WO2024089826A1 - 電流差動継電装置 - Google Patents

電流差動継電装置 Download PDF

Info

Publication number
WO2024089826A1
WO2024089826A1 PCT/JP2022/040023 JP2022040023W WO2024089826A1 WO 2024089826 A1 WO2024089826 A1 WO 2024089826A1 JP 2022040023 W JP2022040023 W JP 2022040023W WO 2024089826 A1 WO2024089826 A1 WO 2024089826A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
relay
current differential
differential relay
terminal
Prior art date
Application number
PCT/JP2022/040023
Other languages
English (en)
French (fr)
Inventor
ニキル プラカシ
泰孝 園部
秀也 天羽
小佼 湯
Original Assignee
株式会社東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社東芝
Priority to PCT/JP2022/040023 priority Critical patent/WO2024089826A1/ja
Publication of WO2024089826A1 publication Critical patent/WO2024089826A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/05Details with means for increasing reliability, e.g. redundancy arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/28Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus

Definitions

  • An embodiment of the present invention relates to a current differential relay device.
  • a current differential relay device In the transmission lines of a power system, a current differential relay device is provided to detect a system fault (hereinafter simply referred to as an "fault") that occurs in the transmission line, and when an fault is detected, a tripping command is output to the circuit breaker belonging to that transmission line, thereby isolating the fault from the power system and preventing the fault from spreading (maintaining stability).
  • a fault system fault
  • Current differential relays include those that detect the occurrence of an accident based on the differential current calculated from the currents at both ends of a power system transmission line.
  • a current differential relay is installed at each terminal of a power system transmission line, inputs its own terminal current, converts it from analog to digital, and transmits the current data via a transmission line to a current differential relay installed at each terminal.
  • the current differential relay calculates the difference current between the current data of the power system transmission line at the terminal where it is installed and the current data of the opposing terminal received via the transmission line from a current differential relay installed at the opposing terminal of the same transmission line, and detects the occurrence of an accident based on the magnitude of the differential current resulting from the calculation.
  • Some current differential relays have a main and fail-safe configuration that improves the reliability of fault detection by providing multiple relays that operate on different operating principles.
  • the main relay is a current relay
  • the fail-safe relay can be an undervoltage relay for detecting short-circuit faults, or an overvoltage relay, overcurrent relay, or current change relay for detecting ground faults.
  • a current differential relay with a main and fail-safe configuration can be configured by using a current differential relay as the main relay and an overcurrent relay or current change relay as the fail-safe relay.
  • the current differential relay which is the main relay, operates based on current data, so using an overcurrent relay or current change relay that operates based on current data like the main relay as the fail-safe relay is advantageous in terms of compactness and economy of the current differential relay, even in a main and fail-safe configuration.
  • the current differential relay device is configured as a main and fail-safe device, if the fail-safe relay operates based on the current data, the failed current data will cause the fail-safe relay to operate.
  • both the current differential relay, which is the main relay, and the fail-safe relay may operate as if an accident has occurred, resulting in the output of a cutoff command.
  • the problem that this invention aims to solve is to provide a current differential relay device that can improve the reliability of detecting system faults.
  • the current differential relay of the embodiment detects a fault in a power system and outputs a trip command to a circuit breaker when the fault is detected, and has a first means, a second means, a third means, and a fourth means.
  • the first means periodically samples the own terminal current and all other terminal currents other than the own terminal of the power system at the same time, calculates a difference current from the sampled data, and detects a system fault from the magnitude of this difference current.
  • the second means detects an overcurrent and a current change of the current of the own terminal.
  • the third means detects an overcurrent of the other other terminal.
  • the fourth means generates a trip command output from all the operating conditions of the first means, the second means, and the third means.
  • FIG. 1 is a diagram showing an example of the configuration of a power system to which a current differential relay device according to an embodiment is applied; 1 is a diagram showing an example of the configuration of a current differential relay device according to a first embodiment; 4A and 4B are diagrams for explaining a first operation of the current differential relay device of the first embodiment; FIG. 4 is a diagram for explaining a second operation of the current differential relay device of the first embodiment.
  • FIG. 13 is a diagram showing an example of the configuration of a current differential relay device according to a second embodiment.
  • FIG. 13 is a diagram showing an example of the configuration of a current differential relay device according to a third embodiment.
  • FIG. 1 is a diagram showing an example of the configuration of a power system to which a current differential relay device according to an embodiment is applied.
  • FIG. 1 shows an example of a power system 1 that transmits power between generators AC (generators AC-1 and AC-2), for example.
  • generators AC generators AC-1 and AC-2
  • two current transformers CT current transformers CT-1 and CT-2
  • two circuit breakers CB circuit breakers CB-1 and CB-2
  • two current differential relays 100 current differential relays 100-1 and 100-2
  • current transformer CT-1 and circuit breaker CB-1 are installed at terminal T-1 supplied with power from generator AC-1
  • current transformer CT-2 and circuit breaker CB-2 are installed at terminal T-2 supplied with power from generator AC-2.
  • a current transformer CT-1, a circuit breaker CB-1, and a current differential relay 100-1 are arranged near the terminal T-1 of the generator AC-1, and a current transformer CT-2, a circuit breaker CB-2, and a current differential relay 100-2 are arranged near the terminal T-2 of the generator AC-2, which is the opposite terminal of the terminal T-1 on the power transmission line PL.
  • the terminal T-1 is an example of a "first terminal”
  • the terminal T-2 is an example of a "second terminal”.
  • Each current transformer CT converts the system primary side current flowing in the transmission line PL to a system secondary side current that is input to the current differential relay 100.
  • Current transformer CT-1 converts the system primary side current flowing in the transmission line PL at terminal T-1 to a system secondary side current that is input to the current differential relay 100.
  • Current transformer CT-2 converts the system primary side current flowing in the transmission line PL at terminal T-2 to a system secondary side current that is input to the current differential relay 100.
  • the system secondary side current (hereinafter simply referred to as "current") in the corresponding current transformer CT is input to each current differential relay 100.
  • Each current differential relay 100 transmits current data (hereinafter simply referred to as "current data") obtained by converting the current obtained from the current transformer CT to the current differential relay 100, which is the opposing terminal.
  • the current transformer CT-1 which inputs the current on the secondary side of the system to the current differential relay 100-1, is an example of a "first current transformer," and the current on the secondary side of the system input to the current differential relay 100-1 is an example of a "first current.”
  • the current transformer CT-2 which inputs the current on the secondary side of the system to the current differential relay 100-2, is an example of a "second current.”
  • the current transmitted from the current differential relay 100-1 via the transmission line is an example of a "first current data”
  • the current transmitted from the current differential relay 100-2 via the transmission line is an example of a "second current data.”
  • each of the circuit breakers CB cuts off the connected power transmission line PL in response to a cut-off command (so-called a trip command) from the corresponding current differential relay 100.
  • Circuit breaker CB-1 cuts off the connection between terminals T-1 and T-2 on the power transmission line PL in response to a cut-off command from the current differential relay 100-1.
  • Circuit breaker CB-2 cuts off the connection between terminals T-1 and T-2 on the power transmission line PL in response to a cut-off command from the current differential relay 100-2.
  • circuit breaker CB-1 is an example of a "circuit breaker”
  • circuit breaker CB-2 is an example of a "circuit breaker.”
  • Each current differential relay 100 detects a fault in the transmission line PL.
  • Each current differential relay 100 is connected to other current differential relays 100 corresponding to the same transmission line PL by a transmission line CC.
  • the transmission line CC is, for example, a communication cable such as an optical fiber cable.
  • Each current differential relay 100 transmits current data obtained by converting the current obtained from the current transformer CT of the terminal T to the other current differential relays 100 via the transmission line CC.
  • Each current differential relay 100 detects a fault in the transmission line PL based on the current data of the corresponding current transformer CT and the current data of the current transformer CT corresponding to the other current differential relays 100 transmitted by the other current differential relays 100.
  • each of the current differential relay devices 100 When each of the current differential relay devices 100 detects that an accident X has occurred on the power transmission line PL, it outputs a cutoff command TC to the corresponding circuit breaker CB so that the effects of the power transmission line PL (fault line) where the accident X has occurred do not extend to the entire power system.
  • current differential relay 100-1 and current differential relay 100-2 have the same configuration.
  • Current differential relay 100-1 transmits current data I-1 of corresponding current transformer CT-1 to current differential relay 100-2 via transmission line CC.
  • Current differential relay 100-2 transmits current data I-2 of corresponding current transformer CT-2 to current differential relay 100-1 via transmission line CC.
  • Current differential relay 100-1 detects a fault in transmission line PL based on the current data I-1 and the current data I-2 transmitted by current differential relay 100-2 via transmission line CC, and outputs a shutoff command TC-1 to circuit breaker CB-1 when it detects that fault X has occurred in transmission line PL.
  • the current differential relay 100-2 detects an accident in the power transmission line PL based on the current data I-2 and the current data I-1 transmitted by the current differential relay 100-1 via the transmission line CC, and outputs a cutoff command TC-2 to the circuit breaker CB-2 when it detects that an accident X has occurred in the power transmission line PL.
  • Each current differential relay device 100 includes, for example, a main relay unit 110, a failsafe relay unit 120, a failsafe relay unit 130, and an output unit 140.
  • the main relay unit 110 is a main detection unit that detects an accident X that occurs in the power transmission line PL.
  • the failsafe relay unit 120 and the failsafe relay unit 130 improve the reliability of the detection result of the accident X in the main relay unit 110.
  • the output unit 140 outputs a cutoff command TC to the corresponding circuit breaker CB depending on the detection results by the main relay unit 110, the failsafe relay unit 120, and the failsafe relay unit 130.
  • the main relay unit 110 is an example of a "main relay unit”
  • the failsafe relay unit 120 is an example of a "first failsafe relay unit”
  • the failsafe relay unit 130 is an example of a "second failsafe relay unit”.
  • the main relay unit 110 is an example of a "first means”
  • the failsafe relay unit 120 is an example of a “second means”
  • the failsafe relay unit 130 is an example of a "third means”
  • the output unit 140 is an example of a "fourth means”.
  • the current data I-1 is an example of a "first current data”
  • the current data I-2 is an example of a "second current data”.
  • First Embodiment 2 is a diagram showing an example of the configuration of the current differential relay 100 of the first embodiment.
  • the current differential relay 100 includes a main relay unit 110 having a current differential relay 112, a fail-safe relay unit 120 having an overcurrent relay 122, a change current relay 124, and an OR circuit 126, a fail-safe relay unit 130 having an overcurrent relay 132, and an output unit 140 having an AND circuit 142 and an AND circuit 144.
  • the current differential relay 112 is an example of a "first means”.
  • the configurations of the overcurrent relay 122, the change current relay 124, and the OR circuit 126 are an example of a "second means”.
  • the overcurrent relay 132 is an example of a "third means”.
  • the configurations of the AND circuit 142 and the AND circuit 144 are an example of a "fourth means”.
  • the current differential relay 112 is a current differential relay (DIF) that detects an accident in the transmission line PL based on two current data I input, current data I-1 and current data I-2, and issues a cutoff command to the circuit breaker CB-1 if an accident is detected.
  • the current differential relay 112 performs a difference current calculation using the current data I-1 of the current transformer CT-1 and the current data I-2 of the current transformer CT-2 transmitted by the current differential relay device 100-2, and determines that an accident has occurred in the transmission line PL based on the magnitude of the difference current resulting from the calculation.
  • the current differential relay 112 then outputs an operation command (hereinafter referred to as the "detection signal DIF").
  • the current differential relay 112 performs a difference current calculation by adding the current data I-1 and the current data I-2. Then, when the calculation result IDIF of the difference current calculation satisfies the following formula (1), the current differential relay 112 determines that a fault has occurred in the power transmission line PL and outputs a detection signal DIF that indicates this determination result.
  • IDIF
  • the main relay unit 110 outputs the detection signal DIF of the current differential relay 112 to the AND circuit 144 provided in the output unit 140 as the detection signal in the main relay unit 110.
  • the current differential relay 112 is an example of a "current differential relay.”
  • the detection signal DIF is an example of a "first detection signal.” However, if a change in the current data occurs due to some factor, such as a system arc or a wiring cable fault, even though no accident has actually occurred, the changed current data will be used to make a judgment and an unnecessary detection signal will be output.
  • the overcurrent relay 122 is an Overcurrent Relay (OCR) that detects that an overcurrent of a predetermined current value or more is flowing in the transmission line PL based on the input current data I, and outputs a detection signal indicating this.
  • OCR Overcurrent Relay
  • the overcurrent relay 122 outputs a detection signal (hereinafter referred to as "detection signal OC-1") indicating that it has detected that an overcurrent is flowing in the transmission line PL from the current data I-1 of the current transformer CT-1, to the OR circuit 126.
  • the overcurrent relay 122 is an example of a "first overcurrent relay".
  • the variation over current relay 124 is a relay ( ⁇ OCR) that detects that the current flowing through the transmission line PL has changed by a predetermined current value or more based on the input current data I, and outputs a detection signal indicating this.
  • the variation over current relay 124 outputs a detection signal (hereinafter referred to as "detection signal ⁇ OC-1") indicating that it has detected that the current flowing through the transmission line PL has changed by a predetermined current value or more based on the current data I-1 of the current transformer CT-1, to the OR circuit 126.
  • the variation over current relay 124 is an example of a "first variation over current relay".
  • the OR circuit 126 takes the logical sum of the detection signal OC-1 of the overcurrent relay 122 and the detection signal ⁇ OC-1 of the change current relay 124.
  • the OR circuit 126 outputs a detection signal (hereinafter referred to as the "detection signal FS-1") that indicates the result of the logical sum.
  • the OR circuit 126 outputs the detection signal FS-1, which indicates that an accident has occurred on the power transmission line PL, to the AND circuit 142 provided in the output unit 140.
  • the detection signal FS-1 is an example of a "second detection signal.”
  • the overcurrent relay 132 like the overcurrent relay 122 included in the failsafe relay unit 120, is a relay that detects that an overcurrent of a predetermined current value or more is flowing in the transmission line PL based on the input current data I, and outputs a detection signal indicating this. However, the overcurrent relay 132 outputs a detection signal (hereinafter referred to as "detection signal OC-2") based on the current data I-2 of the current transformer CT-2 transmitted by the current differential relay device 100-2.
  • detection signal OC-2 a detection signal
  • the failsafe relay unit 130 outputs the detection signal OC-2 of the overcurrent relay 132 to the AND circuit 142 provided in the output unit 140 as a detection signal in the failsafe relay unit 130.
  • the overcurrent relay 132 is an example of a "second overcurrent relay.”
  • the detection signal OC-2 is an example of a "third detection signal.”
  • the AND circuit 142 performs a logical AND operation on the detection signal FS-1 from the failsafe relay unit 120 and the detection signal OC-2 from the failsafe relay unit 130.
  • the AND circuit 142 outputs a detection signal representing the result of the logical AND operation to the AND circuit 144.
  • the AND circuit 144 performs a logical AND operation on the detection signal DIF from the main relay unit 110 and the detection signal from the AND circuit 142.
  • the AND circuit 144 outputs a detection signal representing the result of the logical AND operation as a cutoff command TC.
  • the output unit 140 configured with the AND circuits 142 and 144, outputs a cutoff command TC-1 to the corresponding circuit breaker CB-1 to instruct the cutoff of the transmission line PL when an accident is detected in the transmission line PL in all of the main relay unit 110, the failsafe relay unit 120, and the failsafe relay unit 130.
  • the current differential relay device 100 detects an accident in the transmission line PL
  • the main relay unit 110 detects accident X that has occurred in the transmission line PL
  • the fail-safe relay unit 120 and the fail-safe relay unit 130 improve the reliability of the detection result of the main relay unit 110.
  • the current differential relay device 100 outputs a cutoff command TC-1 to the corresponding circuit breaker CB-1 to instruct the cutoff of the transmission line PL.
  • the current differential relay 112 included in the main relay unit 110 outputs a detection signal DIF of "High” level when it is determined that an accident has occurred in the power transmission line PL.
  • the overcurrent relay 122 included in the fail-safe relay unit 120 outputs a detection signal OC-1 of "High” level when it is determined that an overcurrent is flowing in the power transmission line PL.
  • the change current relay 124 included in the fail-safe relay unit 120 outputs a detection signal ⁇ OC-1 of "High” level when it is determined that the current flowing in the power transmission line PL has a change of a predetermined current value or more.
  • the overcurrent relay 132 included in the fail-safe relay unit 130 outputs a detection signal OC-2 of "High” level when it is determined that an overcurrent is flowing in the power transmission line PL.
  • the output unit 140 outputs a cutoff command TC of "High” level when instructing the cutoff of the power transmission line PL.
  • FIG. 3 is a diagram for explaining the first operation of the current differential relay 100 of the first embodiment.
  • the first operation is the operation of the current differential relay 100-1 when an accident X actually occurs on the power transmission line PL.
  • the current data I, the detection signal DIF output by the current differential relay 112, the detection signal OC-1 output by the overcurrent relay 122, the detection signal ⁇ OC-1 output by the change current relay 124, the detection signal OC-2 output by the overcurrent relay 132, and the cutoff command TC-1 output by the current differential relay 100-1 are represented by adding a letter to identify the corresponding phase after the code of each signal.
  • a is added after the code of the signal corresponding to the a-phase
  • b is added after the code of the signal corresponding to the b-phase
  • c is added after the code of the signal corresponding to the c-phase.
  • the detection signal DIF detection signals DIFa to DIFc
  • the detection signal OC-1 detection signals OC-1a to OC-1c
  • the detection signal ⁇ OC-1 detection signals ⁇ OC-1a to ⁇ OC-1c
  • the detection signal OC-2 detection signals OC-2a to OC-2c
  • the shutoff command TC-1 shutoff commands TC-1a to TC-1c
  • the output unit 140 is at a "Low” level.
  • the current differential relay 100-1 inputs current data I-1 (current data I-1a to I-1c) via the corresponding current transformer CT-1.
  • the current differential relay 100-2 inputs current data I-2 (current data I-2a to I-2c) via the corresponding current transformer CT-2.
  • the current differential relay 100-2 then transmits the current data I-2 of each of the current transformers CT-2 to the current differential relay 100-1 via the transmission line CC.
  • the current differential relay 112 corresponding to the c phase detects an accident in the c phase transmission line PL based on the current data I-1c and current data I-2c, and sets the detection signal DIFc to the "High" level.
  • the overcurrent relay 122 corresponding to the c phase detects from the current data I-1c that an overcurrent is flowing in the c phase transmission line PL, and sets the detection signal OC-1c to the "High” level
  • the change current relay 124 corresponding to the c phase also detects from the current data I-1c that the current flowing in the c phase transmission line PL has changed by more than a predetermined current value, and sets the detection signal ⁇ OC-1c to the "High” level.
  • the overcurrent relay 132 corresponding to the c phase detects from the current data I-2c that an overcurrent is flowing in the c phase transmission line PL, and sets the detection signal OC-2c to the "High” level.
  • the output unit 140 sets the interruption commands TC-1a to TC-1c to the "High" level because the main relay unit 110 corresponding to phase c, the fail-safe relay unit 120 corresponding to phase c, and the fail-safe relay unit 130 corresponding to phase c have all detected an accident occurring on the power transmission line PL.
  • the current differential relay device 100 when the main relay unit 110, the failsafe relay unit 120, and the failsafe relay unit 130 detect that the current flowing through the power line PL has changed by more than a predetermined current value, the current differential relay device 100 determines that this change in current data is due to the occurrence of accident X, and outputs a cutoff command TC-1 to cut off the power line PL to the circuit breaker CB-1.
  • This operation is also the same for the current differential relay 100-2.
  • the operation of the current differential relay 100-2 can be considered by reversing the operation of the current differential relay 100-1 shown in Figure 3 with terminals T-1 and T-2.
  • FIG. 4 is a diagram for explaining a second operation of the current differential relay 100 of the first embodiment.
  • the second operation is an operation of the current differential relay 100-1 in the case where a change in the current data I-1 appears due to some factor even though an accident X has not actually occurred on the power transmission line PL.
  • a change has appeared in the current data I-1c corresponding to the c-phase.
  • the operation when an accident occurs on the power transmission line in the steady state in the power system 1 is the same as the first operation shown in FIG. 3.
  • the second operation shown in FIG. 4 it is assumed that a change in the current data occurs at time t3 due to some factor other than the accident X. If the current data of the own terminal changes even though no accident occurs on the transmission line PL, the current changes only at one terminal (terminal T-1 or terminal T-2) of the transmission line PL, and there is a possibility that the current differential relay 100 (current differential relay 100-1 or current differential relay 100-2) may operate unnecessarily.
  • the current data of the opposite terminal is not affected by the current data corruption at the own terminal, so that the current differential relay 100 can avoid unnecessary operation.
  • a change in the current data occurs in the c-phase transmission line PL due to some factor, and only the current transformer CT-1c corresponding to the c-phase detects the change in the current data.
  • current differential relay 112 corresponding to phase c detects a change in the current data based on current data I-1c and current data I-2c, even though no fault has actually occurred in the c-phase transmission line PL, and sets detection signal DIFc to a "High" level.
  • overcurrent relay 122 corresponding to phase c detects from the current data I-1c that an overcurrent is flowing in the c-phase transmission line PL and sets detection signal OC-1c to a "High” level
  • change current relay 124 corresponding to phase c also detects from the current data I-1c that there is a change in the current flowing in the c-phase transmission line PL that is greater than a predetermined current value, and sets detection signal ⁇ OC-1c to a "High” level.
  • the overcurrent relay 132 corresponding to phase c determines from the current data I-2c that no overcurrent is flowing in the power line PL of phase c, and keeps the detection signal OC-2c at the "Low" level.
  • the fail-safe relay unit 130 corresponding to phase c determines that the current flowing through the power transmission line PL has not changed, so the output unit 140 keeps the cutoff commands TC-1a to TC-1c at the "Low" level.
  • the main relay unit 110, the failsafe relay unit 120, and the failsafe relay unit 130 do not detect a change in the current flowing through the power transmission line PL, it determines that the change in current is not due to the occurrence of accident X, and does not output a cutoff command TC-1 to the circuit breaker CB-1.
  • This operation can also be considered to occur when a change in current due to some factor occurs in the c-phase transmission line PL, and only the current transformer CT-2c corresponding to the c-phase detects the current change. More specifically, in the operation of the current differential relay device 100-1 shown in FIG. 4, the main relay unit 110 corresponding to the c-phase and the fail-safe relay unit 120 corresponding to the c-phase detect a change in the current data even though no accident has actually occurred in the transmission line PL, and the fail-safe relay unit 130 corresponding to the c-phase determines that the current flowing through the transmission line PL has not changed. In this case as well, the output unit 140 keeps the cutoff commands TC-1a to TC-1c at the "Low" level.
  • the current differential relay device 100 of the first embodiment includes a fail-safe relay unit 120 that improves the reliability of the detection result of accident X in the main relay unit 110 based on current data I-1 on the system secondary side of the current transformer CT-1, and a fail-safe relay unit 130 that improves the reliability of the detection result of accident X in the main relay unit 110 based on current data I-2 on the system secondary side of the current transformer CT-2.
  • the current differential relay device 100 of the first embodiment can improve the reliability of the detection result of accident X in the main relay unit 110.
  • Second Embodiment 5 is a diagram showing an example of the configuration of the current differential relay 100 of the second embodiment.
  • Two current differential relays 100a (current differential relays 100a-1 and 100a-2) of the second embodiment include a main relay unit 110 having a current differential relay 112, a fail-safe relay unit 120 having an overcurrent relay 122, a change-current relay 124, and an OR circuit 126, a fail-safe relay unit 130 (hereinafter referred to as "fail-safe relay unit 130a") having a change-current relay 134, and an output unit 140 having an AND circuit 142 and an AND circuit 144.
  • the current differential relay 100a has a configuration in which the fail-safe relay unit 130 of the current differential relay 100 of the first embodiment is replaced with the fail-safe relay unit 130a.
  • the current differential relay 112 is an example of the "first means”.
  • the configurations of the overcurrent relay 122, the change current relay 124, and the OR circuit 126 are an example of a "second means”.
  • the change current relay 134 is an example of a "third means”.
  • the configurations of the AND circuit 142 and the AND circuit 144 are an example of a "fourth means”.
  • the change current relay 134 is a relay that detects that the current flowing through the transmission line PL has a change of more than a predetermined current value based on the input current data I, and outputs a detection signal indicating this.
  • the change current relay 134 detects that the current flowing through the transmission line PL has a change of more than a predetermined current value based on the current data I-2 of the current transformer CT-2 transmitted by the current differential relay device 100-2, and outputs a detection signal (hereinafter referred to as "detection signal ⁇ OC-2”) indicating that a change of more than a predetermined current value has been detected in the current flowing through the transmission line PL.
  • the failsafe relay unit 130a outputs the detection signal ⁇ OC-2 of the change current relay 134 to the AND circuit 142 provided in the output unit 140 as a detection signal in the failsafe relay unit 130a.
  • the change current relay 134 is an example of a "second change current relay.”
  • the detection signal ⁇ OC-2 is an example of a "third detection signal.”
  • the current differential relay 100a detects an accident X that has occurred on the power transmission line PL using the main relay unit 110, and improves the reliability of the detection result of the main relay unit 110 using the fail-safe relay unit 120 and the fail-safe relay unit 130a, just like the current differential relay 100. Then, just like the current differential relay 100, when a change in current in the power transmission line PL is caused by the occurrence of an accident X, the current differential relay 100a outputs a cutoff command TC-1 to the corresponding circuit breaker CB-1 to instruct the cutoff of the power transmission line PL.
  • the operation of the current differential relay 100a can be considered similar to that of the current differential relay 100 shown in Figures 3 and 4, except that the detection signal OC-2 output by the overcurrent relay 132 is replaced with the detection signal ⁇ OC-2 output by the change current relay 134. Therefore, a detailed explanation of the operation of the current differential relay 100a will be omitted.
  • the current differential relay 100a of the second embodiment includes a fail-safe relay unit 120 that improves the reliability of the detection result of accident X in the main relay unit 110 based on current data I-1 on the system secondary side of the current transformer CT-1, and a fail-safe relay unit 130a that improves the reliability of the detection result of accident X in the main relay unit 110 based on current data I-2 on the system secondary side of the current transformer CT-2.
  • the current differential relay 100a of the second embodiment can also improve the reliability of the detection result of accident X in the main relay unit 110, similar to the current differential relay 100 of the first embodiment.
  • Third Embodiment 6 is a diagram showing an example of the configuration of the current differential relay 100 of the third embodiment.
  • Two current differential relays 100b (current differential relays 100b-1 and 100b-2) of the third embodiment include a main relay unit 110 having a current differential relay 112, a fail-safe relay unit 120 having an overcurrent relay 122, a change-current relay 124, and an OR circuit 126, a fail-safe relay unit 130 (hereinafter referred to as "fail-safe relay unit 130b") having an overcurrent relay 132, a change-current relay 134, and an OR circuit 136, and an output unit 140a having an AND circuit 146.
  • the current differential relay 100b has a configuration in which the fail-safe relay unit 130 of the current differential relay 100 of the first embodiment is replaced by the fail-safe relay unit 130b, and the output unit 140 is replaced by the output unit 140a.
  • the current differential relay 112 is an example of the "first means”.
  • the configurations of the overcurrent relay 122, the change in current relay 124, and the OR circuit 126 are an example of a “second means”.
  • the configurations of the overcurrent relay 132, the change in current relay 134, and the OR circuit 136 are an example of a “third means”.
  • the AND circuit 146 is an example of a “fourth means”.
  • the same components as those in the current differential relay 100 or the current differential relay 100a of the second embodiment are given the same reference numerals. Therefore, detailed explanations of the components in the current differential relay 100b that have the same configurations and operations as those in the current differential relay 100 or the current differential relay 100a will be omitted, and only the different configurations and operations will be explained.
  • the OR circuit 136 like the OR circuit 126 provided in the failsafe relay unit 120, takes the logical sum of the detection signal OC-2 of the overcurrent relay 132 and the detection signal ⁇ OC-2 of the change current relay 134.
  • the OR circuit 136 outputs a detection signal (hereinafter referred to as "detection signal FS-2") that indicates the result of the logical sum.
  • detection signal FS-2 is an example of a "third detection signal.”
  • the AND circuit 146 takes the logical product of the detection signal DIF from the main relay unit 110, the detection signal FS-1 from the failsafe relay unit 120, and the detection signal FS-2 from the failsafe relay unit 130b.
  • the AND circuit 146 outputs a detection signal representing the result of the logical product as a cutoff command TC. More specifically, the AND circuit 146 outputs a cutoff command TC representing the cutoff of the power line PL when the detection signal DIF represents that it has been determined that an accident has occurred in the power line PL, the detection signal FS-1 represents that an accident has occurred in the power line PL, and the detection signal FS-2 represents that an accident has occurred in the power line PL.
  • the output unit 140a outputs the tripping command TC of the AND circuit 146 to the corresponding circuit breaker CB-1 as a tripping command TC-1.
  • the output unit 140a outputs a tripping command TC-1 instructing the tripping of the power transmission line PL to the corresponding circuit breaker CB-1 when an accident is detected in the power transmission line PL in all of the main relay unit 110, the failsafe relay unit 120, and the failsafe relay unit 130b.
  • the current differential relay 100b detects an accident X that has occurred on the transmission line PL using the main relay unit 110, and improves the reliability of the detection result of the main relay unit 110 using the fail-safe relay unit 120 and the fail-safe relay unit 130b, just like the current differential relay 100 and the current differential relay 100a. Then, just like the current differential relay 100 and the current differential relay 100a, the current differential relay 100b outputs a cutoff command TC-1 to the corresponding circuit breaker CB-1 to instruct the cutoff of the transmission line PL when a change in current in the transmission line PL is caused by the occurrence of an accident X.
  • the operation of the current differential relay 100b can be considered similar to that of the current differential relay 100 shown in Figures 3 and 4, by considering the detection signal OC-2 output by the overcurrent relay 132 to also be the detection signal ⁇ OC-2 output by the change current relay 134. Therefore, a detailed explanation of the operation of the current differential relay 100b will be omitted.
  • the current differential relay 100b of the third embodiment includes a fail-safe relay unit 120 that improves the reliability of the detection result of accident X in the main relay unit 110 based on the current data I-1 on the system secondary side of the current transformer CT-1, and a fail-safe relay unit 130b that improves the reliability of the detection result of accident X in the main relay unit 110 based on the current data I-2 on the system secondary side of the current transformer CT-2.
  • the current differential relay 100b of the third embodiment can also improve the reliability of the detection result of accident X in the main relay unit 110, similar to the current differential relay 100 of the first embodiment and the current differential relay 100a of the second embodiment.
  • the main relay unit 110 detects an accident X that has occurred in the transmission line PL based on the current flowing in the transmission line PL at terminal T-2, which is the opposite terminal of the terminal T-1 in which it is located. And in the current differential relay device of each embodiment, the failsafe relay unit 120 improves the reliability of the detection result of the accident X in the main relay unit 110 based on the current flowing in the transmission line PL at terminal T-1 in which it is located.
  • the failsafe relay unit 130 improves the reliability of the detection result of the accident X in the main relay unit 110 based on the current flowing in the transmission line PL at terminal T-2, which is the opposite terminal of the terminal T-1 in which it is located.
  • the circuit breaker CB-1 and circuit breaker CB-2 that cut off the transmission line PL are output with cutoff commands TC-1 and TC-2 to cut off the connected transmission line PL, and if the change in current in the transmission line PL is due to some factor other than the accident X, the circuit breaker CB-1 and circuit breaker CB-2 are not output, and the transmission line PL is maintained in a connected state.
  • unnecessary cutoff of the transmission line PL can be avoided when the current changes due to factors other than the accident X.
  • the current differential relay of each of the embodiments described above a configuration corresponding to a power system that transmits power between two terminals T, that is, a configuration including a failsafe relay unit 120 and a failsafe relay unit 130 corresponding to the two terminals T, has been described.
  • the number of terminals T corresponding to each failsafe relay unit is not limited to two, and may be three or more terminals T.
  • the configuration and operation of the current differential relay in this case should be equivalent to the configuration and operation of the current differential relay 100 of the first to third embodiments.
  • a current differential relay device that detects an accident (X) in a power system (1) and outputs a trip command (TC-1) to a circuit breaker (e.g., CB-1) when an accident is detected
  • a circuit breaker e.g., CB-1
  • TC-1 trip command
  • a first means (110) that periodically samples the current at its own terminal (e.g., T-1) and all other terminals (e.g., T-2) of the power system at the same time, calculates a difference current from the sampled data, and detects a system accident based on the magnitude of this difference current
  • a second means 120 that detects an overcurrent and a current change in the current at its own terminal
  • a third means that detects an overcurrent at another other terminal
  • a fourth means (140) that generates a trip command output from all operating conditions of the first means, the second means, and the third means, thereby improving the reliability of detecting a system accident (X) in the power system.
  • 1...power system 100, 100-1, 100-2, 100a, 100a-1, 100a-2, 100b, 100b-1, 100b-2...current differential relay device, 110...main relay section, 112...current differential relay, 120...fail-safe relay section, 122...overcurrent relay, 124...changed current relay, 126...OR circuit, 130, 130a, 13 0b: fail-safe relay section, 132: overcurrent relay, 134: change current relay, 136: OR circuit, 140, 140a: output section, 142, 144, 146: AND circuit, AC, AC-1, AC-2: generator, T, T-1, T-2: terminal, PL: transmission line, CT, CT-1, CT-2: current transformer, CB, CB-1, CB-2: circuit breaker

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

実施形態の電流差動継電装置は、電力系統の事故を検出し、事故検出時、遮断器にトリップ指令を出力する電流差動継電装置において、第1手段と、第2手段と、第3手段と、第4手段、を持つ。第1手段は、電力系統の自端子電流と自端子以外の別の全ての端子電流を同一時刻にて周期的にサンプリングし、サンプリングデータから差電流演算を行い、この差電流の大きさで系統事故検出を行う。第2手段は、自端子の電流の過電流、変化分電流を検出する。第3手段は、他の別の端子の過電流を検出する。第4手段は、第1手段と、第2手段と、第3手段の全ての動作条件からトリップ指令出力を生成する。

Description

電流差動継電装置
 本発明の実施形態は、電流差動継電装置に関する。
 電力系統の送電線においては、送電線に発生した系統事故(以下、単に「事故」という)を検出し、事故を検出した際に、この送電線に属する遮断器に遮断指令を出力することによって事故を電力系統から切り離し、事故の波及を防止(安定度を維持)するための電流差動継電装置を備えている。
 電流差動継電装置には、電力系統の送電線の両端の電流から計算した差電流に基づいて事故が発生したことを検出する方式の電流差動継電装置がある。電流差動継電装置は、電力系統の送電線の各端子に設置され、自端子電流を入力し、アナログ/ディジタル変換後、伝送路を介して各端子に設置された電流差動継電装置に電流データを送信する。電流差動継電装置では、電流差動リレーが、設置された端子において電力系統の送電線の電流データと、同じ送電線の対向端子に設置された電流差動継電装置から伝送路を介して受信した対向端子の電流データとで差電流演算を行い、演算結果の差電流の大きさによって、事故が発生したことを検出する。
 電流差動継電装置には、異なる動作原理で動作する複数のリレーを備えることによって、事故検出の信頼性を向上させたメインアンドフェールセーフ構成のものもある。例えば、メインリレーが電流リレーならば、フェールセーフリレーは、短絡事故検出用の不足電圧リレーや、地絡事故検出用の過電圧リレー、過電流リレー、変化分電流リレーなどがある。また、例えば、電流差動リレーをメインリレーとし、フェールセーフリレーとして、過電流リレーや変化分電流リレーを用いることによって、メインアンドフェールセーフ構成の電流差動継電装置を構成することがある。これは、メインリレーである電流差動リレーが電流データに基づいて動作するため、メインリレーと同様に電流データに基づいて動作する過電流リレーや変化分電流リレーをフェールセーフリレーとして用いた方が、メインアンドフェールセーフ構成とした場合でも、電流差動継電装置のコンパクト化や経済性の観点から優位性があるからである。
 しかしながら、電力系統では、実際に事故が発生していないにもかかわらず、例えば、系統アークや、配線用ケーブル障害など、何らかの要因によって電流データが変化することがあり得る。この場合、電流差動継電装置をメインアンドフェールセーフ構成にしたとしても、フェールセーフリレーが、電流データに基づいて動作するのであるならば、変化した電流データでフェールセーフリレーが動作してしまう。結果、メインリレーである電流差動リレーとフェールセーフリレーとの双方が、事故が発生したものとして動作してしまい、遮断指令が出力されてしまう可能性がある。
"電気協同研究 第41巻 第4号 デジタルリレー・・・デジタルリレー専門委員会"、第9章、p.130~147、社団法人 電気協同研究会、昭和61年1月21日発行
 本発明が解決しようとする課題は、系統事故を検出する際の信頼性を向上させることができる電流差動継電装置を提供することである。
 実施形態の電流差動継電装置は、電力系統の事故を検出し、事故検出時、遮断器にトリップ指令を出力する電流差動継電装置において、第1手段と、第2手段と、第3手段と、第4手段、を持つ。第1手段は、前記電力系統の自端子電流と自端子以外の別の全ての端子電流を同一時刻にて周期的にサンプリングし、サンプリングデータから差電流演算を行い、この差電流の大きさで系統事故検出を行う。第2手段は、前記自端子の電流の過電流、変化分電流を検出する。第3手段は、他の別の端子の過電流を検出する。第4手段は、前記第1手段と、前記第2手段と、前記第3手段の全ての動作条件からトリップ指令出力を生成する。
実施形態に係る電流差動継電装置が適用された電力系統の構成の一例を示す図。 第1の実施形態の電流差動継電装置の構成の一例を示す図。 第1の実施形態の電流差動継電装置における第1の動作について説明するための図。 第1の実施形態の電流差動継電装置における第2の動作について説明するための図。 第2の実施形態の電流差動継電装置の構成の一例を示す図。 第3の実施形態の電流差動継電装置の構成の一例を示す図。
 以下、実施形態の電流差動継電装置を、図面を参照して説明する。
 図1は、実施形態に係る電流差動継電装置が適用された電力系統の構成の一例を示す図である。図1には、例えば、発電機AC(発電機AC-1およびAC-2)の間で送電を行う電力系統1の一例を示している。
 電力系統1では、発電機AC-1の端子T-1と、発電機AC-2の端子T-2との間に、例えば、二つの変流器CT(変流器CT-1およびCT-2)と、二つの遮断器CB(遮断器CB-1およびCB-2)と、二つの電流差動継電装置100(電流差動継電装置100-1および100-2)、を備える。電力系統1では、発電機AC-1から電力供給される端子T-1に変流器CT-1および遮断器CB-1が設置され、発電機AC-2から電力供給される端子T-2に変流器CT-2及び遮断器CB-2が設置される。このため、電力系統1では、発電機AC-1の端子T-1の近傍に、変流器CT-1と、遮断器CB-1と、電流差動継電装置100-1とが配置され、送電線PLにおける端子T-1の対向端子である発電機AC-2の端子T-2の近傍に、変流器CT-2と、遮断器CB-2と、電流差動継電装置100-2とが配置されている。端子T-1は、「第1端子」の一例であり、端子T-2は、「第2端子」の一例である。電流差動継電装置100-1に着目して考えた場合、端子T-1が「第1端子」となり、端子T-2が「第2端子」となるが、電流差動継電装置100-2に着目して考えた場合、端子T-2が「第1端子」となり、端子T-1が「第2端子」となる。
 変流器CTのそれぞれは、送電線PLに流れる系統一次側の電流を電流差動継電装置100に入力する系統二次側の電流に変換する。変流器CT-1は、端子T-1において送電線PLに流れる系統一次側の電流を電流差動継電装置100に入力する系統二次側の電流に変換する。変流器CT-2は、端子T-2において送電線PLに流れる系統一次側の電流を電流差動継電装置100に入力する系統二次側の電流に変換する。電流差動継電装置100のそれぞれには、対応する変流器CTにおける系統二次側の電流(以下、単に「電流」という)が入力される。電流差動継電装置100のそれぞれには、変流器CTから得た電流を変換した電流データ(以下、単に「電流データ」という)を対向端子である電流差動継電装置100に伝送する。電流差動継電装置100-1に系統二次側の電流を入力する変流器CT-1は、「第1の変流器」の一例であり、電流差動継電装置100-1に入力する系統二次側の電流は、「第1の電流」の一例である。電流差動継電装置100-2に系統二次側の電流を入力する変流器CT-2は、「第2の変流器」の一例であり、電流差動継電装置100-2に入力する系統二次側の電流は、「第2の電流」の一例である。電流差動継電装置100-1から伝送路を介して伝送する電流は、「第1の電流データ」の一例であり、電流差動継電装置100-2から伝送路を介して伝送する電流は、「第2の電流データ」の一例である。
 遮断器CBのそれぞれは、例えば、落雷などによって系統事故X(以下、単に「事故X」という)が発生した場合に、対応する電流差動継電装置100の遮断指令(いわゆる、トリップ指令)に応じて、接続されている送電線PLを遮断させる。遮断器CB-1は、電流差動継電装置100-1の遮断指令に応じて、送電線PLにおける端子T-1と端子T-2との接続を遮断させる。遮断器CB-2は、電流差動継電装置100-2の遮断指令に応じて、送電線PLにおける端子T-1と端子T-2との接続を遮断させる。電流差動継電装置100-1に着目して考えた場合、遮断器CB-1は、「遮断器」の一例であり、電流差動継電装置100-2に着目して考えた場合、遮断器CB-2は、「遮断器」の一例である。
 電流差動継電装置100のそれぞれは、送電線PLにおける事故を検出する。電流差動継電装置100のそれぞれは、同じ送電線PLに対応する他の電流差動継電装置100と互いに伝送路CCによって接続されている。伝送路CCは、例えば、光ファイバーケーブルなどの通信ケーブルである。電流差動継電装置100のそれぞれは、配置された端子Tの変流器CTから得た電流を変換した電流データを、伝送路CCを介して他の電流差動継電装置100に伝送する。電流差動継電装置100のそれぞれは、対応する変流器CTの電流データと、他の電流差動継電装置100により伝送された、他の電流差動継電装置100に対応する変流器CTの電流データとに基づいて、送電線PLにおける事故を検出する。電流差動継電装置100のそれぞれは、送電線PLに事故Xが発生したことを検知した場合、事故Xが発生した送電線PL(事故回線)の影響が電力系統の全体に及ばないように、対応する遮断器CBに遮断指令TCを出力する。
 図1において、電流差動継電装置100-1と電流差動継電装置100-2とは同じ構成でのものである。電流差動継電装置100-1は、対応する変流器CT-1の電流データI-1を、伝送路CCを介して電流差動継電装置100-2に伝送する。電流差動継電装置100-2は、対応する変流器CT-2の電流データI-2を、伝送路CCを介して電流差動継電装置100-1に伝送する。電流差動継電装置100-1は、電流データI-1と、電流差動継電装置100-2により伝送路CCを介して伝送された電流データI-2とに基づいて、送電線PLにおける事故を検出し、送電線PLに事故Xが発生したことを検知した場合には、遮断器CB-1に遮断指令TC-1を出力する。電流差動継電装置100-2は、電流データI-2と、電流差動継電装置100-1により伝送路CCを介して伝送された電流データI-1とに基づいて、送電線PLにおける事故を検出し、送電線PLに事故Xが発生したことを検知した場合には、遮断器CB-2に遮断指令TC-2を出力する。
 それぞれの電流差動継電装置100は、例えば、メインリレー部110と、フェールセーフリレー部120と、フェールセーフリレー部130と、出力部140を備える。メインリレー部110は、送電線PLに発生した事故Xを検出する主検出部である。フェールセーフリレー部120およびフェールセーフリレー部130は、メインリレー部110における事故Xの検出結果の信頼性を向上させる。出力部140は、メインリレー部110、フェールセーフリレー部120、およびフェールセーフリレー部130による検出結果に応じて、対応する遮断器CBに遮断指令TCを出力する。メインリレー部110は、「メインリレー部」の一例であり、フェールセーフリレー部120は、「第1のフェールセーフリレー部」の一例であり、フェールセーフリレー部130は、「第2のフェールセーフリレー部」の一例である。メインリレー部110は、「第1手段」の一例であり、フェールセーフリレー部120は、「第2手段」の一例であり、フェールセーフリレー部130は、「第3手段」の一例であり、出力部140は、「第4手段」の一例である。電流データI-1は、「第1の電流データ」の一例であり、電流データI-2は、「第2の電流データ」の一例である。
 [電流差動継電装置の構成]
 次に、電流差動継電装置100のより詳細な構成の一例について説明する。上述したように、電流差動継電装置100-1と電流差動継電装置100-2とは、同じ構成でのものである。以下の説明においては、代表して、端子T-1に配置された電流差動継電装置100-1(以下、単に「電流差動継電装置100」という)について説明する。
 (第1の実施形態)
 図2は、第1の実施形態の電流差動継電装置100の構成の一例を示す図である。電流差動継電装置100は、電流差動リレー112を備えたメインリレー部110と、過電流リレー122、変化分電流リレー124、およびOR回路126を備えたフェールセーフリレー部120と、過電流リレー132を備えたフェールセーフリレー部130と、AND回路142、およびAND回路144を備えた出力部140、を備える。電流差動リレー112は、「第1手段」の一例である。過電流リレー122、変化分電流リレー124、およびOR回路126の構成は、「第2手段」の一例である。過電流リレー132は、「第3手段」の一例である。AND回路142、およびAND回路144の構成は、「第4手段」の一例である。
 電流差動リレー112は、入力された電流データI-1と電流データI-2との二つの電流データIに基づいて、送電線PLにおける事故を検出し、事故を検出したら遮断器CB-1に遮断指令を出す電流差動リレー(current DIFferential relay:DIF)である。電流差動リレー112は、変流器CT-1の電流データI-1と、電流差動継電装置100-2により伝送された変流器CT-2の電流データI-2とを用いて差電流演算を行い、演算結果の差電流の大きさに基づいて送電線PLに事故が発生したことを判定する。そして、電流差動リレー112は、動作指令(以下、「検出信号DIF」という)を出力する。より具体的には、電流差動リレー112は、電流データI-1と電流データI-2とを加算する差電流演算を行う。そして、電流差動リレー112は、差電流演算の演算結果IDIFが下式(1)を満足する場合に送電線PLに事故が発生していると判定し、この判定結果を表す検出信号DIFを出力する。
 IDIF=|(I-1)+(I-2)|≧所定の電流値  ・・・(1)
 メインリレー部110は、電流差動リレー112の検出信号DIFを、メインリレー部110における検出信号として、出力部140が備えるAND回路144に出力する。電流差動リレー112は、「電流差動リレー」の一例である。検出信号DIFは、「第1の検出信号」の一例である。しかしながら、実際に、事故が発生していないにもかかわらず、何らかの要因例えば、系統アークや、配線用ケーブル障害などによる電流データの変化が発生した場合には、この変化した電流データで判定をして不必要な検出信号を出力してしまう。
 過電流リレー122は、入力された電流データIに基づいて送電線PLに所定の電流値以上の過電流が流れていることを検出し、このことを表す検出信号を出力するリレー(Over Current Relay:OCR)である。過電流リレー122は、変流器CT-1の電流データI-1から送電線PLに過電流が流れていることを検出したことを表す検出信号(以下、「検出信号OC-1」という)を、OR回路126に出力する。過電流リレー122は、「第1の過電流リレー」の一例である。
 変化分電流リレー124は、入力された電流データIに基づいて送電線PLに流れている電流に所定の電流値以上の変化があることを検出し、このことを表す検出信号を出力するリレー(variation Over Current Relay:ΔOCR)である。変化分電流リレー124は、変流器CT-1の電流データI-1から送電線PLに流れている電流に所定の電流値以上の変化があることを検出したことを表す検出信号(以下、「検出信号ΔOC-1」という)を、OR回路126に出力する。変化分電流リレー124は、「第1の変化分電流リレー」の一例である。
 OR回路126は、過電流リレー122の検出信号OC-1と、変化分電流リレー124の検出信号ΔOC-1との論理和をとる。OR回路126は、論理和の結果を表す検出信号(以下、「検出信号FS-1」という)を出力する。OR回路126は、送電線PLに事故が発生していることを表す検出信号FS-1を、出力部140が備えるAND回路142に出力する。検出信号FS-1は、「第2の検出信号」の一例である。
 過電流リレー132は、フェールセーフリレー部120が備える過電流リレー122と同様に、入力された電流データIに基づいて送電線PLに所定の電流値以上の過電流が流れていることを検出し、このことを表す検出信号を出力するリレーである。ただし、過電流リレー132は、電流差動継電装置100-2により伝送された変流器CT-2の電流データI-2に基づいて、検出信号(以下、「検出信号OC-2」という)を出力する。
 フェールセーフリレー部130は、過電流リレー132の検出信号OC-2を、フェールセーフリレー部130における検出信号として、出力部140が備えるAND回路142に出力する。過電流リレー132は、「第2の過電流リレー」の一例である。検出信号OC-2は、「第3の検出信号」の一例である。
 AND回路142は、フェールセーフリレー部120の検出信号FS-1と、フェールセーフリレー部130の検出信号OC-2との論理積をとる。AND回路142は、論理積の結果を表す検出信号をAND回路144に出力する。
 AND回路144は、メインリレー部110の検出信号DIFと、AND回路142の検出信号との論理積をとる。AND回路144は、論理積の結果を表す検出信号を、遮断指令TCとして出力する。
 出力部140は、AND回路142とAND回路144との構成によって、メインリレー部110、フェールセーフリレー部120、およびフェールセーフリレー部130の全てにおいて送電線PLに事故が発生していることが検出された場合に、送電線PLの遮断を指示する遮断指令TC-1を対応する遮断器CB-1に出力する。
 このような構成によって、電流差動継電装置100は、送電線PLにおける事故を検出し、メインリレー部110によって送電線PLに発生した事故Xを検出し、フェールセーフリレー部120およびフェールセーフリレー部130によって、メインリレー部110の検出結果の信頼性を向上させる。そして、電流差動継電装置100は、送電線PLにおける電流データの変化が事故Xの発生を要因とするものである場合に、送電線PLの遮断を指示する遮断指令TC-1を、対応する遮断器CB-1に出力する。
 [電流差動継電装置の第1の動作]
 次に、電流差動継電装置100の動作について説明する。以下の説明においては、メインリレー部110が備える電流差動リレー112は、送電線PLに事故が発生していると判定した場合に“High”レベルの検出信号DIFを出力するものとする。フェールセーフリレー部120が備える過電流リレー122は、送電線PLに過電流が流れていると判定した場合に“High”レベルの検出信号OC-1を出力するものとする。フェールセーフリレー部120が備える変化分電流リレー124は、送電線PLに流れている電流に所定の電流値以上の変化があると判定した場合に“High”レベルの検出信号ΔOC-1を出力するものとする。フェールセーフリレー部130が備える過電流リレー132は、送電線PLに過電流が流れていると判定した場合に“High”レベルの検出信号OC-2を出力するものとする。そして、出力部140は、送電線PLの遮断を指示する場合に“High”レベルの遮断指令TCを出力するものとする。
 図3は、第1の実施形態の電流差動継電装置100における第1の動作について説明するための図である。第1の動作は、送電線PLにおいて実際に事故Xが発生した場合における電流差動継電装置100-1の動作である。以下の説明においては、a相、b相、およびc相の三相のうち、c相において事故Xが発生したものとする。図3においては、電流データIや、電流差動リレー112が出力する検出信号DIF、過電流リレー122出力する検出信号OC-1、変化分電流リレー124が出力する検出信号ΔOC-1、過電流リレー132が出力する検出信号OC-2、および電流差動継電装置100-1が出力する遮断指令TC-1のそれぞれの信号の符号の後に、対応する相を識別するための文字を付加して表す。より具体的には、a相に対応する信号の符号の後に「a」を付加し、b相に対応する信号の符号の後に「b」を付加し、c相に対応する信号の符号の後に「c」を付加して表す。
 電力系統1において定常の状態で電力の送電が行われている場合、電流差動リレー112の検出信号DIF(検出信号DIFa~DIFc)は“Low”レベルである。この場合、過電流リレー122の検出信号OC-1(検出信号OC-1a~OC-1c)や、変化分電流リレー124の検出信号ΔOC-1(検出信号ΔOC-1a~ΔOC-1c)も“Low”レベルである。さらに、過電流リレー132の検出信号OC-2(検出信号OC-2a~OC-2c)も“Low”レベルである。このため、出力部140の遮断指令TC-1(遮断指令TC-1a~TC-1c)は“Low”レベルである。
 ここで、時間t1においてc相の送電線PLに事故Xが発生したものとする。事故Xが発生した場合には、送電線PLの両方の端子(端子T-1側および端子T-2側)で電流が大きく変化する。これにより、電流差動継電装置100-1は、対応する変流器CT-1を介して、電流データI-1(電流データI-1a~I-1c)を入力する。さらに、電流差動継電装置100-2は、対応する変流器CT-2を介して、電流データI-2(電流データI-2a~I-2c)を入力する。そして、電流差動継電装置100-2は、変流器CT-2のそれぞれの電流データI-2を、伝送路CCを介して電流差動継電装置100-1に伝送する。
 これにより、電流差動継電装置100-1では、c相に対応する電流差動リレー112が、電流データI-1cおよび電流データI-2cに基づいて、c相の送電線PLにおける事故を検出し、検出信号DIFcを“High”レベルにする。そして、c相に対応する過電流リレー122が、電流データI-1cから、c相の送電線PLに過電流が流れていることを検出し、検出信号OC-1cを“High”レベルにし、c相に対応する変化分電流リレー124も、電流データI-1cから、c相の送電線PLに流れている電流に所定の電流値以上の変化があることを検出し、検出信号ΔOC-1cを“High”レベルにする。さらに、c相に対応する過電流リレー132が、電流データI-2cから、c相の送電線PLに過電流が流れていることを検出し、検出信号OC-2cを“High”レベルにする。
 このことにより、出力部140は、c相に対応するメインリレー部110、c相に対応するフェールセーフリレー部120、およびc相に対応するフェールセーフリレー部130の全てにおいて送電線PLに事故が発生していることが検出されたため、遮断指令TC-1a~TC-1cを“High”レベルにする。
 このように、電流差動継電装置100では、メインリレー部110、フェールセーフリレー部120、およびフェールセーフリレー部130の全てにおいて送電線PLに流れる電流が所定の電流値以上変化していることが検出された場合に、この電流データの変化が、事故Xが発生したことによるものであるとして、送電線PLを遮断させる遮断指令TC-1を遮断器CB-1に出力する。
 この動作は、電流差動継電装置100-2においても同様である。電流差動継電装置100-2の動作は、図3に示した電流差動継電装置100-1の動作において、端子T-1と端子T-2とを逆に考えればよい。
 [電流差動継電装置の第2の動作]
 次に、電流差動継電装置100の別の動作について説明する。図4は、第1の実施形態の電流差動継電装置100における第2の動作について説明するための図である。第2の動作は、送電線PLにおいて実際に事故Xが発生していないにもかかわらず、何らかの要因によって電流データI-1の変化が現れてしまった場合における電流差動継電装置100-1の動作である。以下の説明においては、c相に対応する電流データI-1cに変化が現れてしまったものとする。
 電力系統1において定常の状態で電力の送電線の事故が行われている場合の動作は、図3に示した第1の動作と同様である。図4に示した第2の動作では、時間t3において、事故Xではない何らかの要因で電流データの変化が発生したものとする。送電線PLに事故が発生していないにもかかわらず、自端子の電流データが変化してしまった場合、送電線PLの一方の端子(端子T-1あるいは端子T-2)のみで電流が変化し、電流差動継電装置100(電流差動継電装置100-1あるいは電流差動継電装置100-2)が不要動作してしまう可能性がある。しかし、対向端子の電流データを用いた過電流リレー132が存在すると、対向端子の電流データに自端子における電流データ化けが影響しないため、電流差動継電装置100の不要動作を回避することができる。ここでは、c相の送電線PLに何らかの要因による電流データの変化が現れ、c相に対応する変流器CT-1cのみが電流データの変化を検出したものとする。
 この場合、電流差動継電装置100-1では、c相に対応する電流差動リレー112が、電流データI-1cおよび電流データI-2cに基づいて、c相の送電線PLに実際に事故が発生していないにもかかわらず電流データの変化を検出し、検出信号DIFcを“High”レベルにする。そして、c相に対応する過電流リレー122が、電流データI-1cから、c相の送電線PLに過電流が流れていることを検出し、検出信号OC-1cを“High”レベルにし、c相に対応する変化分電流リレー124も、電流データI-1cから、c相の送電線PLに流れている電流に所定の電流値以上の変化があることを検出し、検出信号ΔOC-1cを“High”レベルにする。一方、c相に対応する過電流リレー132は、電流データI-2cから、c相の送電線PLに過電流が流れていないことを判定し、検出信号OC-2cを“Low”レベルのままにする。
 このことにより、出力部140は、c相に対応するメインリレー部110と、c相に対応するフェールセーフリレー部120とにおいて送電線PLに実際に事故が発生していないにもかかわらず電流データが変化していることが検出されているものの、c相に対応するフェールセーフリレー部130では送電線PLに流れる電流が変化していないことが判定されているため、遮断指令TC-1a~TC-1cを“Low”レベルのままにする。
 このように、電流差動継電装置100では、メインリレー部110、フェールセーフリレー部120、およびフェールセーフリレー部130の全てにおいて送電線PLに流れる電流が変化していることが検出されない場合には、この電流の変化が、事故Xが発生したことによるものではないとして、遮断器CB-1に出力する遮断指令TC-1を出力しない。
 この動作は、c相の送電線PLに何らかの要因による電流の変化が現れ、c相に対応する変流器CT-2cのみが電流の変化を検出した場合も同様に考えることができる。より具体的には、図4に示した電流差動継電装置100-1の動作において、c相に対応するメインリレー部110と、c相に対応するフェールセーフリレー部120とにおいて送電線PLに実際に事故が発生していないにもかかわらず電流データが変化していることが検出され、c相に対応するフェールセーフリレー部130では送電線PLに流れる電流が変化していないことが判定されているものと考えればよい。この場合も、出力部140は、遮断指令TC-1a~TC-1cを“Low”レベルのままにする。
 上記説明したように、第1の実施形態の電流差動継電装置100は、変流器CT-1の系統二次側の電流データI-1に基づいてメインリレー部110における事故Xの検出結果の信頼性を向上するフェールセーフリレー部120と、変流器CT-2の系統二次側の電流データI-2に基づいてメインリレー部110における事故Xの検出結果の信頼性を向上するフェールセーフリレー部130を備える。これにより、第1の実施形態の電流差動継電装置100は、メインリレー部110における事故Xの検出結果の信頼性を向上させることができる。
 (第2の実施形態)
 図5は、第2の実施形態の電流差動継電装置100の構成の一例を示す図である。第2の実施形態の二つの電流差動継電装置100a(電流差動継電装置100a-1および100a-2)は、電流差動リレー112を備えたメインリレー部110と、過電流リレー122、変化分電流リレー124、およびOR回路126を備えたフェールセーフリレー部120と、変化分電流リレー134を備えたフェールセーフリレー部130(以下、「フェールセーフリレー部130a」という)と、AND回路142、およびAND回路144を備えた出力部140を備える。電流差動継電装置100aは、第1の実施形態の電流差動継電装置100が備えるフェールセーフリレー部130が、フェールセーフリレー部130aに代わった構成である。電流差動リレー112は、「第1手段」の一例である。過電流リレー122、変化分電流リレー124、およびOR回路126の構成は、「第2手段」の一例である。変化分電流リレー134は、「第3手段」の一例である。AND回路142、およびAND回路144の構成は、「第4手段」の一例である。
 電流差動継電装置100aにおいては、電流差動継電装置100が備える構成要素と同様の構成要素には同一の符号を付している。従って、電流差動継電装置100aが備える構成要素において、電流差動継電装置100が備える構成要素と同様の構成や動作をする構成要素に関しての再度の詳細な説明は省略し、異なる構成や動作についてのみを説明する。
 変化分電流リレー134は、フェールセーフリレー部120が備える変化分電流リレー124と同様に、入力された電流データIに基づいて送電線PLに流れている電流に所定の電流値以上の変化があることを検出し、このことを表す検出信号を出力するリレーである。ただし、変化分電流リレー134は、電流差動継電装置100-2により伝送された変流器CT-2の電流データI-2に基づいて、送電線PLに流れている電流に所定の電流値以上の変化があることを検出し、送電線PLに流れている電流に所定の電流値以上の変化があることを検出したことを表す検出信号(以下、「検出信号ΔOC-2」という)を出力する。
 フェールセーフリレー部130aは、変化分電流リレー134の検出信号ΔOC-2を、フェールセーフリレー部130aにおける検出信号として、出力部140が備えるAND回路142に出力する。変化分電流リレー134は、「第2の変化分電流リレー」の一例である。検出信号ΔOC-2は、「第3の検出信号」の一例である。
 このような構成によって、電流差動継電装置100aは、メインリレー部110によって送電線PLに発生した事故Xを検出し、フェールセーフリレー部120およびフェールセーフリレー部130aによって、電流差動継電装置100と同様に、メインリレー部110の検出結果の信頼性を向上させる。そして、電流差動継電装置100aは、電流差動継電装置100と同様に、送電線PLにおける電流の変化が事故Xの発生を要因とするものである場合に、送電線PLの遮断を指示する遮断指令TC-1を、対応する遮断器CB-1に出力する。
 電流差動継電装置100aにおける動作は、図3および図4に示した電流差動継電装置100の動作において、過電流リレー132が出力する検出信号OC-2を、変化分電流リレー134が出力する検出信号ΔOC-2に代えることによって、同様に考えることができる。従って、電流差動継電装置100aの動作に関する詳細な説明は省略する。
 上記説明したように、第2の実施形態の電流差動継電装置100aは、変流器CT-1の系統二次側の電流データI-1に基づいてメインリレー部110における事故Xの検出結果の信頼性を向上するフェールセーフリレー部120と、変流器CT-2の系統二次側の電流データI-2に基づいてメインリレー部110における事故Xの検出結果の信頼性を向上するフェールセーフリレー部130aを備える。これにより、第2の実施形態の電流差動継電装置100aでも、第1の実施形態の電流差動継電装置100と同様に、メインリレー部110における事故Xの検出結果の信頼性を向上させることができる。
 (第3の実施形態)
 図6は、第3の実施形態の電流差動継電装置100の構成の一例を示す図である。第3の実施形態の二つの電流差動継電装置100b(電流差動継電装置100b-1および100b-2)は、電流差動リレー112を備えたメインリレー部110と、過電流リレー122、変化分電流リレー124、およびOR回路126を備えたフェールセーフリレー部120と、過電流リレー132、変化分電流リレー134、およびOR回路136を備えたフェールセーフリレー部130(以下、「フェールセーフリレー部130b」という)と、AND回路146を備えた出力部140a、を備える。電流差動継電装置100bは、第1の実施形態の電流差動継電装置100が備えるフェールセーフリレー部130がフェールセーフリレー部130bに代わり、出力部140が出力部140aに代わった構成である。電流差動リレー112は、「第1手段」の一例である。過電流リレー122、変化分電流リレー124、およびOR回路126の構成は、「第2手段」の一例である。過電流リレー132、変化分電流リレー134、およびOR回路136の構成は、「第3手段」の一例である。AND回路146は、「第4手段」の一例である。
 電流差動継電装置100bにおいては、電流差動継電装置100、あるいは第2の実施形態の電流差動継電装置100aが備える構成要素と同様の構成要素には同一の符号を付している。従って、電流差動継電装置100bが備える構成要素において、電流差動継電装置100あるいは電流差動継電装置100aが備える構成要素と同様の構成や動作をする構成要素に関しての再度の詳細な説明は省略し、異なる構成や動作についてのみを説明する。
 OR回路136は、フェールセーフリレー部120が備えるOR回路126と同様に、過電流リレー132の検出信号OC-2と、変化分電流リレー134の検出信号ΔOC-2との論理和をとる。OR回路136は、論理和の結果を表す検出信号(以下、「検出信号FS-2」という)を出力する。検出信号FS-2は、「第3の検出信号」の一例である。
 AND回路146は、メインリレー部110の検出信号DIFと、フェールセーフリレー部120の検出信号FS-1と、フェールセーフリレー部130bの検出信号FS-2との論理積をとる。AND回路146は、論理積の結果を表す検出信号を、遮断指令TCとして出力する。より具体的には、AND回路146は、検出信号DIFが、送電線PLに事故が発生していると判定したことを表し、検出信号FS-1が、送電線PLに事故が発生していることを表し、検出信号FS-2が、送電線PLに事故が発生していることを表す場合に、送電線PLを遮断させることを表す遮断指令TCを出力する。
 出力部140aは、AND回路146の遮断指令TCを、遮断指令TC-1として対応する遮断器CB-1に出力する。つまり、出力部140aは、電流差動継電装置100および電流差動継電装置100aが備える出力部140と同様に、メインリレー部110、フェールセーフリレー部120、およびフェールセーフリレー部130bの全てにおいて送電線PLに事故が発生していることが検出された場合に、送電線PLの遮断を指示する遮断指令TC-1を対応する遮断器CB-1に出力する。
 このような構成によって、電流差動継電装置100bは、メインリレー部110によって送電線PLに発生した事故Xを検出し、フェールセーフリレー部120およびフェールセーフリレー部130bによって、電流差動継電装置100や電流差動継電装置100aと同様に、メインリレー部110の検出結果の信頼性を向上させる。そして、電流差動継電装置100bは、電流差動継電装置100や電流差動継電装置100aと同様に、送電線PLにおける電流の変化が事故Xの発生を要因とするものである場合に、送電線PLの遮断を指示する遮断指令TC-1を、対応する遮断器CB-1に出力する。
 電流差動継電装置100bにおける動作は、図3および図4に示した電流差動継電装置100の動作において、過電流リレー132が出力する検出信号OC-2を、変化分電流リレー134が出力する検出信号ΔOC-2でもあるものとすることによって、同様に考えることができる。従って、電流差動継電装置100bの動作に関する詳細な説明は省略する。
 上記説明したように、第3の実施形態の電流差動継電装置100bは、変流器CT-1の系統二次側の電流データI-1に基づいてメインリレー部110における事故Xの検出結果の信頼性を向上するフェールセーフリレー部120と、変流器CT-2の系統二次側の電流データI-2に基づいてメインリレー部110における事故Xの検出結果の信頼性を向上するフェールセーフリレー部130bを備える。これにより、第3の実施形態の電流差動継電装置100bでも、第1の実施形態の電流差動継電装置100や、第2の実施形態の電流差動継電装置100aと同様に、メインリレー部110における事故Xの検出結果の信頼性を向上させることができる。
 上記に述べたとおり、各実施形態の電流差動継電装置では、メインリレー部110が、配置された端子T-1の対向端子である端子T-2の送電線PLに流れる電流に基づいて、送電線PLに発生した事故Xを検出する。そして、各実施形態の電流差動継電装置では、フェールセーフリレー部120が、配置された端子T-1の送電線PLに流れる電流に基づいて、メインリレー部110における事故Xの検出結果の信頼性を向上させる。さらに、各実施形態の電流差動継電装置では、フェールセーフリレー部130が、配置された端子T-1の対向端子である端子T-2の送電線PLに流れる電流に基づいて、メインリレー部110における事故Xの検出結果の信頼性を向上させる。つまり、各実施形態の電流差動継電装置では、送電線PLにおける電流の変化が事故Xの発生を要因とするものである場合には、送電線PLを遮断する遮断器CB-1と遮断器CB-2に遮断指令TC-1と遮断指令TC-2を出力して接続されている送電線PLを遮断させ、送電線PLにおける電流の変化が事故X以外の何らかの要因による変化である場合には、遮断指令TC-1と遮断指令TC-2を出力せずに、送電線PLを接続している状態を維持させる。これにより、各実施形態の電流差動継電装置が適用された電力系統では、事故X以外の要因によって電流が変化した場合に、不要な送電線PLの遮断を行ってしまうのを回避することができる。
 上記に述べた各実施形態の電流差動継電装置では、二つの端子Tの間で送電を行う電力系統に対応する構成、つまり、二つの端子Tに対応するフェールセーフリレー部120およびフェールセーフリレー部130を備える構成である場合について説明した。しかし、各実施形態の電流差動継電装置においてそれぞれのフェールセーフリレー部が対応する端子Tの数は、二つに限定されず、三つ以上の端子Tであってもよい。この場合における電流差動継電装置の構成や動作は、第1~第3の実施形態の電流差動継電装置100の構成や動作と等価なものになるようにすればよい。
 以上説明した少なくともひとつの実施形態によれば、電力系統(1)の事故(X)を検出し、事故検出時、遮断器(例えば、CB-1)にトリップ指令(TC-1)を出力する電流差動継電装置(例えば、100-1)において、電力系統の自端子(例えば、T-1)電流と自端子以外の別の全ての端子(例えば、T-2)電流を同一時刻にて周期的にサンプリングし、サンプリングデータから差電流演算を行い、この差電流の大きさで系統事故検出を行う第1手段(110)と、自端子の電流の過電流、変化分電流を検出する第2手段(120)と、他の別の端子の過電流を検出する第3手段(130)と、第1手段と、第2手段と、第3手段の全ての動作条件からトリップ指令出力を生成する第4手段(140)、を備えることにより、電力系統において系統事故(X)を検出する際の信頼性を向上させることができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1・・・電力系統、100,100-1,100-2,100a,100a-1,100a-2,100b,100b-1,100b-2・・・電流差動継電装置、110・・・メインリレー部、112・・・電流差動リレー、120・・・フェールセーフリレー部、122・・・過電流リレー、124・・・変化分電流リレー、126・・・OR回路、130,130a,130b・・・フェールセーフリレー部、132・・・過電流リレー、134・・・変化分電流リレー、136・・・OR回路、140,140a・・・出力部、142,144,146・・・AND回路、AC,AC-1,AC-2・・・発電機、T,T-1,T-2・・・端子、PL・・・送電線、CT,CT-1,CT-2・・・変流器、CB,CB-1,CB-2・・・遮断器

Claims (3)

  1.  電力系統の事故を検出し、事故検出時、遮断器にトリップ指令を出力する電流差動継電装置において、
     前記電力系統の自端子電流と自端子以外の別の全ての端子電流を同一時刻にて周期的にサンプリングし、サンプリングデータから差電流演算を行い、この差電流の大きさで系統事故検出を行う第1手段と、
     前記自端子の電流の過電流、変化分電流を検出する第2手段と、
     他の別の端子の過電流を検出する第3手段と、
     前記第1手段と、前記第2手段と、前記第3手段の全ての動作条件からトリップ指令出力を生成する第4手段、
     を備える電流差動継電装置。
  2.  電力系統の事故を検出し、事故検出時、遮断器にトリップ指令を出力する電流差動継電装置において、
     前記電力系統の自端子電流と自端子以外の別の全ての端子電流を同一時刻にて周期的にサンプリングし、サンプリングデータから差電流演算を行い、この差電流の大きさで系統事故検出を行う第1手段と、
     前記自端子の電流の過電流、変化分電流を検出する第2手段と、
     他の別の端子の電流変化を検出する第3手段と、
     前記第1手段と、前記第2手段と、前記第3手段の全ての動作条件からトリップ指令出力を生成する第4手段、
     を備える電流差動継電装置。
  3.  電力系統の事故を検出し、事故検出時、遮断器にトリップ指令を出力する電流差動継電装置において、
     前記電力系統の自端子電流と自端子以外の別の全ての端子電流を同一時刻にて周期的にサンプリングし、サンプリングデータから差電流演算を行い、この差電流の大きさで系統事故検出を行う第1手段と、
     前記自端子の電流の過電流、変化分電流を検出する第2手段と、
     他の別の端子の過電流、電流変化を検出する第3手段と、
     前記第1手段と、前記第2手段と、前記第3手段の全ての動作条件からトリップ指令出力を生成する第4手段、
     を備える電流差動継電装置。
PCT/JP2022/040023 2022-10-26 2022-10-26 電流差動継電装置 WO2024089826A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040023 WO2024089826A1 (ja) 2022-10-26 2022-10-26 電流差動継電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040023 WO2024089826A1 (ja) 2022-10-26 2022-10-26 電流差動継電装置

Publications (1)

Publication Number Publication Date
WO2024089826A1 true WO2024089826A1 (ja) 2024-05-02

Family

ID=90830289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040023 WO2024089826A1 (ja) 2022-10-26 2022-10-26 電流差動継電装置

Country Status (1)

Country Link
WO (1) WO2024089826A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3710628B1 (ja) * 1959-04-07 1962-08-09
US5805394A (en) * 1997-06-17 1998-09-08 Sundstrand Corporation Overvoltage protection circuit for a generating system utilizing a fault current sensing Circuit in combination with a shunting circuit
US20170358913A1 (en) * 2016-06-13 2017-12-14 Schweitzer Engineering Laboratories, Inc. Overcurrent Element in Time Domain

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3710628B1 (ja) * 1959-04-07 1962-08-09
US5805394A (en) * 1997-06-17 1998-09-08 Sundstrand Corporation Overvoltage protection circuit for a generating system utilizing a fault current sensing Circuit in combination with a shunting circuit
US20170358913A1 (en) * 2016-06-13 2017-12-14 Schweitzer Engineering Laboratories, Inc. Overcurrent Element in Time Domain

Similar Documents

Publication Publication Date Title
Jamali et al. Protection method for radial distribution systems with DG using local voltage measurements
US11605948B2 (en) Communication-based permissive protection scheme for power distribution networks
Nagpal et al. Field verification of secondary arc extinction logic
JP2008022622A (ja) 送配電系統の短絡電流減少システムおよび短絡電流減少方法
Rifaat Critical considerations for utility/cogeneration inter-tie protection scheme configuration
Aguilera et al. Adaptive noncommunication protection based on traveling waves and impedance relay
CN104852361A (zh) 配电网故障切除加速方法和继电保护装置
WO2024089826A1 (ja) 電流差動継電装置
KR100437446B1 (ko) 전력공급시스템의 계통 연계장치
JP2008259327A (ja) 再閉路方式
Oppel et al. Evaluation of the performance of line protection schemes on the NYSEG six phase transmission system
JP2007006673A (ja) 発電機主回路のディジタル保護継電システム
EP2498360B1 (en) DC electrical power system
Shirkovets et al. Schemes, Neutral Grounding Treatment and Organization of Ground Fault Relay Protection in 20 kV Networks of Megalopolises
Miller et al. Fault contribution considerations for wind plant system design and power system protection issues
JP4540621B2 (ja) 電気所構内保護機能付き回線選択継電装置および電気所構内保護機能付き回線選択継電システム
JP2007068279A (ja) 地絡事故の検出方法
JP2009183121A (ja) 配電線補償リアクトルシステムおよび配電線補償リアクトル設定方法
KR200264800Y1 (ko) 전력공급시스템의 계통 연계장치
Bornard et al. Evolution of protection and control. Balance between centralized and decentralized intelligence
JP3403752B2 (ja) 単独運転検出装置
CN116742589A (zh) 基于状态量信息的有源配电网保护方法、装置及电子设备
Henriksen et al. Protective relaying applied to large wind plant collector systems
CN113067317A (zh) 输电线路距离保护ⅱ段免整定方法及系统
O'Meally et al. The impact of a “fuse blow” scheme on overhead distribution system reliability and power quality

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963474

Country of ref document: EP

Kind code of ref document: A1