WO2024095771A1 - All-solid-state battery - Google Patents

All-solid-state battery Download PDF

Info

Publication number
WO2024095771A1
WO2024095771A1 PCT/JP2023/037695 JP2023037695W WO2024095771A1 WO 2024095771 A1 WO2024095771 A1 WO 2024095771A1 JP 2023037695 W JP2023037695 W JP 2023037695W WO 2024095771 A1 WO2024095771 A1 WO 2024095771A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
laminate
plate
state battery
shaped portion
Prior art date
Application number
PCT/JP2023/037695
Other languages
French (fr)
Japanese (ja)
Inventor
健児 岡本
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2024095771A1 publication Critical patent/WO2024095771A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/477Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/48Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by the material
    • H01M50/483Inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This disclosure relates to all-solid-state batteries.
  • All-solid-state batteries which have high safety and energy density, are attracting attention.
  • All-solid-state batteries contain a laminate that includes a positive electrode layer, a solid electrolyte layer, and a negative electrode layer as a power generation element.
  • Various proposals have been made regarding the structure and manufacturing methods of all-solid-state batteries.
  • Claim 1 of Patent Document 1 JP Patent Publication 2018-129153 A describes an all-solid-state battery stack having two or more all-solid-state battery elements in which a negative electrode current collector layer, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode current collector layer are stacked in this order, a current collector having a first plate-shaped portion, a second plate-shaped portion facing the first plate-shaped portion, and a third plate-shaped portion connecting the first plate-shaped portion and the second plate-shaped portion, the cross section of the first, second, and third plate-shaped portions in the thickness direction forming a U-shape, and the current collector is housed in an exterior body made of a laminate film, and the third plate-shaped portion of the current collector is approximately parallel to the stacking direction of the all-solid-state battery stack.
  • the all-solid-state battery is described as having a U-shaped opening facing the all-solid-state battery stack, and one of the multiple negative electrode collector layers and the multiple positive electrode collector layers in the all-solid-state battery stack is electrically connected to at least one of the first plate-shaped portion and the second plate-shaped portion of the current collector via the current collector tabs of each of the multiple current collector layers, and the first plate-shaped portion and the second plate-shaped portion of the current collector are disposed further outward than the outermost current collector layer in the stacking direction of the all-solid-state battery stack, among the multiple current collector layers electrically connected to the current collector.
  • Patent Document 2 Patent Publication No. 6868871 describes in claim 1 a secondary battery comprising "an exterior and an object housed in the exterior, the object having an electrode body and a laminate pack that seals the electrode body inside, the exterior applying substantially uniform pressure to each of the front and back sides of the object by its elastic force, the interior of the exterior being at negative pressure, the interior of the laminate pack being at a lower pressure than the exterior, the pressure inside the laminate pack being 1 Pa or less inside the exterior, and the pressure outside the laminate pack being 1000 Pa or less.”
  • one of the objectives of the present disclosure is to provide an all-solid-state battery that is less likely to expand even under reduced pressure.
  • the all-solid-state battery is an all-solid-state battery including at least one unit battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, and includes a stack including the at least one unit battery, a restraining member disposed to surround the stack and restraining the stack, and an exterior body that seals the stack and the restraining member, and the restraining member does not seal the inside of the restraining member.
  • FIG. 1 is a top view illustrating an example of the all-solid-state battery according to the first embodiment.
  • FIG. 2A is a cross-sectional view taken along line IIA-IIA in FIG.
  • FIG. 2B is a cross-sectional view taken along line IIB-IIB in FIG.
  • FIG. 3A is a top view illustrating an example of a restraining member used in the all-solid-state battery of embodiment 1.
  • FIG. 3B is a cross-sectional view taken along line IIIB-IIIB in FIG. 3A.
  • FIG. 4 is a cross-sectional view illustrating a schematic diagram of another example of the restraining member used in the all-solid-state battery of the first embodiment.
  • FIG. 5 is a cross-sectional view illustrating another example of the restraining member used in the all-solid-state battery of embodiment 1.
  • FIG. 6 is a cross-sectional view illustrating another example of the all-solid-state battery according to the first embodiment.
  • the all-solid-state battery according to this embodiment may be referred to as "all-solid-state battery (B)" below.
  • the all-solid-state battery (B) includes at least one unit battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer.
  • the all-solid-state battery (B) includes a laminate including the at least one unit battery, a restraining member disposed so as to surround the laminate and restraining the laminate, and an exterior body that seals the laminate and the restraining member.
  • the laminate may be referred to as "laminate (S)” below.
  • the restraining member does not seal the inside of the restraining member.
  • the exterior body seals the object means that the exterior body with the object placed inside is sealed so that there are no gaps through which gas can pass. From one perspective, the exterior body is airtight, but the restraining member is not airtight. By sealing the interior of the exterior body, deterioration of the unit cells can be suppressed. On the other hand, when a conventional all-solid-state battery is placed under reduced pressure, the exterior body expands, and the internal laminate also tends to expand. As a result, poor contact between the electrodes and current collectors occurs, and resistance in each layer increases, which can significantly reduce the performance of the battery.
  • the laminate is restrained by a restraining member, so even if the exterior body expands under reduced pressure, the laminate can be prevented from expanding. Therefore, the all-solid-state battery (B) can exhibit high performance even under reduced pressure. Furthermore, the all-solid-state battery (B) can be used reliably for a long period of time even under reduced pressure.
  • the exterior body may be formed using a laminate film. By forming the exterior body using a laminate film, the weight of the battery can be reduced.
  • the restraining member may include a cylindrical body having a first plate-shaped portion and a second plate-shaped portion.
  • the first main surface and the second main surface of the laminate (S) may be pressed by the first plate-shaped portion and the second plate-shaped portion, respectively.
  • the first plate-shaped portion and the second plate-shaped portion may each be curved to have a convex shape toward the inside of the restraining member.
  • the curved plate-shaped portion can press the main surface of the laminate (S).
  • the laminate (S) By pressing the main surface of the laminate (S) with the plate-shaped portion, the laminate (S) can be pressurized in the stacking direction. As a result, the performance and reliability of the battery can be improved.
  • Both ends of the cylindrical body may be open. Both ends of the cylindrical body may be capped as long as the inside of the cylindrical body is not sealed.
  • first and second plate-like portions When curved first and second plate-like portions are used, it is preferable to select the shape and size of the cylindrical body so that when the laminate (S) or the like (laminate and, if necessary, a cushioning member, etc.) is placed inside the cylindrical body, the first and second plate-like portions are flatter than before the laminate (S) or the like was placed inside the cylindrical body. In that case, the laminate (S) or the like may be inserted inside the cylindrical body while the cylindrical body is pulled outward.
  • laminate (S) or the like laminate and, if necessary, a cushioning member, etc.
  • the cylindrical body may include a first side wall and a second side wall connecting the first plate-shaped portion and the second plate-shaped portion, and the first side wall and the second side wall may each have elasticity in the direction connecting the first plate-shaped portion and the second plate-shaped portion.
  • the elasticity of the side walls can be used to allow the plate-shaped portion to strongly press against the main surface of the laminate (S).
  • Examples of elastic side walls include side walls that are curved like a leaf spring. In this case, it is preferable that the cylindrical body is formed of metal.
  • Other examples of elastic side walls include side walls that use an elastic material such as rubber.
  • the cylindrical body may be made of metal. By using a cylindrical body made of metal, it is possible to press the main surface of the laminate (S) with a strong force.
  • the solid-state battery (B) may further include a buffer member disposed between the restraining member and the laminate.
  • a buffer member disposed between the restraining member and the laminate.
  • the cushioning material may be a material that expands under reduced pressure.
  • the cushioning material may include a foam.
  • the inside of the exterior body may be depressurized. By depressurizing the inside of the exterior body, expansion of the battery and the laminate (S) under reduced pressure can be suppressed.
  • the inside of the exterior body may be depressurized to 2000 Pa or less, 1000 Pa or less, 100 Pa or less, 10 Pa or less, 1.0 Pa or less, or 0.1 Pa or less.
  • components of the all-solid-state battery (B) are described below. However, the following components are merely examples, and other components may be used.
  • the laminate (S) is a laminate of an all-solid-state lithium ion battery is mainly described, but it may be a laminate of other all-solid-state batteries.
  • the laminate (S) is not particularly limited, and may be a laminate of a known all-solid-state battery.
  • the all-solid-state battery includes a laminate (S).
  • the laminate (S) includes at least one unit cell (power generating element).
  • the laminate (S) may include only one unit cell, or may include a plurality of unit cells stacked together.
  • the unit cell includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer.
  • the laminate (S) includes a current collector as necessary.
  • it is preferable that the laminate (S) is pressurized in the stacking direction. Pressurizing the laminate (S) enables it to exhibit high performance.
  • the planar shape of the laminate (S) is, for example, rectangular.
  • the restraining member can be made of metal or the like.
  • the metal plate constituting the restraining member include a stainless steel plate, a carbon steel plate, an aluminum alloy plate, and the like.
  • the restraining member may be made of resin.
  • a relatively hard resin such as polyethylene terephthalate resin (PET resin), epoxy resin (EP), polyether ketone ketone (PEKK), polyimide (PI), polyamide (PA), and the like is preferably used.
  • the restraining member has a size that allows the laminate (S) and the like to be placed inside.
  • the restraining member preferably has a size that allows the entire laminate (S) to be placed inside.
  • the planar shape of the laminate (S) is rectangular, the planar shape of the internal space of the restraining member is preferably also rectangular.
  • the thickness of the metal plate constituting the restraining member may be selected according to the material, the required pressure resistance, and the material of the metal plate.
  • the thickness of the metal plate constituting the restraining member may be 0.10 mm or more, or 0.15 mm or more, or may be 0.60 mm or less, or 0.50 mm or less.
  • the laminate film includes a metal layer.
  • the metal layer include an aluminum layer (e.g., an aluminum vapor deposition layer, an aluminum foil, etc.).
  • the laminate film includes a resin layer.
  • the laminate film may include a layer for heat sealing on its surface.
  • the laminate film may be a known laminate film used for the exterior body of a battery.
  • an exterior body formed using any material other than a laminate film may be used as the exterior body.
  • a known exterior body used as an exterior body for an all-solid-state battery may be used as the exterior body.
  • an exterior body formed using at least one of a metal, a plate-shaped resin or resin composition, a sealing member, etc. may be used.
  • the exterior body may be formed of a metal, or may be formed of a metal case and another member (e.g., a sealing body).
  • a sealing body By using an exterior body including a metal case, it is possible to suppress the expansion of the exterior body under reduced pressure. In either case, the exterior body seals the inside.
  • Examples of the buffer material include an elastic body, a material that expands under reduced pressure, etc.
  • Examples of the elastic body include rubber, etc.
  • Examples of the material that expands under reduced pressure include foam, etc.
  • Examples of the foam include a resin foam having many small closed cells therein.
  • the positive electrode layer includes a positive electrode active material, and may include other components as necessary.
  • the other components include known components (such as binders and conductive materials) used in the positive electrode layer of all-solid-state batteries.
  • the positive electrode layer may include a solid electrolyte exhibiting lithium ion conductivity together with the positive electrode active material.
  • the positive electrode active material is used in the form of particles (powder).
  • the positive electrode active material can be a material that can be used as a positive electrode active material for a solid-state battery.
  • examples of the positive electrode active material include lithium-containing composite oxides and compounds other than oxides.
  • lithium-containing composite oxides include lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, and other lithium-containing composite oxides (LiNi 0.8 Co 0.15 Al 0.05 O 2 , etc.).
  • compounds other than oxides include olivine compounds (LiMPO 4 , etc.), sulfur-containing compounds (Li 2 S, etc.), etc.
  • M represents a transition metal.
  • the positive electrode active material may be used alone or in combination of two or more types.
  • the negative electrode layer includes a negative electrode active material, and may include other components as necessary. Examples of the other components include known components (such as binders and conductive materials) used in the negative electrode layer of all-solid-state batteries.
  • the negative electrode layer may include a negative electrode active material and a solid electrolyte exhibiting lithium ion conductivity. Usually, the negative electrode active material is used in the form of particles (powder).
  • the negative electrode active material may be a material that can be used as a negative electrode active material for an all-solid-state battery.
  • the negative electrode active material may be a specific material (carbonaceous material, metal or semimetal element or alloy, or compound, etc.) that can reversibly store and release lithium ions.
  • carbonaceous materials include graphite (natural graphite, artificial graphite, etc.), hard carbon, and amorphous carbon.
  • metal or semimetal element or alloy include lithium metal or alloy, and elemental silicon.
  • Examples of compounds include oxides (titanium oxide, silicon oxide, etc.), sulfides, nitrides, hydrates, and silicides (lithium silicide, etc.).
  • the negative electrode active material may be used alone or in combination of two or more.
  • silicon oxide and a carbonaceous material may be used in combination.
  • Particles containing graphite particles and amorphous carbon covering the graphite particles may be used as the negative electrode active material.
  • the solid electrolyte layer is disposed between the positive electrode layer and the negative electrode layer.
  • the solid electrolyte layer includes a solid electrolyte, and may include other components as necessary. Examples of the other components include known components used in the solid electrolyte layer of an all-solid-state battery.
  • the solid electrolyte is usually used in the form of particles (powder).
  • the solid electrolyte can be any material that can be used as a solid electrolyte in an all-solid-state battery, without any particular restrictions.
  • the solid electrolyte can be any material that has lithium ion conductivity.
  • examples of such solid electrolytes include inorganic solid electrolytes such as sulfides (sulfide-based solid electrolytes) and hydrides (hydride-based solid electrolytes).
  • Examples of sulfides include Li 2 S-SiS 2 , Li 2 S-P 2 S 5 , Li 2 S-GeS 2 , Li 2 S-B 2 S 3 , Li 2 S-Ga 2 S 3 , Li 2 S-Al 2 S 3 , Li 2 S-GeS 2 -P 2 S 5 , Li 2 S-Al 2 S 3 -P 2 S 5 , Li 2 S-P 2 S 3 , Li 2 S-P 2 S 3 -P 2 S 5 , LiX-Li 2 S-P 2 S 5 , LiX-Li 2 S-SiS 2 , LiX-Li 2 S-B 2 S 3 (X: I, Br, or Cl), etc.
  • Examples of the hydrides include LiBH 4 -LiI-based complex hydrides and LiBH 4 -LiNH 2 -based complex hydrides, etc.
  • a positive electrode current collector is usually disposed on the outside of the positive electrode layer.
  • a metal foil may be used as the positive electrode current collector.
  • materials for the positive electrode current collector include aluminum, magnesium, stainless steel, titanium, iron, cobalt, zinc, tin, or alloys thereof. Lead tabs are connected to the positive electrode current collector and the negative electrode current collector as necessary.
  • a negative electrode current collector is usually disposed on the outside of the negative electrode layer.
  • the negative electrode current collector may be a metal foil.
  • materials for the negative electrode current collector include copper, nickel, stainless steel, titanium, or alloys thereof.
  • the manufacturing method of the all-solid-state battery (B) is not particularly limited. An example of the manufacturing method of the all-solid-state battery (B) is described below. This manufacturing method includes steps (i) and (ii) in this order. These steps are described below.
  • Step (i) is a step of placing the laminate (S) inside the restraining member. At that time, the restraining member is pulled outward as necessary to place the laminate (S). In step (i), a cushioning member is placed inside the restraining member together with the laminate (S) as necessary.
  • Step (ii) is a step of sealing the restraining member and the object placed inside it (including at least the laminate (S) and, if necessary, a cushioning material, etc.) with an exterior body.
  • the restraining member may be wrapped in a laminate film and then bonded at the required locations.
  • heat sealing, etc. may be used. If necessary, heat sealing is performed so that a lead tab, etc., protrudes from the exterior body.
  • step (ii) may be performed under reduced pressure.
  • the inside of the exterior body may be degassed when sealing it.
  • the laminate (S) may be one that has already been formed, or may be formed. There is no particular limitation on the method for forming the laminate (S), and it may be formed by a known method. It is preferable to form the laminate (S) using a material that does not contain a liquid component. An example of a method for forming the laminate (S) by such a formation method (dry formation method) is described below.
  • the material of the positive electrode layer, the material of the solid electrolyte layer, and the material of the negative electrode layer are stacked on a metal foil (current collector) in a predetermined order, and then the current collector (metal foil) is placed.
  • the stacked materials and the metal foil are pressed together (main press) to form a laminate (S).
  • This main press integrates the metal foil and each layer to obtain the laminate (S).
  • the pressure of the main press can be changed appropriately depending on the material and thickness, and may be 50 MPa or more and 5000 MPa or less (for example, 300 MPa or more and 3000 MPa or less). In this way, a laminate (S) having a structure of positive electrode collector/positive electrode layer/solid electrolyte layer/negative electrode layer/negative electrode collector is obtained.
  • the laminate (S) may include layers other than these layers, such as a thin conductive layer.
  • the materials may be preliminarily pressed at any stage after the material for the positive electrode layer is placed, the material for the solid electrolyte layer is placed, or the material for the negative electrode layer is placed.
  • the preliminarily pressed is usually performed at a pressure lower than the pressure of the main press described above. There is no particular limit to the pressure of the preliminarily pressed, and it may be in the range of 1 MPa to 10 MPa. In order to reduce voids in the laminate, at least a part of the process of forming the laminate may be performed under reduced pressure.
  • the laminate (S) By forming the laminate (S) using a process of pressing materials that do not contain liquid components, it is possible to obtain an all-solid-state battery that exhibits high performance without high pressure.
  • a method for arranging materials that do not contain liquid components (dispersion medium) in layers electrostatic spraying, squeegee film formation, electrostatic painting, etc. may also be used.
  • a laminate including one unit battery may be formed by press molding, and then the laminate may be stacked to form the laminate (S).
  • the laminate (S) may be formed by press molding the materials so that multiple unit batteries are stacked.
  • FIG. 1 A top view of the all-solid-state battery 100 of the first embodiment is shown typically in Fig. 1.
  • a cross-sectional view taken along line IIA-IIA in Fig. 1 is shown in Fig. 2A
  • a cross-sectional view taken along line IIB-IIB in Fig. 1 is shown in Fig. 2B.
  • the all-solid-state battery 100 includes a laminate 110, a restraining member 130, and an exterior body 140.
  • the laminate 110 includes a positive electrode collector 111, a negative electrode collector 112, and a unit battery 120 disposed therebetween.
  • the unit battery 120 includes a positive electrode layer 121, a negative electrode layer 122, and a solid electrolyte layer 123 disposed therebetween.
  • the laminate 110 has a laminate structure in which the positive electrode collector 111, the positive electrode layer 121, the solid electrolyte layer 123, the negative electrode layer 122, and the negative electrode collector 112 are laminated in this order along the stacking direction SD.
  • a positive electrode lead tab 111a protrudes from the positive electrode current collector 111.
  • a negative electrode lead tab 112a protrudes from the negative electrode current collector 112.
  • the positive electrode lead tab 111a may be integral with the positive electrode current collector 111, or may be a lead tab connected to the positive electrode current collector 111.
  • the negative electrode lead tab 112a may be integral with the negative electrode current collector 112, or may be a lead tab connected to the negative electrode current collector 112.
  • the exterior body 140 is formed from a laminate film.
  • the example exterior body 140 shown in embodiment 1 is formed by bonding the four sides of two rectangular laminates together. The four sides can be bonded together by, for example, heat sealing.
  • the inside of the exterior body 140 is sealed.
  • the inside of the exterior body 140 may be reduced in pressure. Note that the shape of the exterior body 140 is not limited to the shape shown in FIG. 1, as long as the inside can be sealed.
  • the restraining member 130 is composed of a first plate-shaped portion 131, a second plate-shaped portion 132, a first side wall 133, and a second side wall 134.
  • the first and second side walls 133 and 134 connect the first plate-shaped portion 131 and the second plate-shaped portion 132.
  • the first plate-shaped portion 131 faces the first main surface 110a of the laminate 110
  • the second plate-shaped portion 132 faces the second main surface 110b of the laminate 110.
  • the first and second plate-shaped portions 131 and 132 can press the first main surface 110a and the second main surface 110b toward the inside of the laminate 110.
  • the restraining member 130 is made of metal or the like.
  • the restraining member 130 has a rectangular cylindrical shape.
  • Figure 3A shows a top view of the restraining member 130 existing alone.
  • Figure 3B shows a cross section taken along line IIIB-IIIB in Figure 3A, i.e., a cross section perpendicular to the direction LD in which the rectangular tube extends.
  • the state in which the restraining member 130 exists alone means that there are no other members on the inside or outside of the restraining member 130, and no external force is being applied to the restraining member 130.
  • the restraining member 130 shown in Figure 3B has a rectangular cross section.
  • FIG. 4 shows a cross-sectional view of another example of the restraint member 130 when it exists alone
  • FIG. 5 shows a cross-sectional view of yet another example of the restraint member 130 when it exists alone.
  • Their top views are the same as the top view shown in FIG. 3A.
  • FIG. 4 and FIG. 5 show a cross section perpendicular to the direction LD in FIG. 3A.
  • FIG. 4 and FIG. 5 also show the outline of the laminate 110 that is placed inside.
  • the first plate-shaped portion 131 and the second plate-shaped portion 132 are each curved to have a convex shape toward the inside of the restraining member 130. More specifically, the first plate-shaped portion 131 and the second plate-shaped portion 132 are curved so that the central portions 131c and 132c of the first plate-shaped portion 131 and the second plate-shaped portion 132 in the width direction WD are located on the innermost side. The distance between the central portions 131c and 132c is shorter than the thickness of the laminate 110.
  • the shape of the first plate-like portions 131 and 132 becomes flatter than the shape when the restraining member 130 exists alone.
  • the first plate-like portions 131 and 132 can apply higher pressure to the first and second main surfaces 110a and 110b of the laminate 110.
  • first side wall 133 and the second side wall 134 are curved to have a convex shape toward the inside of the restraint member 130.
  • Such first side wall 133 and second side wall 134 function as a leaf spring having elasticity in the direction D connecting the first plate-shaped portion 131 and the second plate-shaped portion 132. Therefore, the first plate-shaped portions 131 and 132 of the restraint member 130 shown in FIG. 5 can apply a particularly high pressure to the first and second main surfaces 110a and 110b of the laminate 110.
  • the shapes of the first side wall 133 and the second side wall 134 may be shapes other than those shown in FIG. 4 and FIG. 5 and may be shapes having elasticity in the direction D.
  • the laminate 110 or the like When placing the laminate 110 or the like inside the restraining member 130 shown in Figures 4 and 5, the laminate 110 or the like may be placed with the restraining member 130 pulled outward.
  • the central portions 131c and 132c may be attracted by vacuum suction or the like and pulled outward.
  • the all-solid-state battery 100 may further include a buffer member.
  • FIG. 6 shows a cross-sectional view of an example of the all-solid-state battery 100 including the buffer member 150.
  • FIG. 6 is a cross-sectional view at the same position as the cross-sectional view of FIG. 2A.
  • the buffer member 150 is disposed between the restraining member 130 and the laminate 110.
  • the planar shape of the buffer member 150 is substantially the same as the planar shape of the first main surface 110a.
  • the all-solid-state battery 100 may include a buffer member 150 disposed between the first main surface 110a and the first plate-shaped portion 131, and a buffer member 150 disposed between the second main surface 110b and the second plate-shaped portion 132.
  • Example 1 An all-solid-state battery including at least one unit cell including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, a stack including the at least one unit battery; and A restraining member that is disposed so as to surround the stack and restrains the stack; an exterior body that seals the laminate and the restraining member, An all-solid-state battery, wherein the restraining member does not seal the inside of the restraining member.
  • Example 2 The all-solid-state battery according to Example 1, wherein the exterior body is formed using a laminate film.
  • the restraint member includes a tubular body having a first plate-shaped portion and a second plate-shaped portion,
  • the all-solid-state battery according to Invention Example 1 or 2 wherein a first main surface and a second main surface of the laminate are pressed by the first plate-shaped portion and the second plate-shaped portion, respectively.
  • Example 4 The all-solid-state battery according to Example 3, wherein when the restraining member is present alone, the first plate-shaped portion and the second plate-shaped portion are each curved to have a convex shape toward an inside of the restraining member.
  • the cylindrical body includes a first side wall and a second side wall connecting the first plate-shaped portion and the second plate-shaped portion,
  • the all-solid-state battery according to Example 3 or 4 wherein the first side wall and the second side wall each have elasticity in a direction connecting the first plate-shaped portion and the second plate-shaped portion.
  • Example 6 The all-solid-state battery according to any one of Examples 3 to 5, wherein the cylindrical body is made of metal.
  • Example 7) The all-solid-state battery according to any one of Examples 1 to 6, further comprising a buffer member disposed between the restraining member and the laminate.
  • Example 9 The all-solid-state battery according to Example 8, wherein the cushioning member includes a foam.
  • Example 10 The all-solid-state battery according to any one of Examples 1 to 9, wherein the inside of the exterior body is depressurized.
  • All-solid-state battery 110 Laminate 110a: Second main surface 110b: Second main surface 120: Unit cell 121: Positive electrode layer 122: Negative electrode layer 123: Solid electrolyte layer 130: Restraint member 131: First plate-shaped portion 132: Second plate-shaped portion 133: First side wall 134: Second side wall 140: Exterior body 150: Cushioning member

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

An all-solid-state battery (100) disclosed herein includes at least one unit cell (120) including a positive electrode layer (121), a negative electrode layer (122), and a solid electrolyte layer (123). The all-solid-state battery (100) includes: a laminate (110) including at least one unit cell (120); a restraining member (130) which is disposed so as to surround the laminate (110) and restrains the laminate (110); and an exterior body (140) which seals the laminate (110) and the restraining member (130). The restraining member (130) does not seal the inside of the restraining member (130).

Description

全固体電池All-solid-state battery
 本開示は、全固体電池に関する。 This disclosure relates to all-solid-state batteries.
 現在、安全性およびエネルギー密度が高い全固体電池が注目されている。全固体電池は、正極層、固体電解質層、および負極層を含む積層体を、発電要素として含む。全固体電池の構造や製造方法について、従来から様々な提案がなされている。 Currently, all-solid-state batteries, which have high safety and energy density, are attracting attention. All-solid-state batteries contain a laminate that includes a positive electrode layer, a solid electrolyte layer, and a negative electrode layer as a power generation element. Various proposals have been made regarding the structure and manufacturing methods of all-solid-state batteries.
 特許文献1(特開2018-129153号公報)の請求項1には、「負極集電体層、負極活物質層、固体電解質層、正極活物質層、及び正極集電体層がこの順に積層された全固体電池素子を2個以上有する全固体電池積層体と、第1の板状部、前記第1の板状部に対向する第2の板状部、及び前記第1の板状部と前記第2の板状部とを連結する第3の板状部を有し、これら第1、第2、及び第3の板状部の厚み方向の断面がコの字型を形成する、集電部材と、ラミネートフィルムから成る外装体に収容されており、前記集電部材は、前記第3の板状部が前記全固体電池積層体の積層方向と略平行であって前記コの字の開口が前記全固体電池積層体側に向くように配置されており、前記全固体電池積層体における複数の負極集電体層、及び複数の正極集電体層のうちの一方は、前記複数の集電体層それぞれの集電タブを介して、前記集電部材の前記第1の板状部及び前記第2の板状部のうちの少なくとも一方に電気的に接続されており、且つ前記集電部材における前記第1の板状部及び前記第2の板状部は、前記集電部材に電気的に接続された前記複数の集電体層のうちの、前記全固体電池積層体の積層方向における最外側の集電体層よりも更に外側に配置されている、全固体電池」が記載されている。 Claim 1 of Patent Document 1 (JP Patent Publication 2018-129153 A) describes an all-solid-state battery stack having two or more all-solid-state battery elements in which a negative electrode current collector layer, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode current collector layer are stacked in this order, a current collector having a first plate-shaped portion, a second plate-shaped portion facing the first plate-shaped portion, and a third plate-shaped portion connecting the first plate-shaped portion and the second plate-shaped portion, the cross section of the first, second, and third plate-shaped portions in the thickness direction forming a U-shape, and the current collector is housed in an exterior body made of a laminate film, and the third plate-shaped portion of the current collector is approximately parallel to the stacking direction of the all-solid-state battery stack. The all-solid-state battery is described as having a U-shaped opening facing the all-solid-state battery stack, and one of the multiple negative electrode collector layers and the multiple positive electrode collector layers in the all-solid-state battery stack is electrically connected to at least one of the first plate-shaped portion and the second plate-shaped portion of the current collector via the current collector tabs of each of the multiple current collector layers, and the first plate-shaped portion and the second plate-shaped portion of the current collector are disposed further outward than the outermost current collector layer in the stacking direction of the all-solid-state battery stack, among the multiple current collector layers electrically connected to the current collector.
 特許文献2(特許第6868871号公報)の請求項1には、「外装と、前記外装に収容される被収容物とを備え、前記被収容物は、電極体と、当該電極体を内部に密封するラミネートパックとを有し、前記外装は、その弾性力により、前記被収容物の表面および裏面のそれぞれに、略均一に押圧を加えるものであり、前記外装の内部が負圧であり、前記外装の内部において、前記ラミネートパックの内部が外部よりも低圧であり、前記外装の内部において、前記ラミネートパックの内部の圧力が1Pa以下であり、且つ、当該ラミネートパックの外部の圧力が1000Pa以下であることを特徴とする二次電池」が記載されている。 Patent Document 2 (Patent Publication No. 6868871) describes in claim 1 a secondary battery comprising "an exterior and an object housed in the exterior, the object having an electrode body and a laminate pack that seals the electrode body inside, the exterior applying substantially uniform pressure to each of the front and back sides of the object by its elastic force, the interior of the exterior being at negative pressure, the interior of the laminate pack being at a lower pressure than the exterior, the pressure inside the laminate pack being 1 Pa or less inside the exterior, and the pressure outside the laminate pack being 1000 Pa or less."
特開2018-129153号公報JP 2018-129153 A 特許第6868871号公報Patent No. 6868871
 全固体電池を減圧下で用いる場合、電池が膨張する場合がある。電池が膨張すると、電極と集電体との接触不良が生じたり、各層における抵抗が増大したりして、電池の性能が大幅に低下することがある。このような状況において、本開示の目的の1つは、減圧下でも電池が膨張しにくい全固体電池を提供することである。 When an all-solid-state battery is used under reduced pressure, the battery may expand. When the battery expands, poor contact between the electrodes and the current collector may occur, and resistance in each layer may increase, resulting in a significant decrease in battery performance. In such a situation, one of the objectives of the present disclosure is to provide an all-solid-state battery that is less likely to expand even under reduced pressure.
 本開示の一局面は、全固体電池に関する。当該全固体電池は、正極層、負極層、および前記正極層と前記負極層との間に配置された固体電解質層を含む少なくとも1つの単位電池を含む全固体電池であって、前記少なくとも1つの単位電池を含む積層体と、前記積層体を囲むように配置され、前記積層体を拘束する拘束部材と、前記積層体および前記拘束部材を密封する外装体とを含み、前記拘束部材は、前記拘束部材の内部を密封していない。 One aspect of the present disclosure relates to an all-solid-state battery. The all-solid-state battery is an all-solid-state battery including at least one unit battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, and includes a stack including the at least one unit battery, a restraining member disposed to surround the stack and restraining the stack, and an exterior body that seals the stack and the restraining member, and the restraining member does not seal the inside of the restraining member.
 本開示によれば、減圧下でも電池が膨張しにくい全固体電池が得られる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
According to the present disclosure, an all-solid-state battery that is less likely to expand even under reduced pressure can be obtained.
The novel features of the present invention are set forth in the appended claims, but the present invention, both in terms of structure and content, together with other objects and features of the present invention, will be better understood from the following detailed description taken in conjunction with the drawings.
図1は、実施形態1の全固体電池の一例を模式的に示す上面図である。FIG. 1 is a top view illustrating an example of the all-solid-state battery according to the first embodiment. 図2Aは、図1の線IIA-IIAにおける断面図である。FIG. 2A is a cross-sectional view taken along line IIA-IIA in FIG. 図2Bは、図1の線IIB-IIBにおける断面図である。FIG. 2B is a cross-sectional view taken along line IIB-IIB in FIG. 図3Aは、実施形態1の全固体電池に用いられる拘束部材の一例を模式的に示す上面図である。FIG. 3A is a top view illustrating an example of a restraining member used in the all-solid-state battery of embodiment 1. 図3Bは、図3Aの線IIIB-IIIBにおける断面図である。FIG. 3B is a cross-sectional view taken along line IIIB-IIIB in FIG. 3A. 図4は、実施形態1の全固体電池に用いられる拘束部材の他の一例を模式的に示す断面図である。FIG. 4 is a cross-sectional view illustrating a schematic diagram of another example of the restraining member used in the all-solid-state battery of the first embodiment. 図5は、実施形態1の全固体電池に用いられる拘束部材のその他の一例を模式的に示す断面図である。FIG. 5 is a cross-sectional view illustrating another example of the restraining member used in the all-solid-state battery of embodiment 1. 図6は、実施形態1の全固体電池の他の一例を模式的に示す断面図である。FIG. 6 is a cross-sectional view illustrating another example of the all-solid-state battery according to the first embodiment.
 以下では、本開示に係る実施形態について例を挙げて説明するが、本開示は以下で説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示に係る発明を実施できる限り、他の数値や他の材料を適用してもよい。この明細書において、「数値A~数値B」という記載は、数値Aおよび数値Bを含み、「数値A以上で数値B以下」と読み替えることが可能である。以下の説明において、特定の物性や条件などに関する数値の下限と上限とを例示した場合、下限が上限以上とならない限り、例示した下限のいずれかと例示した上限のいずれかとを任意に組み合わせることができる。 Below, examples of embodiments of the present disclosure are described, but the present disclosure is not limited to the examples described below. In the following description, specific numerical values and materials may be exemplified, but other numerical values and other materials may be applied as long as the invention of the present disclosure can be implemented. In this specification, the expression "numerical value A to numerical value B" includes numerical value A and numerical value B and can be read as "numerical value A or more and numerical value B or less." In the following description, when numerical values for specific physical properties or conditions are exemplified as lower and upper limits, any of the exemplified lower limits can be arbitrarily combined with any of the exemplified upper limits, as long as the lower limit is not equal to or greater than the upper limit.
 (全固体電池)
 本実施形態に係る全固体電池を以下では、「全固体電池(B)」と称する場合がある。全固体電池(B)は、正極層、負極層、および正極層と負極層との間に配置された固体電解質層を含む少なくとも1つの単位電池を含む。全固体電池(B)は、前記少なくとも1つの単位電池を含む積層体と、積層体を囲むように配置され、積層体を拘束する拘束部材と、積層体および拘束部材を密封する外装体とを含む。当該積層体を以下では、「積層体(S)」と称する場合がある。拘束部材は、拘束部材の内部を密封していない。
(All-solid-state battery)
The all-solid-state battery according to this embodiment may be referred to as "all-solid-state battery (B)" below. The all-solid-state battery (B) includes at least one unit battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer. The all-solid-state battery (B) includes a laminate including the at least one unit battery, a restraining member disposed so as to surround the laminate and restraining the laminate, and an exterior body that seals the laminate and the restraining member. The laminate may be referred to as "laminate (S)" below. The restraining member does not seal the inside of the restraining member.
 この明細書において、「外装体が物体を密封する」とは、内部に物体が配置された外装体が、気体が通過する隙間がないように封じられていることを意味する。1つの観点では、外装体は気密であり、拘束部材は気密ではない。外装体がその内部を密封することによって、単位電池が劣化することを抑制できる。一方、従来の全固体電池を減圧下におくと、外装体が膨張し、内部の積層体も膨張しやすくなる。その結果、電極と集電体との接触不良が生じたり、各層における抵抗が増大したりして、電池の性能が大幅に低下することがある。 In this specification, "the exterior body seals the object" means that the exterior body with the object placed inside is sealed so that there are no gaps through which gas can pass. From one perspective, the exterior body is airtight, but the restraining member is not airtight. By sealing the interior of the exterior body, deterioration of the unit cells can be suppressed. On the other hand, when a conventional all-solid-state battery is placed under reduced pressure, the exterior body expands, and the internal laminate also tends to expand. As a result, poor contact between the electrodes and current collectors occurs, and resistance in each layer increases, which can significantly reduce the performance of the battery.
 全固体電池(B)では、積層体を拘束部材で拘束しているため、減圧下において外装体が膨張したとしても、積層体が膨張することを抑制できる。そのため、全固体電池(B)は、減圧下でも高い性能を発揮することが可能である。また、全固体電池(B)は、減圧下でも、長期にわたって信頼性よく使用できる。 In the all-solid-state battery (B), the laminate is restrained by a restraining member, so even if the exterior body expands under reduced pressure, the laminate can be prevented from expanding. Therefore, the all-solid-state battery (B) can exhibit high performance even under reduced pressure. Furthermore, the all-solid-state battery (B) can be used reliably for a long period of time even under reduced pressure.
 外装体は、ラミネートフィルムを用いて形成されていてもよい。ラミネートフィルムを用いて外装体を形成することによって、電池を軽量化することができる。 The exterior body may be formed using a laminate film. By forming the exterior body using a laminate film, the weight of the battery can be reduced.
 拘束部材は、第1の板状部と第2の板状部とを有する筒状体を含んでもよい。積層体(S)の第1の主面および第2の主面はそれぞれ、第1の板状部および第2の板状部によって押されていてもよい。この場合、拘束部材が単独で存在する状態において、第1の板状部および第2の板状部はそれぞれ、拘束部材の内側に向かって凸の形状を有するように湾曲していてもよい。この構成によれば、湾曲した板状部によって積層体(S)の主面を押すことができる。板状部によって積層体(S)の主面を押すことによって、積層体(S)を積層方向に加圧できる。その結果、電池の性能および信頼性を高めることができる。筒状体の両端は、開口していてもよい。筒状体の内部が密閉されない限り、筒状体の両端に蓋がされていてもよい。 The restraining member may include a cylindrical body having a first plate-shaped portion and a second plate-shaped portion. The first main surface and the second main surface of the laminate (S) may be pressed by the first plate-shaped portion and the second plate-shaped portion, respectively. In this case, when the restraining member exists alone, the first plate-shaped portion and the second plate-shaped portion may each be curved to have a convex shape toward the inside of the restraining member. According to this configuration, the curved plate-shaped portion can press the main surface of the laminate (S). By pressing the main surface of the laminate (S) with the plate-shaped portion, the laminate (S) can be pressurized in the stacking direction. As a result, the performance and reliability of the battery can be improved. Both ends of the cylindrical body may be open. Both ends of the cylindrical body may be capped as long as the inside of the cylindrical body is not sealed.
 湾曲している第1および第2の板状部を用いる場合、積層体(S)等(積層体および必要に応じて緩衝部材など)を筒状体の内部に配置したときに、積層体(S)等を筒状体の内部に配置する前よりも第1および第2の板状部が平らになるように、筒状体の形状およびサイズが選択されることが好ましい。その場合、筒状体を外側に引っ張った状態で積層体(S)等を筒状体の内部に挿入してもよい。 When curved first and second plate-like portions are used, it is preferable to select the shape and size of the cylindrical body so that when the laminate (S) or the like (laminate and, if necessary, a cushioning member, etc.) is placed inside the cylindrical body, the first and second plate-like portions are flatter than before the laminate (S) or the like was placed inside the cylindrical body. In that case, the laminate (S) or the like may be inserted inside the cylindrical body while the cylindrical body is pulled outward.
 筒状体は、第1の板状部と第2の板状部とを結ぶ第1の側壁および第2の側壁を含んでもよく、第1の側壁および第2の側壁はそれぞれ、第1の板状部と第2の板状部とを結ぶ方向に弾性を有してもよい。この構成では、側壁の弾性を利用して板状部が積層体(S)の主面を強く押すことが可能である。弾性を有する側壁の例には、板バネ状に湾曲している側壁が含まれる。この場合、筒状体は金属で形成されていることが好ましい。弾性を有する側壁の他の例には、ゴムなどの弾性体を用いた側壁が含まれる。 The cylindrical body may include a first side wall and a second side wall connecting the first plate-shaped portion and the second plate-shaped portion, and the first side wall and the second side wall may each have elasticity in the direction connecting the first plate-shaped portion and the second plate-shaped portion. In this configuration, the elasticity of the side walls can be used to allow the plate-shaped portion to strongly press against the main surface of the laminate (S). Examples of elastic side walls include side walls that are curved like a leaf spring. In this case, it is preferable that the cylindrical body is formed of metal. Other examples of elastic side walls include side walls that use an elastic material such as rubber.
 筒状体は金属からなるものであってもよい。金属からなる筒状体を用いることによって、積層体(S)の主面を強い力で押すことが可能である。 The cylindrical body may be made of metal. By using a cylindrical body made of metal, it is possible to press the main surface of the laminate (S) with a strong force.
 全固体電池(B)は、拘束部材と積層体との間に配置された緩衝部材をさらに含んでもよい。緩衝部材を用いることによって、積層体に衝撃が加わることを抑制できる。さらに、緩衝部材を用いることによって、拘束部材によって積層体(S)に加えられる圧力を均一化することができる。 The solid-state battery (B) may further include a buffer member disposed between the restraining member and the laminate. By using the buffer member, it is possible to prevent the laminate from being subjected to an impact. Furthermore, by using the buffer member, it is possible to make the pressure applied to the laminate (S) by the restraining member uniform.
 緩衝部材は減圧下で膨張する部材であってもよい。例えば、緩衝部材は発泡体を含んでもよい。減圧下で膨張する緩衝部材を用いることによって、減圧下で積層体(S)が膨張することを抑制できる。 The cushioning material may be a material that expands under reduced pressure. For example, the cushioning material may include a foam. By using a cushioning material that expands under reduced pressure, the laminate (S) can be prevented from expanding under reduced pressure.
 外装体の内部は減圧されていてもよい。外装体内の内部を減圧することによって、減圧下における電池および積層体(S)の膨張を抑制できる。外装体の内部は、2000Pa以下、1000Pa以下、100Pa以下、10Pa以下、1.0Pa以下、または0.1Pa以下に減圧されていてもよい。 The inside of the exterior body may be depressurized. By depressurizing the inside of the exterior body, expansion of the battery and the laminate (S) under reduced pressure can be suppressed. The inside of the exterior body may be depressurized to 2000 Pa or less, 1000 Pa or less, 100 Pa or less, 10 Pa or less, 1.0 Pa or less, or 0.1 Pa or less.
 (全固体電池の構成要素)
 全固体電池(B)の構成要素の例について、以下に説明する。ただし、以下の構成要素は例示であり、他の構成要素を用いてもよい。なお、以下では、積層体(S)が全固体リチウムイオン電池の積層体である例について主に説明するが、他の全固体電池の積層体であってもよい。積層体(S)は特に限定されず、公知の全固体電池の積層体であってもよい。
(Components of all-solid-state batteries)
Examples of components of the all-solid-state battery (B) are described below. However, the following components are merely examples, and other components may be used. In the following, an example in which the laminate (S) is a laminate of an all-solid-state lithium ion battery is mainly described, but it may be a laminate of other all-solid-state batteries. The laminate (S) is not particularly limited, and may be a laminate of a known all-solid-state battery.
 上述したように、全固体電池は、積層体(S)を含む。積層体(S)は少なくとも1つの単位電池(発電要素)を含む。積層体(S)は、単位電池を1つだけ含んでもよいし、積層された複数の単位電池を含んでもよい。単位電池は、正極層、負極層、および正極層と負極層との間に配置された固体電解質層を含む。積層体(S)は、必要に応じて、集電体を含む。全固体電池では、積層体(S)がその積層方向に加圧されることが好ましい。積層体(S)が加圧されることによって、高い性能を発揮することが可能になる。積層体(S)の平面形状は、例えば矩形である。 As described above, the all-solid-state battery includes a laminate (S). The laminate (S) includes at least one unit cell (power generating element). The laminate (S) may include only one unit cell, or may include a plurality of unit cells stacked together. The unit cell includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer. The laminate (S) includes a current collector as necessary. In the all-solid-state battery, it is preferable that the laminate (S) is pressurized in the stacking direction. Pressurizing the laminate (S) enables it to exhibit high performance. The planar shape of the laminate (S) is, for example, rectangular.
 (拘束部材)
 上述したように、拘束部材は、金属などで形成できる。拘束部材を構成する金属板の例には、ステンレス鋼板、炭素鋼板、アルミニウム合金板などが含まれる。あるいは、拘束部材は、樹脂で形成してもよい。樹脂としては、ポリエチレンテレフタレート樹脂(PET樹脂)、エポキシ樹脂(EP)、ポリエーテルケトンケトン(PEKK)、ポリイミド(PI)、ポリアミド(PA)などの比較的硬い樹脂が好ましく用いられる。
(Restraining member)
As described above, the restraining member can be made of metal or the like. Examples of the metal plate constituting the restraining member include a stainless steel plate, a carbon steel plate, an aluminum alloy plate, and the like. Alternatively, the restraining member may be made of resin. As the resin, a relatively hard resin such as polyethylene terephthalate resin (PET resin), epoxy resin (EP), polyether ketone ketone (PEKK), polyimide (PI), polyamide (PA), and the like is preferably used.
 拘束部材は、内部に積層体(S)等を配置可能なサイズを有する。拘束部材は、積層体(S)の全体を内部に配置できるサイズを有することが好ましい。積層体(S)の平面形状が矩形である場合、拘束部材の内部空間の平面形状も矩形であることが好ましい。拘束部材を構成する金属板の厚さは、材質や求められる加圧性や金属板の材質に応じて選択すればよい。拘束部材を構成する金属板の厚さは、0.10mm以上、または0.15mm以上であってもよく、0.60mm以下、または0.50mm以下であってもよい。 The restraining member has a size that allows the laminate (S) and the like to be placed inside. The restraining member preferably has a size that allows the entire laminate (S) to be placed inside. When the planar shape of the laminate (S) is rectangular, the planar shape of the internal space of the restraining member is preferably also rectangular. The thickness of the metal plate constituting the restraining member may be selected according to the material, the required pressure resistance, and the material of the metal plate. The thickness of the metal plate constituting the restraining member may be 0.10 mm or more, or 0.15 mm or more, or may be 0.60 mm or less, or 0.50 mm or less.
 (外装体)
 外装体を構成するラミネートフィルムには、内部の気密を長期間保つことが可能なフィルムを用いることが好ましい。そのため、ラミネートフィルムは、金属層を含むことが好ましい。金属層の例には、アルミニウム層(例えば、アルミニウム蒸着層、アルミニウム箔など)などが含まれる。ラミネートフィルムは、樹脂層を含む。ラミネートフィルムは、その表面に、ヒートシールするための層を含んでもよい。ラミネートフィルムには、電池の外装体に用いられている公知のラミネートフィルムを用いてもよい。
(Exterior body)
It is preferable to use a film capable of maintaining the internal airtightness for a long period of time for the laminate film constituting the exterior body. Therefore, it is preferable that the laminate film includes a metal layer. Examples of the metal layer include an aluminum layer (e.g., an aluminum vapor deposition layer, an aluminum foil, etc.). The laminate film includes a resin layer. The laminate film may include a layer for heat sealing on its surface. The laminate film may be a known laminate film used for the exterior body of a battery.
 なお、外装体としてラミネートフィルム以外の任意の材料を用いて形成された外装体を用いてもよい。外装体には、全固体電池の外装体として用いられている公知の外装体を用いてもよい。例えば、金属、板状の樹脂または樹脂組成物、シール部材などの少なくとも1つを用いて形成された外装体を用いてもよい。例えば、外装体は、金属で形成されていてもよいし、金属ケースと他の部材(例えば封口体)とで形成されていてもよい。金属ケースを含む外装体を用いることによって、減圧下で外装体が膨張することを抑制できる。いずれの場合でも、外装体は、その内部を密封する。 Note that an exterior body formed using any material other than a laminate film may be used as the exterior body. A known exterior body used as an exterior body for an all-solid-state battery may be used as the exterior body. For example, an exterior body formed using at least one of a metal, a plate-shaped resin or resin composition, a sealing member, etc. may be used. For example, the exterior body may be formed of a metal, or may be formed of a metal case and another member (e.g., a sealing body). By using an exterior body including a metal case, it is possible to suppress the expansion of the exterior body under reduced pressure. In either case, the exterior body seals the inside.
 (緩衝部材)
 緩衝部材の例には、弾性体、減圧下で膨張する部材などが含まれる。弾性体の例には、ゴムなどが含まれる。減圧下で膨張する部材の例には、発泡体が含まれる。発泡体の例には、多数の微小な独立気泡を内部に有する樹脂発泡体などが含まれる。
(Shock absorbing material)
Examples of the buffer material include an elastic body, a material that expands under reduced pressure, etc. Examples of the elastic body include rubber, etc. Examples of the material that expands under reduced pressure include foam, etc. Examples of the foam include a resin foam having many small closed cells therein.
 (正極層)
 正極層は、正極活物質を含み、必要に応じて他の成分を含んでもよい。当該他の成分の例には、全固体電池の正極層に使用される公知の成分(結着剤、導電材など)が含まれる。正極層におけるリチウムイオン伝導性を高める観点から、正極層は、正極活物質とともに、リチウムイオン伝導性を示す固体電解質を含んでもよい。通常、正極活物質は、粒子(粉末)の状態で用いられる。
(Positive electrode layer)
The positive electrode layer includes a positive electrode active material, and may include other components as necessary. Examples of the other components include known components (such as binders and conductive materials) used in the positive electrode layer of all-solid-state batteries. From the viewpoint of increasing the lithium ion conductivity in the positive electrode layer, the positive electrode layer may include a solid electrolyte exhibiting lithium ion conductivity together with the positive electrode active material. Usually, the positive electrode active material is used in the form of particles (powder).
 正極活物質には、全固体電池の正極活物質として使用できる材料を用いることができる。全固体リチウムイオン電池の場合、正極活物質の例には、リチウム含有複合酸化物や、酸化物以外の化合物が含まれる。リチウム含有複合酸化物の例には、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、およびその他のリチウム含有複合酸化物(LiNi0.8Co0.15Al0.05など)が含まれる。酸化物以外の化合物の例には、オリビン系化合物(LiMPOなど)、硫黄含有化合物(LiSなど)などが含まれる。なお、上記式中、Mは遷移金属を示す。正極活物質は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The positive electrode active material can be a material that can be used as a positive electrode active material for a solid-state battery. In the case of a solid-state lithium-ion battery, examples of the positive electrode active material include lithium-containing composite oxides and compounds other than oxides. Examples of lithium-containing composite oxides include lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, and other lithium-containing composite oxides (LiNi 0.8 Co 0.15 Al 0.05 O 2 , etc.). Examples of compounds other than oxides include olivine compounds (LiMPO 4 , etc.), sulfur-containing compounds (Li 2 S, etc.), etc. In the above formula, M represents a transition metal. The positive electrode active material may be used alone or in combination of two or more types.
 (負極層)
 負極層は、負極活物質を含み、必要に応じて他の成分を含んでもよい。当該他の成分の例には、全固体電池の負極層に使用される公知の成分(結着剤、導電材など)が含まれる。負極層は、負極活物質と、リチウムイオン伝導性を示す固体電解質とを含んでもよい。通常、負極活物質は、粒子(粉末)の状態で用いられる。
(Negative electrode layer)
The negative electrode layer includes a negative electrode active material, and may include other components as necessary. Examples of the other components include known components (such as binders and conductive materials) used in the negative electrode layer of all-solid-state batteries. The negative electrode layer may include a negative electrode active material and a solid electrolyte exhibiting lithium ion conductivity. Usually, the negative electrode active material is used in the form of particles (powder).
 負極活物質には、全固体電池の負極活物質として使用できる材料を用いることができる。全固体リチウムイオン電池の場合、負極活物質には、リチウムイオンを可逆的に吸蔵および放出可能な所定の材料(炭素質材料、金属や半金属の単体または合金、あるいは化合物など)を用いることができる。炭素質材料の例には、黒鉛(天然黒鉛、人造黒鉛など)、ハードカーボン、非晶質炭素などが含まれる。金属や半金属の単体、合金の例には、リチウム金属や合金、Si単体などが含まれる。化合物の例には、酸化物(チタン酸化物、ケイ素酸化物など)、硫化物、窒化物、水化物、シリサイド(リチウムシリサイドなど)などが挙げられる。負極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。例えば、ケイ素酸化物と炭素質材料とを併用してもよい。負極活物質として、黒鉛粒子と黒鉛粒子を被覆する非晶質炭素とを含む粒子を用いてもよい。 The negative electrode active material may be a material that can be used as a negative electrode active material for an all-solid-state battery. In the case of an all-solid-state lithium-ion battery, the negative electrode active material may be a specific material (carbonaceous material, metal or semimetal element or alloy, or compound, etc.) that can reversibly store and release lithium ions. Examples of carbonaceous materials include graphite (natural graphite, artificial graphite, etc.), hard carbon, and amorphous carbon. Examples of metal or semimetal element or alloy include lithium metal or alloy, and elemental silicon. Examples of compounds include oxides (titanium oxide, silicon oxide, etc.), sulfides, nitrides, hydrates, and silicides (lithium silicide, etc.). The negative electrode active material may be used alone or in combination of two or more. For example, silicon oxide and a carbonaceous material may be used in combination. Particles containing graphite particles and amorphous carbon covering the graphite particles may be used as the negative electrode active material.
 (固体電解質層)
 固体電解質層は、正極層と負極層との間に配置される。固体電解質層は、固体電解質を含み、必要に応じて他の成分を含んでもよい。当該他の成分の例には、全固体電池の固体電解質層に使用される公知の成分が含まれる。通常、固体電解質は、粒子(粉末)の状態で用いられる。
(Solid electrolyte layer)
The solid electrolyte layer is disposed between the positive electrode layer and the negative electrode layer. The solid electrolyte layer includes a solid electrolyte, and may include other components as necessary. Examples of the other components include known components used in the solid electrolyte layer of an all-solid-state battery. The solid electrolyte is usually used in the form of particles (powder).
 固体電解質には、全固体電池の固体電解質として使用できる材料を特に制限なく用いることができる。全固体リチウムイオン電池の場合、固体電解質には、リチウムイオン伝導性を有する物質を用いることができる。そのような固体電解質の例には、硫化物(硫化物系固体電解質)、水素化物(水素化物系固体電解質)などの無機固体電解質が含まれる。 The solid electrolyte can be any material that can be used as a solid electrolyte in an all-solid-state battery, without any particular restrictions. In the case of an all-solid-state lithium-ion battery, the solid electrolyte can be any material that has lithium ion conductivity. Examples of such solid electrolytes include inorganic solid electrolytes such as sulfides (sulfide-based solid electrolytes) and hydrides (hydride-based solid electrolytes).
 硫化物の例には、LiS-SiS、LiS-P、LiS-GeS、LiS-B、LiS-Ga、LiS-Al、LiS-GeS-P、LiS-Al-P、LiS-P、LiS-P-P、LiX-LiS-P、LiX-LiS-SiS、LiX-LiS-B(X:I、Br、またはCl)などが含まれる。水素化物の例には、LiBH-LiI系錯体水素化物およびLiBH-LiNH系錯体水素化物などが含まれる。 Examples of sulfides include Li 2 S-SiS 2 , Li 2 S-P 2 S 5 , Li 2 S-GeS 2 , Li 2 S-B 2 S 3 , Li 2 S-Ga 2 S 3 , Li 2 S-Al 2 S 3 , Li 2 S-GeS 2 -P 2 S 5 , Li 2 S-Al 2 S 3 -P 2 S 5 , Li 2 S-P 2 S 3 , Li 2 S-P 2 S 3 -P 2 S 5 , LiX-Li 2 S-P 2 S 5 , LiX-Li 2 S-SiS 2 , LiX-Li 2 S-B 2 S 3 (X: I, Br, or Cl), etc. Examples of the hydrides include LiBH 4 -LiI-based complex hydrides and LiBH 4 -LiNH 2 -based complex hydrides, etc.
 (正極集電体)
 正極層の外側には、通常、正極集電体が配置される。正極集電体には、金属箔を用いてもよい。正極集電体(例えば金属箔)の材質の例には、アルミニウム、マグネシウム、ステンレス鋼、チタン、鉄、コバルト、亜鉛、スズ、またはこれらの合金などが含まれる。正極集電体および負極集電体には、必要に応じてリードタブが接続される。
(Positive electrode current collector)
A positive electrode current collector is usually disposed on the outside of the positive electrode layer. A metal foil may be used as the positive electrode current collector. Examples of materials for the positive electrode current collector (e.g., metal foil) include aluminum, magnesium, stainless steel, titanium, iron, cobalt, zinc, tin, or alloys thereof. Lead tabs are connected to the positive electrode current collector and the negative electrode current collector as necessary.
 (負極集電体)
 負極層の外側には、通常、負極集電体が配置される。負極集電体には、金属箔を用いてもよい。負極集電体(例えば金属箔)の材質の例には、銅、ニッケル、ステンレス鋼、チタン、またはこれらの合金などが含まれる。
(Negative electrode current collector)
A negative electrode current collector is usually disposed on the outside of the negative electrode layer. The negative electrode current collector may be a metal foil. Examples of materials for the negative electrode current collector (e.g., metal foil) include copper, nickel, stainless steel, titanium, or alloys thereof.
 (全固体電池(B)の製造方法)
 全固体電池(B)の製造方法は特に限定されない。全固体電池(B)の製造方法の一例を以下に説明する。この製造方法は、工程(i)と工程(ii)とをこの順に含む。それらの工程について以下に説明する。
(Method for producing all-solid-state battery (B))
The manufacturing method of the all-solid-state battery (B) is not particularly limited. An example of the manufacturing method of the all-solid-state battery (B) is described below. This manufacturing method includes steps (i) and (ii) in this order. These steps are described below.
 工程(i)は、積層体(S)を拘束部材の内側に配置する工程である。その際に、必要に応じて拘束部材を外側に引っ張って積層体(S)を配置する。工程(i)では、必要に応じて、積層体(S)とともに緩衝部材を拘束部材の内側に配置する。 Step (i) is a step of placing the laminate (S) inside the restraining member. At that time, the restraining member is pulled outward as necessary to place the laminate (S). In step (i), a cushioning member is placed inside the restraining member together with the laminate (S) as necessary.
 工程(ii)は、外装体によって、拘束部材と、その内側に配置された物体(少なくとも積層体(S)を含み、必要に応じて緩衝部材などを含む)とを密封する工程である。例えば、ラミネートフィルムで拘束部材を包んでから、必要な箇所を接着してもよい。ラミネートフィルムの接着の方法は限定されず、ヒートシールなどを用いてもよい。必要に応じて、ヒートシールは、リードタブなどが外装体から突出するように行われる。外装体の内部を減圧する場合には、工程(ii)を減圧下で行ってもよい。あるいは、外装体を密封する際に外装体の内部を脱気してもよい。 Step (ii) is a step of sealing the restraining member and the object placed inside it (including at least the laminate (S) and, if necessary, a cushioning material, etc.) with an exterior body. For example, the restraining member may be wrapped in a laminate film and then bonded at the required locations. There are no limitations on the method of bonding the laminate film, and heat sealing, etc. may be used. If necessary, heat sealing is performed so that a lead tab, etc., protrudes from the exterior body. If the inside of the exterior body is to be reduced in pressure, step (ii) may be performed under reduced pressure. Alternatively, the inside of the exterior body may be degassed when sealing it.
 以上のようにして、全固体電池(B)を製造できる。積層体(S)は、すでに形成されたものを用いてもよいし、形成してもよい。積層体(S)を形成する方法に特に限定はなく、公知の方法で形成してもよい。積層体(S)は、液状成分を含まない材料を用いて形成することが好ましい。そのような形成方法(乾式の形成方法)によって積層体(S)を形成する方法の一例を以下に説明する。 In this manner, the all-solid-state battery (B) can be manufactured. The laminate (S) may be one that has already been formed, or may be formed. There is no particular limitation on the method for forming the laminate (S), and it may be formed by a known method. It is preferable to form the laminate (S) using a material that does not contain a liquid component. An example of a method for forming the laminate (S) by such a formation method (dry formation method) is described below.
 まず、正極層の材料、固体電解質層の材料、および負極層の材料を、所定の順に金属箔(集電体)上に積層した後、さらに集電体(金属箔)を配置する。次に、積層された材料および金属箔をまとめてプレス(本プレス)することによって積層体(S)を形成する。この本プレスによって、金属箔および各層が一体化されて積層体(S)が得られる。本プレスの圧力は、材料や厚さなどに応じて適宜変更すればよく、50MPa以上5000MPa以下(例えば、300MPa以上3000MPa以下)であってもよい。以上のようにして、正極集電体/正極層/固体電解質層/負極層/負極集電体という構造を有する積層体(S)が得られる。なお、積層体(S)は、これらの層以外の層、例えば、薄い導電層などを含んでもよい。 First, the material of the positive electrode layer, the material of the solid electrolyte layer, and the material of the negative electrode layer are stacked on a metal foil (current collector) in a predetermined order, and then the current collector (metal foil) is placed. Next, the stacked materials and the metal foil are pressed together (main press) to form a laminate (S). This main press integrates the metal foil and each layer to obtain the laminate (S). The pressure of the main press can be changed appropriately depending on the material and thickness, and may be 50 MPa or more and 5000 MPa or less (for example, 300 MPa or more and 3000 MPa or less). In this way, a laminate (S) having a structure of positive electrode collector/positive electrode layer/solid electrolyte layer/negative electrode layer/negative electrode collector is obtained. The laminate (S) may include layers other than these layers, such as a thin conductive layer.
 正極層の材料を配置した後、固体電解質層の材料を配置した後、負極層の材料を配置した後のいずれかの段階において、配置した材料を予備的にプレスしてもよい。予備的なプレスは通常、上記の本プレスの圧力よりも小さい圧力で行われる。予備的なプレスの圧力に特に限定はなく、1MPa~10MPaの範囲にあってもよい。積層体中の空隙を減らすために、積層体を形成する工程の少なくとも一部は減圧下で行われてもよい。 The materials may be preliminarily pressed at any stage after the material for the positive electrode layer is placed, the material for the solid electrolyte layer is placed, or the material for the negative electrode layer is placed. The preliminarily pressed is usually performed at a pressure lower than the pressure of the main press described above. There is no particular limit to the pressure of the preliminarily pressed, and it may be in the range of 1 MPa to 10 MPa. In order to reduce voids in the laminate, at least a part of the process of forming the laminate may be performed under reduced pressure.
 液状成分を含まない材料をプレスする工程を用いて積層体(S)を形成することによって、高圧の加圧なしで高い性能を示す全固体電池を得ることが可能である。液状成分(分散媒)を含まない材料を層状に配置する方法として、静電スプレー法、スキージ成膜法、または、静電塗装法などを用いてもよい。 By forming the laminate (S) using a process of pressing materials that do not contain liquid components, it is possible to obtain an all-solid-state battery that exhibits high performance without high pressure. As a method for arranging materials that do not contain liquid components (dispersion medium) in layers, electrostatic spraying, squeegee film formation, electrostatic painting, etc. may also be used.
 積層体(S)が複数の単位電池を含む場合、1つの単位電池を含む積層体をプレス成形によって形成した後に、それらの積層体を積層して積層体(S)を形成してもよい。あるいは、複数の単位電池が積層されるようにそれらの材料をプレス成形することによって、積層体(S)を形成してもよい。 When the laminate (S) includes multiple unit batteries, a laminate including one unit battery may be formed by press molding, and then the laminate may be stacked to form the laminate (S). Alternatively, the laminate (S) may be formed by press molding the materials so that multiple unit batteries are stacked.
 以下では、本開示に係る実施形態の例について、図面を参照して説明する。以下で説明する実施形態は、上述した記載に基づいて変更してもよい。また、以下で説明する事項を、上記の実施形態に適用してもよい。なお、以下の図は模式的な図であり、実際の縮尺とは異なる。以下の図では、図を見やすくするために、部材の一部を省略して図示する場合がある。 Below, examples of embodiments according to the present disclosure will be described with reference to the drawings. The embodiments described below may be modified based on the above description. Furthermore, the matters described below may be applied to the above embodiments. Note that the following figures are schematic diagrams and are not drawn to actual scale. In the following figures, some components may be omitted in order to make the figures easier to see.
 (実施形態1)
 実施形態1の全固体電池100の上面図を図1に模式的に示す。また、図1の線IIA-IIAにおける断面図を図2Aに示し、図1の線IIB-IIBにおける断面図を図2Bに示す。
(Embodiment 1)
A top view of the all-solid-state battery 100 of the first embodiment is shown typically in Fig. 1. A cross-sectional view taken along line IIA-IIA in Fig. 1 is shown in Fig. 2A, and a cross-sectional view taken along line IIB-IIB in Fig. 1 is shown in Fig. 2B.
 全固体電池100は、積層体110、拘束部材130、および外装体140を含む。積層体110は、正極集電体111、負極集電体112、および、それらの間に配置された単位電池120を含む。単位電池120は、正極層121、負極層122、および、それらの間に配置された固体電解質層123を含む。積層体110は、正極集電体111、正極層121、固体電解質層123、負極層122、および負極集電体112がこの順で積層方向SDに沿って積層された積層構造を有する。 The all-solid-state battery 100 includes a laminate 110, a restraining member 130, and an exterior body 140. The laminate 110 includes a positive electrode collector 111, a negative electrode collector 112, and a unit battery 120 disposed therebetween. The unit battery 120 includes a positive electrode layer 121, a negative electrode layer 122, and a solid electrolyte layer 123 disposed therebetween. The laminate 110 has a laminate structure in which the positive electrode collector 111, the positive electrode layer 121, the solid electrolyte layer 123, the negative electrode layer 122, and the negative electrode collector 112 are laminated in this order along the stacking direction SD.
 正極集電体111からは、正極リードタブ111aが突出している。負極集電体112からは、負極リードタブ112aが突出している。正極リードタブ111aは、正極集電体111と一体であってもよいし、正極集電体111に接続されたリードタブであってもよい。負極リードタブ112aは、負極集電体112と一体であってもよいし、負極集電体112に接続されたリードタブであってもよい。 A positive electrode lead tab 111a protrudes from the positive electrode current collector 111. A negative electrode lead tab 112a protrudes from the negative electrode current collector 112. The positive electrode lead tab 111a may be integral with the positive electrode current collector 111, or may be a lead tab connected to the positive electrode current collector 111. The negative electrode lead tab 112a may be integral with the negative electrode current collector 112, or may be a lead tab connected to the negative electrode current collector 112.
 実施形態1では、外装体140がラミネートフィルムで形成されている一例について説明する。実施形態1に示す一例の外装体140は、矩形状の2枚のラミネートの四辺を貼り合わせることによって形成されている。それらの四辺は、例えばヒートシールなどによって貼り合わせることができる。外装体140の内部は密閉されている。外装体140の内部は減圧されていてもよい。なお、内部を密閉できる限り、外装体140の形態は図1に示す形態に限定されない。 In embodiment 1, an example in which the exterior body 140 is formed from a laminate film is described. The example exterior body 140 shown in embodiment 1 is formed by bonding the four sides of two rectangular laminates together. The four sides can be bonded together by, for example, heat sealing. The inside of the exterior body 140 is sealed. The inside of the exterior body 140 may be reduced in pressure. Note that the shape of the exterior body 140 is not limited to the shape shown in FIG. 1, as long as the inside can be sealed.
 拘束部材130は、第1の板状部131、第2の板状部132、第1の側壁133、および第2の側壁134で構成されている。第1および第2の側壁133および134は、第1の板状部131と第2の板状部132とを結んでいる。第1の板状部131は積層体110の第1の主面110aと対向しており、第2の板状部132は、積層体110の第2の主面110bと対向している。第1および第2の板状部131および132によって、第1の主面110aおよび第2の主面110bを積層体110の内側に向かって押すことが可能である。 The restraining member 130 is composed of a first plate-shaped portion 131, a second plate-shaped portion 132, a first side wall 133, and a second side wall 134. The first and second side walls 133 and 134 connect the first plate-shaped portion 131 and the second plate-shaped portion 132. The first plate-shaped portion 131 faces the first main surface 110a of the laminate 110, and the second plate-shaped portion 132 faces the second main surface 110b of the laminate 110. The first and second plate-shaped portions 131 and 132 can press the first main surface 110a and the second main surface 110b toward the inside of the laminate 110.
 拘束部材130は、金属などからなる。拘束部材130は、角筒状の形状を有する。拘束部材130が単独で存在する状態の上面図を図3Aに示す。図3Aの線IIIB-IIIBにおける断面、すなわち角筒が延びる方向LDに垂直な断面を、図3Bに示す。拘束部材130が単独で存在する状態とは、拘束部材130の内側および外側に他の部材が存在しておらず、拘束部材130に外力が加わっていない状態を意味する。図3Bに示す拘束部材130は、矩形状の断面を有する。 The restraining member 130 is made of metal or the like. The restraining member 130 has a rectangular cylindrical shape. Figure 3A shows a top view of the restraining member 130 existing alone. Figure 3B shows a cross section taken along line IIIB-IIIB in Figure 3A, i.e., a cross section perpendicular to the direction LD in which the rectangular tube extends. The state in which the restraining member 130 exists alone means that there are no other members on the inside or outside of the restraining member 130, and no external force is being applied to the restraining member 130. The restraining member 130 shown in Figure 3B has a rectangular cross section.
 別の一例の拘束部材130が単独で存在する状態の断面図を図4に示し、さらに別の一例の拘束部材130が単独で存在する状態の断面図を図5に示す。それらの上面図は、図3Aに示す上面図と同じである。図4および図5は、図3Aの方向LDに垂直な断面を示す。図4および図5には、内部に配置される積層体110の輪郭も示す。 FIG. 4 shows a cross-sectional view of another example of the restraint member 130 when it exists alone, and FIG. 5 shows a cross-sectional view of yet another example of the restraint member 130 when it exists alone. Their top views are the same as the top view shown in FIG. 3A. FIG. 4 and FIG. 5 show a cross section perpendicular to the direction LD in FIG. 3A. FIG. 4 and FIG. 5 also show the outline of the laminate 110 that is placed inside.
 図4および図5に示す拘束部材130において、第1の板状部131および第2の板状部132はそれぞれ、拘束部材130の内側に向かって凸の形状を有するように湾曲している。より具体的には、第1の板状部131および第2の板状部132の幅方向WDの中央部131cおよび132cが最も内側になるように、第1の板状部131および第2の板状部132は湾曲している。中央部131cと中央部132cとの間の間隔は、積層体110の厚さよりも短い。 In the restraining member 130 shown in Figures 4 and 5, the first plate-shaped portion 131 and the second plate-shaped portion 132 are each curved to have a convex shape toward the inside of the restraining member 130. More specifically, the first plate-shaped portion 131 and the second plate-shaped portion 132 are curved so that the central portions 131c and 132c of the first plate-shaped portion 131 and the second plate-shaped portion 132 in the width direction WD are located on the innermost side. The distance between the central portions 131c and 132c is shorter than the thickness of the laminate 110.
 拘束部材130の内部に積層体110などを配置したときに、第1の板状部131および132の形状は、拘束部材130が単独で存在するときの形状よりも平らになる。その結果、第1の板状部131および132は、積層体110の第1および第2の主面110aおよび110bをより高い圧力で加圧できる。 When the laminate 110 and the like are placed inside the restraining member 130, the shape of the first plate- like portions 131 and 132 becomes flatter than the shape when the restraining member 130 exists alone. As a result, the first plate- like portions 131 and 132 can apply higher pressure to the first and second main surfaces 110a and 110b of the laminate 110.
 図5に示す拘束部材130は、第1の板状部131および第2の板状部132だけでなく、第1の側壁133および第2の側壁134も、拘束部材130の内側に向かって凸の形状を有するように湾曲している。このような第1の側壁133および第2の側壁134は、第1の板状部131と第2の板状部132とを結ぶ方向Dに弾性を有する板バネとして機能する。そのため、図5に示す拘束部材130の第1の板状部131および132は、積層体110の第1および第2の主面110aおよび110bを特に高い圧力で加圧できる。第1の側壁133および第2の側壁134の形状は、図4および図5に示す形状以外の形状であって、且つ、方向Dに弾性を有する形状であってもよい。 5, not only the first plate-shaped portion 131 and the second plate-shaped portion 132, but also the first side wall 133 and the second side wall 134 are curved to have a convex shape toward the inside of the restraint member 130. Such first side wall 133 and second side wall 134 function as a leaf spring having elasticity in the direction D connecting the first plate-shaped portion 131 and the second plate-shaped portion 132. Therefore, the first plate-shaped portions 131 and 132 of the restraint member 130 shown in FIG. 5 can apply a particularly high pressure to the first and second main surfaces 110a and 110b of the laminate 110. The shapes of the first side wall 133 and the second side wall 134 may be shapes other than those shown in FIG. 4 and FIG. 5 and may be shapes having elasticity in the direction D.
 図4および図5に示す拘束部材130の内側に積層体110などを配置する場合、拘束部材130を外側に向かって引っ張った状態で積層体110などを配置すればよい。例えば、中央部131cおよび132cを真空吸着などで吸着して外側に向かって引っ張ってもよい。 When placing the laminate 110 or the like inside the restraining member 130 shown in Figures 4 and 5, the laminate 110 or the like may be placed with the restraining member 130 pulled outward. For example, the central portions 131c and 132c may be attracted by vacuum suction or the like and pulled outward.
 上述したように、全固体電池100は、緩衝部材をさらに含んでもよい。緩衝部材150を含む全固体電池100の一例の断面図を図6に示す。図6は、図2Aの断面図と同じ位置における断面図である。図6に示す一例において、緩衝部材150は、拘束部材130と積層体110との間に配置されている。緩衝部材150の平面形状は、第1の主面110aの平面形状とほぼ同じである。全固体電池100は、第1の主面110aと第1の板状部131との間に配置された緩衝部材150と、第2の主面110bと第2の板状部132との間に配置された緩衝部材150とを含んでもよい。 As described above, the all-solid-state battery 100 may further include a buffer member. FIG. 6 shows a cross-sectional view of an example of the all-solid-state battery 100 including the buffer member 150. FIG. 6 is a cross-sectional view at the same position as the cross-sectional view of FIG. 2A. In the example shown in FIG. 6, the buffer member 150 is disposed between the restraining member 130 and the laminate 110. The planar shape of the buffer member 150 is substantially the same as the planar shape of the first main surface 110a. The all-solid-state battery 100 may include a buffer member 150 disposed between the first main surface 110a and the first plate-shaped portion 131, and a buffer member 150 disposed between the second main surface 110b and the second plate-shaped portion 132.
 (付記)
 上記の記載によって以下の発明例が開示される。
(発明例1)
 正極層、負極層、および前記正極層と前記負極層との間に配置された固体電解質層を含む少なくとも1つの単位電池を含む全固体電池であって、
 前記少なくとも1つの単位電池を含む積層体と、
 前記積層体を囲むように配置され、前記積層体を拘束する拘束部材と、
 前記積層体および前記拘束部材を密封する外装体とを含み、
 前記拘束部材は、前記拘束部材の内部を密封していない、全固体電池。
(発明例2)
 前記外装体は、ラミネートフィルムを用いて形成されている、発明例1に記載の全固体電池。
(発明例3)
 前記拘束部材は、第1の板状部と第2の板状部とを有する筒状体を含み、
 前記積層体の第1の主面および第2の主面はそれぞれ、前記第1の板状部および前記第2の板状部によって押されている、発明例1または2に記載の全固体電池。
(発明例4)
 前記拘束部材が単独で存在する状態において、前記第1の板状部および前記第2の板状部はそれぞれ、前記拘束部材の内側に向かって凸の形状を有するように湾曲している、発明例3に記載の全固体電池。
(発明例5)
 前記筒状体は、前記第1の板状部と前記第2の板状部とを結ぶ第1の側壁および第2の側壁を含み、
 前記第1の側壁および前記第2の側壁はそれぞれ、前記第1の板状部と前記第2の板状部とを結ぶ方向に弾性を有する、発明例3または4に記載の全固体電池。
(発明例6)
 前記筒状体は金属からなる、発明例3~5のいずれか1つに記載の全固体電池。
(発明例7)
 前記拘束部材と前記積層体との間に配置された緩衝部材をさらに含む、発明例1~6のいずれか1つに記載の全固体電池。
(発明例8)
 前記緩衝部材は減圧下で膨張する部材である、発明例7に記載の全固体電池。
(発明例9)
 前記緩衝部材は発泡体を含む、発明例8に記載の全固体電池。
(発明例10)
 前記外装体の内部は減圧されている、発明例1~9のいずれか1つに記載の全固体電池。
(Additional Note)
The above description discloses the following invention examples.
(Example 1)
An all-solid-state battery including at least one unit cell including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer,
a stack including the at least one unit battery; and
A restraining member that is disposed so as to surround the stack and restrains the stack;
an exterior body that seals the laminate and the restraining member,
An all-solid-state battery, wherein the restraining member does not seal the inside of the restraining member.
(Example 2)
The all-solid-state battery according to Example 1, wherein the exterior body is formed using a laminate film.
(Example 3)
the restraint member includes a tubular body having a first plate-shaped portion and a second plate-shaped portion,
The all-solid-state battery according to Invention Example 1 or 2, wherein a first main surface and a second main surface of the laminate are pressed by the first plate-shaped portion and the second plate-shaped portion, respectively.
(Example 4)
The all-solid-state battery according to Example 3, wherein when the restraining member is present alone, the first plate-shaped portion and the second plate-shaped portion are each curved to have a convex shape toward an inside of the restraining member.
(Example 5)
the cylindrical body includes a first side wall and a second side wall connecting the first plate-shaped portion and the second plate-shaped portion,
The all-solid-state battery according to Example 3 or 4, wherein the first side wall and the second side wall each have elasticity in a direction connecting the first plate-shaped portion and the second plate-shaped portion.
(Example 6)
The all-solid-state battery according to any one of Examples 3 to 5, wherein the cylindrical body is made of metal.
(Example 7)
The all-solid-state battery according to any one of Examples 1 to 6, further comprising a buffer member disposed between the restraining member and the laminate.
(Example 8)
The all-solid-state battery according to Example 7, wherein the buffer member is a member that expands under reduced pressure.
(Example 9)
The all-solid-state battery according to Example 8, wherein the cushioning member includes a foam.
(Example 10)
The all-solid-state battery according to any one of Examples 1 to 9, wherein the inside of the exterior body is depressurized.
 本開示は、全固体電池に利用できる。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
The present disclosure can be used for all-solid-state batteries.
Although the present invention has been described with respect to the presently preferred embodiments, such disclosure should not be interpreted as limiting. Various variations and modifications will no doubt become apparent to those skilled in the art to which the present invention pertains upon reading the above disclosure. Accordingly, the appended claims should be interpreted to cover all variations and modifications without departing from the true spirit and scope of the present invention.
100  :全固体電池
110  :積層体
110a :第2の主面
110b :第2の主面
120  :単位電池
121  :正極層
122  :負極層
123  :固体電解質層
130  :拘束部材
131  :第1の板状部
132  :第2の板状部
133  :第1の側壁
134  :第2の側壁
140  :外装体
150  :緩衝部材
100: All-solid-state battery 110: Laminate 110a: Second main surface 110b: Second main surface 120: Unit cell 121: Positive electrode layer 122: Negative electrode layer 123: Solid electrolyte layer 130: Restraint member 131: First plate-shaped portion 132: Second plate-shaped portion 133: First side wall 134: Second side wall 140: Exterior body 150: Cushioning member

Claims (10)

  1.  正極層、負極層、および前記正極層と前記負極層との間に配置された固体電解質層を含む少なくとも1つの単位電池を含む全固体電池であって、
     前記少なくとも1つの単位電池を含む積層体と、
     前記積層体を囲むように配置され、前記積層体を拘束する拘束部材と、
     前記積層体および前記拘束部材を密封する外装体とを含み、
     前記拘束部材は、前記拘束部材の内部を密封していない、全固体電池。
    An all-solid-state battery including at least one unit cell including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer,
    a stack including the at least one unit battery; and
    A restraining member that is disposed so as to surround the stack and restrains the stack;
    an exterior body that seals the laminate and the restraining member,
    An all-solid-state battery, wherein the restraining member does not seal the inside of the restraining member.
  2.  前記外装体は、ラミネートフィルムを用いて形成されている、請求項1に記載の全固体電池。 The solid-state battery according to claim 1, wherein the exterior body is formed using a laminate film.
  3.  前記拘束部材は、第1の板状部と第2の板状部とを有する筒状体を含み、
     前記積層体の第1の主面および第2の主面はそれぞれ、前記第1の板状部および前記第2の板状部によって押されている、請求項1または2に記載の全固体電池。
    the restraint member includes a tubular body having a first plate-shaped portion and a second plate-shaped portion,
    3. The all-solid-state battery according to claim 1, wherein a first principal surface and a second principal surface of the laminate are pressed by the first plate-shaped portion and the second plate-shaped portion, respectively.
  4.  前記拘束部材が単独で存在する状態において、前記第1の板状部および前記第2の板状部はそれぞれ、前記拘束部材の内側に向かって凸の形状を有するように湾曲している、請求項3に記載の全固体電池。 The all-solid-state battery according to claim 3, wherein when the restraining member exists alone, the first plate-shaped portion and the second plate-shaped portion are each curved to have a convex shape toward the inside of the restraining member.
  5.  前記筒状体は、前記第1の板状部と前記第2の板状部とを結ぶ第1の側壁および第2の側壁を含み、
     前記第1の側壁および前記第2の側壁はそれぞれ、前記第1の板状部と前記第2の板状部とを結ぶ方向に弾性を有する、請求項3に記載の全固体電池。
    the cylindrical body includes a first side wall and a second side wall connecting the first plate-shaped portion and the second plate-shaped portion,
    The all-solid-state battery according to claim 3 , wherein the first side wall and the second side wall each have elasticity in a direction connecting the first plate-shaped portion and the second plate-shaped portion.
  6.  前記筒状体は金属からなる、請求項3に記載の全固体電池。 The solid-state battery of claim 3, wherein the cylindrical body is made of metal.
  7.  前記拘束部材と前記積層体との間に配置された緩衝部材をさらに含む、請求項1または2に記載の全固体電池。 The solid-state battery according to claim 1 or 2, further comprising a buffer member disposed between the restraining member and the laminate.
  8.  前記緩衝部材は減圧下で膨張する部材である、請求項7に記載の全固体電池。 The solid-state battery according to claim 7, wherein the buffer member is a member that expands under reduced pressure.
  9.  前記緩衝部材は発泡体を含む、請求項8に記載の全固体電池。 The solid-state battery of claim 8, wherein the cushioning member includes a foam.
  10.  前記外装体の内部は減圧されている、請求項1または2に記載の全固体電池。 The solid-state battery according to claim 1 or 2, wherein the inside of the exterior body is depressurized.
PCT/JP2023/037695 2022-11-02 2023-10-18 All-solid-state battery WO2024095771A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022176127A JP2024066622A (en) 2022-11-02 2022-11-02 All-solid-state battery
JP2022-176127 2022-11-02

Publications (1)

Publication Number Publication Date
WO2024095771A1 true WO2024095771A1 (en) 2024-05-10

Family

ID=90930310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037695 WO2024095771A1 (en) 2022-11-02 2023-10-18 All-solid-state battery

Country Status (2)

Country Link
JP (1) JP2024066622A (en)
WO (1) WO2024095771A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020009574A (en) * 2018-07-04 2020-01-16 株式会社Soken All-solid battery
JP2020038789A (en) * 2018-09-04 2020-03-12 トヨタ自動車株式会社 Sealed battery
JP2021120950A (en) * 2015-05-14 2021-08-19 エノビクス・コーポレイションEnovix Corporation Longitudinal constraint for energy storage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021120950A (en) * 2015-05-14 2021-08-19 エノビクス・コーポレイションEnovix Corporation Longitudinal constraint for energy storage device
JP2020009574A (en) * 2018-07-04 2020-01-16 株式会社Soken All-solid battery
JP2020038789A (en) * 2018-09-04 2020-03-12 トヨタ自動車株式会社 Sealed battery

Also Published As

Publication number Publication date
JP2024066622A (en) 2024-05-16

Similar Documents

Publication Publication Date Title
JP6673249B2 (en) Manufacturing method of laminated all solid state battery
US7438989B2 (en) Flat cell, battery, combined battery, and vehicle
US10615386B2 (en) Tray for storing battery cells including a pressing device
KR102517364B1 (en) All-solid-state battery and production method of the same
JP3533117B2 (en) Method of manufacturing film-covered battery
JP6960271B2 (en) All solid state battery
JP2011081915A (en) Solid electrolyte, solid electrolyte film containing solid electrolyte and all solid lithium secondary battery using the solid electrolyte
KR102137697B1 (en) Battery Cell Comprising Protection Circuit Module Assembly Having Lead Plate
JP2013093216A (en) Battery
JP6899746B2 (en) All-solid-state battery and its manufacturing method
WO2019107561A1 (en) Partition member and assembled battery
JP2008311173A (en) Electric storage device
JP2013196933A (en) Solid state battery manufacturing method
JP2019061861A (en) All-solid battery and manufacturing method of the same
WO2024095771A1 (en) All-solid-state battery
EP4231402A1 (en) Secondary battery
KR102208925B1 (en) Tray Having Stopper for Accommodating Battery Cell
WO2023105940A1 (en) Solid-state battery
KR101596489B1 (en) Pouch for Secondary Cell, Pouch Type Secondary Cell and Device Comprising the Same Having Long-life Efficiency
CN113994502A (en) Energy storage element and method for manufacturing energy storage element
JP6738522B2 (en) Electrode structure for secondary battery
JP7426518B1 (en) All solid state battery
CN112997349B (en) Closure for electrochemical cells
US20240079689A1 (en) Laminate type solid-state battery
JP2003303577A (en) Enclosed battery