WO2024088421A1 - 一种扁管、换热芯体和换热器 - Google Patents

一种扁管、换热芯体和换热器 Download PDF

Info

Publication number
WO2024088421A1
WO2024088421A1 PCT/CN2023/127489 CN2023127489W WO2024088421A1 WO 2024088421 A1 WO2024088421 A1 WO 2024088421A1 CN 2023127489 W CN2023127489 W CN 2023127489W WO 2024088421 A1 WO2024088421 A1 WO 2024088421A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
tube body
wall portion
channel
along
Prior art date
Application number
PCT/CN2023/127489
Other languages
English (en)
French (fr)
Inventor
李华
沈佳欢
李永平
Original Assignee
绍兴三花新能源汽车部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 绍兴三花新能源汽车部件有限公司 filed Critical 绍兴三花新能源汽车部件有限公司
Publication of WO2024088421A1 publication Critical patent/WO2024088421A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present application relates to the field of heat exchange technology, and in particular to a flat tube and a heat exchange core and a heat exchanger having the flat tube.
  • Heat exchangers usually use flat tubes for fluid circulation.
  • the channels in the flat tubes are usually arranged in a row along the width direction of the flat tubes.
  • the channels in the flat tubes are set to more than two rows to increase the contact area between the fluid and the flat tubes.
  • Flat tubes are usually extruded, and flat tubes with more than two rows of channels have higher requirements on extrusion dies and extrusion processes, and are more difficult to manufacture.
  • the purpose of the present application is to provide a flat tube that is easy to manufacture, a heat exchange core having the flat tube, and a heat exchanger having the heat exchange core.
  • One embodiment of the present application provides a flat tube, including a tube body, wherein the tube body includes at least a first tube body and a second tube body, the first tube body has a plurality of first channels extending along the length direction of the tube body, the second tube body has a plurality of second channels extending along the length direction of the tube body, the first tube body has a first wall along the thickness direction of the first tube body, the second tube body has a second wall along the thickness direction of the second tube body, the first wall of the first tube body and the second wall of the second tube body are arranged opposite to each other, and the first wall of the first tube body and the second wall of the second tube body are welded and fixed.
  • the tube body is divided into a first tube body with a first hole and a second tube body with a second hole.
  • the first tube body and the second tube body are respectively processed and formed and fixed by welding, thereby reducing The difficulty of manufacturing flat tubes.
  • One embodiment of the present application provides a heat exchange core, including a first collecting piece, a second collecting piece and a plurality of flat tubes, wherein the flat tubes are the above-mentioned flat tubes, and along the length direction of the flat tubes, the flat tubes include a first end and a second end, the first end of the flat tubes is connected to the first collecting piece, and the second end of the flat tubes is connected to the second collecting piece, the first collecting piece and the second collecting piece each include at least one chamber, the first channel and the second channel of the flat tubes are both connected to at least one chamber of the first collecting piece, the first channel and the second channel of the flat tubes are both connected to at least one chamber of the second collecting piece, the heat exchanger has a first fluid channel, the first channel, the second channel, the chamber of the first collecting piece and the chamber of the second collecting piece are at least part of the first fluid channel.
  • the first channel and the second channel are both part of the first fluid channel, and no heat exchange requirement is required between the fluid in the first channel and the fluid in the second channel, thereby reducing the welding requirements between the first tube body and the second tube body.
  • One embodiment of the present application provides a heat exchanger, including a shell and a heat exchange core, the heat exchange core is the above-mentioned heat exchange core, the shell is sealed and fixed to the first collecting piece, the shell is sealed and fixed to the second collecting piece, the shell has a medium cavity, the heat exchanger has a second fluid channel, the first fluid channel is not connected to the second fluid channel, and the medium cavity is at least a part of the second fluid channel.
  • a heat exchanger including a shell and a heat exchange core accommodated in the shell, the heat exchange core is the above-mentioned heat exchange core, the shell includes a first body and a second body, the first body is sealed and fixed to the second body, the first collecting part includes a first cavity and a second cavity, the shell has a first port and a second port, the first cavity is connected to the first port, and the second cavity is connected to the second port.
  • the heat exchanger includes the above flat tubes and the heat exchange core, and therefore, it also has the effect of being easy to manufacture.
  • FIG1 is a perspective view of an embodiment of a flat tube
  • FIG2 is a cross-sectional view of an embodiment of a flat tube
  • FIG3 is a cross-sectional view of another embodiment of a flat tube
  • FIG4 is a partial enlarged view of point A in FIG2;
  • FIG5 is a partial enlarged view of point B in FIG3;
  • FIG6 is a partial enlarged view of another embodiment of a flat tube
  • FIG7 is a partial enlarged view of another embodiment of a flat tube
  • FIG8 is a schematic diagram of the overall structure of an embodiment of the heat exchange core of the present application.
  • FIG9 is a top view of the heat exchange core shown in FIG8;
  • FIG10 is a schematic diagram of the cross-sectional structure along the A-A direction in FIG9 ;
  • Fig. 11 is a schematic diagram of the cross-sectional structure along the B-B direction in Fig. 9;
  • FIG12 is a partial enlarged view of point C in FIG11;
  • FIG13 is an exploded view of an embodiment of the first current collecting member
  • FIG14 is an exploded view of an embodiment of a second current collecting member
  • FIG15 is a schematic diagram of the overall structure of an embodiment of the heat exchanger of the present application.
  • FIG16 is a top view of the heat exchanger shown in FIG15;
  • FIG17 is a schematic diagram of the cross-sectional structure along the C-C direction in FIG16 ;
  • FIG18 is a schematic diagram of the cross-sectional structure along the D-D direction in FIG16 .
  • the flat tube 1 is usually used in a heat exchanger 100. A plurality of channels are usually provided in the flat tube 1 for fluid circulation.
  • the flat tube 1 includes a tube body, which is welded and fixed by a first tube body 11 and a second tube body 12.
  • the first tube body 11 is a flat tube, and along the thickness direction of the first tube body 11, the first tube body 11 has a first wall 112 and a third wall 111.
  • the second tube body 12 is a flat tube, and along the thickness direction of the second tube body 12, the second tube body 12 has a second wall 121 and a fourth wall 122.
  • the first wall 112 of the first tube body 11 is opposite to the second wall 121 of the second tube body 12, and the first wall 112 of the first tube body 11 is welded and fixed to the second wall 121 of the second tube body 12.
  • direction L is the length direction of the flat tube 1 , and is also the length direction of the first tube body 11 and the second tube body 12 .
  • Direction W is the width direction of the flat tube 1 , and is also the width direction of the first tube body 11 and the second tube body 12 .
  • direction H is the thickness direction of the flat tube 1 , and is also the thickness direction of the first tube body 11 and the second tube body 12 .
  • the first tube body 11 has a plurality of first channels 115 extending along the length direction of the tube body, and the plurality of first channels 115 are arranged in a row along the width direction of the first tube body 115.
  • the second tube body 12 has a plurality of second channels 125 extending along the length direction of the tube body, and the plurality of second channels 125 are arranged along the width direction of the second tube body 12.
  • the tube body is divided into a first tube body 11 having the first channels 115 and a second tube body 12 having the second channels 125.
  • the first tube body 11 and the second tube body 12 are processed and formed and welded and fixed, thereby reducing the manufacturing difficulty of the flat tube 1.
  • the first tube body 11 and the second tube body 12 can be extruded and formed respectively. Since the structures of the first tube body 11 and the second tube body 12 are relatively simple, the requirements for the extrusion mold and the extrusion process are relatively low, and it is easier to extrude and form.
  • the welding process of the first tube body 11 and the second tube body 12 is also relatively simple, thereby reducing the manufacturing difficulty of the flat tube 1.
  • the flat tube 1 can also be made of three or more flat tubes stacked and welded and fixed in the thickness direction.
  • the cross-sections of the first channel 115 and the second channel 125 are circular.
  • the distance between the wall 13 forming the first channel and the third wall 111 is defined as a1
  • the distance between the wall 13 forming the first channel and the first wall 112 is defined as b1, wherein a1>b1.
  • the distance between the wall 14 forming the second channel and the fourth wall 122 is defined as a2
  • the distance between the wall 14 forming the second channel and the second wall 121 is defined as b2, wherein a2>b2.
  • the third wall 111 and the fourth wall 122 serve as the outer surface of the tube body, and the first wall 112 and the second wall 121 are welded and fixed, the pressures of the first wall 112 and the second wall 121 offset each other.
  • the strength of the tube body is improved under the premise of a certain thickness of the tube body, so as to be suitable for working conditions with large internal fluid pressure, such as CO2 heat exchangers.
  • the distance between two adjacent first channels 115 is defined as c1, that is, the distance between the wall 13 forming the first channel and the wall 13 forming the first channel adjacent thereto is c1, wherein the same first channel 115 satisfies: c1 ⁇ b1; along the width direction of the second tube body 12, the distance between two adjacent second channels 125 is defined as c2, that is, the wall 14 forming the second channel and the wall 14 forming the second channel adjacent thereto. The distance between the walls 14 is c2, wherein the same second channel 125 satisfies: c2 ⁇ b2.
  • the distance between adjacent channels can be set relatively small, which has little effect on the strength of the flat tube 1.
  • the width of the flat tube 1 is constant, more channels can be set to increase the contact area between the fluid in the channel and the flat tube 1, thereby improving the heat exchange performance.
  • the wall 13 forming the first channel includes a first straight wall portion 131, a third straight wall portion 132, a fourth straight wall portion 133 and a first curved wall portion 134, the first curved wall portion 134 protrudes toward the third wall 111, the first straight wall portion 131 is closer to the first wall 112 than the first curved wall portion 134, the third straight wall portion 132 connects the first straight wall portion 131 and the first curved wall portion 134, and the fourth straight wall portion 133 connects the first straight wall portion 131 and the first curved wall portion 134.
  • the first channel is similar to a D-shape.
  • the third straight wall portion 132 may not be perpendicular to the first straight wall portion 131
  • the fourth straight wall portion 133 may not be perpendicular to the first straight wall portion 131.
  • the wall 14 forming the second channel includes the second straight wall portion 141, the fifth straight wall portion 142, the sixth straight wall portion 143 and the second curved wall portion 144, the second curved wall portion 144 protrudes toward the fourth wall 122, the second straight wall portion 141 is closer to the second wall 121 than the second curved wall portion 144, and the fifth straight wall portion 142 is closer to the second wall 121 than the fifth straight wall portion 143.
  • the straight wall portion 142 connects the second straight wall portion 141 and the second curved wall portion 144
  • the sixth straight wall portion 143 connects the second straight wall portion 141 and the second curved wall portion 144.
  • the distance between the second curved wall portion 144 and the fourth wall 122 is a2
  • the distance between the second straight wall portion 141 and the second wall 121 is b2, wherein a2>b2.
  • the curved structure is beneficial to improving the strength, and the wall portion close to the outer side of the tube body is set to an arc structure, thereby improving the strength of the flat tube 1.
  • the wall 13 forming the first channel includes a first wall 135, a second wall 136, a third wall portion 137 and a fourth wall portion 138.
  • the first wall 135 and the second wall 136 are arranged along the thickness direction of the first tube body 11
  • the third wall portion 137 and the fourth wall portion 138 are arranged along the width direction of the first tube body 11
  • the third wall portion 137 connects the first wall 135 and the second wall 136
  • the fourth wall portion 138 connects the first wall 135 and the second wall 136.
  • the first channel 115 is a rectangular hole.
  • the first channel 115 can also be a trapezoidal hole.
  • the first wall 135 and the second wall 136 are provided with a first rib 139 protruding toward each other.
  • the first wall 135 is closer to the third wall 111 than the second wall 136.
  • the distance between the first wall 135 and the third wall 111 is a1
  • the distance between the second wall 136 and the first wall 112 is b1, wherein a1>b1.
  • the fifth wall portion 145 and the sixth wall portion 146 are provided with second ribs 149 protruding toward each other.
  • the fifth wall portion 145 and the sixth wall portion 146 are arranged along the thickness direction of the second tube body 12.
  • the seventh wall portion 147 and the eighth wall portion 148 are arranged along the width direction of the second tube body 12, the seventh wall portion 147 connects the fifth wall portion 145 and the sixth wall portion 146, the eighth wall portion 148 connects the fifth wall portion 145 and the sixth wall portion 146, the fifth wall portion 145 is closer to the second wall 121 than the sixth wall portion 146, along the thickness direction of the second tube body 12, the distance between the sixth wall portion 146 and the fourth wall 122 is a2, and the distance between the fifth wall portion 145 and the second wall 121 is b2, wherein a2>b2, and through the provision of the second rib 149, the contact area between the fluid in the second channel 125 and the second tube body 12 is increased, thereby improving the heat exchange effect of the flat tube 1.
  • the first tube body 11 includes a fifth wall 113 and a sixth wall 114, and along the width direction of the first tube body 11, multiple first channels 115 are located between the fifth wall 113 and the sixth wall 114, the fifth wall 113 connects the third wall 111 and the first wall 112, and the sixth wall 114 connects the third wall 111 and the first wall 112, and the second tube body 12 includes a seventh wall 123 and an eighth wall 124, and along the width direction of the second tube body 12, multiple second channels 125 are located between the seventh wall 123 and the eighth wall 124, the seventh wall 123 connects the second wall 121 and the fourth wall 122, and the eighth wall 124 connects the second wall 121 and the fourth wall 122, wherein, as shown in the figure, the fifth wall 113, the sixth wall 114, the seventh wall 123 and the eighth wall 124 in this embodiment all include straight sections and arc sections, and of course, they may also only include straight sections or arc sections.
  • the distance between the wall 13 forming the first channel 115 adjacent to the fifth wall 113 and the fifth wall 113 is defined as d1, wherein d1>b1.
  • the distance between the wall 14 forming the second channel adjacent to the seventh wall 123 and the seventh wall 123 is defined as d3, wherein d3>b2.
  • the distance between the wall 13 forming the first channel adjacent to the sixth wall 114 and the sixth wall 114 is defined as d2, wherein d2>b1.
  • the distance between the wall 14 forming the second channel adjacent to the eighth wall 124 and the eighth wall 124 is defined as d4, wherein d4>b2.
  • the fifth wall 113, the sixth wall 114, the seventh wall 123, and the eighth wall 124 are all outer surfaces of the flat tube 1.
  • d1 The sizes of d2, d3 and d4 are adjusted to improve the strength of the flat tube 1.
  • the first hole 115 and the second hole 125 are aligned, and the first tube body 11 and the second tube body 12 can be set to the same structure for easy processing.
  • the first hole 115 and the second hole 125 are staggered, which can improve the compactness of the flat tube 1.
  • the heat exchange core 10 includes a first current collecting member 2 , a second current collecting member 3 and a plurality of flat tubes 1 .
  • the flat tubes 1 are the flat tubes 1 described above, and the structure of the flat tubes 1 will not be described in detail herein.
  • direction H is also the height direction of the heat exchange core 10 .
  • the flat tube 1 includes a first end 110 and a second end 120 (shown in FIG1 ).
  • the first end 110 of the flat tube 1 is connected to the first current collecting member 2
  • the second end 120 of the flat tube 1 is connected to the second current collecting member 3 .
  • the first current collecting member 2 and the second current collecting member 3 each include at least one chamber.
  • the first channel 115 and the second channel 125 of the flat tube 1 are both connected to at least one chamber of the first current collecting member 2 .
  • the first channel 115 and the second channel 125 of the flat tube 1 are both connected to at least one chamber of the second current collecting member 3 .
  • the heat exchange core 10 has a first fluid channel.
  • the first channel 115, the second channel 125, at least part of the chamber of the first current collecting member 2 and at least part of the chamber of the second current collecting member 3 are at least part of the first fluid channel.
  • each group has multiple flat tubes 1 arranged along the height direction of the heat exchange core 10, the first end 110 of each flat tube 1 is connected to the first current collecting member 2, and the second end 120 of each flat tube 1 is connected to the second current collecting member 3.
  • the first current collecting member 2 includes five plates, namely a first plate 21, three second plates 22 and a third plate 23, and the three second plates 22 are located between the first plate 21 and the third plate 23, wherein the first plate 21 has a plurality of first through holes 211 and a plurality of second through holes 212, the plurality of first through holes 211 are arranged along the height direction of the heat exchange core 10, the plurality of second through holes 212 are arranged along the height direction of the heat exchange core 10, the first through holes 211 and the second through holes 212 are arranged along the width direction of the heat exchange core 10, the plurality of first through holes 211 are provided for inserting the first end portions 110 of one group of flat tubes 1, and the plurality of second through holes 212 are provided for inserting the first end portions 110 of another group of flat tubes 1, and as shown in Figure 1, the first end portions 110 of the flat tubes 1 adopt a necking structure to facilitate controlling the depth of the flat tubes 1 inserted into the first plate 21.
  • the second plate 22 has a plurality of first through holes 221, a second through hole 222 and a third through hole 223.
  • the plurality of first through holes 221 and the second through holes 222 of the second plate 22 are arranged one-to-one with part of the first through holes 211 and the second through holes 212 of the first plate 21.
  • the hole 223 connects the first through hole 211 and the second through hole 212 of the first plate 21.
  • the third plate 23 has a first channel 231, a second channel 232, a first hole 233 and a second hole 234.
  • the first hole 233 connects the first channel 231 and the plurality of first through holes 221 of the second plate 22.
  • the second hole 234 connects the second channel 232 and the plurality of second through holes 222 of the second plate 22.
  • the second current collector 3 includes five plates, namely a fourth plate 31, a fifth plate 32, two sixth plates 33 and a seventh plate 34.
  • the fourth plate 31 is a flat plate.
  • the fifth plate 32 has a plurality of fourth through holes 321 extending in the height direction of the heat exchange core 10.
  • the sixth plate 33 has a plurality of fifth through holes 331 and a plurality of sixth through holes 332.
  • the plurality of fifth through holes 331 are arranged in the height direction of the heat exchange core 10.
  • the plurality of sixth through holes 332 are arranged in the height direction of the heat exchange core 10.
  • the fifth through holes 331 are arranged in the height direction of the heat exchange core 10.
  • the first through hole 331 and the second through hole 332 are arranged along the width direction of the heat exchange core 10.
  • the seventh plate 34 has a plurality of seventh through holes 341 corresponding to the fifth through holes 331 of the sixth plate 33, and a plurality of eighth through holes 342 corresponding to the sixth through holes 332.
  • the plurality of seventh through holes 341 are provided for the second ends 120 of one group of flat tubes 1 to be inserted, and the plurality of eighth through holes 342 are provided for the second ends 120 of another group of flat tubes 1 to be inserted. As shown in FIG.
  • the second ends 120 of the flat tubes 1 adopt a necking structure to facilitate controlling the insertion depth of the flat tubes 1 into the seventh plate 34.
  • the fluid flows into the first channel 231, it flows from the first hole 233 into the multiple first through holes 221 of the second plate 22, flows through the flat tube 1 and then flows into the second collector 3, and flows from part of the fifth through hole 331 of the sixth plate 33 into part of the fourth through hole 321 of the fifth plate 32.
  • the fluid flows downward along the fourth through hole 321 and flows to another part of the first through holes 331 of the sixth plate 33, flows through the flat tube 1 and then flows into the third through hole 223 of the second plate 22 of the first collector 2.
  • the fluid moves horizontally and flows into another group of flat tubes 1.
  • the fluid After flowing through the flat tube 1, it flows into part of the sixth through hole 332 of the sixth plate 33 of the second collector 3, and then flows upward through part of the fourth through hole 321 of the fifth plate 32, and then flows to another part of the sixth through hole 332 of the sixth plate 33, flows through the flat tube 1 and then flows into the second through hole 222 of the second plate 22 of the first collector 2, flows into the second channel 233 of the third plate 23 through the second hole 234, and then flows out of the heat exchange core 10.
  • the fluid may also flow in the reverse direction, or the through-hole structure of each plate may be changed to change the flow path of the fluid.
  • the heat exchange core 10 further includes a plurality of fin plates 4, the fin plates 4 being located between two adjacent flat tubes 1, the fin plates 4 including a plurality of fin units arranged along the length direction of the flat tubes 1, the fin units including a top portion 41, a bottom portion 42, a first side portion 43 and a second side portion 44, the first side portion 43 connecting the top portion 41 and the bottom portion 42, the second side portion 44 connecting the bottom portion 42 and the adjacent fin units.
  • the top 41 of the fin unit is welded and fixed to the fourth wall 122 of the adjacent flat tube 1
  • the bottom 42 is welded and fixed to the third wall 111 of another adjacent flat tube 1.
  • the first side portion 43 and the second side portion 44 have a notch 45.
  • the distance between the first tops 41 of adjacent fin units is denoted as ⁇
  • the spacing between adjacent flat tubes 1 is denoted as h, wherein 0.8 ⁇ /h ⁇ 5, and h ⁇ 2.5mm.
  • the heat exchanger 100 includes a shell 5 and a heat exchange core 10.
  • the heat exchange core 10 is the above-mentioned heat exchange core 10.
  • the heat exchange core 10 is accommodated in the shell 5.
  • the shell 5 has a medium cavity 6.
  • the shell 5 includes a first body 51 and a second body 52. The first body 51 and the second body 52 are sealed and fixed.
  • the second shell 52 has a first connecting pipe 521 and a second connecting pipe 522.
  • the first connecting pipe 521 and the second connecting pipe 522 are connected to the medium cavity 6.
  • the heat exchanger 100 has a second fluid channel.
  • the first fluid channel is not connected to the second fluid channel.
  • the medium cavity 6 is at least a part of the second fluid channel.
  • the fluid can flow from the first connecting pipe 521 into the medium cavity 6, and then flow through the fin plate 4 and then flow out from the second connecting pipe 522, thereby exchanging heat with the fluid in the first fluid channel of the heat exchange core 10. Since the first connecting pipe 521 and the second connecting pipe 522 are located on one side in the width direction of the heat exchanger 100, the multiple fin units of the fin plate 4 are arranged along the length direction of the flat tube 1, thereby reducing the pressure drop of the fluid flowing through the fin plate 4. Under the premise of ensuring that the pressure drop remains unchanged, the distance between the first tops 41 of adjacent fin units can be reduced, thereby increasing the heat exchange area of the fin plate 4 and improving the heat exchange performance.
  • the first current collecting member 2 includes a first cavity 24 and a second cavity 25, and the shell 5 has a first port 511 and a second port 512.
  • the first port 511 and the second port 512 are specifically located in the first body 51, and of course, can also be located in the second body 52.
  • the first cavity 24 is connected to the first port 511
  • the second cavity 25 is connected to the second port 512.
  • the first body 51 is welded and fixed with a connecting block 7, and the connecting block 7 has a first flow channel 71 connected to the first port 511 and a second flow channel 72 communicating with the second port 512.
  • the fluid flows from the first flow channel 71 into the first port 511, and then into the first cavity 24, flows through the flat tube 1, and then flows into the second cavity 25, and then flows from the second port 512 into the second flow channel 72, and then flows out from the second flow channel 72.
  • the fluid can also flow in the opposite direction.
  • the first channel 231 of the third plate 23 can serve as the first cavity 24, and the second channel 232 can serve as the second cavity 25, of course, the first current collecting member 1 may also be of other structures.
  • the connecting block 7 may not be provided, and a connecting pipe may be provided to fix the connecting pipe to the housing 5.
  • part of the heat exchange core 10 can also be placed in the shell 5.
  • the flat tube 1 and the fin plate 4 can be placed in the shell 5, and at least part of the first current collecting part 2 and at least part of the second current collecting part 3 can be placed outside the shell 5.
  • one end of the shell 5 is sealed and fixed to the first current collecting part 2, and the other end of the shell 5 is sealed and fixed to the second current collecting part 3.
  • the specific way of enclosing the medium cavity 6 can be various, and this application is not limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种扁管、换热芯体和换热器,扁管包括管体,管体至少包括第一管体和第二管体,第一管体具有沿管体的长度方向延伸的多个第一孔道,多个第一孔道沿第一管体的宽度方向排列,第二管体具有沿管体的长度方向延伸的多个第二孔道,多个第二孔道沿第二管体的宽度方向排列,沿第一管体的厚度方向,第一管体具有第一壁,沿第二管体的厚度方向,第二管体具有第二壁,第一管体的第一壁与第二管体的第二壁相对设置,并且,第一管体的第一壁与第二管体的第二壁焊接固定,将管体分为具有第一孔道的第一管体和具有第二孔道的第二管体,第一管体和第二管体分别加工成型并且焊接固定,从而降低了扁管的制造难度。

Description

一种扁管、换热芯体和换热器
本申请要求于2022年10月28日提交中国专利局、申请号为202211331545.1、发明名称为“一种扁管、换热芯体和换热器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及换热技术领域,具体涉及一种扁管和具有该扁管的换热芯体和换热器。
背景技术
换热器通常采用扁管供流体流通,扁管内的孔道通常沿扁管的宽度方向排列成一排,为了提升换热器的换热效果,将扁管内的孔道设为两排以上以提高流体与扁管的接触面积,扁管通常采用挤压成型,而具有两排以上孔道的扁管,对挤压模具和挤压工艺具有较高要求,制造难度较大。
发明内容
本申请的目的在于提供一种便于制造的扁管、具有该扁管的换热芯体和具有该换热芯体的换热器。
本申请的一个实施方式提供了一种扁管,包括管体,所述管体至少包括第一管体和第二管体,所述第一管体具有沿所述管体的长度方向延伸的多个第一孔道,所述第二管体具有沿所述管体的长度方向延伸的多个第二孔道,沿所述第一管体的厚度方向,所述第一管体具有第一壁,沿所述第二管体的厚度方向,所述第二管体具有第二壁,所述第一管体的第一壁与所述第二管体的第二壁相对设置,并且,所述第一管体的第一壁与所述第二管体的第二壁焊接固定。
上述技术方案,将管体分为具有第一孔道的第一管体和具有第二孔道的第二管体,第一管体和第二管体分别加工成型并且焊接固定,从而降低 了扁管的制造难度。
本申请的一个实施方式提供了一种换热芯体,包括第一集流件、第二集流件和多个扁管,所述扁管为上述扁管,沿所述扁管的长度方向,所述扁管包括第一端部和第二端部,所述扁管的第一端部与所述第一集流件连接,所述扁管的第二端部与所述第二集流件连接,所述第一集流件和所述第二集流件均包括至少一个腔室,所述扁管的第一孔道和第二孔道均与所述第一集流件的至少一个腔室连通,所述扁管的第一孔道和第二孔道均与所述第二集流件的至少一个腔室连通,所述换热器具有第一流体通道,所述第一孔道、所述第二孔道、所述第一集流件的腔室和所述第二集流件的腔室为所述第一流体通道的至少部分。
上述技术方案,第一孔道和第二孔道均作为第一流体通道的一部分,第一孔道内的流体和第二孔道内的流体之间不做换热要求,降低了第一管体与第二管体的焊接要求。
本申请的一个实施方式提供了一种换热器,包括壳体和换热芯体,所述换热芯体为上述换热芯体,所述壳体与所述第一集流件密封固定,所述壳体与所述第二集流件密封固定,所述壳体内具有介质腔,所述换热器具有第二流体通道,所述第一流体通道与所述第二流体通道不连通,所述介质腔为所述第二流体通道的至少部分。
本申请的一个实施方式提供了一种换热器,包括壳体以及容置于壳体内的换热芯体,所述换热芯体为上述换热芯体,所述壳体包括第一本体和第二本体,所述第一本体与所述第二本体密封固定,所述第一集流件包括第一腔和第二腔,所述壳体具有第一口和第二口,所述第一腔与所述第一口连通,所述第二腔与所述第二口连通。
上述技术方案中,换热器包括上述扁管和换热芯体,因此,同样具有便于制造的效果。
附图说明
图1是扁管的一种实施方式的立体图;
图2是扁管的一种实施方式的剖面图;
图3是扁管的另一种实施方式的剖面图;
图4是图2中A处的局部放大图;
图5是图3中B处的局部放大图;
图6是扁管的又一种实施方式的局部放大图;
图7是扁管的再一种实施方式的局部放大图;
图8是本申请换热芯体的一种实施方式的整体结构示意图;
图9是图8所示换热芯体的俯视图;
图10是图9中A-A方向的剖面结构示意图;
图11是图9中B-B方向的剖面结构示意图;
图12为图11中C处的局部放大图;
图13是第一集流件的一种实施方式的爆炸图;
图14是第二集流件的一种实施方式的爆炸图;
图15是本申请换热器的一种实施方式的整体结构示意图;
图16是图15所示换热器的俯视图;
图17是图16中C-C方向的剖面结构示意图;
图18是图16中D-D方向的剖面结构示意图。
具体实施方式
现在参考附图详细描述具体实施例。为了全面理解本发明,在以下详细描述中提到了众多具体细节,但是本领域技术人员应当理解,在附图中图示并且在此描述的具体组件、器件及特征仅仅是示范性的并且不应当被视为限制。
扁管1通常用于换热器100,扁管1内通常设有多个通道供流体流通,参考图1-图7所示,扁管1包括管体,管体由第一管体11和第二管体12焊接固定,具体的,第一管体11为扁平管,沿第一管体11的厚度方向,第一管体11具有第一壁112和第三壁111,第二管体12为扁平管,沿第二管体12的厚度方向,第二管体12具有第二壁121和第四壁122,第一管体11的第一壁112与第二管体12的第二壁121相对设置,并且,第一管体11的第一壁112与第二管体12的第二壁121焊接固定。
如图1所示,方向L为扁管1的长度方向,同时也为第一管体11和第二管体12的长度方向,方向W为扁管1的宽度方向,同时也为第一管体11和第二管体12的宽度方向,如图2所示,方向H为扁管1的厚度方向,同时也为第一管体11和第二管体12的厚度方向。第一管体11具有多个第一孔道115,第一孔道115沿管体的长度方向延伸,多个第一孔道115沿第一管体115的宽度方向排列成一列,第二管体12具有多个第二孔道125,第二孔道125沿管体的长度方向延伸,多个第二孔道125沿第二管体12的宽度方向排列,将管体分为具有第一孔道115的第一管体11和具有第二孔道125的第二管体12,第一管体11和第二管体12分别加工成型并且焊接固定,从而降低了扁管1的制造难度,例如,第一管体11和第二管体12可以分别挤压成型,由于第一管体11和第二管体12的结构相对较为简单,对挤压模具和挤压工艺的要求相对较低,较易挤压成型,第一管体11和第二管体12的焊接工艺也较为简单,因此降低了扁管1的制造难度。当然,扁管1也可以由三个或者更多个扁平管沿厚度方向堆叠并焊接固定。
在一些实施例中,结合图2、图4,第一孔道115和第二孔道125的截面为圆形,沿第一管体11的厚度方向,定义形成第一孔道的壁13与第三壁111之间的距离为a1,定义形成第一孔道的壁13与第一壁112之间的距离为b1,其中,a1>b1,沿第二管体12的厚度方向,定义形成第二孔道的壁14与第四壁122之间的距离为a2,定义形成第二孔道的壁14与第二壁121之间的距离为b2,其中,a2>b2,由于第三壁111和第四壁122作为管体的外表面,而第一壁112与第二壁121焊接固定,第一壁112和第二壁121的承压相互抵消,通过控制a1>b1,和/或,a2>b2,在管体厚度一定的前提下,提升管体的强度,以适用于内部流体压力较大的工况,例如CO2换热器。
在一些实施例中,结合图3、图5,沿第一管体11的宽度方向,定义两个相邻第一孔道115之间的距离为c1,即,形成第一孔道的壁13和形成与其相邻的第一孔道的壁13之间的距离为c1,其中,同一第一孔道115满足:c1<b1;沿第二管体12的宽度方向,定义两个相邻第二孔道125之间的距离为c2,即,形成第二孔道的壁14和形成与其相邻的第二孔道 的壁14之间的距离为c2,其中,同一第二孔道125满足:c2<b2,由于相邻第一孔道115或相邻第二孔道125之间的内部承压可以相互抵消,相邻孔道之间的距离可以设置相对较小,对扁管1的强度影响较小,在扁管1的宽度一定的前提下可以设置更多的孔道提升孔道内流体与扁管1的接触面积,提升换热性能。
在一些实施例中,如图6所示,形成第一孔道的壁13包括第一平直壁部131、第三平直壁部132、第四平直壁部133和第一弧形壁部134,第一弧形壁部134朝向第三壁111凸出,第一平直壁部131比第一弧形壁部134靠近第一壁112,第三平直壁部132连接第一平直壁部131和第一弧形壁部134,第四平直壁部133连接第一平直壁部131和第一弧形壁部134,如图6所示,第一孔道为类似D形,当然,第三平直壁部132与第一平直壁部131可以不垂直,第四平直壁部133与第一平直壁部131可以不垂直。沿第一管体11的厚度方向,第一弧形壁部134与第三壁111之间的距离为a1,第一平直壁部131与第一壁112之间的距离为b1,其中,a1>b1,形成第二孔道的壁14包括第二平直壁部141、第五平直壁部142、第六平直壁部143和第二弧形壁部144,第二弧形壁部144朝向第四壁122凸出,第二平直壁部141比第二弧形壁部144靠近第二壁121,第五平直壁部142连接第二平直壁部141和第二弧形壁部144,第六平直壁部143连接第二平直壁部141和第二弧形壁部144,沿第二管体12的厚度方向,第二弧形壁部144与第四壁122之间的距离为a2,第二平直壁部141与第二壁121之间的距离为b2,其中,a2>b2,弧形结构有利于提升强度,将靠近管体外侧面的壁部设置成弧形结构,从而提升扁管1的强度。
在一些实施例中,如图7所示,形成第一孔道的壁13包括第一壁135、第二壁136、第三壁部137和第四壁部138,第一壁135和第二壁136沿第一管体11的厚度方向排列,第三壁部137和第四壁部138沿第一管体11的宽度方向排列,第三壁部137连接第一壁135和第二壁136,第四壁部138连接第一壁135和第二壁136,如图7所示,第一孔道115为矩形孔,当然,第一孔道115也可以为梯形孔,第一壁135和第二壁136设有朝向彼此凸出的第一凸筋139,第一壁135比第二壁136靠近第三壁111,沿第 一管体11的厚度方向,第一壁135与第三壁111之间的距离为a1,第二壁136与第一壁112之间的距离为b1,其中,a1>b1,通过第一凸筋139的设置,增大了第一孔道115内的流体与第一管体11的接触面积,提升扁管1的换热效果,形成第二孔道的壁14包括第五壁部145、第六壁部146、第七壁部147和第八壁部148,第五壁部145和第六壁部146设有朝向彼此凸出的第二凸筋149,第五壁部145和第六壁部146沿第二管体12的厚度方向排列,第七壁部147和第八壁部148沿第二管体12的宽度方向排列,第七壁部147连接第五壁部145和第六壁部146,第八壁部148连接第五壁部145和第六壁部146,第五壁部145比第六壁部146靠近第二壁121,沿第二管体12的厚度方向,第六壁部146与第四壁122之间的距离为a2,第五壁部145与第二壁121之间的距离为b2,其中,a2>b2,通过第二凸筋149的设置,增大了第二孔道125内的流体与第二管体12的接触面积,提升扁管1的换热效果。
在一些实施例中,如图4-图7所示,第一管体11包括第五壁113和第六壁114,沿第一管体11的宽度方向,多个第一孔道115位于第五壁113与第六壁114之间,第五壁113连接第三壁111和第一壁112,第六壁114连接第三壁111和第一壁112,第二管体12包括第七壁123和第八壁124,沿第二管体12的宽度方向,多个第二孔道125位于第七壁123与第八壁124之间,第七壁123连接第二壁121和第四壁122,第八壁124连接第二壁121和第四壁122,其中,如图所示,本实施例中的第五壁113、第六壁114、第七壁123和第八壁124均包括平直段和弧形段,当然,也可以仅包括平直段或者弧形段。如图4、图6所示,沿第一管体11的宽度方向,定义形成与第五壁113相邻的第一孔道115的壁13和第五壁113之间的距离为d1,其中,d1>b1,沿第二管体12的宽度方向,定义形成与第七壁123相邻的第二孔道的壁14与第七壁123之间的距离为d3,其中,d3>b2。如图5、图7所示,定义形成与第六壁114相邻的第一孔道的壁13和第六壁114之间的距离为d2,其中,d2>b1。定义形成与第八壁124相邻的第二孔道的壁14与第八壁124之间的距离为d4,其中,d4>b2。第五壁113、第六壁114、第七壁123、第八壁124均为扁管1的外表面,通过控制d1、 d2、d3、d4的大小,从而提升扁管1的强度。
在一些实施例中,如图5、图6、图7所示,沿管体的厚度方向,第一孔道115和第二孔道125对齐设置,可以将第一管体11和第二管体12设置成相同结构,便于加工。如图4所示,沿管体的厚度方向,第一孔道115与第二孔道125错开设置,可以提升扁管1的紧凑性。
结合图8-图14所示,换热芯体10包括第一集流件2、第二集流件3和多个扁管1,扁管1为上述扁管1,扁管1的结构此处不再赘述。如图8所示,方向H也为换热芯体10的高度方向,沿扁管1的长度方向,扁管1包括第一端部110和第二端部120(示于图1),扁管1的第一端部110与第一集流件2连接,扁管1的第二端部120与第二集流件3连接,第一集流件2和第二集流件3均包括至少一个腔室,扁管1的第一孔道115和第二孔道125均与第一集流件2的至少一个腔室连通,扁管1的第一孔道115和第二孔道125均与第二集流件3的至少一个腔室连通,换热芯体10具有第一流体通道,第一孔道115、第二孔道125、第一集流件2的至少部分腔室和第二集流件3的至少部分腔室为第一流体通道的至少部分。
如图8所示,多个扁管1沿换热芯体10的宽度方向排列成两组,每组具有多个沿换热芯体10的高度方向排列的多个扁管1,每个扁管1的第一端部110与第一集流件2连接,每个扁管1的第二端部120与第二集流件3连接。具体的,如图13所示,第一集流件2包括五个板片,分别为一个第一板片21,三个第二板片22和一个第三板片23,三个第二板片22位于第一板片21和第三板片23之间,其中,第一板片21具有多个第一通孔211和多个第二通孔212,多个第一通孔211沿换热芯体10的高度方向排列,多个第二通孔212沿换热芯体10的高度方向排列,第一通孔211和第二通孔212沿换热芯体10的宽度方向排列,多个第一通孔211供一组扁管1的第一端部110插入,多个第二通孔212供另一组扁管1的第一端部110插入,结合图1所示,扁管1的第一端部110采用缩口结构,便于控制扁管1插入第一板片21的深度。第二板片22具有多个第一通孔221、第二通孔222和第三通孔223,第二板片22的多个第一通孔221和第二通孔222与第一板片21的部分第一通孔211和第二通孔212一一对应设置,第三通 孔223连通第一板片21的第一通孔211和第二通孔212,第三板片23具有第一通道231、第二通道232、第一孔233和第二孔234,第一孔233连通第一通道231和第二板片22的多个第一通孔221,第二孔234连通第二通道232和第二板片22的多个第二通孔222。如图14所示,第二集流件3包括五个板片,分别为一个第四板片31、一个第五板片32,两个第六板片33和一个第七板片34,其中,第四板片31为平片,第五板片32具有多个沿换热芯体10的高度方向延伸的第四通孔321,第六板片33具有多个第五通孔331和多个第六通孔332,多个第五通孔331沿换热芯体10的高度方向排列,多个第六通孔332沿换热芯体10的高度方向排列,第五通孔331和第六通孔332沿换热芯体10的宽度方向排列,第七板片34具有与第六板片33的第五通孔331一一对应的多个第七通孔341,以及与第六通孔332一一对应的多个第八通孔342,多个第七通孔341供一组扁管1的第二端部120插入,多个第八通孔342供另一组扁管1的第二端部120插入,结合图1所示,扁管1的第二端部120采用缩口结构,便于控制扁管1插入第七板片34的深度。当流体流入第一通道231时,从第一孔233流入第二板片22的多个第一通孔221,流经扁管1后流入第二集流件3,从第六板片33的部分第五通孔331流入第五板片32的部分第四通孔321,流体沿第四通孔321向下流动,流向第六板片33的另一部分第一通孔331,流经扁管1后流入第一集流件2的第二板片22的第三通孔223,流体横向移动后流入另一组扁管1,流经扁管1后流入第二集流件3的第六板片33的部分第六通孔332,然后经第五板片32的部分第四通孔321向上流动,进而流向第六板片33的另一部分第六通孔332,流经扁管1后流入第一集流件2的第二板片22的第二通孔222,通过第二孔234流入第三板片23的第二通道233后从换热芯体10流出。当然,流体也可以反向流动,或者可以改变各板片的通孔结构从而改变流体的流动路径。
如图8-图12所示,换热芯体10还包括多个翅片板4,翅片板4位于相邻两个扁管1之间,翅片板4包括沿扁管1的长度方向排列的多个翅片单元,翅片单元包括顶部41、底部42、第一侧部43和第二侧部44,第一侧部43连接顶部41和底部42,第二侧部44连接底部42和与其相邻的翅 片单元的顶部41,如图12所示,顶部41与和其相邻的扁管1的第四壁122焊接固定,底部42与和其相邻的另一扁管1的第三壁111焊接固定,第一侧部43和第二侧部44具有缺口45,相邻翅片单元的第一顶部41之间的距离记为λ,相邻扁管1之间的间距记为h,其中,0.8<λ/h<5,并且,h<2.5mm,通过降低翅片板4的高度,从而保证在换热芯体10高度不变的前提下,设置更多的扁管1以提升扁管1内的流体与扁管1之间的换热效果,翅片板4可以通过控制相邻翅片单元的第一顶部41之间的距离λ,提升翅片板4的换热面积。
结合图15-图18所示,换热器100包括壳体5和换热芯体10,换热芯体10为上述换热芯体10,换热芯体10容置于壳体5内,壳体5内具有介质腔6,壳体5包括第一本体51和第二本体52,第一本体51与第二本体52密封固定,第二壳体52具有第一接管521和第二接管522,第一接管521和第二接管522与介质腔6连通。换热器100具有第二流体通道,第一流体通道与第二流体通道不连通,介质腔6为第二流体通道的至少部分,流体可以从第一接管521流入介质腔6后,流经翅片板4后从第二接管522流出,从而与换热芯体10的第一流体通道内的流体进行换热。由于第一接管521和第二接管522位于换热器100的宽度方向的一侧,翅片板4的多个翅片单元沿扁管1的长度方向排列,从而降低流体流经翅片板4的压降,在保证压降不变的前提下,可以减小相邻翅片单元的第一顶部41之间的距离,从而增加翅片板4的换热面积,提升换热性能。
结合图17、图18,第一集流件2包括第一腔24和第二腔25,壳体5具有第一口511和第二口512,第一口511和第二口512具体位于第一本体51,当然也可以位于第二本体52,第一腔24与第一口511连通,第二腔25与第二口512连通。在一些具体实施例中,第一本体51焊接固定有连接块7,连接块7具有与第一口511连通的第一流道71和与第二口512流通的第二流道72,流体从第一流道71流入第一口511,继而流入第一腔24,流经扁管1后流入第二腔25,继而从第二口512流入第二流道72,再从第二流道72流出,当然,流体也可以反向流动,如图13所示,第三板片23的第一通道231可以作为第一腔24,第二通道232可以作为第二腔 25,当然,第一集流件1也可以为其他结构。另外,也可以不设置连接块7,也可以从过设置接管与壳体5固定。
在一些实施例中,也可以将部分换热芯体10置于壳体5内,结合图8所示,可以将扁管1和翅片板4置于壳体5内,至少部分第一集流件2和至少部分第二集流件3置于壳体5外,例如,将壳体5的一端与第一集流件2密封固定,将壳体5的另一端与第二集流件3密封固定,当然,具体围成介质腔6的方式可以多样,本申请不做限制。
需要说明的是:以上对本申请所提供换热器进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。

Claims (12)

  1. 一种扁管(1),其特征在于,包括管体,所述管体至少包括第一管体(11)和第二管体(12),所述第一管体(11)具有沿所述管体的长度方向延伸的多个第一孔道(115),多个所述第一孔道(115)沿所述第一管体(11)的宽度方向排列,所述第二管体(12)具有沿所述管体的长度方向延伸的多个第二孔道(125),多个所述第二孔道(125)沿所述第二管体(12)的宽度方向排列,沿所述第一管体(11)的厚度方向,所述第一管体(11)具有第一壁(112),沿所述第二管体(12)的厚度方向,所述第二管体(12)具有第二壁(121),所述第一管体(11)的第一壁(112)与所述第二管体(12)的第二壁(121)相对设置,并且,所述第一管体(11)的第一壁(112)与所述第二管体(12)的第二壁(121)焊接固定。
  2. 根据权利要求1所述的扁管(1),其特征在于,所述第一管体(11)包括第三壁(111),沿所述第一管体(11)的厚度方向,所述第一孔道(115)位于所述第一壁(112)与所述第三壁(111)之间,定义形成所述第一孔道的壁(13)与所述第三壁(111)之间的距离为a1,定义形成所述第一孔道的壁(13)与所述第一壁(112)之间的距离为b1,沿所述第一管体(11)的宽度方向,定义两个相邻所述第一孔道(115)之间的距离为c1,其中,同一所述第一孔道(115)满足:a1>b1;和/或,c1<b1。
  3. 根据权利要求1或2所述的扁管(1),其特征在于,所述第二管体(12)包括第四壁(122),沿所述第二管体(12)的厚度方向,所述第二孔道(125)位于所述第二壁(121)与所述第四壁(122)之间,定义形成所述第二孔道的壁(14)与所述第四壁(122)之间的距离为a2,定义形成所述第二孔道的壁(14)与所述第二壁(121)之间的距离为b2,沿所述第二管体(12)的宽度方向,定义两个相邻所述第二孔道(125)之间的距离为c2,其中,同一所述第二孔道(125)满足:a2>b2;和/或,c2<b2。
  4. 根据权利要求2所述的扁管(1),其特征在于,所述第一管体(11)包括第五壁(113)和第六壁(114),沿所述第一管体(11)的宽度方向,多个所述第一孔道(115)位于所述第五壁(113)与所述第六壁(114)之 间,所述第五壁(113)连接所述第三壁(111)和所述第一壁(112),所述第六壁(114)连接所述第三壁(111)和所述第一壁(112),沿所述第一管体(11)的宽度方向,定义形成与所述第五壁(113)相邻的所述第一孔道的壁(13)与所述第五壁(113)之间的距离为d1,定义形成与所述第六壁(114)相邻的所述第一孔道的壁(13)与所述第六壁(114)之间的距离为d2,其中,d1>b1,d2>b1。
  5. 根据权利要求3所述的扁管(1),其特征在于,所述第二管体(12)包括第七壁(123)和第八壁(124),沿所述第二管体(12)的宽度方向,多个所述第二孔道(125)位于所述第七壁(123)与所述第八壁(124)之间,所述第七壁(123)连接所述第二壁(121)和所述第四壁(122),所述第八壁(124)连接所述第二壁(121)和所述第四壁(122),沿所述第二管体(12)的宽度方向,定义形成与所述第七壁(123)相邻的所述第二孔道的壁(14)与所述第七壁(123)之间的距离为d3,定义形成与所述第八壁(124)相邻的所述第二孔道的壁(14)与所述第八壁(124)之间的距离为d4,其中,d3>b2,d4>b2。
  6. 根据1-5任一项所述的扁管(1),其特征在于,沿所述管体的厚度方向,所述第一孔道(115)与所述第二孔道(125)错开设置。
  7. 根据1-5任一项所述的扁管(1),其特征在于,形成所述第一孔道的壁(13)包括第一平直壁部(131)和第一弧形壁部(134),所述第一弧形壁部(134)朝向所述第三壁(111)凸出,所述第一平直壁部(131)比所述第一弧形壁部(134)靠近所述第一壁(112),沿所述第一管体(11)的厚度方向,所述第一平直壁部(131)与所述第一壁(112)之间的距离小于所述第一弧形壁部(134)与所述第三壁(11)之间的距离;和/或,形成所述第二孔道的壁(14)包括第二平直壁部(141)和第二弧形壁部(144),所述第二弧形壁部(144)朝向所述第四壁(122)凸出,所述第二平直壁部(141)比所述第二弧形壁部(144)靠近所述第二壁(121),沿所述第二管体(12)的厚度方向,所述第二平直壁部(141)与所述第二壁(122)之间的距离小于所述第二弧形壁部(144)与所述第四壁(122)之间的距离。
  8. 根据1-5任一项所述的扁管(1),其特征在于,形成所述第一孔道的壁(13)包括第一壁(135)、第二壁(136)、第三壁部(137)和第四壁部(138),所述第一壁(135)和所述第二壁(136)沿所述第一管体(11)的厚度方向排列,所述第三壁部(137)和所述第四壁部(138)沿所述第一管体(11)的宽度方向排列,所述第三壁部(137)连接所述第一壁(135)和所述第二壁(136),所述第四壁部(138)连接所述第一壁(135)和所述第二壁(136),所述第一壁(135)比所述第二壁(136)靠近所述第三壁(111),沿所述第一管体(11)的厚度方向,所述第一壁(135)与所述第三壁(111)之间的距离大于所述第二壁(136)与所述第一壁(112)之间的距离,所述第一壁(135)设有朝向所述第二壁(136)凸出的第一凸筋(139),所述第二壁(136)设有朝向所述第一壁(135)凸出的第一凸筋(139);和/或,
    形成所述第二孔道的壁(14)包括第五壁部(145)、第六壁部(156)、第七壁部(147)和第八壁部(148),所述第五壁部(145)和所述第六壁部(146)沿所述第二管体(12)的厚度方向排列,所述第七壁部(147)和所述第八壁部(148)沿所述第二管体(12)的宽度方向排列,所述第七壁部(147)连接所述第五壁部(145)和所述第六壁部(146),所述第八壁部(148)连接所述第五壁部(145)和所述第六壁部(146),所述第五壁部(145)比所述第六壁部(146)靠近所述第二壁(121),沿所述第二管体(12)的厚度方向,所述第五壁部(145)与所述第二壁(121)之间的距离小于所述第六壁部(146)与所述第四壁(122)之间的距离,所述第五壁部(145)设有朝向所述第六壁部(146)凸出的第二凸筋(149),所述第六壁部(146)设有朝向所述第五壁部(145)凸出的第二凸筋(149)。
  9. 一种换热芯体(10),包括第一集流件(2)、第二集流件(3)和多个扁管(1),所述扁管(1)为权利要求1-8任一项所述的扁管(1),沿所述扁管(1)的长度方向,所述扁管(1)包括第一端部(110)和第二端部(120),所述扁管(1)的第一端部(110)与所述第一集流件(2)连接,所述扁管(1)的第二端部(120)与所述第二集流件(3)连接,所述第一集流件(2)和所述第二集流件(3)均包括至少一个腔室,所述扁管(1) 的第一孔道(115)和第二孔道(125)均与所述第一集流件(2)的至少一个腔室连通,所述扁管(1)的第一孔道(115)和第二孔道(125)均与所述第二集流件(3)的至少一个腔室连通,所述换热芯体(10)具有第一流体通道,所述第一孔道(115)、所述第二孔道(125)、所述第一集流件(2)的至少部分腔室和所述第二集流件(3)的至少部分腔室为所述第一流体通道的至少部分。
  10. 根据权利要求9所示的换热芯体(10),其特征在于,还包括多个翅片板(4),所述翅片板(4)位于相邻两个所述扁管(1)之间,所述翅片板(4)包括沿所述扁管(1)的长度方向排列的多个翅片单元,所述翅片单元包括与其中一个所述扁管(1)的第四壁(122)连接的顶部(41)、与另一个所述扁管(1)的第三壁(111)连接的底部(42)、连接所述顶部(41)和底部(42)的第一侧部(43)以及连接所述底部(42)与相邻翅片单元的所述顶部(41)的第二侧部(44),所述第一侧部(43)和所述第二侧部(44)具有缺口(45),相邻两个翅片单元的顶部(41)之间的距离记为λ,相邻所述扁管(1)之间的间距记为h,其中,0.8<λ/h<5。
  11. 一种换热器(100),其特征在于,包括壳体(5)和换热芯体(10),所述换热芯体(10)为权利要求9或10所述的换热芯体(10),所述壳体(5)与所述第一集流件(2)密封固定,所述壳体(5)与所述第二集流件(3)密封固定,所述壳体(5)内具有介质腔(6),所述换热器(100)具有第二流体通道,所述第一流体通道与所述第二流体通道不连通,所述介质腔(6)为所述第二流体通道的至少部分。
  12. 一种换热器(100),其特征在于,包括壳体(5)以及容置于壳体(5)内的换热芯体(10),所述换热芯体(10)为权利要求9或10所述的换热芯体(10),所述壳体(5)包括第一本体(51)和第二本体(52),所述第一本体(51)与所述第二本体(52)密封固定,所述第一集流件(2)包括第一腔(24)和第二腔(25),所述壳体(5)具有第一口(511)和第二口(512),所述第一腔(24)与所述第一口(511)连通,所述第二腔(25)与所述第二口(512)连通。
PCT/CN2023/127489 2022-10-28 2023-10-30 一种扁管、换热芯体和换热器 WO2024088421A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211331545.1 2022-10-28
CN202211331545.1A CN117989912A (zh) 2022-10-28 2022-10-28 一种扁管、换热芯体和换热器

Publications (1)

Publication Number Publication Date
WO2024088421A1 true WO2024088421A1 (zh) 2024-05-02

Family

ID=90830140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127489 WO2024088421A1 (zh) 2022-10-28 2023-10-30 一种扁管、换热芯体和换热器

Country Status (2)

Country Link
CN (1) CN117989912A (zh)
WO (1) WO2024088421A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299932A (ja) * 2008-06-10 2009-12-24 Denso Corp 熱交換器および扁平チューブのろう付け方法
CN201396995Y (zh) * 2009-05-05 2010-02-03 上海双桦汽车零部件股份有限公司 用于汽车空调的平行流蒸发器
CN102062549A (zh) * 2011-02-15 2011-05-18 金龙精密铜管集团股份有限公司 扁管热交换器
JP2013127346A (ja) * 2011-12-19 2013-06-27 Daikin Industries Ltd 熱交換器
CN106855327A (zh) * 2015-12-09 2017-06-16 浙江三花汽车零部件有限公司 一种换热器
CN112880436A (zh) * 2019-11-30 2021-06-01 三花控股集团有限公司 换热器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299932A (ja) * 2008-06-10 2009-12-24 Denso Corp 熱交換器および扁平チューブのろう付け方法
CN201396995Y (zh) * 2009-05-05 2010-02-03 上海双桦汽车零部件股份有限公司 用于汽车空调的平行流蒸发器
CN102062549A (zh) * 2011-02-15 2011-05-18 金龙精密铜管集团股份有限公司 扁管热交换器
JP2013127346A (ja) * 2011-12-19 2013-06-27 Daikin Industries Ltd 熱交換器
CN106855327A (zh) * 2015-12-09 2017-06-16 浙江三花汽车零部件有限公司 一种换热器
CN112880436A (zh) * 2019-11-30 2021-06-01 三花控股集团有限公司 换热器

Also Published As

Publication number Publication date
CN117989912A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
KR20190097632A (ko) 공기압 손실을 저감한 세경관 열교환기
US20170205156A1 (en) Heat exchangers
US7044209B2 (en) High pressure manifold
CN103492826A (zh) 热交换器
WO2024088421A1 (zh) 一种扁管、换热芯体和换热器
CN109443056B (zh) 双面交错印刷电路板式换热板和换热器
WO2024082953A1 (zh) 电池包散热装置、电池包和车辆
CN218002296U (zh) 转接管及其微通道换热器
CN215063936U (zh) 一种板翅式换热器芯体
CN213748025U (zh) 一种铜钎板式换热器热量回收结构
WO2021082618A1 (zh) 换热器
CN211146969U (zh) 换热器
KR100213778B1 (ko) 열교환기구조
CN213657582U (zh) 一种空调微通道换热器
CN219714141U (zh) 一种分集流结构及具有其的换热器
CN211777753U (zh) Egr冷却器壳体及egr冷却器
WO2024037171A1 (zh) 换热器
CN220858746U (zh) 基于脉动槽道的复合液冷板
CN214250662U (zh) 一种工业用换热器
CN217383936U (zh) 扁管及其微通道换热器
KR20090112887A (ko) 압출 튜브를 사용하는 핀리스 열교환기
WO2021164394A1 (zh) 微通道换热器
CN210570144U (zh) 多通道热交换器连接组件
CN211953776U (zh) 平行流式换热器
WO2024002197A1 (zh) 口琴管、口琴管式换热器及车辆