WO2024088410A1 - 一种低色号低气味聚异氰酸酯固化剂的制备方法 - Google Patents

一种低色号低气味聚异氰酸酯固化剂的制备方法 Download PDF

Info

Publication number
WO2024088410A1
WO2024088410A1 PCT/CN2023/127304 CN2023127304W WO2024088410A1 WO 2024088410 A1 WO2024088410 A1 WO 2024088410A1 CN 2023127304 W CN2023127304 W CN 2023127304W WO 2024088410 A1 WO2024088410 A1 WO 2024088410A1
Authority
WO
WIPO (PCT)
Prior art keywords
inert gas
diisocyanate
preparation
reaction
reactor
Prior art date
Application number
PCT/CN2023/127304
Other languages
English (en)
French (fr)
Inventor
刘伟
尚永华
林成栋
孙淑常
王丹
辛少辉
杨振敏
李明杰
程英
黎源
Original Assignee
万华化学集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学集团股份有限公司 filed Critical 万华化学集团股份有限公司
Publication of WO2024088410A1 publication Critical patent/WO2024088410A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/16Preparation of derivatives of isocyanic acid by reactions not involving the formation of isocyanate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/14Derivatives of isocyanic acid containing at least two isocyanate groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/30Only oxygen atoms
    • C07D251/34Cyanuric or isocyanuric esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/09Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/08Polyurethanes from polyethers

Definitions

  • the embodiments of the present application relate to a method for preparing a low-color and low-odor polyisocyanate curing agent, which is mainly used in the field of polyurethane coatings or adhesives.
  • Isocyanurate is a six-membered ring structure generated by the trimerization reaction of isocyanate monomers. Polyisocyanates with this structure have good thermal stability, especially polyisocyanate curing agents of aliphatic or alicyclic isocyanates, which are widely used curing agent products in the fields of coatings and adhesives.
  • isocyanates are usually subjected to catalytic polymerization reactions in an inert gas environment, such as under the protection of nitrogen or under the circulation of nitrogen.
  • an inert gas environment such as under the protection of nitrogen or under the circulation of nitrogen.
  • This is a routine operation in the art, and there are no special requirements for the specific operation methods of inert gas protection in the currently disclosed technologies.
  • the researchers of this application were surprised to find that the circulation method of the inert gas in the polymerization reactor would affect the activity of the trimerization catalyst, and thus affect the reaction process control and the quality of the final product such as color number, odor, etc.
  • the reason may be that the catalyst will form catalyst poisons after being dispersed in the isocyanate system, and the continuous purge and disturbance of the isocyanate material liquid surface by the inert gas.
  • the catalyst will form catalyst poisons after being dispersed in the isocyanate system, and the continuous purge and disturbance of the isocyanate material liquid surface by the inert gas.
  • it is possible to bring out some poisons, and second, it can avoid the combination of poisons and catalysts to a certain extent, thereby effectively ensuring the catalytic activity of the catalyst.
  • the larger the area of the isocyanate liquid surface purged by the inert gas in the reactor the more conducive it is to the activity of the catalyst.
  • the purging effect of the liquid surface is not achieved, it will be detrimental to the activity of the catalyst.
  • the applicant has conducted a large number of experiments to regulate the specific layout and implementation conditions of the inert gas, and finally developed a method for preparing a low-color and low-odor polyisocyanate curing agent by controlling the position layout and pressure of the inert gas in the polymerization reactor.
  • the present application provides a method for preparing a low-color and low-odor polyisocyanate curing agent, comprising the steps of polymerizing a diisocyanate monomer under the action of a trimerization catalyst in a polymerization reactor with a continuously flowing inert gas, wherein an inert gas inlet pipeline is provided on the upper end cap of the polymerization reactor, the inert gas inlet pipeline is an insertion tube, and an inert gas outlet and a central stirring shaft are also provided on the upper end cap of the polymerization reactor;
  • the angle ⁇ ( ⁇ ACB) formed by the projection of the connecting line between the opening position (A) of the insertion tube of the inert gas inlet pipeline, the inert gas outlet position (B) on the upper head surface, and the fixed position (C) of the central stirring shaft on the upper head surface on the plane is 30° ⁇ 180°, preferably 90° ⁇ 180°, and more preferably 150° ⁇ 180°, and the plane is the plane formed by looking down from the top of the reactor.
  • the pressure is controlled to be 1-100 kPaG, preferably 2-60 kPaG, and more preferably 3-30 kPaG. Excessive pressure requires high connection of the reactor itself and each valve, while too low pressure will be very unfavorable for the isocyanate catalytic reaction.
  • the present application requires that the inert gas in the reactor is in a continuous circulation state, and in this state, the adjustment of the pressure in the reactor can be achieved by conventional means in the art such as controlling the gas inventory in the reactor, for example, by adjusting the opening of the inert gas inlet or outlet valve.
  • the inert gas enters the polymerization reactor from the opening of the insertion tube of the inert gas inlet pipeline, and the gas flow rate at the inlet is 0.05m/s-60m/s, preferably 0.5-30m/s;
  • the preferred opening direction is vertically downward or the inclination angle is less than 30°, and vertically downward is more preferred; the number of openings of the insertion tube can be one or two or more openings.
  • the vertical distance between the inert gas inlet pipeline and the central stirring shaft is 0.2-1 of the reactor radius, for example, 0.4, 0.6, 0.8; the vertical distance between the inert gas outlet and the central stirring shaft is It should be 0.2-1 of the radius of the kettle, for example, 0.4, 0.6, 0.8.
  • the present application controls the position of the inert gas inlet and outlet, and can maximize the area passed by the inert gas purge process under the premise of ensuring the angle of each opening position, which is beneficial to maintaining the catalytic activity of the catalyst. If the purge area is too small, it is not conducive to maintaining the activity of the catalyst, but the inert gas inlet pipeline and outlet pipeline are preferably kept at an appropriate distance from the edge of the head. The closer they are, the more unfavorable the construction is, and there are potential safety hazards.
  • the inert gas inlet pipeline is an insertion tube
  • the insertion length of the insertion tube in the reactor is not particularly limited, and can be adjusted based on the size of the reactor and the material filling rate.
  • the insertion length of the insertion tube in the reactor is 5-50 cm, preferably 10-30 cm;
  • the opening position of the insertion tube can be above or below the liquid level of the material, and there is no special limitation in this application. However, according to experimental results, it is preferably located above the liquid level of the material in the polymerization reactor, and more preferably the opening position of the insertion tube is located 5-50 cm above the liquid level of the material, preferably 20-30 cm.
  • the distance between the opening position of the insertion tube of the inert gas inlet pipeline and the liquid level will affect the disturbance degree of the inert gas and the isocyanate liquid level. The closer the distance, the stronger the disturbance will be, and the more favorable it will be. However, if the distance is too close, the isocyanate material may splash to the tube inlet, which is easy to block the pipeline after long-term operation.
  • the inert gas is selected from one or more of helium, neon, argon, krypton and nitrogen, preferably argon and/or nitrogen.
  • the shape of the upper end cap of the polymerization reactor is not particularly limited, and any shape commonly used in industrial reactors can be used, such as hemispherical, elliptical, butterfly, etc.
  • the reaction route for preparing a polyisocyanate curing agent by polymerization of a diisocyanate monomer under the action of a trimerization catalyst is an existing process.
  • Technicians can select diisocyanate monomers, trimerization catalysts and reaction process operating parameters based on relevant technologies. For example, in some specific examples listed in the present application, the following scheme can be adopted.
  • the diisocyanate is selected from one or more of aliphatic diisocyanates or alicyclic diisocyanates, preferably one or more of tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, cyclohexyl dimethylene diisocyanate, and lysine diisocyanate; more preferably hexamethylene diisocyanate and/or isophorone diisocyanate.
  • the trimerization catalyst is selected from the group consisting of weak acid salts of organic ammonium and metal salts of alkyl carboxylic acids, preferably tetramethylammonium acetate, tetraethylammonium acetate, tetrabutylammonium acetate, dodecyltrimethylammonium octanoate, 2- One or more of hydroxy-N,N,N-trimethyl-1-propylammonium formate, 2-ethylhexanoic acid-N-(2-hydroxypropyl)-N,N,N-trimethylammonium salt, potassium acetate, potassium octoate, 2-butyl lead hexanoate, more preferably one or more of 2-hydroxy-N,N,N-trimethyl-1-propylammonium formate or 2-ethylhexanoic acid-N-(2-hydroxypropyl)-N,N,N-trimethylammonium salt, tetra
  • the trimerization catalyst can be used without a solvent, or can be dissolved in a solvent and used in the form of a solution;
  • the solvent is selected from a linear or branched monohydric alcohol and/or dihydric alcohol containing 1-20 carbon atoms, or from a linear or branched alcohol containing 1-20 carbon atoms containing more than one hydroxyl group and optionally containing other heteroatoms, wherein the heteroatom is preferably oxygen; preferably, the solvent used to dissolve the trimerization catalyst includes but is not limited to one or more of methanol, ethanol, 1- or 2-propanol, n-butanol, isobutanol, sec-butanol, tert-butanol, n-octanol, isooctyl alcohol, heptanol, 2-ethyl-1,3-hexanediol, 1,3-butanediol, 1,4-butanediol, 1-methoxy-2-propanol, preferably one or more of ethanol, n-butanol, hexanol, h
  • the concentration of the trimerization catalyst solution is 5-50 wt %, preferably 10-30 wt %.
  • the trimerization catalyst is used in an amount of 20-500 ppm, preferably 50-250 ppm, of the mass of the diisocyanate monomer, and can be added dropwise or all at once.
  • reaction temperature is 40-90°C, preferably 50-75°C
  • reaction time is 4-20h, preferably 5-10h.
  • the steps of terminating the reaction to obtain a reaction solution and removing unreacted diisocyanate monomers from the reaction solution are also included.
  • the reaction is terminated when the conversion rate of the diisocyanate monomer reaches 20-70%, preferably 25-50%, and the conversion rate can be determined by monitoring the NCO content of the reaction system;
  • the termination reaction is carried out by adding an acidic substance to deactivate the catalyst;
  • the acidic substance is preferably one or more of hydrochloric acid, sulfuric acid, phosphoric acid, dibutyl phosphate, diisooctyl phosphate, and p-toluenesulfonic acid;
  • the amount of the acidic substance added is 1-10 times the molar amount of the catalyst, preferably 1.1-5 times;
  • the termination reaction may be terminated by thermal inactivation, with the temperature being kept at 110-150° C. for 15-45 min, such as at 130° C. for 30 min.
  • the method of removing the unreacted diisocyanate monomer is evaporation. Any one of thin film evaporation, falling film evaporation, short path evaporation and vacuum distillation is selected, for example, thin film evaporation is adopted, the separation temperature is 140-200°C, the pressure is 1-500PaG, and the monomer content of the obtained polyisocyanate product is less than 0.5wt% and the color number is not greater than 25Hazen.
  • the polyisocyanate curing agent described in the present application can also be dissolved in a solvent to form a solution product, and the concentration is preferably 50-80wt%;
  • the solvent is selected from any one of butyl acetate, ethyl acetate, solvent oil, toluene, xylene, propylene glycol methyl ether acetate, diheptanone, etc., or a combination of at least two thereof.
  • the stability of the catalytic activity of the catalyst is improved by controlling the pressure and position layout of the inert gas in the polymerization reactor, thereby achieving stable control of the reaction process.
  • the obtained product has a low color number, a small amine odor, and good product quality stability.
  • FIG1 is a schematic plan view of the upper head layout of the polymerization reactor of the present application viewed from the top of the reactor;
  • A the opening position of the insertion tube of the inert gas inlet pipeline
  • B the outlet position of the inert gas
  • C the fixed position of the central stirring shaft
  • the projection angle ( ⁇ ACB);
  • FIG2 is a central cross-sectional view of the polymerization reactor of the present application along the inert gas inlet pipeline insertion tube;
  • A the opening position of the insertion tube of the inert gas inlet pipeline
  • C the fixed position of the central stirring shaft
  • D the distance between the opening position of the insertion tube and the liquid level of the material in the reactor.
  • the sources of the main raw materials are as follows. Other raw materials are common commercially available unless otherwise specified:
  • IPDI Isophorone diisocyanate
  • Tetrabutylammonium acetate (catalyst a): Sigma-Aldrich, 95%;
  • Benzyltrimethylammonium hydroxide (catalyst c): Sigma-Aldrich, 96%;
  • the NCO content test adopts the national standard GB/T 12009.4: After the isocyanate groups in the test sample are neutralized with an excess of 2 mol/L di-n-butylamine, back titration is performed using 1 mol/L hydrochloric acid to obtain the NCO group content based on the total mass of the sample.
  • Test for free isocyanate monomer content adopt national standard GB/T 18446-2009.
  • Color number detection Use BYK digital colorimeter (German BYK LCS IV).
  • Catalyst activity evaluation method Based on isocyanate monomer, the temperature is maintained at 60°C, 150ppm of catalyst is added at one time, and the change rate of isocyanate content at the end of the reaction is compared:
  • Isocyanate content change rate (initial isocyanate monomer isocyanate theoretical content - reaction stop isocyanate content) / initial isocyanate content * 100%;
  • Product amine odor evaluation method Put 400g of product into a 500ml white small-mouth bottle, seal it with a rubber stopper, and then place it in an 80°C oven for 2h. Take it out and remove the rubber stopper. Gently fan the bottle mouth with your hand to feel the amine odor.
  • the amine odor is divided into four levels: none, slight, slightly heavy, and heavy.
  • trimerization catalyst solution Tetrabutyl ammonium acetate was dissolved in n-butanol to prepare a solution with a concentration of 20 wt%.
  • an elliptical upper head is used, equipped with an inert gas inlet pipeline, a central stirring shaft, and an inert gas outlet.
  • the layout is shown in Figures 1 and 2, wherein the angle ( ⁇ ACB) formed by the projection of the insertion pipe opening position A of the inert gas inlet pipeline, the inert gas outlet position B on the upper head surface, and the central stirring shaft fixed position C on the upper head surface on the plane is represented by ⁇ , and the angle is 30° ⁇ 180°;
  • the insertion length of the insertion tube in the reactor is 10 cm, the number of the insertion tube openings is 1, the opening position is located above the liquid level of the material in the reactor, and the distance is 5-50 cm, which is expressed as D;
  • the insertion pipe of the inert gas inlet pipeline opens vertically downward.
  • the radius of the reactor is denoted as R.
  • the vertical distance between the insertion pipe of the inlet pipeline and the central stirring axis is 0.2-1R, expressed as D1; the vertical distance between the inert gas outlet and the central stirring axis is 0.2-1R of the reactor radius, expressed as D2.
  • the steps of preparing a polyisocyanate curing agent are:
  • Inert gas is continuously introduced into the polymerization reactor, and its flow rate and pressure are regulated. Then, 1000 kg of diisocyanate monomer is placed in the polymerization reactor, the reaction system is heated to 70° C., and the trimerization catalyst solution (the amount of trimerization catalyst is 150 ppm of the mass of diisocyanate monomer) is added dropwise to the reaction system under stirring. The reaction temperature is controlled between 70-80° C. to carry out the polymerization reaction. When the diisocyanate conversion rate is 60%, dibutyl phosphate in an amount equimolar to the catalyst is added to terminate the reaction to obtain a polymerization reaction liquid.
  • the unreacted diisocyanate monomer in the polymerization reaction liquid was evaporated and removed using a thin film evaporator at a temperature of 180°C and an absolute pressure of 50 PaG to reduce its content to less than 0.34 wt%.
  • the diisocyanate monomer was then dissolved in butyl acetate to obtain a solution product with a concentration of 70 wt%.
  • the main reaction conditions are shown in Table 1, and the results are shown in Table 2.
  • Example 6 The method of Example 6 was used with the exception that the angle ⁇ ( ⁇ ACB) in the polymerization reactor was adjusted to 25°, and other operating conditions remained unchanged. The results are shown in Table 2.
  • Example 6 The method of Example 6 was used with the exception that the inert gas continued to flow in the polymerization reactor, and only its flow rate was adjusted to 0.04 m/s. Other operating conditions remained unchanged. The results are shown in Table 2.
  • Example 6 The method of Example 6 was used with the difference that the vertical distance D1 between the insertion tube of the inert gas inlet pipeline and the central stirring shaft was adjusted to 0.15R, and other operating conditions remained unchanged. The results are shown in Table 2.
  • Example 6 The method of Example 6 was referred to, except that the vertical distance D1 between the insertion tube of the inert gas inlet pipeline and the central stirring axis and the distance D2 between the outlet pipeline and the central stirring axis were both adjusted to 0.15R, and other operating conditions remained unchanged. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本文公布一种低色号低气味聚异氰酸酯固化剂的制备方法,包括在惰性气体持续流动的聚合反应釜中,二异氰酸酯单体在三聚催化剂的作用下发生聚合反应的步骤,其中,所述聚合反应釜的上封头设有惰性气体入口管线,所述惰性气体入口管线为插入管,所述聚合反应釜的上封头还设有惰性气体出口和中心搅拌轴;所述惰性气体入口管线的插入管开口位置(A)、所述上封头表面上的惰性气体出口位置(B)分别与所述上封头表面上中心搅拌轴的固定位置(C)的连线投影在平面上所形成的夹角α(∠ACB)为30°≤α≤180°。本申请通过控制反应过程中氮气使用方式可以实现催化剂催化活性的稳定,利于反应过程控制的稳定,获得的产品色号低,胺味小。

Description

一种低色号低气味聚异氰酸酯固化剂的制备方法 技术领域
本申请实施例涉及一种低色号低气味聚异氰酸酯固化剂的制备方法,主要用于聚氨酯涂料或胶黏剂领域。
背景技术
异氰脲酸酯,即是异氰酸酯单体三聚反应生成的六元环结构。具有该结构的聚异氰酸酯热稳定性好,尤其是脂肪族或脂环族异氰酸酯的聚异氰酸酯固化剂,是涂料和胶黏剂领域中广泛应用的固化剂产品。
二异氰酸酯单体在催化剂作用下进行改性的技术已经为领域内公知,比如进行三聚反应或醇改性反应,达到预期转化率后采用真空蒸馏或薄膜蒸发脱除未反应的单体,进而获得聚异氰酸酯固化剂产品,可以参考US4288586、US6093817、CN107827832、EP0330966A2等。
然而在实际的工业化实施过程中,在常规的氮气保护过程中发现反应过程催化剂存在催化活性不稳定,进而导致催化剂用量过大、产品质量不稳定等问题出现,比如产品色号升高,由于产品中催化剂分解产物残留等原因使产品在使用过程中容易出现胺味,影响下游客户使用体验。
由此,研发一种简单实用的稳定的低色号低气味聚异氰酸酯固化剂的制备方法对工业化生产具有重要意义。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
相关技术中异氰酸酯通常在惰性气体环境中进行催化聚合反应,比如氮气的保护,或者氮气的流通条件下的保护,这是本领域常规操作,目前公开的技术中对惰性气体保护的具体操作方式均没有特别要求。但在二异氰酸酯催化聚合反应实验过程中,本申请研发人员惊奇的发现,惰性气体在聚合反应釜内的流通方式会影响三聚催化剂的活性,进而影响反应过程控制和最终产品品质如色号、气味等。申请人推测其原因可能是催化剂在异氰酸酯体系中分散后会形成催化剂毒物,而持续不断的惰性气体对异氰酸酯物料液面的吹扫和扰动,一 是可能带出部分毒物,二是可以在一定程度上避免毒物与催化剂的结合,从而有效的保证催化剂的催化活性。同时惰性气体在反应釜内吹扫的异氰酸酯液面的面积越大,越利于催化剂的活性,相反如果没有实现液面的吹扫效果将不利于催化剂活性。
为实现上述目的,本申请人通过大量实验对惰性气体的具体布局和实施条件进行调控,最终开发出一种通过控制惰性气体在聚合反应釜内的位置布局及压力,来制得低色号低气味聚异氰酸酯固化剂的方法。
本申请实施例的技术方案如下:
本申请提供一种低色号低气味聚异氰酸酯固化剂的制备方法,包括在惰性气体持续流动的聚合反应釜中,二异氰酸酯单体在三聚催化剂的作用下发生聚合反应的步骤,其中,所述聚合反应釜的上封头设有惰性气体入口管线,所述惰性气体入口管线为插入管,所述聚合反应釜的上封头还设有惰性气体出口和中心搅拌轴;
所述惰性气体入口管线的插入管开口位置(A)、所述上封头表面上的惰性气体出口位置(B)分别与所述上封头表面上中心搅拌轴的固定位置(C)的连线投影在平面上所形成的夹角α(∠ACB)为30°≤α≤180°,优选90°≤α≤180°,更优选150°≤α≤180°,所述平面为由反应釜顶向下俯视所形成的平面。
本申请中,所述惰性气体在聚合反应釜内持续流动的过程中,其压力控制为1-100kPaG,优选2-60kPaG,更优选3-30kpaG。压力过大对反应釜本身及各阀门的连接要求要高,而压力过低时将十分不利于异氰酸酯催化反应的进行。在聚合反应过程中,本申请要求反应釜中惰性气体处于不断的流通状态下,在此状态下釜内压力的调整可以通过控制釜内气体存量等本领域常规手段来实现,例如具体通过调节惰性气体进口或出口阀门的开度来实现。
本申请中,所述惰性气体由惰性气体入口管线的插入管开口位置进入聚合反应釜,入口处气体流速为0.05m/s-60m/s,优选0.5-30m/s;
所述插入管在反应釜内的开口方向及数量没有特别的限定,但根据实验效果显示,优选开口方向竖直向下或者倾斜角度在小于30°的范围内的,更优选开口竖直向下;所述插入管的开口数量可以为一个,也可以为两个及以上的开口。
本申请中,所述惰性气体入口管线与中心搅拌轴的垂直距离为反应釜半径的0.2-1,例如0.4、0.6、0.8;所述惰性气体出口与中心搅拌轴的垂直距离为反 应釜半径的0.2-1,例如0.4、0.6、0.8。本申请通过控制惰性气体入口与出口的位置,在保证各开口位置角度的前提下能够尽可能的增大惰性气体吹扫过程经过的面积,有利于维持催化剂的催化活性。吹扫面积过小时不利于催化剂活性维持,但惰性气体入口管线和出口管线距离封头边缘优选保持适当距离,越近时不利于施工,容易有安全隐患。
本申请中,所述惰性气体入口管线为插入管,所述插入管在反应釜内的插入长度没有特别限定,可以基于反应釜及物料填充率的大小来进行调节,但根据实验效果显示,在一些具体示例中,优选地,所述插入管在反应釜内的插入长度为5-50cm,优选10-30cm;
所述插入管的开口位置可以在物料的液面以上或者以下,本申请没有特别限定,但根据实验效果显示,优选位于聚合反应釜内物料的液面以上,更优选插入管的开口位置位于物料的液面以上5-50cm,优选20-30cm。惰性气体入口管线的插入管开口位置与液面的距离会影响惰性气体与异氰酸酯液面的扰动程度,距离越近扰动越强会越有利,但距离过近则可能导致异氰酸酯物料飞溅到管入口,长时间运行后容易堵塞管路。
本申请中,所述惰性气体选自氦气、氖气、氩气、氪气和氮气中的一种或多种,优选氩气和/或氮气。
本申请中,所述聚合反应釜上封头的形状没有特别限定,工业化反应釜常用的型式都可,例如半球形、椭圆形、蝶形等。
本申请中,所述由二异氰酸酯单体在三聚催化剂作用下聚合制备聚异氰酸酯固化剂的反应路线为现有工艺,技术人员可以根据相关技术,对二异氰酸酯单体、三聚催化剂及反应过程操作参数等进行选择,例如,在本申请列举的一些具体示例中,可以采用如下所述的方案。
本申请中,所述二异氰酸酯选自脂肪族二异氰酸酯或脂环族二异氰酸酯中的一种或多种,优选四亚甲基二异氰酸酯、五亚甲基二异氰酸酯、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、二环己基甲烷二异氰酸酯、苯二亚甲基二异氰酸酯、环己基二亚甲基二异氰酸酯、赖氨酸二异氰酸酯中的一种或多种;更优选六亚甲基二异氰酸酯和/或异佛尔酮二异氰酸酯。
本申请中,所述三聚催化剂选自有机铵的弱酸盐、烷基羧酸的金属盐,优选四甲基乙酸铵、四乙基乙酸铵、四丁基乙酸铵、十二烷基三甲基辛酸铵、2- 羟基-N,N,N-三甲基-1-丙铵甲酸盐、2-乙基己酸-N-(2-羟丙基)-N,N,N-三甲基铵盐、乙酸钾、辛酸钾、2-丁基己酸铅中的一种或多种,更优选2-羟基-N,N,N-三甲基-1-丙铵甲酸盐或2-乙基己酸-N-(2-羟丙基)-N,N,N-三甲基铵盐、四甲基氢氧化铵、四丁基氢氧化铵、四乙基氢氧化铵、苄基三甲基氢氧化铵中的一种或多种。
本申请中,所述三聚催化剂可以在无溶剂情况下使用,也可以溶解于溶剂中以溶液形式使用;
在一些示例中,所述溶剂选自含1-20个碳原子的直链或支链的一元醇和/或二元醇,或者选自含有多于一个羟基基团并任选地包含其他杂原子的1-20个碳原子的直链或支链醇,所述杂原子优选氧;优选地,用于溶解三聚催化剂的所述溶剂包括但不限于甲醇、乙醇、1-或2-丙醇、正丁醇、异丁醇、仲丁醇、叔丁醇、正辛醇、异辛醇、庚醇、2-乙基-1,3-己二醇、1,3-丁二醇、1,4-丁二醇、1-甲氧基-2-丙醇中的一种或多种,优选乙醇、正丁醇、己醇、庚醇、异辛醇中的一种或多种。
在一些示例中,当本申请的三聚催化剂以溶液形式使用时,所述三聚催化剂溶液的浓度为5-50wt%,优选10-30wt%。
本申请中,所述三聚催化剂的用量为二异氰酸酯单体质量的20-500ppm,优选50-250ppm,可以采用滴加或者一次性方式加入。
本申请中,所述聚合反应条件为:反应温度为40-90℃,优选50-75℃,反应时间为4-20h,优选5-10h。
本申请中,在所述聚合反应完成后,还包括终止反应得到反应液的步骤,以及反应液脱除未反应的二异氰酸酯单体的步骤。
在一些示例中,当二异氰酸酯单体的转化率达到20-70%,优选25-50%时终止反应,转化率可以通过监控反应体系的NCO含量来确定;
优选地,所述终止反应的方式为加入酸性物质使催化剂去活化;
所述酸性物质优选为盐酸、硫酸、磷酸、磷酸二丁酯、磷酸二异辛酯、对甲苯磺酸中的一种或多种;
所述酸性物质的加入量为催化剂摩尔用量的1-10倍,优选1.1-5倍;
或者所述终止反应的方式也可以采用热失活,110-150℃停留15-45min如130℃停留30min。
在一些示例中,所述脱除未反应的二异氰酸酯单体的方式为蒸发法脱除, 选自薄膜蒸发、降膜蒸发法、短程蒸发法、减压精馏法中的任意一种,比如采用薄膜蒸发,分离温度为140-200℃、压力1-500PaG,获得的聚异氰酸酯产品的单体含量小于0.5wt%,色号不大于25Hazen。
本申请所述聚异氰酸酯固化剂,还可以溶解到溶剂中形成溶液产品,浓度优选为50-80wt%;
所述溶剂选自乙酸丁酯、乙酸乙酯、溶剂油、甲苯、二甲苯、丙二醇甲醚醋酸酯、二庚酮等中的任意一种或至少两种的组合。
与相关技术相比,本申请实施例技术方案的有益效果在于:
本申请实施例在二异氰酸酯单体聚合反应过程中,通过控制惰性气体在聚合反应釜内的压力及位置布局来提高催化剂催化活性的稳定性,进而实现反应过程的稳定控制,获得的产品色号低、胺味小,而且产品质量稳定性好。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1为本申请聚合反应釜上封头布局由反应釜顶部俯视的平面示意图;
图中:A、惰性气体入口管线的插入管开口位置,B、惰性气体出口位置,C、中心搅拌轴固定位置,α、投影夹角(∠ACB);
图2为本申请聚合反应釜沿惰性气体入口管线插入管的中心剖面图;
图中:A、惰性气体入口管线的插入管开口位置,C、中心搅拌轴固定位置,D、插入管开口位置与反应釜内物料液面的距离。
具体实施方式
通过以下实施例将对本申请所提供的方法予以进一步的说明,但本申请并不因此而受到任何限制。
1、主要原料来源信息如下,其它若无特别说明均为普通市售原料:
六亚甲基二异氰酸酯(HDI):万华化学集团股份有限公司;
异佛尔酮二异氰酸酯(IPDI):万华化学集团股份有限公司;
五亚甲基二异氰酸酯(PDI),三井化学株式会社;
四丁基乙酸铵(催化剂a):sigma-Aldrich,95%;
2-乙基己酸-N-(2-羟丙基)-N,N,N-三甲基铵盐(催化剂b):空气化工,97%
苄基三甲基氢氧化铵(催化剂c):sigma-Aldrich,96%;
正己醇:sigma-Aldrich,98%;
正丁醇:sigma-Aldrich,98%;
乙酸正丁酯:阿拉丁试剂平台。
2、本申请中的主要测试方法:
1、NCO含量测试采用国家标准GB/T 12009.4:通过将测定试样中的异氰酸酯基用过量的2mol/L二正丁胺中和后,利用1mol/L盐酸进行反滴定得到基于样品的总质量的NCO基团含量。
2、游离异氰酸酯单体含量测试:采用国家标准GB/T 18446-2009。
3、色号检测:采用BYK数显比色计(德国BYK LCS IV)。
4、催化剂活性的评价方法:基于异氰酸酯单体,温度维持在60℃,一次性加入150ppm的催化剂用量,比较反应结束中的异氰酸酯含量变化率:
异氰酸酯含量变化率=(初始异氰酸酯单体异氰酸酯理论含量-反应停止异氰酸酯含量)/初始异氰酸酯含量*100%;
其中变化率越高表示活性越高,建议高于30,更建议高于35。
5、产品胺味评价方法:将400g产品放入500ml的白色小口瓶中,用橡胶塞密闭,然后放置于80℃烘箱加热2h,取出后移走橡胶塞,用手轻轻在瓶口煽动,感觉胺味大小,划分为四级:无、轻微、微重、重。
实施例1-9
三聚催化剂溶液的制备:四丁基乙酸铵解于正丁醇中配成浓度为20wt%的溶液。
聚合反应釜的准备:采用椭圆形上封头,装有惰性气体入口管线、中心搅拌轴、惰性气体出口,布局如附图1、2所示,其中惰性气体入口管线的插入管开口位置A、上封头表面上的惰性气体出口位置B与上封头表面上中心搅拌轴固定位置C投影在平面上所形成的夹角(∠ACB)用α表示,角度为30°≤α≤180°;
插入管在反应釜内的插入长度为10cm,插入管开口数量1个,开口位置位于反应釜内物料液面以上,距离取值为5-50cm,表示为D;
惰性气体入口管线的插入管开口竖直向下,反应釜的半径记为R,惰性气体 入口管线的插入管与中心搅拌轴的垂直距离为0.2-1R,表示为D1;惰性气体出口与中心搅拌轴的垂直距离为反应釜半径的0.2-1R,表示为D2。
制备聚异氰酸酯固化剂,步骤为:
向上述聚合反应釜中持续通入惰性气体,并调控其流速和压力,然后将1000kg二异氰酸酯单体置于将聚合反应釜中,反应体系加热至70℃,搅拌下向反应体系中滴加上述三聚催化剂溶液(三聚催化剂用量为二异氰酸酯单体质量的150ppm),控制反应温度在70-80℃之间进行聚合反应,当二异氰酸酯转化率为60%时,加入与催化剂等摩尔量的磷酸二丁酯终止反应,得到聚合反应液。
使用薄膜蒸发器在温度180℃,绝对压力50PaG的条件下蒸发脱除聚合反应液中未反应的二异氰酸酯单体,使其含量低于0.34wt%,然后溶解于乙酸丁酯中获得浓度为70wt%的溶液产品,主要反应条件如表1,结果如表2所示。
表1实施例1-9反应釜及操作过程主要参数
对比例1
参照实施例6的方法,不同之处在于:聚合反应釜中夹角α(∠ACB)调整为25°,其他操作条件不变,结果如表2所示。
对比例2
参照实施例6的方法,不同之处在于:惰性气体在聚合反应釜内持续流动,仅将其流速调整为0.04m/s,其他操作条件不变,结果如表2所示。
对比例3
参照实施例6的方法,不同之处在于:氮气不流通,仅在聚合反应开始前 通入氮气置换进行保护,压力为5kPaG,聚合反应过程中不再通入氮气,其他操作条件不变,结果如表2所示。
对比例4
参照实施例6的方法,不同之处在于:惰性气体入口管线的插入管与中心搅拌轴的垂直距离D1调整为0.15R,其他操作条件不变,结果如表2所示。
对比例5
参照实施例6的方法,不同之处在于:惰性气体入口管线的插入管与中心搅拌轴的垂直距离D1和出口管线与中心搅拌轴距离D2同时调整为0.15R,其他操作条件不变,结果如表2所示。
对比例6
参照实施例6的方法,不同之处在于:惰性气体出口与中心搅拌轴的垂直距离D2调整为0.15R,其他操作条件不变,结果如表2所示。
表2实施例和对比例中催化剂活性、产品色号及气味比较
从上述表2数据可以看出,控制惰性气体的流通及通入方式,可以有效的维持催化剂活性,并提高产品品质如色号、气味。

Claims (15)

  1. 一种低色号低气味聚异氰酸酯固化剂的制备方法,其包括在惰性气体持续流动的聚合反应釜中,二异氰酸酯单体在三聚催化剂的作用下发生聚合反应的步骤,其中,所述聚合反应釜的上封头设有惰性气体入口管线,所述惰性气体入口管线为插入管,所述聚合反应釜的上封头还设有惰性气体出口和中心搅拌轴;
    所述惰性气体入口管线的插入管开口位置(A)、所述上封头表面上的惰性气体出口位置(B)分别与所述上封头表面上中心搅拌轴的固定位置(C)的连线投影在平面上所形成的夹角α(∠ACB)为30°≤α≤180°,所述平面为由反应釜顶向下俯视所形成的平面。
  2. 根据权利要求1所述的制备方法,其中,所述夹角α(∠ACB)为90°≤α≤180°,优选150°≤α≤180°。
  3. 根据权利要求1或2所述的制备方法,其中,所述惰性气体在聚合反应釜内持续流动的过程中,压力控制为1-100kPaG,优选2-60kPaG,更优选3-30kpaG。
  4. 根据权利要求1-3任一项所述的制备方法,其中,所述惰性气体由惰性气体入口管线的插入管开口位置进入聚合反应釜,入口处气体流速为0.05-60m/s,优选0.5-30m/s;
    所述插入管在反应釜内的开口方向为开口方向竖直向下或者倾斜角度在小于30°的范围内的,优选开口竖直向下;
    所述插入管的开口数量可以为一个,也可以为两个及以上的开口。
  5. 根据权利要求1-4任一项所述的制备方法,其中,所述惰性气体入口管线与中心搅拌轴的垂直距离为反应釜半径的0.2-1;所述惰性气体出口与中心搅拌轴的垂直距离为反应釜半径的0.2-1。
  6. 根据权利要求1-5任一项所述的制备方法,其中,所述惰性气体入口管线,其插入管的开口位置可以在物料的液面以上或者以下,优选位于聚合反应釜内物料的液面以上,更优选插入管的开口位置位于物料的液面以上5-50cm,优选20-30cm。
  7. 根据权利要求1-6任一项所述的制备方法,其中,所述惰性气体选自氦气、氖气、氩气、氪气和氮气中的一种或多种,优选氩气和/或氮气。
  8. 根据权利要求1-7任一项所述的制备方法,其中,所述二异氰酸酯选自脂肪族二异氰酸酯或脂环族二异氰酸酯中的一种或多种。
  9. 根据权利要求8所述的制备方法,其中,所述二异氰酸酯选自四亚甲基二异氰酸酯、五亚甲基二异氰酸酯、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、二环己基甲烷二异氰酸酯、苯二亚甲基二异氰酸酯、环己基二亚甲基二异氰酸酯、赖氨酸二异氰酸酯中的一种或多种;更优选六亚甲基二异氰酸酯和/或异佛尔酮二异氰酸酯。
  10. 根据权利要求1-9任一项所述的制备方法,其中,所述三聚催化剂选自有机铵的弱酸盐或烷基羧酸的金属盐中的一种或多种。
  11. 根据权利要求10所述的制备方法,其中,所述三聚催化剂选自四甲基乙酸铵、四乙基乙酸铵、四丁基乙酸铵、十二烷基三甲基辛酸铵、2-羟基-N,N,N-三甲基-1-丙铵甲酸盐、2-乙基己酸-N-(2-羟丙基)-N,N,N-三甲基铵盐、乙酸钾、辛酸钾、2-丁基己酸铅中的一种或多种,更优选2-羟基-N,N,N-三甲基-1-丙铵甲酸盐或2-乙基己酸-N-(2-羟丙基)-N,N,N-三甲基铵盐、四甲基氢氧化铵、四丁基氢氧化铵、四乙基氢氧化铵、苄基三甲基氢氧化铵中的一种或多种。
  12. 根据权利要求1-11任一项所述的制备方法,其中,所述三聚催化剂可以在无溶剂情况下使用,也可以溶解于溶剂中以溶液形式使用;
    所述溶剂选自含1-20个碳原子的直链或支链的一元醇和/或二元醇,或者选自含有多于一个羟基基团并任选地包含其他杂原子的1-20个碳原子的直链或支链醇,所述杂原子优选氧;优选地,用于溶解三聚催化剂的所述溶剂包括但不限于甲醇、乙醇、1-或2-丙醇、正丁醇、异丁醇、仲丁醇、叔丁醇、正辛醇、异辛醇、庚醇、2-乙基-1,3-己二醇、1,3-丁二醇、1,4-丁二醇、1-甲氧基-2-丙醇中的一种或多种,优选乙醇、正丁醇、己醇、庚醇、异辛醇中的一种或多种;
    当所述三聚催化剂以溶液形式使用时,所述三聚催化剂溶液的浓度为5-50wt%,优选10-30wt%。
  13. 根据权利要求1-12任一项所述的制备方法,其中,所述三聚催化剂的用量为二异氰酸酯单体质量的20-500ppm,优选50-250ppm,可以采用滴加或者一次性方式加入;
    所述聚合反应条件为:反应温度为40-90℃,优选50-75℃,反应时间为4-20h,优选5-10h。
  14. 根据权利要求1-13任一项所述的制备方法,其中,在所述聚合反应完成后,包括终止反应得到反应液的步骤;当二异氰酸酯单体的转化率达到20-70%,优选25-50%时终止反应,转化率可以通过监控反应体系的NCO含量来确定;
    优选地,所述终止反应的方式为加入酸性物质使催化剂去活化;
    所述酸性物质优选为盐酸、硫酸、磷酸、磷酸二丁酯、磷酸二异辛酯、对甲苯磺酸中的一种或多种;
    所述酸性物质的加入量为催化剂摩尔用量的1-10倍,优选1.1-5倍;
    或者,所述终止反应的方式采用热失活,110-150℃停留15-45min。
  15. 根据权利要求1-14任一项所述的制备方法,其中,在所述聚合反应完成后,还包括反应液脱除未反应的二异氰酸酯单体的步骤;
    所述脱除未反应的二异氰酸酯单体的方式为蒸发法脱除,所述蒸发选自薄膜蒸发、降膜蒸发法、短程蒸发法、减压精馏法中的任意一种。
PCT/CN2023/127304 2022-10-28 2023-10-27 一种低色号低气味聚异氰酸酯固化剂的制备方法 WO2024088410A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211336745.6 2022-10-28
CN202211336745.6A CN117946019A (zh) 2022-10-28 2022-10-28 一种低色号低气味聚异氰酸酯固化剂的制备方法

Publications (1)

Publication Number Publication Date
WO2024088410A1 true WO2024088410A1 (zh) 2024-05-02

Family

ID=90791187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127304 WO2024088410A1 (zh) 2022-10-28 2023-10-27 一种低色号低气味聚异氰酸酯固化剂的制备方法

Country Status (2)

Country Link
CN (1) CN117946019A (zh)
WO (1) WO2024088410A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316875A (en) * 1980-01-28 1982-02-23 Union Carbide Corporation Apparatus for producing a curable polyurethane froth
CN101805304A (zh) * 2010-04-07 2010-08-18 烟台万华聚氨酯股份有限公司 一种通过微反应器制备脂肪族多异氰脲酸酯的方法
CN101927184A (zh) * 2010-08-16 2010-12-29 烟台万华聚氨酯股份有限公司 一种复合催化剂以及采用该复合催化剂制备多异氰酸酯的方法
CN103881050A (zh) * 2014-02-11 2014-06-25 万华化学集团股份有限公司 一种浅色聚异氰酸酯固化剂的制备方法
CN105566239A (zh) * 2015-12-16 2016-05-11 青岛科技大学 一种脂肪族二异氰酸酯三聚体固化剂的制备方法
CN113634218A (zh) * 2021-07-22 2021-11-12 国家能源集团宁夏煤业有限责任公司 烯烃气相聚合的装置及其方法
CN114031745A (zh) * 2021-11-16 2022-02-11 万华化学(宁波)有限公司 一种无色多异氰酸酯组合物的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316875A (en) * 1980-01-28 1982-02-23 Union Carbide Corporation Apparatus for producing a curable polyurethane froth
CN101805304A (zh) * 2010-04-07 2010-08-18 烟台万华聚氨酯股份有限公司 一种通过微反应器制备脂肪族多异氰脲酸酯的方法
CN101927184A (zh) * 2010-08-16 2010-12-29 烟台万华聚氨酯股份有限公司 一种复合催化剂以及采用该复合催化剂制备多异氰酸酯的方法
CN103881050A (zh) * 2014-02-11 2014-06-25 万华化学集团股份有限公司 一种浅色聚异氰酸酯固化剂的制备方法
CN105566239A (zh) * 2015-12-16 2016-05-11 青岛科技大学 一种脂肪族二异氰酸酯三聚体固化剂的制备方法
CN113634218A (zh) * 2021-07-22 2021-11-12 国家能源集团宁夏煤业有限责任公司 烯烃气相聚合的装置及其方法
CN114031745A (zh) * 2021-11-16 2022-02-11 万华化学(宁波)有限公司 一种无色多异氰酸酯组合物的制备方法

Also Published As

Publication number Publication date
CN117946019A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
US5691440A (en) Catalyst and process for producing isocyanate trimers
US6291385B1 (en) Catalyst for polymerization or copolymerization of olefin
US5641851A (en) Preparation of biuret-containing polyisocyanates
US9376403B2 (en) Process for trimerising cycloaliphatic diisocyanates
JPH09132632A (ja) 低表面エネルギーポリイソシアネート及び1又は2成分塗料組成物におけるその使用
CN107827832B (zh) 一种制备基于ipdi的聚异氰酸酯固化剂的方法
WO2020133067A1 (zh) 一种含有脲二酮基团的多异氰酸酯的制备方法
CN109651278B (zh) 一种多异氰酸酯的制备方法
WO2024088410A1 (zh) 一种低色号低气味聚异氰酸酯固化剂的制备方法
CN112250835B (zh) 一种制备无色多异氰酸酯组合物的方法
JP2002060386A (ja) 臭いの少ない貯蔵安定性のモノマー含有ポリイソシアヌレートの製造方法
WO2021047308A1 (zh) 一种多异氰酸酯组合物及其制备方法
CN112079979B (zh) 生物基型五亚甲基二异氰酸酯固化剂及其制备方法与应用
CN112876956A (zh) 一种聚天门冬氨酸酯组合物及其制备方法和用途
US6710151B2 (en) Terminal-blocked isocyanate prepolymer having oxadiazine ring, process for producing the same, and composition for surface-coating material
US11655316B2 (en) Polymer flow index modifier
CN114031745B (zh) 一种无色多异氰酸酯组合物的制备方法
JP5111707B2 (ja) 微着色分岐ポリイソシアネートの取得法、及び得られる組成物
CN116751356A (zh) 一种多异氰酸酯组合物、制备方法及其应用
JPH05287240A (ja) 二液型含フツ素塗料組成物
CN108164668A (zh) 一种脂肪族异氰酸酯均聚物的制备方法
US3135784A (en) Process for the production of esters
JP2020041075A (ja) 塗料組成物及び塗膜の製造方法
CN111793003A (zh) 一种聚天门冬氨酸酯树脂的制备方法
JP7560566B2 (ja) 水分散型ポリイソシアネート、水性ポリウレタン樹脂組成物および物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881985

Country of ref document: EP

Kind code of ref document: A1