JP6738522B2 - Electrode structure for secondary battery - Google Patents
Electrode structure for secondary battery Download PDFInfo
- Publication number
- JP6738522B2 JP6738522B2 JP2015223268A JP2015223268A JP6738522B2 JP 6738522 B2 JP6738522 B2 JP 6738522B2 JP 2015223268 A JP2015223268 A JP 2015223268A JP 2015223268 A JP2015223268 A JP 2015223268A JP 6738522 B2 JP6738522 B2 JP 6738522B2
- Authority
- JP
- Japan
- Prior art keywords
- current collector
- electrode
- shaped
- sheet
- electrode mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Description
本発明は、ニッケル水素電池、リチウム二次電池等の二次電池に備えられる電極として使用され得る二次電池用電極構造体に関する。 The present invention relates to an electrode structure for a secondary battery that can be used as an electrode provided in a secondary battery such as a nickel hydrogen battery or a lithium secondary battery.
幅広い用途に二次電池が電源として利用されている。特に最近は、ニッケル水素電池(広義の意味での用語であり、狭義のニッケル金属水素化物電池(Ni−MH)を包含する。以下同じ。)、リチウム二次電池(いわゆるリチウムイオン二次電池、リチウムポリマー二次電池等を包含する。以下同じ。)のような、比較的高容量であり且つ急速充放電性能(ハイレート特性)に優れる二次電池が、自動車等の車両の駆動用電源として広く使用されている。例えば、比較的大型のニッケル水素電池やリチウム二次電池が、ハイブリッド車等の駆動用電源として普及している。 Secondary batteries are used as a power source for a wide range of applications. In particular, recently, nickel-metal hydride batteries (a term in a broad sense, including narrowly defined nickel metal hydride batteries (Ni-MH); the same applies hereinafter), lithium secondary batteries (so-called lithium-ion secondary batteries, Secondary batteries such as lithium polymer secondary batteries, etc., which have a relatively high capacity and excellent rapid charge/discharge performance (high rate characteristics), are widely used as power sources for driving vehicles such as automobiles. It is used. For example, relatively large nickel-hydrogen batteries and lithium secondary batteries are widely used as driving power sources for hybrid vehicles and the like.
駆動用電源として利用される二次電池では、上記のとおり、急速な充放電を可能とする性能(ハイレート特性)が求められており、そのための改良が二次電池の構成に関して様々な観点から行われている。そのための一つのアプローチとして、電極の構成、構造の検討・改良が挙げられる。
特に、電池容量の増大や電極間における、よりいっそうの急速なイオンや電子の移動を実現するべく、正負極それぞれについての活物質の組成や形状の改良研究が活発に行われている。近年では、無機物と有機物とのハイブリッド材料(いわゆる無機/有機ハイブリッド材料)によって高性能な活物質を開発しようとする試みも数多くなされてきている。
例えば特許文献1には、亜鉛含有化合物を負極活物質として含む亜鉛合材をニッケルメッシュ等の集電体に塗工して構成した亜鉛負極を備える二次電池が開示されている。
As mentioned above, the secondary battery used as a driving power source is required to have a performance (high rate characteristic) that enables rapid charging/discharging, and therefore improvement is required from various viewpoints regarding the configuration of the secondary battery. It is being appreciated. One approach for that purpose is to study and improve the configuration and structure of the electrode.
In particular, in order to increase the battery capacity and realize even more rapid transfer of ions and electrons between electrodes, research is being actively conducted on improving the composition and shape of the active material for each of the positive and negative electrodes. In recent years, many attempts have been made to develop a high-performance active material using a hybrid material of an inorganic substance and an organic substance (so-called inorganic/organic hybrid material).
For example, Patent Document 1 discloses a secondary battery including a zinc negative electrode configured by applying a zinc mixture containing a zinc-containing compound as a negative electrode active material to a current collector such as a nickel mesh.
しかしながら、上記特許文献1で開示される技術は、負極活物質を含む負極合材(および正極活物質を含む正極合材)をより安定的に負極集電体(および正極集電体)に保持させることに関連するものではない。また、正極合材および負極合材の安定的な正負極集電体への保持力確保に加えて、上記ハイレート特性等の向上のためには、集電体に保持された正極合材または負極合材中の活物質と集電体との間で良好な電子伝導パス、あるいはイオン伝導パス(以下、これらを総称して「導電パス」という。)を形成する必要がある。特にナノサイズの微小な活物質粒子と有機材料(典型的には有機電解質)とが高度に分散した状態で存在する無機/有機ハイブリッド材料を含む正極合材または負極合材を用いる場合には、ハイレート特性の向上等を実現するため、集電体への当該合材の安定的な保持とともに合材中の活物質と集電体との間での良好な導電パスの構築は重要である。
そこで、本発明は、かかる課題を解決するべく創出されたものであり、電極合材(正極合材または負極合材)の安定的な集電体(正極集電体または負極集電体)への保持に加えて、当該集電体と該集電体に保持された電極合材中の活物質との間で良好な導電パスを形成可能な電極構造体の提供を目的とする。
However, the technique disclosed in Patent Document 1 more stably holds the negative electrode mixture containing the negative electrode active material (and the positive electrode mixture containing the positive electrode active material) on the negative electrode current collector (and the positive electrode current collector). It is not related to letting. Further, in addition to ensuring stable holding power of the positive electrode mixture and the negative electrode mixture to the positive and negative electrode current collectors, in order to improve the high rate characteristics and the like, the positive electrode mixture material or the negative electrode held by the current collectors is used. It is necessary to form a good electron conduction path or ion conduction path (hereinafter collectively referred to as “conductive path”) between the active material in the mixture and the current collector. In particular, when using a positive electrode composite material or negative electrode composite material containing an inorganic/organic hybrid material in which nano-sized fine active material particles and an organic material (typically an organic electrolyte) are present in a highly dispersed state, In order to improve the high rate characteristics and the like, it is important to stably hold the mixture on the current collector and to construct a good conductive path between the active material in the mixture and the current collector.
Therefore, the present invention was created to solve such problems, and is intended to provide a stable current collector (positive electrode current collector or negative electrode current collector) of an electrode mixture (positive electrode mixture or negative electrode mixture). In addition to holding the above, it is an object of the present invention to provide an electrode structure capable of forming a good conductive path between the current collector and the active material in the electrode mixture held by the current collector.
ここで開示される電極構造体は、二次電池の正極または負極に用いられる電極構造体である。その電極構造体は、全体がプレート状(換言すればシート状)の構造体である。
そして、該プレート状構造体は、シート状集電体が面対向方向に積層する(即ち、隣接する各シート状集電体のシート表面(最も広い面をいう。以下同じ)が対向するように積層する)集電体積層構造と、該集電体積層構造を構成するシート状集電体間に形成された電極合材層と、を有していることを特徴とする。
The electrode structure disclosed herein is an electrode structure used for a positive electrode or a negative electrode of a secondary battery. The electrode structure is a plate-like (in other words, sheet-like) structure as a whole.
In the plate-shaped structure, the sheet-shaped current collectors are stacked in the face-to-face direction (that is, the sheet surfaces of the adjacent sheet-shaped current collectors (the widest face; the same applies hereinafter) face each other). It has a current collector laminated structure (to be laminated) and an electrode mixture layer formed between the sheet-shaped current collectors constituting the current collector laminated structure.
かかる構成の電極構造体では、プレート状(薄板状あるいはシート状ともいえる)の電極構造体全体が、複数のシート状集電体を面対向方向に積層する集電体積層構造と、当該積層構造を構成するシート状集電体間に挟まれた状態で形成された電極合材層とを有する。換言すれば、本構成の巨視的にみてプレート状である電極構造体は、その構成要素を微視的にみれば、上記集電体積層構造と、該積層構造を構成するシート状集電体間に形成された電極合材層との繰り返し構造で構成されている。
このことにより、本構成の電極構造体では、隣接する二つのシート状集電体に挟まれて電極合材層を安定的に保持することができる。このため、本構成の電極構造体によると、例えば同じ体積のプレート状の電極構造体であって、一つのシート状に形成された電極合材層の表面の一方又は両方に同様のシート状集電体が配置された従来のプレート状電極構造体と比較して、集電体と該集電体に保持された電極合材層中の活物質との間の導電パスを増大させることができる。
従って、本発明によると、電極合材の保持安定性の向上とともに、ハイレート特性等の電池性能の向上に貢献する電極構造体の提供を実現することができる。
In the electrode structure having such a configuration, a plate-shaped (also referred to as thin plate-shaped or sheet-shaped) electrode structure is a current collector laminated structure in which a plurality of sheet-shaped current collectors are laminated in a face-to-face direction, and the laminated structure. And an electrode mixture layer formed in a state of being sandwiched between the sheet-shaped current collectors constituting the. In other words, the electrode structure that is macroscopically plate-shaped in this configuration has the above-described current collector laminated structure and the sheet-shaped current collector that constitutes the laminated structure when the constituent elements are viewed microscopically. It has a repeating structure with the electrode mixture layer formed between them.
As a result, in the electrode structure having this configuration, the electrode mixture layer can be stably held by being sandwiched between the two adjacent sheet-shaped current collectors. Therefore, according to the electrode structure of the present configuration, for example, a plate-shaped electrode structure having the same volume, and a sheet-shaped electrode structure having one or both of the surfaces of the electrode mixture layer formed in one sheet-like shape is collected. The conductive path between the current collector and the active material in the electrode mixture layer held by the current collector can be increased as compared with the conventional plate-shaped electrode structure in which the current collector is arranged. ..
Therefore, according to the present invention, it is possible to realize the provision of an electrode structure that contributes to the improvement of the holding stability of the electrode mixture and the improvement of the battery performance such as the high rate characteristic.
また、ここで開示される電極構造体の好ましい一つの態様では、上記集電体積層構造が、コルゲートフィン形状(即ち、ジグザグ波板形状)の一つの集電体部材によって形成されていることを特徴とする。
かかる構成によると、上記の作用効果を奏するとともに、一つのコルゲートフィン形状の集電体部材により、一体的に上記集電体積層構造が形成されているため、電極構造体自体の形状安定性をより向上することができる。
Further, in a preferred embodiment of the electrode structure disclosed herein, the current collector laminated structure is formed by one current collector member having a corrugated fin shape (that is, a zigzag corrugated plate shape). Characterize.
According to such a configuration, the above-described effects can be achieved, and since the current collector laminated structure is integrally formed by one corrugated fin-shaped current collector member, the shape stability of the electrode structure itself can be improved. It can be improved.
また、ここで開示される電極構造体の好ましい一つの態様では、上記シート状集電体の積層方向(上記の面対向方向をいう。以下同じ。)に上記集電体積層構造を拘束するための拘束部材が装着されていることを特徴とする。
かかる構成によると、上述した複数のシート状集電体が面対向方向に積層して成る上記集電体積層構造の形態の安定性をより向上させることができる。
Further, in a preferred embodiment of the electrode structure disclosed herein, the current collector laminated structure is constrained in the stacking direction of the sheet-shaped current collector (referred to as the face-opposing direction, hereinafter the same). The restraint member is attached.
With such a configuration, it is possible to further improve the stability of the form of the current collector laminated structure in which the plurality of sheet-shaped current collectors described above are laminated in the surface facing direction.
以下、図面を参照しつつ、ここで開示される電極構造体の好適な幾つかの実施形態を説明する。
本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない二次電池全体の一般的な構成および製造プロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面における寸法関係(長さ、幅、厚さ等)は、説明を容易にするためにデフォルメされており、実際の寸法関係を反映するものではない。
Hereinafter, some suitable embodiments of the electrode structure disclosed herein will be described with reference to the drawings.
Matters other than the matters particularly referred to in the present specification and necessary for carrying out the present invention (for example, the general configuration and manufacturing process of the entire secondary battery that do not characterize the present invention) are not related to the related art. It can be understood as a design matter of those skilled in the art based on the related art. The present invention can be carried out based on the contents disclosed in this specification and the common general technical knowledge in the field. In addition, the dimensional relationships (length, width, thickness, etc.) in the following drawings are deformed for ease of explanation, and do not reflect actual dimensional relationships.
本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、いわゆる蓄電池、電気二重層キャパシタ等の蓄電素子を包含する用語である。
また、「電極合材」とは、所定の正負極何れかの活物質を含む組成物(合材)をいい、当該合材を構成する活物質の内容やその他の成分(各種添加材)は、ニッケル水素電池、リチウム二次電池、等の二次電池の種類に応じて異なり得る。
従って、電極合材層(具体的には正極合材層若しくは負極合材層)とは、当該電極合材を対象とする集電体に付与することによって形成された活物質を主体とする層(活物質層ともいう。)を指しており、必ずしも集電体に付与する前の電極合材の組成と、電極合材層(活物質層)を構成する組成物の組成とが一致するものではない。例えば、有機溶媒が電極合材に含まれる場合には、電極合材層形成時に当該有機溶媒が蒸発されて失われることが通常であるが、そのような場合でも、該電極合材を集電体に付与することによって形成された層を、電極合材層ということができる。
In the present specification, the term “secondary battery” generally refers to a power storage device that can be repeatedly charged and discharged, and is a term that includes power storage elements such as so-called storage batteries and electric double layer capacitors.
In addition, the “electrode mixture” means a composition (composite material) containing an active material of any one of predetermined positive and negative electrodes, and the contents of the active material and other components (various additives) constituting the mixture material are , Nickel-metal hydride battery, lithium secondary battery, etc.
Therefore, the electrode composite material layer (specifically, the positive electrode composite material layer or the negative electrode composite material layer) is a layer mainly composed of an active material formed by applying the electrode composite material to a current collector. (Also referred to as an active material layer), and the composition of the electrode mixture before being applied to the current collector and the composition of the composition of the electrode mixture layer (active material layer) are necessarily the same. is not. For example, when an organic solvent is contained in the electrode mixture, it is usual that the organic solvent is evaporated and lost when the electrode mixture layer is formed. The layer formed by applying it to the body can be referred to as an electrode mixture layer.
先ず、図1を参照しつつ、ここで開示される電極構造体を正極(または負極)として用いることができる好適な二次電池の一例として箱形のニッケル水素電池について、簡単に説明する。
図1に示すように、本実施形態に係るニッケル水素電池100は、蓋体42を含むケース40を備える。ケース40内には、本実施形態に係るニッケル水素電池100の電極体を構成する正極10、負極20、およびセパレータ30が収容されている。
正極10は、複数の薄いプレート形状(シート形状)の電極構造体から構成されており、それらは正極集電タブ12を介して正極端子14に電気的に接続されている。一方、負極20は、複数の薄いプレート形状(シート形状)の電極構造体から構成されており、それらは負極集電部材(図示せず)を介してケース40の底面に設けられた負極端子(図示せず)に接続されている。また、蓋体42よりもケース40の内側には、スペーサ60とその周囲に設けられたガスケット50とが装着されており、ケース40内部の密閉状態を保持している。
なお、スペーサ60には、電池100の内部(ケース40の内部)のガス圧が異常に高くなった場合に、内部ガスをケースの外方に排出するためのガス排出弁構造が形成されているが、従来のニッケル水素電池に付設されているものと同様でよく、本発明を特徴付ける構造ではないので、これ以上の詳細な説明は省略する。また、ニッケル水素電池100の各構成部分(正負極、セパレータ、ケース、等)の材質や形状についても、ここで開示される電極構造体10Aを適用する部分を除いて、従来の同様の形態のニッケル水素電池と同じでよく、特に本発明を特徴付けるものではないため、これ以上の詳細な説明は省略する。
First, a box-shaped nickel metal hydride battery will be briefly described as an example of a suitable secondary battery in which the electrode structure disclosed herein can be used as a positive electrode (or a negative electrode) with reference to FIG. 1.
As shown in FIG. 1, the nickel-
The
The
次に、本実施形態に係る電極構造体10Aについて図2、図3を参照しつつ詳細に説明する。本実施形態に係る電極構造体10Aは、図1に示すニッケル水素電池100において正極10を構成する構造体である。図2に示すように、正極10を構成する本実施形態に係る電極構造体10Aは、その全体がプレート状(シート状)の形状を有している。図面では説明のため、サイズ、形状等(特に厚み)がデフォルメされている。
より具体的には、本実施形態に係る電極構造体10Aは、複数のシート状集電体15Aがそれらの面対向方向に積層して得られる集電体積層構造17Aと、該集電体積層構造17Aを構成する複数のシート状集電体15A間に形成された電極合材層(即ち正極合材層)16Aとを有している。
換言すれば、本実施形態に係る電極構造体10Aは、複数のシート状集電体15Aと電極合材層16Aとが集電体積層方向に交互に積み重なるようにして構成されたプレート状(シート状)構造体である。
かかる構造の本実施形態に係る電極構造体10Aによると、隣接する二つのシート状集電体15Aに挟持されることによって電極合材層16Aを安定的に保持することができる。また、このような構造の電極構造体10Aによると、電極合材層16Aの単位容積あたりの集電体15Aとの接触面積を大きくすることができる。このため、集電体15Aと該集電体15Aに保持された電極合材層16A中の活物質との間の導電パスを増大させることができる。これにより、ハイレート特性等の電池性能の向上を図ることができる。
Next, the
More specifically, the
In other words, the
According to the
集電体15Aの形状は、シート状であって隣接する二つの集電体15A間に電極合材層を16Aを充填し得る構造であればよく、図示されるようなフラットな形状に限定されない。例えば、集電体の全体が湾曲していたり、あるいは、集電体の一部が屈曲した形状(例えば長方形状の集電体シートの50%以下の部分が長辺に平行になるように45度以下(30度以下が好ましい)の角度で折れ曲がったような形状でもよい。表面構造に関しても特に限定はなく、全くのフラットな表面構造でもよいが、適度な凹凸構造を有することが、電極合材層16Aとの接触面積の増大という観点から好ましい。
The shape of the
シート状集電体15Aのサイズに関しては、対象とする二次電池のサイズや形状によって異なり得るため、特に限定されるものではないが、集電効率の観点からは厚みは、例えば10μm以上50μm以下程度が好適である。集電体15Aの形状(長辺および短辺のサイズ)については、電極構造体10A全体の厚み方向のイオン伝導性を考慮すると、電極構造体10Aの厚みに相当する集電体15Aの短辺長さは0.5mm以下が適当である。また、上記積層方向に直交する電極構造体10Aの幅方向の長さに相当する集電体15Aの長辺長さは、特に限定されないが、例えば上記短辺長さに対してアスペクト比(長辺長さ/短辺長さ)で100以下(例えば10以上100以下)となるようにサイズを規定することが好ましい。
The size of the sheet-shaped
集電体積層構造17Aの形状を保持する手段については、特に制限はなく、例えば、シート状集電体15A間に配置(充填)される電極合材に適量のバインダ(結着材)を含ませておき、電極合材層16Aが集電体積層構造17Aを保持する接着剤層としての機能をあわせもつように構成してもよい。
好ましくは、図2に示すように、何らかの拘束部材18で集電体積層構造17を拘束する。例えば、図示されるようなテープ(若しくはひも)状の拘束部材18を採用することができる。このような形態の拘束部材18(絶縁性のテープ状の拘束部材が好適である)を、集電体積層構造17の外周面に装着し、積層方向にテンションをかけることによって、集電体積層構造17、ひいては電極構造体10A自体の構造安定化を高レベルに実現することができる。なお、拘束部材18の装着位置は図2に示す態様に限定されない。例えば、図示していないが、ニードル状(細い棒状若しくはひも状)の拘束部材を集電体積層構造17の内部を積層方向に貫通させ(例えばシート状集電体15Aのシート面のほぼ中央付近の一箇所または二、三箇所にニードル状拘束部材を貫通させる。)、当該集電体積層構造17の積層方向の一方の端面と他方の端面との間にテンションをかけて締結することもできる。あるいはまた、テープ状の拘束部材18に代えて、集電体積層構造17Aを積層方向に締め付け可能なネジ部材を装着してもよい。あるいは、弾性体(ゴム材)、熱収縮性の材料、または、繊維状若しくはネット状の部材で集電体積層構造17の外周を捲回する手法を採用してもよい。
The means for maintaining the shape of the current collector laminated
Preferably, as shown in FIG. 2, the current collector laminated structure 17 is constrained by some constraining
あるいは、図3に示すように、シート状集電体の一方の表面の一部(例えば周縁部の一部)にほぼ垂直に突起した凸部15Cを設け、その凸部15Cの反対側の表面に当該凸部15Cが嵌まり込む凹部15Dを設けることも好ましい。このような凹凸を設けることにより、複数のシート状集電体15Aを積層した際、積層された一の集電体15Aの凸部15Cは、対向する他の一の集電体15Aの凹部15Dに嵌合する。これにより、積層された複数のシート状集電体15Aは、互いに拘束され、位置ずれを防止して安定した集電体積層構造17Aを形成することができる。さらに、該凹凸を設けることによって、隣接する集電体15A間に適切な間隙を設けることが容易となる。例えば、凸部15Cの突起長は、シート状集電体15Aの厚みの0.5倍以上10倍以下、好ましくは1倍以上5倍以下、あるいは高容量を所望する場合は5倍以上10倍以下に設定することができる。
Alternatively, as shown in FIG. 3, a
本実施形態に係る電極構造体10Aの骨格をなす集電体積層構造を形成するためのシート状集電体15Aの金属組成としては、電極合材層16Aとの導電パスを構築できる限りにおいて、特に制限はない。この種の二次電池の正負極に用いられている種々の金属(または合金)から形成することができる。例えば、一般的なニッケル水素電池の正極板に使用される金属、典型的にはニッケルやニッケルを主体とする合金等が挙げられる。多孔質な金属部材(例えば、従来のニッケル水素電池の極板に用いられるパンチングメタル部材)であってもよい。
また、使用する集電体15Aは、磁気を帯びていてもよい。集電体積層構造17Aを構築後に各集電体15Aを磁化してもよい。磁気を帯びることにより、積層構造自体の安定性をより一層向上することができる。
The metal composition of the sheet-shaped
Further, the
また、電極構造体10Aの全体の体積に占める集電体積層構造17の体積占有率(即ち、電極合材層16Aを除いた体積割合)は、70vol%以上90vol%以下が好ましい。集電体積層構造17の体積占有率がこの程度であると、良好な導電パスが形成され、迅速な充放電機能を発揮させることができる。
あるいはまた、集電体積層構造17Aの積層面(好ましくはシート状集電体15Aの長辺側となる幅広の積層面)にガイド部材(好ましくはプレート状部材、後述する実施形態に関する図4参照)を設けてもよい。ガイド部材を付設することにより、構造安定性の更なる向上を図ることができる。ガイド部材が集電可能な導電性部材から構成されている場合には、電極の集電部(コレクター)として機能させることができる。
Further, the volume occupancy of the current collector laminated structure 17 in the entire volume of the
Alternatively, a guide member (preferably a plate member, see FIG. 4 relating to an embodiment described later) is provided on the stacking surface of the current collector stacked
一方、電極合材層16Aの構成は、特に限定はなく、ニッケル水素電池、リチウム二次電池等、対象とする二次電池の種類に応じて要求されるタイプの種々の正負極いずれかの電極活物質(ここでは正極活物質)と、種々の添加材(副成分)を用いることができる。
例えば、ニッケル水素電池の正極活物質である場合、水酸化ニッケル、オキシ水酸化ニッケル、およびそれらの誘導体から選ばれる少なくとも一種のニッケル化合物を電極合材層(正極合材層)16Aに含ませる活物質成分とすることができる。
これらニッケル化合物から成る活物質においては、ニッケル元素の一部が他の金属元素(コバルト、アルミニウム、亜鉛、マンガン、タングステン、チタン、ニオブ、ルテニウム、金、等)で置換されていてもよい。活物質を構成する化合物は、結晶構造体であっても、アモルファス体であってもよい。
正極活物質(上記ニッケル化合物等)は、電顕観察あるいはレーザ回折・光散乱法に基づく平均粒子径が1nm以上10nm以下程度の微粒子であることが好ましいが、これよりも大きい平均粒子径(例えば10nm以上10μm以下)を有するような活物質粒子を使用してもよい。なお、活物質以外の添加材としては、正極または負極のいずれかに応じて、適切な材料、例えば、種々の導電材、電解質(液体状若しくはゲル状ポリマーであり得る)、バインダ(結着材)、溶媒、等が挙げられるが、従来の各種の二次電池において採用されているものを使用すればよく、本発明を特徴付けるものではないため、これ以上の詳細な説明は省略する。
電極合材(正極合材または負極合材)は、典型的には、必要な固形成分を溶媒とともに混合してスラリー状(ペースト状)に調製され、そのスラリー状電極合材を隣接する集電体と集電体との間に充填する(典型的にはその後に乾燥工程を含む。)ことにより電極合材層が形成される。特に10nm以下程度のナノサイズの微小な活物質粒子と、ポリビニルアルコール、エチレン−ビニルアルコール共重合樹脂、等の有機材料(有機電解質)とが、高度に分散した状態(必要に応じてさらに導電材微粒子を分散させてもよい。)で存在する無機/有機ハイブリッド材料を含む正極合材または負極合材の使用が好ましい。
On the other hand, the structure of the
For example, in the case of a positive electrode active material for a nickel-hydrogen battery, an active material containing at least one nickel compound selected from nickel hydroxide, nickel oxyhydroxide, and derivatives thereof in the electrode mixture layer (positive electrode mixture layer) 16A. It can be a substance component.
In the active material composed of these nickel compounds, part of the nickel element may be replaced with another metal element (cobalt, aluminum, zinc, manganese, tungsten, titanium, niobium, ruthenium, gold, etc.). The compound forming the active material may be a crystalline structure or an amorphous body.
The positive electrode active material (such as the nickel compound) is preferably fine particles having an average particle size of 1 nm or more and 10 nm or less based on electron microscope observation or laser diffraction/light scattering method, but an average particle size larger than this (eg, Active material particles having a size of 10 nm or more and 10 μm or less) may be used. As the additive other than the active material, an appropriate material, for example, various conductive materials, electrolytes (which may be liquid or gel polymers), binders (binders) depending on whether the positive electrode or the negative electrode is used. ), a solvent, and the like, but those used in various types of conventional secondary batteries may be used and do not characterize the present invention, so further detailed description will be omitted.
The electrode composite material (positive electrode composite material or negative electrode composite material) is typically prepared by mixing necessary solid components together with a solvent to prepare a slurry (paste), and the slurry-like electrode composite is provided with an adjacent collector. The electrode mixture layer is formed by filling between the body and the current collector (typically including a drying step thereafter). Particularly, nano-sized fine active material particles of about 10 nm or less and an organic material (organic electrolyte) such as polyvinyl alcohol or ethylene-vinyl alcohol copolymer resin are in a highly dispersed state (further, if necessary, a conductive material). It is preferable to use a positive electrode composite material or a negative electrode composite material containing an inorganic/organic hybrid material present in the fine particles may be dispersed).
以上、図2および図3を参照しつつ、ここで開示される電極構造体および集電体積層構造の好適な一実施形態を説明したが、これら図面に示す形態に限定されない。例えば、他の好適な実施形態として、図4に示す電極構造体10B(集電体積層構造17B)のように、シート状集電体15Bが、一つのコルゲートフィン形状(ジグザグ波板形状)の集電体部材によって形成されていてもよい。この形態の場合も、隣接するシート状集電体(即ちコールゲートフィン)15B間に、所定の電極合材を含有させて電極合材層16Bを形成することができる。
かかる構成では、一つのコルゲートフィン形状の部材からシート状集電体15Bが構成され、一体的な集電体積層構造17Bが得られる。このため、電極構造体10B自体の形状安定性をより一層向上することができる。
また、図示されるように、本実施形態においても、集電体積層構造17Bの積層面にガイド部材(集電部)19を設けることができる。ガイド部材19を付設することにより、構造安定性の更なる向上を図ることができるとともに、集電体15Bからの集電効率を向上させることができる。
Although a preferred embodiment of the electrode structure and the current collector laminated structure disclosed herein has been described above with reference to FIGS. 2 and 3, the present invention is not limited to the forms shown in these drawings. For example, as another preferred embodiment, like the
In such a configuration, the sheet-shaped
Further, as shown in the figure, also in the present embodiment, the guide member (current collecting portion) 19 can be provided on the laminated surface of the current collector laminated
本実施形態に係るニッケル水素電池100は、各種用途に利用可能であり、好適な用途としては、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両に搭載される駆動用電源としての二次電池の電極を構成する構造体として好適である。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
The nickel-
Specific examples of the present invention have been described above in detail, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
10 正極
10A 電極構造体
10B 電極構造体
12 正極集電タブ
14 正極端子
15A,15B シート状集電体
15C 凸部
15D 凹部
16A,16B 電極合材層(正極合材層)
17A,17B 集電体積層構造
18 拘束部材
19 ガイド部材
20 負極
30 セパレータ
40 ケース
42 蓋体
50 ガスケット
60 スペーサ
100 二次電池(ニッケル水素電池)
10
17A, 17B Current collector laminated
Claims (2)
該電極構造体は、全体がプレート状の構造体であり、
該プレート状構造体は、
シート状集電体であって一つのコルゲートフィン形状の集電体により形成された面対向方向に積層する集電体積層構造と、
該積層する集電体間のそれぞれに配置された複数の電極合材層と、
を有しており、
ここで、前記電極合材層はいずれも前記集電体積層構造の隣接する二つのシート状集電体の間に挟持されて存在しており、
前記シート状集電体と前記電極合材層とが前記集電体積層方向に交互に積み重なるようにして構成されている(但し、該積層方向と前記構造体における最大面積を有する面の法線方向とが一致する態様を除く)ことを特徴とする、電極構造体。 An electrode structure used for a positive electrode or a negative electrode of a secondary battery,
The electrode structure is a plate-shaped structure as a whole,
The plate-shaped structure is
A sheet-shaped current collector, a current collector laminate structure formed by one corrugated fin-shaped current collector and laminated in a surface facing direction,
A plurality of electrode mixture layers arranged respectively between the laminated current collectors ,
Has
Here, each of the electrode mixture layer is sandwiched between two adjacent sheet-shaped current collectors of the current collector laminated structure,
The sheet-shaped current collector and the electrode mixture layer are configured to be alternately stacked in the current collector stacking direction (provided that the normal to the surface having the maximum area in the stacking direction and the structure). (Except for a mode in which the directions match), an electrode structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015223268A JP6738522B2 (en) | 2015-11-13 | 2015-11-13 | Electrode structure for secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015223268A JP6738522B2 (en) | 2015-11-13 | 2015-11-13 | Electrode structure for secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017091924A JP2017091924A (en) | 2017-05-25 |
JP6738522B2 true JP6738522B2 (en) | 2020-08-12 |
Family
ID=58768511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015223268A Active JP6738522B2 (en) | 2015-11-13 | 2015-11-13 | Electrode structure for secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6738522B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6624432B2 (en) * | 2015-11-16 | 2019-12-25 | トヨタ自動車株式会社 | Electrode structure for secondary battery |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH027360A (en) * | 1988-06-27 | 1990-01-11 | Sharp Corp | Electrode and manufacture thereof |
US6645670B2 (en) * | 2000-05-16 | 2003-11-11 | Wilson Greatbatch Ltd. | Efficient cell stack for cells with double current collectors sandwich cathodes |
JP2001351613A (en) * | 2000-06-06 | 2001-12-21 | Japan Storage Battery Co Ltd | Positive electrode and negative electrode plate for non- aqueous electrolyte secondary battery, manufacturing method for same and non-aqueous secondary battery |
JP2015153501A (en) * | 2014-02-12 | 2015-08-24 | 株式会社豊田自動織機 | power storage device |
-
2015
- 2015-11-13 JP JP2015223268A patent/JP6738522B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017091924A (en) | 2017-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6166994B2 (en) | Assembled battery | |
JP4524713B2 (en) | Lithium secondary battery and its use | |
JP4587055B2 (en) | Assembled battery | |
US9698398B2 (en) | Secondary battery module | |
US20130017425A1 (en) | Storage Battery Cell, Assembled Battery, Assembled Battery Setup Method, Electrode Group, and Production Method of Electrode Group | |
JP7383510B2 (en) | Non-aqueous electrolyte secondary batteries and secondary battery modules | |
JP7403337B2 (en) | Non-aqueous electrolyte secondary batteries and secondary battery modules | |
KR20080036250A (en) | Hybrid-typed stack and folding electrode assembly and secondary battery containing the same | |
JPH11238528A (en) | Lithium secondary battery | |
JP6176500B2 (en) | Secondary battery, method for producing the same, and method for producing negative electrode sheet used in the battery | |
JP2023018128A (en) | Electrode for lithium secondary battery and lithium secondary battery | |
JP2015220173A (en) | Secondary battery | |
WO2017098716A1 (en) | Power storage element | |
JP6624432B2 (en) | Electrode structure for secondary battery | |
JP6037171B2 (en) | Nonaqueous electrolyte secondary battery and manufacturing method thereof | |
JP2013131342A (en) | Secondary battery and manufacturing method therefor and manufacturing method of negative electrode sheet for use in battery | |
JP6738522B2 (en) | Electrode structure for secondary battery | |
JP2000090932A (en) | Lithium secondary battery | |
JP2019016494A (en) | Method for manufacturing multilayer electrode body and method for manufacturing power storage element | |
CN109844999B (en) | Energy storage element and method for manufacturing energy storage element | |
JP3680768B2 (en) | Assembled battery | |
JP2019016493A (en) | Electrode body sub-unit, electrode unit, multilayer electrode body and power storage element | |
JP5776948B2 (en) | Lithium secondary battery and manufacturing method thereof | |
JP2018045797A (en) | Secondary battery | |
WO2013179807A1 (en) | Metal-air secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190704 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191024 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200520 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200618 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200701 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6738522 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |