WO2024089967A1 - Manufacturing method for all-solid-state battery - Google Patents

Manufacturing method for all-solid-state battery Download PDF

Info

Publication number
WO2024089967A1
WO2024089967A1 PCT/JP2023/028575 JP2023028575W WO2024089967A1 WO 2024089967 A1 WO2024089967 A1 WO 2024089967A1 JP 2023028575 W JP2023028575 W JP 2023028575W WO 2024089967 A1 WO2024089967 A1 WO 2024089967A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
exterior body
containing material
laminate
manufacturing
Prior art date
Application number
PCT/JP2023/028575
Other languages
French (fr)
Japanese (ja)
Inventor
健児 岡本
英之 福井
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2024089967A1 publication Critical patent/WO2024089967A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/48Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by the material
    • H01M50/486Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This disclosure relates to a method for manufacturing an all-solid-state battery.
  • All-solid-state batteries which have high safety and energy density, are attracting attention.
  • All-solid-state batteries contain a laminate that includes a positive electrode layer, a solid electrolyte layer, and a negative electrode layer as a power generation element.
  • Various proposals have been made regarding the structure and manufacturing methods of all-solid-state batteries.
  • Claim 1 of Patent Document 1 JP 2019-207840 A describes "an all-solid-state battery including a laminated electrode body having a structural portion in which an electrode mixture layer and a solid electrolyte layer are laminated, and a sealing portion covering at least a laminate end face of the laminated electrode body, wherein the electrode mixture layer contains an active material and a binder resin, the sealing portion contains a sealing resin and insulating particles, and the absolute value of the difference between the solubility parameter of the binder resin contained in the electrode mixture layer and the solubility parameter of the sealing resin contained in the sealing portion is 1.9 (cal/cm 3 ) 0.5 or less.”
  • Patent Document 2 Patent No. 6673249 describes a method for manufacturing a laminated all-solid-state battery, which includes: housing an all-solid-state battery stack having one or more all-solid-state battery elements in which a negative electrode current collector layer having a negative electrode current collector tab, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode current collector layer having a positive electrode current collector tab are stacked in this order within an exterior body made of a laminate film; applying pressure to the all-solid-state battery stack housed within the exterior body in the stacking direction from the outside of the exterior body; injecting a filler material into the exterior body while maintaining the pressure; and sealing the exterior body, wherein the pressure applied in the step of applying pressure to the all-solid-state battery stack in the stacking direction is greater than the filler material injection pressure in the step of injecting the filler material.
  • Patent Document 3 states in claim 1 that "an all-solid-state battery includes an all-solid-state battery element having one or more unit cells in which an anode current collector layer, an anode active material layer, a solid electrolyte layer, a cathode active material layer, and a cathode current collector layer are arranged in this order; a metal exterior body having an opening at at least one end and housing the all-solid-state battery element; a resin sealant sealing the opening and contacting the surface of the all-solid-state battery element facing the opening; and an anode current collector layer protrusion and a cathode current collector layer protrusion protruding from the resin sealant to the side opposite the all-solid-state battery element, the resin sealant penetrating at least a part of the gap between the outer periphery of the all-solid-state battery element and the inner periphery of the metal exterior body to form a gap filler, and the resin sealant is a curable resin
  • JP 2019-207840 A Japanese Patent No. 6673249 Patent No. 6772855
  • one of the objectives of the present disclosure is to provide a manufacturing method that can easily manufacture an all-solid-state battery that is less likely to expand even under reduced pressure.
  • the first method for producing an all-solid-state battery includes at least one unit battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, and includes the steps of (i) disposing a first resin-containing material having fluidity and not yet cured in an exterior body having an opening, and (ii) inserting a stack including the at least one unit battery into the exterior body, completing the curing of the first resin-containing material, and disposing the cured first resin-containing material between the exterior body and the stack.
  • the second manufacturing method is a manufacturing method for an all-solid-state battery including at least one unit battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, and includes a step (I) of disposing a laminate including the at least one unit battery in an exterior body having an opening, and a step (II) of disposing the cured resin-containing material between the exterior body and the laminate by starting the supply of a resin-containing material having fluidity that has not yet been cured from the lower side of the exterior body, filling the resin-containing material into the exterior body, and then completing the curing of the resin-containing material.
  • FIG. 1A is a top view diagrammatically illustrating an example of a laminate used in the first embodiment.
  • FIG. 1B is a cross-sectional view taken along line IB-IB in FIG. 1A.
  • FIG. 2A is a cross-sectional view that illustrates a step of the manufacturing method according to the first embodiment.
  • FIG. 2B is a cross-sectional view that typically illustrates a step subsequent to the step illustrated in FIG. 2A.
  • FIG. 3A is a cross-sectional view that illustrates an example of an exterior body used in the manufacturing method of embodiment 1.
  • FIG. 3B is a cross-sectional view that illustrates another example of an exterior body used in the manufacturing method of embodiment 1.
  • FIG. 1A is a top view diagrammatically illustrating an example of a laminate used in the first embodiment.
  • FIG. 1B is a cross-sectional view taken along line IB-IB in FIG. 1A.
  • FIG. 2A is a cross-sectional view that illustrates a step
  • FIG. 3C is a cross-sectional view that illustrates an example of deformation of the exterior body in the manufacturing method of embodiment 1.
  • FIG. 4A is a cross-sectional view that illustrates a step of the manufacturing method according to the second embodiment.
  • FIG. 4B is a cross-sectional view that typically illustrates a step subsequent to the step illustrated in FIG. 4A.
  • FIG. 5 is a cross-sectional view illustrating an example of a process of the manufacturing method according to the second embodiment.
  • FIG. 6 is a cross-sectional view illustrating another example of a step of the manufacturing method according to the second embodiment.
  • the first and second manufacturing methods for the all-solid-state battery are described below.
  • the first and second manufacturing methods may be referred to as “manufacturing method (M1)” and “manufacturing method (M2)” below.
  • the manufacturing method (M1) and the manufacturing method (M2) are each a method for manufacturing an all-solid-state battery including at least one unit cell including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer.
  • a laminate including at least one unit cell is used.
  • the laminate may be referred to as a "laminate (S)".
  • a positive electrode lead tab and a negative electrode lead tab protrude from the laminate (S).
  • An example of the configuration of an all-solid-state battery will be described later.
  • the laminate (S) may be formed by the method described later, or a formed laminate (S) may be obtained and used.
  • First manufacturing method manufacturing method (manufacturing method (M1))
  • the laminate (S) is placed inside the exterior body, and then the sealing resin is injected through an opening of the exterior body to surround the laminate (S).
  • the viscosity of the sealing resin is relatively high, it is difficult to inject the sealing resin so as not to form a gap between the laminate (S) and the exterior body. If a large gap where no sealing resin is placed is formed between the laminate (S) and the exterior body, the battery is likely to expand under reduced pressure.
  • manufacturing method (M1) the first resin-containing material is disposed in advance inside the exterior body, and then the laminate (S) is inserted into the exterior body. Therefore, manufacturing method (M1) can prevent the formation of a large gap between the laminate (S) and the exterior body where no sealing resin is disposed. As a result, an all-solid-state battery that is less likely to expand even under reduced pressure is obtained. Furthermore, in manufacturing method (M1), since it is easy to dispose the first resin-containing material in the exterior body, an all-solid-state battery can be easily manufactured.
  • the first manufacturing method (manufacturing method (M1)) of an all-solid-state battery includes steps (i) and (ii) in this order. These steps are described below.
  • Step (i) is a step of disposing a first resin-containing material having fluidity and not yet cured in an exterior body having an opening.
  • a bottomed rectangular tubular exterior body can be used as the exterior body having an opening.
  • the rectangular tubular part has two main walls (plate-shaped parts) and two side walls connecting the two main walls. One end of the rectangular tubular part is sealed at the bottom, and the other end is open as an opening.
  • the first resin-containing material is not particularly limited, and may be any material that contains a curable resin and can seal the laminate (S) containing the unit cells.
  • a known sealing resin used for sealing electronic components may be used as the first resin-containing material.
  • the first resin-containing material contains at least a resin.
  • the first resin-containing material may be composed of only a resin, or may be composed of a resin and a material other than a resin. Examples of resins contained in the first resin-containing material include epoxy resin and silicone resin.
  • an epoxy resin By using an epoxy resin, the bonding force between the two main walls is strengthened. As a result, the expansion of the exterior body under reduced pressure can be particularly suppressed. Since silicone resin has high viscoelasticity, the use of silicone resin can soften the impact on the laminate (S) and increase the impact resistance of the battery.
  • the first resin-containing material may include a filler dispersed in the resin.
  • the filler include inorganic fillers such as alumina particles, silica particles, etc.
  • the first resin-containing material is placed in the exterior body in a fluid state where it has not yet completely hardened. As long as it has fluidity, the first resin-containing material may have started to harden when it is placed in the exterior body.
  • the first resin-containing material may be dripped from an opening.
  • a nozzle may be inserted into the exterior body and the first resin-containing material may be filled into the exterior body from the nozzle.
  • the viscosity of the first resin-containing material placed in the exterior body in step (i) may be 70 Pa ⁇ s or less, 20 Pa ⁇ s or less, 10 Pa ⁇ s or less, 5.0 Pa ⁇ s or less, or 3.0 Pa ⁇ s or less.
  • the lower limit of the viscosity is not particularly limited, but may be 0.1 Pa ⁇ s or more, 0.3 Pa ⁇ s or more, or 0.5 Pa ⁇ s or more.
  • the amount of the first resin-containing material placed in the exterior body in step (i) is an amount that covers a certain portion of the surface of the laminate (S) when the laminate (S) is inserted into the exterior body in step (ii).
  • the amount is preferably an amount that covers 30% or more, 50% or more, 70% or more, or 90% or more of the total surface area of the laminate (S) with the first resin-containing material when the laminate (S) is inserted into the exterior body in step (ii).
  • the amount may be an amount that covers the entire surface of the laminate (S) when the laminate (S) is inserted into the exterior body in step (ii).
  • the amount may be an amount that covers the end face of the laminate (S) other than the end face on the opening side of the exterior body.
  • Step (ii) is a step of inserting the laminate (S) including at least one unit battery into an outer casing, completing the curing of the first resin-containing material, and disposing the cured first resin-containing material between the outer casing and the laminate.
  • the laminate (S) can be inserted through an opening in the exterior body. After inserting the laminate (S) into the exterior body, the first resin-containing material may be replenished inside the exterior body. It is preferable that the entire laminate (S) is ultimately covered with the first resin-containing material.
  • the method for completing the hardening of the first resin-containing material is not limited, and is selected according to the type of resin contained in the first resin-containing material. For example, when a resin that hardens with heat is used, the first resin-containing material may be hardened by heating. Also, when a resin that hardens over time is used, the first resin-containing material may be hardened by simply leaving it.
  • an all-solid-state battery is obtained that includes the laminate (S) fixed inside the exterior body by the first resin-containing material that has completed curing, and the exterior body.
  • the laminate (S) may be inserted into the exterior body while the exterior body is pulled outward. This configuration makes it easier to insert the laminate (S) into the exterior body.
  • the method for pulling the exterior body outward is not limited, and the main wall of the exterior body may be adsorbed by vacuum suction or the like and pulled outward. Alternatively, the opening of the exterior body may be widened by a jig or the like. These methods can also be used in manufacturing method (M2).
  • the laminate (S) may be inserted into the exterior body with the second resin-containing material applied to the surface of the laminate (S). This configuration makes it easier to insert the laminate (S) into the first resin-containing material.
  • the laminate (S) may be inserted into the exterior body with the applied second resin-containing material not yet cured. Alternatively, the laminate (S) may be inserted into the exterior body with the applied second resin-containing material having been cured.
  • the second resin-containing material may be a material exemplified for the first resin-containing material.
  • the first resin-containing material and the second resin-containing material may contain the same resin. This configuration makes it particularly easy to insert the laminate (S) into the first resin-containing material. This configuration also makes it possible to strengthen the fixation between the resin-containing material in the exterior body and the laminate (S).
  • the first resin-containing material and the second resin-containing material may be composed of the same material.
  • the first resin-containing material and the second resin-containing material may contain the same resin but be composed of different materials overall.
  • the first resin-containing material and the second resin-containing material may be composed of different materials without containing the same resin.
  • the first resin-containing material may be cured while the exterior body is pressurized from the outside. Specifically, the first resin-containing material may be cured while the two main walls of the exterior body are pressurized toward the inside of the exterior body.
  • the laminate (S) can be sealed while the laminate (S) is pressurized in its stacking direction. By pressurizing the laminate (S) in the stacking direction, the battery performance can be fully exhibited. Furthermore, with this configuration, the battery expansion under reduced pressure can be suppressed.
  • step (ii) when the first resin-containing material is cured while the exterior body is pressurized from the outside, the thickness of the central part of the exterior body after step (ii) may be smaller than the thickness of said central part of the exterior body before step (ii) is performed.
  • the laminate (S) can be sealed while being strongly pressurized in the stacking direction.
  • the central part of the exterior body means the central part of one of the main walls of the exterior body when the main wall is viewed in a plan view.
  • Step (i) and step (ii) may be performed under atmospheric pressure.
  • step (ii) may be performed under reduced pressure.
  • both step (i) and step (ii) may be performed under reduced pressure.
  • the second manufacturing method (manufacturing method (M2)) of an all-solid-state battery includes step (I) and step (II) in this order. These steps are described below.
  • Step (I) is a step of disposing a laminate (S) including at least one unit cell in an exterior body having an opening.
  • the laminate (S) can be inserted into the exterior body through the opening of the exterior body.
  • the exterior body having an opening can be an exterior body exemplified in the description of the manufacturing method (M1).
  • step (I) the laminate (S) having a surface coated with a resin-containing material (second resin-containing material) may be placed inside the exterior body. In that case, it becomes easier to fill with the resin-containing material (first resin-containing material) used in step (II).
  • the resin-containing material (first resin-containing material) used in step (II) may be the first resin-containing material exemplified in the description of manufacturing method (M1).
  • the resin-containing material (second resin-containing material) used in step (I) may be the second resin-containing material exemplified in the description of manufacturing method (M1).
  • Step (II) is a step of disposing the cured resin-containing material between the exterior body and the laminate by starting the supply of the resin-containing material having fluidity that has not yet been cured from the lower side of the exterior body, filling the resin-containing material into the exterior body, and then completing the curing of the resin-containing material.
  • the method of completing the curing of the resin-containing material is not limited and is selected according to the type of resin contained in the resin-containing material. For example, when a resin that cures with heat is used, the resin-containing material may be cured by heating. Also, when a resin that cures over time is used, the resin-containing material may be cured by simply leaving it.
  • the resin-containing material may be the material described as the first resin-containing material in manufacturing method (M1).
  • the fluid state in which curing is not complete has been described in manufacturing method (M1), so a duplicate description will be omitted.
  • the viscosity of the resin-containing material when filled into the exterior body may be within the range described for the viscosity of the first resin-containing material used in step (i) of manufacturing method (M1).
  • the lower side of the exterior body means the side below the center in the vertical direction of the internal space of the exterior body in terms of the position of the exterior body when filling with the resin-containing material.
  • the supply of the resin-containing material may be started below a height of H/3 from the bottom of the internal space of the exterior body.
  • the supply of the resin-containing material may be started below a height of H/4 from the bottom of the internal space of the exterior body, or below a height of H/5 from the bottom of the internal space of the exterior body.
  • a nozzle e.g., a tubular nozzle
  • the resin-containing material may be supplied from the tip of the nozzle.
  • the nozzle is pulled out of the exterior body before the resin-containing material is completely cured.
  • the nozzle may be gradually pulled up toward the opening as the resin-containing material fills the exterior body. At least when the supply of the resin-containing material begins, the resin-containing material is supplied from the lower side inside the exterior body.
  • Step (II) is usually performed with the exterior body positioned so that the bottom is facing down and the opening is facing up.
  • step (II) may also be performed with the exterior body positioned in another direction.
  • step (II) may be performed with one main wall of the exterior body facing down and the other main wall facing up.
  • step (II) may be performed with one side wall of the exterior body facing down and the other side wall facing up.
  • the resin-containing material may be filled into the exterior body with part or all of the opening covered.
  • step (II) the resin-containing material having fluidity may be filled into the exterior body while the exterior body is pulled outward, and the resin-containing material may then be cured while the exterior body is pressurized from the outside.
  • the laminate (S) can be sealed while the laminate (S) is pressurized in the stacking direction.
  • pressurizing the laminate (S) in the stacking direction the battery performance can be fully exhibited. Furthermore, with this configuration, the battery expansion under reduced pressure can be suppressed.
  • Step (I) and step (II) may be performed under atmospheric pressure.
  • step (II) may be performed under reduced pressure.
  • step (II) By performing step (II) under reduced pressure, it becomes easier to fill the resin-containing material into the exterior body.
  • step (II) under reduced pressure, it is possible to prevent the formation of voids between the exterior body and the laminate (S). As a result, it is possible to prevent the battery from expanding when the manufactured all-solid-state battery is placed under reduced pressure.
  • the exterior body may be made of metal. Examples of metals that can be used for the exterior body will be described later.
  • the exterior body may be an exterior body that pressurizes the laminate (S) in the stacking direction.
  • an exterior body is an exterior body in which two main walls are curved so as to be convex toward the inside when nothing is contained. By using such main walls, the laminate (S) can be pressurized in the stacking direction.
  • the laminate (S) is inserted into the exterior body with the exterior body (at least the main walls) pulled outward.
  • resin is filled between the exterior body and the laminate (S). Therefore, the pressure force from the exterior body is easily transmitted uniformly to the laminate (S).
  • the shape and size of the exterior body are selected so that when the laminate and resin-containing material are housed, the main walls are flatter than before they are housed.
  • the laminate (S) can be pressurized in the stacking direction by the main walls.
  • the present disclosure provides a third manufacturing method (manufacturing method (M3)) for an all-solid-state battery.
  • the third manufacturing method is a method for manufacturing an all-solid-state battery including at least one unit battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer.
  • the third manufacturing method includes a step (Ia) of disposing a laminate including the at least one unit battery in an exterior body having an opening, and a step (IIa) of disposing the cured resin-containing material between the exterior body and the laminate by starting the supply of a resin-containing material having fluidity that has not yet been cured from a lower side of a resin-filled region in the exterior body, filling the resin-containing material into the resin-filled region, and then completing the curing of the resin-containing material.
  • Step (Ia) is the same as step (I) of manufacturing method (M2) except that the internal space of the exterior body may be divided into upper and lower parts, so a duplicated explanation will be omitted.
  • step (Ia) if a cylindrical body without a bottom (e.g., a rectangular cylindrical body) is used as the exterior body, a partition can be used to divide the internal space of the exterior body. The partition is formed around the laminate.
  • manufacturing method (M3) as explained in manufacturing method (M2), a rectangular cylindrical body with a bottom may be used as the exterior body.
  • Step (IIa) is a step in which the step (II) of manufacturing method (M2) of "starting the supply of resin-containing material having fluidity that has not yet been cured from the lower side of the exterior body, filling the exterior body with the resin-containing material, and then completing the curing of the resin-containing material" is replaced with the step of "starting the supply of resin-containing material having fluidity that has not yet been cured from the lower side of the resin-filled region of the exterior body, filling the resin-containing material into the resin-filled region, and then completing the curing of the resin-containing material.”
  • the matters described in step (II) can be applied to step (IIa).
  • step (M2) With the exception of the differences between step (I) and step (Ia) and the differences between step (II) and step (IIa), the matters described in manufacturing method (M2) can be applied to manufacturing method (M3). From one perspective, manufacturing method (M2) can be considered to be included in manufacturing method (M3).
  • the resin-filled area means the space filled with the resin-containing material.
  • the lower side of the resin-filled area means the side below the vertical center of the resin-filled area in the arrangement of the exterior body when filling with the resin-containing material.
  • the supply of the resin-filled material may be started from a side lower than a height of Ha/3 from the bottom of the resin-filled area.
  • the supply of the resin-filled material may be started from a side lower than a height of Ha/4 from the bottom of the resin-filled area, or from a side lower than a height of Ha/5 from the bottom of the resin-filled area.
  • the internal space of the exterior body may be divided into two spaces (a lower space and an upper space) by a partition arranged around the laminate.
  • a laminate having a ridge-like portion arranged around the periphery as a partition may be arranged inside the exterior body, thereby dividing the internal space of the exterior body into two spaces. In that case, two resin-filled regions are formed inside the exterior body.
  • the step (IIa) first, the supply of a resin-containing material having fluidity is started from the lower side of the upper space (one of the resin-filled regions) to fill the space with the resin-containing material, and then the resin-containing material is hardened.
  • the exterior body is turned upside down, and the supply of a resin-containing material having fluidity is started from the lower side of the other space (the other resin-filled region) to fill the space with the resin-containing material, and then the resin-containing material is hardened.
  • the hardened resin-containing material can be arranged in two spaces (two resin-filled regions).
  • the all-solid-state battery manufactured by the manufacturing method (M1) and the all-solid-state battery manufactured by the manufacturing method (M2) basically have the same configuration. Examples of components of the all-solid-state battery manufactured by the manufacturing method (M1) and the manufacturing method (M2) are described below. However, the following components are examples, and other components may be used. Note that, although the following mainly describes an example of an all-solid-state lithium ion battery, other all-solid-state batteries may also be used.
  • the all-solid-state battery is not particularly limited, and may be a known all-solid-state battery.
  • the all-solid-state battery includes a laminate (S).
  • the laminate (S) includes at least one unit cell (power generating element).
  • the laminate (S) may include only one unit cell, or may include multiple unit cells stacked together.
  • the unit cell includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer.
  • the laminate (S) includes a current collector as necessary. In an all-solid-state battery, it is preferable that the laminate (S) is pressurized in the stacking direction. Pressurizing the laminate (S) enables it to exhibit high performance.
  • the exterior body can be a metal case, etc.
  • the metal plate constituting the case include a stainless steel plate, a carbon steel plate, an aluminum alloy plate, etc.
  • the thickness of the metal plate constituting the exterior body may be selected according to the material, the required pressure resistance, and the material of the metal plate.
  • the thickness of the metal plate constituting the exterior body may be 0.10 mm or more, or 0.15 mm or more, and may be 0.60 mm or less, or 0.50 mm or less.
  • the positive electrode layer includes a positive electrode active material, and may include other components as necessary.
  • the other components include known components (such as binders and conductive materials) used in the positive electrode layer of all-solid-state batteries.
  • the positive electrode layer may include a solid electrolyte exhibiting lithium ion conductivity together with the positive electrode active material.
  • the positive electrode active material is used in the form of particles (powder).
  • the positive electrode active material may be a material that can be used as a positive electrode active material for a solid-state battery.
  • examples of the positive electrode active material include lithium-containing composite oxides and compounds other than oxides.
  • lithium-containing composite oxides include lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, and other lithium-containing composite oxides (LiNi 0.8 Co 0.15 Al 0.05 O 2 , etc.).
  • compounds other than oxides include olivine compounds (LiMPO 4 , etc.), sulfur-containing compounds (Li 2 S, etc.), etc.
  • M represents a transition metal.
  • the positive electrode active material may be used alone or in combination of two or more types.
  • the negative electrode layer includes a negative electrode active material, and may include other components as necessary. Examples of the other components include known components (such as binders and conductive materials) used in the negative electrode layer of all-solid-state batteries.
  • the negative electrode layer may include a negative electrode active material and a solid electrolyte exhibiting lithium ion conductivity. Usually, the negative electrode active material is used in the form of particles (powder).
  • the negative electrode active material may be a material that can be used as a negative electrode active material for an all-solid-state battery.
  • the negative electrode active material may be a specific material (such as a carbonaceous material, a metal or semimetal element or alloy, or a compound) that can reversibly store and release lithium ions.
  • carbonaceous materials include graphite (natural graphite, artificial graphite, etc.), hard carbon, and amorphous carbon.
  • metal or semimetal element or alloy include lithium metal or alloy, and simple silicon.
  • Examples of compounds include oxides (such as titanium oxide and silicon oxide), sulfides, nitrides, hydrates, and silicides (such as lithium silicide).
  • the negative electrode active material may be used alone or in combination of two or more types.
  • silicon oxide and a carbonaceous material may be used in combination.
  • particles containing graphite particles and amorphous carbon covering the graphite particles may be used.
  • the solid electrolyte layer is disposed between the positive electrode layer and the negative electrode layer.
  • the solid electrolyte layer includes a solid electrolyte, and may include other components as necessary. Examples of the other components include known components used in the solid electrolyte layer of an all-solid-state battery.
  • the solid electrolyte is usually used in the form of particles (powder).
  • the solid electrolyte can be any material that can be used as a solid electrolyte in an all-solid-state battery, without any particular restrictions.
  • the solid electrolyte can be any material that has lithium ion conductivity.
  • examples of such solid electrolytes include inorganic solid electrolytes such as sulfides (sulfide-based solid electrolytes) and hydrides (hydride-based solid electrolytes).
  • Examples of sulfides include Li 2 S-SiS 2 , Li 2 S-P 2 S 5 , Li 2 S-GeS 2 , Li 2 S-B 2 S 3 , Li 2 S-Ga 2 S 3 , Li 2 S-Al 2 S 3 , Li 2 S-GeS 2 -P 2 S 5 , Li 2 S-Al 2 S 3 -P 2 S 5 , Li 2 S-P 2 S 3 , Li 2 S-P 2 S 3 -P 2 S 5 , LiX-Li 2 S-P 2 S 5 , LiX-Li 2 S-SiS 2 , LiX-Li 2 S-B 2 S 3 (X: I, Br, or Cl), etc.
  • Examples of the hydrides include LiBH 4 -LiI-based complex hydrides and LiBH 4 -LiNH 2 -based complex hydrides, etc.
  • a positive electrode current collector is usually disposed on the outside of the positive electrode layer.
  • a metal foil may be used as the positive electrode current collector.
  • materials for the positive electrode current collector include aluminum, magnesium, stainless steel, titanium, iron, cobalt, zinc, tin, or alloys thereof. Lead tabs are connected to the positive electrode current collector and the negative electrode current collector as necessary.
  • a negative electrode current collector is usually disposed on the outside of the negative electrode layer.
  • the negative electrode current collector may be a metal foil.
  • materials for the negative electrode current collector include copper, nickel, stainless steel, titanium, or alloys thereof.
  • the method for forming the laminate (S) is not particularly limited, and may be a known forming method.
  • the laminate (S) is preferably formed using a material that does not contain a liquid component.
  • An example of a method for forming the laminate (S) by such a forming method (dry forming method) will be described below.
  • the material of the positive electrode layer, the material of the solid electrolyte layer, and the material of the negative electrode layer are stacked on a metal foil (current collector) in a predetermined order, and then the current collector (metal foil) is placed.
  • the stacked materials and the metal foil are pressed together (main press) to form a laminate (S).
  • This main press integrates the metal foil and each layer to obtain the laminate (S).
  • the pressure of the main press can be changed appropriately depending on the material and thickness, and may be 50 MPa or more and 5000 MPa or less (for example, 300 MPa or more and 3000 MPa or less). In this way, a laminate (S) having a structure of positive electrode collector/positive electrode layer/solid electrolyte layer/negative electrode layer/negative electrode collector is obtained.
  • the laminate (S) may include layers other than these layers, such as a thin conductive layer.
  • the materials may be preliminarily pressed at any stage after the material for the positive electrode layer is placed, the material for the solid electrolyte layer is placed, or the material for the negative electrode layer is placed.
  • the preliminarily pressed is usually performed at a pressure lower than the pressure of the main press described above. There is no particular limit to the pressure of the preliminarily pressed, and it may be in the range of 1 MPa to 10 MPa. In order to reduce voids in the laminate, at least a part of the process of forming the laminate may be performed under reduced pressure.
  • the laminate (S) By forming the laminate (S) using a process of pressing materials that do not contain liquid components, it is possible to obtain an all-solid-state battery that exhibits high performance without high pressure.
  • a method for arranging materials that do not contain liquid components (dispersion medium) in layers electrostatic spraying, squeegee film formation, electrostatic painting, etc. may also be used.
  • a laminate including one unit battery may be formed by press molding, and then the laminate may be stacked to form the laminate (S).
  • the laminate (S) may be formed by press molding the materials so that multiple unit batteries are stacked.
  • FIG. 1A An example of the manufacturing method (M1) will be described.
  • a laminate 110 laminate (S)
  • a top view of the laminate 110 is shown in FIG. 1A.
  • a cross-sectional view along the line IB-IB in FIG. 1A is shown in FIG. 1B.
  • the laminate 110 includes a positive electrode collector 111, a unit battery 113, and a negative electrode collector 112.
  • the unit battery 113 includes a positive electrode layer 113a, a solid electrolyte layer 113b, and a negative electrode layer 113c. These layers and collectors are stacked in a stacking direction SD.
  • the laminate 110 may be formed by the process described above.
  • the positive electrode lead tab 121 may be integral with the positive electrode current collector 111, or may be a lead tab connected to the positive electrode current collector 111.
  • the negative electrode lead tab 122 may be integral with the negative electrode current collector 112, or may be a lead tab connected to the negative electrode current collector 112.
  • a resin-containing material (first resin-containing material) 201a that has not yet completely hardened and has fluidity is placed in an exterior body 120 having an opening (step (i)).
  • a cross-sectional view of the exterior body 120 taken along line IIIA-IIIA in FIG. 2A is shown in FIG. 3A.
  • the exterior body 120 includes an angular tube portion 120a and a bottom portion 120b that seals one end of the angular tube portion 120a.
  • the other end of the angular tube portion 120a is open as an opening portion 120t.
  • the angular tube portion 120a is composed of two opposing main walls 120am and two side walls 120as that connect the two main walls 120am.
  • FIG. 3B A cross-sectional view of another example of the exterior body 120 is shown in FIG. 3B.
  • the two main walls 120am are curved so as to be convex toward the inside.
  • the main walls 120am have a ridge-like shape that is convex toward the inside.
  • the laminate 110 is inserted into the exterior body, and then the curing of the resin-containing material 201a is completed (step (ii)).
  • the cured resin-containing material (first resin-containing material) 201b is disposed between the exterior body 120 and the laminate 110.
  • the all-solid-state battery 100 is obtained.
  • the positive electrode lead tab 121 and the negative electrode lead tab 122 protrude from the cured resin-containing material 201b.
  • the laminate 110 may be inserted into the exterior body 120 with the exterior body 120 pulled outward.
  • the cross-sectional shape of the exterior body 120 in the state in which the exterior body 120 is pulled outward is shown diagrammatically in FIG. 3C.
  • the state shown in FIG. 3C is a state in which the center of the main wall 120am in the width direction WD is pulled outward.
  • the width direction WD is the direction connecting the two side walls 120as.
  • the resin-containing material 201a may be cured while the exterior body is pressurized from the outside. Specifically, the resin-containing material 201a may be cured while the main wall 120am is pressurized inward.
  • the laminate 110 is placed in an exterior body 120 having an opening 120t (step (I)).
  • the exterior body 120 has been described in embodiment 1, so a duplicate description will be omitted.
  • step (II) the supply of the resin-containing material having fluidity that has not yet been cured is started from the lower side inside the exterior body 120 to fill the resin-containing material inside the exterior body 120, and then the curing of the resin-containing material is completed (step (II)).
  • the cured resin-containing material 201b is disposed between the exterior body 120 and the laminate 110. In this manner, the all-solid-state battery 100 is obtained.
  • the positive electrode lead tab 121 and the negative electrode lead tab 122 protrude from the cured resin-containing material 201b.
  • the resin-containing material may be filled into the exterior body 120 using a nozzle (tube) 210 as shown in FIG. 5.
  • the height H of the exterior body 120 in the arrangement of the exterior body 120 shown in FIG. 5 is shown in FIG.
  • the supply of the resin-containing material is started from the lower side of the internal space of the exterior body 120, that is, from a position lower than a height of H/2 from the inner surface of the bottom 120b.
  • the nozzle 210 is arranged so that the tip of the nozzle 210 reaches the lower side of the exterior body 120, and the resin-containing material is supplied into the exterior body 120 from the tip of the nozzle 210.
  • the position of the nozzle 210 (the position of the tip of the nozzle 210) may be the same until the filling of the resin-containing material is completed. Alternatively, the nozzle 210 may be gradually raised as the resin-containing material is filled.
  • step (I) and step (II) are performed with the bottom 120b of the exterior body 120 positioned downward.
  • step (I) and step (II) may be performed with a part of the exterior body 120 other than the bottom 120b positioned downward.
  • FIG. 6 shows an example in which one of the main walls 120am is arranged downward.
  • the height H of the exterior body 120 in the arrangement of the exterior body 120 shown in FIG. 6 is also shown in FIG. 6.
  • step (II) may be performed in the arrangement of FIG. 6, it may be performed with the opening 120t sealed with the lid 130.
  • step (II) may be performed by forming a through-hole on the lower side of the exterior body 120 in the arrangement of FIG. 6, and filling the exterior body 120 with the resin-containing material through the through-hole.
  • a gap or through-hole may be formed on the lower side of the lid 130, and the resin-containing material may be filled into the exterior body 120 through the gap or through-hole.
  • Figures 4A and 4B show an example in which the exterior body 120 is arranged so that the bottom 120b is parallel to the horizontal plane, the bottom 120b may be inclined relative to the horizontal plane.
  • Figure 6 shows an example in which the exterior body 120 is arranged so that the main wall 120am is parallel to the horizontal plane, but the main wall 120am may be inclined relative to the horizontal plane.
  • the height of the exterior body refers to the length of the exterior body along the vertical direction.
  • Example 1 A method for producing an all-solid-state battery including at least one unit cell including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, comprising: A step (i) of disposing a first resin-containing material having flowability and not yet cured in an exterior body having an opening; and (ii) completing curing of the first resin-containing material after inserting a laminate including the at least one unit battery into the exterior body, and disposing the cured first resin-containing material between the exterior body and the laminate.
  • Example 2 The manufacturing method according to Example 1, wherein in the step (ii), the laminate is inserted into the exterior body while the exterior body is pulled outward.
  • Example 3 The manufacturing method according to Example 1 or 2, wherein in the step (ii), the laminate is inserted into the outer casing in a state in which a second resin-containing material is applied to a surface of the laminate.
  • Example 4 The manufacturing method described in Invention Example 3, wherein the first resin-containing material and the second resin-containing material contain the same resin.
  • Example 5 The manufacturing method according to any one of Examples 1 to 4, wherein in the step (ii), the first resin-containing material is cured in a state in which the outer casing is pressurized from the outside.
  • Example 6 A manufacturing method described in Example 5, wherein the thickness of the central portion of the outer casing after step (ii) is smaller than the thickness of the central portion of the outer casing before step (ii) is performed.
  • Example 7 The method of any one of Invention Examples 1 to 6, wherein the step (i) and the step (ii) are carried out under reduced pressure.
  • a method for producing an all-solid-state battery including at least one unit cell including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer comprising: a step (I) of disposing a laminate including at least one unit battery in an exterior body having an opening; and (II) supplying a resin-containing material that has not yet been cured and has fluidity from a lower side of the exterior body to fill the exterior body with the resin-containing material, and then completing the curing of the resin-containing material, thereby disposing the cured resin-containing material between the exterior body and the laminate.
  • Example 9 In the step (II), The manufacturing method described in Example 8 of the present invention, in which the resin-containing material having fluidity is filled into the exterior body while the exterior body is pulled outward, and then the resin-containing material is hardened while the exterior body is pressurized from the outside. (Example 10) The method according to claim 8 or 9, wherein step (II) is carried out under reduced pressure. (Example 11) The manufacturing method according to any one of Examples 1 to 10, wherein the exterior body is made of metal. (Example 12) The manufacturing method described in Example 11, wherein the outer casing is an outer casing that presses the laminate in the stacking direction.
  • All-solid-state battery 110 Laminate 113: Unit battery 113a: Cathode layer 113b: Solid electrolyte layer 113c: Negative electrode layer 120: Exterior body 120a: Square tube portion 120am: Main wall 120as: Side wall 120b: Bottom portion 120t: Opening 201a: Resin-containing material (first resin-containing material, before curing is completed) 201b: Resin-containing material (first resin-containing material, after curing) 210: Nozzle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

This disclosed manufacturing method is for manufacturing an all-solid-state battery including at least one unit cell that includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer. This manufacturing method includes: a step (i) for disposing, inside an exterior body having an opening, a fluid first resin-containing material for which curing is not complete; and a step (ii) for inserting a laminate (110), including the at least one unit cell, into the exterior body (120) and thereafter completing the curing of the first resin-containing material, thus disposing the cured first resin-containing material (201b) between the exterior body (120) and the laminate (110).

Description

全固体電池の製造方法Manufacturing method for all-solid-state batteries
 本開示は、全固体電池の製造方法に関する。 This disclosure relates to a method for manufacturing an all-solid-state battery.
 現在、安全性およびエネルギー密度が高い全固体電池が注目されている。全固体電池は、正極層、固体電解質層、および負極層を含む積層体を、発電要素として含む。全固体電池の構造や製造方法について、従来から様々な提案がなされている。 Currently, all-solid-state batteries, which have high safety and energy density, are attracting attention. All-solid-state batteries contain a laminate that includes a positive electrode layer, a solid electrolyte layer, and a negative electrode layer as a power generation element. Various proposals have been made regarding the structure and manufacturing methods of all-solid-state batteries.
 特許文献1(特開2019-207840号公報)の請求項1には、「電極合材層と固体電解質層とが積層された構造部分を有する積層電極体と、前記積層電極体の少なくとも積層端面を覆う封止部と、を備えた全固体電池であって、前記電極合材層は、活物質とバインダ樹脂とを含み、前記封止部は、封止樹脂と絶縁粒子とを含み、前記電極合材層に含まれる前記バインダ樹脂の溶解度パラメータと、前記封止部に含まれる前記封止樹脂の溶解度パラメータとの差の絶対値が、1.9(cal/cm0.5以下である、全固体電池」が記載されている。 Claim 1 of Patent Document 1 (JP 2019-207840 A) describes "an all-solid-state battery including a laminated electrode body having a structural portion in which an electrode mixture layer and a solid electrolyte layer are laminated, and a sealing portion covering at least a laminate end face of the laminated electrode body, wherein the electrode mixture layer contains an active material and a binder resin, the sealing portion contains a sealing resin and insulating particles, and the absolute value of the difference between the solubility parameter of the binder resin contained in the electrode mixture layer and the solubility parameter of the sealing resin contained in the sealing portion is 1.9 (cal/cm 3 ) 0.5 or less."
 特許文献2(特許第6673249号)の請求項1には、「負極集電タブを有する負極集電体層、負極活物質層、固体電解質層、正極活物質層、及び正極集電タブを有する正極集電体層がこの順に積層された全固体電池素子を1個以上有する全固体電池積層体を、ラミネートフィルムから成る外装体内に収容すること、前記外装体の外側から、前記外装体内に収納された前記全固体電池積層体を積層方向に加圧すること、前記加圧を維持しながら前記外装体内に充填材を注入すること、並びに前記外装体を封止することを含み、前記全固体電池積層体を積層方向に加圧する工程において印加する圧力が、充填材を注入する工程における充填材注入圧より大きい、ラミネート全固体電池の製造方法」が記載されている。 Claim 1 of Patent Document 2 (Patent No. 6673249) describes a method for manufacturing a laminated all-solid-state battery, which includes: housing an all-solid-state battery stack having one or more all-solid-state battery elements in which a negative electrode current collector layer having a negative electrode current collector tab, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode current collector layer having a positive electrode current collector tab are stacked in this order within an exterior body made of a laminate film; applying pressure to the all-solid-state battery stack housed within the exterior body in the stacking direction from the outside of the exterior body; injecting a filler material into the exterior body while maintaining the pressure; and sealing the exterior body, wherein the pressure applied in the step of applying pressure to the all-solid-state battery stack in the stacking direction is greater than the filler material injection pressure in the step of injecting the filler material.
 特許文献3(特許第6772855号)の請求項1には、「負極集電体層、負極活物質層、固体電解質層、正極活物質層、及び正極集電体層が、この順で配置された単位電池を、1つ以上有する全固体電池素子と、少なくとも一端に開口部を有し、かつ、前記全固体電池素子が収容されている金属外装体と、前記開口部を封止しており、かつ、前記全固体電池素子の、前記開口部に対向する面に接している樹脂封止体と、前記樹脂封止体から、前記全固体電池素子と反対側に突出している、負極集電体層突出部及び正極集電体層突出部と、を備え、前記樹脂封止体が、前記全固体電池素子の外周と前記金属外装体の内周との間の隙間の少なくとも一部に侵入して、隙間充填体を形成しており、前記樹脂封止体が硬化性樹脂である、全固体電池」が記載されている。 Patent Document 3 (Patent No. 6772855) states in claim 1 that "an all-solid-state battery includes an all-solid-state battery element having one or more unit cells in which an anode current collector layer, an anode active material layer, a solid electrolyte layer, a cathode active material layer, and a cathode current collector layer are arranged in this order; a metal exterior body having an opening at at least one end and housing the all-solid-state battery element; a resin sealant sealing the opening and contacting the surface of the all-solid-state battery element facing the opening; and an anode current collector layer protrusion and a cathode current collector layer protrusion protruding from the resin sealant to the side opposite the all-solid-state battery element, the resin sealant penetrating at least a part of the gap between the outer periphery of the all-solid-state battery element and the inner periphery of the metal exterior body to form a gap filler, and the resin sealant is a curable resin."
特開2019-207840号公報JP 2019-207840 A 特許第6673249号公報Japanese Patent No. 6673249 特許第6772855号公報Patent No. 6772855
 従来の全固体電池を減圧下で用いた場合、ケース内の圧力が外圧よりも高くなると、電池が膨張して電池の性能が低下する。ケース内を負圧とした場合でも、減圧下で電池が膨張しないようするには、ケース内部を高真空にしたり、ケースに加圧構造を用いたりする必要がある。このような状況において、本開示の目的の1つは、減圧下でも電池が膨張しにくい全固体電池を容易に製造できる製造方法を提供することである。 When a conventional all-solid-state battery is used under reduced pressure, if the pressure inside the case becomes higher than the external pressure, the battery expands and its performance deteriorates. Even if the pressure inside the case is negative, in order to prevent the battery from expanding under reduced pressure, it is necessary to create a high vacuum inside the case or to use a pressurized structure for the case. In this situation, one of the objectives of the present disclosure is to provide a manufacturing method that can easily manufacture an all-solid-state battery that is less likely to expand even under reduced pressure.
 本開示の一局面は、全固体電池の第1の製造方法に関する。当該第1の製造方法は、正極層、負極層、および前記正極層と前記負極層との間に配置された固体電解質層を含む少なくとも1つの単位電池を含む全固体電池の製造方法であって、開口部を有する外装体内に、硬化が完了していない流動性を有する第1の樹脂含有材料を配置する工程(i)と、前記少なくとも1つの単位電池を含む積層体を前記外装体内に挿入した後に前記第1の樹脂含有材料の硬化を完了させ、前記外装体と前記積層体との間に硬化した前記第1の樹脂含有材料を配置する工程(ii)とを含む。 One aspect of the present disclosure relates to a first method for producing an all-solid-state battery. The first method for producing an all-solid-state battery includes at least one unit battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, and includes the steps of (i) disposing a first resin-containing material having fluidity and not yet cured in an exterior body having an opening, and (ii) inserting a stack including the at least one unit battery into the exterior body, completing the curing of the first resin-containing material, and disposing the cured first resin-containing material between the exterior body and the stack.
 本開示の一局面は、全固体電池の第2の製造方法に関する。当該第2の製造方法は、正極層、負極層、および前記正極層と前記負極層との間に配置された固体電解質層を含む少なくとも1つの単位電池を含む全固体電池の製造方法であって、前記少なくとも1つの単位電池を含む積層体を開口部を有する外装体内に配置する工程(I)と、硬化が完了していない流動性を有する樹脂含有材料の供給を前記外装体内の下方側から開始して前記樹脂含有材料を前記外装体内に充填した後に前記樹脂含有材料の硬化を完了させることによって、前記外装体と前記積層体との間に硬化した前記樹脂含有材料を配置する工程(II)とを含む。 One aspect of the present disclosure relates to a second manufacturing method for an all-solid-state battery. The second manufacturing method is a manufacturing method for an all-solid-state battery including at least one unit battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, and includes a step (I) of disposing a laminate including the at least one unit battery in an exterior body having an opening, and a step (II) of disposing the cured resin-containing material between the exterior body and the laminate by starting the supply of a resin-containing material having fluidity that has not yet been cured from the lower side of the exterior body, filling the resin-containing material into the exterior body, and then completing the curing of the resin-containing material.
 本開示の製造方法によれば、減圧下でも電池が膨張しにくい全固体電池を容易に製造できる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
According to the manufacturing method of the present disclosure, it is possible to easily manufacture an all-solid-state battery that is less likely to expand even under reduced pressure.
The novel features of the present invention are set forth in the appended claims, but the present invention, both in terms of structure and content, together with other objects and features of the present invention, will be better understood from the following detailed description taken in conjunction with the drawings.
図1Aは、実施形態1で用いられる積層体の一例を模式的に示す上面図である。FIG. 1A is a top view diagrammatically illustrating an example of a laminate used in the first embodiment. 図1Bは、図1Aの線IB-IBにおける断面図である。FIG. 1B is a cross-sectional view taken along line IB-IB in FIG. 1A. 図2Aは、実施形態1の製造方法の一工程を模式的に示す断面図である。FIG. 2A is a cross-sectional view that illustrates a step of the manufacturing method according to the first embodiment. 図2Bは、図2Aに示した一工程に続く一工程を模式的に示す断面図である。FIG. 2B is a cross-sectional view that typically illustrates a step subsequent to the step illustrated in FIG. 2A. 図3Aは、実施形態1の製造方法に用いられる外装体の一例を模式的に示す断面図である。FIG. 3A is a cross-sectional view that illustrates an example of an exterior body used in the manufacturing method of embodiment 1. 図3Bは、実施形態1の製造方法に用いられる外装体の他の一例を模式的に示す断面図である。FIG. 3B is a cross-sectional view that illustrates another example of an exterior body used in the manufacturing method of embodiment 1. 図3Cは、実施形態1の製造方法における外装体の変形の一例を模式的に示す断面図である。FIG. 3C is a cross-sectional view that illustrates an example of deformation of the exterior body in the manufacturing method of embodiment 1. 図4Aは、実施形態2の製造方法の一工程を模式的に示す断面図である。FIG. 4A is a cross-sectional view that illustrates a step of the manufacturing method according to the second embodiment. 図4Bは、図4Aに示した一工程に続く一工程を模式的に示す断面図である。FIG. 4B is a cross-sectional view that typically illustrates a step subsequent to the step illustrated in FIG. 4A. 図5は、実施形態2の製造方法の一工程の一例を模式的に示す断面図である。FIG. 5 is a cross-sectional view illustrating an example of a process of the manufacturing method according to the second embodiment. 図6は、実施形態2の製造方法の一工程の他の一例を模式的に示す断面図である。FIG. 6 is a cross-sectional view illustrating another example of a step of the manufacturing method according to the second embodiment.
 以下では、本開示に係る実施形態について例を挙げて説明するが、本開示は以下で説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示に係る発明を実施できる限り、他の数値や他の材料を適用してもよい。この明細書において、「数値A~数値B」という記載は、数値Aおよび数値Bを含み、「数値A以上で数値B以下」と読み替えることが可能である。以下の説明において、特定の物性や条件などに関する数値の下限と上限とを例示した場合、下限が上限以上とならない限り、例示した下限のいずれかと例示した上限のいずれかとを任意に組み合わせることができる。 Below, examples of embodiments of the present disclosure are described, but the present disclosure is not limited to the examples described below. In the following description, specific numerical values and materials may be exemplified, but other numerical values and other materials may be applied as long as the invention of the present disclosure can be implemented. In this specification, the expression "numerical value A to numerical value B" includes numerical value A and numerical value B and can be read as "numerical value A or more and numerical value B or less." In the following description, when numerical values for specific physical properties or conditions are exemplified as lower and upper limits, any of the exemplified lower limits can be arbitrarily combined with any of the exemplified upper limits, as long as the lower limit is not greater than the upper limit.
 全固体電池の第1の製造方法および第2の製造方法について、以下に説明する。第1の製造方法および第2の製造方法を以下では、「製造方法(M1)」および「製造方法(M2)」と称する場合がある。 The first and second manufacturing methods for the all-solid-state battery are described below. The first and second manufacturing methods may be referred to as "manufacturing method (M1)" and "manufacturing method (M2)" below.
 製造方法(M1)および製造方法(M2)はそれぞれ、正極層、負極層、および正極層と負極層との間に配置された固体電解質層を含む少なくとも1つの単位電池を含む全固体電池の製造方法である。製造方法(M1)および製造方法(M2)では、少なくとも1つの単位電池を含む積層体が用いられる。当該積層体を、以下では、「積層体(S)」と称する場合がある。通常、積層体(S)からは、正極リードタブおよび負極リードタブが突出している。全固体電池の構成の例については後述する。積層体(S)を準備する方法に限定はない。積層体(S)は後述した方法で形成してもよいし、形成された積層体(S)を入手して用いてもよい。 The manufacturing method (M1) and the manufacturing method (M2) are each a method for manufacturing an all-solid-state battery including at least one unit cell including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer. In the manufacturing method (M1) and the manufacturing method (M2), a laminate including at least one unit cell is used. Hereinafter, the laminate may be referred to as a "laminate (S)". Typically, a positive electrode lead tab and a negative electrode lead tab protrude from the laminate (S). An example of the configuration of an all-solid-state battery will be described later. There is no limitation on the method for preparing the laminate (S). The laminate (S) may be formed by the method described later, or a formed laminate (S) may be obtained and used.
 (第1の製造方法(製造方法(M1)))
 従来の製造方法では、積層体(S)を外装体内に配置してから、封止樹脂を外装体の開口部から注入して積層体(S)の周囲に配置していた。しかし、封止樹脂の粘度はある程度高いため、積層体(S)と外装体との間に空隙が形成されないように封止樹脂を注入することが難しかった。積層体(S)と外装体との間に封止樹脂が配置されていない大きな空隙が形成されると、減圧下において電池が膨張しやすくなる。
(First manufacturing method (manufacturing method (M1)))
In the conventional manufacturing method, the laminate (S) is placed inside the exterior body, and then the sealing resin is injected through an opening of the exterior body to surround the laminate (S). However, since the viscosity of the sealing resin is relatively high, it is difficult to inject the sealing resin so as not to form a gap between the laminate (S) and the exterior body. If a large gap where no sealing resin is placed is formed between the laminate (S) and the exterior body, the battery is likely to expand under reduced pressure.
 以下で説明するように、製造方法(M1)では、第1の樹脂含有材料を予め外装体内に配置しておき、その後に積層体(S)を外装体内に挿入する。そのため、製造方法(M1)によれば、積層体(S)と外装体との間に、封止樹脂が配置されていない大きな空隙が形成されることを抑制できる。その結果、減圧下でも膨張しにくい全固体電池が得られる。さらに、製造方法(M1)では、第1の樹脂含有材料を外装体に配置することが容易であるため、全固体電池を容易に製造できる。 As described below, in manufacturing method (M1), the first resin-containing material is disposed in advance inside the exterior body, and then the laminate (S) is inserted into the exterior body. Therefore, manufacturing method (M1) can prevent the formation of a large gap between the laminate (S) and the exterior body where no sealing resin is disposed. As a result, an all-solid-state battery that is less likely to expand even under reduced pressure is obtained. Furthermore, in manufacturing method (M1), since it is easy to dispose the first resin-containing material in the exterior body, an all-solid-state battery can be easily manufactured.
 全固体電池の第1の製造方法(製造方法(M1))は、工程(i)と工程(ii)とをこの順に含む。それらの工程について、以下に説明する。 The first manufacturing method (manufacturing method (M1)) of an all-solid-state battery includes steps (i) and (ii) in this order. These steps are described below.
 (工程(i))
 工程(i)は、開口部を有する外装体内に、硬化が完了していない流動性を有する第1の樹脂含有材料を配置する工程である。開口部を有する外装体には、例えば、有底の角筒状の外装体を用いることができる。角筒状の部分は、2つの主壁(板状部)と、それら2つの主壁を結ぶ2つの側壁を有する。角筒状の部分の一端は底部で封じられており、他端は開口部として開口している。
(Step (i))
Step (i) is a step of disposing a first resin-containing material having fluidity and not yet cured in an exterior body having an opening. For example, a bottomed rectangular tubular exterior body can be used as the exterior body having an opening. The rectangular tubular part has two main walls (plate-shaped parts) and two side walls connecting the two main walls. One end of the rectangular tubular part is sealed at the bottom, and the other end is open as an opening.
 第1の樹脂含有材料は特に限定されず、硬化可能な樹脂を含み、単位電池を含む積層体(S)を封止できる材料であればよい。第1の樹脂含有材料として、電子部品の封止に用いられる公知の封止樹脂を用いてもよい。第1の樹脂含有材料は、少なくとも樹脂を含有する。第1の樹脂含有材料は、樹脂のみで構成されてもよいし、樹脂と樹脂以外の材料とで構成されてもよい。第1の樹脂含有材料に含有される樹脂の例には、エポキシ樹脂、シリコーン樹脂などが含まれる。エポキシ樹脂を用いることによって、2つの主壁間の結合力が強くなる。その結果、減圧下において外装体が膨らむことを特に抑制できる。シリコーン樹脂は粘弾性が高いため、シリコーン樹脂を用いることによって、積層体(S)への衝撃を和らげることができ、電池の耐衝撃性を高めることができる。 The first resin-containing material is not particularly limited, and may be any material that contains a curable resin and can seal the laminate (S) containing the unit cells. A known sealing resin used for sealing electronic components may be used as the first resin-containing material. The first resin-containing material contains at least a resin. The first resin-containing material may be composed of only a resin, or may be composed of a resin and a material other than a resin. Examples of resins contained in the first resin-containing material include epoxy resin and silicone resin. By using an epoxy resin, the bonding force between the two main walls is strengthened. As a result, the expansion of the exterior body under reduced pressure can be particularly suppressed. Since silicone resin has high viscoelasticity, the use of silicone resin can soften the impact on the laminate (S) and increase the impact resistance of the battery.
 第1の樹脂含有材料は、樹脂に分散されたフィラーを含んでもよい。フィラーの例には、アルミナの粒子、シリカの粒子などの無機フィラーが含まれる。 The first resin-containing material may include a filler dispersed in the resin. Examples of the filler include inorganic fillers such as alumina particles, silica particles, etc.
 第1の樹脂含有材料は、硬化が完了していない流動性を有する状態で、外装体内に配置される。流動性を有する限り、外装体内に配置される際に、第1の樹脂含有材料は硬化を開始していてもよい。第1の樹脂含有材料を外装体に配置する方法に限定はない。例えば、第1の樹脂含有材料を開口部から滴下してもよい。あるいは、外装体内にノズルを差し込み、ノズルから第1の樹脂含有材料を外装体内に充填してもよい。 The first resin-containing material is placed in the exterior body in a fluid state where it has not yet completely hardened. As long as it has fluidity, the first resin-containing material may have started to harden when it is placed in the exterior body. There are no limitations on the method of placing the first resin-containing material in the exterior body. For example, the first resin-containing material may be dripped from an opening. Alternatively, a nozzle may be inserted into the exterior body and the first resin-containing material may be filled into the exterior body from the nozzle.
 工程(i)において外装体内に配置される第1の樹脂含有材料の粘度は、70Pa・s以下、20Pa・s以下、10Pa・s以下、5.0Pa・s以下、または3.0Pa・s以下であってもよい。当該粘度の下限値は特に限定されないが、0.1Pa・s以上、0.3Pa・s以上、または0.5Pa・s以上であってもよい。当該粘度を20Pa・s以下(例えば、10Pa・s以下や5.0Pa以下)とすることによって、外装体内に第1の樹脂含有材料を配置しやすくなり、また、工程(ii)において積層体(S)を外装体内に挿入しやすくなる。シリコーン樹脂を用いることによって、粘度が低い第1の樹脂含有材料が得られやすくなる。シリコーン樹脂を含む樹脂含有材料の粘度は、ブルックフィールド形回転粘度計を用いて測定できる。 The viscosity of the first resin-containing material placed in the exterior body in step (i) may be 70 Pa·s or less, 20 Pa·s or less, 10 Pa·s or less, 5.0 Pa·s or less, or 3.0 Pa·s or less. The lower limit of the viscosity is not particularly limited, but may be 0.1 Pa·s or more, 0.3 Pa·s or more, or 0.5 Pa·s or more. By setting the viscosity to 20 Pa·s or less (for example, 10 Pa·s or less or 5.0 Pa or less), it becomes easier to place the first resin-containing material in the exterior body, and also makes it easier to insert the laminate (S) into the exterior body in step (ii). By using a silicone resin, it becomes easier to obtain a first resin-containing material with a low viscosity. The viscosity of the resin-containing material containing the silicone resin can be measured using a Brookfield type rotational viscometer.
 工程(i)において外装体内に配置される第1の樹脂含有材料の量は、工程(ii)において積層体(S)を外装体に挿入したときに積層体(S)の表面のある程度の部分が第1の樹脂含有材料で覆われる量である。例えば、当該量は、工程(ii)において積層体(S)を外装体に挿入したときに積層体(S)の表面全体の面積の、30%以上、50%以上、70%以上、または90%以上が第1の樹脂含有材料で覆われる量であることが好ましい。当該量は、工程(ii)において積層体(S)を外装体に挿入したときに積層体(S)の表面全体が覆われる量であってもよい。あるいは、当該量は、積層体(S)の端面であって外装体の開口部側の端面以外の部分が覆われる量であってもよい。 The amount of the first resin-containing material placed in the exterior body in step (i) is an amount that covers a certain portion of the surface of the laminate (S) when the laminate (S) is inserted into the exterior body in step (ii). For example, the amount is preferably an amount that covers 30% or more, 50% or more, 70% or more, or 90% or more of the total surface area of the laminate (S) with the first resin-containing material when the laminate (S) is inserted into the exterior body in step (ii). The amount may be an amount that covers the entire surface of the laminate (S) when the laminate (S) is inserted into the exterior body in step (ii). Alternatively, the amount may be an amount that covers the end face of the laminate (S) other than the end face on the opening side of the exterior body.
 (工程(ii))
 工程(ii)は、上記少なくとも1つの単位電池を含む積層体(S)を外装体内に挿入した後に第1の樹脂含有材料の硬化を完了させ、外装体と積層体との間に硬化した第1の樹脂含有材料を配置する工程である。
(Step (ii))
Step (ii) is a step of inserting the laminate (S) including at least one unit battery into an outer casing, completing the curing of the first resin-containing material, and disposing the cured first resin-containing material between the outer casing and the laminate.
 積層体(S)は、外装体の開口部から挿入できる。積層体(S)を外装体に挿入した後に、外装体内に第1の樹脂含有材料を補充してもよい。積層体(S)の全体が最終的に第1の樹脂含有材料で覆われることが好ましい。 The laminate (S) can be inserted through an opening in the exterior body. After inserting the laminate (S) into the exterior body, the first resin-containing material may be replenished inside the exterior body. It is preferable that the entire laminate (S) is ultimately covered with the first resin-containing material.
 第1の樹脂含有材料の硬化を完了させる方法は限定されず、第1の樹脂含有材料に含まれる樹脂の種類に応じて選択される。例えば、熱で硬化する樹脂を用いた場合、加熱することによって、第1の樹脂含有材料を硬化させてもよい。また、時間経過によって硬化する樹脂を用いた場合、単に放置することによって、第1の樹脂含有材料を硬化させてもよい。 The method for completing the hardening of the first resin-containing material is not limited, and is selected according to the type of resin contained in the first resin-containing material. For example, when a resin that hardens with heat is used, the first resin-containing material may be hardened by heating. Also, when a resin that hardens over time is used, the first resin-containing material may be hardened by simply leaving it.
 このようにして、硬化が完了した第1の樹脂含有材料によって外装体内に固定された積層体(S)と、外装体とを含む全固体電池が得られる。 In this way, an all-solid-state battery is obtained that includes the laminate (S) fixed inside the exterior body by the first resin-containing material that has completed curing, and the exterior body.
 工程(ii)において、外装体を外側に引っ張った状態で積層体(S)を外装体内に挿入してもよい。この構成によれば、積層体(S)を外装体内に挿入しやすくなる。外装体を外側に引っ張る方法は限定されず、真空吸着などによって外装体の主壁を吸着し、当該主壁を外側に引っ張ってもよい。あるいは、外装体の開口部を治具などで広げてもよい。これらの方法については、製造方法(M2)でも利用できる。 In step (ii), the laminate (S) may be inserted into the exterior body while the exterior body is pulled outward. This configuration makes it easier to insert the laminate (S) into the exterior body. The method for pulling the exterior body outward is not limited, and the main wall of the exterior body may be adsorbed by vacuum suction or the like and pulled outward. Alternatively, the opening of the exterior body may be widened by a jig or the like. These methods can also be used in manufacturing method (M2).
 工程(ii)において、積層体(S)の表面に第2の樹脂含有材料を塗布した状態で積層体(S)を外装体内に挿入してもよい。この構成によれば、積層体(S)を第1の樹脂含有材料内に挿入しやすくなる。積層体(S)は、塗布された第2の樹脂含有材料の硬化が完了していない状態で外装体内に挿入されてもよい。あるいは、積層体(S)は、塗布された第2の樹脂含有材料の硬化が完了した状態で外装体内に挿入されてもよい。 In step (ii), the laminate (S) may be inserted into the exterior body with the second resin-containing material applied to the surface of the laminate (S). This configuration makes it easier to insert the laminate (S) into the first resin-containing material. The laminate (S) may be inserted into the exterior body with the applied second resin-containing material not yet cured. Alternatively, the laminate (S) may be inserted into the exterior body with the applied second resin-containing material having been cured.
 第2の樹脂含有材料には、第1の樹脂含有材料について例示した材料を用いることができる。第1の樹脂含有材料と第2の樹脂含有材料とは同じ樹脂を含有してもよい。この構成によれば、積層体(S)を第1の樹脂含有材料内に特に挿入しやすくなる。また、この構成によれば、外装体内の樹脂含有材料と積層体(S)との間の固定を強固にできる。第1の樹脂含有材料と第2の樹脂含有材料とは同じ材料で構成されていてもよい。あるいは、第1の樹脂含有材料と第2の樹脂含有材料とは、同じ樹脂を含むが全体としては異なる材料で構成されていてもよい。あるいは、第1の樹脂含有材料と第2の樹脂含有材料とは、同じ樹脂を含まず異なる材料で構成されていてもよい。 The second resin-containing material may be a material exemplified for the first resin-containing material. The first resin-containing material and the second resin-containing material may contain the same resin. This configuration makes it particularly easy to insert the laminate (S) into the first resin-containing material. This configuration also makes it possible to strengthen the fixation between the resin-containing material in the exterior body and the laminate (S). The first resin-containing material and the second resin-containing material may be composed of the same material. Alternatively, the first resin-containing material and the second resin-containing material may contain the same resin but be composed of different materials overall. Alternatively, the first resin-containing material and the second resin-containing material may be composed of different materials without containing the same resin.
 工程(ii)において、外装体を外側から加圧した状態で第1の樹脂含有材料を硬化させてもよい。具体的には、外装体の2つの主壁を外装体の内側に向かって加圧した状態で、第1の樹脂含有材料を硬化させてもよい。この構成によれば、積層体(S)がその積層方向に加圧された状態で積層体(S)を封止できる。積層体(S)を積層方向に加圧することによって、電池の性能を充分に発揮させることができる。また、この構成によれば、減圧下において、電池が膨張することを抑制できる。 In step (ii), the first resin-containing material may be cured while the exterior body is pressurized from the outside. Specifically, the first resin-containing material may be cured while the two main walls of the exterior body are pressurized toward the inside of the exterior body. With this configuration, the laminate (S) can be sealed while the laminate (S) is pressurized in its stacking direction. By pressurizing the laminate (S) in the stacking direction, the battery performance can be fully exhibited. Furthermore, with this configuration, the battery expansion under reduced pressure can be suppressed.
 工程(ii)において、外装体を外側から加圧した状態で第1の樹脂含有材料を硬化させる場合、工程(ii)を経た外装体の中央部の厚さが、工程(ii)を行う前の外装体の前記中央部の厚さよりも小さくてもよい。この構成によれば、積層体(S)が、その積層方向に強く加圧された状態で積層体(S)を封止できる。なお、外装体の中央部とは、外装体の1つの主壁を平面視したときの当該主壁の中央部を意味する。 In step (ii), when the first resin-containing material is cured while the exterior body is pressurized from the outside, the thickness of the central part of the exterior body after step (ii) may be smaller than the thickness of said central part of the exterior body before step (ii) is performed. With this configuration, the laminate (S) can be sealed while being strongly pressurized in the stacking direction. Note that the central part of the exterior body means the central part of one of the main walls of the exterior body when the main wall is viewed in a plan view.
 工程(i)および工程(ii)は大気圧下で行われてもよい。あるいは、工程(ii)は減圧下で行われてもよい。例えば、工程(i)および工程(ii)の両方が減圧下で行われてもよい。工程(i)を減圧下で行うことによって、第1の樹脂含有材料を外装体内に配置しやすくなる。工程(ii)を減圧下で行うことによって、外装体と積層体(S)との間に空隙ができることを抑制できる。その結果、製造された全固体電池が減圧下におかれたときに電池が膨張することを抑制できる。 Step (i) and step (ii) may be performed under atmospheric pressure. Alternatively, step (ii) may be performed under reduced pressure. For example, both step (i) and step (ii) may be performed under reduced pressure. By performing step (i) under reduced pressure, it becomes easier to dispose the first resin-containing material inside the exterior body. By performing step (ii) under reduced pressure, it is possible to prevent the formation of voids between the exterior body and the laminate (S). As a result, it is possible to prevent the expansion of the manufactured all-solid-state battery when it is placed under reduced pressure.
 (第2の製造方法(製造方法(M2)))
 以下で説明するように、製造方法(M2)では、積層体(S)を外装体内に配置した状態で、外装体内の下方側から樹脂含有材料の供給を開始する。この構成によれば、外装体内に大きな空隙が形成されることを抑制できる。その結果、減圧下でも膨張しにくい全固体電池が得られる。さらに、製造方法(M2)では、第1の樹脂含有材料を外装体内に充填することが容易であるため、全固体電池を容易に製造できる。
(Second manufacturing method (manufacturing method (M2)))
As described below, in the manufacturing method (M2), the supply of the resin-containing material is started from the lower side of the exterior body with the laminate (S) disposed inside the exterior body. This configuration can prevent large voids from being formed inside the exterior body. As a result, an all-solid-state battery that is less likely to expand even under reduced pressure is obtained. Furthermore, in the manufacturing method (M2), since it is easy to fill the first resin-containing material inside the exterior body, the all-solid-state battery can be easily manufactured.
 全固体電池の第2の製造方法(製造方法(M2))は、工程(I)と工程(II)とをこの順に含む。それらの工程について、以下に説明する。 The second manufacturing method (manufacturing method (M2)) of an all-solid-state battery includes step (I) and step (II) in this order. These steps are described below.
 (工程(I))
 工程(I)は、少なくとも1つの単位電池を含む積層体(S)を開口部を有する外装体内に配置する工程である。積層体(S)は、外装体の開口部から外装体内に入れることができる。開口部を有する外装体には、製造方法(M1)の説明において例示した外装体を用いることができる。
(Step (I))
Step (I) is a step of disposing a laminate (S) including at least one unit cell in an exterior body having an opening. The laminate (S) can be inserted into the exterior body through the opening of the exterior body. The exterior body having an opening can be an exterior body exemplified in the description of the manufacturing method (M1).
 工程(I)において、表面に樹脂含有材料(第2の樹脂含有材料)が塗布された積層体(S)を外装体内に配置してもよい。その場合、工程(II)で用いられる樹脂含有材料(第1の樹脂含有材料)を充填しやすくなる。工程(II)で用いられる樹脂含有材料(第1の樹脂含有材料)には、製造方法(M1)の説明において例示した第1の樹脂含有材料を用いることができる。工程(I)で用いられる樹脂含有材料(第2の樹脂含有材料)には、製造方法(M1)の説明において例示した第2の樹脂含有材料を用いることができる。 In step (I), the laminate (S) having a surface coated with a resin-containing material (second resin-containing material) may be placed inside the exterior body. In that case, it becomes easier to fill with the resin-containing material (first resin-containing material) used in step (II). The resin-containing material (first resin-containing material) used in step (II) may be the first resin-containing material exemplified in the description of manufacturing method (M1). The resin-containing material (second resin-containing material) used in step (I) may be the second resin-containing material exemplified in the description of manufacturing method (M1).
 (工程(II))
 工程(II)は、硬化が完了していない流動性を有する樹脂含有材料の供給を外装体内の下方側から開始して樹脂含有材料を外装体内に充填した後に樹脂含有材料の硬化を完了させることによって、外装体と積層体との間に硬化した樹脂含有材料を配置する工程である。樹脂含有材料の硬化を完了させる方法は限定されず、樹脂含有材料に含まれる樹脂の種類に応じて選択される。例えば、熱で硬化する樹脂を用いた場合、加熱することによって、樹脂含有材料を硬化させてもよい。また、時間経過によって硬化する樹脂を用いた場合、単に放置することによって、樹脂含有材料を硬化させてもよい。
(Step (II))
Step (II) is a step of disposing the cured resin-containing material between the exterior body and the laminate by starting the supply of the resin-containing material having fluidity that has not yet been cured from the lower side of the exterior body, filling the resin-containing material into the exterior body, and then completing the curing of the resin-containing material. The method of completing the curing of the resin-containing material is not limited and is selected according to the type of resin contained in the resin-containing material. For example, when a resin that cures with heat is used, the resin-containing material may be cured by heating. Also, when a resin that cures over time is used, the resin-containing material may be cured by simply leaving it.
 上述したように、樹脂含有材料には、製造方法(M1)の第1の樹脂含有材料として説明した材料を用いることができる。硬化が完了していない流動性を有する状態については、製造方法(M1)で説明したため、重複する説明を省略する。外装体内に充填される際の樹脂含有材料の粘度は、製造方法(M1)の工程(i)で用いられる第1の樹脂含有材料の粘度について説明した範囲にあってもよい。 As described above, the resin-containing material may be the material described as the first resin-containing material in manufacturing method (M1). The fluid state in which curing is not complete has been described in manufacturing method (M1), so a duplicate description will be omitted. The viscosity of the resin-containing material when filled into the exterior body may be within the range described for the viscosity of the first resin-containing material used in step (i) of manufacturing method (M1).
 工程(II)において、外装体内の下方側とは、樹脂含有材料を充填する際の外装体の配置において、外装体の内部空間の上下方向の中央より下方側を意味する。その場合の外装体の内部空間の高さ(鉛直方向における外装体の内部空間の長さ)をHとしたとき、外装体の内部空間の底部からH/3の高さよりも下方側から樹脂含有材料の供給を開始してもよい。あるいは、外装体の内部空間の底部からH/4の高さよりも下方側から樹脂含有材料の供給を開始してもよく、外装体の内部空間の底部からH/5の高さよりも下方側から樹脂含有材料の供給を開始してもよい。 In step (II), the lower side of the exterior body means the side below the center in the vertical direction of the internal space of the exterior body in terms of the position of the exterior body when filling with the resin-containing material. In this case, when the height of the internal space of the exterior body (the length of the internal space of the exterior body in the vertical direction) is H, the supply of the resin-containing material may be started below a height of H/3 from the bottom of the internal space of the exterior body. Alternatively, the supply of the resin-containing material may be started below a height of H/4 from the bottom of the internal space of the exterior body, or below a height of H/5 from the bottom of the internal space of the exterior body.
 外装体内の下方側から樹脂含有材料を供給する方法に特に限定はない。例えば、ノズル(例えばチューブ状のノズル)の先端が外装体内の下方側に到達するように、ノズルを外装体の開口部から外装体内に入れ、ノズルの先端から樹脂含有材料を供給してもよい。ノズルは、樹脂含有材料の硬化を完了させる前に外装体から引き抜かれる。なお、ノズルは、樹脂含有材料が外装体内に充填されるに伴って徐々に開口部側に引き上げてもよい。少なくとも樹脂含有材料の供給を開始する際には、外装体内の下方側から樹脂含有材料が供給される。 There is no particular limitation on the method of supplying the resin-containing material from the lower side inside the exterior body. For example, a nozzle (e.g., a tubular nozzle) may be inserted into the exterior body through the opening of the exterior body so that the tip of the nozzle reaches the lower side inside the exterior body, and the resin-containing material may be supplied from the tip of the nozzle. The nozzle is pulled out of the exterior body before the resin-containing material is completely cured. The nozzle may be gradually pulled up toward the opening as the resin-containing material fills the exterior body. At least when the supply of the resin-containing material begins, the resin-containing material is supplied from the lower side inside the exterior body.
 工程(II)は、通常、底部が下方になり開口部が上方になるように外装体を配置した状態で行われる。ただし、それ以外の方向に外装体を配置した状態で工程(II)が行われてもよい。例えば、外装体の1つの主壁が下方になり、他方の主壁が上方になるように配置した状態で工程(II)を行ってもよい。あるいは、外装体の1つの側壁が下方になり、他方の側壁が上方になるように配置した状態で工程(II)を行ってもよい。これらの場合、開口部の一部または全部に蓋をした状態で樹脂含有材料を外装体内に充填すればよい。 Step (II) is usually performed with the exterior body positioned so that the bottom is facing down and the opening is facing up. However, step (II) may also be performed with the exterior body positioned in another direction. For example, step (II) may be performed with one main wall of the exterior body facing down and the other main wall facing up. Alternatively, step (II) may be performed with one side wall of the exterior body facing down and the other side wall facing up. In these cases, the resin-containing material may be filled into the exterior body with part or all of the opening covered.
 工程(II)において、外装体を外側に引っ張った状態で流動性を有する樹脂含有材料を外装体内に充填した後に、外装体を外側から加圧した状態で前記樹脂含有材料を硬化させてもよい。この構成によれば、積層体(S)が、その積層方向に加圧された状態で積層体(S)を封止できる。積層体(S)を積層方向に加圧することによって、電池の性能を充分に発揮させることができる。また、この構成によれば、減圧下において、電池が膨張することを抑制できる。 In step (II), the resin-containing material having fluidity may be filled into the exterior body while the exterior body is pulled outward, and the resin-containing material may then be cured while the exterior body is pressurized from the outside. With this configuration, the laminate (S) can be sealed while the laminate (S) is pressurized in the stacking direction. By pressurizing the laminate (S) in the stacking direction, the battery performance can be fully exhibited. Furthermore, with this configuration, the battery expansion under reduced pressure can be suppressed.
 工程(I)および工程(II)は大気圧下で行われてもよい。あるいは、工程(II)は減圧下で行われてもよい。工程(II)を減圧下で行うことによって、樹脂含有材料を外装体内に充填しやすくなる。また、工程(II)を減圧下で行うことによって、外装体と積層体(S)との間に空隙ができることを抑制できる。その結果、作製された全固体電池が減圧下におかれたときに電池が膨張することを抑制できる。 Step (I) and step (II) may be performed under atmospheric pressure. Alternatively, step (II) may be performed under reduced pressure. By performing step (II) under reduced pressure, it becomes easier to fill the resin-containing material into the exterior body. In addition, by performing step (II) under reduced pressure, it is possible to prevent the formation of voids between the exterior body and the laminate (S). As a result, it is possible to prevent the battery from expanding when the manufactured all-solid-state battery is placed under reduced pressure.
 製造方法(M1)および(M2)において、外装体は金属製であってもよい。外装体に用いられる金属の例については後述する。 In manufacturing methods (M1) and (M2), the exterior body may be made of metal. Examples of metals that can be used for the exterior body will be described later.
 製造方法(M1)および(M2)において、外装体は、積層体(S)を積層方向に加圧する外装体であってもよい。そのような外装体の一例は、何も収容していない状態において、2つの主壁が内側に向かって凸となるように湾曲している外装体である。そのような主壁を用いることによって、積層体(S)をその積層方向に加圧できる。そのような主壁を有する外装体を用いる場合、外装体(少なくとも主壁)を外側に引っ張った状態で積層体(S)を外装体内に挿入する。製造方法(M1)および(M2)では、外装体と積層体(S)との間に樹脂が充填される。そのため、外装体による加圧力が、均一に積層体(S)に伝わりやすくなる。 In the manufacturing methods (M1) and (M2), the exterior body may be an exterior body that pressurizes the laminate (S) in the stacking direction. One example of such an exterior body is an exterior body in which two main walls are curved so as to be convex toward the inside when nothing is contained. By using such main walls, the laminate (S) can be pressurized in the stacking direction. When an exterior body having such main walls is used, the laminate (S) is inserted into the exterior body with the exterior body (at least the main walls) pulled outward. In the manufacturing methods (M1) and (M2), resin is filled between the exterior body and the laminate (S). Therefore, the pressure force from the exterior body is easily transmitted uniformly to the laminate (S).
 内側に向かって凸となるように湾曲している2つの主壁を用いる場合、外装体の形状およびサイズは、積層体および樹脂含有材料を収容したときに、それらを収容する前よりも主壁が平らになるように選択される。この構成によれば、主壁によって、積層体(S)をその積層方向に加圧できる。 When using two main walls that are curved convexly inward, the shape and size of the exterior body are selected so that when the laminate and resin-containing material are housed, the main walls are flatter than before they are housed. With this configuration, the laminate (S) can be pressurized in the stacking direction by the main walls.
 別の観点では、本開示は、全固体電池の第3の製造方法(製造方法(M3))を提供する。第3の製造方法は、正極層、負極層、および前記正極層と前記負極層との間に配置された固体電解質層を含む少なくとも1つの単位電池を含む全固体電池の製造方法である。第3の製造方法は、前記少なくとも1つの単位電池を含む積層体を開口部を有する外装体内に配置する工程(Ia)と、硬化が完了していない流動性を有する樹脂含有材料の供給を前記外装体内の樹脂充填領域の下方側から開始して前記樹脂含有材料を前記樹脂充填領域内に充填した後に前記樹脂含有材料の硬化を完了させることによって、前記外装体と前記積層体との間に硬化した前記樹脂含有材料を配置する工程(IIa)とを含む。 In another aspect, the present disclosure provides a third manufacturing method (manufacturing method (M3)) for an all-solid-state battery. The third manufacturing method is a method for manufacturing an all-solid-state battery including at least one unit battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer. The third manufacturing method includes a step (Ia) of disposing a laminate including the at least one unit battery in an exterior body having an opening, and a step (IIa) of disposing the cured resin-containing material between the exterior body and the laminate by starting the supply of a resin-containing material having fluidity that has not yet been cured from a lower side of a resin-filled region in the exterior body, filling the resin-containing material into the resin-filled region, and then completing the curing of the resin-containing material.
 工程(Ia)は、外装体の内部空間を上下に仕切ってもよい点を除いて製造方法(M2)の工程(I)と同じであるため、重複する説明を省略する。工程(Ia)において、外装体として底部を有さない筒状体(例えば角筒状体)を用いる場合には、外装体の内部空間を仕切る仕切りを用いることができる。当該仕切りは、積層体の周囲に形成される。製造方法(M3)では、製造方法(M2)で説明したように、底部を有する角筒状体を外装体として用いてもよい。 Step (Ia) is the same as step (I) of manufacturing method (M2) except that the internal space of the exterior body may be divided into upper and lower parts, so a duplicated explanation will be omitted. In step (Ia), if a cylindrical body without a bottom (e.g., a rectangular cylindrical body) is used as the exterior body, a partition can be used to divide the internal space of the exterior body. The partition is formed around the laminate. In manufacturing method (M3), as explained in manufacturing method (M2), a rectangular cylindrical body with a bottom may be used as the exterior body.
 工程(IIa)は、製造方法(M2)の工程(II)において「硬化が完了していない流動性を有する樹脂含有材料の供給を外装体内の下方側から開始して樹脂含有材料を外装体内に充填した後に樹脂含有材料の硬化を完了させる」という工程を、「硬化が完了していない流動性を有する樹脂含有材料の供給を外装体内の樹脂充填領域の下方側から開始して樹脂含有材料を樹脂充填領域内に充填した後に樹脂含有材料の硬化を完了させる」という工程に置き換えた工程である。上記の置き換えを除いて、工程(II)で説明した事項について説明した事項は、工程(IIa)に適用できる。また、工程(I)と工程(Ia)との相違点、および、工程(II)と工程(IIa)との相違点を除いて、製造方法(M2)について説明した事項は、製造方法(M3)に適用できる。1つの観点では、製造方法(M2)は、製造方法(M3)に含まれると考えることが可能である。  Step (IIa) is a step in which the step (II) of manufacturing method (M2) of "starting the supply of resin-containing material having fluidity that has not yet been cured from the lower side of the exterior body, filling the exterior body with the resin-containing material, and then completing the curing of the resin-containing material" is replaced with the step of "starting the supply of resin-containing material having fluidity that has not yet been cured from the lower side of the resin-filled region of the exterior body, filling the resin-containing material into the resin-filled region, and then completing the curing of the resin-containing material." With the exception of the above replacement, the matters described in step (II) can be applied to step (IIa). With the exception of the differences between step (I) and step (Ia) and the differences between step (II) and step (IIa), the matters described in manufacturing method (M2) can be applied to manufacturing method (M3). From one perspective, manufacturing method (M2) can be considered to be included in manufacturing method (M3).
 工程(IIa)において、樹脂充填領域とは、樹脂含有材料が充填される空間を意味する。工程(IIa)において、樹脂充填領域の下方側とは、樹脂含有材料を充填する際の外装体の配置において、樹脂充填領域の上下方向の中央より下方側を意味する。その場合の樹脂充填領域の高さ(鉛直方向における樹脂充填領域の長さ)をHaとしたとき、樹脂充填領域の底部からHa/3の高さよりも下方側から樹脂含有材料の供給を開始してもよい。あるいは、樹脂充填領域の底部からHa/4の高さよりも下方側から樹脂含有材料の供給を開始してもよく、樹脂充填領域の底部からHa/5の高さよりも下方側から樹脂含有材料の供給を開始してもよい。 In step (IIa), the resin-filled area means the space filled with the resin-containing material. In step (IIa), the lower side of the resin-filled area means the side below the vertical center of the resin-filled area in the arrangement of the exterior body when filling with the resin-containing material. In this case, when the height of the resin-filled area (length of the resin-filled area in the vertical direction) is Ha, the supply of the resin-filled material may be started from a side lower than a height of Ha/3 from the bottom of the resin-filled area. Alternatively, the supply of the resin-filled material may be started from a side lower than a height of Ha/4 from the bottom of the resin-filled area, or from a side lower than a height of Ha/5 from the bottom of the resin-filled area.
 製造方法(M3)では、積層体の周囲に配置された仕切りによって外装体の内部空間が2つの空間(下側の空間と上側の空間)に分けられていてもよい。例えば、工程(Ia)において、仕切りとなる畝状部が周囲に設けられた積層体を外装体内に配置し、それによって外装体の内部空間を2つの空間に分けてもよい。その場合、外装体内には、2つの樹脂充填領域が形成される。工程(IIa)では、まず、上側の空間(一方の樹脂充填領域)の下方側から流動性を有する樹脂含有材料の供給を開始して樹脂含有材料を当該空間に充填した後に、当該樹脂含有材料を硬化させる。次に、外装体の上下を反転させ、他方の空間(他方の樹脂充填領域)の下方側から流動性を有する樹脂含有材料の供給を開始して樹脂含有材料を当該空間に充填した後に、当該樹脂含有材料を硬化させる。このようにして、硬化した樹脂含有材料を2つの空間(2つの樹脂充填領域)に配置できる。 In the manufacturing method (M3), the internal space of the exterior body may be divided into two spaces (a lower space and an upper space) by a partition arranged around the laminate. For example, in the step (Ia), a laminate having a ridge-like portion arranged around the periphery as a partition may be arranged inside the exterior body, thereby dividing the internal space of the exterior body into two spaces. In that case, two resin-filled regions are formed inside the exterior body. In the step (IIa), first, the supply of a resin-containing material having fluidity is started from the lower side of the upper space (one of the resin-filled regions) to fill the space with the resin-containing material, and then the resin-containing material is hardened. Next, the exterior body is turned upside down, and the supply of a resin-containing material having fluidity is started from the lower side of the other space (the other resin-filled region) to fill the space with the resin-containing material, and then the resin-containing material is hardened. In this way, the hardened resin-containing material can be arranged in two spaces (two resin-filled regions).
 (全固体電池の構成要素)
 製造方法(M1)で製造される全固体電池と、製造方法(M2)で製造される全固体電池とは基本的に同様の構成を有する。製造方法(M1)および製造方法(M2)で製造される全固体電池の構成要素の例について、以下に説明する。ただし、以下の構成要素は例示であり、他の構成要素を用いてもよい。なお、以下では、主に全固体リチウムイオン電池の例について主に説明するが、他の全固体電池であってもよい。全固体電池は特に限定されず、公知の全固体電池であってもよい。
(Components of all-solid-state batteries)
The all-solid-state battery manufactured by the manufacturing method (M1) and the all-solid-state battery manufactured by the manufacturing method (M2) basically have the same configuration. Examples of components of the all-solid-state battery manufactured by the manufacturing method (M1) and the manufacturing method (M2) are described below. However, the following components are examples, and other components may be used. Note that, although the following mainly describes an example of an all-solid-state lithium ion battery, other all-solid-state batteries may also be used. The all-solid-state battery is not particularly limited, and may be a known all-solid-state battery.
 全固体電池は、積層体(S)を含む。積層体(S)は少なくとも1つの単位電池(発電要素)を含む。積層体(S)は、単位電池を1つだけ含んでもよいし、積層された複数の単位電池を含んでもよい。単位電池は、正極層、負極層、および正極層と負極層との間に配置された固体電解質層を含む。積層体(S)は、必要に応じて、集電体を含む。全固体電池では、積層体(S)がその積層方向に加圧されることが好ましい。積層体(S)が加圧されることによって、高い性能を発揮することが可能になる。 The all-solid-state battery includes a laminate (S). The laminate (S) includes at least one unit cell (power generating element). The laminate (S) may include only one unit cell, or may include multiple unit cells stacked together. The unit cell includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer. The laminate (S) includes a current collector as necessary. In an all-solid-state battery, it is preferable that the laminate (S) is pressurized in the stacking direction. Pressurizing the laminate (S) enables it to exhibit high performance.
 (外装体)
 上述したように、外装体には、金属製のケースなどを用いることができる。ケースを構成する金属板の例には、ステンレス鋼板、炭素鋼板、アルミニウム合金板などが含まれる。
(Exterior body)
As described above, the exterior body can be a metal case, etc. Examples of the metal plate constituting the case include a stainless steel plate, a carbon steel plate, an aluminum alloy plate, etc.
 外装体を構成する金属板の厚さは、材質や求められる加圧性や金属板の材質に応じて選択すればよい。外装体を構成する金属板の厚さは、0.10mm以上、または0.15mm以上であってもよく、0.60mm以下、または0.50mm以下であってもよい。 The thickness of the metal plate constituting the exterior body may be selected according to the material, the required pressure resistance, and the material of the metal plate. The thickness of the metal plate constituting the exterior body may be 0.10 mm or more, or 0.15 mm or more, and may be 0.60 mm or less, or 0.50 mm or less.
 (正極層)
 正極層は、正極活物質を含み、必要に応じて他の成分を含んでもよい。当該他の成分の例には、全固体電池の正極層に使用される公知の成分(結着剤、導電材など)が含まれる。正極層におけるリチウムイオン伝導性を高める観点から、正極層は、正極活物質とともに、リチウムイオン伝導性を示す固体電解質を含んでもよい。通常、正極活物質は、粒子(粉末)の状態で用いられる。
(Positive electrode layer)
The positive electrode layer includes a positive electrode active material, and may include other components as necessary. Examples of the other components include known components (such as binders and conductive materials) used in the positive electrode layer of all-solid-state batteries. From the viewpoint of increasing the lithium ion conductivity in the positive electrode layer, the positive electrode layer may include a solid electrolyte exhibiting lithium ion conductivity together with the positive electrode active material. Usually, the positive electrode active material is used in the form of particles (powder).
 正極活物質には、全固体電池の正極活物質として使用できる材料を用いることができる。全固体リチウムイオン電池の場合、正極活物質の例には、リチウム含有複合酸化物や、酸化物以外の化合物が含まれる。リチウム含有複合酸化物の例には、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、およびその他のリチウム含有複合酸化物(LiNi0.8Co0.15Al0.05、など)が含まれる。酸化物以外の化合物の例には、オリビン系化合物(LiMPOなど)、硫黄含有化合物(LiSなど)などが含まれる。なお、上記式中、Mは遷移金属を示す。正極活物質は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The positive electrode active material may be a material that can be used as a positive electrode active material for a solid-state battery. In the case of a solid-state lithium-ion battery, examples of the positive electrode active material include lithium-containing composite oxides and compounds other than oxides. Examples of lithium-containing composite oxides include lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, and other lithium-containing composite oxides (LiNi 0.8 Co 0.15 Al 0.05 O 2 , etc.). Examples of compounds other than oxides include olivine compounds (LiMPO 4 , etc.), sulfur-containing compounds (Li 2 S, etc.), etc. In the above formula, M represents a transition metal. The positive electrode active material may be used alone or in combination of two or more types.
 (負極層)
 負極層は、負極活物質を含み、必要に応じて他の成分を含んでもよい。当該他の成分の例には、全固体電池の負極層に使用される公知の成分(結着剤、導電材など)が含まれる。負極層は、負極活物質と、リチウムイオン伝導性を示す固体電解質とを含んでもよい。通常、負極活物質は、粒子(粉末)の状態で用いられる。
(Negative electrode layer)
The negative electrode layer includes a negative electrode active material, and may include other components as necessary. Examples of the other components include known components (such as binders and conductive materials) used in the negative electrode layer of all-solid-state batteries. The negative electrode layer may include a negative electrode active material and a solid electrolyte exhibiting lithium ion conductivity. Usually, the negative electrode active material is used in the form of particles (powder).
 負極活物質には、全固体電池の負極活物質として使用できる材料を用いることができる。全固体リチウムイオン電池の場合、負極活物質には、リチウムイオンを可逆的に吸蔵および放出可能な所定の材料(炭素質材料、金属や半金属の単体または合金、あるいは化合物など)を用いることができる。炭素質材料の例には、黒鉛(天然黒鉛、人造黒鉛など)、ハードカーボン、非晶質炭素などが含まれる。金属や半金属の単体、合金の例には、リチウム金属や合金、Si単体などが含まれる。化合物の例には、酸化物(チタン酸化物、ケイ素酸化物など)、硫化物、窒化物、水化物、シリサイド(リチウムシリサイドなど)などが挙げられる。負極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。例えば、ケイ素酸化物と炭素質材料とを併用してもよい。負極活物質として、黒鉛粒子と黒鉛粒子を被覆する非晶質炭素とを含む粒子を用いてもよい。 The negative electrode active material may be a material that can be used as a negative electrode active material for an all-solid-state battery. In the case of an all-solid-state lithium-ion battery, the negative electrode active material may be a specific material (such as a carbonaceous material, a metal or semimetal element or alloy, or a compound) that can reversibly store and release lithium ions. Examples of carbonaceous materials include graphite (natural graphite, artificial graphite, etc.), hard carbon, and amorphous carbon. Examples of metal or semimetal element or alloy include lithium metal or alloy, and simple silicon. Examples of compounds include oxides (such as titanium oxide and silicon oxide), sulfides, nitrides, hydrates, and silicides (such as lithium silicide). The negative electrode active material may be used alone or in combination of two or more types. For example, silicon oxide and a carbonaceous material may be used in combination. As the negative electrode active material, particles containing graphite particles and amorphous carbon covering the graphite particles may be used.
 (固体電解質層)
 固体電解質層は、正極層と負極層との間に配置される。固体電解質層は、固体電解質を含み、必要に応じて他の成分を含んでもよい。当該他の成分の例には、全固体電池の固体電解質層に使用される公知の成分が含まれる。通常、固体電解質は、粒子(粉末)の状態で用いられる。
(Solid electrolyte layer)
The solid electrolyte layer is disposed between the positive electrode layer and the negative electrode layer. The solid electrolyte layer includes a solid electrolyte, and may include other components as necessary. Examples of the other components include known components used in the solid electrolyte layer of an all-solid-state battery. The solid electrolyte is usually used in the form of particles (powder).
 固体電解質には、全固体電池の固体電解質として使用できる材料を特に制限なく用いることができる。全固体リチウムイオン電池の場合、固体電解質には、リチウムイオン伝導性を有する物質を用いることができる。そのような固体電解質の例には、硫化物(硫化物系固体電解質)、水素化物(水素化物系固体電解質)などの無機固体電解質が含まれる。 The solid electrolyte can be any material that can be used as a solid electrolyte in an all-solid-state battery, without any particular restrictions. In the case of an all-solid-state lithium-ion battery, the solid electrolyte can be any material that has lithium ion conductivity. Examples of such solid electrolytes include inorganic solid electrolytes such as sulfides (sulfide-based solid electrolytes) and hydrides (hydride-based solid electrolytes).
 硫化物の例には、LiS-SiS、LiS-P、LiS-GeS、LiS-B、LiS-Ga、LiS-Al、LiS-GeS-P、LiS-Al-P、LiS-P、LiS-P-P、LiX-LiS-P、LiX-LiS-SiS、LiX-LiS-B(X:I、Br、またはCl)などが含まれる。水素化物の例には、LiBH-LiI系錯体水素化物およびLiBH-LiNH系錯体水素化物などが含まれる。 Examples of sulfides include Li 2 S-SiS 2 , Li 2 S-P 2 S 5 , Li 2 S-GeS 2 , Li 2 S-B 2 S 3 , Li 2 S-Ga 2 S 3 , Li 2 S-Al 2 S 3 , Li 2 S-GeS 2 -P 2 S 5 , Li 2 S-Al 2 S 3 -P 2 S 5 , Li 2 S-P 2 S 3 , Li 2 S-P 2 S 3 -P 2 S 5 , LiX-Li 2 S-P 2 S 5 , LiX-Li 2 S-SiS 2 , LiX-Li 2 S-B 2 S 3 (X: I, Br, or Cl), etc. Examples of the hydrides include LiBH 4 -LiI-based complex hydrides and LiBH 4 -LiNH 2 -based complex hydrides, etc.
 (正極集電体)
 正極層の外側には、通常、正極集電体が配置される。正極集電体には、金属箔を用いてもよい。正極集電体(例えば金属箔)の材質の例には、アルミニウム、マグネシウム、ステンレス鋼、チタン、鉄、コバルト、亜鉛、スズ、またはこれらの合金などが含まれる。正極集電体および負極集電体には、必要に応じてリードタブが接続される。
(Positive electrode current collector)
A positive electrode current collector is usually disposed on the outside of the positive electrode layer. A metal foil may be used as the positive electrode current collector. Examples of materials for the positive electrode current collector (e.g., metal foil) include aluminum, magnesium, stainless steel, titanium, iron, cobalt, zinc, tin, or alloys thereof. Lead tabs are connected to the positive electrode current collector and the negative electrode current collector as necessary.
 (負極集電体)
 負極層の外側には、通常、負極集電体が配置される。負極集電体には、金属箔を用いてもよい。負極集電体(例えば金属箔)の材質の例には、銅、ニッケル、ステンレス鋼、チタン、またはこれらの合金などが含まれる。
(Negative electrode current collector)
A negative electrode current collector is usually disposed on the outside of the negative electrode layer. The negative electrode current collector may be a metal foil. Examples of materials for the negative electrode current collector (e.g., metal foil) include copper, nickel, stainless steel, titanium, or alloys thereof.
 (積層体(S)の形成方法)
 積層体(S)を形成する方法に特に限定はなく、公知の形成方法で形成してもよい。積層体(S)は、液状成分を含まない材料を用いて形成することが好ましい。そのような形成方法(乾式の形成方法)によって積層体(S)を形成する方法の一例を以下に説明する。
(Method of forming laminate (S))
The method for forming the laminate (S) is not particularly limited, and may be a known forming method. The laminate (S) is preferably formed using a material that does not contain a liquid component. An example of a method for forming the laminate (S) by such a forming method (dry forming method) will be described below.
 まず、正極層の材料、固体電解質層の材料、および負極層の材料を、所定の順に金属箔(集電体)上に積層した後、さらに集電体(金属箔)を配置する。次に、積層された材料および金属箔をまとめてプレス(本プレス)することによって積層体(S)を形成する。この本プレスによって、金属箔および各層が一体化されて積層体(S)が得られる。本プレスの圧力は、材料や厚さなどに応じて適宜変更すればよく、50MPa以上5000MPa以下(例えば、300MPa以上3000MPa以下)であってもよい。以上のようにして、正極集電体/正極層/固体電解質層/負極層/負極集電体という構造を有する積層体(S)が得られる。なお、積層体(S)は、これらの層以外の層、例えば、薄い導電層などを含んでもよい。 First, the material of the positive electrode layer, the material of the solid electrolyte layer, and the material of the negative electrode layer are stacked on a metal foil (current collector) in a predetermined order, and then the current collector (metal foil) is placed. Next, the stacked materials and the metal foil are pressed together (main press) to form a laminate (S). This main press integrates the metal foil and each layer to obtain the laminate (S). The pressure of the main press can be changed appropriately depending on the material and thickness, and may be 50 MPa or more and 5000 MPa or less (for example, 300 MPa or more and 3000 MPa or less). In this way, a laminate (S) having a structure of positive electrode collector/positive electrode layer/solid electrolyte layer/negative electrode layer/negative electrode collector is obtained. The laminate (S) may include layers other than these layers, such as a thin conductive layer.
 正極層の材料を配置した後、固体電解質層の材料を配置した後、負極層の材料を配置した後のいずれかの段階において、配置した材料を予備的にプレスしてもよい。予備的なプレスは通常、上記の本プレスの圧力よりも小さい圧力で行われる。予備的なプレスの圧力に特に限定はなく、1MPa~10MPaの範囲にあってもよい。積層体中の空隙を減らすために、積層体を形成する工程の少なくとも一部は減圧下で行われてもよい。 The materials may be preliminarily pressed at any stage after the material for the positive electrode layer is placed, the material for the solid electrolyte layer is placed, or the material for the negative electrode layer is placed. The preliminarily pressed is usually performed at a pressure lower than the pressure of the main press described above. There is no particular limit to the pressure of the preliminarily pressed, and it may be in the range of 1 MPa to 10 MPa. In order to reduce voids in the laminate, at least a part of the process of forming the laminate may be performed under reduced pressure.
 液状成分を含まない材料をプレスする工程を用いて積層体(S)を形成することによって、高圧の加圧なしで高い性能を示す全固体電池を得ることが可能である。液状成分(分散媒)を含まない材料を層状に配置する方法として、静電スプレー法、スキージ成膜法、または、静電塗装法などを用いてもよい。 By forming the laminate (S) using a process of pressing materials that do not contain liquid components, it is possible to obtain an all-solid-state battery that exhibits high performance without high pressure. As a method for arranging materials that do not contain liquid components (dispersion medium) in layers, electrostatic spraying, squeegee film formation, electrostatic painting, etc. may also be used.
 積層体(S)が複数の単位電池を含む場合、1つの単位電池を含む積層体をプレス成形によって形成した後に、それらの積層体を積層して積層体(S)を形成してもよい。あるいは、複数の単位電池が積層されるようにそれらの材料をプレス成形することによって、積層体(S)を形成してもよい。 When the laminate (S) includes multiple unit batteries, a laminate including one unit battery may be formed by press molding, and then the laminate may be stacked to form the laminate (S). Alternatively, the laminate (S) may be formed by press molding the materials so that multiple unit batteries are stacked.
 以下では、本開示に係る実施形態の例について、図面を参照して説明する。以下で説明する実施形態は、上述した記載に基づいて変更してもよい。また、以下で説明する事項を、上記の実施形態に適用してもよい。なお、以下の図は模式的な図であり、実際の縮尺とは異なる。以下の図では、図を見やすくするために、部材の一部を省略して図示する場合がある。また、以下の図では、外装体の断面を線で示す場合がある。 Below, examples of embodiments according to the present disclosure will be described with reference to the drawings. The embodiments described below may be modified based on the above description. Furthermore, the matters described below may be applied to the above embodiments. Note that the following figures are schematic diagrams and are not drawn to actual scale. In the following figures, some components may be omitted in order to make the figures easier to see. Furthermore, in the following figures, the cross section of the exterior body may be indicated by a line.
 (実施形態1)
 実施形態1では、製造方法(M1)の一例について説明する。実施形態1の製造方法では、積層体110(積層体(S))が用いられる。積層体110の上面図を、図1Aに示す。図1Aの線IB-IBにおける断面図を、図1Bに示す。
(Embodiment 1)
In the embodiment 1, an example of the manufacturing method (M1) will be described. In the manufacturing method of the embodiment 1, a laminate 110 (laminate (S)) is used. A top view of the laminate 110 is shown in FIG. 1A. A cross-sectional view along the line IB-IB in FIG. 1A is shown in FIG. 1B.
 積層体110は、正極集電体111、単位電池113、および負極集電体112を含む。単位電池113は、正極層113a、固体電解質層113b、および負極層113cを含む。これらの層および集電体は、積層方向SDに積層されている。積層体110は、上述した工程によって形成してもよい。 The laminate 110 includes a positive electrode collector 111, a unit battery 113, and a negative electrode collector 112. The unit battery 113 includes a positive electrode layer 113a, a solid electrolyte layer 113b, and a negative electrode layer 113c. These layers and collectors are stacked in a stacking direction SD. The laminate 110 may be formed by the process described above.
 積層体110からは、正極リードタブ121および負極リードタブ122が突出している。正極リードタブ121は、正極集電体111と一体であってもよいし、正極集電体111に接続されたリードタブであってもよい。負極リードタブ122は、負極集電体112と一体であってもよいし、負極集電体112に接続されたリードタブであってもよい。 A positive electrode lead tab 121 and a negative electrode lead tab 122 protrude from the laminate 110. The positive electrode lead tab 121 may be integral with the positive electrode current collector 111, or may be a lead tab connected to the positive electrode current collector 111. The negative electrode lead tab 122 may be integral with the negative electrode current collector 112, or may be a lead tab connected to the negative electrode current collector 112.
 まず、図2Aに示すように、開口部を有する外装体120内に、硬化が完了していない流動性を有する樹脂含有材料(第1の樹脂含有材料)201aを配置する(工程(i))。図2Aの線IIIA-IIIAにおける外装体120の断面図を図3Aに示す。 First, as shown in FIG. 2A, a resin-containing material (first resin-containing material) 201a that has not yet completely hardened and has fluidity is placed in an exterior body 120 having an opening (step (i)). A cross-sectional view of the exterior body 120 taken along line IIIA-IIIA in FIG. 2A is shown in FIG. 3A.
 外装体120は、角筒部120aと、角筒部120aの一端を封じる底部120bとを含む。角筒部120aの他端は、開口部120tとして開口している。角筒部120aは、対向する2つの主壁120amと、2つの主壁120amを結ぶ2つの側壁120asとで構成されている。外装体120の他の一例の断面図を、図3Bに示す。図3Bに示す外装体120が何も収容していない状態において、2つの主壁120amは、内側に向かって凸となるように湾曲している。換言すれば、主壁120amは、内側に向かって凸の畝状の形状を有する。外装体120を用いることによって、積層体110をその積層方向SDに加圧することが可能である。 The exterior body 120 includes an angular tube portion 120a and a bottom portion 120b that seals one end of the angular tube portion 120a. The other end of the angular tube portion 120a is open as an opening portion 120t. The angular tube portion 120a is composed of two opposing main walls 120am and two side walls 120as that connect the two main walls 120am. A cross-sectional view of another example of the exterior body 120 is shown in FIG. 3B. When the exterior body 120 shown in FIG. 3B is not housing anything, the two main walls 120am are curved so as to be convex toward the inside. In other words, the main walls 120am have a ridge-like shape that is convex toward the inside. By using the exterior body 120, it is possible to pressurize the laminate 110 in the stacking direction SD.
 次に、積層体110を外装体内に挿入し、その後、樹脂含有材料201aの硬化を完了させる(工程(ii))。これによって、図2Bに示すように、外装体120と積層体110との間に硬化した樹脂含有材料(第1の樹脂含有材料)201bを配置する。このようにして、全固体電池100が得られる。正極リードタブ121および負極リードタブ122は、硬化した樹脂含有材料201bから突出している。 Next, the laminate 110 is inserted into the exterior body, and then the curing of the resin-containing material 201a is completed (step (ii)). As a result, as shown in FIG. 2B, the cured resin-containing material (first resin-containing material) 201b is disposed between the exterior body 120 and the laminate 110. In this manner, the all-solid-state battery 100 is obtained. The positive electrode lead tab 121 and the negative electrode lead tab 122 protrude from the cured resin-containing material 201b.
 上述したように、工程(ii)において、外装体120を外側に引っ張った状態で積層体110を外装体120内に挿入してもよい。外装体120を外側に引っ張った状態における外装体120の断面形状を、図3Cに模式的に示す。図3Cに示す状態は、主壁120amの幅方向WDの中央部を外側に引っ張った状態である。なお、幅方向WDは、2つの側壁120asを結ぶ方向である。 As described above, in step (ii), the laminate 110 may be inserted into the exterior body 120 with the exterior body 120 pulled outward. The cross-sectional shape of the exterior body 120 in the state in which the exterior body 120 is pulled outward is shown diagrammatically in FIG. 3C. The state shown in FIG. 3C is a state in which the center of the main wall 120am in the width direction WD is pulled outward. The width direction WD is the direction connecting the two side walls 120as.
 上述したように、工程(ii)において、外装体を外側から加圧した状態で樹脂含有材料201aを硬化させてもよい。具体的には、主壁120amを内側に向かって加圧した状態で樹脂含有材料201aを硬化させてもよい。 As described above, in step (ii), the resin-containing material 201a may be cured while the exterior body is pressurized from the outside. Specifically, the resin-containing material 201a may be cured while the main wall 120am is pressurized inward.
 (実施形態2)
 実施形態2では、製造方法(M2)の一例について説明する。実施形態2の製造方法では、積層体110(積層体(S))が用いられる。積層体110については実施形態1で説明したため、重複する説明を省略する。
(Embodiment 2)
In the second embodiment, an example of the manufacturing method (M2) will be described. In the manufacturing method of the second embodiment, a laminate 110 (laminate (S)) is used. The laminate 110 has been described in the first embodiment, so a duplicated description will be omitted.
 まず、図4Aに示すように、積層体110を開口部120tを有する外装体120内に配置する(工程(I))。外装体120については実施形態1で説明したため、重複する説明を省略する。 First, as shown in FIG. 4A, the laminate 110 is placed in an exterior body 120 having an opening 120t (step (I)). The exterior body 120 has been described in embodiment 1, so a duplicate description will be omitted.
 次に、硬化が完了していない流動性を有する樹脂含有材料の供給を外装体120内の下方側から開始して樹脂含有材料を外装体120内に充填し、その後に樹脂含有材料の硬化を完了させる(工程(II))。これによって、図4Bに示すように、外装体120と積層体110との間に硬化した樹脂含有材料201bを配置する。このようにして、全固体電池100が得られる。正極リードタブ121および負極リードタブ122は、硬化した樹脂含有材料201bから突出している。 Next, the supply of the resin-containing material having fluidity that has not yet been cured is started from the lower side inside the exterior body 120 to fill the resin-containing material inside the exterior body 120, and then the curing of the resin-containing material is completed (step (II)). As a result, as shown in FIG. 4B, the cured resin-containing material 201b is disposed between the exterior body 120 and the laminate 110. In this manner, the all-solid-state battery 100 is obtained. The positive electrode lead tab 121 and the negative electrode lead tab 122 protrude from the cured resin-containing material 201b.
 樹脂含有材料は、図5に示すように、ノズル(チューブ)210を用いて外装体120内に充填してもよい。図5に示す外装体120の配置における外装体120の高さHを、図5に示す。樹脂含有材料の供給は、外装体120の内部空間の下方側、すなわち、底部120bの内面からH/2の高さよりも低い位置から開始される。そのために、少なくとも樹脂含有材料の供給開始時において、ノズル210は、ノズル210の先端が外装体120の下方側に到達するように配置され、ノズル210の先端から樹脂含有材料が外装体120内に供給される。ノズル210の位置(ノズル210の先端の位置)は樹脂含有材料の充填が完了するまで同じであってもよい。あるいは、ノズル210は、樹脂含有材料の充填に伴って徐々に引き上げてもよい。 The resin-containing material may be filled into the exterior body 120 using a nozzle (tube) 210 as shown in FIG. 5. The height H of the exterior body 120 in the arrangement of the exterior body 120 shown in FIG. 5 is shown in FIG. The supply of the resin-containing material is started from the lower side of the internal space of the exterior body 120, that is, from a position lower than a height of H/2 from the inner surface of the bottom 120b. For this reason, at least at the start of the supply of the resin-containing material, the nozzle 210 is arranged so that the tip of the nozzle 210 reaches the lower side of the exterior body 120, and the resin-containing material is supplied into the exterior body 120 from the tip of the nozzle 210. The position of the nozzle 210 (the position of the tip of the nozzle 210) may be the same until the filling of the resin-containing material is completed. Alternatively, the nozzle 210 may be gradually raised as the resin-containing material is filled.
 図4Aおよび図4Bでは、外装体120の底部120bを下方に配置して工程(I)および工程(II)を行う一例について説明した。しかし、工程(I)および工程(II)は、外装体120の底部120b以外を下方に配置して行ってもよい。 In Figures 4A and 4B, an example is described in which step (I) and step (II) are performed with the bottom 120b of the exterior body 120 positioned downward. However, step (I) and step (II) may be performed with a part of the exterior body 120 other than the bottom 120b positioned downward.
 図6に、一方の主壁120amを下方に配置した場合の一例を示す。図6に示す外装体120の配置における外装体120の高さHを、図6に示す。図6の配置で工程(II)を行う場合、開口部120tを蓋130で封じた状態で行ってもよい。この場合、工程(II)は、図6の配置における外装体120の下方側に貫通孔を形成し、その貫通孔から樹脂含有材料を外装体120内に充填することによって行ってもよい。あるいは、蓋130の下方側に隙間または貫通孔を形成し、その隙間または貫通孔から樹脂含有材料を外装体120内に充填してもよい。 FIG. 6 shows an example in which one of the main walls 120am is arranged downward. The height H of the exterior body 120 in the arrangement of the exterior body 120 shown in FIG. 6 is also shown in FIG. 6. When step (II) is performed in the arrangement of FIG. 6, it may be performed with the opening 120t sealed with the lid 130. In this case, step (II) may be performed by forming a through-hole on the lower side of the exterior body 120 in the arrangement of FIG. 6, and filling the exterior body 120 with the resin-containing material through the through-hole. Alternatively, a gap or through-hole may be formed on the lower side of the lid 130, and the resin-containing material may be filled into the exterior body 120 through the gap or through-hole.
 なお、図4Aおよび図4Bでは、底部120bが水平面と平行になるように外装体120を配置した一例を示したが、底部120bは水平面に対して傾いていてもよい。また、図6では、主壁120amが水平面と並行になるように外装体120を配置した一例を示したが、主壁120amは水平面に対して傾いていてもよい。いずれの場合においても、外装体の高さとは、鉛直方向に沿った外装体の長さを意味する。 Note that while Figures 4A and 4B show an example in which the exterior body 120 is arranged so that the bottom 120b is parallel to the horizontal plane, the bottom 120b may be inclined relative to the horizontal plane. Also, Figure 6 shows an example in which the exterior body 120 is arranged so that the main wall 120am is parallel to the horizontal plane, but the main wall 120am may be inclined relative to the horizontal plane. In either case, the height of the exterior body refers to the length of the exterior body along the vertical direction.
 (付記)
 上記記載によって以下の発明例が開示される。
(発明例1)
 正極層、負極層、および前記正極層と前記負極層との間に配置された固体電解質層を含む少なくとも1つの単位電池を含む全固体電池の製造方法であって、
 開口部を有する外装体内に、硬化が完了していない流動性を有する第1の樹脂含有材料を配置する工程(i)と、
 前記少なくとも1つの単位電池を含む積層体を前記外装体内に挿入した後に前記第1の樹脂含有材料の硬化を完了させ、前記外装体と前記積層体との間に硬化した前記第1の樹脂含有材料を配置する工程(ii)とを含む、全固体電池の製造方法。
(発明例2)
 前記工程(ii)において、前記外装体を外側に引っ張った状態で前記積層体を前記外装体内に挿入する、発明例1に記載の製造方法。
(発明例3)
 前記工程(ii)において、前記積層体の表面に第2の樹脂含有材料を塗布した状態で前記積層体を前記外装体内に挿入する、発明例1または2に記載の製造方法。
(発明例4)
 前記第1の樹脂含有材料と前記第2の樹脂含有材料とは同じ樹脂を含有する、発明例3に記載の製造方法。
(発明例5)
 前記工程(ii)において、前記外装体を外側から加圧した状態で前記第1の樹脂含有材料を硬化させる、発明例1~4のいずれか1つに記載の製造方法。
(発明例6)
 前記工程(ii)を経た前記外装体の中央部の厚さが、前記工程(ii)を行う前の前記外装体の前記中央部の厚さよりも小さい、発明例5に記載の製造方法。
(発明例7)
 前記工程(i)および前記工程(ii)が減圧下で行われる、発明例1~6のいずれか1つの製造方法。
(発明例8)
 正極層、負極層、および前記正極層と前記負極層との間に配置された固体電解質層を含む少なくとも1つの単位電池を含む全固体電池の製造方法であって、
 前記少なくとも1つの単位電池を含む積層体を開口部を有する外装体内に配置する工程(I)と、
 硬化が完了していない流動性を有する樹脂含有材料の供給を前記外装体内の下方側から開始して前記樹脂含有材料を前記外装体内に充填した後に前記樹脂含有材料の硬化を完了させることによって、前記外装体と前記積層体との間に硬化した前記樹脂含有材料を配置する工程(II)とを含む、全固体電池の製造方法。
(発明例9)
 前記工程(II)において、
 前記外装体を外側に引っ張った状態で流動性を有する前記樹脂含有材料を前記外装体内に充填した後に、前記外装体を外側から加圧した状態で前記樹脂含有材料を硬化させる、発明例8に記載の製造方法。
(発明例10)
 前記工程(II)を減圧下で行う、発明例8または9に記載の製造方法。
(発明例11)
 前記外装体が金属製である、発明例1~10のいずれか1つに記載の製造方法。
(発明例12)
 前記外装体は、前記積層体を積層方向に加圧する外装体である、発明例11に記載の製造方法。
(Additional Note)
The above description discloses the following invention examples.
(Example 1)
A method for producing an all-solid-state battery including at least one unit cell including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, comprising:
A step (i) of disposing a first resin-containing material having flowability and not yet cured in an exterior body having an opening;
and (ii) completing curing of the first resin-containing material after inserting a laminate including the at least one unit battery into the exterior body, and disposing the cured first resin-containing material between the exterior body and the laminate.
(Example 2)
The manufacturing method according to Example 1, wherein in the step (ii), the laminate is inserted into the exterior body while the exterior body is pulled outward.
(Example 3)
The manufacturing method according to Example 1 or 2, wherein in the step (ii), the laminate is inserted into the outer casing in a state in which a second resin-containing material is applied to a surface of the laminate.
(Example 4)
The manufacturing method described in Invention Example 3, wherein the first resin-containing material and the second resin-containing material contain the same resin.
(Example 5)
The manufacturing method according to any one of Examples 1 to 4, wherein in the step (ii), the first resin-containing material is cured in a state in which the outer casing is pressurized from the outside.
(Example 6)
A manufacturing method described in Example 5, wherein the thickness of the central portion of the outer casing after step (ii) is smaller than the thickness of the central portion of the outer casing before step (ii) is performed.
(Example 7)
The method of any one of Invention Examples 1 to 6, wherein the step (i) and the step (ii) are carried out under reduced pressure.
(Example 8)
A method for producing an all-solid-state battery including at least one unit cell including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, comprising:
a step (I) of disposing a laminate including at least one unit battery in an exterior body having an opening;
and (II) supplying a resin-containing material that has not yet been cured and has fluidity from a lower side of the exterior body to fill the exterior body with the resin-containing material, and then completing the curing of the resin-containing material, thereby disposing the cured resin-containing material between the exterior body and the laminate.
(Example 9)
In the step (II),
The manufacturing method described in Example 8 of the present invention, in which the resin-containing material having fluidity is filled into the exterior body while the exterior body is pulled outward, and then the resin-containing material is hardened while the exterior body is pressurized from the outside.
(Example 10)
The method according to claim 8 or 9, wherein step (II) is carried out under reduced pressure.
(Example 11)
The manufacturing method according to any one of Examples 1 to 10, wherein the exterior body is made of metal.
(Example 12)
The manufacturing method described in Example 11, wherein the outer casing is an outer casing that presses the laminate in the stacking direction.
 本開示は、全固体電池の製造方法に利用できる。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
The present disclosure can be used for a manufacturing method of an all-solid-state battery.
Although the present invention has been described with respect to the presently preferred embodiments, such disclosure should not be interpreted as limiting. Various variations and modifications will no doubt become apparent to those skilled in the art to which the present invention pertains upon reading the above disclosure. Accordingly, the appended claims should be interpreted to cover all variations and modifications without departing from the true spirit and scope of the present invention.
100   :全固体電池
110   :積層体
113   :単位電池
113a  :正極層
113b  :固体電解質層
113c  :負極層
120   :外装体
120a  :角筒部
120am :主壁
120as :側壁
120b  :底部
120t  :開口部
201a  :樹脂含有材料(第1の樹脂含有材料、硬化完了前)
201b  :樹脂含有材料(第1の樹脂含有材料、硬化完了後)
210   :ノズル
100: All-solid-state battery 110: Laminate 113: Unit battery 113a: Cathode layer 113b: Solid electrolyte layer 113c: Negative electrode layer 120: Exterior body 120a: Square tube portion 120am: Main wall 120as: Side wall 120b: Bottom portion 120t: Opening 201a: Resin-containing material (first resin-containing material, before curing is completed)
201b: Resin-containing material (first resin-containing material, after curing)
210: Nozzle

Claims (12)

  1.  正極層、負極層、および前記正極層と前記負極層との間に配置された固体電解質層を含む少なくとも1つの単位電池を含む全固体電池の製造方法であって、
     開口部を有する外装体内に、硬化が完了していない流動性を有する第1の樹脂含有材料を配置する工程(i)と、
     前記少なくとも1つの単位電池を含む積層体を前記外装体内に挿入した後に前記第1の樹脂含有材料の硬化を完了させ、前記外装体と前記積層体との間に硬化した前記第1の樹脂含有材料を配置する工程(ii)とを含む、全固体電池の製造方法。
    A method for producing an all-solid-state battery including at least one unit cell including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, comprising:
    A step (i) of disposing a first resin-containing material having flowability and not yet cured in an exterior body having an opening;
    and (ii) completing curing of the first resin-containing material after inserting a laminate including the at least one unit battery into the exterior body, and disposing the cured first resin-containing material between the exterior body and the laminate.
  2.  前記工程(ii)において、前記外装体を外側に引っ張った状態で前記積層体を前記外装体内に挿入する、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein in step (ii), the laminate is inserted into the exterior body while the exterior body is pulled outward.
  3.  前記工程(ii)において、前記積層体の表面に第2の樹脂含有材料を塗布した状態で前記積層体を前記外装体内に挿入する、請求項1または2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein in step (ii), the laminate is inserted into the exterior body with a second resin-containing material applied to the surface of the laminate.
  4.  前記第1の樹脂含有材料と前記第2の樹脂含有材料とは同じ樹脂を含有する、請求項3に記載の製造方法。 The manufacturing method according to claim 3, wherein the first resin-containing material and the second resin-containing material contain the same resin.
  5.  前記工程(ii)において、前記外装体を外側から加圧した状態で前記第1の樹脂含有材料を硬化させる、請求項1または2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein in step (ii), the first resin-containing material is cured while the exterior body is pressurized from the outside.
  6.  前記工程(ii)を経た前記外装体の中央部の厚さが、前記工程(ii)を行う前の前記外装体の前記中央部の厚さよりも小さい、請求項5に記載の製造方法。 The manufacturing method according to claim 5, wherein the thickness of the central portion of the exterior body after step (ii) is smaller than the thickness of the central portion of the exterior body before step (ii) is performed.
  7.  前記工程(i)および前記工程(ii)が減圧下で行われる、請求項1または2に記載の製造方法。 The method according to claim 1 or 2, wherein steps (i) and (ii) are carried out under reduced pressure.
  8.  正極層、負極層、および前記正極層と前記負極層との間に配置された固体電解質層を含む少なくとも1つの単位電池を含む全固体電池の製造方法であって、
     前記少なくとも1つの単位電池を含む積層体を開口部を有する外装体内に配置する工程(I)と、
     硬化が完了していない流動性を有する樹脂含有材料の供給を前記外装体内の下方側から開始して前記樹脂含有材料を前記外装体内に充填した後に前記樹脂含有材料の硬化を完了させることによって、前記外装体と前記積層体との間に硬化した前記樹脂含有材料を配置する工程(II)とを含む、全固体電池の製造方法。
    A method for producing an all-solid-state battery including at least one unit cell including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, comprising:
    a step (I) of disposing a laminate including at least one unit battery in an exterior body having an opening;
    and (II) supplying a resin-containing material having fluidity that has not yet been cured from a lower side of the exterior body to fill the exterior body with the resin-containing material, and then completing the curing of the resin-containing material, thereby disposing the cured resin-containing material between the exterior body and the laminate.
  9.  前記工程(II)において、
     前記外装体を外側に引っ張った状態で流動性を有する前記樹脂含有材料を前記外装体内に充填した後に、前記外装体を外側から加圧した状態で前記樹脂含有材料を硬化させる、請求項8に記載の製造方法。
    In the step (II),
    The manufacturing method according to claim 8, further comprising filling the resin-containing material having fluidity into the exterior body while the exterior body is pulled outward, and then curing the resin-containing material while the exterior body is pressurized from the outside.
  10.  前記工程(II)を減圧下で行う、請求項8または9に記載の製造方法。 The method according to claim 8 or 9, wherein step (II) is carried out under reduced pressure.
  11.  前記外装体が金属製である、請求項1または8に記載の製造方法。 The manufacturing method according to claim 1 or 8, wherein the exterior body is made of metal.
  12.  前記外装体は、前記積層体を積層方向に加圧する外装体である、請求項11に記載の製造方法。 The manufacturing method according to claim 11, wherein the exterior body presses the laminate in the stacking direction.
PCT/JP2023/028575 2022-10-28 2023-08-04 Manufacturing method for all-solid-state battery WO2024089967A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022173463A JP2024064694A (en) 2022-10-28 2022-10-28 Manufacturing method for all-solid-state batteries
JP2022-173463 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024089967A1 true WO2024089967A1 (en) 2024-05-02

Family

ID=90830518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028575 WO2024089967A1 (en) 2022-10-28 2023-08-04 Manufacturing method for all-solid-state battery

Country Status (2)

Country Link
JP (1) JP2024064694A (en)
WO (1) WO2024089967A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106154A (en) * 1998-09-28 2000-04-11 Matsushita Electric Ind Co Ltd Whole solid battery and its manufacture
JP2008084851A (en) * 2006-08-31 2008-04-10 Kokusai Kiban Zairyo Kenkyusho:Kk Secondary battery and secondary battery unit
JP2009193729A (en) * 2008-02-12 2009-08-27 Toyota Motor Corp Solid-state battery
JP2016207582A (en) * 2015-04-27 2016-12-08 トヨタ自動車株式会社 Manufacturing method for all-solid battery
JP2018133175A (en) * 2017-02-14 2018-08-23 トヨタ自動車株式会社 Manufacturing method of laminate all-solid battery
WO2021215125A1 (en) * 2020-04-23 2021-10-28 パナソニックIpマネジメント株式会社 Battery and battery manufacturing method
JP2021174579A (en) * 2020-04-20 2021-11-01 日本特殊陶業株式会社 battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106154A (en) * 1998-09-28 2000-04-11 Matsushita Electric Ind Co Ltd Whole solid battery and its manufacture
JP2008084851A (en) * 2006-08-31 2008-04-10 Kokusai Kiban Zairyo Kenkyusho:Kk Secondary battery and secondary battery unit
JP2009193729A (en) * 2008-02-12 2009-08-27 Toyota Motor Corp Solid-state battery
JP2016207582A (en) * 2015-04-27 2016-12-08 トヨタ自動車株式会社 Manufacturing method for all-solid battery
JP2018133175A (en) * 2017-02-14 2018-08-23 トヨタ自動車株式会社 Manufacturing method of laminate all-solid battery
JP2021174579A (en) * 2020-04-20 2021-11-01 日本特殊陶業株式会社 battery
WO2021215125A1 (en) * 2020-04-23 2021-10-28 パナソニックIpマネジメント株式会社 Battery and battery manufacturing method

Also Published As

Publication number Publication date
JP2024064694A (en) 2024-05-14

Similar Documents

Publication Publication Date Title
JP6673249B2 (en) Manufacturing method of laminated all solid state battery
JP5970379B2 (en) Lightweight bipolar sealed lead-acid battery and method thereof
US9257718B2 (en) Secondary battery
JP4780079B2 (en) Battery pack and manufacturing method thereof
US10153520B2 (en) Manufacturing method for all-solid-state battery, manufacturing apparatus for all-solid-state battery, and all-solid-state battery
US20080052900A1 (en) Method for manufacturing a secondary battery
US9190659B2 (en) Secondary battery and a method for manufacturing the secondary battery
CN110226255B (en) All-solid-state battery and method for manufacturing same
CN111430671B (en) Bipolar pole piece and preparation method thereof, lithium ion battery and preparation method thereof
JP2018116812A (en) Manufacturing method of all-solid lithium ion battery
CN110828942A (en) Planar heating film for lithium ion power battery and lithium ion power battery
JP2021136214A (en) Multilayer electrode body, all-solid battery with multilayer electrode body, and method for manufacturing multilayer electrode body
WO2000013240A1 (en) Coin-shaped cell and method for producing the same
WO2024089967A1 (en) Manufacturing method for all-solid-state battery
US20160028071A1 (en) Light-Weight Bipolar Valve Regulated Lead Acid Batteries and Method
CN109560327A (en) A kind of silicagel pad and its application in lithium ion battery preparation
CN116598674B (en) Secondary battery and electrochemical device
CN208955024U (en) A kind of polymer Li-ion battery
CN113921899B (en) Battery cell
JP5141316B2 (en) Solid battery
JP7319060B2 (en) All-solid battery
WO2024095771A1 (en) All-solid-state battery
CN219677326U (en) Cylindrical battery
CN218525646U (en) Large-size ultrathin square-shaped polymer power battery
JP2003142129A (en) Separator for fuel cell and its manufacturing method