaturated group-containing monomer (C), a compatibilizer (D), and a polymerization initiator (E).
  • the (meth)acryloyloxy group-containing resin (B) is a resin having two or more (meth)acryloyloxy groups in one molecule and having a weight average molecular weight (Mw) of 500 to 3,000.
  • the (meth)acryloyloxy group-containing resin (B) contains a vinyl ester resin (B1), the vinyl ester resin (B1) is an addition reaction product of raw materials containing an epoxy compound (b1-1) and an unsaturated monobasic acid (b1-3), and the epoxy compound (b1-1) contains 30 to 100 mass% of a bisphenol-type epoxy resin having an epoxy equivalent of 300 or less, relative to 100 mass% of the epoxy compound (b1-1).
  • the compatibilizer (D) is an organometallic compound containing at least one metal element selected from the group 1, group 12, and group 14 metal elements, and the content of the compatibilizer (D) in terms of metal is 800 to 1,850 ppm by mass with respect to the total amount of the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), the ethylenically unsaturated group-containing monomer (C), the compatibilizer (D), and the polymerization initiator (E).
  • the resin composition of this embodiment contains a specific organometallic compound as a compatibilizer (D), which suppresses turbidity caused by the difference in molecular weight between the unsaturated polyester resin (A) and the (meth)acryloyloxy group-containing resin (B) in the resin composition, making it possible to produce a highly transparent resin composition.
  • This resin composition has good light transmittance, so it is believed that irradiated light can easily reach not only the irradiated surface but also the inside, making it less likely to cause poor curing.
  • the unsaturated polyester resin (A) used in this embodiment is obtained by an esterification reaction between a diol (a1) and a dibasic acid (a2).
  • the unsaturated polyester resin (A) used in the present embodiment is preferably one obtained by an esterification reaction between a diol (a1) and an ethylenically unsaturated group-containing dibasic acid (a2-1) and a saturated dibasic acid (a2-2) described below.
  • the content ratio (molar ratio) of the structural units derived from the diol (a1) and the structural units derived from the dibasic acid (a2) contained in the unsaturated polyester resin (A) is preferably 40:60 to 60:40, more preferably 45:55 to 55:45, and even more preferably 50:50, from the viewpoints of the curability of the resin composition and the strength properties of the cured resin.
  • the weight average molecular weight (Mw) of the unsaturated polyester resin (A) is preferably 3,000 to 20,000, more preferably 4,000 to 15,000, and even more preferably 5,000 to 12,000.
  • the number average molecular weight (Mn) of the unsaturated polyester resin (A) is preferably 1,000 to 5,000, more preferably 1,500 to 4,500, and even more preferably 2,000 to 4,000, from the viewpoint of compatibility with the (meth)acryloyloxy group-containing resin (B).
  • the Mw/Mn of the unsaturated polyester resin (A) is preferably 1.5 to 5.0, more preferably 1.8 to 4.5, and even more preferably 2.1 to 4.0.
  • the ratio of the weight average molecular weight (Mw) of the unsaturated polyester resin (A) to the weight average molecular weight (Mw) of the (meth)acryloyloxy group-containing resin (B), (Mw of unsaturated polyester resin (A))/Mw of the (meth)acryloyloxy group-containing resin (B), is preferably 1.5 to 30, more preferably 1.75 to 25, and even more preferably 1.8 to 20.
  • the diol (a1) is a compound having two hydroxyl groups in one molecule.
  • the diol (a1) may be used alone or in combination of two or more kinds.
  • diol (a1) examples include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 2-methyl-1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,6-hexanediol, 2-ethyl-1,3-hexanediol, 2,5-dimethyl-2,5-hexanol, and the like.
  • alkyl ethers examples include sandiol, 1,2-octanediol, 1,2-nonanediol, 1,4-cyclohexanediol, 1,8-octanediol, 1,9-nonanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 2,2-di(4-hydroxycyclohexyl)propane, as well as hydrogenated products of bisphenol A, bisphenol F, and bisphenol S, dihydric alcohols such as polyethylene glycol and polypropylene glycol, glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, and dipentaerythritol.
  • dihydric alcohols such as polyethylene glycol and polypropylene glycol, glycerin, trimethylolethane, trimethylolprop
  • ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, and hydrogenated bisphenol A are preferred, and from the viewpoints of availability and production costs, ethylene glycol, propylene glycol, diethylene glycol, 2-methyl-1,3-propanediol, and 2,2-dimethyl-1,3-propanediol are more preferred.
  • the dibasic acid (a2) preferably contains an ethylenically unsaturated group-containing dibasic acid (a2-1) and further contains a saturated dibasic acid (a2-2).
  • the ethylenically unsaturated group-containing dibasic acid (a2-1) is a compound having two carboxy groups and one or more ethylenically unsaturated groups in one molecule, and its molecular weight and molecular structure are not particularly limited.
  • the ethylenically unsaturated group-containing dibasic acid (a2-1) a compound having two carboxy groups and one or more ethylenically unsaturated groups in one molecule can be used among the compounds exemplified as the unsaturated polybasic acid (b1-4) described later.
  • the ethylenically unsaturated group-containing dibasic acid (a2-1) may be used alone or in combination of two or more kinds.
  • Examples of the ethylenically unsaturated group-containing dibasic acid (a2-1) include maleic anhydride, fumaric acid, itaconic acid, citraconic acid, and chloromaleic acid. Among these, from the viewpoint of production costs, maleic anhydride and fumaric acid are preferred, and maleic anhydride is more preferred.
  • the saturated dibasic acid (a2-2) is a compound having two carboxy groups and no ethylenically unsaturated group in one molecule, and its molecular weight and molecular structure are not particularly limited.
  • the saturated dibasic acid (a2-2) may be used alone or in combination of two or more kinds.
  • saturated dibasic acid (a2-2) examples include phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, adipic acid, sebacic acid, tetrahydrophthalic acid, endomethylenetetrahydrophthalic acid, hexahydrophthalic acid (1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid), naphthalenedicarboxylic acid, trimellitic acid, pyromellitic acid, chlorendic acid (HETT acid), tetrabromophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, succinic anhydride, chlorendic anhydride, trimellitic anhydride, pyromellitic anhydride, dimethyl orthophthalate, dimethyl isophthal
  • the unsaturated polyester resin (A) can be produced by dehydration condensation polymerization of a diol (a1), an ethylenically unsaturated group-containing dibasic acid (a2-1), and a saturated dibasic acid (a2-2).
  • the copolymer can be produced by reacting the diol (a1), the ethylenically unsaturated group-containing dibasic acid (a2-1) and the saturated dibasic acid (a2-2) in a reaction vessel capable of being heated and stirred at preferably 150 to 250° C., more preferably 170 to 240° C., and even more preferably 180 to 230° C., for 8 to 15 hours.
  • the diol (a1) and the saturated dibasic acid (a2-2) so that the molar ratio (diol (a1):saturated dibasic acid (a2-2)) is 100:80 to 100:20, more preferably 100:70 to 100:30, and even more preferably 100:60 to 100:40.
  • the timing of mixing the diol (a1), the ethylenically unsaturated group-containing dibasic acid (a2-1), and the saturated dibasic acid (a2-2) is not particularly limited, and they can be mixed by a known method.
  • the content of the unsaturated polyester resin (A) in the resin composition according to the present embodiment is preferably 25 to 50 mass%, more preferably 27 to 48 mass%, and even more preferably 28 to 46 mass%, relative to 100 mass% in total of the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), and the ethylenically unsaturated group-containing monomer (C).
  • the content of the unsaturated polyester resin (A) is 25% by mass or more, the toughness of the cured resin is likely to be improved.
  • the content of the unsaturated polyester resin (A) is 50% by mass or less, the interaction with the compatibilizer (D) is easily controlled.
  • the (meth)acryloyloxy group-containing resin (B) used in the present embodiment is not particularly limited as long as it has two or more (meth)acryloyloxy groups in one molecule and has a weight average molecular weight (Mw) of 500 to 3,000.
  • the resin composition of the present embodiment contains a vinyl ester resin (B1) as the (meth)acryloyloxy group-containing resin (B). This allows interaction with the compatibilizer (D) to improve the compatibility between the unsaturated polyester resin (A) and the (meth)acryloyloxy group-containing resin (B), thereby suppressing turbidity of the resin composition.
  • the (meth)acryloyloxy group-containing resin (B) may be used alone or in combination of two or more kinds.
  • the weight average molecular weight (Mw) of the (meth)acryloyloxy group-containing resin (B) is 500 to 3,000, preferably 600 to 2,800, and more preferably 800 to 2,500.
  • the number average molecular weight (Mn) of the (meth)acryloyloxy group-containing resin (B) is preferably 400 to 1,500, more preferably 500 to 1,400, and even more preferably 550 to 1,300, from the viewpoint of compatibility with the unsaturated polyester resin (A).
  • the Mw/Mn of the (meth)acryloyloxy group-containing resin (B) is preferably 1.1 to 2.5, more preferably 1.2 to 2.4, and even more preferably 1.3 to 2.3.
  • Vinyl ester resin (B1) In the vinyl ester resin (B1), a hydroxyl group generated by ring-opening of the epoxy group of the epoxy compound (b1-1) and a hydroxyl group of the unsaturated polyester resin (A) interact with the compatibilizer (D), whereby the compatibility between the unsaturated polyester resin (A) and the vinyl ester resin (B1) is improved, and turbidity of the resin composition can be suppressed.
  • Vinyl ester resin (B1) is an addition reaction product of raw materials including an epoxy compound (b1-1) and an unsaturated monobasic acid (b1-3).
  • vinyl ester resin (B1) include vinyl ester resin (B1-1) which is an addition reaction product of an epoxy compound (b1-1) having two epoxy groups in one molecule, a bisphenol compound (b1-2), an unsaturated monobasic acid (b1-3), and a polybasic acid anhydride (b1-4), and vinyl ester resin (B1-2) which is an addition reaction product of an epoxy compound (b1-1) having two epoxy groups in one molecule, and an unsaturated monobasic acid (b1-3). These resins may be used alone or in combination of two or more.
  • the vinyl ester resin (B1-1) is an addition reaction product obtained by reacting a resin precursor (P1), which is a reaction product of an epoxy compound (b1-1) having two epoxy groups in one molecule and a bisphenol compound (b1-2), with an unsaturated monobasic acid (b1-3) and an unsaturated polybasic acid (b1-4).
  • the amount of bisphenol compound (b1-2) in the raw material of vinyl ester resin (B1-1) is preferably such that the total amount of hydroxyl groups in bisphenol compound (b1-2) is 10 moles or more, more preferably 15 moles or more, even more preferably 20 moles or more, per 100 moles of the total amount of epoxy groups in epoxy compound (b1-1), and is preferably 70 moles or less, more preferably 50 moles or less, even more preferably 30 moles or less.
  • the molecular weight distribution of the vinyl ester resin (B1-1) will be broadened, making it easier to make it compatible with the unsaturated polyester resin (A), and it will be possible to achieve both toughness and toughness of the resin cured product.
  • the total amount of hydroxyl groups in the bisphenol compound (b1-2) is 70 moles or less relative to 100 moles of the total amount of epoxy groups in the epoxy compound (b1-1)
  • the molecular weight of the resin composition will be prevented from becoming excessively large, and it will be easier to control the viscosity of the resin composition.
  • the amount of unsaturated monobasic acid (b1-3) in the raw material of vinyl ester resin (B1-1) is preferably such that the total amount of acid groups of unsaturated monobasic acid (b1-3) is 40 moles or more, more preferably 50 moles or more, even more preferably 60 moles or more, and is preferably 120 moles or less, more preferably 100 moles or less, even more preferably 80 moles or less, per 100 moles of the total amount of epoxy groups of epoxy compound (b1-1).
  • the total amount of acid groups in the unsaturated monobasic acid (b1-3) is 40 moles or more relative to 100 moles of the total amount of epoxy groups in the epoxy compound (b1-1), a sufficient amount of ethylenically unsaturated groups is introduced into the vinyl ester resin (B1-1), and the resin composition is likely to exhibit good curing properties.
  • the total amount of acid groups in the unsaturated monobasic acid (b1-3) is 120 moles or less relative to 100 moles of the total amount of epoxy groups in the epoxy compound (b1-1), compatibility with the unsaturated polyester resin (A) is good.
  • the amount of unsaturated polybasic acid (b1-4) in the raw material of vinyl ester resin (B1-1) is preferably such that the total amount of acid groups of unsaturated polybasic acid (b1-4) is 1 mole or more, more preferably 3 moles or more, even more preferably 5 moles or more, and is preferably 15 moles or less, more preferably 10 moles or less, even more preferably 8 moles or less, per 100 moles of the total amount of epoxy groups of epoxy compound (b1-1).
  • the total amount of acid groups in the unsaturated polybasic acid (b1-4) is 1 mole or more per 100 moles of epoxy groups in the epoxy compound (b1-1), a sufficient amount of ethylenically unsaturated groups is introduced into the vinyl ester resin (B1-1), and the resin composition is likely to exhibit good curing properties.
  • the total amount of acid groups in the unsaturated polybasic acid (b1-4) is 15 moles or less per 100 moles of epoxy groups in the epoxy compound (b1-1), compatibility with the unsaturated polyester resin (A) will be good.
  • the vinyl ester resin (B1-2) is an addition reaction product of an epoxy compound (b1-1) having two epoxy groups in one molecule and an unsaturated monobasic acid (b1-3).
  • the amount of unsaturated monobasic acid (b1-3) in the raw material of vinyl ester resin (B1-2) is preferably such that the total amount of acid groups of unsaturated monobasic acid (b1-3) is 30 moles or more, more preferably 40 moles or more, even more preferably 50 moles or more, and is preferably 120 moles or less, more preferably 110 moles or less, even more preferably 100 moles or less, per 100 moles of the total amount of epoxy groups of epoxy compound (b1-1).
  • the total amount of acid groups in the unsaturated monobasic acid (b1-3) is 30 moles or more relative to 100 moles of the total amount of epoxy groups in the epoxy compound (b1-1), a sufficient amount of ethylenically unsaturated groups is introduced into the vinyl ester resin (B1-2), and the resin composition is likely to exhibit good curing properties.
  • the total amount of acid groups in the unsaturated monobasic acid (b1-3) is 120 moles or less relative to 100 moles of the total amount of epoxy groups in the epoxy compound (b1-1), compatibility with the unsaturated polyester resin (A) is good.
  • the epoxy compound (b1-1) is a compound having two epoxy groups in one molecule, and may be a monomer, oligomer, or polymer in general, and its molecular weight and molecular structure are not particularly limited.
  • the epoxy compound (b1-1) may be used alone or in combination of two or more kinds.
  • the epoxy compound (b1-1) contains 30 to 100% by mass of a bisphenol type epoxy resin having an epoxy equivalent of 300 or less, relative to 100% by mass of the epoxy compound (b1-1).
  • the content of the bisphenol type epoxy resin having an epoxy equivalent of 300 or less, relative to 100% by mass of the epoxy compound (b1-1), is 30% by mass or more, the viscosity of the resin composition and the toughness of the cured resin will be good, and if it is 100% by mass or less, the toughness of the cured resin and the compatibility with the unsaturated polyester resin (A) will be good.
  • bisphenol type epoxy resins examples include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, and bisphenol AF type epoxy resins.
  • bisphenol A type epoxy resins, bisphenol F type epoxy resins, and bisphenol S type epoxy resins are preferred, and bisphenol A type epoxy resins are more preferred.
  • epoxy compounds other than bisphenol-type epoxy resins include t-butylcatechol-type epoxy resins, naphthalene-type epoxy resins, naphthol-type epoxy resins, anthracene-type epoxy resins, glycidyl ester-type epoxy resins, biphenyl-type epoxy resins, linear aliphatic epoxy resins, epoxy resins having a butadiene structure, alicyclic epoxy resins, heterocyclic epoxy resins, spiro ring-containing epoxy resins, cyclohexanedimethanol-type epoxy resins, naphthylene ether-type epoxy resins, and phenol novolac-type epoxy resins.
  • phenol novolac-type epoxy resins are preferred from the standpoints of corrosion resistance, versatility, and cost.
  • the epoxy equivalent of the epoxy compound (b1-1) is preferably 100 to 300, more preferably 110 to 280, even more preferably 120 to 270, and even more preferably 150 to 250, from the viewpoints of ease of synthesis and molecular weight control of the resin composition.
  • the molecular weight and molecular structure of the bisphenol compound (b1-2) are not particularly limited.
  • the bisphenol compound (b1-2) may be used alone or in combination of two or more kinds.
  • Examples of the bisphenol compound (b1-2) include bisphenol A, bisphenol AP, bisphenol AF, bisphenol B, bisphenol BP, bisphenol C, bisphenol E, bisphenol F, bisphenol G, bisphenol M, bisphenol S, bisphenol P, bisphenol PH, bisphenol TMC, and bisphenol Z.
  • bisphenol A and bisphenol F are preferred from the viewpoint of ease of synthesis, and bisphenol A is more preferred from the viewpoints of corrosion resistance, versatility, and cost.
  • the unsaturated monobasic acid (b1-3) is not particularly limited in its molecular weight and molecular structure, but is preferably a monocarboxylic acid having an ethylenically unsaturated group.
  • the unsaturated monobasic acid (b1-3) may be used alone or in combination of two or more kinds.
  • Examples of the unsaturated monobasic acid (b1-3) include (meth)acrylic acid, crotonic acid, cinnamic acid, etc.
  • the unsaturated monobasic acid (b1-3) include (meth)acrylic acid, crotonic acid, cinnamic acid, etc.
  • at least one selected from (meth)acrylic acid and crotonic acid is preferred, (meth)acrylic acid is more preferred, and methacrylic acid is even more preferred.
  • the unsaturated polybasic acid (b1-4) is a compound having two or more carboxy groups and one or more unsaturated groups in one molecule, and its molecular weight and molecular structure are not particularly limited.
  • the unsaturated polybasic acid (b1-4) may be used alone or in combination of two or more kinds.
  • Examples of the unsaturated polybasic acid (b1-4) include maleic anhydride, fumaric acid, itaconic acid, citraconic acid, chloromaleic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, phthalic acid, tetrahydrophthalic acid, and hexahydrophthalic acid.
  • maleic anhydride, fumaric acid, succinic acid, glutaric acid, and adipic acid are preferred, maleic anhydride, fumaric acid, and succinic acid are more preferred, and fumaric acid is even more preferred.
  • the method for producing the vinyl ester resin (B1-1) includes a step of reacting an epoxy compound (b1-1) having two epoxy groups in one molecule with a bisphenol compound (b1-2) to obtain a resin precursor (P1), and a step of reacting the resin precursor (P1) obtained in the above step with an unsaturated monobasic acid (b1-3) and an unsaturated polybasic acid (b1-4) to obtain the vinyl ester resin (B1-1).
  • This step is a step of obtaining a resin precursor (P1) by reacting an epoxy compound (b1-1) having two epoxy groups in one molecule with a bisphenol compound (b1-2).
  • a resin precursor (P1) by reacting an epoxy compound (b1-1) having two epoxy groups in one molecule with a bisphenol compound (b1-2).
  • the epoxy compound (b1-1) and the bisphenol compound (b1-2) are mixed with at least one of a solvent and a reactive diluent as necessary in a reaction vessel capable of being heated and stirred, and the mixture is heated in the presence of an esterification catalyst at preferably 70 to 160°C, more preferably 80 to 155°C, and even more preferably 90 to 150°C for 1 to 3 hours while being mixed to obtain the resin precursor (P1).
  • Esterification catalysts include, for example, tertiary amines such as triethylamine, triethylenediamine, N,N-dimethylbenzylamine, N,N-dimethylaniline, 2,4,6-tris(dimethylaminomethyl)phenol, and diazabicyclooctane; phosphorus compounds such as triphenylphosphine and benzyltriphenylphosphonium chloride; or diethylamine hydrochloride, trimethylbenzylammonium chloride, lithium chloride, and the like. These may be used alone or in combination of two or more. Among these, from the viewpoints of slowing down the reaction rate to prevent gelation of the resin and facilitating control of the molecular weight distribution, tertiary amines and phosphorus compounds are preferred, and tertiary amines are more preferred.
  • tertiary amines and phosphorus compounds are preferred, and tertiary amines are more preferred.
  • the amount of the esterification catalyst used is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 4 parts by mass, and even more preferably 0.1 to 3 parts by mass, per 100 parts by mass of the epoxy compound (b1-1) and the bisphenol compound (b1-2) combined, from the viewpoint of promoting the reaction while suppressing thickening of the vinyl ester resin (B1-1).
  • the solvent and the reactive diluent are used as necessary from the viewpoint of facilitating uniform mixing of the epoxy compound (b1-1), the bisphenol compound (b1-2), the unsaturated monobasic acid (b1-3), and the unsaturated polybasic acid (b1-4).
  • the mixing method is not particularly limited, and may be performed by a known method.
  • the solvent is not particularly limited as long as it is inactive to the epoxy compound (b1-1), the bisphenol compound (b1-2), the unsaturated monobasic acid (b1-3), and the unsaturated polybasic acid (b1-4).
  • a known solvent having a boiling point of 70 to 150° C. at 1 atmospheric pressure such as methyl isobutyl ketone, may be used.
  • the solvent may be used alone or in combination of two or more.
  • the reactive diluent is preferably an ethylenically unsaturated group-containing monomer (C) which is inactive to the epoxy compound (b1-1), the bisphenol compound (b1-2), the unsaturated monobasic acid (b1-3), and the unsaturated polybasic acid (b1-4).
  • a polymerization inhibitor may be added from the viewpoint of suppressing the progress of the polymerization reaction of the resin precursor (P1).
  • the polymerization inhibitor a known one may be used, and examples thereof include hydroquinone, methylhydroquinone, trimethylhydroquinone, phenothiazine, catechol, 4-t-butylcatechol, copper naphthenate, etc. These may be used alone or in combination of two or more kinds.
  • the amount of the polymerization inhibitor added, when added, can be, for example, 0.0001 to 10 parts by mass, and preferably 0.001 to 1 part by mass, per 100 parts by mass in total of the epoxy compound (b1-1), the bisphenol compound (b1-2), and the unsaturated monobasic acid (b1-3).
  • Step of Obtaining Vinyl Ester Resin (B1-1) This step is a step of reacting the resin precursor (P1) obtained in the previous step with an unsaturated monobasic acid (b1-3) and an unsaturated polybasic acid (b1-4) to obtain a vinyl ester resin (B1-1).
  • the resin precursor (P1) with the unsaturated monobasic acid (b1-3) and the unsaturated polybasic acid (b1-4) so that the total amount of acid groups in the unsaturated monobasic acid (b1-3) is preferably 40 to 120 mol, more preferably 50 to 100 mol, and even more preferably 60 to 80 mol, and the total amount of acid groups in the unsaturated polybasic acid (b1-4) is preferably 1 to 15 mol, more preferably 3 to 10 mol, and even more preferably 5 to 8 mol, relative to 100 mol of the total amount of epoxy groups in the epoxy compound (b1-1).
  • an unsaturated monobasic acid (b1-3) and an unsaturated polybasic acid (b1-4) are added in the presence of an esterification catalyst to a reaction vessel in which the resin precursor (P1) has been synthesized, and the mixture is heated with mixing at preferably 70 to 150°C, more preferably 80 to 140°C, and even more preferably 90 to 130°C for 30 minutes to 4 hours to produce the vinyl ester resin (B1-1).
  • the esterification catalyst used in the step of obtaining the vinyl ester resin (B1-1) may be the same as the esterification catalyst used in the step of obtaining the resin precursor (P1) of the vinyl ester resin (B1-1).
  • the esterification catalyst used in this step may be the same as or different from the esterification catalyst used in producing the resin precursor (P1).
  • the amount of the catalyst used is, from the viewpoint of promoting the reaction while suppressing thickening of the vinyl ester resin (B1-1), preferably 0.01 to 5 parts by mass, more preferably 0.05 to 4 parts by mass, and even more preferably 0.1 to 3 parts by mass, relative to 100 parts by mass in total of the epoxy compound (b1-1), the bisphenol compound (b1-2), the unsaturated monobasic acid (b1-3), and the unsaturated polybasic acid (b1-4).
  • the vinyl ester resin (B1-1) in the process of obtaining the vinyl ester resin (B1-1), as in the process of obtaining the resin precursor (P1), at least one of a solvent, a reactive diluent, and a polymerization inhibitor may be added as necessary.
  • the mixing method may be a known method. The same applies to the preferred embodiments.
  • the method for producing the vinyl ester resin (B1-2) includes a step of reacting an epoxy compound (b1-1) having two epoxy groups in one molecule with an unsaturated monobasic acid (b1-3) to obtain the vinyl ester resin (B1-2).
  • Step of Obtaining Vinyl Ester Resin (B1-2) This step is a step in which an epoxy compound (b1-1) having two epoxy groups in one molecule and an unsaturated monobasic acid (b1-3) are reacted to obtain a vinyl ester resin (B1-2).
  • an epoxy compound (b1-1) having two epoxy groups in one molecule with an unsaturated monobasic acid (b1-3) such that the total amount of acid groups in the unsaturated monobasic acid (b1-3) is preferably 30 to 120 mol, more preferably 40 to 110 mol, and even more preferably 50 to 100 mol, relative to 100 mol of the total amount of epoxy groups in the epoxy compound (b1-1).
  • the epoxy compound (b1-1) and the unsaturated monobasic acid (b1-3) are mixed with at least one of a solvent and a reactive diluent, if necessary, in a reaction vessel capable of being heated and stirred, and the mixture is heated in the presence of an esterification catalyst at preferably 70 to 160°C, more preferably 80 to 150°C, and even more preferably 90 to 120°C, for 1 to 3 hours while being mixed to obtain the vinyl ester resin (B1-2).
  • the esterification catalyst used in the step of obtaining the vinyl ester resin (B1-2) may be the same as the esterification catalyst used in the step of obtaining the resin precursor (P1) of the vinyl ester resin (B1-1).
  • the esterification catalyst used in this step may be the same as or different from the esterification catalyst used in producing the resin precursor (P1).
  • the amount of the esterification catalyst used is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 4 parts by mass, and even more preferably 0.1 to 3 parts by mass, per 100 parts by mass of the epoxy compound (b1-1) and the unsaturated monobasic acid (b1-3) in total, from the viewpoint of promoting the reaction while suppressing thickening of the vinyl ester resin (B1-2).
  • a reactive diluent When a reactive diluent is added to the vinyl ester resin (B1) for the purpose of lowering the viscosity of the vinyl ester resin (B1), it is preferable to add and mix the reactive diluent after the synthesis of the vinyl ester resin (B1); when a reactive diluent is added for the purpose of facilitating the synthesis of the vinyl ester resin (B1), it is preferable to add the reactive diluent during the synthesis of the vinyl ester resin (B1), and further add and mix the reactive diluent after the synthesis of the vinyl ester resin (B1).
  • the viscosity of the vinyl ester resin (B1) at 25°C is preferably 0.1 to 1.2 Pa ⁇ s, more preferably 0.1 to 1.0 Pa ⁇ s, and even more preferably 0.2 to 0.8 Pa ⁇ s.
  • the resin composition in the present embodiment may contain another (meth)acryloyloxy group-containing resin different from the vinyl ester resin (B1) from the viewpoint of improving the performance such as corrosion resistance, heat resistance, and strength properties of the cured resin.
  • the other resins include urethane (meth)acrylate resins, polyester (meth)acrylate resins, (meth)acrylate resins, etc. These other resins may be used alone or in combination of two or more.
  • the urethane (meth)acrylate resin is a polyurethane having a (meth)acryloyloxy group.
  • a radically polymerizable unsaturated group-containing oligomer obtained by reacting a polyisocyanate with a polyhydroxy compound or a polyhydric alcohol, and then reacting the unreacted isocyanato group with a hydroxyl group-containing (meth)acrylic compound and, if necessary, a hydroxyl group-containing allyl ether compound.
  • the polyester (meth)acrylate resin is a polyester having a (meth)acryloyloxy group.
  • the polyester (meth)acrylate resin can be obtained, for example, by the following method (1) or (2).
  • (1) A method of reacting a polyester having a carboxy group at its terminal with an epoxy group-containing (meth)acrylate or a hydroxyl group-containing (meth)acrylate.
  • (2) A method of reacting a polyester having a hydroxyl group at its terminal with (meth)acrylic acid or an isocyanato group-containing (meth)acrylate.
  • the polyester having a carboxy group at its terminal which is used as a raw material in the above method (1), can be obtained by reacting an excess amount of at least one of a saturated polybasic acid and an unsaturated polybasic acid with a polyhydric alcohol.
  • the polyester having a hydroxyl group at its terminal, which is used as a raw material in the above method (2), may be one obtained by reacting at least one of a saturated polybasic acid and an unsaturated polybasic acid with an excess amount of a polyhydric alcohol.
  • (Meth)acrylate resin is a general term for acrylate resin and methacrylate resin, and examples of such resins include homopolymers of alkyl acrylates such as ethyl acrylate, methyl acrylate, and butyl acrylate, and alkyl methacrylates such as ethyl methacrylate, methyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, and t-butyl methacrylate, as well as copolymers with other copolymerizable monomers.
  • the content is preferably less than 30 mass%, more preferably 20 mass% or less, and even more preferably 10 mass% or less, from the viewpoint of improving the performance of the cured resin, such as corrosion resistance, heat resistance, and strength properties.
  • the content of the (meth)acryloyloxy group-containing resin (B) in the resin composition according to the present embodiment is preferably 12 to 30 mass%, more preferably 13 to 29 mass%, and even more preferably 14 to 28 mass%, relative to 100 mass% in total of the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), and the ethylenically unsaturated group-containing monomer (C).
  • the content of the (meth)acryloyloxy group-containing resin (B) is 12% by mass or more, the performance of the resin cured product is likely to be improved in terms of corrosion resistance, heat resistance, strength, etc.
  • the content of the (meth)acryloyloxy group-containing resin (B) is 30% by mass or less, the interaction with the compatibilizer (D) is easily controlled.
  • the ethylenically unsaturated group-containing monomer (C) used in this embodiment is not particularly limited as long as it is a monomer of a compound having an ethylenically unsaturated group, but it is preferable that it has a vinyl group, an allyl group, a (meth)acryloyl group, etc. However, the (meth)acryloyloxy group-containing resin (B) is excluded.
  • the ethylenically unsaturated group-containing monomer (C) may be used alone or in combination of two or more kinds.
  • those having a (meth)acryloyl group include, for example, (meth)acrylic acid and (meth)acrylate.
  • the (meth)acrylate may be monofunctional or polyfunctional.
  • Examples of monofunctional (meth)acrylates include methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, i-butyl (meth)acrylate, t-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, cyclohexyl (meth)acrylate, benzyl (meth)acrylate, stearyl (meth)acrylate, tridecyl (meth)acrylate, phenoxyethyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, ethylene glycol monomethyl ether (meth)acrylate, ethylene glycol monoethyl ether (meth)acrylate, ethylene glycol monobutyl ether (meth)acrylate, and ethylene glycol monohexyl ether.
  • acrylates examples include silyl ether (meth)acrylate, ethylene glycol mono 2-ethylhexyl ether (meth)acrylate, diethylene glycol monomethyl ether (meth)acrylate, diethylene glycol monoethyl ether (meth)acrylate, diethylene glycol monobutyl ether (meth)acrylate, diethylene glycol monohexyl ether (meth)acrylate, diethylene glycol mono 2-ethylhexyl ether (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, tricyclodecanyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, caprolactone-modified hydroxyethyl (meth)acrylate, and allyl (meth)acrylate.
  • polyfunctional (meth)acrylates include alkanediol di(meth)acrylates such as ethylene glycol di(meth)acrylate, 1,2-propylene glycol di(meth)acrylate, 1,3-butylene glycol di(meth)acrylate, 1,4-butylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate; diethylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, and polytetramethylene glycol di(meth)acrylate.
  • alkanediol di(meth)acrylates such as ethylene glycol di(meth)acrylate, 1,2-propylene glycol di(meth)acrylate, 1,3-butylene
  • Polyoxyalkylene glycol di(meth)acrylates such as trimethylolpropane di(meth)acrylate, glycerin di(meth)acrylate, pentaerythritol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, glycerin tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, pentaerythritol diacrylate monostearate, 1,3-bis((meth)acryloyloxy)-2-hydroxypropane, ethoxylated bisphenol A di(meth)acrylate, tris-(2-(meth)acryloxyethyl)isocyanurate, etc.
  • those other than (meth)acrylates that have a (meth)acryloyl group include acryloylmorpholine, 2-hydroxyethyl (meth)acrylamide, 2-hydroxyethyl-N-methyl (meth)acrylamide, 3-hydroxypropyl (meth)acrylamide, etc.
  • Ethylenically unsaturated group-containing monomers (C) that have a vinyl group include, for example, styrene, p-chlorostyrene, vinyltoluene, ⁇ -methylstyrene, dichlorostyrene, divinylbenzene, t-butylstyrene, vinyl acetate, diallyl fumarate, diallyl phthalate, triallyl isocyanurate, and vinylbenzyl compounds such as vinylbenzyl butyl ether, vinylbenzyl hexyl ether, and divinylbenzyl ether.
  • styrene compounds and (meth)acrylates are preferred. More specifically, at least one selected from styrene, methyl (meth)acrylate, phenoxyethyl (meth)acrylate, benzyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, and tetraethylene glycol di(meth)acrylate is preferred, and styrene is more preferred.
  • the content of the ethylenically unsaturated group-containing monomer (C) in the resin composition according to the present embodiment is preferably 20 to 63 mass%, more preferably 25 to 60 mass%, and even more preferably 30 to 55 mass%, relative to 100 mass% in total of the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), and the ethylenically unsaturated group-containing monomer (C).
  • the content of the ethylenically unsaturated group-containing monomer (C) is 20% by mass or more, the viscosity of the resin composition can be easily reduced, and the workability is improved.
  • the content of the ethylenically unsaturated group-containing monomer (C) is 63% by mass or less, the corrosion resistance, heat resistance, strength properties, etc. of the cured resin are improved.
  • the compatibilizer (D) used in this embodiment is an organometallic compound containing at least one metal element selected from the group 1, group 12, and group 14.
  • the compatibilizer (D) has the effect of increasing the compatibility between the unsaturated polyester resin (A) and the (meth)acryloyloxy group-containing resin (B) by interacting with the hydroxyl group in the unsaturated polyester resin (A) and the carboxyl group and hydroxyl group in the (meth)acryloyloxy group-containing resin (B).
  • the compatibilizer (D) may be used alone or in combination of two or more kinds.
  • Metal elements in Group 1 include lithium, sodium, and potassium.
  • Group 12 metal elements include zinc.
  • Examples of metal elements in Group 14 include tin and lead.
  • an organometallic compound containing at least one selected from zinc, potassium, and tin is preferable, zinc octoate, zinc neodecanoate, potassium octoate, tin octoate, and tin bisacetylacetonate are more preferable, and zinc octoate and potassium octoate are even more preferable.
  • the content of the compatibilizer (D) in the resin composition according to the present embodiment, calculated as metal, is 800 to 1,850 ppm by mass, preferably 850 to 1,700 ppm by mass, and more preferably 900 to 1,500 ppm by mass, based on the total content of the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), the ethylenically unsaturated group-containing monomer (C), the compatibilizer (D), and the polymerization initiator (E).
  • the content of the compatibilizer (D) in terms of metal is 800 ppm by mass or more, the compatibility between the unsaturated polyester resin (A) and the (meth)acryloyloxy group-containing resin (B) is likely to be improved.
  • the content of the compatibilizer (D) in terms of metal is 1,850 ppm by mass or less, compatibility and photocurability can be achieved at the same time.
  • the polymerization initiator (E) used in this embodiment may be either a photopolymerization initiator or a thermal polymerization initiator.
  • the present inventors have found that a cured product with good curability can be obtained by irradiating the resin composition according to this embodiment with only light having a peak half width of 4 to 35 nm and a central wavelength of 315 to 460 nm, which does not include high-energy ultraviolet light having a wavelength of 200 to 314 nm. Therefore, from the viewpoint of exerting the effects of the present invention, the polymerization initiator (E) is preferably a photopolymerization initiator.
  • the content of the photopolymerization initiator in the resin composition is preferably 0.02 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, and even more preferably 0.05 to 1 part by mass, relative to a total of 100 parts by mass of the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), and the ethylenically unsaturated group-containing monomer (C). If the content of the photopolymerization initiator is 0.02 parts by mass or more, a resin composition with better curability can be obtained.
  • the content of the photopolymerization initiator is 10 parts by mass or less, a rapid curing reaction and heat generation are unlikely to occur during curing of the resin composition, and cracks are likely to be suppressed.
  • a cured product with excellent balance of physical properties such as strength, toughness, heat resistance, and chemical resistance is likely to be obtained.
  • the content of the thermal polymerization initiator in the resin composition is preferably 0.3 to 6.0 parts by mass, more preferably 0.4 to 5.0 parts by mass, and even more preferably 0.5 to 4.0 parts by mass, relative to a total of 100 parts by mass of the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), and the ethylenically unsaturated group-containing monomer (C).
  • the content of the thermal polymerization initiator is 0.3 parts by mass or more, curability without curing defects can be obtained, and when the content of the thermal polymerization initiator is 6.0 parts by mass or less, a cured product having good physical properties can be obtained.
  • the photopolymerization initiator is not particularly limited as long as it generates radicals upon irradiation with light.
  • benzoin and its alkyl ethers such as benzoin, benzoin methyl ether, and benzoin ethyl ether
  • acetophenones such as acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, and 4-(1-t-butyldioxy-1-methylethyl)acetophenone
  • ⁇ -hydroxyalkylphenones such as 1-hydroxycyclohexyl phenyl ketone and 2-hydroxy-2-methyl-1-phenyl-propan-1-one
  • anthraquinones such as 2-methylanthraquinone, 2-amyl anthraquinone, 2-t-butyl anthraquinone, and 1-chloro anthraquinone
  • thioxanthones such as 2,4
  • an intramolecular cleavage type photopolymerization initiator that does not require a hydrogen donor.
  • the thermal polymerization initiator is not particularly limited, and a known radical polymerization initiator can be used.
  • the thermal polymerization initiator include organic peroxides, azo compounds, persulfates, redox compounds, etc. Among these, organic peroxides are preferred.
  • organic peroxides include ketone peroxides, perbenzoates, hydroperoxides, diacyl peroxides, peroxyketals, hydroperoxides, diallyl peroxides, peroxy esters, and peroxydicarbonates.
  • More specific examples include methyl ethyl ketone peroxide, cumene hydroperoxide, t-butyl perbenzoate, 1,1,3,3-tetramethylbutyl 2-ethylhexaneperoxy acid, dibenzoyl peroxide (also called benzoyl peroxide), benzoyl m-methylbenzoyl peroxide, m-toluoyl peroxide, dicumyl peroxide, diisopropyl peroxide, di-t-butyl peroxide, t-butyl peroxybenzoate, 1,1-bis(t-butyl
  • the peroxy group include 2,5-dimethyl-2,5-bis(t-butylperoxy)hexyne-3,3-isopropyl hydroperoxide, t-butyl hydroperoxide, dicumyl hydroperoxide, acetyl peroxide, bis(4-t-butylcyclohexyl)peroxy
  • bis(4-t-butylcyclohexyl) peroxydicarbonate, 1,1,3,3-tetramethylbutyl 2-ethylhexaneperoxy acid, dibenzoyl peroxide, benzoyl m-methylbenzoyl peroxide, m-toluoyl peroxide, methyl ethyl ketone peroxide, and t-butyl peroxybenzoate are preferred.
  • the resin composition of the present embodiment may contain, as other components, additives such as, for example, resins other than the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), and the ethylenically unsaturated group-containing monomer (C), polymerization inhibitors, thixotropic agents, curing accelerators, catalysts, thickening aids, curing retarders, surfactants, interface regulators, wetting and dispersing agents, defoamers, leveling agents, coupling agents, light stabilizers, waxes, flame retardants, and plasticizers.
  • additives such as, for example, resins other than the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), and the ethylenically unsaturated group-containing monomer (C), polymerization inhibitors, thixotropic agents, curing accelerators, catalysts, thickening aids, curing retarders, surfactants, interface regulators, wetting
  • the resin composition of this embodiment preferably contains a polymerization inhibitor from the viewpoint of suppressing the progress of the polymerization reaction of the resin composition.
  • the polymerization inhibitor that is preferably used is the one described above in the section [Production method of vinyl ester resin (B1)].
  • the resin composition of the present embodiment has a haze of preferably less than 70%, more preferably less than 50%, and even more preferably less than 35%.
  • the resin composition of the present embodiment has a total light transmittance of preferably 70% or more, more preferably 75% or more, and even more preferably 79% or more.
  • the cured product of the resin composition of this embodiment preferably has a Barcol hardness of 16 or more, more preferably 18 or more, and even more preferably 21 or more. The above haze, total light transmittance, and Barcol hardness can all be measured by the method described in the Examples.
  • the resin composition of this embodiment even when mixed with the unsaturated polyester resin (A) and the (meth)acryloyloxy group-containing resin (B), has high transparency, excellent compatibility and curing properties, and is less likely to cause curing defects, so it can be preferably used as a material for pipe repair materials, in particular as a material for pipe repair materials that have good curing properties when cured with LED.
  • the method for preparing the resin composition of this embodiment is not particularly limited, but the resin composition can be produced by mixing the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), the ethylenically unsaturated group-containing monomer (C), the compatibilizer (D), and the polymerization initiator (E).
  • the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), the ethylenically unsaturated group-containing monomer (C), the compatibilizer (D), the polymerization initiator (E), and any other optional components such as the other components may be mixed.
  • the mixing order is not particularly limited.
  • the mixing method is not particularly limited, and can be performed using, for example, a disperser, a planetary mixer, a kneader, etc.
  • the mixing temperature is preferably 10 to 50°C, more preferably 15 to 40°C, and from the viewpoint of ease of mixing, etc., is even more preferably 20 to 30°C.
  • the (meth)acryloyloxy group-containing resin (B) may be diluted in advance with at least one of a solvent and a reactive diluent.
  • the composite material of the present embodiment contains the above-mentioned resin composition and at least one selected from a fiber base material (F) and a filler (G).
  • a preferred composite material is, for example, a material obtained by impregnating a fiber substrate (F) with the resin composition and storing (curing) it for a certain period of time to thicken it.
  • Such a composite material has good shape retention, and a cured product (molded product) having excellent mechanical strength as a lining material for pipe rehabilitation can be obtained.
  • the composite material containing the above resin composition and the fiber base material (F) can be used for application to structures as materials such as preforms, prepregs, and lining materials for pipe rehabilitation applications such as reinforcing and repairing existing pipes. Among these, it is preferable to use it as a material for lining materials, etc. In other words, it is preferable for the composite material to be used for pipe rehabilitation.
  • the amount of resin composition contained in the composite material is not particularly limited, but from the viewpoint of mechanical strength, it is preferably 20 to 95% by mass, more preferably 25 to 85% by mass, and even more preferably 25 to 75% by mass. If the amount of resin composition is 20% by mass or more, it is possible to impart a suitable degree of flexibility to the composite material containing the cured resin composition. If the amount of resin composition is 95% by mass or less, it is possible to impart sufficient strength to the composite material containing the cured resin composition.
  • Fiber base material (F) examples include so-called reinforced fibers such as synthetic fibers such as amide, aramid, vinylon, polyester, and phenolic resin, carbon fibers, glass fibers, metal fibers, and ceramic fibers, as well as composite fibers thereof, from the viewpoint of mechanical strength, etc.
  • reinforced fibers such as synthetic fibers such as amide, aramid, vinylon, polyester, and phenolic resin, carbon fibers, glass fibers, metal fibers, and ceramic fibers, as well as composite fibers thereof, from the viewpoint of mechanical strength, etc.
  • aramid fibers, polyester fibers, and glass fibers are preferred, and glass fibers are more preferred from the viewpoints of strength, availability, price, etc.
  • the fibrous base material (F) may be used alone or in combination of two or more kinds.
  • the filament diameters generally used are preferably 1 to 15 ⁇ m, more preferably 3 to 10 ⁇ m.
  • Examples of the form of the fiber substrate (F) include sheets, chopped strands, chopped, milled fibers, etc.
  • Examples of the sheet include those formed by aligning a plurality of reinforcing fibers in one direction, bidirectional fabrics such as plain weave and twill weave, multiaxial fabrics, non-crimp fabrics, nonwoven fabrics, mats, knits, braids, and paper made from reinforcing fibers, etc.
  • the fiber substrate (F) may be used alone or in combination of two or more types, and may be a single layer or a multi-layer laminate.
  • the thickness of the fiber substrate (F) is preferably 0.01 to 5 mm in the case of a single layer, and when multiple layers are laminated, the total thickness is preferably 1 to 20 mm, more preferably 1 to 15 mm.
  • These fiber substrates (F) may contain a known sizing agent in a known content.
  • the content is preferably 5 to 80 mass%, more preferably 15 to 75 mass%, and even more preferably 25 to 75 mass%. If the content of the fiber base material (F) is 5 mass% or more, sufficient strength can be imparted to the composite material containing the cured resin composition. If the content of the fiber base material (F) is 80 mass% or less, appropriate flexibility can be imparted to the composite material containing the cured resin composition.
  • Filler (G) examples include aluminum oxide, aluminum hydroxide, silica sand, calcium carbonate, glass powder, talc, fused silica, etc. Among these, from the viewpoint of the mechanical strength of the cured product, at least one selected from aluminum hydroxide and calcium carbonate is preferable.
  • the content thereof is preferably 10 to 100 parts by mass, more preferably 15 to 90 parts by mass, and even more preferably 20 to 80 parts by mass, per 100 parts by mass of the resin composition. If the content of the filler (G) is 10 parts by mass or more per 100 parts by mass of the resin composition, the mechanical strength of the cured product can be further increased. If the content of the filler (G) is 100 parts by mass or less, the toughness and strength of the cured product can be compatible.
  • the mechanical strength required for the cured composite material (fiber reinforced plastic: FRP) varies depending on the intended use, but for example, in a composite material using a glass fiber substrate, the bending strength of the FRP is generally preferably 100 to 1000 MPa, more preferably 150 to 800 MPa.
  • the bending modulus of the FRP is preferably 5 to 40 GPa, more preferably 7 to 35 GPa, and even more preferably 8 to 30 GPa.
  • the above bending strength and bending modulus values are measured in accordance with JIS K7171:2016.
  • the method for producing the composite material may be appropriately selected depending on the purpose, and is not particularly limited.
  • the composite material can be produced by impregnating the fiber substrate (F) with the resin composition and curing the resin composition at a constant temperature until the resin composition reaches a target viscosity, thereby increasing the viscosity of the resin composition.
  • the composite material can be stored by folding the sheet-like composite material in an accordion-like manner or by rolling it up.
  • the resin composition When the above-mentioned resin composition is impregnated into the fiber substrate (F), the resin composition may be impregnated into the fiber substrate (F) having an inner film and an outer film laminated on the surface, or a fiber substrate (F) having no inner film and no outer film laminated on the surface may be used.
  • a fiber base material (F) having an inner film and an outer film laminated on the surface when used, the resin composition is impregnated into the fiber base material (F) through at least one of the inner film and the outer film.
  • the inner film may be, for example, a resin film such as a polyethylene film, a polypropylene film, or a polyethylene terephthalate film.
  • the inner film is preferably permeable.
  • the inner film may be peeled off after the composite material is cured.
  • the thickness of the inner film is not particularly limited, but is preferably 50 to 200 ⁇ m, and more preferably 80 to 170 ⁇ m. If the thickness of the inner film is 50 ⁇ m or more, the inner film can be prevented from being damaged or wrinkled, and sufficient strength can be imparted to the pipe. If the thickness of the inner film is 200 ⁇ m or less, the composite material can be easily manufactured, and the pipe rehabilitation workability is good.
  • the inner film may be laminated before the fibrous base material (F) is impregnated with the resin composition, or may be laminated on the fibrous base material (F) impregnated with the resin composition (resin composition-impregnated base material).
  • the method for laminating the inner film is not particularly limited, but examples thereof include a method of applying a liquid film composition to a fiber substrate (F) and curing the composition to laminate, a method of laminating a film on a fiber substrate (F) or a substrate impregnated with a resin composition via an adhesive layer, a method of laminating a film on a fiber substrate (F) or a substrate impregnated with a resin composition, etc.
  • the inner film and the outer film may be laminated using different methods or the same method.
  • the outer film may be a resin film, similar to the inner film.
  • the outer film preferably has a light-shielding property.
  • a laminated film having a colored film layer, such as yellow, between two transparent polyethylene films may be used as the outer film having a light-shielding property.
  • the thickness of the outer film is not particularly limited, but is preferably 5 to 100 ⁇ m, and more preferably 10 to 90 ⁇ m. If the thickness of the outer film is 5 ⁇ m or more, the outer film will not break or wrinkle, and sufficient strength can be imparted to the pipe. If the thickness of the outer film is 100 ⁇ m or less, the composite material can be easily manufactured, and the pipe rehabilitation workability is good.
  • the outer film may be laminated before the fibrous base material (F) is impregnated with the resin composition, or may be laminated on the fibrous base material (F) impregnated with the resin composition (resin composition-impregnated base material).
  • the method for laminating the outer film onto the fiber base material (F) is not particularly limited, but may be the same method as the method for laminating the inner film.
  • ⁇ Pipe rehabilitation> The introduction of the lining material (composite material) into an existing pipe can be performed by pulling the lining material directly from a manhole or the like, but an inversion method in which the lining material is inverted from the tip side and pushed into the existing pipe is preferably used.
  • a lining material containing an outer film as the innermost layer on the inner surface, an inner film as the outermost layer on the outer surface, and a fiber base material (F) containing a resin composition between the inner film and the outer film is preferably used for the inversion method.
  • the lining material is expanded by blowing air into the lumen of the lining material, so both ends of the lining material have end packers to seal the lining material. By blowing air into the end packer side at one end, the pressure in the lumen of the lining material increases, and the lining material is expanded in diameter so that it comes into close contact with the inner circumferential surface of the existing pipe.
  • the expanded lining material is irradiated with ultraviolet light or visible light or the like by a mobile light irradiation device, so that the resin composition contained in the lining material is cured, and the inner surface of the existing pipe is covered with the lining material of the cured resin composition.
  • the radiation intensity of the light irradiation device is not particularly limited, but is preferably 0.0008 to 0.03 W/ mm2 .
  • the radiation intensity is 0.0008 W/ mm2 or more, the work efficiency is good and sufficient strength can be imparted to the pipe. If the radiation intensity is 0.03 W/ mm2 or less, local excessive irradiation of the inner surface layer of the lining material is suppressed, and deterioration and reduction in strength of the lining material can be suppressed.
  • the light irradiation device may be a light source that emits light in the ultraviolet to visible light range (usually with a wavelength of 200 to 800 nm).
  • the light source include metal halide lamps such as gallium lamps, mercury lamps, chemical lamps, xenon lamps, halogen lamps, mercury halogen lamps, carbon arc lamps, incandescent lamps, laser light, and LEDs.
  • metal halide lamps such as gallium lamps, mercury lamps, chemical lamps, xenon lamps, halogen lamps, mercury halogen lamps, carbon arc lamps, incandescent lamps, laser light, and LEDs.
  • an ultraviolet or visible light irradiation device having a peak wavelength in the wavelength range of 350 to 450 nm is preferred, and from the viewpoint of efficiently curing the resin composition, a gallium lamp and an LED are more preferred, and a gallium lamp is even more preferred.
  • the light irradiation device there are no particular limitations on the light irradiation device as long as it has one or more irradiation units, but it is preferable for it to have a lamp assembly in which multiple light irradiation lamps are connected in series. By having a lamp assembly, pipe rehabilitation can be carried out efficiently.
  • Vinyl ester resins were synthesized according to the following Synthesis Examples and Comparative Synthesis Examples. Details of the compounds used in the synthesis of vinyl ester resins in the following Synthesis Examples and Comparative Synthesis Examples are given below.
  • Epoxy compound (b1-1) Epoxy compound (1): bisphenol A type epoxy resin; "Epomic (registered trademark) R140P", manufactured by Mitsui Chemicals, Inc., epoxy equivalent 188, liquid at 25°C.
  • Epoxy compound (2) bisphenol A type epoxy resin; "jER (registered trademark) 834", manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 245, liquid at 25°C.
  • Epoxy compound (3) bisphenol A type epoxy resin; "Epotohto (registered trademark) YD-7011", manufactured by Nippon Steel Chemical & Material Co., Ltd., epoxy equivalent 475, solid at 25°C.
  • Epoxy compound (4) bisphenol A type epoxy resin; "Epotohto (registered trademark) YD-014", manufactured by Nippon Steel Chemical & Material Co., Ltd., epoxy equivalent 950, solid at 25°C.
  • Epoxy compound (5) phenol novolac type epoxy resin; "EPICLON (registered trademark) N-740", manufactured by DIC Corporation, epoxy equivalent 172, liquid at 25°C.
  • the epoxy equivalent is a value measured in accordance with JIS K7236:2001.
  • the obtained vinyl ester resin (B1-1a) was cooled to 90° C., and 366 g (36 mass % based on the total mass of the blended components) of styrene was added as a reactive diluent (ethylenically unsaturated group-containing monomer (C)) to the vinyl ester resin (B1-1a), to obtain a mixture of 54 mass % of the vinyl ester resin (B1-1a) (based on the total mass of the blended components) and 46 mass % of styrene.
  • a reactive diluent ethylenically unsaturated group-containing monomer (C)
  • the obtained vinyl ester resin (B1-2a) was cooled to 90° C., and 206 g (20 mass % based on the total mass of the blended components) of styrene was added as a reactive diluent (ethylenically unsaturated group-containing monomer (C)) to the vinyl ester resin (B1-2a), to obtain a mixture of 70 mass % of the vinyl ester resin (B1-2a) (based on the total mass of the blended components) and 30 mass % of styrene.
  • a reactive diluent ethylenically unsaturated group-containing monomer (C)
  • the mixture was heated to 100° C., and then 208 g of methacrylic acid (the total amount of acid groups of methacrylic acid is 100 moles per 100 moles of the total amount of epoxy groups of epoxy compound (1) and epoxy compound (5)) was added dropwise over a period of about 30 minutes. The mixture was then allowed to react for about 2 hours to obtain a vinyl ester resin (B1-2b).
  • the obtained vinyl ester resin (B1-2b) was cooled to 90° C., and 244 g (25 mass % based on the total mass of the blended components) of styrene was added as a reactive diluent (ethylenically unsaturated group-containing monomer (C)) to the vinyl ester resin (B1-2b), to obtain a mixture of 65 mass % of the vinyl ester resin (B1-2b) (based on the total mass of the blended components) and 35 mass % of styrene.
  • a reactive diluent ethylenically unsaturated group-containing monomer (C)
  • the obtained vinyl ester resin (B1-2c) was cooled to 90° C., and 59.6 g (24 mass % based on the total mass of the blended components) of styrene was added as a reactive diluent (ethylenically unsaturated group-containing monomer (C)) to the vinyl ester resin (B1-2c), to obtain a mixture of 70 mass % of the vinyl ester resin (B1-2c) (based on the total mass of the blended components) and 30 mass % of styrene.
  • a reactive diluent ethylenically unsaturated group-containing monomer (C)
  • the obtained vinyl ester resin (B'1-2a) was cooled to 90°C, and 342 g (36 mass % based on the total mass of the blended components) of styrene was added as a reactive diluent (ethylenically unsaturated group-containing monomer (C)) to the vinyl ester resin (B'1-2a), to obtain a mixture of 54 mass % of the vinyl ester resin (B'1-2a) (based on the total mass of the blended components) and 46 mass % of styrene.
  • a vinyl ester resin (B'1-2b) was obtained in the same manner as in Synthesis Example 2, except that 471 g of the epoxy compound (5) was used as the epoxy compound (b1-1) and 224 g of methacrylic acid was used as the unsaturated monobasic acid (b1-3) (the total amount of acid groups in the methacrylic acid was 100 mol per 100 mol of the total amount of epoxy groups in the epoxy compound (5)).
  • the obtained vinyl ester resin (B'1-2b) was cooled to 90°C, and 200 g (20 mass% based on the total mass of the blended components) of styrene was added as a reactive diluent (ethylenically unsaturated group-containing monomer (C)) to the vinyl ester resin (B'1-2b), to obtain a mixture of 70 mass% of the vinyl ester resin (B'1-2b) (based on the total mass of the blended components) and 30 mass% of styrene.
  • a reactive diluent ethylenically unsaturated group-containing monomer (C)
  • a vinyl ester resin (B'1-2d) was obtained in the same manner as in Comparative Synthesis Example 3, except that 871 g of the epoxy compound (3) was used as the epoxy compound (b1-1) and 124 g of acrylic acid was used as the unsaturated monobasic acid (b1-3) (the total amount of acid groups of the acrylic acid was 95 mol per 100 mol of the total amount of epoxy groups of the epoxy compound (3)).
  • the acid values of the unsaturated polyester resin and the vinyl ester resin were determined by measuring the mass of potassium hydroxide required to neutralize the acid components contained in the unsaturated polyester resin and the vinyl ester resin in accordance with JIS K6901:2008 "Partial acid value (indicator titration method)".
  • the measurement samples of vinyl ester resins (B1-1a) to (B1-2c), (B'1-2a), and (B'1-2b) were mixtures of the vinyl ester resins obtained in the above Synthesis Examples and Comparative Synthesis Examples with reactive diluents, and the mass of potassium hydroxide required to neutralize the acid components contained in the mixtures was measured, and the acid value of the vinyl ester resins was calculated based on the measured value.
  • An "Autoburette UCB-2000" (manufactured by Hiranuma Sangyo Co., Ltd.) was used as a titration device, and a mixed indicator of bromothymol blue and phenol red was used as an indicator.
  • Weight average molecular weight Mw, number average molecular weight Mn and molecular weight distribution Mw/Mn The weight average molecular weight Mw and number average molecular weight Mn of the unsaturated polyester resin and the vinyl ester resin were measured by gel permeation chromatography (GPC) under the following conditions, and were calculated as standard polystyrene equivalent molecular weights. Mw/Mn was calculated from the values of Mn and Mw.
  • the viscosity of the vinyl ester resin was measured at a temperature of 25° C. using an E-type viscometer (RE-85U, manufactured by Toki Sangyo Co., Ltd.), cone-plate type, cone rotor 1°34′ ⁇ R24, rotation speed: 50 rpm to 0.5 rpm.
  • the measurement samples of the vinyl ester resins (B1-1a) to (B1-2c), (B′1-2a), and (B′1-2b) were mixtures of the vinyl ester resins and reactive diluents obtained in the above Synthesis Examples and Comparative Synthesis Examples.
  • D2 Potassium octoate; "Potassium hexoate 10%”, manufactured by Toei Kako Co., Ltd., metal content 10% by mass, solvent component ethanol (main component)
  • D4 Cobalt octylate; "PA-202A”, manufactured by Nippon Kagaku Sangyo Co., Ltd., metal content 8% by mass, solvent component mineral spirits (main component) Compatibilizer (D5): Nickel octylate; "Nikk
  • Photopolymerization initiator (E) Photopolymerization initiator (E1): phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide; "Omnirad 819" manufactured by IGM RESINS Photopolymerization initiator (E2): 2,2-dimethoxy-2-phenylacetophenone; "Omnirad 651” manufactured by IGM RESINS
  • Example 1 The components (A) to (C) were mixed so that the unsaturated polyester resin (A-1) was 42.9% by mass, the vinyl ester resin (B1-1a) was 15.3% by mass, and styrene as the ethylenically unsaturated group-containing monomer (C) was 41.8% by mass, relative to 100 parts by mass in total of the components (A) to (C). Then, 0.18 parts by mass of a photopolymerization initiator (E1) and 0.05 parts by mass of a photopolymerization initiator (E2) were added to the mixture as the polymerization initiator (E), relative to 100 parts by mass in total of the components (A) to (C). The mixture was mixed at 20 to 30° C.
  • compatibilizer (D1) 0.94 parts by mass of compatibilizer (D) per 100 parts by mass of the total of components (A) to (C) (1,399 ppm by mass in terms of metal content with respect to the total of components (A) to (E)), and the mixture was further mixed for about 5 minutes to prepare resin composition (X-1).
  • Total light transmittance (%) The measurement and evaluation samples of the above resin compositions (X-1) to (X-13) and (X'-1) to (X'-20) were stored in a refrigerator at 4 to 5°C, and the total light transmittance (%) of the resin composition after 24 hours was measured using a haze meter "HM-150" manufactured by Murakami Color Research Laboratory Co., Ltd.
  • the resin compositions of the present invention were found to have high transparency, excellent compatibility and curing properties, and were less likely to cause curing defects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

Provided are: a resin composition which has high transparency, is excellent in compatibility and curing performance, and hardly causes curing failure, even when an unsaturated polyester resin and a (meth)acryloyloxy group-containing resin are mixed; and a composite material comprising same. This resin composition comprises an unsaturated polyester resin (A), a certain (meth)acryloyloxy group-containing resin (B), an ethylenically unsaturated group-containing monomer (C), a compatibilizing agent (D), and a polymerization initiator (E), the resin composition containing, as the (meth)acryloyloxy group-containing resin (B), a certain vinyl ester resin (B1), wherein the compatibilizing agent (D) is an organic metal compound including at least one selected from metal elements of the groups 1, 12, and 14, and the content of the compatibilizing agent (D) in terms of metal is 800-1,850 ppm by mass based on the total amount of the unsaturated polyester resin (A), (meth)acryloyloxy group-containing resin (B), ethylenically unsaturated group-containing monomer (C), compatibilizing agent (D), and polymerization initiator (E).

Description

樹脂組成物及び複合材料Resin composition and composite material
 本発明は、樹脂組成物及び複合材料に関する。 The present invention relates to a resin composition and a composite material.
 従来、ガス管、水道管、下水道管、農業用水管等の既設管渠を補修する方法として、繊維からなる基材に樹脂組成物を含浸させた管渠補修材を用いる方法がある。具体的には、既設管渠内の所定の位置に管渠補修材を設置した後、管渠補修材に含まれる樹脂組成物を硬化させることにより管渠を補修する。この方法では、樹脂組成物として熱硬化樹脂を用いる熱硬化工法と、光硬化樹脂を用いる光硬化工法とがある。熱硬化工法では、温水、蒸気等の熱媒体を用いて樹脂組成物を硬化させる。光硬化工法では、紫外光、可視光等の光を管渠補修材に照射して樹脂組成物を硬化させる。  Conventionally, a method for repairing existing pipes such as gas pipes, water pipes, sewer pipes, and agricultural water pipes involves using a pipe repair material in which a resin composition is impregnated into a fiber base material. Specifically, the pipe is repaired by installing the pipe repair material at a predetermined position inside the existing pipe and then curing the resin composition contained in the pipe repair material. This method includes a heat curing method that uses a thermosetting resin as the resin composition, and a photocuring method that uses a photocuring resin. In the heat curing method, the resin composition is cured using a heat medium such as hot water or steam. In the photocuring method, the resin composition is cured by irradiating the pipe repair material with light such as ultraviolet light or visible light.
 特許文献1には、不飽和ポリエステル樹脂(a)、重合性単量体(b)及びシリカ粉等の揺変性付与剤(c)を必須成分とする管ライニング材用熱硬化性樹脂組成物が記載されている。
 また、特許文献2には、(A)ビニルエステル樹脂組成物、(B)ウレタン(メタ)アクリレート組成物、(C)90KOHmg/g以上の酸価を有する不飽和ポリエステル樹脂組成物、及び(D)クメンハイドロパーオキサイドとt-ブチルパーオキシベンゾエートとを含む硬化剤を含有する管渠補修用樹脂組成物が記載されている。
 また、特許文献3には、不飽和ポリエステル樹脂又はビニルエステル樹脂等の重合性樹脂、スチレン等の不飽和重合性モノマー及び光重合開始剤を含む光硬化性樹脂組成物を含む管状の光硬化性ライニング材が記載されている。
Patent Document 1 describes a thermosetting resin composition for pipe lining material, which contains as essential components an unsaturated polyester resin (a), a polymerizable monomer (b), and a thixotropy imparting agent (c) such as silica powder.
Furthermore, Patent Document 2 describes a resin composition for repairing pipes and culverts, which contains (A) a vinyl ester resin composition, (B) a urethane (meth)acrylate composition, (C) an unsaturated polyester resin composition having an acid value of 90 KOHmg/g or more, and (D) a curing agent containing cumene hydroperoxide and t-butyl peroxybenzoate.
Furthermore, Patent Document 3 describes a tubular photocurable lining material that contains a photocurable resin composition that contains a polymerizable resin such as an unsaturated polyester resin or a vinyl ester resin, an unsaturated polymerizable monomer such as styrene, and a photopolymerization initiator.
 近年、既設管渠の補修工事における光硬化工法の施工距離が増加している。これは、熱硬化工法と比較して、樹脂組成物の硬化速度が速く、施工時間が短いためである。また、光硬化工法は、熱硬化工法と比較して、管渠補修材の長期保管が可能、環境影響による施工不良リスクが小さい、施工時の臭気が少ないという利点もある。 In recent years, the length of construction using the light-curing method in repair work on existing pipes has been increasing. This is because the resin composition cures faster and the construction time is shorter than with the heat-curing method. In addition, the light-curing method has the advantages of allowing long-term storage of pipe repair materials, a smaller risk of construction defects due to environmental impacts, and less odor during construction compared to the heat-curing method.
 光硬化工法では、光源として、ガリウムランプ、メタルハライドランプ、水銀ランプ等が用いられている。また、特許文献4には、主たる照射波長が紫外線である発光ダイオード(LED)を用いた光硬化装置で、樹脂層に光照射する配管のライニング方法が記載されている。LEDは、発熱が少なく、省エネルギーかつ長寿命であり、光源として優れている。 In the photocuring method, gallium lamps, metal halide lamps, mercury lamps, etc. are used as light sources. Patent Document 4 describes a pipe lining method in which a resin layer is irradiated with light from a photocuring device using light-emitting diodes (LEDs) whose main irradiation wavelength is ultraviolet light. LEDs generate little heat, are energy-saving, have a long life, and are excellent as light sources.
特開2001-62921号公報JP 2001-62921 A 国際公開第2015/056585号International Publication No. 2015/056585 特開2013-223939号公報JP 2013-223939 A 特開2008-142996号公報JP 2008-142996 A
 従来、管更生用途としては不飽和ポリエステル樹脂が用いられてきたが、近年では管路の流下能力確保を目的とした構成材料の薄肉化、耐食性、耐熱性、強度物性向上が求められている。(メタ)アクリロイルオキシ基含有樹脂を混合して併用することで、それらの性能向上を図れるが、低温下等では相分離により樹脂が濁るため、光硬化工法では硬化が不十分な場合があり、相溶性の観点から制限があった。 Unsaturated polyester resins have traditionally been used for pipe rehabilitation, but in recent years, there has been a demand for thinner constituent materials and improved corrosion resistance, heat resistance, and strength properties to ensure the flow capacity of pipelines. These performance properties can be improved by mixing and using resins containing (meth)acryloyloxy groups, but at low temperatures, etc., the resin becomes cloudy due to phase separation, so curing may be insufficient when using photocuring methods, and there are limitations from the standpoint of compatibility.
 本発明は、上記事情に鑑みてなされたものであり、不飽和ポリエステル樹脂及び(メタ)アクリロイルオキシ基含有樹脂を混合しても、透明性が高く、相溶性及び硬化性に優れ、硬化不良が生じにくい樹脂組成物及びこれを含む複合材料を提供することを目的とする。 The present invention has been made in consideration of the above circumstances, and aims to provide a resin composition and a composite material containing the same that are highly transparent, have excellent compatibility and curing properties, and are less likely to cause curing defects, even when an unsaturated polyester resin and a (meth)acryloyloxy group-containing resin are mixed.
 本発明者らは、前記課題を解決するべく鋭意検討した結果、下記の発明により前記課題を解決できることを見出した。 As a result of intensive research into solving the above problems, the inventors have discovered that the above problems can be solved by the following invention.
 すなわち、本発明は、以下の手段を提供するものである。
 [1]不飽和ポリエステル樹脂(A)と、(メタ)アクリロイルオキシ基含有樹脂(B)と、エチレン性不飽和基含有モノマー(C)と、相溶化剤(D)と、重合開始剤(E)と、を含む樹脂組成物であって、前記(メタ)アクリロイルオキシ基含有樹脂(B)が、1分子中に(メタ)アクリロイルオキシ基を2個以上有する、重量平均分子量(Mw)が500~3,000の樹脂であり、前記(メタ)アクリロイルオキシ基含有樹脂(B)として、ビニルエステル樹脂(B1)を含有し、前記ビニルエステル樹脂(B1)が、エポキシ化合物(b1-1)と不飽和一塩基酸(b1-3)とを含む原料の付加反応生成物であり、前記エポキシ化合物(b1-1)が、エポキシ当量300以下のビスフェノール型エポキシ樹脂を、エポキシ化合物(b1-1)100質量%に対して、30~100質量%含有し、前記相溶化剤(D)が、第1族、第12族、及び第14族の金属元素から選択される少なくとも1種を含む有機金属化合物であり、前記相溶化剤(D)の金属換算含有量が、不飽和ポリエステル樹脂(A)、(メタ)アクリロイルオキシ基含有樹脂(B)、エチレン性不飽和基含有モノマー(C)、相溶化剤(D)、及び重合開始剤(E)の合計に対して800~1,850質量ppmである、樹脂組成物。
 [2]前記不飽和ポリエステル樹脂(A)の重量平均分子量(Mw)と前記(メタ)アクリロイルオキシ基含有樹脂(B)の重量平均分子量(Mw)との比(不飽和ポリエステル樹脂(A)の重量平均分子量(Mw)/(メタ)アクリロイルオキシ基含有樹脂(B)の重量平均分子量(Mw))が、1.5~30である、上記[1]に記載の樹脂組成物。
 [3]前記不飽和ポリエステル樹脂(A)が、ジオール(a1)と、エチレン性不飽和基含有二塩基酸(a2-1)と飽和二塩基酸(a2-2)とをエステル化反応させることにより得られる不飽和ポリエステル樹脂である、上記[1]又は[2]に記載の樹脂組成物。
 [4]前記不飽和ポリエステル樹脂(A)、前記(メタ)アクリロイルオキシ基含有樹脂(B)、及び前記エチレン性不飽和基含有モノマー(C)の合計100質量%に対し、前記不飽和ポリエステル樹脂(A)の含有量が25~50質量%であり、前記(メタ)アクリロイルオキシ基含有樹脂(B)の含有量が12~30質量%であり、エチレン性不飽和基含有モノマー(C)の含有量が20~63質量%である、上記[1]~[3]のいずれかに記載の樹脂組成物。
 [5]前記有機金属化合物の金属元素が、亜鉛、カリウム、及びスズから選択される少なくとも1種である、上記[1]~[4]のいずれかに記載の樹脂組成物。
 [6]前記有機金属化合物が、オクチル酸亜鉛、ネオデカン酸亜鉛、オクチル酸カリウム、オクチル酸錫、及びビスアセチルアセトナトスズから選択される少なくとも1種である、上記[1]~[5]のいずれかに記載の樹脂組成物。
 [7]前記重合開始剤(E)が、光重合開始剤である、上記[1]~[6]のいずれかに記載の樹脂組成物。
 [8]前記重合開始剤(E)の含有量が、不飽和ポリエステル樹脂(A)、(メタ)アクリロイルオキシ基含有樹脂(B)、及びエチレン性不飽和基含有モノマー(C)の合計100質量部に対して、0.02~10質量部である、上記[1]~[7]のいずれかに記載の樹脂組成物。
 [9]前記重合開始剤(E)が、2,2-ジメトキシ-2-フェニルアセトフェノン、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、フェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、及び1-ヒドロキシシクロヘキシルフェニルケトンから選択される少なくとも1種である、上記[1]~[8]のいずれかに記載の樹脂組成物。
 [10]上記[1]~[9]のいずれかに記載の樹脂組成物と、繊維基材(F)、及び充填材(G)から選択される少なくとも1種と、を含む複合材料。
 [11]前記繊維基材(F)が、ガラス繊維、及びポリエステル繊維から選択される少なくとも1種である、上記[10]に記載の複合材料。
 [12]前記充填材(G)が、水酸化アルミニウム、及び炭酸カルシウムから選択される少なくとも1種である、上記[10]又は[11]に記載の複合材料。
 [13]上記[1]~[9]のいずれかに記載の樹脂組成物又は上記[10]~[12]のいずれかに記載の複合材料の硬化物。
That is, the present invention provides the following means.
[1] A resin composition comprising an unsaturated polyester resin (A), a (meth)acryloyloxy group-containing resin (B), an ethylenically unsaturated group-containing monomer (C), a compatibilizer (D), and a polymerization initiator (E), wherein the (meth)acryloyloxy group-containing resin (B) is a resin having two or more (meth)acryloyloxy groups in one molecule and a weight average molecular weight (Mw) of 500 to 3,000, and the (meth)acryloyloxy group-containing resin (B) contains a vinyl ester resin (B1), and the vinyl ester resin (B1) is an addition product of a raw material containing an epoxy compound (b1-1) and an unsaturated monobasic acid (b1-3). A resin composition which is a reaction product, wherein the epoxy compound (b1-1) contains 30 to 100 mass% of a bisphenol type epoxy resin having an epoxy equivalent of 300 or less, relative to 100 mass% of the epoxy compound (b1-1); the compatibilizer (D) is an organometallic compound containing at least one metal element selected from the group consisting of metal elements of Groups 1, 12, and 14; and the content of the compatibilizer (D) in terms of metal is 800 to 1,850 ppm by mass relative to the total of the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), the ethylenically unsaturated group-containing monomer (C), the compatibilizer (D), and the polymerization initiator (E).
[2] The resin composition according to the above [1], wherein the ratio of the weight average molecular weight (Mw) of the unsaturated polyester resin (A) to the weight average molecular weight (Mw) of the (meth)acryloyloxy group-containing resin (B) (weight average molecular weight (Mw) of the unsaturated polyester resin (A) / weight average molecular weight (Mw) of the (meth)acryloyloxy group-containing resin (B)) is 1.5 to 30.
[3] The unsaturated polyester resin (A) is an unsaturated polyester resin obtained by esterification reaction of a diol (a1), an ethylenically unsaturated group-containing dibasic acid (a2-1), and a saturated dibasic acid (a2-2). The resin composition according to [1] or [2] above.
[4] The resin composition according to any one of the above [1] to [3], wherein the content of the unsaturated polyester resin (A) is 25 to 50 mass%, the content of the (meth)acryloyloxy group-containing resin (B) is 12 to 30 mass%, and the content of the ethylenically unsaturated group-containing monomer (C) is 20 to 63 mass%, relative to a total of 100 mass% of the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), and the ethylenically unsaturated group-containing monomer (C).
[5] The resin composition according to any one of the above [1] to [4], wherein the metal element of the organometallic compound is at least one selected from zinc, potassium, and tin.
[6] The resin composition according to any one of the above [1] to [5], wherein the organometallic compound is at least one selected from zinc octoate, zinc neodecanoate, potassium octoate, tin octoate, and tin bisacetylacetonate.
[7] The resin composition according to any one of the above [1] to [6], wherein the polymerization initiator (E) is a photopolymerization initiator.
[8] The resin composition according to any one of the above [1] to [7], wherein the content of the polymerization initiator (E) is 0.02 to 10 parts by mass per 100 parts by mass of the total of the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), and the ethylenically unsaturated group-containing monomer (C).
[9] The resin composition according to any one of the above [1] to [8], wherein the polymerization initiator (E) is at least one selected from 2,2-dimethoxy-2-phenylacetophenone, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide, and 1-hydroxycyclohexyl phenyl ketone.
[10] A composite material comprising the resin composition according to any one of [1] to [9] above, a fiber base material (F), and at least one selected from a filler (G).
[11] The composite material according to the above [10], wherein the fiber base material (F) is at least one selected from glass fibers and polyester fibers.
[12] The composite material according to [10] or [11] above, wherein the filler (G) is at least one selected from aluminum hydroxide and calcium carbonate.
[13] A cured product of the resin composition according to any one of [1] to [9] above or the composite material according to any one of [10] to [12] above.
 本発明によれば、不飽和ポリエステル樹脂(A)及び(メタ)アクリロイルオキシ基含有樹脂(B)を混合しても、透明性が高く、相溶性及び硬化性に優れ、硬化不良が生じにくい樹脂組成物並びに当該樹脂組成物を含む複合材料を提供することができる。 The present invention provides a resin composition that is highly transparent, has excellent compatibility and curability, and is less prone to curing defects, even when an unsaturated polyester resin (A) and a (meth)acryloyloxy group-containing resin (B) are mixed, and a composite material containing the resin composition.
 まず、本明細書における用語及び表記についての定義及び意義を以下に示す。
 「(メタ)アクリル酸」とは、アクリル酸及びメタクリル酸の総称である。同様に、「(メタ)アクリレート」とは、アクリレート及びメタクリレートの総称であり、「(メタ)アクリロイル」とは、アクリロイル及びメタクリロイルの総称である。
 「重量平均分子量Mw」(以下、単に「Mw」とも表記する。)及び「数平均分子量Mn」(以下、単に「Mn」とも表記する。)は、ゲルパーミエーションクロマトグラフィー(GPC)測定によって求められる標準ポリスチレン換算分子量である。具体的には、後述する実施例に記載の方法で測定される。
 ビニルエステル樹脂の「粘度」は、ビニルエステル樹脂とエチレン性不飽和基含有モノマー(C)との混合物についての粘度で表すものとする。当該粘度は、E型粘度計を用いて、温度25℃で測定した値である。具体的には、後述する実施例に記載の方法で測定される。
First, the definitions and meanings of the terms and expressions used in this specification are given below.
"(Meth)acrylic acid" is a general term for acrylic acid and methacrylic acid. Similarly, "(meth)acrylate" is a general term for acrylate and methacrylate, and "(meth)acryloyl" is a general term for acryloyl and methacryloyl.
The "weight average molecular weight Mw" (hereinafter, also simply referred to as "Mw") and the "number average molecular weight Mn" (hereinafter, also simply referred to as "Mn") are standard polystyrene equivalent molecular weights determined by gel permeation chromatography (GPC). Specifically, they are measured by the method described in the examples below.
The "viscosity" of the vinyl ester resin is represented by the viscosity of a mixture of the vinyl ester resin and the ethylenically unsaturated group-containing monomer (C). The viscosity is a value measured at a temperature of 25°C using an E-type viscometer. Specifically, it is measured by the method described in the examples below.
≪樹脂組成物≫
 本実施形態の樹脂組成物は、不飽和ポリエステル樹脂(A)と、(メタ)アクリロイルオキシ基含有樹脂(B)と、エチレン性不飽和基含有モノマー(C)と、相溶化剤(D)と、重合開始剤(E)とを含む。
 本実施形態において、上記(メタ)アクリロイルオキシ基含有樹脂(B)は、1分子中に(メタ)アクリロイルオキシ基を2個以上有する、重量平均分子量(Mw)が500~3,000の樹脂であり、上記(メタ)アクリロイルオキシ基含有樹脂(B)として、ビニルエステル樹脂(B1)を含有し、上記ビニルエステル樹脂(B1)が、エポキシ化合物(b1-1)と不飽和一塩基酸(b1-3)とを含む原料の付加反応生成物であり、上記エポキシ化合物(b1-1)が、エポキシ当量300以下のビスフェノール型エポキシ樹脂を、エポキシ化合物(b1-1)100質量%に対して、30~100質量%含有する。
 また、本実施形態において、上記相溶化剤(D)は、第1族、第12族、及び第14族の金属元素から選択される少なくとも1種を含む有機金属化合物であり、上記相溶化剤(D)の金属換算含有量が、不飽和ポリエステル樹脂(A)、(メタ)アクリロイルオキシ基含有樹脂(B)、エチレン性不飽和基含有モノマー(C)、相溶化剤(D)、及び重合開始剤(E)の合計に対して800~1,850質量ppmである。
<Resin composition>
The resin composition of the present embodiment contains an unsaturated polyester resin (A), a (meth)acryloyloxy group-containing resin (B), an ethylenically unsaturated group-containing monomer (C), a compatibilizer (D), and a polymerization initiator (E).
In this embodiment, the (meth)acryloyloxy group-containing resin (B) is a resin having two or more (meth)acryloyloxy groups in one molecule and having a weight average molecular weight (Mw) of 500 to 3,000. The (meth)acryloyloxy group-containing resin (B) contains a vinyl ester resin (B1), the vinyl ester resin (B1) is an addition reaction product of raw materials containing an epoxy compound (b1-1) and an unsaturated monobasic acid (b1-3), and the epoxy compound (b1-1) contains 30 to 100 mass% of a bisphenol-type epoxy resin having an epoxy equivalent of 300 or less, relative to 100 mass% of the epoxy compound (b1-1).
In the present embodiment, the compatibilizer (D) is an organometallic compound containing at least one metal element selected from the group 1, group 12, and group 14 metal elements, and the content of the compatibilizer (D) in terms of metal is 800 to 1,850 ppm by mass with respect to the total amount of the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), the ethylenically unsaturated group-containing monomer (C), the compatibilizer (D), and the polymerization initiator (E).
 本実施形態の樹脂組成物は、相溶化剤(D)として、特定の有機金属化合物を含有することにより、樹脂組成物中の不飽和ポリエステル樹脂(A)と、(メタ)アクリロイルオキシ基含有樹脂(B)との分子量差により生じる混濁が抑制され、透明性の高い樹脂組成物とすることができる。この樹脂組成物は、光透過性が良好であるため、光照射面だけでなく内部まで照射光が到達しやすく、硬化不良が生じにくいものと推定される。 The resin composition of this embodiment contains a specific organometallic compound as a compatibilizer (D), which suppresses turbidity caused by the difference in molecular weight between the unsaturated polyester resin (A) and the (meth)acryloyloxy group-containing resin (B) in the resin composition, making it possible to produce a highly transparent resin composition. This resin composition has good light transmittance, so it is believed that irradiated light can easily reach not only the irradiated surface but also the inside, making it less likely to cause poor curing.
〔不飽和ポリエステル樹脂(A)〕
 本実施形態で用いられる不飽和ポリエステル樹脂(A)は、ジオール(a1)と、二塩基酸(a2)とをエステル化反応させて得られたものである。
 本実施形態で用いられる不飽和ポリエステル樹脂(A)としては、ジオール(a1)と、後述するエチレン性不飽和基含有二塩基酸(a2-1)と飽和二塩基酸(a2-2)とをエステル化反応させて得られたものが好ましい。
 不飽和ポリエステル樹脂(A)に含まれるジオール(a1)に由来する構造単位と、二塩基酸(a2)に由来する構造単位との含有割合(モル比)は、樹脂組成物の硬化性、樹脂硬化物の強度物性の観点から、好ましくは40:60~60:40、より好ましくは45:55~55:45、さらに好ましくは50:50である。
[Unsaturated polyester resin (A)]
The unsaturated polyester resin (A) used in this embodiment is obtained by an esterification reaction between a diol (a1) and a dibasic acid (a2).
The unsaturated polyester resin (A) used in the present embodiment is preferably one obtained by an esterification reaction between a diol (a1) and an ethylenically unsaturated group-containing dibasic acid (a2-1) and a saturated dibasic acid (a2-2) described below.
The content ratio (molar ratio) of the structural units derived from the diol (a1) and the structural units derived from the dibasic acid (a2) contained in the unsaturated polyester resin (A) is preferably 40:60 to 60:40, more preferably 45:55 to 55:45, and even more preferably 50:50, from the viewpoints of the curability of the resin composition and the strength properties of the cured resin.
 不飽和ポリエステル樹脂(A)と(メタ)アクリロイルオキシ基含有樹脂(B)とを混合した時に生じる濁りを抑制する観点から、不飽和ポリエステル樹脂(A)の重量平均分子量(Mw)は、3,000~20,000が好ましく、4,000~15,000がより好ましく、5,000~12,000がさらに好ましい。 From the viewpoint of suppressing turbidity that occurs when the unsaturated polyester resin (A) and the (meth)acryloyloxy group-containing resin (B) are mixed, the weight average molecular weight (Mw) of the unsaturated polyester resin (A) is preferably 3,000 to 20,000, more preferably 4,000 to 15,000, and even more preferably 5,000 to 12,000.
 不飽和ポリエステル樹脂(A)の数平均分子量(Mn)は、(メタ)アクリロイルオキシ基含有樹脂(B)との相溶性の観点から、1,000~5,000が好ましく、1,500~4,500がより好ましく、2,000~4,000がさらに好ましい。 The number average molecular weight (Mn) of the unsaturated polyester resin (A) is preferably 1,000 to 5,000, more preferably 1,500 to 4,500, and even more preferably 2,000 to 4,000, from the viewpoint of compatibility with the (meth)acryloyloxy group-containing resin (B).
 不飽和ポリエステル樹脂(A)のMw/Mnは、合成条件の制御のしやすさの観点から、1.5~5.0が好ましく、1.8~4.5がより好ましく、2.1~4.0がさらに好ましい。 From the viewpoint of ease of control of synthesis conditions, the Mw/Mn of the unsaturated polyester resin (A) is preferably 1.5 to 5.0, more preferably 1.8 to 4.5, and even more preferably 2.1 to 4.0.
 また、不飽和ポリエステル樹脂(A)と(メタ)アクリロイルオキシ基含有樹脂(B)とを混合した時に生じる濁りを抑制する観点から、不飽和ポリエステル樹脂(A)の重量平均分子量(Mw)と(メタ)アクリロイルオキシ基含有樹脂(B)の重量平均分子量(Mw)との比(不飽和ポリエステル樹脂(A)のMw)/(メタ)アクリロイルオキシ基含有樹脂(B)のMwは、1.5~30が好ましく、1.75~25がより好ましく、1.8~20がさらに好ましい。 In addition, from the viewpoint of suppressing turbidity that occurs when the unsaturated polyester resin (A) and the (meth)acryloyloxy group-containing resin (B) are mixed, the ratio of the weight average molecular weight (Mw) of the unsaturated polyester resin (A) to the weight average molecular weight (Mw) of the (meth)acryloyloxy group-containing resin (B), (Mw of unsaturated polyester resin (A))/Mw of the (meth)acryloyloxy group-containing resin (B), is preferably 1.5 to 30, more preferably 1.75 to 25, and even more preferably 1.8 to 20.
(ジオール(a1))
 ジオール(a1)は1分子中に2個の水酸基を有する化合物である。ジオール(a1)は、1種単独であっても、2種以上が併用されていてもよい。
(Diol (a1))
The diol (a1) is a compound having two hydroxyl groups in one molecule. The diol (a1) may be used alone or in combination of two or more kinds.
 ジオール(a1)としては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、2-メチル-1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2-エチル-1,3-ヘキサンジオール、2,5-ジメチル-2,5-ヘキサンジオール、1,2-オクタンジオール、1,2-ノナンジオール、1,4-シクロヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、2,2-ジ(4-ヒドロキシシクロヘキシル)プロパン、並びにビスフェノールA、ビスフェノールF、及びビスフェノールSの水素化物、ポリエチレングリコール、ポリプロピレングリコール等の2価アルコール、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等が挙げられる。
 これらの中でも、樹脂組成物の製造安定性、分子量制御、樹脂硬化物の強度物性の観点から、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、ビスフェノールAの水素化物が好ましく、入手性や製造コストの観点から、エチレングリコール、プロピレングリコール、ジエチレングリコール、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオールがより好ましい。
Examples of the diol (a1) include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 2-methyl-1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,6-hexanediol, 2-ethyl-1,3-hexanediol, 2,5-dimethyl-2,5-hexanol, and the like. Examples of the alkyl ethers include sandiol, 1,2-octanediol, 1,2-nonanediol, 1,4-cyclohexanediol, 1,8-octanediol, 1,9-nonanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 2,2-di(4-hydroxycyclohexyl)propane, as well as hydrogenated products of bisphenol A, bisphenol F, and bisphenol S, dihydric alcohols such as polyethylene glycol and polypropylene glycol, glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, and dipentaerythritol.
Among these, from the viewpoints of production stability of the resin composition, molecular weight control, and strength properties of the cured resin, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, and hydrogenated bisphenol A are preferred, and from the viewpoints of availability and production costs, ethylene glycol, propylene glycol, diethylene glycol, 2-methyl-1,3-propanediol, and 2,2-dimethyl-1,3-propanediol are more preferred.
(二塩基酸(a2))
 二塩基酸(a2)は、エチレン性不飽和基含有二塩基酸(a2-1)を含み、さらに飽和二塩基酸(a2-2)を含むことが好ましい。
(Dibasic acid (a2))
The dibasic acid (a2) preferably contains an ethylenically unsaturated group-containing dibasic acid (a2-1) and further contains a saturated dibasic acid (a2-2).
<エチレン性不飽和基含有二塩基酸(a2-1)>
 エチレン性不飽和基含有二塩基酸(a2-1)は、1分子内に2個のカルボキシ基と、エチレン性不飽和基を1個以上有する化合物であり、その分子量及び分子構造は特に限定されない。エチレン性不飽和基含有二塩基酸(a2-1)としては、後述する不飽和多塩基酸(b1-4)で例示した化合物のうち、1分子内に2個のカルボキシ基と、エチレン性不飽和基を1個以上有する化合物を使用することができる。エチレン性不飽和基含有二塩基酸(a2-1)は1種単独であっても、2種以上が併用されていてもよい。
<Ethylenically unsaturated group-containing dibasic acid (a2-1)>
The ethylenically unsaturated group-containing dibasic acid (a2-1) is a compound having two carboxy groups and one or more ethylenically unsaturated groups in one molecule, and its molecular weight and molecular structure are not particularly limited. As the ethylenically unsaturated group-containing dibasic acid (a2-1), a compound having two carboxy groups and one or more ethylenically unsaturated groups in one molecule can be used among the compounds exemplified as the unsaturated polybasic acid (b1-4) described later. The ethylenically unsaturated group-containing dibasic acid (a2-1) may be used alone or in combination of two or more kinds.
 エチレン性不飽和基含有二塩基酸(a2-1)としては、例えば、無水マレイン酸、フマル酸、イタコン酸、シトラコン酸、クロロマレイン酸等が挙げられる。これらの中でも、製造コストの観点から、無水マレイン酸及びフマル酸が好ましく、無水マレイン酸がより好ましい。 Examples of the ethylenically unsaturated group-containing dibasic acid (a2-1) include maleic anhydride, fumaric acid, itaconic acid, citraconic acid, and chloromaleic acid. Among these, from the viewpoint of production costs, maleic anhydride and fumaric acid are preferred, and maleic anhydride is more preferred.
<飽和二塩基酸(a2-2)>
 飽和二塩基酸(a2-2)は、1分子内に2個のカルボキシ基を有し、エチレン性不飽和基を有さない化合物であり、その分子量及び分子構造は特に限定されない。飽和二塩基酸(a2-2)は1種単独であっても、2種以上が併用されていてもよい。
<Saturated dibasic acid (a2-2)>
The saturated dibasic acid (a2-2) is a compound having two carboxy groups and no ethylenically unsaturated group in one molecule, and its molecular weight and molecular structure are not particularly limited. The saturated dibasic acid (a2-2) may be used alone or in combination of two or more kinds.
 飽和二塩基酸(a2-2)としては、例えば、無水フタル酸、イソフタル酸、テレフタル酸、琥珀酸、アジピン酸、セバシン酸、テトラヒドロフタル酸、エンドメチレンテトラヒドロフタル酸、ヘキサヒドロフタル酸(1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸)、ナフタレンジカルボン酸、トリメリット酸、ピロメリット酸、クロレンディク酸(ヘット酸)、テトラブロモフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、無水琥珀酸、無水クロレンディク酸、無水トリメリット酸、無水ピロメリット酸、ジメチルオルソフタレート、ジメチルイソフタレート、ジメチルテレフタレート等が挙げられる。これらの中でも、製造コストの観点から、無水フタル酸、イソフタル酸及びテレフタル酸が好ましい。 Examples of the saturated dibasic acid (a2-2) include phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, adipic acid, sebacic acid, tetrahydrophthalic acid, endomethylenetetrahydrophthalic acid, hexahydrophthalic acid (1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid), naphthalenedicarboxylic acid, trimellitic acid, pyromellitic acid, chlorendic acid (HETT acid), tetrabromophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, succinic anhydride, chlorendic anhydride, trimellitic anhydride, pyromellitic anhydride, dimethyl orthophthalate, dimethyl isophthalate, dimethyl terephthalate, etc. Among these, phthalic anhydride, isophthalic acid, and terephthalic acid are preferred from the viewpoint of production costs.
[不飽和ポリエステル樹脂(A)の製造方法]
 不飽和ポリエステル樹脂(A)は、ジオール(a1)と、エチレン性不飽和基含有二塩基酸(a2-1)と、飽和二塩基酸(a2-2)とを脱水縮合重合させることにより製造することができる。
 例えば、加熱撹拌可能な反応容器内において、ジオール(a1)、エチレン性不飽和基含有二塩基酸(a2-1)及び飽和二塩基酸(a2-2)を、好ましくは150~250℃、より好ましくは170~240℃、さらに好ましくは180~230℃で、8~15時間反応させることにより製造することができる。
 本実施形態においては、樹脂組成物の硬化性の観点から、ジオール(a1)と飽和二塩基酸(a2-2)とのモル比(ジオール(a1):飽和二塩基酸(a2-2))が、100:80~100:20となるように反応させることが好ましく、より好ましくは100:70~100:30、さらに好ましくは100:60~100:40である。
 ジオール(a1)と、エチレン性不飽和基含有二塩基酸(a2-1)と、飽和二塩基酸(a2-2)とを混合するタイミングは、特に限定されることなく、公知の方法で行うことができる。
[Method for producing unsaturated polyester resin (A)]
The unsaturated polyester resin (A) can be produced by dehydration condensation polymerization of a diol (a1), an ethylenically unsaturated group-containing dibasic acid (a2-1), and a saturated dibasic acid (a2-2).
For example, the copolymer can be produced by reacting the diol (a1), the ethylenically unsaturated group-containing dibasic acid (a2-1) and the saturated dibasic acid (a2-2) in a reaction vessel capable of being heated and stirred at preferably 150 to 250° C., more preferably 170 to 240° C., and even more preferably 180 to 230° C., for 8 to 15 hours.
In this embodiment, from the viewpoint of the curability of the resin composition, it is preferable to react the diol (a1) and the saturated dibasic acid (a2-2) so that the molar ratio (diol (a1):saturated dibasic acid (a2-2)) is 100:80 to 100:20, more preferably 100:70 to 100:30, and even more preferably 100:60 to 100:40.
The timing of mixing the diol (a1), the ethylenically unsaturated group-containing dibasic acid (a2-1), and the saturated dibasic acid (a2-2) is not particularly limited, and they can be mixed by a known method.
 本実施形態に係る樹脂組成物中の不飽和ポリエステル樹脂(A)の含有量は、不飽和ポリエステル樹脂(A)、(メタ)アクリロイルオキシ基含有樹脂(B)及びエチレン性不飽和基含有モノマー(C)の合計100質量%に対して、好ましくは25~50質量%、より好ましくは27~48質量%、さらに好ましくは28~46質量%である。
 不飽和ポリエステル樹脂(A)の含有量が25質量%以上であれば、樹脂硬化物の靭性が向上しやすい。また、不飽和ポリエステル樹脂(A)が50質量%以下であれば、相溶化剤(D)との相互作用をコントロールしやすい。
The content of the unsaturated polyester resin (A) in the resin composition according to the present embodiment is preferably 25 to 50 mass%, more preferably 27 to 48 mass%, and even more preferably 28 to 46 mass%, relative to 100 mass% in total of the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), and the ethylenically unsaturated group-containing monomer (C).
When the content of the unsaturated polyester resin (A) is 25% by mass or more, the toughness of the cured resin is likely to be improved. When the content of the unsaturated polyester resin (A) is 50% by mass or less, the interaction with the compatibilizer (D) is easily controlled.
〔(メタ)アクリロイルオキシ基含有樹脂(B)〕
 本実施形態で用いられる(メタ)アクリロイルオキシ基含有樹脂(B)は、1分子中に(メタ)アクリロイルオキシ基を2個以上有し、重量平均分子量(Mw)が500~3,000であれば、特に限定されるものではない。
 本実施形態の樹脂組成物は、(メタ)アクリロイルオキシ基含有樹脂(B)として、ビニルエステル樹脂(B1)を含有する。これにより、相溶化剤(D)と相互作用し、不飽和ポリエステル樹脂(A)と(メタ)アクリロイルオキシ基含有樹脂(B)との相溶性が向上し、樹脂組成物の濁りを抑制することができる。
 (メタ)アクリロイルオキシ基含有樹脂(B)は、1種単独であっても、2種以上が併用されていてもよい。
[(Meth)acryloyloxy group-containing resin (B)]
The (meth)acryloyloxy group-containing resin (B) used in the present embodiment is not particularly limited as long as it has two or more (meth)acryloyloxy groups in one molecule and has a weight average molecular weight (Mw) of 500 to 3,000.
The resin composition of the present embodiment contains a vinyl ester resin (B1) as the (meth)acryloyloxy group-containing resin (B). This allows interaction with the compatibilizer (D) to improve the compatibility between the unsaturated polyester resin (A) and the (meth)acryloyloxy group-containing resin (B), thereby suppressing turbidity of the resin composition.
The (meth)acryloyloxy group-containing resin (B) may be used alone or in combination of two or more kinds.
 樹脂組成物中の(メタ)アクリロイルオキシ基含有樹脂(B)の分子量が大きいと、不飽和ポリエステル樹脂(A)との混合時に濁りを生じやすい。不飽和ポリエステル樹脂(A)と(メタ)アクリロイルオキシ基含有樹脂(B)とを混合した時に生じる濁りを抑制する観点から、(メタ)アクリロイルオキシ基含有樹脂(B)の重量平均分子量(Mw)は、500~3,000であり、600~2,800が好ましく、800~2,500がより好ましい。 If the molecular weight of the (meth)acryloyloxy group-containing resin (B) in the resin composition is large, turbidity is likely to occur when mixed with the unsaturated polyester resin (A). From the viewpoint of suppressing turbidity that occurs when the unsaturated polyester resin (A) and the (meth)acryloyloxy group-containing resin (B) are mixed, the weight average molecular weight (Mw) of the (meth)acryloyloxy group-containing resin (B) is 500 to 3,000, preferably 600 to 2,800, and more preferably 800 to 2,500.
 (メタ)アクリロイルオキシ基含有樹脂(B)の数平均分子量(Mn)は、不飽和ポリエステル樹脂(A)との相溶性の観点から、400~1,500が好ましく、500~1,400がより好ましく、550~1,300がさらに好ましい。 The number average molecular weight (Mn) of the (meth)acryloyloxy group-containing resin (B) is preferably 400 to 1,500, more preferably 500 to 1,400, and even more preferably 550 to 1,300, from the viewpoint of compatibility with the unsaturated polyester resin (A).
 (メタ)アクリロイルオキシ基含有樹脂(B)のMw/Mnは、合成条件の制御のしやすさの観点から、1.1~2.5が好ましく、1.2~2.4がより好ましく、1.3~2.3がさらに好ましい。 From the viewpoint of ease of control of synthesis conditions, the Mw/Mn of the (meth)acryloyloxy group-containing resin (B) is preferably 1.1 to 2.5, more preferably 1.2 to 2.4, and even more preferably 1.3 to 2.3.
[ビニルエステル樹脂(B1)]
 ビニルエステル樹脂(B1)は、エポキシ化合物(b1-1)のエポキシ基が開環して生じた水酸基と、不飽和ポリエステル樹脂(A)の水酸基とが、相溶化剤(D)と相互作用することにより、不飽和ポリエステル樹脂(A)とビニルエステル樹脂(B1)との相溶性が向上し、樹脂組成物の濁りを抑制することができる。
[Vinyl ester resin (B1)]
In the vinyl ester resin (B1), a hydroxyl group generated by ring-opening of the epoxy group of the epoxy compound (b1-1) and a hydroxyl group of the unsaturated polyester resin (A) interact with the compatibilizer (D), whereby the compatibility between the unsaturated polyester resin (A) and the vinyl ester resin (B1) is improved, and turbidity of the resin composition can be suppressed.
 ビニルエステル樹脂(B1)は、エポキシ化合物(b1-1)と不飽和一塩基酸(b1-3)とを含む原料の付加反応生成物である。ビニルエステル樹脂(B1)としては、1分子中に2個のエポキシ基を有するエポキシ化合物(b1-1)、ビスフェノール化合物(b1-2)、不飽和一塩基酸(b1-3)、及び多塩基酸無水物(b1-4)の付加反応生成物であるビニルエステル樹脂(B1-1)、1分子中に2個のエポキシ基を有するエポキシ化合物(b1-1)、及び不飽和一塩基酸(b1-3)の付加反応生成物であるビニルエステル樹脂(B1-2)等が挙げられる。これらの樹脂は1種単独であっても、2種以上が併用されていてもよい。 Vinyl ester resin (B1) is an addition reaction product of raw materials including an epoxy compound (b1-1) and an unsaturated monobasic acid (b1-3). Examples of vinyl ester resin (B1) include vinyl ester resin (B1-1) which is an addition reaction product of an epoxy compound (b1-1) having two epoxy groups in one molecule, a bisphenol compound (b1-2), an unsaturated monobasic acid (b1-3), and a polybasic acid anhydride (b1-4), and vinyl ester resin (B1-2) which is an addition reaction product of an epoxy compound (b1-1) having two epoxy groups in one molecule, and an unsaturated monobasic acid (b1-3). These resins may be used alone or in combination of two or more.
[ビニルエステル樹脂(B1-1)]
 ビニルエステル樹脂(B1-1)は、1分子中に2個のエポキシ基を有するエポキシ化合物(b1-1)とビスフェノール化合物(b1-2)との反応生成物である樹脂前駆体(P1)と、不飽和一塩基酸(b1-3)及び不飽和多塩基酸(b1-4)を反応させることにより得られた付加反応生成物である。
[Vinyl ester resin (B1-1)]
The vinyl ester resin (B1-1) is an addition reaction product obtained by reacting a resin precursor (P1), which is a reaction product of an epoxy compound (b1-1) having two epoxy groups in one molecule and a bisphenol compound (b1-2), with an unsaturated monobasic acid (b1-3) and an unsaturated polybasic acid (b1-4).
 ビニルエステル樹脂(B1-1)の原料中のビスフェノール化合物(b1-2)の量は、エポキシ化合物(b1-1)のエポキシ基の総量100モルに対して、ビスフェノール化合物(b1-2)の水酸基の総量が、10モル以上となる量であることが好ましく、より好ましくは15モル以上、さらに好ましくは20モル以上であり、好ましくは70モル以下、より好ましくは50モル以下、さらに好ましくは30モル以下である。 The amount of bisphenol compound (b1-2) in the raw material of vinyl ester resin (B1-1) is preferably such that the total amount of hydroxyl groups in bisphenol compound (b1-2) is 10 moles or more, more preferably 15 moles or more, even more preferably 20 moles or more, per 100 moles of the total amount of epoxy groups in epoxy compound (b1-1), and is preferably 70 moles or less, more preferably 50 moles or less, even more preferably 30 moles or less.
 エポキシ化合物(b1-1)のエポキシ基の総量100モルに対して、ビスフェノール化合物(b1-2)の水酸基の総量が10モル以上であれば、ビニルエステル樹脂(B1-1)の分子量分布が広がることにより、不飽和ポリエステル樹脂(A)と相溶化しやすく、樹脂硬化物の靭性とを両立できる。また、エポキシ化合物(b1-1)のエポキシ基の総量100モルに対して、ビスフェノール化合物(b1-2)の水酸基の総量が70モル以下であれば、樹脂組成物の分子量が過剰に大きくなるのを抑制し、樹脂組成物の粘度をコントロールしやすい。 If the total amount of hydroxyl groups in the bisphenol compound (b1-2) is 10 moles or more relative to 100 moles of the total amount of epoxy groups in the epoxy compound (b1-1), the molecular weight distribution of the vinyl ester resin (B1-1) will be broadened, making it easier to make it compatible with the unsaturated polyester resin (A), and it will be possible to achieve both toughness and toughness of the resin cured product. In addition, if the total amount of hydroxyl groups in the bisphenol compound (b1-2) is 70 moles or less relative to 100 moles of the total amount of epoxy groups in the epoxy compound (b1-1), the molecular weight of the resin composition will be prevented from becoming excessively large, and it will be easier to control the viscosity of the resin composition.
 ビニルエステル樹脂(B1-1)の原料中の不飽和一塩基酸(b1-3)の量は、エポキシ化合物(b1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(b1-3)の酸基の総量が、40モル以上となる量であることが好ましく、より好ましくは50モル以上、さらに好ましくは60モル以上であり、好ましくは120モル以下、より好ましくは100モル以下、さらに好ましくは80モル以下である。 The amount of unsaturated monobasic acid (b1-3) in the raw material of vinyl ester resin (B1-1) is preferably such that the total amount of acid groups of unsaturated monobasic acid (b1-3) is 40 moles or more, more preferably 50 moles or more, even more preferably 60 moles or more, and is preferably 120 moles or less, more preferably 100 moles or less, even more preferably 80 moles or less, per 100 moles of the total amount of epoxy groups of epoxy compound (b1-1).
 エポキシ化合物(b1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(b1-3)の酸基の総量が40モル以上であれば、ビニルエステル樹脂(B1-1)中に十分な量のエチレン性不飽和基が導入されるため、樹脂組成物は良好な硬化性を発現しやすい。また、エポキシ化合物(b1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(b1-3)の酸基の総量が120モル以下であれば、不飽和ポリエステル樹脂(A)との相溶性が良好となる。 If the total amount of acid groups in the unsaturated monobasic acid (b1-3) is 40 moles or more relative to 100 moles of the total amount of epoxy groups in the epoxy compound (b1-1), a sufficient amount of ethylenically unsaturated groups is introduced into the vinyl ester resin (B1-1), and the resin composition is likely to exhibit good curing properties. In addition, if the total amount of acid groups in the unsaturated monobasic acid (b1-3) is 120 moles or less relative to 100 moles of the total amount of epoxy groups in the epoxy compound (b1-1), compatibility with the unsaturated polyester resin (A) is good.
 ビニルエステル樹脂(B1-1)の原料中の不飽和多塩基酸(b1-4)の量は、エポキシ化合物(b1-1)のエポキシ基の総量100モルに対して、不飽和多塩基酸(b1-4)の酸基の総量が、1モル以上となる量であることが好ましく、より好ましくは3モル以上、さらに好ましくは5モル以上であり、好ましくは15モル以下、より好ましくは10モル以下、さらに好ましくは8モル以下である。 The amount of unsaturated polybasic acid (b1-4) in the raw material of vinyl ester resin (B1-1) is preferably such that the total amount of acid groups of unsaturated polybasic acid (b1-4) is 1 mole or more, more preferably 3 moles or more, even more preferably 5 moles or more, and is preferably 15 moles or less, more preferably 10 moles or less, even more preferably 8 moles or less, per 100 moles of the total amount of epoxy groups of epoxy compound (b1-1).
 エポキシ化合物(b1-1)のエポキシ基の総量100モルに対して、不飽和多塩基酸(b1-4)の酸基の総量が1モル以上であれば、ビニルエステル樹脂(B1-1)中に十分な量のエチレン性不飽和基が導入されるため、樹脂組成物は良好な硬化性を発現しやすい。また、エポキシ化合物(b1-1)のエポキシ基の総量100モルに対して、不飽和多塩基酸(b1-4)の酸基の総量が15モル以下であれば、不飽和ポリエステル樹脂(A)との相溶性が良好となる。 If the total amount of acid groups in the unsaturated polybasic acid (b1-4) is 1 mole or more per 100 moles of epoxy groups in the epoxy compound (b1-1), a sufficient amount of ethylenically unsaturated groups is introduced into the vinyl ester resin (B1-1), and the resin composition is likely to exhibit good curing properties. In addition, if the total amount of acid groups in the unsaturated polybasic acid (b1-4) is 15 moles or less per 100 moles of epoxy groups in the epoxy compound (b1-1), compatibility with the unsaturated polyester resin (A) will be good.
[ビニルエステル樹脂(B1-2)]
 ビニルエステル樹脂(B1-2)は、1分子中に2個のエポキシ基を有するエポキシ化合物(b1-1)と、不飽和一塩基酸(b1-3)との付加反応生成物である。
[Vinyl ester resin (B1-2)]
The vinyl ester resin (B1-2) is an addition reaction product of an epoxy compound (b1-1) having two epoxy groups in one molecule and an unsaturated monobasic acid (b1-3).
 ビニルエステル樹脂(B1-2)の原料中の不飽和一塩基酸(b1-3)の量は、エポキシ化合物(b1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(b1-3)の酸基の総量が、30モル以上となる量であることが好ましく、より好ましくは40モル以上、さらに好ましくは50モル以上であり、好ましくは120モル以下、より好ましくは110モル以下、さらに好ましくは100モル以下である。 The amount of unsaturated monobasic acid (b1-3) in the raw material of vinyl ester resin (B1-2) is preferably such that the total amount of acid groups of unsaturated monobasic acid (b1-3) is 30 moles or more, more preferably 40 moles or more, even more preferably 50 moles or more, and is preferably 120 moles or less, more preferably 110 moles or less, even more preferably 100 moles or less, per 100 moles of the total amount of epoxy groups of epoxy compound (b1-1).
 エポキシ化合物(b1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(b1-3)の酸基の総量が30モル以上であれば、ビニルエステル樹脂(B1-2)中に十分な量のエチレン性不飽和基が導入されるため、樹脂組成物は良好な硬化性を発現しやすい。また、エポキシ化合物(b1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(b1-3)の酸基の総量が120モル以下であれば、不飽和ポリエステル樹脂(A)との相溶性が良好となる。 If the total amount of acid groups in the unsaturated monobasic acid (b1-3) is 30 moles or more relative to 100 moles of the total amount of epoxy groups in the epoxy compound (b1-1), a sufficient amount of ethylenically unsaturated groups is introduced into the vinyl ester resin (B1-2), and the resin composition is likely to exhibit good curing properties. In addition, if the total amount of acid groups in the unsaturated monobasic acid (b1-3) is 120 moles or less relative to 100 moles of the total amount of epoxy groups in the epoxy compound (b1-1), compatibility with the unsaturated polyester resin (A) is good.
(エポキシ化合物(b1-1))
 エポキシ化合物(b1-1)は、1分子中に2個のエポキシ基を有する化合物であり、モノマー、オリゴマー、ポリマー全般を用いることができ、その分子量及び分子構造は特に限定されない。エポキシ化合物(b1-1)は、1種単独であっても、2種以上が併用されていてもよい。
 本実施形態において、エポキシ化合物(b1-1)は、エポキシ当量300以下のビスフェノール型エポキシ樹脂を、エポキシ化合物(b1-1)100質量%に対して、30~100質量%含有する。エポキシ化合物(b1-1)100質量%に対して、エポキシ当量300以下のビスフェノール型エポキシ樹脂の含有量が30質量%以上であれば、樹脂組成物の粘度、樹脂硬化物の靭性が良好となり、100質量%以下であれば、樹脂硬化物の靭性、不飽和ポリエステル樹脂(A)との相溶性が良好となる。
(Epoxy compound (b1-1))
The epoxy compound (b1-1) is a compound having two epoxy groups in one molecule, and may be a monomer, oligomer, or polymer in general, and its molecular weight and molecular structure are not particularly limited. The epoxy compound (b1-1) may be used alone or in combination of two or more kinds.
In this embodiment, the epoxy compound (b1-1) contains 30 to 100% by mass of a bisphenol type epoxy resin having an epoxy equivalent of 300 or less, relative to 100% by mass of the epoxy compound (b1-1). If the content of the bisphenol type epoxy resin having an epoxy equivalent of 300 or less, relative to 100% by mass of the epoxy compound (b1-1), is 30% by mass or more, the viscosity of the resin composition and the toughness of the cured resin will be good, and if it is 100% by mass or less, the toughness of the cured resin and the compatibility with the unsaturated polyester resin (A) will be good.
 ビスフェノール型エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、及びビスフェノールAF型エポキシ樹脂等が挙げられる。これらの中でも、耐食性、汎用性、コストの観点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂が好ましく、ビスフェノールA型エポキシ樹脂がより好ましい。 Examples of bisphenol type epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, and bisphenol AF type epoxy resins. Among these, from the viewpoints of corrosion resistance, versatility, and cost, bisphenol A type epoxy resins, bisphenol F type epoxy resins, and bisphenol S type epoxy resins are preferred, and bisphenol A type epoxy resins are more preferred.
 ビスフェノール型エポキシ樹脂以外のエポキシ化合物としては、例えば、t-ブチルカテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、ビフェニル型エポキシ樹脂、線状脂肪族エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂等が挙げられる。これらの中でも、耐食性、汎用性、コストの観点から、フェノールノボラック型エポキシ樹脂が好ましい。 Examples of epoxy compounds other than bisphenol-type epoxy resins include t-butylcatechol-type epoxy resins, naphthalene-type epoxy resins, naphthol-type epoxy resins, anthracene-type epoxy resins, glycidyl ester-type epoxy resins, biphenyl-type epoxy resins, linear aliphatic epoxy resins, epoxy resins having a butadiene structure, alicyclic epoxy resins, heterocyclic epoxy resins, spiro ring-containing epoxy resins, cyclohexanedimethanol-type epoxy resins, naphthylene ether-type epoxy resins, and phenol novolac-type epoxy resins. Among these, phenol novolac-type epoxy resins are preferred from the standpoints of corrosion resistance, versatility, and cost.
 エポキシ化合物(b1-1)のエポキシ当量は、合成容易性、樹脂組成物の分子量制御の観点から、好ましくは100~300、より好ましくは110~280、さらに好ましくは120~270、よりさらに好ましくは150~250である。 The epoxy equivalent of the epoxy compound (b1-1) is preferably 100 to 300, more preferably 110 to 280, even more preferably 120 to 270, and even more preferably 150 to 250, from the viewpoints of ease of synthesis and molecular weight control of the resin composition.
(ビスフェノール化合物(b1-2))
 ビスフェノール化合物(b1-2)は、その分子量及び分子構造は特に限定されるものではない。ビスフェノール化合物(b1-2)は、1種単独であっても、2種以上が併用されていてもよい。
 ビスフェノール化合物(b1-2)としては、例えば、ビスフェノールA、ビスフェノールAP、ビスフェノールAF、ビスフェノールB、ビスフェノールBP、ビスフェノールC、ビスフェノールE、ビスフェノールF、ビスフェノールG、ビスフェノールM、ビスフェノールS、ビスフェノールP、ビスフェノールPH、ビスフェノールTMC、ビスフェノールZ等が挙げられる。これらの中でも、合成容易性の観点から、ビスフェノールA、ビスフェノールFが好ましく、耐食性、汎用性及びコストの観点から、ビスフェノールAがより好ましい。
(Bisphenol compound (b1-2))
The molecular weight and molecular structure of the bisphenol compound (b1-2) are not particularly limited. The bisphenol compound (b1-2) may be used alone or in combination of two or more kinds.
Examples of the bisphenol compound (b1-2) include bisphenol A, bisphenol AP, bisphenol AF, bisphenol B, bisphenol BP, bisphenol C, bisphenol E, bisphenol F, bisphenol G, bisphenol M, bisphenol S, bisphenol P, bisphenol PH, bisphenol TMC, and bisphenol Z. Among these, bisphenol A and bisphenol F are preferred from the viewpoint of ease of synthesis, and bisphenol A is more preferred from the viewpoints of corrosion resistance, versatility, and cost.
(不飽和一塩基酸(b1-3))
 不飽和一塩基酸(b1-3)は、その分子量及び分子構造は特に限定されるものではないが、エチレン性不飽和基を有するモノカルボン酸が好ましい。不飽和一塩基酸(b1-3)は、1種単独であっても、2種以上が併用されていてもよい。
(Unsaturated monobasic acid (b1-3))
The unsaturated monobasic acid (b1-3) is not particularly limited in its molecular weight and molecular structure, but is preferably a monocarboxylic acid having an ethylenically unsaturated group. The unsaturated monobasic acid (b1-3) may be used alone or in combination of two or more kinds.
 不飽和一塩基酸(b1-3)としては、例えば、(メタ)アクリル酸、クロトン酸、桂皮酸等が挙げられる。これらの中でも、汎用性やビニルエステル樹脂(B1-1)及び(B1-2)の合成時の反応性、並びに良好な硬化性を有する樹脂組成物を得る観点から、(メタ)アクリル酸、及びクロトン酸から選択される少なくとも1種が好ましく、(メタ)アクリル酸がより好ましく、メタクリル酸がさらに好ましい。 Examples of the unsaturated monobasic acid (b1-3) include (meth)acrylic acid, crotonic acid, cinnamic acid, etc. Among these, from the viewpoints of versatility, reactivity during synthesis of the vinyl ester resins (B1-1) and (B1-2), and obtaining a resin composition having good curability, at least one selected from (meth)acrylic acid and crotonic acid is preferred, (meth)acrylic acid is more preferred, and methacrylic acid is even more preferred.
(不飽和多塩基酸(b1-4))
 不飽和多塩基酸(b1-4)は、1分子内に、カルボキシ基を2個以上と、不飽和基を1個以上とを有する化合物であり、その分子量及び分子構造は特に限定されない。不飽和多塩基酸(b1-4)は、1種単独であっても、2種以上が併用されていてもよい。
(Unsaturated polybasic acid (b1-4))
The unsaturated polybasic acid (b1-4) is a compound having two or more carboxy groups and one or more unsaturated groups in one molecule, and its molecular weight and molecular structure are not particularly limited. The unsaturated polybasic acid (b1-4) may be used alone or in combination of two or more kinds.
 不飽和多塩基酸(b1-4)としては、例えば、無水マレイン酸、フマル酸、イタコン酸、シトラコン酸、クロロマレイン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸等が挙げられる。これらの中でも、製造コストの観点から、無水マレイン酸、フマル酸、コハク酸、グルタル酸、アジピン酸が好ましく、無水マレイン酸、フマル酸、コハク酸がより好ましく、フマル酸がさらに好ましい。 Examples of the unsaturated polybasic acid (b1-4) include maleic anhydride, fumaric acid, itaconic acid, citraconic acid, chloromaleic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, phthalic acid, tetrahydrophthalic acid, and hexahydrophthalic acid. Among these, from the viewpoint of production costs, maleic anhydride, fumaric acid, succinic acid, glutaric acid, and adipic acid are preferred, maleic anhydride, fumaric acid, and succinic acid are more preferred, and fumaric acid is even more preferred.
[ビニルエステル樹脂(B1)の製造方法]
[ビニルエステル樹脂(B1-1)の製造方法]
 ビニルエステル樹脂(B1-1)の製造方法は、1分子中に2個のエポキシ基を有するエポキシ化合物(b1-1)、及びビスフェノール化合物(b1-2)を反応させて、樹脂前駆体(P1)を得る工程と、前記工程で得られた樹脂前駆体(P1)と、不飽和一塩基酸(b1-3)及び不飽和多塩基酸(b1-4)を反応させることによりビニルエステル樹脂(B1-1)を得る工程とを有する。
[Method for producing vinyl ester resin (B1)]
[Method for producing vinyl ester resin (B1-1)]
The method for producing the vinyl ester resin (B1-1) includes a step of reacting an epoxy compound (b1-1) having two epoxy groups in one molecule with a bisphenol compound (b1-2) to obtain a resin precursor (P1), and a step of reacting the resin precursor (P1) obtained in the above step with an unsaturated monobasic acid (b1-3) and an unsaturated polybasic acid (b1-4) to obtain the vinyl ester resin (B1-1).
(樹脂前駆体(P1)を得る工程)
 本工程は、1分子中に2個のエポキシ基を有するエポキシ化合物(b1-1)、及びビスフェノール化合物(b1-2)を反応させて、樹脂前駆体(P1)を得る工程である。
 本工程は、不飽和ポリエステル樹脂(A)と相溶化しやすく、樹脂硬化物の靭性とを両立する観点から、1分子中に2個のエポキシ基を有するエポキシ化合物(b1-1)と、ビスフェノール化合物(b1-2)を、前記エポキシ化合物(b1-1)のエポキシ基の総量100モルに対して、前記ビスフェノール化合物(b1-2)の水酸基の総量が好ましくは10~70モル、より好ましくは15~50モル、さらに好ましくは20~30モルとなるように反応させることが好ましい。
(Step of Obtaining Resin Precursor (P1))
This step is a step of obtaining a resin precursor (P1) by reacting an epoxy compound (b1-1) having two epoxy groups in one molecule with a bisphenol compound (b1-2).
In this step, from the viewpoint of easily achieving compatibility with the unsaturated polyester resin (A) and also achieving toughness of a resin cured product, it is preferable to react an epoxy compound (b1-1) having two epoxy groups in one molecule with a bisphenol compound (b1-2) such that the total amount of hydroxyl groups in the bisphenol compound (b1-2) is preferably 10 to 70 mol, more preferably 15 to 50 mol, and even more preferably 20 to 30 mol, relative to 100 mol of the total amount of epoxy groups in the epoxy compound (b1-1).
 樹脂前駆体(P1)を得る工程では、例えば、加熱撹拌可能な反応容器内で、エポキシ化合物(b1-1)及びビスフェノール化合物(b1-2)に、必要に応じて溶剤及び反応性希釈剤の少なくとも1種と混合し、エステル化触媒存在下、好ましくは70~160℃、より好ましくは80~155℃、さらに好ましくは90~150℃で、1~3時間、混合しながら加熱することにより樹脂前駆体(P1)を得ることができる。 In the process of obtaining the resin precursor (P1), for example, the epoxy compound (b1-1) and the bisphenol compound (b1-2) are mixed with at least one of a solvent and a reactive diluent as necessary in a reaction vessel capable of being heated and stirred, and the mixture is heated in the presence of an esterification catalyst at preferably 70 to 160°C, more preferably 80 to 155°C, and even more preferably 90 to 150°C for 1 to 3 hours while being mixed to obtain the resin precursor (P1).
 エステル化触媒としては、例えば、トリエチルアミン、トリエチレンジアミン、N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン、2,4,6-トリス(ジメチルアミノメチル)フェノール、及びジアザビシクロオクタン等の三級アミン、トリフェニルホスフィン、及びベンジルトリフェニルホスホニウムクロライド等のリン化合物又はジエチルアミン塩酸塩、トリメチルベンジルアンモニウムクロライド、塩化リチウム等が挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。これらの中でも、反応速度を緩やかにして樹脂のゲル化を防止し、また、分子量分布のコントロールを容易にする観点から、三級アミン、リン化合物が好ましく、三級アミンがより好ましい。 Esterification catalysts include, for example, tertiary amines such as triethylamine, triethylenediamine, N,N-dimethylbenzylamine, N,N-dimethylaniline, 2,4,6-tris(dimethylaminomethyl)phenol, and diazabicyclooctane; phosphorus compounds such as triphenylphosphine and benzyltriphenylphosphonium chloride; or diethylamine hydrochloride, trimethylbenzylammonium chloride, lithium chloride, and the like. These may be used alone or in combination of two or more. Among these, from the viewpoints of slowing down the reaction rate to prevent gelation of the resin and facilitating control of the molecular weight distribution, tertiary amines and phosphorus compounds are preferred, and tertiary amines are more preferred.
 エステル化触媒の使用量は、反応を促進しつつ、ビニルエステル樹脂(B1-1)の増粘を抑制する観点から、エポキシ化合物(b1-1)、及びビスフェノール化合物(b1-2)の合計100質量部に対して、好ましくは0.01~5質量部、より好ましくは0.05~4質量部、さらに好ましくは0.1~3質量部である。 The amount of the esterification catalyst used is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 4 parts by mass, and even more preferably 0.1 to 3 parts by mass, per 100 parts by mass of the epoxy compound (b1-1) and the bisphenol compound (b1-2) combined, from the viewpoint of promoting the reaction while suppressing thickening of the vinyl ester resin (B1-1).
 溶剤及び反応性希釈剤は、エポキシ化合物(b1-1)、ビスフェノール化合物(b1-2)、不飽和一塩基酸(b1-3)、及び不飽和多塩基酸(b1-4)を均一に混合しやすくする観点から、必要に応じて用いられる。混合方法は、特に限定されることなく、公知の方法で行うことができる。
 溶剤としては、エポキシ化合物(b1-1)、ビスフェノール化合物(b1-2)、不飽和一塩基酸(b1-3)、及び不飽和多塩基酸(b1-4)に不活性な溶剤であれば、特に限定されない。例えば、メチルイソブチルケトン等の1気圧における沸点が70~150℃である公知の溶剤が挙げられる。溶剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 反応性希釈剤としては、エポキシ化合物(b1-1)、ビスフェノール化合物(b1-2)、不飽和一塩基酸(b1-3)、及び不飽和多塩基酸(b1-4)に不活性なエチレン性不飽和基含有モノマー(C)が好ましい。
The solvent and the reactive diluent are used as necessary from the viewpoint of facilitating uniform mixing of the epoxy compound (b1-1), the bisphenol compound (b1-2), the unsaturated monobasic acid (b1-3), and the unsaturated polybasic acid (b1-4). The mixing method is not particularly limited, and may be performed by a known method.
The solvent is not particularly limited as long as it is inactive to the epoxy compound (b1-1), the bisphenol compound (b1-2), the unsaturated monobasic acid (b1-3), and the unsaturated polybasic acid (b1-4). For example, a known solvent having a boiling point of 70 to 150° C. at 1 atmospheric pressure, such as methyl isobutyl ketone, may be used. The solvent may be used alone or in combination of two or more.
The reactive diluent is preferably an ethylenically unsaturated group-containing monomer (C) which is inactive to the epoxy compound (b1-1), the bisphenol compound (b1-2), the unsaturated monobasic acid (b1-3), and the unsaturated polybasic acid (b1-4).
 樹脂前駆体(P1)の重合反応の進行を抑制する観点から、重合禁止剤を添加してもよい。重合禁止剤としては、公知のものを使用することができ、例えば、ハイドロキノン、メチルハイドロキノン、トリメチルハイドロキノン、フェノチアジン、カテコール、4-t-ブチルカテコール、ナフテン酸銅等が挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。
 重合禁止剤を添加する場合の添加量は、例えば、エポキシ化合物(b1-1)、ビスフェノール化合物(b1-2)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して、0.0001~10質量部とすることができ、好ましくは0.001~1質量部である。
A polymerization inhibitor may be added from the viewpoint of suppressing the progress of the polymerization reaction of the resin precursor (P1). As the polymerization inhibitor, a known one may be used, and examples thereof include hydroquinone, methylhydroquinone, trimethylhydroquinone, phenothiazine, catechol, 4-t-butylcatechol, copper naphthenate, etc. These may be used alone or in combination of two or more kinds.
The amount of the polymerization inhibitor added, when added, can be, for example, 0.0001 to 10 parts by mass, and preferably 0.001 to 1 part by mass, per 100 parts by mass in total of the epoxy compound (b1-1), the bisphenol compound (b1-2), and the unsaturated monobasic acid (b1-3).
(ビニルエステル樹脂(B1-1)を得る工程)
 本工程は、前記工程で得られた樹脂前駆体(P1)に不飽和一塩基酸(b1-3)及び不飽和多塩基酸(b1-4)を反応させて、ビニルエステル樹脂(B1-1)を得る工程である。
 本工程は、不飽和ポリエステル樹脂(A)との相溶性の観点から、エポキシ化合物(b1-1)のエポキシ基の総量100モルに対して、不飽和一塩基酸(b1-3)の酸基の総量が、好ましくは40~120モル、より好ましくは50~100モル、さらに好ましくは60~80モル、不飽和多塩基酸(b1-4)の酸基の総量が、好ましくは1~15モル、より好ましくは3~10モル、さらに好ましくは5~8モルとなるように、樹脂前駆体(P1)と不飽和一塩基酸(b1-3)及び不飽和多塩基酸(b1-4)とを反応させることが好ましい。
(Step of Obtaining Vinyl Ester Resin (B1-1))
This step is a step of reacting the resin precursor (P1) obtained in the previous step with an unsaturated monobasic acid (b1-3) and an unsaturated polybasic acid (b1-4) to obtain a vinyl ester resin (B1-1).
From the viewpoint of compatibility with the unsaturated polyester resin (A), in this step, it is preferable to react the resin precursor (P1) with the unsaturated monobasic acid (b1-3) and the unsaturated polybasic acid (b1-4) so that the total amount of acid groups in the unsaturated monobasic acid (b1-3) is preferably 40 to 120 mol, more preferably 50 to 100 mol, and even more preferably 60 to 80 mol, and the total amount of acid groups in the unsaturated polybasic acid (b1-4) is preferably 1 to 15 mol, more preferably 3 to 10 mol, and even more preferably 5 to 8 mol, relative to 100 mol of the total amount of epoxy groups in the epoxy compound (b1-1).
 ビニルエステル樹脂(B1-1)を得る工程は、例えば、樹脂前駆体(P1)を合成した反応容器内に、エステル化触媒の存在下、不飽和一塩基酸(b1-3)と不飽和多塩基酸(b1-4)とを加え、好ましくは70~150℃、より好ましくは80~140℃、さらに好ましくは90~130℃で、30分~4時間混合しながら加熱することによりビニルエステル樹脂(B1-1)を製造することができる。 In the process for obtaining the vinyl ester resin (B1-1), for example, an unsaturated monobasic acid (b1-3) and an unsaturated polybasic acid (b1-4) are added in the presence of an esterification catalyst to a reaction vessel in which the resin precursor (P1) has been synthesized, and the mixture is heated with mixing at preferably 70 to 150°C, more preferably 80 to 140°C, and even more preferably 90 to 130°C for 30 minutes to 4 hours to produce the vinyl ester resin (B1-1).
 ビニルエステル樹脂(B1-1)を得る工程で用いられるエステル化触媒としては、ビニルエステル樹脂(B1-1)の樹脂前駆体(P1)を得る工程で用いられるエステル化触媒と同様のものが挙げられる。また、本工程で用いるエステル化触媒は、樹脂前駆体(P1)を製造する際に用いるエステル化触媒と同じでも異なっていてもよい。
 本工程において、さらにエステル化触媒を加える場合、その使用量は、反応を促進しつつ、ビニルエステル樹脂(B1-1)の増粘を抑制する観点から、エポキシ化合物(b1-1)、ビスフェノール化合物(b1-2)、不飽和一塩基酸(b1-3)、及び不飽和多塩基酸(b1-4)の合計100質量部に対して、好ましくは0.01~5質量部、より好ましくは0.05~4質量部、さらに好ましくは0.1~3質量部である。
The esterification catalyst used in the step of obtaining the vinyl ester resin (B1-1) may be the same as the esterification catalyst used in the step of obtaining the resin precursor (P1) of the vinyl ester resin (B1-1). The esterification catalyst used in this step may be the same as or different from the esterification catalyst used in producing the resin precursor (P1).
In the case where an esterification catalyst is further added in this step, the amount of the catalyst used is, from the viewpoint of promoting the reaction while suppressing thickening of the vinyl ester resin (B1-1), preferably 0.01 to 5 parts by mass, more preferably 0.05 to 4 parts by mass, and even more preferably 0.1 to 3 parts by mass, relative to 100 parts by mass in total of the epoxy compound (b1-1), the bisphenol compound (b1-2), the unsaturated monobasic acid (b1-3), and the unsaturated polybasic acid (b1-4).
 ビニルエステル樹脂(B1-1)を得る工程においても、樹脂前駆体(P1)を得る工程と同様に、必要に応じて、溶剤及び反応性希釈剤、重合禁止剤の少なくともいずれかを添加してもよい。混合方法も、樹脂前駆体(P1)を得る工程と同様に、公知の方法で行うことができる。また、好ましい態様も同様である。 In the process of obtaining the vinyl ester resin (B1-1), as in the process of obtaining the resin precursor (P1), at least one of a solvent, a reactive diluent, and a polymerization inhibitor may be added as necessary. As in the process of obtaining the resin precursor (P1), the mixing method may be a known method. The same applies to the preferred embodiments.
[ビニルエステル樹脂(B1-2)の製造方法]
 ビニルエステル樹脂(B1-2)の製造方法は、1分子中に2個のエポキシ基を有するエポキシ化合物(b1-1)及び不飽和一塩基酸(b1-3)を反応させて、ビニルエステル樹脂(B1-2)を得る工程を有する。
[Production method of vinyl ester resin (B1-2)]
The method for producing the vinyl ester resin (B1-2) includes a step of reacting an epoxy compound (b1-1) having two epoxy groups in one molecule with an unsaturated monobasic acid (b1-3) to obtain the vinyl ester resin (B1-2).
(ビニルエステル樹脂(B1-2)を得る工程)
 本工程は、1分子中に2個のエポキシ基を有するエポキシ化合物(b1-1)及び不飽和一塩基酸(b1-3)を反応させて、ビニルエステル樹脂(B1-2)を得る工程である。
 本工程は、不飽和ポリエステル樹脂(A)との相溶性の観点から、1分子中に2個のエポキシ基を有するエポキシ化合物(b1-1)と、不飽和一塩基酸(b1-3)とを、前記エポキシ化合物(b1-1)のエポキシ基の総量100モルに対して、前記不飽和一塩基酸(b1-3)の酸基の総量が好ましくは30~120モル、より好ましくは40~110モル、さらに好ましくは50~100モルとなるように反応させることが好ましい。
(Step of Obtaining Vinyl Ester Resin (B1-2))
This step is a step in which an epoxy compound (b1-1) having two epoxy groups in one molecule and an unsaturated monobasic acid (b1-3) are reacted to obtain a vinyl ester resin (B1-2).
In this step, from the viewpoint of compatibility with the unsaturated polyester resin (A), it is preferable to react an epoxy compound (b1-1) having two epoxy groups in one molecule with an unsaturated monobasic acid (b1-3) such that the total amount of acid groups in the unsaturated monobasic acid (b1-3) is preferably 30 to 120 mol, more preferably 40 to 110 mol, and even more preferably 50 to 100 mol, relative to 100 mol of the total amount of epoxy groups in the epoxy compound (b1-1).
 本工程は、例えば、加熱撹拌可能な反応容器内で、エポキシ化合物(b1-1)及び不飽和一塩基酸(b1-3)に、必要に応じて溶剤及び反応性希釈剤の少なくとも1種と混合し、エステル化触媒存在下、好ましくは70~160℃、より好ましくは80~150℃、さらに好ましくは90~120℃で、1~3時間、混合しながら加熱することによりビニルエステル樹脂(B1-2)を得ることができる。 In this process, for example, the epoxy compound (b1-1) and the unsaturated monobasic acid (b1-3) are mixed with at least one of a solvent and a reactive diluent, if necessary, in a reaction vessel capable of being heated and stirred, and the mixture is heated in the presence of an esterification catalyst at preferably 70 to 160°C, more preferably 80 to 150°C, and even more preferably 90 to 120°C, for 1 to 3 hours while being mixed to obtain the vinyl ester resin (B1-2).
 ビニルエステル樹脂(B1-2)を得る工程で用いられるエステル化触媒としては、ビニルエステル樹脂(B1-1)の樹脂前駆体(P1)を得る工程で用いられるエステル化触媒と同様のものが挙げられる。また、本工程で用いるエステル化触媒は、樹脂前駆体(P1)を製造する際に用いるエステル化触媒と同じでも異なっていてもよい。
 エステル化触媒の使用量は、反応を促進しつつ、ビニルエステル樹脂(B1-2)の増粘を抑制する観点から、エポキシ化合物(b1-1)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して、好ましくは0.01~5質量部、より好ましくは0.05~4質量部、さらに好ましくは0.1~3質量部である。
The esterification catalyst used in the step of obtaining the vinyl ester resin (B1-2) may be the same as the esterification catalyst used in the step of obtaining the resin precursor (P1) of the vinyl ester resin (B1-1). The esterification catalyst used in this step may be the same as or different from the esterification catalyst used in producing the resin precursor (P1).
The amount of the esterification catalyst used is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 4 parts by mass, and even more preferably 0.1 to 3 parts by mass, per 100 parts by mass of the epoxy compound (b1-1) and the unsaturated monobasic acid (b1-3) in total, from the viewpoint of promoting the reaction while suppressing thickening of the vinyl ester resin (B1-2).
 ビニルエステル樹脂(B1)を低粘度化する目的で、ビニルエステル樹脂(B1)に反応性希釈剤を加える場合には、ビニルエステル樹脂(B1)の合成後に反応性希釈剤を加えて混合することが好ましく、ビニルエステル樹脂(B1)の合成を容易にする目的で反応性希釈剤を加える場合には、ビニルエステル樹脂(B1)の合成時に反応性希釈剤を加え、ビニルエステル樹脂(B1)の合成後にさらに反応性希釈剤を加えて混合することが好ましい。 When a reactive diluent is added to the vinyl ester resin (B1) for the purpose of lowering the viscosity of the vinyl ester resin (B1), it is preferable to add and mix the reactive diluent after the synthesis of the vinyl ester resin (B1); when a reactive diluent is added for the purpose of facilitating the synthesis of the vinyl ester resin (B1), it is preferable to add the reactive diluent during the synthesis of the vinyl ester resin (B1), and further add and mix the reactive diluent after the synthesis of the vinyl ester resin (B1).
 ビニルエステル樹脂(B1)の25℃における粘度は、取り扱い易さの観点から、好ましくは0.1~1.2Pa・s、より好ましくは0.1~1.0Pa・s、さらに好ましくは0.2~0.8Pa・sである。 From the viewpoint of ease of handling, the viscosity of the vinyl ester resin (B1) at 25°C is preferably 0.1 to 1.2 Pa·s, more preferably 0.1 to 1.0 Pa·s, and even more preferably 0.2 to 0.8 Pa·s.
[その他の(メタ)アクリロイルオキシ基含有樹脂]
 本実施形態における樹脂組成物は、樹脂硬化物の耐食性、耐熱性、強度物性等の性能向上の観点から、ビニルエステル樹脂(B1)とは異なる、その他の(メタ)アクリロイルオキシ基含有樹脂を含んでいてもよい。
 その他の樹脂としては、例えば、ウレタン(メタ)アクリレート樹脂、ポリエステル(メタ)アクリレート樹脂、(メタ)アクリレート樹脂等が挙げられる。これらのその他の樹脂は、1種単独であっても、2種以上が併用されてもよい。
[Other (meth)acryloyloxy group-containing resins]
The resin composition in the present embodiment may contain another (meth)acryloyloxy group-containing resin different from the vinyl ester resin (B1) from the viewpoint of improving the performance such as corrosion resistance, heat resistance, and strength properties of the cured resin.
Examples of the other resins include urethane (meth)acrylate resins, polyester (meth)acrylate resins, (meth)acrylate resins, etc. These other resins may be used alone or in combination of two or more.
 前記ウレタン(メタ)アクリレート樹脂とは、(メタ)アクリロイルオキシ基を有するポリウレタンである。具体的には、ポリイソシアネートとポリヒドロキシ化合物又は多価アルコール類とを反応させた後、未反応のイソシアナト基にさらに水酸基含有(メタ)アクリル化合物及び必要に応じて水酸基含有アリルエーテル化合物を反応させて得られるラジカル重合性不飽和基含有オリゴマーが挙げられる。 The urethane (meth)acrylate resin is a polyurethane having a (meth)acryloyloxy group. Specifically, it is possible to use a radically polymerizable unsaturated group-containing oligomer obtained by reacting a polyisocyanate with a polyhydroxy compound or a polyhydric alcohol, and then reacting the unreacted isocyanato group with a hydroxyl group-containing (meth)acrylic compound and, if necessary, a hydroxyl group-containing allyl ether compound.
 前記ポリエステル(メタ)アクリレート樹脂とは、(メタ)アクリロイルオキシ基を有するポリエステルである。ポリエステル(メタ)アクリレート樹脂は、例えば、以下に示す(1)又は(2)の方法により得られる。
 (1)末端にカルボキシ基を有するポリエステルに、エポキシ基含有(メタ)アクリレート又は水酸基含有(メタ)アクリレートを反応させる方法
 (2)末端に水酸基を有するポリエステルに、(メタ)アクリル酸又はイソシアナト基含有(メタ)アクリレートを反応させる方法
 上記(1)の方法で原料として用いられる、末端にカルボキシ基を有するポリエステルとしては、過剰量の飽和多塩基酸及び不飽和多塩基酸の少なくとも1種と、多価アルコールとを反応させて得られるものが挙げられる。
 上記(2)の方法で原料として用いられる、末端に水酸基を有するポリエステルとしては、飽和多塩基酸及び不飽和多塩基酸の少なくとも1種と、過剰量の多価アルコールとを反応させて得られるものが挙げられる。
The polyester (meth)acrylate resin is a polyester having a (meth)acryloyloxy group. The polyester (meth)acrylate resin can be obtained, for example, by the following method (1) or (2).
(1) A method of reacting a polyester having a carboxy group at its terminal with an epoxy group-containing (meth)acrylate or a hydroxyl group-containing (meth)acrylate. (2) A method of reacting a polyester having a hydroxyl group at its terminal with (meth)acrylic acid or an isocyanato group-containing (meth)acrylate. The polyester having a carboxy group at its terminal, which is used as a raw material in the above method (1), can be obtained by reacting an excess amount of at least one of a saturated polybasic acid and an unsaturated polybasic acid with a polyhydric alcohol.
The polyester having a hydroxyl group at its terminal, which is used as a raw material in the above method (2), may be one obtained by reacting at least one of a saturated polybasic acid and an unsaturated polybasic acid with an excess amount of a polyhydric alcohol.
 (メタ)アクリレート樹脂とは、アクリレート樹脂及びメタクリレート樹脂の総称であり、エチルアクリレート、メチルアクリレート、ブチルアクリレート等のアルキルアクリレート、エチルメタクリレート、メチルメタクリレート、n-ブチルメタクリレート、i-ブチルメタクリレート、t-ブチルメタクリレート等のアルキルメタクリレートの単独共重合体やその他共重合可能な単量体との共重合体が挙げられる。 (Meth)acrylate resin is a general term for acrylate resin and methacrylate resin, and examples of such resins include homopolymers of alkyl acrylates such as ethyl acrylate, methyl acrylate, and butyl acrylate, and alkyl methacrylates such as ethyl methacrylate, methyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, and t-butyl methacrylate, as well as copolymers with other copolymerizable monomers.
 (メタ)アクリロイルオキシ基含有樹脂(B)が、上記その他の(メタ)アクリロイルオキシ基含有樹脂を含む場合、その含有量は、樹脂硬化物の耐食性、耐熱性、強度物性等の性能向上の観点から、好ましくは30質量%未満、より好ましくは20質量%以下、さらに好ましくは10質量%以下である。 When the (meth)acryloyloxy group-containing resin (B) contains the above-mentioned other (meth)acryloyloxy group-containing resins, the content is preferably less than 30 mass%, more preferably 20 mass% or less, and even more preferably 10 mass% or less, from the viewpoint of improving the performance of the cured resin, such as corrosion resistance, heat resistance, and strength properties.
 本実施形態に係る樹脂組成物中の(メタ)アクリロイルオキシ基含有樹脂(B)の含有量は、不飽和ポリエステル樹脂(A)、(メタ)アクリロイルオキシ基含有樹脂(B)、及びエチレン性不飽和基含有モノマー(C)の合計100質量%に対して、好ましくは12~30質量%であり、より好ましくは13~29質量%、さらに好ましくは14~28質量%である。
 (メタ)アクリロイルオキシ基含有樹脂(B)の含有量が12質量%以上であれば、樹脂硬化物の耐食性、耐熱性、強度物性等の性能が向上しやすい。また、(メタ)アクリロイルオキシ基含有樹脂(B)が30質量%以下であれば、相溶化剤(D)との相互作用をコントロールしやすい。
The content of the (meth)acryloyloxy group-containing resin (B) in the resin composition according to the present embodiment is preferably 12 to 30 mass%, more preferably 13 to 29 mass%, and even more preferably 14 to 28 mass%, relative to 100 mass% in total of the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), and the ethylenically unsaturated group-containing monomer (C).
When the content of the (meth)acryloyloxy group-containing resin (B) is 12% by mass or more, the performance of the resin cured product is likely to be improved in terms of corrosion resistance, heat resistance, strength, etc. When the content of the (meth)acryloyloxy group-containing resin (B) is 30% by mass or less, the interaction with the compatibilizer (D) is easily controlled.
〔エチレン性不飽和基含有モノマー(C)〕
 本実施形態で用いられるエチレン性不飽和基含有モノマー(C)は、エチレン性不飽和基を有する化合物の単量体であれば特に限定されるものではないが、ビニル基、アリル基、(メタ)アクリロイル基等を有するものが好ましい。但し、(メタ)アクリロイルオキシ基含有樹脂(B)は除く。エチレン性不飽和基含有モノマー(C)は、1種単独であっても、2種以上が併用されていてもよい。
 エチレン性不飽和基含有モノマー(C)の含有量が多いほど、樹脂組成物の粘度を低減することができる。また、樹脂組成物の硬化物の硬度、強度、耐薬品性、耐水性等を向上させることができる。
[Ethylenically unsaturated group-containing monomer (C)]
The ethylenically unsaturated group-containing monomer (C) used in this embodiment is not particularly limited as long as it is a monomer of a compound having an ethylenically unsaturated group, but it is preferable that it has a vinyl group, an allyl group, a (meth)acryloyl group, etc. However, the (meth)acryloyloxy group-containing resin (B) is excluded. The ethylenically unsaturated group-containing monomer (C) may be used alone or in combination of two or more kinds.
The higher the content of the ethylenically unsaturated group-containing monomer (C), the lower the viscosity of the resin composition can be, and the harder, stronger, more resistant to chemicals, more resistant to water, etc., the cured product of the resin composition can be.
 エチレン性不飽和基含有モノマー(C)のうち、(メタ)アクリロイル基を有するものとしては、例えば、(メタ)アクリル酸、(メタ)アクリレート等が挙げられる。(メタ)アクリレートは、単官能であっても、多官能であってもよい。 Among the ethylenically unsaturated group-containing monomers (C), those having a (meth)acryloyl group include, for example, (meth)acrylic acid and (meth)acrylate. The (meth)acrylate may be monofunctional or polyfunctional.
 単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、ステアリル(メタ)アクリレート、トリデシル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、エチレングリコールモノメチルエーテル(メタ)アクリレート、エチレングリコールモノエチルエーテル(メタ)アクリレート、エチレングリコールモノブチルエーテル(メタ)アクリレート、エチレングリコールモノヘキシルエーテル(メタ)アクリレート、エチレングリコールモノ2-エチルヘキシルエーテル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノブチルエーテル(メタ)アクリレート、ジエチレングリコールモノヘキシルエーテル(メタ)アクリレート、ジエチレングリコールモノ2-エチルヘキシルエーテル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、カプロラクトン変性ヒドロキシエチル(メタ)アクリレート、アリル(メタ)アクリレート等が挙げられる。 Examples of monofunctional (meth)acrylates include methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, i-butyl (meth)acrylate, t-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, cyclohexyl (meth)acrylate, benzyl (meth)acrylate, stearyl (meth)acrylate, tridecyl (meth)acrylate, phenoxyethyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, ethylene glycol monomethyl ether (meth)acrylate, ethylene glycol monoethyl ether (meth)acrylate, ethylene glycol monobutyl ether (meth)acrylate, and ethylene glycol monohexyl ether. Examples of such acrylates include silyl ether (meth)acrylate, ethylene glycol mono 2-ethylhexyl ether (meth)acrylate, diethylene glycol monomethyl ether (meth)acrylate, diethylene glycol monoethyl ether (meth)acrylate, diethylene glycol monobutyl ether (meth)acrylate, diethylene glycol monohexyl ether (meth)acrylate, diethylene glycol mono 2-ethylhexyl ether (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, tricyclodecanyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, caprolactone-modified hydroxyethyl (meth)acrylate, and allyl (meth)acrylate.
 多官能(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、1,2-プロピレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート及び1,6-ヘキサンジオールジ(メタ)アクリレート等のアルカンジオールジ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート及びポリテトラメチレングリコールジ(メタ)アクリレート等のポリオキシアルキレングリコールジ(メタ)アクリレート、また、トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールジアクリレートモノステアレート、1,3-ビス((メタ)アクリロイルオキシ)-2-ヒドロキシプロパン、エトキシ化ビスフェノールAジ(メタ)アクリレート、トリス-(2-(メタ)アクリロキシエチル)イソシアヌレート等が挙げられる。 Examples of polyfunctional (meth)acrylates include alkanediol di(meth)acrylates such as ethylene glycol di(meth)acrylate, 1,2-propylene glycol di(meth)acrylate, 1,3-butylene glycol di(meth)acrylate, 1,4-butylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate; diethylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, and polytetramethylene glycol di(meth)acrylate. Polyoxyalkylene glycol di(meth)acrylates such as trimethylolpropane di(meth)acrylate, glycerin di(meth)acrylate, pentaerythritol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, glycerin tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, pentaerythritol diacrylate monostearate, 1,3-bis((meth)acryloyloxy)-2-hydroxypropane, ethoxylated bisphenol A di(meth)acrylate, tris-(2-(meth)acryloxyethyl)isocyanurate, etc.
 エチレン性不飽和基含有モノマー(C)のうち、(メタ)アクリレート以外で、(メタ)アクリロイル基を有するものとして、アクリロイルモルフォリン、2-ヒドロキシエチル(メタ)アクリルアミド、2-ヒドロキシエチル-N-メチル(メタ)アクリルアミド、3-ヒドロキシプロピル(メタ)アクリルアミド等が挙げられる。 Among the ethylenically unsaturated group-containing monomers (C), those other than (meth)acrylates that have a (meth)acryloyl group include acryloylmorpholine, 2-hydroxyethyl (meth)acrylamide, 2-hydroxyethyl-N-methyl (meth)acrylamide, 3-hydroxypropyl (meth)acrylamide, etc.
 エチレン性不飽和基含有モノマー(C)のうち、ビニル基を有するものとしては、例えば、スチレン、p-クロロスチレン、ビニルトルエン、α-メチルスチレン、ジクロロスチレン、ジビニルベンゼン、t-ブチルスチレン、酢酸ビニル、ジアリルフマレート、ジアリルフタレート、トリアリルイソシアヌレート、また、ビニルベンジルブチルエーテル、ビニルベンジルヘキシルエーテル、ジビニルベンジルエーテル等のビニルベンジル化合物等が挙げられる。 Ethylenically unsaturated group-containing monomers (C) that have a vinyl group include, for example, styrene, p-chlorostyrene, vinyltoluene, α-methylstyrene, dichlorostyrene, divinylbenzene, t-butylstyrene, vinyl acetate, diallyl fumarate, diallyl phthalate, triallyl isocyanurate, and vinylbenzyl compounds such as vinylbenzyl butyl ether, vinylbenzyl hexyl ether, and divinylbenzyl ether.
 これらの中でも、樹脂組成物の硬化性、製造コストの観点から、スチレン化合物、及び(メタ)アクリレートが好ましい。より具体的には、スチレン、メチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート及びテトラエチレングリコールジ(メタ)アクリレートから選ばれる少なくとも1種が好ましく、より好ましくはスチレンである。 Among these, from the viewpoints of the curability of the resin composition and the manufacturing costs, styrene compounds and (meth)acrylates are preferred. More specifically, at least one selected from styrene, methyl (meth)acrylate, phenoxyethyl (meth)acrylate, benzyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, and tetraethylene glycol di(meth)acrylate is preferred, and styrene is more preferred.
 本実施形態に係る樹脂組成物中のエチレン性不飽和基含有モノマー(C)の含有量は、不飽和ポリエステル樹脂(A)、(メタ)アクリロイルオキシ基含有樹脂(B)及びエチレン性不飽和基含有モノマー(C)の合計100質量%に対して、好ましくは20~63質量%であり、より好ましくは25~60質量%、さらに好ましくは30~55質量%である。
 エチレン性不飽和基含有モノマー(C)の含有量が20質量%以上であれば、樹脂組成物の粘度を低減させやすく、作業性が良好となる。エチレン性不飽和基含有モノマー(C)の含有量が63質量%以下であれば、樹脂硬化物の耐食性、耐熱性、強度物性等が良好となる。
The content of the ethylenically unsaturated group-containing monomer (C) in the resin composition according to the present embodiment is preferably 20 to 63 mass%, more preferably 25 to 60 mass%, and even more preferably 30 to 55 mass%, relative to 100 mass% in total of the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), and the ethylenically unsaturated group-containing monomer (C).
When the content of the ethylenically unsaturated group-containing monomer (C) is 20% by mass or more, the viscosity of the resin composition can be easily reduced, and the workability is improved.When the content of the ethylenically unsaturated group-containing monomer (C) is 63% by mass or less, the corrosion resistance, heat resistance, strength properties, etc. of the cured resin are improved.
〔相溶化剤(D)〕
 本実施形態で用いられる相溶化剤(D)は、第1族、第12族、及び第14族の金属元素から選択される少なくとも1種を含む有機金属化合物である。相溶化剤(D)は、不飽和ポリエステル樹脂(A)が有する水酸基、並びに(メタ)アクリロイルオキシ基含有樹脂(B)が有するカルボキシ基及び水酸基との相互作用により、不飽和ポリエステル樹脂(A)と(メタ)アクリロイルオキシ基含有樹脂(B)との相溶性を高める効果を有する。
 相溶化剤(D)は、1種単独であっても、2種以上が併用されていてもよい。
[Compatibilizer (D)]
The compatibilizer (D) used in this embodiment is an organometallic compound containing at least one metal element selected from the group 1, group 12, and group 14. The compatibilizer (D) has the effect of increasing the compatibility between the unsaturated polyester resin (A) and the (meth)acryloyloxy group-containing resin (B) by interacting with the hydroxyl group in the unsaturated polyester resin (A) and the carboxyl group and hydroxyl group in the (meth)acryloyloxy group-containing resin (B).
The compatibilizer (D) may be used alone or in combination of two or more kinds.
 第1族の金属元素としては、リチウム、ナトリウム、カリウムが挙げられる。
 第12族の金属元素としては、亜鉛が挙げられる。
 第14族の金属元素としては、錫、鉛が挙げられる。
Metal elements in Group 1 include lithium, sodium, and potassium.
Group 12 metal elements include zinc.
Examples of metal elements in Group 14 include tin and lead.
 相溶化剤(D)としては、樹脂組成物の光硬化性を阻害しない観点から、亜鉛、カリウム、及びスズから選択される少なくとも1種を含む有機金属化合物が好ましく、オクチル酸亜鉛、ネオデカン酸亜鉛、オクチル酸カリウム、オクチル酸錫、及びビスアセチルアセトナトスズがより好ましく、オクチル酸亜鉛、オクチル酸カリウムがさらに好ましい。 As the compatibilizer (D), from the viewpoint of not inhibiting the photocurability of the resin composition, an organometallic compound containing at least one selected from zinc, potassium, and tin is preferable, zinc octoate, zinc neodecanoate, potassium octoate, tin octoate, and tin bisacetylacetonate are more preferable, and zinc octoate and potassium octoate are even more preferable.
 本実施形態に係る樹脂組成物中の相溶化剤(D)の金属換算含有量は、不飽和ポリエステル樹脂(A)、(メタ)アクリロイルオキシ基含有樹脂(B)、エチレン性不飽和基含有モノマー(C)、相溶化剤(D)、及び重合開始剤(E)の合計に対して800~1,850質量ppmであり、好ましくは850~1,700質量ppm、より好ましくは900~1,500質量ppmである。
 相溶化剤(D)の金属換算含有量が800質量ppm以上であれば、不飽和ポリエステル樹脂(A)と(メタ)アクリロイルオキシ基含有樹脂(B)との相溶性が向上しやすい。相溶化剤(D)の金属換算含有量が1,850質量ppm以下であれば、相溶性と光硬化性を両立することができる。
The content of the compatibilizer (D) in the resin composition according to the present embodiment, calculated as metal, is 800 to 1,850 ppm by mass, preferably 850 to 1,700 ppm by mass, and more preferably 900 to 1,500 ppm by mass, based on the total content of the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), the ethylenically unsaturated group-containing monomer (C), the compatibilizer (D), and the polymerization initiator (E).
When the content of the compatibilizer (D) in terms of metal is 800 ppm by mass or more, the compatibility between the unsaturated polyester resin (A) and the (meth)acryloyloxy group-containing resin (B) is likely to be improved. When the content of the compatibilizer (D) in terms of metal is 1,850 ppm by mass or less, compatibility and photocurability can be achieved at the same time.
〔重合開始剤(E)〕
 本実施形態で用いられる重合開始剤(E)は、光重合開始剤及び熱重合開始剤のいずれも使用することができる。
 本発明者らは、本実施形態に係る樹脂組成物に、波長200~314nmの高エネルギー紫外領域光を含まない、ピーク半値幅が4~35nmであって中心波長が315~460nmである光のみを照射することにより、硬化性の良好な硬化物が得られることを見出した。したがって、重合開始剤(E)は、本発明の効果を発揮する観点から、光重合開始剤が好ましい。
[Polymerization initiator (E)]
The polymerization initiator (E) used in this embodiment may be either a photopolymerization initiator or a thermal polymerization initiator.
The present inventors have found that a cured product with good curability can be obtained by irradiating the resin composition according to this embodiment with only light having a peak half width of 4 to 35 nm and a central wavelength of 315 to 460 nm, which does not include high-energy ultraviolet light having a wavelength of 200 to 314 nm. Therefore, from the viewpoint of exerting the effects of the present invention, the polymerization initiator (E) is preferably a photopolymerization initiator.
 重合開始剤(E)として光重合開始剤を用いる場合、光重合開始剤の樹脂組成物中の含有量は、不飽和ポリエステル樹脂(A)、(メタ)アクリロイルオキシ基含有樹脂(B)、及びエチレン性不飽和基含有モノマー(C)の合計100質量部に対し、好ましくは0.02~10質量部、より好ましくは0.03~5質量部、さらに好ましくは0.05~1質量部である。
 光重合開始剤の含有量が0.02質量部以上であれば、硬化性がより良好な樹脂組成物が得られる。光重合開始剤の含有量が10質量部以下であれば、樹脂組成物の硬化時に急激な硬化反応及び発熱が生じ難く、クラックが抑制されやすくなる。また、強度、靭性、耐熱性、及び耐薬品性等の物性のバランスにより優れた硬化物が得られやすい。
When a photopolymerization initiator is used as the polymerization initiator (E), the content of the photopolymerization initiator in the resin composition is preferably 0.02 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, and even more preferably 0.05 to 1 part by mass, relative to a total of 100 parts by mass of the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), and the ethylenically unsaturated group-containing monomer (C).
If the content of the photopolymerization initiator is 0.02 parts by mass or more, a resin composition with better curability can be obtained. If the content of the photopolymerization initiator is 10 parts by mass or less, a rapid curing reaction and heat generation are unlikely to occur during curing of the resin composition, and cracks are likely to be suppressed. In addition, a cured product with excellent balance of physical properties such as strength, toughness, heat resistance, and chemical resistance is likely to be obtained.
 重合開始剤(E)として熱重合開始剤を用いる場合、熱重合開始剤の樹脂組成物中の含有量は、不飽和ポリエステル樹脂(A)、(メタ)アクリロイルオキシ基含有樹脂(B)、及びエチレン性不飽和基含有モノマー(C)の合計100質量部に対し、好ましくは0.3~6.0質量部、より好ましくは0.4~5.0質量部、さらに好ましくは0.5~4.0質量部である。
 熱重合開始剤の含有量が0.3質量部以上であれば、硬化不良の生じない硬化性が得られる。熱重合開始剤の含有量が6.0質量部以下であれば、良好な物性を有する硬化物が得られる。
When a thermal polymerization initiator is used as the polymerization initiator (E), the content of the thermal polymerization initiator in the resin composition is preferably 0.3 to 6.0 parts by mass, more preferably 0.4 to 5.0 parts by mass, and even more preferably 0.5 to 4.0 parts by mass, relative to a total of 100 parts by mass of the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), and the ethylenically unsaturated group-containing monomer (C).
When the content of the thermal polymerization initiator is 0.3 parts by mass or more, curability without curing defects can be obtained, and when the content of the thermal polymerization initiator is 6.0 parts by mass or less, a cured product having good physical properties can be obtained.
 光重合開始剤としては、光照射によりラジカルを発生するものであれば特に限定されない。例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル等のベンゾインとそのアルキルエーテル類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、4-(1-t-ブチルジオキシ-1-メチルエチル)アセトフェノン等のアセトフェノン類;1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン等のα-ヒドロキシアルキルフェノン類;2-メチルアントラキノン、2-アミルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノン等のアントラキノン類;2,4-ジメチルチオキサントン、2,4-ジイソプロピルチオキサントン、2-クロロチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン、4-(1-t-ブチルジオキシ-1-メチルエチル)ベンゾフェノン、3,3’,4,4’-テトラキス(t-ブチルジオキシカルボニル)ベンゾフェノン等のベンゾフェノン類;2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン等のモルホリン類;ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、フェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシド等のアシルホスフィンオキサイド類;キサントン類等が挙げられる。これらは、1種単独であっても、2種以上が併用されていてもよい。 The photopolymerization initiator is not particularly limited as long as it generates radicals upon irradiation with light. For example, benzoin and its alkyl ethers, such as benzoin, benzoin methyl ether, and benzoin ethyl ether; acetophenones, such as acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, and 4-(1-t-butyldioxy-1-methylethyl)acetophenone; α-hydroxyalkylphenones, such as 1-hydroxycyclohexyl phenyl ketone and 2-hydroxy-2-methyl-1-phenyl-propan-1-one; anthraquinones, such as 2-methylanthraquinone, 2-amyl anthraquinone, 2-t-butyl anthraquinone, and 1-chloro anthraquinone; thioxanthones, such as 2,4-dimethylthioxanthone, 2,4-diisopropylthioxanthone, and 2-chlorothioxanthone; acetophenone dimethyl thioxanthone; Ketals such as tyl ketal and benzyl dimethyl ketal; benzophenones such as benzophenone, 4-(1-t-butyldioxy-1-methylethyl)benzophenone, and 3,3',4,4'-tetrakis(t-butyldioxycarbonyl)benzophenone; morpholines such as 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-propan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butanon-1-one, and 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butan-1-one; acylphosphine oxides such as diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide and phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide; and xanthones. These may be used alone or in combination of two or more.
 光重合開始剤は、反応性の観点から、水素供与体を必要としない分子内開裂型の光重合開始剤を用いることが好ましい。また、波長315~460nmの光を吸収して活性種を発生することから、前記波長範囲で効率よく活性種を発生する、2,2-ジメトキシ-2-フェニルアセトフェノン、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、フェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、及び1-ヒドロキシシクロヘキシルフェニルケトンから選択される少なくとも1種であることが好ましく、2,2-ジメトキシ-2-フェニルアセトフェノン及びフェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシドがより好ましい。 From the viewpoint of reactivity, it is preferable to use an intramolecular cleavage type photopolymerization initiator that does not require a hydrogen donor. In addition, since it absorbs light with a wavelength of 315 to 460 nm to generate active species, it is preferable to use at least one selected from 2,2-dimethoxy-2-phenylacetophenone, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide, and 1-hydroxycyclohexyl phenyl ketone, which efficiently generate active species in the above wavelength range, and 2,2-dimethoxy-2-phenylacetophenone and phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide are more preferable.
 熱重合開始剤は、特に限定されず、公知のラジカル重合開始剤を使用することができる。熱重合開始剤としては、例えば、有機過酸化物、アゾ化合物、過硫酸塩、レドックス系化合物等が挙げられる。これらの中でも、有機過酸化物が好ましい。
 有機過酸化物としては、例えば、ケトンパーオキサイド、パーベンゾエート、ハイドロパーオキサイド、ジアシルパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアリルパーオキサイド、パーオキシエステル及びパーオキシジカーボネート等が挙げられる。より具体的には、メチルエチルケトンパーオキサイド、クメンハイドロパーオキサイド、t-ブチルパーベンゾエート、2-エチルヘキサンペルオキシ酸1,1,3,3-テトラメチルブチル、ジベンゾイルパーオキサイド(ベンゾイルパーオキサイドとも言う。)、ベンゾイルm-メチルベンゾイルパーオキサイド、m-トルオイルパーオキサイド、ジクミルパーオキサイド、ジイソプロピルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエート、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3、3-イソプロピルヒドロパーオキサイド、t-ブチルヒドロパーオキサイド、ジクミルヒドロパーオキサイド、アセチルパーオキサイド、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、イソブチルパーオキサイド、3,3,5-トリメチルヘキサノイルパーオキサイド、ラウリルパーオキサイド等が挙げられる。これらは、1種単独であっても、2種以上が併用されていてもよい。
The thermal polymerization initiator is not particularly limited, and a known radical polymerization initiator can be used. Examples of the thermal polymerization initiator include organic peroxides, azo compounds, persulfates, redox compounds, etc. Among these, organic peroxides are preferred.
Examples of organic peroxides include ketone peroxides, perbenzoates, hydroperoxides, diacyl peroxides, peroxyketals, hydroperoxides, diallyl peroxides, peroxy esters, and peroxydicarbonates. More specific examples include methyl ethyl ketone peroxide, cumene hydroperoxide, t-butyl perbenzoate, 1,1,3,3-tetramethylbutyl 2-ethylhexaneperoxy acid, dibenzoyl peroxide (also called benzoyl peroxide), benzoyl m-methylbenzoyl peroxide, m-toluoyl peroxide, dicumyl peroxide, diisopropyl peroxide, di-t-butyl peroxide, t-butyl peroxybenzoate, 1,1-bis(t-butyl Examples of the peroxy group include 2,5-dimethyl-2,5-bis(t-butylperoxy)hexyne-3,3-isopropyl hydroperoxide, t-butyl hydroperoxide, dicumyl hydroperoxide, acetyl peroxide, bis(4-t-butylcyclohexyl)peroxydicarbonate, diisopropyl peroxydicarbonate, isobutyl peroxide, 3,3,5-trimethylhexanoyl peroxide, and lauryl peroxide. These may be used alone or in combination of two or more.
 これらの中でも、硬化コントロールの容易性、入手性や取り扱い容易性等の観点から、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、2-エチルヘキサンペルオキシ酸1,1,3,3-テトラメチルブチル、ジベンゾイルパーオキサイド、ベンゾイルm-メチルベンゾイルパーオキサイド、m-トルオイルパーオキサイド、メチルエチルケトンパーオキサイド、及びt-ブチルパーオキシベンゾエートが好ましい。 Among these, from the standpoint of ease of curing control, availability, ease of handling, etc., bis(4-t-butylcyclohexyl) peroxydicarbonate, 1,1,3,3-tetramethylbutyl 2-ethylhexaneperoxy acid, dibenzoyl peroxide, benzoyl m-methylbenzoyl peroxide, m-toluoyl peroxide, methyl ethyl ketone peroxide, and t-butyl peroxybenzoate are preferred.
〔その他の成分〕
 本実施形態の樹脂組成物は、その他の成分として、例えば、不飽和ポリエステル樹脂(A)、(メタ)アクリロイルオキシ基含有樹脂(B)、及びエチレン性不飽和基含有モノマー(C)以外の樹脂、重合禁止剤、揺変剤、硬化促進剤、触媒、増粘助剤、硬化遅延剤、界面活性剤、界面調整剤、湿潤分散剤、消泡剤、レベリング剤、カップリング剤、光安定剤、ワックス、難燃剤、可塑剤等の添加剤を含有することが可能である。前記添加剤の含有量は、本発明の効果を阻害しない範囲であれば特に限定されない。
[Other ingredients]
The resin composition of the present embodiment may contain, as other components, additives such as, for example, resins other than the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), and the ethylenically unsaturated group-containing monomer (C), polymerization inhibitors, thixotropic agents, curing accelerators, catalysts, thickening aids, curing retarders, surfactants, interface regulators, wetting and dispersing agents, defoamers, leveling agents, coupling agents, light stabilizers, waxes, flame retardants, and plasticizers. The content of the additives is not particularly limited as long as it is within a range that does not impair the effects of the present invention.
 本実施形態の樹脂組成物は、当該樹脂組成物の重合反応の進行を抑制する観点から、重合禁止剤を含むことが好ましい。重合禁止剤は、上記の[ビニルエステル樹脂(B1)の製造方法]の項で説明したものが好適に用いられる。 The resin composition of this embodiment preferably contains a polymerization inhibitor from the viewpoint of suppressing the progress of the polymerization reaction of the resin composition. The polymerization inhibitor that is preferably used is the one described above in the section [Production method of vinyl ester resin (B1)].
〔樹脂組成物の物性〕
 本実施形態の樹脂組成物は、ヘーズが、好ましくは70%未満、より好ましくは50%未満、さらに好ましくは35%未満である。
 本実施形態の樹脂組成物は、全光線透過率が、好ましくは70%以上、より好ましくは75%以上、さらに好ましくは79%以上である。
 本実施形態の樹脂組成物の硬化物は、バーコル硬さが、好ましくは16以上、より好ましくは18以上、さらに好ましくは21以上である。
 上記ヘーズ、全光線透過率、及びバーコル硬さは、いずれも実施例に記載の方法により測定することができる。
[Physical Properties of Resin Composition]
The resin composition of the present embodiment has a haze of preferably less than 70%, more preferably less than 50%, and even more preferably less than 35%.
The resin composition of the present embodiment has a total light transmittance of preferably 70% or more, more preferably 75% or more, and even more preferably 79% or more.
The cured product of the resin composition of this embodiment preferably has a Barcol hardness of 16 or more, more preferably 18 or more, and even more preferably 21 or more.
The above haze, total light transmittance, and Barcol hardness can all be measured by the method described in the Examples.
 本実施形態の樹脂組成物は、不飽和ポリエステル樹脂(A)及び(メタ)アクリロイルオキシ基含有樹脂(B)を混合しても、透明性が高く、相溶性及び硬化性に優れ、硬化不良が生じにくいことから、管渠補修材の材料、特に、LEDによる硬化性が良好な管渠補修材の材料として好ましく用いることができる。 The resin composition of this embodiment, even when mixed with the unsaturated polyester resin (A) and the (meth)acryloyloxy group-containing resin (B), has high transparency, excellent compatibility and curing properties, and is less likely to cause curing defects, so it can be preferably used as a material for pipe repair materials, in particular as a material for pipe repair materials that have good curing properties when cured with LED.
≪樹脂組成物の製造方法≫
 本実施形態の樹脂組成物を調製する方法は、特に限定されるものではないが、不飽和ポリエステル樹脂(A)と、(メタ)アクリロイルオキシ基含有樹脂(B)と、エチレン性不飽和基含有モノマー(C)と、相溶化剤(D)と、重合開始剤(E)とを混合することにより樹脂組成物を製造することができる。また、不飽和ポリエステル樹脂(A)と、(メタ)アクリロイルオキシ基含有樹脂(B)と、エチレン性不飽和基含有モノマー(C)と、相溶化剤(D)と、重合開始剤(E)と、前記その他の成分等の任意成分を混合してもよい。
<Method for producing resin composition>
The method for preparing the resin composition of this embodiment is not particularly limited, but the resin composition can be produced by mixing the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), the ethylenically unsaturated group-containing monomer (C), the compatibilizer (D), and the polymerization initiator (E). In addition, the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), the ethylenically unsaturated group-containing monomer (C), the compatibilizer (D), the polymerization initiator (E), and any other optional components such as the other components may be mixed.
 混合順序は特に限定されない。混合方法は、特に限定されるものではなく、例えば、ディスパー、プラネタリーミキサー、ニーダー等を用いて行うことができる。混合温度は、好ましくは10~50℃、より好ましくは15~40℃であり、混合容易性等の観点から、さらに好ましくは20~30℃である。 The mixing order is not particularly limited. The mixing method is not particularly limited, and can be performed using, for example, a disperser, a planetary mixer, a kneader, etc. The mixing temperature is preferably 10 to 50°C, more preferably 15 to 40°C, and from the viewpoint of ease of mixing, etc., is even more preferably 20 to 30°C.
 また、不飽和ポリエステル樹脂(A)と、(メタ)アクリロイルオキシ基含有樹脂(B)と、エチレン性不飽和基含有モノマー(C)と、相溶化剤(D)と、重合開始剤(E)とを均一に混合し易くする観点から、(メタ)アクリロイルオキシ基含有樹脂(B)を予め溶剤及び反応性希釈剤の少なくともいずれかで希釈してもよい。 In addition, from the viewpoint of facilitating uniform mixing of the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), the ethylenically unsaturated group-containing monomer (C), the compatibilizer (D), and the polymerization initiator (E), the (meth)acryloyloxy group-containing resin (B) may be diluted in advance with at least one of a solvent and a reactive diluent.
≪複合材料≫
 本実施形態の複合材料は、上述した樹脂組成物と、繊維基材(F)及び充填材(G)から選択される少なくとも1種とを含む。
 複合材料としては、例えば、樹脂組成物を繊維基材(F)に含浸させ、一定期間保管(養生)して増粘させたものが好ましい。このような複合材料は、形態保持性が良好であり、管更生用ライニング材として優れた機械的強度を有する硬化物(成形品)が得られる。
<Composite materials>
The composite material of the present embodiment contains the above-mentioned resin composition and at least one selected from a fiber base material (F) and a filler (G).
A preferred composite material is, for example, a material obtained by impregnating a fiber substrate (F) with the resin composition and storing (curing) it for a certain period of time to thicken it. Such a composite material has good shape retention, and a cured product (molded product) having excellent mechanical strength as a lining material for pipe rehabilitation can be obtained.
 上記樹脂組成物と、繊維基材(F)を含む複合材料は、プリフォーム、プリプレグ、既設管の補強や補修等の管更生用途のライニング材等の材料として、構造物への施工に使用することができる。これらの中でも、ライニング材等の材料として用いられることが好ましい。すなわち、複合材料は、管更生用であることが好ましい。 The composite material containing the above resin composition and the fiber base material (F) can be used for application to structures as materials such as preforms, prepregs, and lining materials for pipe rehabilitation applications such as reinforcing and repairing existing pipes. Among these, it is preferable to use it as a material for lining materials, etc. In other words, it is preferable for the composite material to be used for pipe rehabilitation.
 複合材料中の樹脂組成物の含有量は、特に限定されないが、機械的強度の観点から、好ましくは20~95質量%、より好ましくは25~85質量%、さらに好ましくは25~75質量%である。樹脂組成物の含有量が20質量%以上であれば、硬化した樹脂組成物を含む複合材料に適度な柔軟性を付与することができる。樹脂組成物の含有量が95質量%以下であれば、硬化した樹脂組成物を含む複合材料に十分な強度を付与することができる。 The amount of resin composition contained in the composite material is not particularly limited, but from the viewpoint of mechanical strength, it is preferably 20 to 95% by mass, more preferably 25 to 85% by mass, and even more preferably 25 to 75% by mass. If the amount of resin composition is 20% by mass or more, it is possible to impart a suitable degree of flexibility to the composite material containing the cured resin composition. If the amount of resin composition is 95% by mass or less, it is possible to impart sufficient strength to the composite material containing the cured resin composition.
〔繊維基材(F)〕
 繊維基材(F)としては、機械的強度等の観点から、例えば、アミド、アラミド、ビニロン、ポリエステル、フェノール樹脂等の合成繊維、炭素繊維、ガラス繊維、金属繊維、セラミック繊維等の、いわゆる強化繊維、また、これらの複合繊維が挙げられる。これらの中でも、アラミド繊維、ポリエステル繊維、及びガラス繊維が好ましく、強度、入手容易性、価格等の観点から、ガラス繊維がより好ましい。特に、繊維基材(F)に含浸させた樹脂組成物を光硬化させる観点から、光透過性を有するガラス繊維、及びポリエステル繊維から選択される少なくとも1種であることが好ましい。
 繊維基材(F)は、1種単独又は2種以上を併用して用いることが可能である。
 例えば、ガラス繊維の場合、一般的に使用されるフィラメント径は、好ましくは1~15μm、より好ましくは3~10μmである。
[Fiber base material (F)]
Examples of the fiber base material (F) include so-called reinforced fibers such as synthetic fibers such as amide, aramid, vinylon, polyester, and phenolic resin, carbon fibers, glass fibers, metal fibers, and ceramic fibers, as well as composite fibers thereof, from the viewpoint of mechanical strength, etc. Among these, aramid fibers, polyester fibers, and glass fibers are preferred, and glass fibers are more preferred from the viewpoints of strength, availability, price, etc. In particular, from the viewpoint of photocuring the resin composition impregnated into the fiber base material (F), it is preferable to use at least one type selected from glass fibers and polyester fibers having optical transparency.
The fibrous base material (F) may be used alone or in combination of two or more kinds.
For example, in the case of glass fibers, the filament diameters generally used are preferably 1 to 15 μm, more preferably 3 to 10 μm.
 繊維基材(F)の形態としては、例えば、シート、チョップドストランド、チョップ、ミルドファイバー等が挙げられる。シートとしては、例えば、複数の強化繊維を一方向に引き揃えて形成したもの、平織や綾織等の二方向織物、多軸織物、ノンクリンプ織物、不織布、マット、ニット、組紐、強化繊維等を抄紙した紙等が挙げられる。繊維基材(F)は、1種単独で用いても、2種以上を併用してもよく、また、単層であっても、複数層積層されていてもよい。
 繊維基材(F)の厚さは、樹脂組成物の含浸性の観点から、単層の場合、好ましくは0.01~5mm、また、複数層積層されている場合は、合計の厚さが、好ましくは1~20mm、より好ましくは1~15mmである。これらの繊維基材(F)は、公知のサイズ剤を公知の含有量で含んでいてもよい。
Examples of the form of the fiber substrate (F) include sheets, chopped strands, chopped, milled fibers, etc. Examples of the sheet include those formed by aligning a plurality of reinforcing fibers in one direction, bidirectional fabrics such as plain weave and twill weave, multiaxial fabrics, non-crimp fabrics, nonwoven fabrics, mats, knits, braids, and paper made from reinforcing fibers, etc. The fiber substrate (F) may be used alone or in combination of two or more types, and may be a single layer or a multi-layer laminate.
From the viewpoint of impregnation with the resin composition, the thickness of the fiber substrate (F) is preferably 0.01 to 5 mm in the case of a single layer, and when multiple layers are laminated, the total thickness is preferably 1 to 20 mm, more preferably 1 to 15 mm. These fiber substrates (F) may contain a known sizing agent in a known content.
 本実施形態の複合材料が繊維基材(F)を含む場合、その含有量は、好ましくは5~80質量%、より好ましくは15~75質量%、さらに好ましくは25~75質量%である。繊維基材(F)の含有量が5質量%以上であれば、硬化した樹脂組成物を含む複合材料に十分な強度を付与することができる。繊維基材(F)の含有量が80質量%以下であれば、硬化した樹脂組成物を含む複合材料に適度な柔軟性を付与することができる。 When the composite material of this embodiment contains the fiber base material (F), the content is preferably 5 to 80 mass%, more preferably 15 to 75 mass%, and even more preferably 25 to 75 mass%. If the content of the fiber base material (F) is 5 mass% or more, sufficient strength can be imparted to the composite material containing the cured resin composition. If the content of the fiber base material (F) is 80 mass% or less, appropriate flexibility can be imparted to the composite material containing the cured resin composition.
〔充填材(G)〕
 充填材としては、例えば、酸化アルミニウム、水酸化アルミニウム、珪砂、炭酸カルシウム、ガラスパウダー、タルク、及び溶融シリカ等が挙げられる。これらの中でも、硬化物の機械強度の観点から、水酸化アルミニウム、及び炭酸カルシウムから選択される少なくとも1種であることが好ましい。
[Filler (G)]
Examples of the filler include aluminum oxide, aluminum hydroxide, silica sand, calcium carbonate, glass powder, talc, fused silica, etc. Among these, from the viewpoint of the mechanical strength of the cured product, at least one selected from aluminum hydroxide and calcium carbonate is preferable.
 本実施形態の複合材料が充填材(G)を含む場合、その含有量は、好ましくは樹脂組成物100質量部に対して、10~100質量部、より好ましくは15~90質量部、さらに好ましくは20~80質量部である。充填材(G)の含有量が樹脂組成物100質量部に対して10質量部以上であれば、硬化物の機械強度をより高めることができる。充填材(G)の含有量が100質量部以下であれば、硬化物の靭性と強度を両立することができる。 When the composite material of this embodiment contains a filler (G), the content thereof is preferably 10 to 100 parts by mass, more preferably 15 to 90 parts by mass, and even more preferably 20 to 80 parts by mass, per 100 parts by mass of the resin composition. If the content of the filler (G) is 10 parts by mass or more per 100 parts by mass of the resin composition, the mechanical strength of the cured product can be further increased. If the content of the filler (G) is 100 parts by mass or less, the toughness and strength of the cured product can be compatible.
 複合材料の硬化物(繊維強化プラスチック:FRP)に要求される機械的強度は、使用される用途目的に応じて様々であるが、例えば、ガラス繊維基材を用いた複合材料においては、一般的に、FRPの曲げ強度としては、好ましくは100~1000MPa、より好ましくは150~800MPaである。また、FRPの曲げ弾性率としては、好ましくは5~40GPa、より好ましくは7~35GPa、さらに好ましくは8~30GPaである。
 なお、上記曲げ強度及び曲げ弾性率の値は、JIS K7171:2016に準拠した測定値である。
The mechanical strength required for the cured composite material (fiber reinforced plastic: FRP) varies depending on the intended use, but for example, in a composite material using a glass fiber substrate, the bending strength of the FRP is generally preferably 100 to 1000 MPa, more preferably 150 to 800 MPa. The bending modulus of the FRP is preferably 5 to 40 GPa, more preferably 7 to 35 GPa, and even more preferably 8 to 30 GPa.
The above bending strength and bending modulus values are measured in accordance with JIS K7171:2016.
≪複合材料の製造方法≫
 複合材料の製造方法は目的に応じて適宜選択すればよく、特に限定されない。
 複合材料の製造方法としては、上述の樹脂組成物を繊維基材(F)に含浸させ、樹脂組成物が目標粘度に達するまで、一定温度の下で養生して樹脂組成物を増粘させる方法が挙げられる。保管方法としては、シート状の複合材料を蛇腹折にしたり、巻き取って保管したりする方法が挙げられる。
<Manufacturing method of composite materials>
The method for producing the composite material may be appropriately selected depending on the purpose, and is not particularly limited.
The composite material can be produced by impregnating the fiber substrate (F) with the resin composition and curing the resin composition at a constant temperature until the resin composition reaches a target viscosity, thereby increasing the viscosity of the resin composition. The composite material can be stored by folding the sheet-like composite material in an accordion-like manner or by rolling it up.
 上述の樹脂組成物を繊維基材(F)に含浸させる際、インナーフィルム及びアウターフィルムが表面に積層された繊維基材(F)に樹脂組成物を含浸させてもよく、インナーフィルム及びアウターフィルムが表面に積層されていない繊維基材(F)を用いてもよい。
 なお、インナーフィルム及びアウターフィルムが表面に積層された繊維基材(F)を用いた場合、樹脂組成物は、インナーフィルム又はアウターフィルムの少なくともいずれかを介して繊維基材(F)に含浸される。
When the above-mentioned resin composition is impregnated into the fiber substrate (F), the resin composition may be impregnated into the fiber substrate (F) having an inner film and an outer film laminated on the surface, or a fiber substrate (F) having no inner film and no outer film laminated on the surface may be used.
In addition, when a fiber base material (F) having an inner film and an outer film laminated on the surface is used, the resin composition is impregnated into the fiber base material (F) through at least one of the inner film and the outer film.
〔インナーフィルム〕
 インナーフィルムとしては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリエチレンテレフタレートフィルム等の樹脂フィルムを用いることができる。インナーフィルムは、透過性を有することが好ましい。インナーフィルムは、複合材料を硬化させた後に剥離してもよい。
[Inner film]
The inner film may be, for example, a resin film such as a polyethylene film, a polypropylene film, or a polyethylene terephthalate film. The inner film is preferably permeable. The inner film may be peeled off after the composite material is cured.
 インナーフィルムの厚さは、特に限定されないが、好ましくは50~200μm、より好ましくは80~170μmである。インナーフィルムの厚さが50μm以上であれば、インナーフィルムが破損したり、しわが寄ることを抑制でき、管に十分な強度を付与することができる。インナーフィルムの厚さが200μm以下であれば、複合材料の製造が容易となり、また、管更生の施工性が良好である。 The thickness of the inner film is not particularly limited, but is preferably 50 to 200 μm, and more preferably 80 to 170 μm. If the thickness of the inner film is 50 μm or more, the inner film can be prevented from being damaged or wrinkled, and sufficient strength can be imparted to the pipe. If the thickness of the inner film is 200 μm or less, the composite material can be easily manufactured, and the pipe rehabilitation workability is good.
 インナーフィルムは、繊維基材(F)に樹脂組成物を含浸する前に積層してもよく、樹脂組成物が含浸した繊維基材(F)(樹脂組成物含浸基材)に積層してもよい。
 インナーフィルムを積層する方法は、特に限定されないが、例えば、液状のフィルム組成物を繊維基材(F)に塗布、硬化させて積層する方法、フィルムを接着層を介して繊維基材(F)又は樹脂組成物含浸基材に積層する方法、フィルムを繊維基材(F)又は樹脂組成物含浸基材にラミネートして積層する方法等が挙げられる。インナーフィルム及びアウターフィルムは、それぞれ別の方法を用いて積層してもよく、同じ方法を用いて積層してもよい。
The inner film may be laminated before the fibrous base material (F) is impregnated with the resin composition, or may be laminated on the fibrous base material (F) impregnated with the resin composition (resin composition-impregnated base material).
The method for laminating the inner film is not particularly limited, but examples thereof include a method of applying a liquid film composition to a fiber substrate (F) and curing the composition to laminate, a method of laminating a film on a fiber substrate (F) or a substrate impregnated with a resin composition via an adhesive layer, a method of laminating a film on a fiber substrate (F) or a substrate impregnated with a resin composition, etc. The inner film and the outer film may be laminated using different methods or the same method.
〔アウターフィルム〕
 アウターフィルムとしては、インナーフィルムと同様に樹脂フィルムを用いることができる。アウターフィルムは、遮光性を有することが好ましい。遮光性を有するアウターフィルムとしては、例えば、2枚の透明ポリエチレンフィルムの間に黄色等の着色皮膜層を有する積層フィルムを用いることができる。
[Outer film]
The outer film may be a resin film, similar to the inner film. The outer film preferably has a light-shielding property. For example, a laminated film having a colored film layer, such as yellow, between two transparent polyethylene films may be used as the outer film having a light-shielding property.
 アウターフィルムの厚さは、特に限定されないが、好ましくは5~100μm、より好ましくは10~90μmである。アウターフィルムの厚さが5μm以上であれば、アウターフィルムが破損したり、しわが寄ることもなく、管に十分な強度を付与することができる。アウターフィルムの厚さが100μm以下であれば、複合材料の製造が容易となり、また、管更生の施工性が良好である。 The thickness of the outer film is not particularly limited, but is preferably 5 to 100 μm, and more preferably 10 to 90 μm. If the thickness of the outer film is 5 μm or more, the outer film will not break or wrinkle, and sufficient strength can be imparted to the pipe. If the thickness of the outer film is 100 μm or less, the composite material can be easily manufactured, and the pipe rehabilitation workability is good.
 アウターフィルムは、繊維基材(F)に樹脂組成物を含浸する前に積層してもよく、樹脂組成物が含浸した繊維基材(F)(樹脂組成物含浸基材)に積層してもよい。
 アウターフィルムを繊維基材(F)に積層する方法は、特に限定されないが、インナーフィルムを積層する方法と同様の方法が挙げられる。
The outer film may be laminated before the fibrous base material (F) is impregnated with the resin composition, or may be laminated on the fibrous base material (F) impregnated with the resin composition (resin composition-impregnated base material).
The method for laminating the outer film onto the fiber base material (F) is not particularly limited, but may be the same method as the method for laminating the inner film.
≪管更生≫
 ライニング材(複合材料)の既設管への導入作業は、マンホール等からライニング材をそのまま引き込むことも可能であるが、ライニング材を先端側から反転させつつ既設管に押し込んでいく反転工法等が好適に用いられる。内面の最内層にアウターフィルム、外面の最外層にインナーフィルム、インナーフィルムとアウターフィルムの間に樹脂組成物を含む繊維基材(F)を含有するライニング材は、反転工法に用いることが好ましい。
 ライニング材の拡径作業は、ライニング材の内腔に空気を吹き込むことによって行われるため、ライニング材の両端部には、ライニング材を密閉するためのエンドパッカーを有する。一方の端部のエンドパッカー側から空気が吹き込まれることにより、ライニング材内腔の圧力が上昇し、ライニング材が既設管の内周面に密着するように拡径される。
<Pipe rehabilitation>
The introduction of the lining material (composite material) into an existing pipe can be performed by pulling the lining material directly from a manhole or the like, but an inversion method in which the lining material is inverted from the tip side and pushed into the existing pipe is preferably used. A lining material containing an outer film as the innermost layer on the inner surface, an inner film as the outermost layer on the outer surface, and a fiber base material (F) containing a resin composition between the inner film and the outer film is preferably used for the inversion method.
The lining material is expanded by blowing air into the lumen of the lining material, so both ends of the lining material have end packers to seal the lining material. By blowing air into the end packer side at one end, the pressure in the lumen of the lining material increases, and the lining material is expanded in diameter so that it comes into close contact with the inner circumferential surface of the existing pipe.
 拡径されたライニング材は、移動式の光照射装置によって、ライニング材の内面に紫外線又は可視光線等を照射されることにより、ライニング材に含まれる樹脂組成物が硬化し、既設管の内面は、樹脂組成物が硬化したライニング材で被覆される。前記光照射装置による放射強度は、特に限定されないが、好ましくは0.0008~0.03W/mmである。 The expanded lining material is irradiated with ultraviolet light or visible light or the like by a mobile light irradiation device, so that the resin composition contained in the lining material is cured, and the inner surface of the existing pipe is covered with the lining material of the cured resin composition. The radiation intensity of the light irradiation device is not particularly limited, but is preferably 0.0008 to 0.03 W/ mm2 .
 放射強度が0.0008W/mm以上であれば、作業効率が良好であり、また、管に十分な強度を付与することができる。また、放射強度が0.03W/mm以下であれば、ライニング材の内表層が局所的に過度に照射されることが抑制され、ライニング材の劣化や強度低下を抑制できる。 If the radiation intensity is 0.0008 W/ mm2 or more, the work efficiency is good and sufficient strength can be imparted to the pipe. If the radiation intensity is 0.03 W/ mm2 or less, local excessive irradiation of the inner surface layer of the lining material is suppressed, and deterioration and reduction in strength of the lining material can be suppressed.
 光照射装置としては、光源として紫外~可視光領域(通常、波長200~800nm)に発光するものが採用できる。光源としては、例えば、ガリウムランプ等のメタルハライドランプ、水銀ランプ、ケミカルランプ、キセノンランプ、ハロゲンランプ、マーキュリーハロゲンランプ、カーボンアーク灯、白熱灯、レーザ光、LED等が挙げられる。
 管更生の施工時の作業効率性の観点から、350~450nmの波長域にピーク波長を有する紫外線又は可視光照射装置が好ましく、樹脂組成物を効率的に硬化する観点から、ガリウムランプ、及びLEDがより好ましく、ガリウムランプがさらに好ましい。
The light irradiation device may be a light source that emits light in the ultraviolet to visible light range (usually with a wavelength of 200 to 800 nm). Examples of the light source include metal halide lamps such as gallium lamps, mercury lamps, chemical lamps, xenon lamps, halogen lamps, mercury halogen lamps, carbon arc lamps, incandescent lamps, laser light, and LEDs.
From the viewpoint of work efficiency during pipe rehabilitation work, an ultraviolet or visible light irradiation device having a peak wavelength in the wavelength range of 350 to 450 nm is preferred, and from the viewpoint of efficiently curing the resin composition, a gallium lamp and an LED are more preferred, and a gallium lamp is even more preferred.
 光照射装置は、照射部を1つ以上有するものであれば特に制限はないが、複数の光照射ランプが直列に連結されて構成されたランプ連結体を有することが好ましい。ランプ連結体を有することで、管更生を効率的に実施することができる。 There are no particular limitations on the light irradiation device as long as it has one or more irradiation units, but it is preferable for it to have a lamp assembly in which multiple light irradiation lamps are connected in series. By having a lamp assembly, pipe rehabilitation can be carried out efficiently.
 以下、実施例及び比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be explained in more detail below with reference to examples and comparative examples, but the present invention is not limited to the following examples.
〔不飽和ポリエステル樹脂(A)の合成〕
 不飽和ポリエステル樹脂(A)を下記合成例により合成した。
 下記合成例において不飽和ポリエステル樹脂(A)の合成に用いた化合物の詳細を以下に示す。
[Synthesis of unsaturated polyester resin (A)]
An unsaturated polyester resin (A) was synthesized according to the following synthesis example.
The details of the compounds used in the synthesis of the unsaturated polyester resin (A) in the following synthesis examples are shown below.
(ジオール(a1))
 ・エチレングリコール:三菱ケミカル株式会社製
 ・プロピレングリコール:ダウ・ケミカル日本株式会社製
 ・ジエチレングリコール
 ・2-メチル-1,3-プロパンジオール:大連化学工業股ふん有限公司製
 ・2,2-ジメチル-1,3-プロパンジオール:三菱ガス化学株式会社製
(Diol (a1))
Ethylene glycol: manufactured by Mitsubishi Chemical Corporation Propylene glycol: manufactured by Dow Chemical Japan Co., Ltd. Diethylene glycol 2-methyl-1,3-propanediol: manufactured by Dalian Chemical Industry Co., Ltd. 2,2-dimethyl-1,3-propanediol: manufactured by Mitsubishi Gas Chemical Company, Inc.
(二塩基酸(a2))
<エチレン性不飽和基含有二塩基酸(a2-1)>
 ・無水マレイン酸:三菱ガス化学株式会社製
(Dibasic acid (a2))
<Ethylenically unsaturated group-containing dibasic acid (a2-1)>
・Maleic anhydride: Mitsubishi Gas Chemical Company, Inc.
<飽和二塩基酸(a2-2)>
 ・無水フタル酸:川崎化成工業株式会社製
 ・イソフタル酸:三菱ガス化学株式会社製
 ・テレフタル酸:三井化学株式会社製
<Saturated dibasic acid (a2-2)>
・Phthalic anhydride: Kawasaki Chemical Industries, Ltd. ・Isophthalic acid: Mitsubishi Gas Chemical Company, Inc. ・Terephthalic acid: Mitsui Chemicals, Inc.
[合成例1]
 温度計、撹拌機、不活性ガス吹込管及び還流冷却管を備えた3L4つ口セパラブルフラスコに、ジオール(a1)として、プロピレングリコール224.6g(ジオール(a1)100モル%に対して、27.5モル%)、2,2-ジメチル-1,3-プロパンジオール810.5g(ジオール(a1)100モル%に対して、72.5モル%)、飽和二塩基酸(a2-2)として、イソフタル酸472.6g(ジオール(a1)100モル%に対して、26.5モル%)、テレフタル酸356.6g(ジオール(a1)100モル%に対して、20.0モル%)、エチレン性不飽和基含有二塩基酸(a2-1)として、無水マレイン酸563.1g(ジオール(a1)100モル%に対して、53.5モル%)を入れ、215℃で10時間縮合反応を行い、不飽和ポリエステル樹脂(A-1)を得た。
[Synthesis Example 1]
Into a 3 L four-neck separable flask equipped with a thermometer, a stirrer, an inert gas inlet tube, and a reflux condenser, 224.6 g of propylene glycol (27.5 mol % relative to 100 mol % of diol (a1)), 810.5 g of 2,2-dimethyl-1,3-propanediol (72.5 mol % relative to 100 mol % of diol (a1)) as the diol (a1), 47 g of isophthalic acid (a2-2) as the saturated dibasic acid (a2-3), and 2.6 g (26.5 mol % relative to 100 mol % of diol (a1)), 356.6 g of terephthalic acid (20.0 mol % relative to 100 mol % of diol (a1)), and 563.1 g of maleic anhydride (53.5 mol % relative to 100 mol % of diol (a1)) as an ethylenically unsaturated group-containing dibasic acid (a2-1) were added and subjected to a condensation reaction at 215° C. for 10 hours to obtain an unsaturated polyester resin (A-1).
[合成例2及び3]
 表1に記載の原料と配合比としたこと以外は合成例1と同様にして合成を行い、不飽和ポリエステル樹脂(A-2)及び(A-3)を得た。
[Synthesis Examples 2 and 3]
Synthesis was carried out in the same manner as in Synthesis Example 1, except that the raw materials and compounding ratios shown in Table 1 were used, to obtain unsaturated polyester resins (A-2) and (A-3).
〔ビニルエステル樹脂の合成〕
 ビニルエステル樹脂を、下記合成例及び比較合成例により合成した。
 下記合成例及び比較合成例においてビニルエステル樹脂の合成に用いた化合物の詳細を以下に示す。
[Synthesis of vinyl ester resin]
Vinyl ester resins were synthesized according to the following Synthesis Examples and Comparative Synthesis Examples.
Details of the compounds used in the synthesis of vinyl ester resins in the following Synthesis Examples and Comparative Synthesis Examples are given below.
(エポキシ化合物(b1-1))
 ・エポキシ化合物(1):ビスフェノールA型エポキシ樹脂;「エポミック(登録商標)R140P」、三井化学株式会社製、エポキシ当量188、25℃において液状
 ・エポキシ化合物(2):ビスフェノールA型エポキシ樹脂;「jER(登録商標)834」、三菱ケミカル株式会社製、エポキシ当量245、25℃において液状
 ・エポキシ化合物(3):ビスフェノールA型エポキシ樹脂;「エポトート(登録商標)YD-7011」、日鉄ケミカル&マテリアル株式会社製、エポキシ当量475、25℃において固体
 ・エポキシ化合物(4):ビスフェノールA型エポキシ樹脂;「エポトート(登録商標)YD-014」、日鉄ケミカル&マテリアル株式会社製、エポキシ当量950、25℃において固体
 ・エポキシ化合物(5):フェノールノボラック型エポキシ樹脂;「EPICLON(登録商標)N-740」、DIC株式会社製、エポキシ当量172、25℃において液状 なお、エポキシ当量は、JIS K7236:2001に準拠して測定した値である。
(Epoxy compound (b1-1))
Epoxy compound (1): bisphenol A type epoxy resin; "Epomic (registered trademark) R140P", manufactured by Mitsui Chemicals, Inc., epoxy equivalent 188, liquid at 25°C. Epoxy compound (2): bisphenol A type epoxy resin; "jER (registered trademark) 834", manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 245, liquid at 25°C. Epoxy compound (3): bisphenol A type epoxy resin; "Epotohto (registered trademark) YD-7011", manufactured by Nippon Steel Chemical & Material Co., Ltd., epoxy equivalent 475, solid at 25°C. Epoxy compound (4): bisphenol A type epoxy resin; "Epotohto (registered trademark) YD-014", manufactured by Nippon Steel Chemical & Material Co., Ltd., epoxy equivalent 950, solid at 25°C. Epoxy compound (5): phenol novolac type epoxy resin; "EPICLON (registered trademark) N-740", manufactured by DIC Corporation, epoxy equivalent 172, liquid at 25°C. The epoxy equivalent is a value measured in accordance with JIS K7236:2001.
(ビスフェノール化合物(b1-2))
 ・ビスフェノールA:三井化学株式会社製
(Bisphenol compound (b1-2))
Bisphenol A: manufactured by Mitsui Chemicals, Inc.
(不飽和一塩基酸(b1-3))
 ・メタクリル酸:三菱ケミカル株式会社製
 ・アクリル酸:日本触媒株式会社製
(Unsaturated monobasic acid (b1-3))
・Methacrylic acid: Mitsubishi Chemical Corporation ・Acrylic acid: Nippon Shokubai Co., Ltd.
(不飽和多塩基酸(b1-4))
 ・フマル酸:扶桑化学工業株式会社製
(Unsaturated polybasic acid (b1-4))
・Fumaric acid: Fuso Chemical Co., Ltd.
(反応性希釈剤(エチレン性不飽和基含有モノマー(C)))
 ・スチレン:出光興産株式会社製
(Reactive Diluent (Ethylenically Unsaturated Group-Containing Monomer (C)))
- Styrene: Manufactured by Idemitsu Kosan Co., Ltd.
[合成例4]
 撹拌機、還流冷却管、気体導入管及び温度計を備えた5L4つ口セパラブルフラスコに、エポキシ化合物(b1-1)としてエポキシ化合物(1)362g、ビスフェノール(b1-2)としてビスフェノールA 55g(エポキシ化合物(1)のエポキシ基の総量100モルに対してビスフェノールAの水酸基の総量が25モル)を入れて80℃に加熱した。次いで、エステル化触媒としてトリエチルアミン(株式会社ダイセル製)0.6g(エポキシ化合物(b1-1)、及びビスフェノール(b1-2)の合計100質量部に対して0.15質量部)を入れて、145℃まで加熱し、1時間反応させて樹脂前駆体(P1)を合成した。次いで、110℃まで冷却後、反応性希釈剤(エチレン性不飽和基含有モノマー(C))としてスチレン94g(配合成分合計質量基準で9.4質量%)、重合禁止剤として、5%ナフテン酸銅0.01g(エポキシ化合物(b1-1)、ビスフェノール(b1-2)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して0.0019質量部)、メチルハイドロキノン0.2g(エポキシ化合物(b1-1)、ビスフェノール(b1-2)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して0.04質量部)、トリメチルハイドロキノン0.3g(エポキシ化合物(b1-1)、ビスフェノール(b1-2)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して0.057質量部)、不飽和多塩基酸(b1-4)としてフマル酸6.7g(エポキシ化合物(1)のエポキシ基の総量100モルに対して、フマル酸の酸基の総量が6モル)、エステル化触媒として2,4,6-トリス(ジメチルアミノメチル)フェノール(「セイクオールTDMP」、精工化学株式会社製、純度95質量%超)1.6g(エポキシ化合物(b1-1)、ビスフェノール(b1-2)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して0.3質量部)を加え、さらに、不飽和一塩基酸(b1-3)としてメタクリル酸76g(エポキシ化合物(1)のエポキシ基の総量100モルに対してメタクリル酸の酸基の総量が69モル)を110℃で約30分間かけて滴下した後、約2時間反応させて、ビニルエステル樹脂(B1-1a)を得た。
 得られたビニルエステル樹脂(B1-1a)を90℃まで冷却し、当該ビニルエステル樹脂(B1-1a)に反応性希釈剤(エチレン性不飽和基含有モノマー(C))としてスチレン366g(配合成分合計質量基準で36質量%)を加え、ビニルエステル樹脂(B1-1a)54質量%(配合成分合計質量基準)とスチレン46質量%との混合物を得た。
[Synthesis Example 4]
In a 5 L four-neck separable flask equipped with a stirrer, a reflux condenser, a gas inlet tube and a thermometer, 362 g of epoxy compound (1) as epoxy compound (b1-1) and 55 g of bisphenol A as bisphenol (b1-2) (the total amount of hydroxyl groups of bisphenol A is 25 moles per 100 moles of the total amount of epoxy groups of epoxy compound (1)) were placed and heated to 80° C. Next, 0.6 g of triethylamine (manufactured by Daicel Corporation) (0.15 parts by mass per 100 parts by mass of the total of epoxy compound (b1-1) and bisphenol (b1-2)) was placed as an esterification catalyst, and the mixture was heated to 145° C. and reacted for 1 hour to synthesize a resin precursor (P1). Next, after cooling to 110°C, 94 g of styrene (9.4 mass% based on the total mass of the blended components) as a reactive diluent (ethylenically unsaturated group-containing monomer (C)), 0.01 g of 5% copper naphthenate (0.0019 mass parts per 100 parts by mass of the epoxy compound (b1-1), bisphenol (b1-2), and unsaturated monobasic acid (b1-3) in total), 0.2 g of methylhydroquinone (0.04 mass parts per 100 parts by mass of the epoxy compound (b1-1), bisphenol (b1-2), and unsaturated monobasic acid (b1-3) in total), 0.3 g of trimethylhydroquinone (0.057 mass parts per 100 parts by mass of the epoxy compound (b1-1), bisphenol (b1-2), and unsaturated monobasic acid (b1-3) in total), and unsaturated polybasic acid were added as a polymerization inhibitor. 6.7 g of fumaric acid (the total amount of acid groups of fumaric acid was 6 moles per 100 moles of the total amount of epoxy groups of epoxy compound (1)) was added as (b1-4), and 1.6 g of 2,4,6-tris(dimethylaminomethyl)phenol ("Seikuol TDMP", manufactured by Seiko Chemical Co., Ltd., purity of more than 95 mass%) was added as an esterification catalyst (0.3 part by mass per 100 parts by mass of the total of epoxy compound (b1-1), bisphenol (b1-2), and unsaturated monobasic acid (b1-3)). Further, 76 g of methacrylic acid (the total amount of acid groups of methacrylic acid was 69 moles per 100 moles of the total amount of epoxy groups of epoxy compound (1)) was added dropwise as unsaturated monobasic acid (b1-3) at 110° C. over a period of about 30 minutes, and the mixture was allowed to react for about 2 hours to obtain a vinyl ester resin (B1-1a).
The obtained vinyl ester resin (B1-1a) was cooled to 90° C., and 366 g (36 mass % based on the total mass of the blended components) of styrene was added as a reactive diluent (ethylenically unsaturated group-containing monomer (C)) to the vinyl ester resin (B1-1a), to obtain a mixture of 54 mass % of the vinyl ester resin (B1-1a) (based on the total mass of the blended components) and 46 mass % of styrene.
[合成例5]
 撹拌機、還流冷却管、気体導入管及び温度計を備えた5L4つ口セパラブルフラスコに、エポキシ化合物(b1-1)としてエポキシ化合物(1)470gを入れ、80℃に加熱した後、反応性希釈剤(エチレン性不飽和基含有モノマー(C))としてスチレン88.4g(配合成分合計質量基準で10質量%)、重合禁止剤として、5%ナフテン酸銅0.01g(エポキシ化合物(b1-1)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して0.0014質量部)、メチルハイドロキノン0.2g(エポキシ化合物(b1-1)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して0.03質量部)、トリメチルハイドロキノン0.4g(エポキシ化合物(b1-1)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して0.057質量部)、エステル化触媒として2,4,6-トリス(ジメチルアミノメチル)フェノール(「セイクオールTDMP」、精工化学株式会社製、純度95質量%超)2.1g(エポキシ化合物(b1-1)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して0.3質量部)を加え、100℃まで加熱した後、不飽和一塩基酸(b1-3)としてメタクリル酸215g(エポキシ化合物(1)のエポキシ基の総量100モルに対してメタクリル酸の酸基の総量が100モル)を約30分間かけて滴下した後、約2時間反応させてビニルエステル樹脂(B1-2a)を得た。
 得られたビニルエステル樹脂(B1-2a)を90℃まで冷却し、当該ビニルエステル樹脂(B1-2a)に反応性希釈剤(エチレン性不飽和基含有モノマー(C))としてスチレン206g(配合成分合計質量基準で20質量%)を加え、ビニルエステル樹脂(B1-2a)70質量%(配合成分合計質量基準)とスチレン30質量%との混合物を得た。
[Synthesis Example 5]
Into a 5 L four-neck separable flask equipped with a stirrer, a reflux condenser, a gas inlet tube, and a thermometer, 470 g of epoxy compound (1) as epoxy compound (b1-1) was placed and heated to 80° C., and then 88.4 g of styrene (10 mass % based on the total mass of the blended components) as a reactive diluent (ethylenically unsaturated group-containing monomer (C)), 0.01 g of 5% copper naphthenate (0.0014 parts by mass relative to 100 parts by mass of the epoxy compound (b1-1) and the unsaturated monobasic acid (b1-3)), 0.2 g of methylhydroquinone (0.03 parts by mass relative to 100 parts by mass of the epoxy compound (b1-1) and the unsaturated monobasic acid (b1-3)), and 0.4 g of trimethylhydroquinone (epoxy Compound (b1-1) and unsaturated monobasic acid (b1-3) in a total of 0.057 parts by mass relative to 100 parts by mass of the total, and 2.1 g of 2,4,6-tris(dimethylaminomethyl)phenol ("Seikuol TDMP", manufactured by Seiko Chemical Industry Co., Ltd., purity over 95 mass%) as an esterification catalyst (0.3 parts by mass relative to 100 parts by mass of the total of epoxy compound (b1-1) and unsaturated monobasic acid (b1-3)) were added and heated to 100°C, and then 215 g of methacrylic acid (the total amount of acid groups of methacrylic acid is 100 mol relative to 100 mol of the total amount of epoxy groups of epoxy compound (1)) was added dropwise as unsaturated monobasic acid (b1-3) over a period of about 30 minutes, and the mixture was allowed to react for about 2 hours to obtain vinyl ester resin (B1-2a).
The obtained vinyl ester resin (B1-2a) was cooled to 90° C., and 206 g (20 mass % based on the total mass of the blended components) of styrene was added as a reactive diluent (ethylenically unsaturated group-containing monomer (C)) to the vinyl ester resin (B1-2a), to obtain a mixture of 70 mass % of the vinyl ester resin (B1-2a) (based on the total mass of the blended components) and 30 mass % of styrene.
[合成例6]
 撹拌機、還流冷却管、気体導入管及び温度計を備えた5L4つ口セパラブルフラスコに、エポキシ化合物(b1-1)としてエポキシ化合物(1)137g、及びエポキシ化合物(5)306gを入れ、80℃に加熱した後、反応性希釈剤(エチレン性不飽和基含有モノマー(C))としてスチレン101g(配合成分合計質量基準で10質量%)、重合禁止剤として、5%ナフテン酸銅0.02g(エポキシ化合物(b1-1)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して0.003質量部)、メチルハイドロキノン0.5g(エポキシ化合物(b1-1)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して0.07質量部)、トリメチルハイドロキノン0.3g(エポキシ化合物(b1-1)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して0.046質量部)、エステル化触媒として2,4,6-トリス(ジメチルアミノメチル)フェノール(「セイクオールTDMP」、精工化学株式会社製、純度95質量%超)3.3g(エポキシ化合物(b1-1)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して0.5質量部)を加え、100℃まで加熱した後、不飽和一塩基酸(b1-3)としてメタクリル酸208g(エポキシ化合物(1)、及びエポキシ化合物(5)のエポキシ基の総量100モルに対してメタクリル酸の酸基の総量が100モル)を約30分間かけて滴下した後、約2時間反応させてビニルエステル樹脂(B1-2b)を得た。
 得られたビニルエステル樹脂(B1-2b)を90℃まで冷却し、当該ビニルエステル樹脂(B1-2b)に反応性希釈剤(エチレン性不飽和基含有モノマー(C))としてスチレン244g(配合成分合計質量基準で25質量%)を加え、ビニルエステル樹脂(B1-2b)65質量%(配合成分合計質量基準)とスチレン35質量%との混合物を得た。
[Synthesis Example 6]
Into a 5 L four-neck separable flask equipped with a stirrer, a reflux condenser, a gas inlet tube, and a thermometer, 137 g of the epoxy compound (1) as the epoxy compound (b1-1) and 306 g of the epoxy compound (5) were placed and heated to 80° C., and then 101 g of styrene (10 mass % based on the total mass of the blended components) as a reactive diluent (ethylenically unsaturated group-containing monomer (C)), 0.02 g of 5% copper naphthenate (0.003 parts by mass relative to 100 parts by mass of the epoxy compound (b1-1) and the unsaturated monobasic acid (b1-3)), 0.5 g of methylhydroquinone (0.07 parts by mass relative to 100 parts by mass of the epoxy compound (b1-1) and the unsaturated monobasic acid (b1-3)), and 0.3 g of trimethylhydroquinone (epoxy compound (b1-1) and 0.4 ... The mixture was heated to 100° C., and then 208 g of methacrylic acid (the total amount of acid groups of methacrylic acid is 100 moles per 100 moles of the total amount of epoxy groups of epoxy compound (1) and epoxy compound (5)) was added dropwise over a period of about 30 minutes. The mixture was then allowed to react for about 2 hours to obtain a vinyl ester resin (B1-2b).
The obtained vinyl ester resin (B1-2b) was cooled to 90° C., and 244 g (25 mass % based on the total mass of the blended components) of styrene was added as a reactive diluent (ethylenically unsaturated group-containing monomer (C)) to the vinyl ester resin (B1-2b), to obtain a mixture of 65 mass % of the vinyl ester resin (B1-2b) (based on the total mass of the blended components) and 35 mass % of styrene.
[合成例7]
 撹拌機、還流冷却管、気体導入管及び温度計を備えた5L4つ口セパラブルフラスコに、エポキシ化合物(b1-1)としてエポキシ化合物(2)113gを入れ、80℃に加熱した後、重合禁止剤として、5%ナフテン酸銅0.002g(エポキシ化合物(b1-1)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して0.0014質量部)、メチルハイドロキノン0.04g(エポキシ化合物(b1-1)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して0.03質量部)、トリメチルハイドロキノン0.1g(エポキシ化合物(b1-1)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して0.07質量部)、エステル化触媒としてベンジルトリフェニルホスホニウムクロライド(「TPP-ZC」、北興化学工業株式会社製)0.1g(エポキシ化合物(b1-1)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して0.08質量部)を加え、100℃まで加熱した後、不飽和一塩基酸(b1-3)としてメタクリル酸8.6g(エポキシ化合物(2)のエポキシ基の総量100モルに対してメタクリル酸の酸基の総量が50モル)を約30分間かけて滴下した後、約2時間反応させてビニルエステル樹脂(B1-2c)を得た。
 得られたビニルエステル樹脂(B1-2c)を90℃まで冷却し、当該ビニルエステル樹脂(B1-2c)に反応性希釈剤(エチレン性不飽和基含有モノマー(C))としてスチレン59.6g(配合成分合計質量基準で24質量%)を加え、ビニルエステル樹脂(B1-2c)70質量%(配合成分合計質量基準)とスチレン30質量%との混合物を得た。
[Synthesis Example 7]
Into a 5 L four-neck separable flask equipped with a stirrer, a reflux condenser, a gas inlet tube, and a thermometer, 113 g of the epoxy compound (2) was placed as the epoxy compound (b1-1), and the mixture was heated to 80° C., and then 0.002 g of 5% copper naphthenate (0.0014 parts by mass relative to 100 parts by mass of the epoxy compound (b1-1) and the unsaturated monobasic acid (b1-3) in total), 0.04 g of methylhydroquinone (0.03 parts by mass relative to 100 parts by mass of the epoxy compound (b1-1) and the unsaturated monobasic acid (b1-3) in total), 0.1 g of trimethylhydroquinone (0.02 parts by mass relative to 100 parts by mass of the epoxy compound (b1-1) and the unsaturated monobasic acid (b1-3) in total), and 0.1 g of trimethylhydroquinone (0.02 parts by mass relative to 100 parts by mass of the epoxy compound (b1-1) and the unsaturated monobasic acid (b1-3) in total) were added as a polymerization inhibitor. To the mixture was added 0.07 parts by mass relative to a total of 100 parts by mass of epoxy compound (b1-1) and unsaturated monobasic acid (b1-3), and 0.1 g of benzyltriphenylphosphonium chloride ("TPP-ZC", manufactured by Hokko Chemical Industry Co., Ltd.) as an esterification catalyst (0.08 part by mass relative to a total of 100 parts by mass of epoxy compound (b1-1) and unsaturated monobasic acid (b1-3)), and the mixture was heated to 100° C., and then 8.6 g of methacrylic acid (the total amount of acid groups of methacrylic acid is 50 mol relative to 100 mol of the total amount of epoxy groups of epoxy compound (2)) as unsaturated monobasic acid (b1-3) was added dropwise over a period of about 30 minutes, followed by reaction for about 2 hours to obtain a vinyl ester resin (B1-2c).
The obtained vinyl ester resin (B1-2c) was cooled to 90° C., and 59.6 g (24 mass % based on the total mass of the blended components) of styrene was added as a reactive diluent (ethylenically unsaturated group-containing monomer (C)) to the vinyl ester resin (B1-2c), to obtain a mixture of 70 mass % of the vinyl ester resin (B1-2c) (based on the total mass of the blended components) and 30 mass % of styrene.
[比較合成例1]
 撹拌機、還流冷却管、気体導入管及び温度計を備えた5L4つ口セパラブルフラスコに、エポキシ化合物(b1-1)としてエポキシ化合物(1)348g、ビスフェノール(b1-2)としてビスフェノールA99g(エポキシ化合物(1)のエポキシ基の総量100モルに対してビスフェノールAの水酸基の総量が47モル)を入れて80℃に加熱した。次いで、エステル化触媒としてトリエチルアミン(株式会社ダイセル製)0.9g(エポキシ化合物(b1-1)、及びビスフェノール(b1-2)の合計100質量部に対して0.2質量部)を入れて、145℃まで加熱し、1時間反応させて樹脂前駆体(P1)を合成した。次いで、110℃まで冷却後、反応性希釈剤(エチレン性不飽和基含有モノマー(C))としてスチレン114g(配合成分合計質量基準で10質量%)、重合禁止剤として、5%ナフテン酸銅0.01g(エポキシ化合物(b1-1)、ビスフェノール(b1-2)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して0.0019質量部)、メチルハイドロキノン0.16g(エポキシ化合物(b1-1)、ビスフェノール(b1-2)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して0.03質量部)、トリメチルハイドロキノン0.3g(エポキシ化合物(b1-1)、ビスフェノール(b1-2)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して0.056質量部)、エステル化触媒として2,4,6-トリス(ジメチルアミノメチル)フェノール(「セイクオールTDMP」、精工化学株式会社製、純度95質量%超)1.6g(エポキシ化合物(b1-1)、ビスフェノール(b1-2)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して0.3質量部)を加え、110℃まで加熱した後、不飽和一塩基酸(b1-3)としてメタクリル酸84g(エポキシ化合物(1)のエポキシ基の総量100モルに対してメタクリル酸の酸基の総量が53モル)を約30分間かけて滴下した後、約2時間反応させて、ビニルエステル樹脂(B’1-2a)を得た。
 得られたビニルエステル樹脂(B’1-2a)を90℃まで冷却し、当該ビニルエステル樹脂(B’1-2a)に反応性希釈剤(エチレン性不飽和基含有モノマー(C))としてスチレン342g(配合成分合計質量基準で36質量%)を加え、ビニルエステル樹脂(B’1-2a)54質量%(配合成分合計質量基準)とスチレン46質量%との混合物を得た。
[Comparative Synthesis Example 1]
In a 5 L four-neck separable flask equipped with a stirrer, a reflux condenser, a gas inlet tube and a thermometer, 348 g of epoxy compound (1) as epoxy compound (b1-1) and 99 g of bisphenol A as bisphenol (b1-2) (the total amount of hydroxyl groups of bisphenol A is 47 moles per 100 moles of the total amount of epoxy groups of epoxy compound (1)) were placed and heated to 80° C. Next, 0.9 g of triethylamine (manufactured by Daicel Corporation) (0.2 parts by mass per 100 parts by mass of the total of epoxy compound (b1-1) and bisphenol (b1-2)) was placed as an esterification catalyst, and the mixture was heated to 145° C. and reacted for 1 hour to synthesize a resin precursor (P1). Next, after cooling to 110°C, 114 g of styrene (10% by mass based on the total mass of the blended components) was added as a reactive diluent (ethylenically unsaturated group-containing monomer (C)), 0.01 g of 5% copper naphthenate (0.0019 parts by mass based on 100 parts by mass of the total of the epoxy compound (b1-1), bisphenol (b1-2), and unsaturated monobasic acid (b1-3)), 0.16 g of methylhydroquinone (0.03 parts by mass based on 100 parts by mass of the total of the epoxy compound (b1-1), bisphenol (b1-2), and unsaturated monobasic acid (b1-3)), 0.3 g of trimethylhydroquinone (0.02 parts by mass based on 100 parts by mass of the total of the epoxy compound (b1-1), bisphenol (b1-2), and unsaturated monobasic acid (b1-3)), and 0.2 g of methylhydroquinone (0.02 parts by mass based on 100 parts by mass of the total of the epoxy compound (b1-1), bisphenol (b1-2), and unsaturated monobasic acid (b1-3)) were added as a polymerization inhibitor. To the mixture was added 1.6 g of 2,4,6-tris(dimethylaminomethyl)phenol ("Seikuol TDMP", manufactured by Seiko Chemical Co., Ltd., purity over 95% by mass) as an esterification catalyst (0.3 g of 2,4,6-tris(dimethylaminomethyl)phenol per 100 parts by mass of the epoxy compound (b1-1), bisphenol (b1-2), and unsaturated monobasic acid (b1-3)), and the mixture was heated to 110° C., and then 84 g of methacrylic acid (the total amount of acid groups of methacrylic acid is 53 moles per 100 moles of the epoxy groups of the epoxy compound (1)) as the unsaturated monobasic acid (b1-3) was added dropwise over about 30 minutes, followed by a reaction for about 2 hours to obtain a vinyl ester resin (B'1-2a).
The obtained vinyl ester resin (B'1-2a) was cooled to 90°C, and 342 g (36 mass % based on the total mass of the blended components) of styrene was added as a reactive diluent (ethylenically unsaturated group-containing monomer (C)) to the vinyl ester resin (B'1-2a), to obtain a mixture of 54 mass % of the vinyl ester resin (B'1-2a) (based on the total mass of the blended components) and 46 mass % of styrene.
[比較合成例2]
 エポキシ化合物(b1-1)としてエポキシ化合物(5)471g、不飽和一塩基酸(b1-3)としてメタクリル酸224g(エポキシ化合物(5)のエポキシ基の総量100モルに対してメタクリル酸の酸基の総量が100モル)を用いたこと以外は合成例2と同様にしてビニルエステル樹脂(B’1-2b)を得た。
 得られたビニルエステル樹脂(B’1-2b)を90℃まで冷却し、当該ビニルエステル樹脂(B’1-2b)に反応性希釈剤(エチレン性不飽和基含有モノマー(C))としてスチレン200g(配合成分合計質量基準で20質量%)を加え、ビニルエステル樹脂(B’1-2b)70質量%(配合成分合計質量基準)とスチレン30質量%との混合物を得た。
[Comparative Synthesis Example 2]
A vinyl ester resin (B'1-2b) was obtained in the same manner as in Synthesis Example 2, except that 471 g of the epoxy compound (5) was used as the epoxy compound (b1-1) and 224 g of methacrylic acid was used as the unsaturated monobasic acid (b1-3) (the total amount of acid groups in the methacrylic acid was 100 mol per 100 mol of the total amount of epoxy groups in the epoxy compound (5)).
The obtained vinyl ester resin (B'1-2b) was cooled to 90°C, and 200 g (20 mass% based on the total mass of the blended components) of styrene was added as a reactive diluent (ethylenically unsaturated group-containing monomer (C)) to the vinyl ester resin (B'1-2b), to obtain a mixture of 70 mass% of the vinyl ester resin (B'1-2b) (based on the total mass of the blended components) and 30 mass% of styrene.
[比較合成例3]
 撹拌機、還流冷却管、気体導入管及び温度計を備えた5L4つ口セパラブルフラスコに、エポキシ化合物(b1-1)としてエポキシ化合物(4)125gを入れ、80℃に加熱した後、重合禁止剤として、ハイドロキノン0.05g(エポキシ化合物(b1-1)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して0.04質量部)、エステル化触媒としてジエチルアミン塩酸塩(昭和化学株式会社製)0.3g(エポキシ化合物(b1-1)、及び不飽和一塩基酸(b1-3)の合計100質量部に対して0.2質量部)を加え、100℃まで加熱した後、不飽和一塩基酸(b1-3)としてアクリル酸9.5g(エポキシ化合物(4)のエポキシ基の総量100モルに対してアクリル酸の酸基の総量が100モル)を約30分間かけて滴下した後、約2時間反応させてビニルエステル樹脂(B’1-2c)を得た。
[Comparative Synthesis Example 3]
In a 5 L four-neck separable flask equipped with a stirrer, a reflux condenser, a gas inlet tube, and a thermometer, 125 g of epoxy compound (4) was placed as epoxy compound (b1-1) and heated to 80° C., and then 0.05 g of hydroquinone (0.04 parts by mass relative to a total of 100 parts by mass of epoxy compound (b1-1) and unsaturated monobasic acid (b1-3)) was added as a polymerization inhibitor, and 0.3 g of diethylamine hydrochloride (manufactured by Showa Chemical Co., Ltd.) (0.2 parts by mass relative to a total of 100 parts by mass of epoxy compound (b1-1) and unsaturated monobasic acid (b1-3)) was added as an esterification catalyst, and the mixture was heated to 100° C., and then 9.5 g of acrylic acid (the total amount of acid groups of acrylic acid is 100 moles relative to a total of 100 moles of epoxy groups of epoxy compound (4)) was added dropwise as unsaturated monobasic acid (b1-3) over a period of about 30 minutes, and the mixture was allowed to react for about 2 hours to obtain vinyl ester resin (B'1-2c).
[比較合成例4]
 エポキシ化合物(b1-1)としてエポキシ化合物(3)871g、不飽和一塩基酸(b1-3)としてアクリル酸124g(エポキシ化合物(3)のエポキシ基の総量100モルに対してアクリル酸の酸基の総量が95モル)を用いたこと以外は比較合成例3と同様にしてビニルエステル樹脂(B’1-2d)を得た。
[Comparative Synthesis Example 4]
A vinyl ester resin (B'1-2d) was obtained in the same manner as in Comparative Synthesis Example 3, except that 871 g of the epoxy compound (3) was used as the epoxy compound (b1-1) and 124 g of acrylic acid was used as the unsaturated monobasic acid (b1-3) (the total amount of acid groups of the acrylic acid was 95 mol per 100 mol of the total amount of epoxy groups of the epoxy compound (3)).
〔不飽和ポリエステル樹脂及びビニルエステル樹脂の測定評価〕
 上記合成例及び比較合成例で得られた不飽和ポリエステル樹脂(A-1)~(A-3)、及びビニルエステル樹脂(B1-1a)~(B1-2c)、(B’1-2a)~(B’1-2d)について、以下に示す項目の測定評価を行った。これらの測定評価結果を、下記表1及び表2にまとめて示す。
[Measurement and evaluation of unsaturated polyester resin and vinyl ester resin]
The unsaturated polyester resins (A-1) to (A-3) and the vinyl ester resins (B1-1a) to (B1-2c) and (B'1-2a) to (B'1-2d) obtained in the above Synthesis Examples and Comparative Synthesis Examples were subjected to the following measurement and evaluation. The measurement and evaluation results are summarized in Tables 1 and 2 below.
[酸価]
 不飽和ポリエステル樹脂及びビニルエステル樹脂の酸価は、JIS K6901:2008「部分酸価(指示薬滴定法)」に準拠して、不飽和ポリエステル樹脂及びビニルエステル樹脂に含まれる酸成分を中和するために要する水酸化カリウムの質量を測定し、不飽和ポリエステル樹脂及びビニルエステル樹脂の酸価を求めた。
 なお、ビニルエステル樹脂(B1-1a)~(B1-2c)、(B’1-2a)、及び(B’1-2b)の測定試料は、上記合成例及び比較合成例で得られたビニルエステル樹脂と反応性希釈剤との混合物とし、その混合物に含まれる酸成分を中和するために要する水酸化カリウムの質量を測定した後、その測定値を元に換算して、ビニルエステル樹脂の酸価を求めた。滴定装置として「オートビュレット UCB-2000」(平沼産業株式会社製)、指示薬としてブロモチモールブルーとフェノールレッドの混合指示薬を用いた。
[Acid value]
The acid values of the unsaturated polyester resin and the vinyl ester resin were determined by measuring the mass of potassium hydroxide required to neutralize the acid components contained in the unsaturated polyester resin and the vinyl ester resin in accordance with JIS K6901:2008 "Partial acid value (indicator titration method)".
The measurement samples of vinyl ester resins (B1-1a) to (B1-2c), (B'1-2a), and (B'1-2b) were mixtures of the vinyl ester resins obtained in the above Synthesis Examples and Comparative Synthesis Examples with reactive diluents, and the mass of potassium hydroxide required to neutralize the acid components contained in the mixtures was measured, and the acid value of the vinyl ester resins was calculated based on the measured value. An "Autoburette UCB-2000" (manufactured by Hiranuma Sangyo Co., Ltd.) was used as a titration device, and a mixed indicator of bromothymol blue and phenol red was used as an indicator.
[重量平均分子量Mw、数平均分子量Mn及び分子量分布Mw/Mn]
 不飽和ポリエステル樹脂及びビニルエステル樹脂の重量平均分子量Mw及び数平均分子量Mnは、ゲルパーミエーションクロマトグラフィー(GPC)により以下の条件にて測定し、標準ポリスチレン換算分子量として求めた。Mw/Mnは、MnとMwの値から算出した。
(測定条件)
 ・装置:「ショウデックス(登録商標)GPC-101」(昭和電工株式会社製)
 ・カラム:「ショウデックス(登録商標)LF-804」(昭和電工株式会社製)
 ・検出器:示差屈折計「ショウデックス(登録商標)RI-71S」(昭和電工株式会社製)
 ・カラム温度:40℃
 ・試料:不飽和ポリエステル樹脂又はビニルエステル樹脂の0.2質量%テトラヒドロフラン溶液
 ・展開溶媒:テトラヒドロフラン
 ・流速:1.0mL/分
[Weight average molecular weight Mw, number average molecular weight Mn and molecular weight distribution Mw/Mn]
The weight average molecular weight Mw and number average molecular weight Mn of the unsaturated polyester resin and the vinyl ester resin were measured by gel permeation chromatography (GPC) under the following conditions, and were calculated as standard polystyrene equivalent molecular weights. Mw/Mn was calculated from the values of Mn and Mw.
(Measurement condition)
Apparatus: "Shodex (registered trademark) GPC-101" (manufactured by Showa Denko K.K.)
Column: "Shodex (registered trademark) LF-804" (manufactured by Showa Denko K.K.)
Detector: Differential refractometer "Shodex (registered trademark) RI-71S" (manufactured by Showa Denko K.K.)
Column temperature: 40°C
Sample: 0.2 mass% solution of unsaturated polyester resin or vinyl ester resin in tetrahydrofuran Developing solvent: tetrahydrofuran Flow rate: 1.0 mL/min
[粘度]
 ビニルエステル樹脂の粘度は、E型粘度計(「RE-85U」(東機産業株式会社製)、コーンプレート型、コーンロータ1°34’×R24、回転数:50rpm~0.5rpm)を用いて、温度25℃で測定した。なお、ビニルエステル樹脂(B1-1a)~(B1-2c)、(B’1-2a)、及び(B’1-2b)の測定試料は、上記合成例及び比較合成例で得られたビニルエステル樹脂と反応性希釈剤との混合物を用いた。
[viscosity]
The viscosity of the vinyl ester resin was measured at a temperature of 25° C. using an E-type viscometer (RE-85U, manufactured by Toki Sangyo Co., Ltd.), cone-plate type, cone rotor 1°34′×R24, rotation speed: 50 rpm to 0.5 rpm. The measurement samples of the vinyl ester resins (B1-1a) to (B1-2c), (B′1-2a), and (B′1-2b) were mixtures of the vinyl ester resins and reactive diluents obtained in the above Synthesis Examples and Comparative Synthesis Examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
〔樹脂組成物の製造〕
 上記合成例及び比較合成例で製造した不飽和ポリエステル樹脂及びビニルエステル樹脂(ビニルエステル樹脂と反応希釈剤との混合物)を用いて、樹脂組成物を製造した。
 下記実施例及び比較例において用いた化合物の詳細を以下に示す。
[Production of resin composition]
Using the unsaturated polyester resins and vinyl ester resins (mixtures of vinyl ester resins and reactive diluents) produced in the above Synthesis Examples and Comparative Synthesis Examples, resin compositions were produced.
Details of the compounds used in the following Examples and Comparative Examples are given below.
(相溶化剤(D))
 ・相溶化剤(D1):オクチル酸亜鉛;「ヘキソエート亜鉛15%」、東栄化工株式会社製、金属含有量15質量%、溶剤成分 ミネラルスピリット
 ・相溶化剤(D2):オクチル酸カリウム;「ヘキソエートカリウム10%」、東栄化工株式会社製、金属含有量10質量%、溶剤成分 エタノール(主成分)
 ・相溶化剤(D3):オクチル酸コバルト;「ニッカオクチックスコバルト8%」、日本化学産業株式会社製、金属含有量8質量%、溶剤成分 ミネラルスピリット
 ・相溶化剤(D4):オクチル酸コバルト;「PA-202A」、日本化学産業株式会社製、金属含有量8質量%、溶剤成分 ミネラルスピリット(主成分)
 ・相溶化剤(D5):オクチル酸ニッケル;「ニッカオクチックスニッケル10%」、日本化学産業株式会社製、金属含有量10質量%
 ・相溶化剤(D6):ナフテン酸銅;「ナフテン酸銅5%」、東栄化工株式会社製、金属含有量5質量%
 ・相溶化剤(D7):オクチル酸マンガン;「ヘキソエートマンガン8%」、東栄化工株式会社製、金属含有量8質量%、溶剤成分 ミネラルスピリット
 ・相溶化剤(D8):ナフテン酸鉄;「ナフテン酸鉄・ミネラルスピリット溶液(Fe:5%)」、富士フィルム和光純薬株式会社製、金属含有量5質量%、溶剤成分 ミネラルスピリット
 ・相溶化剤(D9):ナフテン酸バリウム;「ナフテン酸バリウム・トルエン溶液 (Ba: 4%)」、富士フィルム和光純薬株式会社製、金属含有量4質量%、溶剤成分 トルエン
 ・相溶化剤(D10):ナフテン酸バナジウム;「ナフテン酸バナジウム(III)・トルエン溶液 (V:2%)」、富士フィルム和光純薬株式会社製、金属含有量2質量%、溶剤成分 トルエン
 ・相溶化剤(D11):ナフテン酸ビスマス;「ナフテン酸ビスマス(III)・トルエン溶液(Bi:7%)」、富士フィルム和光純薬株式会社製、金属含有量7質量%、溶剤成分 トルエン
 ・相溶化剤(D12):ナフテン酸イットリウム;「ナフテン酸イットリウム・トルエン溶液(Y:5%)」、富士フィルム和光純薬株式会社製、金属含有量5質量%、溶剤成分 トルエン
 ・相溶化剤(D13):ナフテン酸クロム;「ナフテン酸クロム」、吉田化学工業株式会社製、金属含有量N-Crとして42~46質量%、溶剤成分 ミネラルスピリット
 ・相溶化剤(D14):ナフテン酸カルシウム;「ナフテン酸カルシウム・ミネラルスピリット溶液(Ca:3%)」、富士フィルム和光純薬株式会社製、金属含有量3質量%、溶剤成分 ミネラルスピリット
(Compatibilizer (D))
Compatibilizer (D1): Zinc octoate; "Zinc hexoate 15%", manufactured by Toei Kako Co., Ltd., metal content 15% by mass, solvent component mineral spirits Compatibilizer (D2): Potassium octoate; "Potassium hexoate 10%", manufactured by Toei Kako Co., Ltd., metal content 10% by mass, solvent component ethanol (main component)
Compatibilizer (D3): Cobalt octylate; "Nikka Octycobalt 8%", manufactured by Nippon Kagaku Sangyo Co., Ltd., metal content 8% by mass, solvent component mineral spirits Compatibilizer (D4): Cobalt octylate; "PA-202A", manufactured by Nippon Kagaku Sangyo Co., Ltd., metal content 8% by mass, solvent component mineral spirits (main component)
Compatibilizer (D5): Nickel octylate; "Nikka Octyx Nickel 10%", manufactured by Nippon Chemical Industries Co., Ltd., metal content 10% by mass
Compatibilizer (D6): Copper naphthenate; "Copper naphthenate 5%", manufactured by Toei Kako Co., Ltd., metal content 5% by mass
Compatibilizer (D7): Manganese octoate; "Manganese hexoate 8%", manufactured by Toei Kako Co., Ltd., metal content 8% by mass, solvent component mineral spirits Compatibilizer (D8): Iron naphthenate; "Iron naphthenate-mineral spirits solution (Fe: 5%)", manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., metal content 5% by mass, solvent component mineral spirits Compatibilizer (D9): Barium naphthenate; "Barium naphthenate-toluene solution (Ba: 4%)", manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., metal content 4% by mass, solvent component toluene Compatibilizer (D10): Vanadium naphthenate; "Vanadium (III) naphthenate-toluene solution (V: 2%)", manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., metal content 2% by mass, solvent component toluene Compatibilizer (D11): Bismuth naphthenate; "Bismuth (III) naphthenate-toluene solution (Bi: 7%)", manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., metal content 7% by mass, solvent component toluene Compatibilizer (D12): Yttrium naphthenate; "Yttrium naphthenate-toluene solution (Y: 5%)", manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., metal content 5% by mass, solvent component toluene Compatibilizer (D13): Chromium naphthenate; "Chromium naphthenate", manufactured by Yoshida Chemical Industry Co., Ltd., metal content N-Cr 42 to 46% by mass, solvent component mineral spirits Compatibilizer (D14): Calcium naphthenate; "Calcium naphthenate-mineral spirits solution (Ca: 3%)", manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., metal content 3% by mass, solvent component mineral spirits
(重合開始剤(E))
 ・光重合開始剤(E1):フェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシド;「Omnirad 819」、IGM RESINS製
・光重合開始剤(E2):2,2-ジメトキシ-2-フェニルアセトフェノン;「Omnirad 651」、IGM RESINS製
(Polymerization initiator (E))
Photopolymerization initiator (E1): phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide; "Omnirad 819" manufactured by IGM RESINS Photopolymerization initiator (E2): 2,2-dimethoxy-2-phenylacetophenone; "Omnirad 651" manufactured by IGM RESINS
[実施例1]
 (A)~(C)成分の合計100質量%に対して、不飽和ポリエステル樹脂(A-1)が42.9質量%、ビニルエステル樹脂(B1-1a)が15.3質量%、エチレン性不飽和基含有モノマー(C)としてスチレンが41.8質量%となるように混合した後、当該混合物に、重合開始剤(E)として、(A)~(C)成分の合計100質量部に対して、光重合開始剤(E1)を0.18質量部及び光重合開始剤(E2)を0.05質量部添加し、ディスパー(高速分散機「ホモディスパー2.5型」プライミクス株式会社製)を用いて、20~30℃で回転数2000~3000rpmにて10分間混合した。これに、相溶化剤(D)として相溶化剤(D1)を(A)~(C)成分の合計100質量部に対して0.94質量部((A)~(E)成分の合計に対して金属換算含有量として1399質量ppm)を添加し、さらに5分間程度混合して調製し、樹脂組成物(X-1)を得た。
[Example 1]
The components (A) to (C) were mixed so that the unsaturated polyester resin (A-1) was 42.9% by mass, the vinyl ester resin (B1-1a) was 15.3% by mass, and styrene as the ethylenically unsaturated group-containing monomer (C) was 41.8% by mass, relative to 100 parts by mass in total of the components (A) to (C). Then, 0.18 parts by mass of a photopolymerization initiator (E1) and 0.05 parts by mass of a photopolymerization initiator (E2) were added to the mixture as the polymerization initiator (E), relative to 100 parts by mass in total of the components (A) to (C). The mixture was mixed at 20 to 30° C. and a rotation speed of 2000 to 3000 rpm for 10 minutes using a disper (high-speed disperser "Homo Disper 2.5 type", manufactured by Primix Corporation). To this was added 0.94 parts by mass of compatibilizer (D1) as compatibilizer (D) per 100 parts by mass of the total of components (A) to (C) (1,399 ppm by mass in terms of metal content with respect to the total of components (A) to (E)), and the mixture was further mixed for about 5 minutes to prepare resin composition (X-1).
[実施例2~13、比較例1~20]
 実施例1において、表3、表4-1、及び表4-2に記載の原料と配合比としたこと以外は同様にして調製し、樹脂組成物(X-2)~(X-13)及び(X’-1)~(X’-20)を得た。
[Examples 2 to 13, Comparative Examples 1 to 20]
Resin compositions (X-2) to (X-13) and (X'-1) to (X'-20) were prepared in the same manner as in Example 1, except that the raw materials and compounding ratios were as shown in Tables 3, 4-1, and 4-2.
〔樹脂組成物の測定評価〕
 上記実施例及び比較例で得られた樹脂組成物(X-1)~(X-13)、及び(X’-1)~(X’-20)について、下記に示す評価を行った。結果を表3、表4-1、及び表4-2に示す。
[Measurement and Evaluation of Resin Composition]
The resin compositions (X-1) to (X-13) and (X'-1) to (X'-20) obtained in the above Examples and Comparative Examples were evaluated as follows. The results are shown in Tables 3, 4-1, and 4-2.
[色味]
 目視で調製直後の樹脂組成物の色味を評価した。
[Color]
The color of the resin composition immediately after preparation was evaluated visually.
[外観]
 上記樹脂組成物(X-1)~(X-13)、及び(X’-1)~(X’-20)の測定評価用試料を4~5℃の冷蔵庫で保管し、2時間、6時間、24時間経過した時点の樹脂組成物の濁りを目視で確認し、以下の評価基準に従って評価した。
(評価基準)
 A:濁りなし
 B:わずかに濁りあり
 C:濁りあり
[exterior]
The measurement and evaluation samples of the above resin compositions (X-1) to (X-13) and (X'-1) to (X'-20) were stored in a refrigerator at 4 to 5°C, and the turbidity of the resin compositions was visually confirmed after 2 hours, 6 hours, and 24 hours, and evaluated according to the following evaluation criteria.
(Evaluation criteria)
A: No turbidity B: Slightly turbid C: Turbidity
[ヘーズ(%)]
 上記樹脂組成物(X-1)~(X-13)、及び(X’-1)~(X’-20)の測定評価用試料を4~5℃の冷蔵庫で保管し、24時間経過した時点の樹脂組成物のヘーズ(%)を、ヘーズメーター「HM-150」、株式会社 村上色彩技術研究所製を用いて測定した。
[Haze (%)]
The measurement and evaluation samples of the above resin compositions (X-1) to (X-13) and (X'-1) to (X'-20) were stored in a refrigerator at 4 to 5°C, and the haze (%) of the resin composition after 24 hours was measured using a haze meter "HM-150" manufactured by Murakami Color Research Laboratory Co., Ltd.
[全光線透過率(%)]
 上記樹脂組成物(X-1)~(X-13)、及び(X’-1)~(X’-20)の測定評価用試料を4~5℃の冷蔵庫で保管し、24時間経過した時点の樹脂組成物の全光線透過率(%)を、ヘーズメーター「HM-150」、株式会社 村上色彩技術研究所製を用いて測定した。
[Total light transmittance (%)]
The measurement and evaluation samples of the above resin compositions (X-1) to (X-13) and (X'-1) to (X'-20) were stored in a refrigerator at 4 to 5°C, and the total light transmittance (%) of the resin composition after 24 hours was measured using a haze meter "HM-150" manufactured by Murakami Color Research Laboratory Co., Ltd.
[相溶性]
 24時間経過した時点の樹脂組成物の、外観、ヘーズ(%)、及び全光線透過率(%)の測定結果から、以下の評価基準に従って、相溶性を評価した。
(評価基準)
 (1)ヘーズ(%)が35未満かつ全光線透過率(%)が79以上であり、外観が「A:濁りなし」である場合を「A:相溶性がとても良い」とした。
 (2)ヘーズ(%)が35以上かつ全光線透過率(%)が79以上であり、外観が「A:濁りなし」である場合を「B:相溶性が良い」とした。
 (3)ヘーズ(%)が35以上かつ全光線透過率(%)が79以上であり、外観が「C:濁りあり」、又は「B:わずかに濁りあり」である場合を「C:相溶性があまり良くない」とした。
 (4)上記(1)~(3)に当てはまらないものを「D:相溶性が悪い」とした。
[Compatibility]
After 24 hours, the resin composition was evaluated for compatibility based on the results of measuring the appearance, haze (%), and total light transmittance (%) according to the following evaluation criteria.
(Evaluation criteria)
(1) A case in which the haze (%) was less than 35, the total light transmittance (%) was 79 or more, and the appearance was "A: no turbidity" was rated as "A: very good compatibility."
(2) A case in which the haze (%) was 35 or more, the total light transmittance (%) was 79 or more, and the appearance was "A: no turbidity" was rated as "B: good compatibility."
(3) When the haze (%) was 35 or more and the total light transmittance (%) was 79 or more, and the appearance was "C: Cloudy" or "B: Slightly cloudy", it was rated as "C: Not very compatible".
(4) Those that do not fall under the above (1) to (3) were categorized as "D: poor compatibility."
〔硬化物の製造〕
[硬化物(X1)及び(X’1)の製造]
 前記樹脂組成物(X-1)~(X-13)、及び(X’-1)~(X’-20)の測定評価用試料を23℃で24時間保管した後、100mlディスポカップに移し、LEDランプ(「UV-LED照射器H-4MLH84-V2-1S12-SM1」、HOYA株式会社製、ピーク波長385nm、照度20mW/cm、照度計:UIT-201、受光器:UPD-405PD、感度波長域330~490nm、ウシオ電機株式会社製)を用いて、20分間光照射し、直径40mm、厚さ60mmの円柱状硬化物(X1-1)~(X1-13)、及び(X’1-1)~(X’1-20)(注型品)を得た。
[Production of Cured Product]
[Production of Cured Products (X1) and (X'1)]
The measurement and evaluation samples of the resin compositions (X-1) to (X-13), and (X'-1) to (X'-20) were stored at 23°C for 24 hours, then transferred to 100 ml disposable cups and irradiated with light for 20 minutes using an LED lamp (UV-LED irradiator H-4MLH84-V2-1S12-SM1, manufactured by HOYA Corporation, peak wavelength 385 nm, illuminance 20 mW/ cm2 , illuminometer: UIT-201, receiver: UPD-405PD, sensitivity wavelength range 330 to 490 nm, manufactured by Ushio Inc.) to obtain cylindrical cured products (X1-1) to (X1-13), and (X'1-1) to (X'1-20) (cast products) having a diameter of 40 mm and a thickness of 60 mm.
[硬化物(X2)及び(X’2)の製造]
 前記樹脂組成物(X-1)~(X-13)、及び(X’-1)~(X’-20)の測定評価用試料を23℃で24時間保管した後、100mlディスポカップに移し、ガリウムランプ(「ユニレックURM-300I」、ウシオライティング株式会社製、照度20mW/cm、照度計:UIT-201、受光器:UPD-405PD、感度波長域330~490nm、ウシオ電機株式会社製)を用いて、20分間光照射し、直径40mm、厚さ60mmの円柱状硬化物(X2-1)~(X2-13)、及び(X’2-1)~(X’2-20)(注型品)を得た。
[Production of Cured Products (X2) and (X'2)]
The measurement and evaluation samples of the resin compositions (X-1) to (X-13), and (X'-1) to (X'-20) were stored at 23°C for 24 hours, then transferred to 100 ml disposable cups and irradiated with light for 20 minutes using a gallium lamp ("Unilec URM-300I", manufactured by Ushio Lighting Inc., illuminance 20 mW/ cm2 , illuminometer: UIT-201, receiver: UPD-405PD, sensitivity wavelength range 330 to 490 nm, manufactured by Ushio Inc.) to obtain cylindrical cured products (X2-1) to (X2-13), and (X'2-1) to (X'2-20) (cast products) having a diameter of 40 mm and a thickness of 60 mm.
[硬化物(X3)及び(X’3)の製造]
 前記樹脂組成物(X-1)~(X-13)、及び(X’-1)~(X’-20)の測定評価用試料を4~5℃で24時間保管した後、100mlディスポカップに移し、LEDランプ(「UV-LED照射器H-4MLH84-V2-1S12-SM1」、HOYA株式会社製、ピーク波長385nm、照度20mW/cm、照度計:UIT-201、受光器:UPD-405PD、感度波長域330~490nm、ウシオ電機株式会社製)を用いて、20分間光照射し、直径40mm、厚さ60mmの円柱状硬化物(X3-1)~(X3-13)、及び(X’3-1)~(X’3-20)(注型品)を得た。
[Production of Cured Products (X3) and (X'3)]
The measurement and evaluation samples of the resin compositions (X-1) to (X-13), and (X'-1) to (X'-20) were stored at 4 to 5°C for 24 hours, then transferred to 100 ml disposable cups and irradiated with light for 20 minutes using an LED lamp (UV-LED irradiator H-4MLH84-V2-1S12-SM1, manufactured by HOYA Corporation, peak wavelength 385 nm, illuminance 20 mW/ cm2 , illuminometer: UIT-201, receiver: UPD-405PD, sensitivity wavelength range 330 to 490 nm, manufactured by Ushio Inc.) to obtain cylindrical cured products (X3-1) to (X3-13), and (X'3-1) to (X'3-20) (cast products) having a diameter of 40 mm and a thickness of 60 mm.
[硬化物(X4)及び(X’4)の製造]
 前記樹脂組成物(X-1)~(X-13)、及び(X’-1)~(X’-20)の測定評価用試料を4~5℃で24時間保管した後、100mlディスポカップに移し、ガリウムランプ(「ユニレックURM-300I」、ウシオライティング株式会社製、照度20mW/cm、照度計:UIT-201、受光器:UPD-405PD、感度波長域330~490nm、ウシオ電機株式会社製)を用いて、20分間光照射し、直径40mm、厚さ60mmの円柱状硬化物(X4-1)~(X4-13)、及び(X’4-1)~(X’4-20)(注型品)を得た。
[Production of Cured Products (X4) and (X'4)]
The measurement and evaluation samples of the resin compositions (X-1) to (X-13), and (X'-1) to (X'-20) were stored at 4 to 5°C for 24 hours, then transferred to 100 ml disposable cups and irradiated with light for 20 minutes using a gallium lamp ("Unilec URM-300I", manufactured by Ushio Lighting Inc., illuminance 20 mW/ cm2 , illuminometer: UIT-201, receiver: UPD-405PD, sensitivity wavelength range 330 to 490 nm, manufactured by Ushio Inc.) to obtain cylindrical cured products (X4-1) to (X4-13), and (X'4-1) to (X'4-20) (cast products) having a diameter of 40 mm and a thickness of 60 mm.
[硬化物(X5)及び(X’5)の製造]
 前記樹脂組成物(X-1)~(X-13)、及び(X’-1)~(X’-20)の測定評価用試料を4~5℃で24時間保管した後、ブリキキャップ(円柱状の容器、内径60mm、深さ10mm)に移し、LEDランプ(「NT400405-AS-FBG-ST」、株式会社ティーネットジャパン製、ピーク波長385nm、照度7.5mW/cm、照度計:UIT-201、受光器:UPD-405PD、感度波長域330~490nm、ウシオ電機株式会社製)を用いて、5分間光照射し、直径60mm、厚さ7.5mmの円柱状硬化物(X5-1)~(X5-13)、及び(X’5-1)~(X’5-20)(注型品)を得た。
[Production of Cured Products (X5) and (X'5)]
The measurement and evaluation samples of the resin compositions (X-1) to (X-13), and (X'-1) to (X'-20) were stored at 4 to 5°C for 24 hours, and then transferred to a tin cap (cylindrical container, inner diameter 60 mm, depth 10 mm) and irradiated with light for 5 minutes using an LED lamp ("NT400405-AS-FBG-ST", manufactured by T-Net Japan Co., Ltd., peak wavelength 385 nm, illuminance 7.5 mW/cm 2 , illuminometer: UIT-201, receiver: UPD-405PD, sensitivity wavelength range 330 to 490 nm, manufactured by Ushio Inc.) to obtain cylindrical cured products (X5-1) to (X5-13), and (X'5-1) to (X'5-20) (cast products) having a diameter of 60 mm and a thickness of 7.5 mm.
(6)硬化物(X6)及び(X’6)の製造
 前記樹脂組成物(X-1)~(X-13)、及び(X’-1)~(X’-20)の測定評価用試料を4~5℃で24時間保管した後、ブリキキャップ(円柱状の容器、内径60mm、深さ10mm)に移し、ガリウムランプ(「ユニレックURM-300I」、ウシオライティング株式会社製、照度5.5mW/cm、照度計:UIT-201、受光器:UPD-405PD、感度波長域330~490nm、ウシオ電機株式会社製)を用いて、5分間光照射し、直径60mm、厚さ7.5mmの円柱状硬化物(X6-1)~(X6-13)、及び(X’6-1)~(X’6-20)(注型品)を得た。
(6) Production of Cured Products (X6) and (X'6) Measurement and evaluation samples of the resin compositions (X-1) to (X-13), and (X'-1) to (X'-20) were stored at 4 to 5°C for 24 hours, and then transferred to a tin cap (cylindrical container, inner diameter 60 mm, depth 10 mm) and irradiated with light for 5 minutes using a gallium lamp ("Unilec URM-300I", manufactured by Ushio Lighting Inc., illuminance 5.5 mW/ cm2 , illuminometer: UIT-201, receiver: UPD-405PD, sensitivity wavelength range 330 to 490 nm, manufactured by Ushio Inc.) to obtain cylindrical cured products (X6-1) to (X6-13), and (X'6-1) to (X'6-20) (cast products) having a diameter of 60 mm and a thickness of 7.5 mm.
〔樹脂組成物の硬化物の測定評価〕
[光硬化性]
(硬化深度)
 硬化物(X1)~(X4)及び(X’1)~(X’4)の光照射面の裏面からカッターナイフで未硬化の樹脂状部、ゲル状部を取り除いたものを完全硬化部とし、その照射面から照射面裏面までの高さをノギスで3点測定し、その平均値を硬化深度とした。
[Measurement and Evaluation of Cured Resin Composition]
[Photocuring]
(hardening depth)
The uncured resin-like and gel-like parts were removed with a cutter knife from the back side of the light-irradiated surface of the cured products (X1) to (X4) and (X'1) to (X'4) to obtain a completely cured part. The height from the irradiated surface to the back side of the irradiated surface was measured at three points with a vernier caliper, and the average value was used as the cure depth.
(外観)
 硬化物(X1)~(X4)及び(X’1)~(X’4)を目視で観察し、以下の評価基準に従って評価した。
[評価基準]
 A:濁りなし
 B:わずかに濁りあり
 C:濁りあり
(exterior)
The cured products (X1) to (X4) and (X'1) to (X'4) were visually observed and evaluated according to the following evaluation criteria.
[Evaluation criteria]
A: No turbidity B: Slightly turbid C: Turbid
(光硬化性(評価))
 硬化物(X3)、(X4)及び(X’3)、(X’4)の硬化深度を、下記の評価基準に従って評価した。
<評価基準>
 A(光硬化性が良好):硬化物X3及び硬化物X4の硬化深度がいずれも35mm以上
 B(光硬化性があまり良好ではない):硬化物X3及び硬化物X4の少なくとも一方の硬化深度が30mm以上35mm未満
 C(光硬化性が悪い):硬化物X3及び硬化物X4の少なくとも一方の硬化深度が30mm未満
(Photocuring (Evaluation))
The cured products (X3), (X4), (X'3) and (X'4) were evaluated for their depth of cure according to the following evaluation criteria.
<Evaluation criteria>
A (good photocuring properties): The cured depth of both cured products X3 and X4 is 35 mm or more. B (not very good photocuring properties): The cured depth of at least one of cured products X3 and X4 is 30 mm or more and less than 35 mm. C (poor photocuring properties): The cured depth of at least one of cured products X3 and X4 is less than 30 mm.
[硬化物性]
(バーコル硬さ)
 硬化物(X5)、(X6)、(X’5)、及び(X’6)を測定評価用試験片とした。JIS K7060:1995に準拠し、バーコル硬度計(「GYZJ 934-1」、バーバー・コールマン社製)を上記測定評価用試験片の光照射面の裏面に押し当て、当該測定評価用試験片のバーコル硬さを10点測定し、その平均値を硬化物のバーコル硬さとした。
 各硬化物の硬化物性を以下の評価基準に従って評価した。
<評価基準>
 A(硬化性が優れる):バーコル硬さが21以上
 B(硬化性が良好):バーコル硬さが16以上21未満
 C(硬化性があまり良好ではない):バーコル硬さが11以上16未満
 D(硬化性が悪い):バーコル硬さが11未満
[Cure properties]
(Barcol hardness)
The cured products (X5), (X6), (X'5), and (X'6) were used as test pieces for measurement and evaluation. In accordance with JIS K7060:1995, a Barcol hardness tester ("GYZJ 934-1", manufactured by Barber Coleman) was pressed against the back side of the light irradiated surface of the test pieces for measurement and evaluation, the Barcol hardness of the test pieces for measurement and evaluation was measured at 10 points, and the average value was regarded as the Barcol hardness of the cured products.
The cured physical properties of each cured product were evaluated according to the following evaluation criteria.
<Evaluation criteria>
A (excellent curability): Barcol hardness of 21 or more B (good curability): Barcol hardness of 16 or more and less than 21 C (not very good curability): Barcol hardness of 11 or more and less than 16 D (poor curability): Barcol hardness less than 11
(硬化物性(評価))
 上記バーコル硬さの測定結果から、樹脂組成物の硬化物性を以下の評価基準に従って評価した。
<評価基準>
 A(硬化性が優れる):硬化物(X5)及び硬化物(X6)のバーコル硬さがいずれも21以上
 B(硬化性が良好):硬化物(X5)及び硬化物(X6)の一方のバーコル硬さが21以上であり、もう一方のバーコル硬さが16以上21未満
 C(硬化性があまり良好ではない):硬化物(X5)及び硬化物(X6)の一方のバーコル硬さが16以上であり、もう一方のバーコル硬さが11以上16未満
 D(硬化性が悪い):硬化物(X5)及び硬化物(X6)の少なくとも一方のバーコル硬さが11未満
(Cure Properties (Evaluation))
From the results of the Barcol hardness measurements, the cured physical properties of the resin compositions were evaluated according to the following evaluation criteria.
<Evaluation criteria>
A (excellent curability): The Barcol hardness of both the cured product (X5) and the cured product (X6) is 21 or more. B (good curability): The Barcol hardness of one of the cured products (X5) and (X6) is 21 or more, and the Barcol hardness of the other is 16 or more and less than 21. C (not very good curability): The Barcol hardness of one of the cured products (X5) and (X6) is 16 or more, and the Barcol hardness of the other is 11 or more and less than 16. D (poor curability): The Barcol hardness of at least one of the cured products (X5) and (X6) is less than 11.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3、表4-1、及び表4-2に示した評価結果から分かるように、本発明の樹脂組成物(実施例1~13)は、透明性が高く、相溶性及び硬化性に優れ、硬化不良が生じにくいことが認められた。 As can be seen from the evaluation results shown in Tables 3, 4-1, and 4-2, the resin compositions of the present invention (Examples 1 to 13) were found to have high transparency, excellent compatibility and curing properties, and were less likely to cause curing defects.

Claims (13)

  1.  不飽和ポリエステル樹脂(A)と、
     (メタ)アクリロイルオキシ基含有樹脂(B)と、
     エチレン性不飽和基含有モノマー(C)と、相溶化剤(D)と、
     重合開始剤(E)と、
    を含む樹脂組成物であって、
     前記(メタ)アクリロイルオキシ基含有樹脂(B)が、1分子中に(メタ)アクリロイルオキシ基を2個以上有する、重量平均分子量(Mw)が500~3,000の樹脂であり、
     前記(メタ)アクリロイルオキシ基含有樹脂(B)として、ビニルエステル樹脂(B1)を含有し、
     前記ビニルエステル樹脂(B1)が、エポキシ化合物(b1-1)と不飽和一塩基酸(b1-3)とを含む原料の付加反応生成物であり、
     前記エポキシ化合物(b1-1)が、エポキシ当量300以下のビスフェノール型エポキシ樹脂を、エポキシ化合物(b1-1)100質量%に対して、30~100質量%含有し、
     前記相溶化剤(D)が、第1族、第12族、及び第14族の金属元素から選択される少なくとも1種を含む有機金属化合物であり、
     前記相溶化剤(D)の金属換算含有量が、不飽和ポリエステル樹脂(A)、(メタ)アクリロイルオキシ基含有樹脂(B)、エチレン性不飽和基含有モノマー(C)、相溶化剤(D)、及び重合開始剤(E)の合計に対して800~1,850質量ppmである、樹脂組成物。
    An unsaturated polyester resin (A),
    A (meth)acryloyloxy group-containing resin (B),
    An ethylenically unsaturated group-containing monomer (C), a compatibilizer (D), and
    A polymerization initiator (E);
    A resin composition comprising:
    the (meth)acryloyloxy group-containing resin (B) is a resin having two or more (meth)acryloyloxy groups in one molecule and a weight average molecular weight (Mw) of 500 to 3,000;
    The (meth)acryloyloxy group-containing resin (B) contains a vinyl ester resin (B1),
    the vinyl ester resin (B1) is an addition reaction product of raw materials containing an epoxy compound (b1-1) and an unsaturated monobasic acid (b1-3),
    the epoxy compound (b1-1) contains 30 to 100 mass% of a bisphenol type epoxy resin having an epoxy equivalent of 300 or less, based on 100 mass% of the epoxy compound (b1-1);
    the compatibilizer (D) is an organometallic compound containing at least one metal element selected from the group consisting of metal elements of groups 1, 12, and 14;
    The resin composition has a metal-equivalent content of the compatibilizer (D) of 800 to 1,850 ppm by mass based on the total content of the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), the ethylenically unsaturated group-containing monomer (C), the compatibilizer (D), and the polymerization initiator (E).
  2.  前記不飽和ポリエステル樹脂(A)の重量平均分子量(Mw)と前記(メタ)アクリロイルオキシ基含有樹脂(B)の重量平均分子量(Mw)との比(不飽和ポリエステル樹脂(A)の重量平均分子量(Mw)/(メタ)アクリロイルオキシ基含有樹脂(B)の重量平均分子量(Mw))が、1.5~30である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the ratio of the weight average molecular weight (Mw) of the unsaturated polyester resin (A) to the weight average molecular weight (Mw) of the (meth)acryloyloxy group-containing resin (B) (weight average molecular weight (Mw) of the unsaturated polyester resin (A)/weight average molecular weight (Mw) of the (meth)acryloyloxy group-containing resin (B)) is 1.5 to 30.
  3.  前記不飽和ポリエステル樹脂(A)が、ジオール(a1)と、エチレン性不飽和基含有二塩基酸(a2-1)と飽和二塩基酸(a2-2)とをエステル化反応させることにより得られる不飽和ポリエステル樹脂である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the unsaturated polyester resin (A) is an unsaturated polyester resin obtained by esterification reaction of a diol (a1), an ethylenically unsaturated group-containing dibasic acid (a2-1), and a saturated dibasic acid (a2-2).
  4.  前記不飽和ポリエステル樹脂(A)、前記(メタ)アクリロイルオキシ基含有樹脂(B)、及び前記エチレン性不飽和基含有モノマー(C)の合計100質量%に対し、前記不飽和ポリエステル樹脂(A)の含有量が25~50質量%であり、前記(メタ)アクリロイルオキシ基含有樹脂(B)の含有量が12~30質量%であり、エチレン性不飽和基含有モノマー(C)の含有量が20~63質量%である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the content of the unsaturated polyester resin (A) is 25 to 50 mass%, the content of the (meth)acryloyloxy group-containing resin (B) is 12 to 30 mass%, and the content of the ethylenically unsaturated group-containing monomer (C) is 20 to 63 mass%, relative to a total of 100 mass% of the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), and the ethylenically unsaturated group-containing monomer (C).
  5.  前記有機金属化合物の金属元素が、亜鉛、カリウム、及びスズから選択される少なくとも1種である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the metal element of the organometallic compound is at least one selected from zinc, potassium, and tin.
  6.  前記有機金属化合物が、オクチル酸亜鉛、ネオデカン酸亜鉛、オクチル酸カリウム、オクチル酸錫、及びビスアセチルアセトナトスズから選択される少なくとも1種である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the organometallic compound is at least one selected from zinc octoate, zinc neodecanoate, potassium octoate, tin octoate, and tin bisacetylacetonate.
  7.  前記重合開始剤(E)が、光重合開始剤である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the polymerization initiator (E) is a photopolymerization initiator.
  8.  前記重合開始剤(E)の含有量が、不飽和ポリエステル樹脂(A)、(メタ)アクリロイルオキシ基含有樹脂(B)、及びエチレン性不飽和基含有モノマー(C)の合計100質量部に対して、0.02~10質量部である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the content of the polymerization initiator (E) is 0.02 to 10 parts by mass per 100 parts by mass of the total of the unsaturated polyester resin (A), the (meth)acryloyloxy group-containing resin (B), and the ethylenically unsaturated group-containing monomer (C).
  9.  前記重合開始剤(E)が、2,2-ジメトキシ-2-フェニルアセトフェノン、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、フェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、及び1-ヒドロキシシクロヘキシルフェニルケトンから選択される少なくとも1種である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the polymerization initiator (E) is at least one selected from 2,2-dimethoxy-2-phenylacetophenone, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide, and 1-hydroxycyclohexyl phenyl ketone.
  10.  請求項1に記載の樹脂組成物と、
     繊維基材(F)、及び充填材(G)から選択される少なくとも1種と、
    を含む複合材料。
    The resin composition according to claim 1 ,
    At least one selected from a fiber base material (F) and a filler (G);
    Composite material comprising:
  11.  前記繊維基材(F)が、ガラス繊維、及びポリエステル繊維から選択される少なくとも1種である、請求項10に記載の複合材料。 The composite material according to claim 10, wherein the fiber substrate (F) is at least one selected from glass fibers and polyester fibers.
  12.  前記充填材(G)が、水酸化アルミニウム、及び炭酸カルシウムから選択される少なくとも1種である、請求項10に記載の複合材料。 The composite material according to claim 10, wherein the filler (G) is at least one selected from aluminum hydroxide and calcium carbonate.
  13.  請求項1に記載の樹脂組成物又は請求項10に記載の複合材料の硬化物。 A cured product of the resin composition according to claim 1 or the composite material according to claim 10.
PCT/JP2023/034312 2022-10-28 2023-09-21 Resin composition and composite material WO2024090084A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-173735 2022-10-28
JP2022173735 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024090084A1 true WO2024090084A1 (en) 2024-05-02

Family

ID=90830477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034312 WO2024090084A1 (en) 2022-10-28 2023-09-21 Resin composition and composite material

Country Status (1)

Country Link
WO (1) WO2024090084A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209628A (en) * 1998-01-21 1999-08-03 Dainippon Ink & Chem Inc Resin composition and civil engineering and building material
JP2000128958A (en) * 1998-10-29 2000-05-09 Nippon Shokubai Co Ltd Polymer, resin composition containing the same and its cured product and use thereof
JP2007204648A (en) * 2006-02-02 2007-08-16 Japan Composite Co Ltd Molding material
JP2020029543A (en) * 2018-08-24 2020-02-27 昭和電工株式会社 Resin composition and method for producing resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209628A (en) * 1998-01-21 1999-08-03 Dainippon Ink & Chem Inc Resin composition and civil engineering and building material
JP2000128958A (en) * 1998-10-29 2000-05-09 Nippon Shokubai Co Ltd Polymer, resin composition containing the same and its cured product and use thereof
JP2007204648A (en) * 2006-02-02 2007-08-16 Japan Composite Co Ltd Molding material
JP2020029543A (en) * 2018-08-24 2020-02-27 昭和電工株式会社 Resin composition and method for producing resin composition

Similar Documents

Publication Publication Date Title
JP5509880B2 (en) Curable resin composition, cured product thereof, and plastic lens
JP4884732B2 (en) Curable resin composition, lining material and tubular lining material
KR101806228B1 (en) Vinylester resin composition for UV curable sheet and preparation method thereof
JP2011184623A (en) Curable resin composition, cured product thereof and plastic lens
CN1815365B (en) Photocurable resin composition, and its preparing method and use
WO2024090084A1 (en) Resin composition and composite material
JP2016044229A (en) Epoxy (meth)acrylate compound and resin composition containing the same, and cured product thereof
WO2023017853A1 (en) Lining material
TWI837768B (en) Lining material
JP2011157437A (en) Curable resin composition, cured product thereof, and plastic lens
JP7435788B2 (en) Resin composition, pipe repair material, and pipe repair method
TWI644938B (en) Composition for carbon fiber reinforced resin, carbon fiber reinforced resin composition, and hardened material
JP2021155674A (en) Resin composition for photocurable lining material, photocurable lining material, and cured product thereof
TWI834245B (en) Pipe repair methods
TWI839808B (en) Resin composition, method for producing the same and composite material
TW202321330A (en) Resin composition and method for producing same, and composite material
KR102225655B1 (en) UV curable sheet resin composition for repairing concrete and waterproof sheet and preparation mehtod thereof
TWI843178B (en) Resin composition and lining materials
WO2023017855A1 (en) Resin composition and method for producing same, and composite material
KR101999596B1 (en) Resin composition for UV curable sheet and preparation method thereof
WO2023017852A1 (en) Resin composition and material for lining material
JP4632084B2 (en) Radical polymerizable resin composition and cured product thereof
JP2003089709A (en) Thermosetting resin composition
KR20240054353A (en) Resin compositions and lining materials for pipe rehabilitation
JP2023145201A (en) Radical-polymerizable resin composition, composite material, and structure using the radical-polymerizable resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882296

Country of ref document: EP

Kind code of ref document: A1