WO2024090023A1 - Retractable receiver type conveyor water turbine for tidal power generation - Google Patents

Retractable receiver type conveyor water turbine for tidal power generation Download PDF

Info

Publication number
WO2024090023A1
WO2024090023A1 PCT/JP2023/031571 JP2023031571W WO2024090023A1 WO 2024090023 A1 WO2024090023 A1 WO 2024090023A1 JP 2023031571 W JP2023031571 W JP 2023031571W WO 2024090023 A1 WO2024090023 A1 WO 2024090023A1
Authority
WO
WIPO (PCT)
Prior art keywords
conveyor
tidal current
tidal
power generation
intake
Prior art date
Application number
PCT/JP2023/031571
Other languages
French (fr)
Japanese (ja)
Inventor
政寿 岡田
政和 岡田
久美 岡田
Original Assignee
政寿 岡田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 政寿 岡田 filed Critical 政寿 岡田
Publication of WO2024090023A1 publication Critical patent/WO2024090023A1/en

Links

Images

Definitions

  • the present invention relates to a highly efficient conveyor-type water turbine device for small-scale tidal power generation.
  • tidal currents The characteristics of tidal currents are that changes in tidal motion are easy to predict, and that the direction of the current periodically changes by almost 180 degrees due to the ebb and flow of the tides.
  • the motion of water particles below the surface attenuates depending on the depth of the water, and at a depth of half the wavelength, the motion of water particles is about 4% of that at the surface, so it can be considered that there is no effect from waves, and since the wavelength of wind waves commonly seen on the sea is several tens of meters, stable power generation is possible even in coastal areas where the water depth is relatively shallow, with almost no effect from waves.
  • Propeller turbines are reaction type turbines that use the reaction force of the water flow received by the propeller to rotate the rotating shaft.
  • the propeller diameter needs to be increased so that more water flow can be received by the propeller.
  • the turbine structure and the pillars that secure the turbine need to be strong enough to withstand the strong water thrust, resulting in high costs.
  • a conveyor turbine has been devised as a type of turbine other than horizontal-axis propeller turbines for use in low-head waterways.
  • conveyor turbines that use the flowing water of low-head waterways are based on the premise that multiple receiving plates protruding from a conveyor installed above the water surface receive the kinetic energy of the flowing water in a certain direction, rotate a sprocket or pulley via a conveyor chain or endless belt connected to the receiving plates, and generate electricity using the rotational force. They are not designed to use the conveyor body submerged in water to reduce the effects of waves, or to generate electricity in response to forward and reverse tidal currents.
  • the present invention aims to provide a water turbine that can generate electricity efficiently and at low cost from low-velocity tidal currents.
  • the main feature of this invention is that it takes advantage of the large volume of water flow that is characteristic of tidal currents, takes in large volumes of tidal currents through a funnel-shaped intake and collects them at the conveyor receiving plate, maximizing the total pressure energy received by multiple conveyor receiving plates arranged in a vertical row, thereby increasing power generation efficiency.
  • the outer frame of the conveyor-type water turbine of the present invention is a straight tube shape, and by installing it horizontally to the direction of the tidal flow, it has the advantage of being able to generate electricity continuously and efficiently even when the direction of the tidal flow changes by almost 180 degrees between high tide and low tide.
  • funnel-shaped water intakes and suction pipes equipped with tilting shutters at both ends of the conveyor frame.
  • the upstream shutter closes due to the pressure energy of the tidal current, allowing the large volume of water taken in to be guided to the receiving plate on the inlet side of the forward-rotating conveyor. Even if the tidal current is slow, it will increase in speed as it passes through the intake, making it possible to generate electricity. This increases the number of suitable locations for power generation and extends the operating time of the generator, which is expected to increase the total amount of power generated.
  • the inner frame inside the outer frame supports the conveyor body and blocks the flow of tidal currents between the carrying conveyor and the return conveyor, creating an independent waterway. This allows the kinetic energy of the taken-in tidal current to be concentrated and guided to the receiving plate of the carrying conveyor, allowing it to be efficiently recovered as pressure energy.
  • the downstream shutter when water is passing through, the downstream shutter is open, and the unused kinetic energy of the tidal current released from the conveyor is discharged through an inverted funnel-shaped suction pipe, which allows the water to be recovered as a pressure difference, which has the advantage of increasing power generation efficiency.
  • the receiving plate by making the receiving plate reversible, the projected cross-sectional area of the receiving plate when it returns toward the intake port can be reduced, reducing the water resistance, thereby maximizing the pressure energy that the conveyor turbine recovers from the tidal current.
  • the pressure energy recovered from the tide by the conveyor turbine's receiving plate is transmitted to the generator as rotational energy via a chain and sprocket or belt and pulley.
  • FIG. 1 is a block diagram of an apparatus according to the present invention. This is a diagram showing the position of the receiving plate and shutter depending on the direction of the tidal current. This is a three-sided view of the water intake/suction pipe and the outer frame connected together.
  • Figure 1 is a diagram of the device according to the present invention, showing the relative positions of the conveyor outer frame top plate, conveyor section, conveyor inner frame section, conveyor outer frame section, water intake/suction pipe, and stand, as well as the main components.
  • Figure 2 shows the position of the receiving plate and shutter depending on the direction of the tidal current, and also shows that the direction of rotation of the conveyor shaft does not change even if the direction of the tidal current changes by approximately 180 degrees.
  • Figure 3 is a three-view drawing of the outer frame of the device of the present invention, showing the shape for taking in more of the tidal current and directing it to the conveyor receiving plate.
  • the cross-sectional area of the water intake, the projected cross-sectional area of the receiving plate when standing and lying down, and the shutter mounting angle, etc., are to be arbitrarily determined taking into consideration the constraints imposed by the location where the device of the present invention is installed and the energy loss due to friction between the tidal current and the frame.
  • the theoretical maximum output that can be obtained from the available kinetic energy of the taken tidal current is approximately 192 kW.
  • Tidal current velocity V 2m/sec.
  • Effective head H 0.204m (calculated backwards from the tidal current velocity)
  • Intake cross-sectional area S 48 m2 (length 6 m x width 8 m)
  • Cross-sectional area of receiving plate s 2 m2 (length 2 m x width 1 m)
  • Flow rate Q 96 m3 /sec (V x S)
  • Total power generation efficiency K 1 (assumed)
  • Theoretical maximum output approx.
  • Stable power generation is possible even from low-speed tidal currents, and since no special mechanisms need to be added to deal with the tidal current's flow direction periodically changing 180 degrees, low-cost, highly efficient small-scale tidal power generation can be realized.
  • the ground-side power receiving and transmitting related equipment can be consolidated and enlarged, further reducing the total power generation costs.

Abstract

Provided is a water turbine having a simple structure that can perform high-efficient power generation even from a low-speed tidal flow. A low-speed tidal flow is taken in from a funnel-shaped intake having a large diameter, and the tidal flow accelerated when passing through the funnel-shaped intake is collected and guided by a receiver attached to a conveyor. Thus, kinetic energy of a tidal flow is recovered as pressure energy and transmitted to a generator as rotational energy of a main shaft via a belt and a pulley or a chain and a sprocket to simply and inexpensively generate power.

Description

潮流発電用の可倒受板式コンベヤ水車Tiltable conveyor turbine for tidal power generation.
 本発明は、小規模潮流発電を行うための高効率なコンベヤ式水車装置に関するものである。 The present invention relates to a highly efficient conveyor-type water turbine device for small-scale tidal power generation.
  脱炭素化社会の実現に向けて、自然エネルギーを利用した発電量の増加が望まれているが、日本においては風力発電の適地が少なく、また河川を利用した大規模水力発電設備の新設の余地も乏しい。そこで、島国であることの特徴を生かした海洋エネルギーの活用による発電が期待されるが、残念ながら海水の位置エネルギーを利用した潮汐発電に適した干満差の大きな立地は乏しいのが実情である。そこで、瀬戸内海や九州地方を中心に流速の速い適地がある潮流発電の実用化が期待されている。
潮流の特徴は、干満運動の変化の予測が容易であることと、潮汐の干満により周期的に流れの方向がほぼ180度変わることである。また、水面下の水粒子の運動は水深に応じて減衰し、波長の2分の1の水深では水粒子の動きは水面の4%程度になるので波の影響は無いと考えて良く、海上で普通に見られる風波の波長は数10mなので、水深が比較的浅い沿岸部でも波の影響をほとんど受けずに安定した発電が可能である。
そこで、流速の低い潮流でも効率良く発電できる小規模潮流発電に適した発電装置が開発されれば、長大な海岸線を持つ日本においては地域によって転流時刻が異なるので、同設備を浅海域に多数設置することにより、全国的には間断なく安定的に低コストでの発電が可能である。
そして、主要な電力消費地である都市部や工業地帯の大部分が沿岸部に集積している日本においては、発電設備と電力消費地を短距離で結ぶことができる小規模潮流発電設備ネットワークの構築は、脱炭素化社会の実現だけでなく社会インフラコストの低減や経済安全保障の視点からも有効な社会課題の解決手段であると考えられる。
 上記の状況を鑑みて、沿岸部における低流速な潮流向けの安価で高効率な発電用水車の開発が望まれるが、潮流発電向けに一般的に使用される横軸のプロペラ水車は低流速域の発電効率が低く、機構も複雑で総発電コストが高いことが課題である。
In order to realize a decarbonized society, it is desirable to increase the amount of electricity generated using natural energy, but there are few suitable locations for wind power generation in Japan, and there is also little room for the construction of large-scale hydroelectric power generation facilities using rivers. Therefore, it is hoped that electricity can be generated by utilizing marine energy, taking advantage of the characteristics of being an island nation, but unfortunately, the reality is that there are few locations with large tidal differences that are suitable for tidal power generation using the potential energy of seawater. Therefore, it is hoped that tidal power generation will be put into practical use in areas suitable for fast currents, mainly in the Seto Inland Sea and Kyushu region.
The characteristics of tidal currents are that changes in tidal motion are easy to predict, and that the direction of the current periodically changes by almost 180 degrees due to the ebb and flow of the tides. In addition, the motion of water particles below the surface attenuates depending on the depth of the water, and at a depth of half the wavelength, the motion of water particles is about 4% of that at the surface, so it can be considered that there is no effect from waves, and since the wavelength of wind waves commonly seen on the sea is several tens of meters, stable power generation is possible even in coastal areas where the water depth is relatively shallow, with almost no effect from waves.
Therefore, if a power generation device suitable for small-scale tidal current power generation that can generate electricity efficiently even with slow currents could be developed, then by installing a large number of such facilities in shallow waters, it would be possible to generate electricity steadily and at low cost nationwide, since Japan has a long coastline and the diversion times vary from region to region.
In Japan, where most of the major electricity consumption areas, such as urban and industrial regions, are concentrated along the coast, the construction of a network of small-scale tidal power generation facilities that can connect power generation facilities with electricity consumption areas over short distances is thought to be an effective means of solving social issues, not only from the perspective of realizing a decarbonized society, but also from the perspective of reducing social infrastructure costs and ensuring economic security.
In light of the above situation, there is a need for the development of inexpensive, highly efficient power-generating hydroelectric turbines for use in the slow-flowing tidal currents along the coast; however, the horizontal-axis propeller hydroelectric turbines commonly used for tidal power generation have low generating efficiency at low flow speeds, a complex mechanism, and high total generating costs.
 横軸のプロペラ水車は潮流の流れ方向が周期的に約180度変化することに対応するために、水車本体を180度回転させる機構を付加する必要があり、機構の複雑さにより水車本体の製作コストが高い。  In order to accommodate the fact that the direction of the tidal current changes periodically by approximately 180 degrees, a mechanism must be added to rotate the turbine body by 180 degrees, and the manufacturing costs of the turbine body are high due to the complexity of the mechanism.
 プロペラ水車はプロペラが受けた水流の反力を利用して回転軸を回す反動型水車であり、発電量を増すためには、より多くの水流をプロペラで受ける為にプロペラ直径を大きくする必要があり、軸受部にかかる水スラストも非常に大きな値となるので、水車構造体及び水車を固定する支柱は強大な水スラストに耐える強度を持つ必要があり高コストとなる。  Propeller turbines are reaction type turbines that use the reaction force of the water flow received by the propeller to rotate the rotating shaft. In order to increase the amount of electricity generated, the propeller diameter needs to be increased so that more water flow can be received by the propeller. As the water thrust acting on the bearings is also very large, the turbine structure and the pillars that secure the turbine need to be strong enough to withstand the strong water thrust, resulting in high costs.
 横軸のプロペラ水車の発電効率を高める試みとして相反転プロペラ式水車が開発されているが、水流を受けるプロペラの総面積が最大2倍であるのに対して、近接するプロペラ間で発生する乱流による損失を考慮する必要があり、また水車部だけでなく発電機部の構造も複雑になるので総発電コスト低減には不十分である。  In an attempt to increase the generating efficiency of horizontal-axis propeller turbines, counter-rotating propeller turbines have been developed, but while the total area of the propellers receiving the water flow is up to twice as large, it is necessary to take into account losses due to turbulence that occurs between adjacent propellers, and the structure of not only the turbine section but also the generator section becomes complex, making it insufficient to reduce the total generating costs.
 横軸型プロペラ水車以外の水車形態としては、低落差水路向けにコンベヤ水車が考案されている。しかし、低落差水路の流水を利用したコンベヤ式水車は、水面上に設置したコンベヤから突出させた複数の受板によって一定方向の流水の運動エネルギーを受け、受板と連結したコンベヤチェーンまたは無限鎖帯を介してスプロケットまたはプーリーを回転させ、その回転力によって発電することを前提としたものであり、波の影響を低減するためにコンベヤ本体を水中に沈めて使用することや、潮汐による正逆方向の潮流に対応して発電する仕組みにはなっていない。また、落差を利用した水力発電の場合には流速はほぼ一定なので水量の変動による発電量の変動のみに留意すれば良いが、潮流発電の場合は潮汐現象によって流速が絶えず変化するので、流速が低い場合でも如何にして多くの運動エネルギーを取り込んで発電量を確保するかが課題となる。 A conveyor turbine has been devised as a type of turbine other than horizontal-axis propeller turbines for use in low-head waterways. However, conveyor turbines that use the flowing water of low-head waterways are based on the premise that multiple receiving plates protruding from a conveyor installed above the water surface receive the kinetic energy of the flowing water in a certain direction, rotate a sprocket or pulley via a conveyor chain or endless belt connected to the receiving plates, and generate electricity using the rotational force. They are not designed to use the conveyor body submerged in water to reduce the effects of waves, or to generate electricity in response to forward and reverse tidal currents. In addition, in the case of hydroelectric power generation using head, the flow speed is almost constant, so it is only necessary to pay attention to fluctuations in the amount of power generated due to changes in the water volume, but in the case of tidal power generation, the flow speed is constantly changing due to tidal phenomena, so the challenge is how to capture as much kinetic energy as possible to ensure power generation even when the flow speed is low.
特開2003―129932号公報JP 2003-129932 A
 本発明は、低流速の潮流から高効率かつ低コストで発電が可能な水車の提供を目的とする。 The present invention aims to provide a water turbine that can generate electricity efficiently and at low cost from low-velocity tidal currents.
 本発明は、潮流の特性である大量の流量に着目し、大量の潮流を漏斗状の取水口によって取水してコンベヤ受板部に集約し、縦列に配置された複数のコンベヤ受板が受ける圧力エネルギーの合計値を最大化して発電効率を高めることを最も主要な特徴とする。 The main feature of this invention is that it takes advantage of the large volume of water flow that is characteristic of tidal currents, takes in large volumes of tidal currents through a funnel-shaped intake and collects them at the conveyor receiving plate, maximizing the total pressure energy received by multiple conveyor receiving plates arranged in a vertical row, thereby increasing power generation efficiency.
 本発明のコンベヤ式水車のアウターフレームは直線状のチューブ形状であり、潮流の流れ方向に対して水平に設置することにより、満ち潮時と引き潮時で潮流の流れ方向がほぼ180度変化しても、継続して効率良く発電することができるという利点がある。 The outer frame of the conveyor-type water turbine of the present invention is a straight tube shape, and by installing it horizontally to the direction of the tidal flow, it has the advantage of being able to generate electricity continuously and efficiently even when the direction of the tidal flow changes by almost 180 degrees between high tide and low tide.
 また、コンベヤフレーム両端部には傾斜式シャッターを備えた漏斗状の取水口兼吸出管があり、取水動作時には潮流の圧力エネルギーによって上流側シャッターが閉状態となり、取水した大量の潮流を正転側コンベヤ入側の受板部へと導くことができ、低流速の潮流であっても取水口通過時に増速されるので発電が可能となり、発電適地が多くなるとともに、発電機の稼働時間が長くなるので総発電量の増加が見込まれる。 In addition, there are funnel-shaped water intakes and suction pipes equipped with tilting shutters at both ends of the conveyor frame. When water is being taken in, the upstream shutter closes due to the pressure energy of the tidal current, allowing the large volume of water taken in to be guided to the receiving plate on the inlet side of the forward-rotating conveyor. Even if the tidal current is slow, it will increase in speed as it passes through the intake, making it possible to generate electricity. This increases the number of suitable locations for power generation and extends the operating time of the generator, which is expected to increase the total amount of power generated.
 そして、アウターフレームの内部にあるインナーフレームがコンベヤ躯体を支持するとともに、運び側コンベヤと戻り側コンベヤとの間の潮流の行き来を遮断して独立した通水路としているので、取水した潮流の運動エネルギーが運び側コンベヤの受板へ集約して導かれることにより、圧力エネルギーとして効率的に回収できる。 The inner frame inside the outer frame supports the conveyor body and blocks the flow of tidal currents between the carrying conveyor and the return conveyor, creating an independent waterway. This allows the kinetic energy of the taken-in tidal current to be concentrated and guided to the receiving plate of the carrying conveyor, allowing it to be efficiently recovered as pressure energy.
尚、通水時に下流側シャッターは開状態となり、コンベヤから放出される潮流が持っている未活用の運動エネルギーを、逆漏斗状の吸出管を通じて放水することにより、圧力差として回収できるので発電効率が高まるという利点がある。 In addition, when water is passing through, the downstream shutter is open, and the unused kinetic energy of the tidal current released from the conveyor is discharged through an inverted funnel-shaped suction pipe, which allows the water to be recovered as a pressure difference, which has the advantage of increasing power generation efficiency.
 さらに、コンベヤ格納部分のフレーム断面積を、潮流の流れ方向に沿って上流部分から下流部分に向けて徐々に小さくすることにより、複数の受板部の背面に負圧を生じさせて、潮流から回収できる圧力エネルギーを最大化できる。 Furthermore, by gradually reducing the frame cross-sectional area of the conveyor storage section from the upstream to the downstream along the direction of the tidal current, negative pressure is generated on the backs of multiple receiving plate sections, maximizing the pressure energy that can be recovered from the tidal current.
 また、受板を転倒式にすることにより、受板が取水口方向へ戻り動作を行う際の投影断面積を小さくして水の抗力を小さくすることができ、結果としてコンベヤ水車が潮流から回収する圧力エネルギーを最大化できる。 In addition, by making the receiving plate reversible, the projected cross-sectional area of the receiving plate when it returns toward the intake port can be reduced, reducing the water resistance, thereby maximizing the pressure energy that the conveyor turbine recovers from the tidal current.
 コンベヤ水車の受板が潮流から回収した圧力エネルギーは、チェーンおよびスプロケットまたはベルトおよびプーリーを介して回転エネルギーとして発電機へ伝達される。 The pressure energy recovered from the tide by the conveyor turbine's receiving plate is transmitted to the generator as rotational energy via a chain and sprocket or belt and pulley.
本発明に係る装置の構成図である。FIG. 1 is a block diagram of an apparatus according to the present invention. 潮流の流れ方向による受板とシャッターの姿勢を表した図である。This is a diagram showing the position of the receiving plate and shutter depending on the direction of the tidal current. 取水口兼吸出し管とアウターフレーム連結状態の三面図である。This is a three-sided view of the water intake/suction pipe and the outer frame connected together.
 図1は、本発明に係る装置の構成図であって、コンベヤアウターフレーム天板、コンベヤ部、コンベヤインナーフレーム部、コンベヤアウターフレーム部、取水口兼吸出し管および架台の位置関係と主要な構成部品を表している。 Figure 1 is a diagram of the device according to the present invention, showing the relative positions of the conveyor outer frame top plate, conveyor section, conveyor inner frame section, conveyor outer frame section, water intake/suction pipe, and stand, as well as the main components.
 図2は、潮流の流れ方向による受板とシャッターの姿勢を表した図であり、潮流の流れ方向が約180度変化してもコンベヤ主軸の回転方向が変化しないことを併せて表している。 Figure 2 shows the position of the receiving plate and shutter depending on the direction of the tidal current, and also shows that the direction of rotation of the conveyor shaft does not change even if the direction of the tidal current changes by approximately 180 degrees.
 図3は、本発明装置のアウターフレームの三面図であって、より多くの潮流を取水してコンベヤ受板部へ導くための形状を表している。尚、取水口の断面積や起立時と転倒時の受板の投射断面積およびシャッターの取り付け角度等については、本発明装置が設置される場所による制約や潮流とフレームの摩擦によるエネルギー損失を勘案して任意に決定されるものとする。 Figure 3 is a three-view drawing of the outer frame of the device of the present invention, showing the shape for taking in more of the tidal current and directing it to the conveyor receiving plate. The cross-sectional area of the water intake, the projected cross-sectional area of the receiving plate when standing and lying down, and the shutter mounting angle, etc., are to be arbitrarily determined taking into consideration the constraints imposed by the location where the device of the present invention is installed and the energy loss due to friction between the tidal current and the frame.
 既存の小規模水力発電設備との比較を通じて本発明装置の実用的な実施例を示す。
秋田県仙北市で2021年10月に完成した鶴の湯水力発電所の主要諸元は下記の通りである。
流量Q    :最大出力時 1.05m3/秒
有効落差H  :23.48m 
流速V    :約21.45m/秒(計算による)
総合発電効率 :0.82(計算による)
出力kw     :199KW
出力kwと有効落差Hおよび流量Qには、出力kw=9.8×H×Q×総合発電効率Kの関係式が成り立つので、鶴の湯水力発電所の取水口における利用可能な水の位置エネルギーから得られる理論上の最大出力は約242kwであり、総合発電効率Kは約0.82であることが分かる。
次に、本発明装置の主要諸元を下記と仮定すると、取水した潮流が持っている利用可能な運動エネルギーから得られる理論上の最大出力は約192K Wとなる。
潮流の流速V  :2m/秒
見做し有効落差H:0.204m(潮流の流速から逆算した数値) 
取水口断面積S :48m2(縦6m×横8m)
受板の断面積s :2m2(縦2m×横1m)
流量Q     :96m3/秒(V×S)
総合発電効率K :1(仮定)
理論上の最大出力:約192KW
 尚、比較対象とした鶴の湯水力発電所と本発明装置には構造上の大きな差異があるので総合発電効率の値にも大きな差異があると考えられる。しかしながら、潮流の流量は大量なので、本発明装置を大型化して取水できる潮流の量を増加させる、あるいは近傍に本発明装置を複数台設置することにより必要な合計出力を得ることができる。
A practical embodiment of the device of the present invention will be shown through a comparison with an existing small-scale hydroelectric power generation facility.
The main specifications of the Tsuru-no-yu Hydroelectric Power Plant, which was completed in October 2021 in Senboku City, Akita Prefecture, are as follows.
Flow rate Q: 1.05 m3 /sec at maximum output Effective head H: 23.48 m
Flow velocity V: Approximately 21.45 m/sec (calculated)
Overall power generation efficiency: 0.82 (calculated)
Output kW: 199KW
The relationship between output kW, available head H, and flow rate Q is expressed as output kW = 9.8 x H x Q x total generating efficiency K, so it can be seen that the theoretical maximum output that can be obtained from the available water potential energy at the intake of the Tsuru-no-yu Hydroelectric Power Plant is approximately 242 kW, and the total generating efficiency K is approximately 0.82.
Next, assuming that the main specifications of the device of the present invention are as follows, the theoretical maximum output that can be obtained from the available kinetic energy of the taken tidal current is approximately 192 kW.
Tidal current velocity V: 2m/sec. Effective head H: 0.204m (calculated backwards from the tidal current velocity)
Intake cross-sectional area S: 48 m2 (length 6 m x width 8 m)
Cross-sectional area of receiving plate s: 2 m2 (length 2 m x width 1 m)
Flow rate Q: 96 m3 /sec (V x S)
Total power generation efficiency K: 1 (assumed)
Theoretical maximum output: approx. 192KW
Furthermore, because there are significant structural differences between the Tsuru-no-yu hydroelectric power station used for comparison and the device of the present invention, it is believed that there is also a large difference in the overall power generation efficiency. However, because the flow rate of the tidal current is large, the required total output can be obtained by making the device of the present invention larger to increase the amount of tidal current that can be taken, or by installing multiple devices of the present invention in the vicinity.
 低流速の潮流からでも安定した発電が可能であり、潮流の流れ方向が周期的に180度変化することに対する特段の機構追加が不要なので、低コストで高効率な小規模潮流発電を実現できる。また、適地に本装置を複数台ファーム化することにより、地上側の受送電関連設備を集約して大型化できるので、総発電コストの更なる低減が図れる。 Stable power generation is possible even from low-speed tidal currents, and since no special mechanisms need to be added to deal with the tidal current's flow direction periodically changing 180 degrees, low-cost, highly efficient small-scale tidal power generation can be realized. In addition, by farming multiple units of this device in suitable locations, the ground-side power receiving and transmitting related equipment can be consolidated and enlarged, further reducing the total power generation costs.
1     アウターフレーム天板
2     連結板
3     軸受
4     軸受用固定ボルト
5     フレーム用固定ボルト
6     受板
7     車輪
8     主軸
9     スプロケットまたはプーリー
10    チェーンまたはベルト
11    従動軸
12    インナーフレーム
13    走行レール
14    アウターフレーム
15    取水口兼吸出し管
16    シャッター
17    シャッター軸
18    架台
19    架台固定アンカーボルト
 
 
1 Outer frame top plate
2 Connecting plate
3. Bearings
4 Bearing fixing bolts
5 Frame fixing bolt
6 Support plate
7. Wheels
8. Spindle
9 Sprockets or pulleys
10 Chain or Belt
11 Driven shaft
12 Inner frame
13 Running rail
14 Outer frame
15 Intake and draft pipe
16 Shutter
17 Shutter axis
18 Mounting stand
19 Anchor bolts for fixing the mounting base

Claims (6)

  1. 潮流の転流に対応して取水口兼吸出し管を2カ所設け、その間に複数の可倒受板を設置した二軸型コンベヤを有し、取水口兼吸出し管と二軸型コンベヤの間に、取水した潮流が前記二軸型コンベヤにおける戻り側コンベヤ側へ流入することを防止して、取水した潮流を前記二軸型コンベヤにおける運び側へと導くことを目的として、戻り側コンベヤ側の取水口端面から運び側コンベヤ側まで、潮流の流れ方向に対して傾斜して設置された傾斜式シャッターを用いた潮流発電機。 A tidal current generator that has two intake/suction pipes in response to the diversion of the tidal current, a biaxial conveyor with multiple tiltable receiving plates between them, and an inclined shutter that is installed between the intake/suction pipes and the biaxial conveyor, inclined relative to the flow direction of the tidal current from the intake end face on the return conveyor side to the carry conveyor side, with the purpose of preventing the taken tidal current from flowing into the return conveyor side of the biaxial conveyor and directing the taken tidal current to the carry conveyor side of the biaxial conveyor.
  2. 取水口兼吸出し管が漏斗状であることを特徴とする請求項1の潮流発電機。 A tidal current generator as described in claim 1, characterized in that the intake and suction pipe is funnel-shaped.
  3. 取水口兼吸出し管と二軸型コンベヤの間に設置される傾斜式シャッターが、潮流の向きに対応して開閉することを特徴とする請求項1の潮流発電機。 The tidal current generator of claim 1, characterized in that the tilting shutter installed between the intake/suction pipe and the two-shaft conveyor opens and closes according to the direction of the tidal current.
  4. 架台及び架台固定用アンカーボルトを用いて、固定されることを特徴とする請求項1の潮流発電機。 The tidal current generator of claim 1, characterized in that it is fixed using a mount and anchor bolts for fixing the mount.
  5. 複数の可倒受板を備えることを特徴とする潮流発電用の二軸型コンベヤ水車。 A two-shaft conveyor turbine for tidal power generation, characterized by having multiple tiltable support plates.
  6. 大量の潮流を取水してコンベヤ水車の受板部に集約して導き、受板部に発生する圧力エネルギーを最大化する形状としたことを特徴とする水車フレーム。
     
     
     
     
    A turbine frame characterized by its shape that takes in large volumes of tidal water, concentrates it on the receiving plate of the conveyor turbine, and guides it to maximize the pressure energy generated in the receiving plate.



PCT/JP2023/031571 2022-10-24 2023-08-30 Retractable receiver type conveyor water turbine for tidal power generation WO2024090023A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-169866 2022-10-24
JP2022169866A JP7353573B1 (en) 2022-10-24 2022-10-24 Foldable tray type conveyor water turbine for tidal power generation

Publications (1)

Publication Number Publication Date
WO2024090023A1 true WO2024090023A1 (en) 2024-05-02

Family

ID=88198166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031571 WO2024090023A1 (en) 2022-10-24 2023-08-30 Retractable receiver type conveyor water turbine for tidal power generation

Country Status (2)

Country Link
JP (1) JP7353573B1 (en)
WO (1) WO2024090023A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992125A (en) * 1974-07-10 1976-11-16 Schilling Rolf E Underwater power apparatus with furlable sails as working members
JPS5696167A (en) * 1979-12-28 1981-08-04 Teruo Honami Water-flow electric power generating mechanism
JP2000087840A (en) * 1998-09-14 2000-03-28 Sadaji Kiyohara Underwater power generating set
JP2004270674A (en) * 2003-01-16 2004-09-30 Jeitekkusu:Kk Flowing water energy collector
JP2005240786A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Tidal current power generation device
JP2010031793A (en) * 2008-07-30 2010-02-12 Michihiro Oe Tidal current power generating device
US20120313376A1 (en) * 2011-06-09 2012-12-13 Browning Jr Wilson J Method and System for Converting Energy in Flowing Water to Electric Energy
KR20160011049A (en) * 2014-07-21 2016-01-29 한국해양과학기술원 Dual turbine assembly for low-head hydropower generation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5696167B2 (en) 2013-01-17 2015-04-08 東芝テック株式会社 Control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992125A (en) * 1974-07-10 1976-11-16 Schilling Rolf E Underwater power apparatus with furlable sails as working members
JPS5696167A (en) * 1979-12-28 1981-08-04 Teruo Honami Water-flow electric power generating mechanism
JP2000087840A (en) * 1998-09-14 2000-03-28 Sadaji Kiyohara Underwater power generating set
JP2004270674A (en) * 2003-01-16 2004-09-30 Jeitekkusu:Kk Flowing water energy collector
JP2005240786A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Tidal current power generation device
JP2010031793A (en) * 2008-07-30 2010-02-12 Michihiro Oe Tidal current power generating device
US20120313376A1 (en) * 2011-06-09 2012-12-13 Browning Jr Wilson J Method and System for Converting Energy in Flowing Water to Electric Energy
KR20160011049A (en) * 2014-07-21 2016-01-29 한국해양과학기술원 Dual turbine assembly for low-head hydropower generation

Also Published As

Publication number Publication date
JP7353573B1 (en) 2023-10-02

Similar Documents

Publication Publication Date Title
US7855468B2 (en) Hinged blade device to convert the natural flow or ocean or river current or ocean waves to rotational mechanical motion for power generation
RU2451823C2 (en) Power generation plant operating from water flow
US8177480B2 (en) Modular system for generating electricity from moving fluid
US7661922B2 (en) Installation for harvesting energy of tides (IHET) in shallow waters
US20110139299A1 (en) System to establish a refueling infrastructure for coming fuel-cell vehicles/marine craft and interim production of gaseous products, power, and inner-city rejuvenation
US20070292259A1 (en) Floating power plant for extracting energy from flowing water
AU2011279562B2 (en) Extracting energy from flowing fluids
JP2013024049A (en) Small-scaled hydropower generation apparatus
BG66263B1 (en) Pontoon water-power station
WO2024090023A1 (en) Retractable receiver type conveyor water turbine for tidal power generation
US9222460B2 (en) Conveyor-type system for generating electricity from water currents
JP2024062090A (en) Tiltable conveyor turbine for tidal power generation.
RU2347935C2 (en) In-channel river plant
JP2004270674A (en) Flowing water energy collector
CN216008750U (en) Ocean tide multidirectional flow driving all-weather hydraulic generator
CN211692702U (en) Frame structure of ocean current power generation equipment
CN111456886B (en) Novel vertical axis tidal current energy conversion device
CN101776034A (en) Damless water-wind roller type power generation device
CN111075636A (en) Frame structure of ocean current power generation equipment
CN1031523C (en) Integrative tide and wave energy power generating apparatus
CN111395280A (en) Non-dam type hydropower station
CN114872847B (en) Floating type ocean comprehensive power station
CN203022959U (en) Chain plate type hydroturbine generating set
CA2602288C (en) Modular system for generating electricity from moving fluid
CN210239899U (en) Power generation device based on fluid kinetic energy