WO2024088202A1 - 电子设备 - Google Patents

电子设备 Download PDF

Info

Publication number
WO2024088202A1
WO2024088202A1 PCT/CN2023/125889 CN2023125889W WO2024088202A1 WO 2024088202 A1 WO2024088202 A1 WO 2024088202A1 CN 2023125889 W CN2023125889 W CN 2023125889W WO 2024088202 A1 WO2024088202 A1 WO 2024088202A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
feeding port
antenna radiator
boss
radiator
Prior art date
Application number
PCT/CN2023/125889
Other languages
English (en)
French (fr)
Inventor
明杰
李日辉
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024088202A1 publication Critical patent/WO2024088202A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure

Definitions

  • the present application belongs to the field of antenna technology, and specifically relates to an electronic device.
  • the purpose of the embodiments of the present application is to provide an electronic device that can solve the technical problem of coupling between two adjacent antennas of the same frequency band in the electronic device.
  • an embodiment of the present application provides an electronic device, including an antenna radiator, a first feeding port, a second feeding port, a ground plate, and a conductor;
  • the first end of the antenna radiator is electrically connected to the ground plate through the conductor
  • the first feeding port is arranged at the second end of the antenna radiator, and the first feeding port is conductively connected to the second end of the antenna radiator to form a first antenna;
  • the second feeding port is arranged in the low-resistance region of the antenna radiator, and the second feeding port is conductively connected to the low-resistance region of the antenna radiator to form a second antenna;
  • the first antenna and the second antenna are antennas of the same frequency band.
  • the electronic device in the embodiment of the present application includes an antenna radiator, a first feeding port, a second feeding port, a ground plate and a conductor; the first end of the antenna radiator is electrically connected to the ground plate through the conductor; the first feeding port is arranged at the second end of the antenna radiator, and the first feeding port is conductively connected to the second end of the antenna radiator to form a first antenna; the second feeding port is arranged in a low-resistance region of the antenna radiator, and the second feeding port is conductively connected to the low-resistance region of the antenna radiator to form a second antenna.
  • the second feeding port in the low-resistance region of the antenna radiator, when the first feeding port receives a feeding signal to excite the first antenna, or when the second feeding port receives a feeding signal to excite the second antenna, isolation is formed between the first feeding port and the second feeding port, thereby realizing the first antenna and the second antenna.
  • the decoupling between the two antennas avoids coupling between the first antenna and the second antenna in the same frequency band.
  • FIG1 is a schematic diagram of a structure of an electronic device provided in an embodiment of the present application.
  • FIG2 is one of the simulation diagrams of the antenna radiator provided in the embodiment of the present application.
  • FIG3 is one of the current distribution schematic diagrams of the antenna radiator provided in an embodiment of the present application.
  • FIG4 is a second schematic diagram of current distribution of an antenna radiator provided in an embodiment of the present application.
  • FIG5 is one of the equivalent circuit diagrams provided in the embodiment of the present application.
  • FIG6 is a second schematic diagram of the structure of an electronic device provided in an embodiment of the present application.
  • FIG. 7 is a second simulation diagram of an antenna radiator provided in an embodiment of the present application.
  • FIG8 is a third schematic diagram of current distribution of an antenna radiator provided in an embodiment of the present application.
  • FIG9 is a fourth schematic diagram of current distribution of an antenna radiator provided in an embodiment of the present application.
  • FIG10 is a second equivalent circuit diagram provided in an embodiment of the present application.
  • FIG11 is a third structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG12 is a third simulation diagram of the antenna radiator provided in an embodiment of the present application.
  • FIG13 is a fifth schematic diagram of current distribution of an antenna radiator provided in an embodiment of the present application.
  • FIG14 is a sixth schematic diagram of current distribution of an antenna radiator provided in an embodiment of the present application.
  • FIG15 is a third equivalent circuit diagram provided in an embodiment of the present application.
  • FIG16 is a fourth structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG17 is a fourth simulation diagram of the antenna radiator provided in an embodiment of the present application.
  • FIG. 18 is a seventh schematic diagram of current distribution of an antenna radiator provided in an embodiment of the present application.
  • FIG19 is an eighth schematic diagram of current distribution of an antenna radiator provided in an embodiment of the present application.
  • FIG. 20 is a fourth equivalent circuit diagram provided in an embodiment of the present application.
  • Figure 1 is one of the structural schematic diagrams of an electronic device provided in an embodiment of the present application.
  • the electronic device includes an antenna radiator 10, a first feeding port P1, a second feeding port P2, a ground plate 20 and a conductor 30;
  • the first end of the antenna radiator 10 is electrically connected to the ground plate 20 through the conductor 30;
  • the first feeding port P1 is disposed at the second end of the antenna radiator 10, and the first feeding port P1 is conductively connected to the second end of the antenna radiator 10 to form a first antenna;
  • the second feeding port P2 is disposed in the low-resistance region of the antenna radiator 10 , and the second feeding port P2 is conductively connected to the low-resistance region of the antenna radiator 10 to form a second antenna.
  • the first feeding port P1 is conductively connected to the second end of the antenna radiator 10 to form a first antenna; the second feeding port P2 is conductively connected to the low-resistance region of the antenna radiator 10 to form a second antenna, wherein the first antenna and the second antenna are antennas of the same frequency band.
  • the operating frequency band of the antenna radiator 10 is 2.5 GHz
  • the first antenna and the second antenna are loop antennas
  • the first antenna and the second antenna form two loop antennas that share the same radiator, that is, share the antenna radiator 10 in FIG. 1 .
  • the operating frequency band of the antenna radiator 10 may be 400 MHz, or 6 GHz, or other frequency bands; the first antenna and the second antenna may be dipole antennas, or monopole antennas, or other types of antennas; the subsequent content is only for the purpose of illustrating the technical solution, and takes the operating frequency band of the antenna radiator 10 as 2.5 GHz, and the first antenna and the second antenna as LOOP antennas as an example for explanation, and does not specifically limit the operating frequency band and antenna type.
  • the low-resistance area of the antenna radiator 10 that is, the area with the lowest impedance on the outer surface of the antenna radiator 10, is determined, and the second feeding port P2 is set in the low-resistance area of the antenna radiator 10, wherein the second feeding port P2 can be understood as a load, and optionally, the resistance value of the second feeding port P2 is set to 50 ohms.
  • the operating frequency band of the antenna radiator 10 is 2.5 GHz
  • the low-resistance area of the antenna radiator 10 is located in the central area of the antenna radiator 10, so the second feeding port P2 can be set in the central area of the antenna radiator 10.
  • FIG. 2 shows the simulation results of the S parameters, i.e., the scattering parameters, of the antenna radiator 10 .
  • FIG. 2 involves the simulation results of the three S parameters, i.e., the S11 parameter, the S22 parameter, and the S21 parameter.
  • the S11 parameter is the input reflection parameter
  • the S22 parameter is the output reflection parameter
  • the S21 parameter is the forward transmission parameter.
  • the horizontal axis in FIG. 2 represents the frequency band
  • the vertical axis represents the decibel.
  • the minimum S21 parameter is -12.399 dB, indicating that the isolation effect between the first antenna and the second antenna is good.
  • Figure 3 is a schematic diagram of the current distribution on the surface of the antenna radiator 10 represented in vector form when the first antenna is excited by the first feeding port P1.
  • Figure 3 when the first antenna is excited by the first feeding port P1, the current flowing from the first feeding port P1 to the second feeding port P2 is small, indicating that isolation is formed between the first feeding port P1 and the second feeding port P2.
  • Figure 4 is a schematic diagram of the current distribution on the surface of the antenna radiator 10 represented in vector form when the second antenna is excited through the second feeding port P2.
  • Figure 4 when the second antenna is excited through the second feeding port P2, the current flowing from the second feeding port P2 to the first feeding port P1 is small, indicating that isolation is formed between the first feeding port P1 and the second feeding port P2.
  • FIG. 5 shows an equivalent circuit diagram of the first antenna and the second antenna.
  • the first end of the antenna radiator 10 is electrically connected to the ground plane 20 through the conductor 30, which is equivalent to the antenna radiator 10 being electrically connected to a first resistor R1 with a resistance of 0 ohms.
  • the first feed port P1 and the second feed port P2 can be equivalent to a load respectively. When the first antenna is excited by the first feed port P1, the second feed port P2 is short-circuited, and the current flowing from the first feed port P1 to the second feed port P2 is small.
  • the first feed port P1 When the second antenna is excited by the second feed port P2, the first feed port P1 is short-circuited, and the current flowing from the second feed port P2 to the first feed port P1 is small. In this way, isolation is formed between the first feed port P1 and the second feed port P2, and decoupling between the first antenna and the second antenna is achieved.
  • the electronic device in the embodiment of the present application includes an antenna radiator 10, a first feeding port P1, a second feeding port P2, a grounding plate 20 and a conductor 30; the first end of the antenna radiator 10 is electrically connected to the grounding plate 20 through the conductor 30; the first feeding port P1 is arranged at the second end of the antenna radiator 10, and the first feeding port P1 is conductively connected to the second end of the antenna radiator 10, so as to form a first antenna; the second feeding port P2 is arranged in the low-resistance region of the antenna radiator 10, and the second feeding port P2 is conductively connected to the low-resistance region of the antenna radiator 10, so as to form a second antenna.
  • the second feeding port P2 in the low-resistance region of the antenna radiator 10, when the first feeding port P1 receives a feeding signal to excite the first antenna, or when the second feeding port P2 receives a feeding signal to excite the second antenna, isolation is formed between the first feeding port P1 and the second feeding port P2, so as to achieve decoupling between the first antenna and the second antenna, and avoid coupling between the first antenna and the second antenna in the same frequency band.
  • the conductor 30 is a conductive metal piece, and the length of the antenna radiator 10 is equal to the antenna wavelength corresponding to the antenna radiator 10 .
  • the conductor is a conductive metal piece.
  • the conductor may be made of copper or Aluminum, or other conductive metals.
  • the length of the antenna radiator 10 is equal to the antenna wavelength corresponding to the antenna radiator 10.
  • the antenna wavelength corresponding to the antenna radiator 10 is 120 mm
  • the length of the antenna radiator 10 is 120 mm
  • the length between the first feeding port P1 and the second feeding port P2 can be set to That is 63mm
  • the width of the antenna radiator 10 is set to That is, 2mm
  • the distance between the antenna radiator 10 and the ground plate 20 is set to That is 4mm.
  • the conductor 30 is an inductor L, and the length of the antenna radiator 10 is smaller than the antenna wavelength corresponding to the antenna radiator 10 .
  • the conductor 30 is set as an inductor L, the resonant length of the antenna radiator 10 is changed, and while reducing the length of the antenna radiator 10, the first antenna and the second antenna can still resonate in the same frequency band.
  • the inductor L is 3.9nH.
  • the simulation result of the S parameter of the antenna radiator 10 is shown in FIG. 7 . It can be seen from FIG. 7 that in the N41 frequency band, the S21 parameter is minimum at -9.6 dB, indicating that the isolation effect between the first antenna and the second antenna is good.
  • FIG8 To further illustrate the isolation effect between the first antenna and the second antenna, please refer to FIG8 .
  • the current flowing from the first feeding port P1 to the second feeding port P2 is small, indicating that isolation is formed between the first feeding port P1 and the second feeding port P2.
  • FIG9 As shown in FIG9 , when the second antenna is excited by the second feeding port P2, the current flowing from the second feeding port P2 to the first feeding port P1 is small, indicating that isolation is formed between the first feeding port P1 and the second feeding port P2.
  • the first end of the antenna radiator 10 is electrically connected to the ground plane 20 through the inductor L, which is equivalent to the antenna radiator 10 being electrically connected to the inductor L.
  • the first antenna is excited by the first feeding port P1
  • the second feeding port P2 is short-circuited, and the current flowing from the first feeding port P1 to the second feeding port P2 is relatively small.
  • the second antenna is excited by the second feeding port P2
  • the first feeding port P1 is short-circuited, and the current flowing from the second feeding port P2 to the first feeding port P1 is relatively small. In this way, isolation is formed between the first feeding port P1 and the second feeding port P2, and decoupling between the first antenna and the second antenna is achieved.
  • the length of the antenna radiator 10 is By setting the conductor as the inductor L, the length of the antenna radiator 10 is reduced, the antenna is miniaturized, and the internal space of the electronic device is saved.
  • the sum of the target length corresponding to the antenna radiator 10 and the equivalent length corresponding to the inductance L is equal to half of the antenna wavelength corresponding to the antenna radiator 10, and the target length corresponding to the antenna radiator 10 is the length between the second feeding port P2 and the first end of the antenna radiator 10.
  • a second feeding port is provided.
  • the sum of the length between P2 and the first end of the antenna radiator 10 and the equivalent length corresponding to the inductance L is equal to half of the antenna wavelength.
  • the antenna wavelength corresponding to the antenna radiator 10 is 120 mm
  • the length between the first feeding port P1 and the second feeding port P2 can be set to That is, 54 mm
  • the width of the antenna radiator 10 is set to That is, 2mm
  • the distance between the antenna radiator 10 and the ground plate 20 is set to That is 4mm.
  • the antenna radiator 10 includes at least one pair of bosses, one of the pair of bosses is arranged between the first feeding port P1 and the second feeding port P2, the other of the pair of bosses is arranged between the second feeding port P2 and the conductor, the grounding plate 20 includes a groove arranged opposite to the boss, and the boss portion is located in the corresponding groove.
  • a boss may be provided on the surface of the antenna radiator 10 to further reduce the length of the antenna radiator 10 and realize miniaturization of the antenna radiator 10 .
  • the groove includes a first side wall and a second side wall that are perpendicular to each other, and the first side wall is arranged parallel to the antenna radiator 10 .
  • d1 between the boss and the first side wall of the oppositely disposed groove is limited, and a distance d2 between the boss and the second side wall of the oppositely disposed groove is limited, so as to reduce the length of the antenna radiator 10.
  • d1 in subsequent Figures 11 and 16 represents the distance between the boss and the first side wall of the oppositely disposed groove, and d2 represents the distance between the boss and the second side wall of the oppositely disposed groove.
  • the conductor 30 is a conductive metal part
  • the antenna radiator 10 includes a first boss 11, a second boss 12, a third boss 13 and a fourth boss 14 arranged at a preset distance, the first boss 11 and the second boss 12 are arranged between the first feeding port P1 and the second feeding port P2, and the third boss 13 and the fourth boss 14 are arranged between the second feeding port P2 and the conductive metal part.
  • the antenna radiator 10 includes four bosses, namely a first boss 11 , a second boss 12 , a third boss 13 and a fourth boss 14 , and the conductor 30 is a conductive metal member.
  • the simulation results of the S parameters of the antenna radiator 10 are shown in FIG. 12 . It can be seen from FIG. 12 that in the N41 frequency band, the S21 parameter is minimum at -13.3 dB, indicating that the isolation effect between the first antenna and the second antenna is good.
  • FIG. 13 To further illustrate the isolation effect between the first antenna and the second antenna, please refer to FIG. 13. As shown in FIG. 13, when the first antenna is excited by the first feeding port P1, the current flowing from the first feeding port P1 to the second feeding port P2 is small, indicating that isolation is formed between the first feeding port P1 and the second feeding port P2. And refer to FIG. 14. As shown in FIG. 14, when the second antenna is excited by the second feeding port P2, the current flowing from the second feeding port P2 to the second feeding port P2 is small. The current of the first feeding port P1 is relatively small, indicating that the first feeding port P1 and the second feeding port P2 are isolated from each other.
  • the first end of the antenna radiator 10 is electrically connected to the ground plane 20 through a conductive metal part, which is equivalent to the antenna radiator 10 being electrically connected to a first resistor R1 with a resistance of 0 ohms; the first capacitor C1 in FIG. 15 is formed between the first boss 11, the second boss 12 and the ground plane 20, and the second capacitor C2 in FIG. 15 is formed between the third boss 13, the fourth boss 14 and the ground plane 20.
  • the first antenna is excited by the first feeding port P1, the second feeding port P2 is short-circuited, and the current flowing from the first feeding port P1 to the second feeding port P2 is small.
  • the first feeding port P1 When the second antenna is excited by the second feeding port P2, the first feeding port P1 is short-circuited, and the current flowing from the second feeding port P2 to the first feeding port P1 is small. In this way, isolation is formed between the first feeding port P1 and the second feeding port P2, and decoupling between the first antenna and the second antenna is achieved.
  • both d1 and d2 can be set larger than and less than It should be noted that if d1 and d2 are less than or equal to This may cause the coupling capacitance formed between the antenna radiator 10 and the ground plane 20 to be too large, affecting the external radiation of the antenna radiator 10; if d1 and d2 are greater than or equal to This may cause the coupling between the antenna radiator 10 and the ground plate 20 to be too weak, and the length of the antenna radiator 10 cannot be reduced.
  • the length of the antenna radiator 10 is greater than a target value; the target value is the product of an antenna wavelength corresponding to the antenna radiator 10 and a preset value.
  • the antenna wavelength corresponding to the antenna radiator 10 is When the wavelength is 120 mm, the preset value is 0.7 and the target value is the antenna wavelength.
  • the length of the antenna radiator 10 having four bosses is equal to That is, 87 mm, which is greater than the target value.
  • the length of the antenna radiator 10 is further reduced compared to the antenna radiator 10 without the boss, thereby miniaturizing the antenna radiator 10 .
  • the length between the first feeding port P1 and the second feeding port P2 can be set to That is 46.75mm; the width of the antenna radiator 10 is set to That is, 2mm; the distance between the antenna radiator 10 and the ground plate 20 is set to That is 4mm.
  • the conductor 30 is a capacitor
  • the antenna radiator 10 includes a fifth boss 15 and a sixth boss 16, the fifth boss 15 is arranged between the first feeding port P1 and the second feeding port P2, the sixth boss 16 is arranged between the second feeding port P2 and the inductor L, and the length between the fifth boss 15 and the first feeding port P1 is the same as the length between the sixth boss 16 and the first end of the antenna radiator 10.
  • the antenna radiator 10 includes two bosses, namely a fifth boss 15 and a sixth boss 16 , and is conductive.
  • the body 30 is a capacitor.
  • the capacitor is a 1.8 pf capacitor.
  • the simulation results of the S parameters of the antenna radiator 10 are shown in FIG. 17 . It can be seen from FIG. 17 that in the N41 frequency band, the S21 parameter is minimum at -21.88 dB, indicating that the isolation effect between the first antenna and the second antenna is good.
  • FIG. 18 To further illustrate the isolation effect between the first antenna and the second antenna, please refer to FIG. 18.
  • the current flowing from the first feeding port P1 to the second feeding port P2 is small, indicating that isolation is formed between the first feeding port P1 and the second feeding port P2.
  • FIG. 19 As shown in FIG. 19, when the second antenna is excited by the second feeding port P2, the current flowing from the second feeding port P2 to the first feeding port P1 is small, indicating that isolation is formed between the first feeding port P1 and the second feeding port P2.
  • the first end of the antenna radiator 10 is electrically connected to the ground plate 20 through the third capacitor C3; the fourth capacitor C4 in Figure 20 is formed between the fifth boss 15 and the ground plate 20; the fifth capacitor C5 in Figure 20 is formed between the sixth boss 16 and the ground plate 20.
  • the first antenna is excited by the first feeding port P1
  • the second feeding port P2 is short-circuited, and the current flowing from the first feeding port P1 to the second feeding port P2 is small.
  • the first feeding port P1 is short-circuited, and the current flowing from the second feeding port P2 to the first feeding port P1 is small. In this way, isolation is formed between the first feeding port P1 and the second feeding port P2, and decoupling between the first antenna and the second antenna is achieved.
  • both d1 and d2 can be set larger than and less than
  • the length of the antenna radiator 10 is smaller than a target value; the target value is the product of an antenna wavelength corresponding to the antenna radiator 10 and a preset value.
  • the antenna wavelength corresponding to the antenna radiator 10 is When the wavelength is 120 mm, the preset value is 0.7 and the target value is the antenna wavelength.
  • the length of the antenna radiator 10 having two bosses is equal to That is, 65 mm, which is smaller than the target value.
  • the antenna radiator 10 includes a boss, by setting the conductor as a capacitor, the length of the antenna radiator 10 is reduced, the antenna is miniaturized, and the internal space of the electronic device is saved.
  • the length between the first feeding port P1 and the second feeding port P2 can be set to That is, 26.25 mm; the width of the antenna radiator 10 is set to That is, 2mm; the distance between the antenna radiator 10 and the ground plate 20 is set to That is 4mm.
  • the electronic device may be a computer, a mobile phone, a tablet computer, a laptop computer, a personal digital assistant, PDA for short), mobile Internet device (MID), wearable device (Wearable Device), e-reader, navigator, digital camera, etc.
  • MID mobile Internet device
  • Wearable Device wearable Device
  • e-reader navigator, digital camera, etc.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请提供了一种电子设备,该电子设备包括天线辐射体、第一馈电端口、第二馈电端口、接地板和导电体;天线辐射体的第一端通过导电体与接地板电连接;第一馈电端口设置在天线辐射体的第二端,且第一馈电端口与天线辐射体的第二端导电连接,用于形成第一天线;第二馈电端口设置在天线辐射体的低阻区域,且第二馈电端口与天线辐射体的低阻区域导电连接,用于形成第二天线;其中,第一天线和第二天线为同频段天线。

Description

电子设备
相关申请的交叉引用
本申请主张在2022年10月28日在中国提交的中国专利申请No.202211334725.5的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于天线技术领域,具体涉及一种电子设备。
背景技术
随着5G通信技术的发展,需要在电子设备上布局越来越多的通信天线,以增加电子设备支持的5G通信频段。然而,在电子设备中,相邻的两个同频段天线之间可能产生耦合现象,这干扰了电子设备中通信天线的正常工作。
发明内容
本申请实施例的目的是提供一种电子设备,能够解决电子设备中相邻的两个同频段天线之间产生耦合现象的技术问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提供了一种电子设备,包括天线辐射体、第一馈电端口、第二馈电端口、接地板和导电体;
所述天线辐射体的第一端通过所述导电体与所述接地板电连接;
所述第一馈电端口设置在所述天线辐射体的第二端,且所述第一馈电端口与所述天线辐射体的第二端导电连接,用于形成第一天线;
所述第二馈电端口设置在所述天线辐射体的低阻区域,且所述第二馈电端口与所述天线辐射体的低阻区域导电连接,用于形成第二天线;
其中,所述第一天线和所述第二天线为同频段天线。
本申请实施例中的电子设备包括天线辐射体、第一馈电端口、第二馈电端口、接地板和导电体;天线辐射体的第一端通过导电体与接地板电连接;第一馈电端口设置在天线辐射体的第二端,且第一馈电端口与天线辐射体的第二端导电连接,用于形成第一天线;第二馈电端口设置在天线辐射体的低阻区域,且第二馈电端口与天线辐射体的低阻区域导电连接,用于形成第二天线。本申请实施例中,通过将第二馈电端口设置在天线辐射体的低阻区域,当第一馈电端口接收馈电信号激励第一天线时,或者当第二馈电端口接收馈电信号激励第二天线时,第一馈电端口和第二馈电端口之间形成隔离,以此实现第一天线和第 二天线之间的解耦,避免同频段的第一天线和第二天线之间产生耦合现象。
附图说明
图1是本申请实施例提供的电子设备的结构示意图之一;
图2是本申请实施例提供的天线辐射体的仿真图之一;
图3是本申请实施例提供的天线辐射体的电流分布示意图之一;
图4是本申请实施例提供的天线辐射体的电流分布示意图之二;
图5是本申请实施例提供的等效电路图之一;
图6是本申请实施例提供的电子设备的结构示意图之二;
图7是本申请实施例提供的天线辐射体的仿真图之二;
图8是本申请实施例提供的天线辐射体的电流分布示意图之三;
图9是本申请实施例提供的天线辐射体的电流分布示意图之四;
图10是本申请实施例提供的等效电路图之二;
图11是本申请实施例提供的电子设备的结构示意图之三;
图12是本申请实施例提供的天线辐射体的仿真图之三;
图13是本申请实施例提供的天线辐射体的电流分布示意图之五;
图14是本申请实施例提供的天线辐射体的电流分布示意图之六;
图15是本申请实施例提供的等效电路图之三;
图16是本申请实施例提供的电子设备的结构示意图之四;
图17是本申请实施例提供的天线辐射体的仿真图之四;
图18是本申请实施例提供的天线辐射体的电流分布示意图之七;
图19是本申请实施例提供的天线辐射体的电流分布示意图之八;
图20是本申请实施例提供的等效电路图之四。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联 对象是一种“或”的关系。
请参阅图1,图1是本申请实施例提供的电子设备的结构示意图之一。如图1所示,电子设备包括天线辐射体10、第一馈电端口P1、第二馈电端口P2、接地板20和导电体30;
所述天线辐射体10的第一端通过所述导电体30与所述接地板20电连接;
所述第一馈电端口P1设置在所述天线辐射体10的第二端,且所述第一馈电端口P1与所述天线辐射体10的第二端导电连接,用于形成第一天线;
所述第二馈电端口P2设置在所述天线辐射体10的低阻区域,且所述第二馈电端口P2与所述天线辐射体10的低阻区域导电连接,用于形成第二天线。
如图1所示,第一馈电端口P1与天线辐射体10的第二端导电连接,用于形成第一天线;第二馈电端口P2与天线辐射体10的低阻区域导电连接,用于形成第二天线,其中,上述第一天线和第二天线为同频段天线。
可选地,上述天线辐射体10的工作频段为2.5GHz,上述第一天线和第二天线为环(LOOP)天线,上述第一天线和第二天线形成共用同一辐射体,即共用图1中天线辐射体10的两个LOOP天线。
应理解,在其他实施例中,上述天线辐射体10的工作频段可以为400MHz,或者6GHz,或其他频段;上述第一天线和第二天线可以为偶极天线,或单极天线,或其他类型的天线;后续内容仅出于说明技术方案的需要,以天线辐射体10的工作频段为2.5GHz,上述第一天线和第二天线为LOOP天线为例进行阐述,并不对工作频段和天线类型进行具体限定。
当第一馈电端口P1接收馈电信号激励第一天线时,基于天线辐射体10表面的电流分布,确定天线辐射体10的低阻区域,即天线辐射体10外表面阻抗最低的区域,并将第二馈电端口P2设置在天线辐射体10的低阻区域,其中,上述第二馈电端口P2可以理解为一个负载,可选地,设置第二馈电端口P2的阻值为50欧姆。应理解,当天线辐射体10的工作频段为2.5GHz时,天线辐射体10的低阻区域位于天线辐射体10中央区域,因此可以将第二馈电端口P2设置在天线辐射体10的中央区域。
请参阅图2,图2示出的是天线辐射体10的S参数即散射参数的仿真结果,图2中涉及S11参数、S22参数和S21参数这三个S参数的仿真结果,S11参数为输入反射参数,S22参数为输出反射参数,S21参数为正向传输参数,其中,图2中的横坐标轴表征频段,纵坐标轴表征分贝。从图2中可以得到,在N41频段,即2490Mhz-2690Mhz这一频段, S21参数最小在-12.399dB,表示第一天线和第二天线之间的隔离效果较好。
为进一步说明第一天线和第二天线之间的隔离效果,请参阅图3,图3为第一天线通过第一馈电端口P1激励的情况下,以矢量形式表示的天线辐射体10表面的电流分布示意图。如图3所示,在第一天线通过第一馈电端口P1激励的情况下,从第一馈电端口P1流向第二馈电端口P2的电流较小,表示第一馈电端口P1和第二馈电端口P2之间形成隔离。
为进一步说明第一天线和第二天线之间的隔离效果,请参阅图4,图4为第二天线通过第二馈电端口P2激励的情况下,以矢量形式表示的天线辐射体10表面的电流分布示意图。如图4所示,在第二天线通过第二馈电端口P2激励的情况下,从第二馈电端口P2流向第一馈电端口P1的电流较小,表示第一馈电端口P1和第二馈电端口P2之间形成隔离。
进一步的,请参阅图5,图5示出的是第一天线和第二天线的等效电路图,容易理解的是,天线辐射体10的第一端通过导电体30与接地板20电连接,等效为天线辐射体10与一个阻值为0欧姆的第一电阻R1电连接,第一馈电端口P1和第二馈电端口P2可以分别等效为一个负载。在第一天线通过第一馈电端口P1激励的情况下,第二馈电端口P2短路,第一馈电端口P1流向第二馈电端口P2的电流较小。在第二天线通过第二馈电端口P2激励的情况下,第一馈电端口P1短路,第二馈电端口P2流向第一馈电端口P1的电流较小。以此第一馈电端口P1和第二馈电端口P2之间形成隔离,实现第一天线和第二天线之间的解耦。
本申请实施例中的电子设备包括天线辐射体10、第一馈电端口P1、第二馈电端口P2、接地板20和导电体30;天线辐射体10的第一端通过导电体30与接地板20电连接;第一馈电端口P1设置在天线辐射体10的第二端,且第一馈电端口P1与天线辐射体10的第二端导电连接,用于形成第一天线;第二馈电端口P2设置在天线辐射体10的低阻区域,且第二馈电端口P2与天线辐射体10的低阻区域导电连接,用于形成第二天线。本申请实施例中,通过将第二馈电端口P2设置在天线辐射体10的低阻区域,当第一馈电端口P1接收馈电信号激励第一天线时,或者当第二馈电端口P2接收馈电信号激励第二天线时,第一馈电端口P1和第二馈电端口P2之间形成隔离,以此实现第一天线和第二天线之间的解耦,避免同频段的第一天线和第二天线之间产生耦合现象。
可选地,所述导电体30为导电金属件,所述天线辐射体10的长度等于所述天线辐射体10对应的天线波长。
本实施例中,上述导电体为导电金属件,可选地,上述导电体的材质可以为铜,或者 铝,或者其他导电金属。上述天线辐射体10的长度等于天线辐射体10对应的天线波长。
可选地,在天线辐射体10的工作频段为2.5GHz的情况下,天线辐射体10对应的天线波长为120mm,则天线辐射体10的长度为120mm,可以设置第一馈电端口P1与第二馈电端口P2之间的长度为即63mm;设置天线辐射体10的宽度为即2mm;设置天线辐射体10与接地板20之间的距离为即4mm。
可选地,所述导电体30为电感L,所述天线辐射体10的长度小于所述天线辐射体10对应的天线波长。
请参阅图6,如图6所示,通过将导电体30设置为电感L,改变天线辐射体10的谐振长度,在减少天线辐射体10长度的同时,第一天线和第二天线仍然可以在同一频段谐振。可选地,上述电感L为3.9nH电感。
上述天线辐射体10的S参数的仿真结果如图7所示,从图7中可以得到,在N41频段,S21参数最小在-9.6dB,表示第一天线和第二天线之间的隔离效果较好。
为进一步说明第一天线和第二天线之间的隔离效果,请参阅图8,如图8所示,在第一天线通过第一馈电端口P1激励的情况下,从第一馈电端口P1流向第二馈电端口P2的电流较小,表示第一馈电端口P1和第二馈电端口P2之间形成隔离。以及参阅图9,如图9所示,在第二天线通过第二馈电端口P2激励的情况下,从第二馈电端口P2流向第一馈电端口P1的电流较小,表示第一馈电端口P1和第二馈电端口P2之间形成隔离。
进一步的,请参阅图10,容易理解的是,天线辐射体10的第一端通过电感L与接地板20电连接,等效为天线辐射体10与电感L电连接。在第一天线通过第一馈电端口P1激励的情况下,第二馈电端口P2短路,第一馈电端口P1流向第二馈电端口P2的电流较小。在第二天线通过第二馈电端口P2激励的情况下,第一馈电端口P1短路,第二馈电端口P2流向第一馈电端口P1的电流较小。以此第一馈电端口P1和第二馈电端口P2之间形成隔离,实现第一天线和第二天线之间的解耦。
本实施例中,在天线辐射体10的工作频段为2.5GHz的情况下,天线辐射体10对应的天线波长为120mm,则天线辐射体10的长度为即100mm。通过将导电体设置为电感L,减少天线辐射体10的长度,实现天线的小型化,进而节省电子设备的内部空间。
可选地,所述天线辐射体10对应的目标长度与所述电感L对应的等效长度的和值,等于所述天线辐射体10对应的天线波长的二分之一,所述天线辐射体10对应的目标长度为所述第二馈电端口P2与所述天线辐射体10的第一端之间的长度。
本实施例中,为保证第一天线和第二天线可以在谐振在同一频段,设置第二馈电端口 P2与天线辐射体10的第一端之间的长度与电感L对应的等效长度的和值,等于天线波长的二分之一。
可选地,在天线辐射体10的工作频段为2.5GHz的情况下,天线辐射体10对应的天线波长为120mm,可以设置第一馈电端口P1与第二馈电端口P2之间的长度为即54mm;设置天线辐射体10的宽度为即2mm;设置天线辐射体10与接地板20之间的距离为即4mm。
可选地,所述天线辐射体10包括至少一对凸台,所述一对凸台中的一个凸台设置在所述第一馈电端口P1与所述第二馈电端口P2之间,所述一对凸台中的另一个凸台设置在所述第二馈电端口P2与所述导电体之间,所述接地板20包括与所述凸台相对设置的凹槽,且所述凸台部分位于对应的凹槽内。
本实施例中,还可以通过在天线辐射体10表面设置凸台,进一步的减少天线辐射体10的长度,实现天线辐射体10的小型化。
可选地,所述凹槽包括相互垂直的第一侧壁和第二侧壁,且所述第一侧壁与所述天线辐射体10平行设置。
应理解,对于每一个凸台,限定该凸台与相对设置的凹槽的第一侧壁之间的距离d1,以及限定该凸台与相对设置的凹槽的第二侧壁之间的距离d2,以此减少天线辐射体10的长度,应理解,后续图11和图16中的d1表示凸台与相对设置的凹槽的第一侧壁之间的距离,d2表示凸台与相对设置的凹槽的第二侧壁之间的距离。
可选地,所述导电体30为导电金属件,所述天线辐射体10包括间隔预设距离设置的第一凸台11、第二凸台12、第三凸台13和第四凸台14,所述第一凸台11和所述第二凸台12设置在所述第一馈电端口P1和所述第二馈电端口P2之间,所述第三凸台13和所述第四凸台14设置在所述第二馈电端口P2和所述导电金属件之间。
如图11所示,天线辐射体10包括4个凸台,即第一凸台11、第二凸台12、第三凸台13和第四凸台14,且导电体30为导电金属件。
上述天线辐射体10的S参数的仿真结果如图12所示,从图12中可以得到,在N41频段,S21参数最小在-13.3dB,表示第一天线和第二天线之间的隔离效果较好。
为进一步说明第一天线和第二天线之间的隔离效果,请参阅图13,如图13所示,在第一天线通过第一馈电端口P1激励的情况下,从第一馈电端口P1流向第二馈电端口P2的电流较小,表示第一馈电端口P1和第二馈电端口P2之间形成隔离。以及参阅图14,如图14所示,在第二天线通过第二馈电端口P2激励的情况下,从第二馈电端口P2流向 第一馈电端口P1的电流较小,表示第一馈电端口P1和第二馈电端口P2之间形成隔离。
进一步的,请参阅图15,容易理解的是,天线辐射体10的第一端通过导电金属件与接地板20电连接,等效为天线辐射体10与一个阻值为0欧姆的第一电阻R1电连接;第一凸台11、第二凸台12和接地板20之间形成图15中的第一电容C1,第三凸台13、第四凸台14和接地板20之间形成图15中的第二电容C2。在第一天线通过第一馈电端口P1激励的情况下,第二馈电端口P2短路,第一馈电端口P1流向第二馈电端口P2的电流较小。在第二天线通过第二馈电端口P2激励的情况下,第一馈电端口P1短路,第二馈电端口P2流向第一馈电端口P1的电流较小。以此第一馈电端口P1和第二馈电端口P2之间形成隔离,实现第一天线和第二天线之间的解耦。
在天线辐射体10的工作频段为2.5GHz的情况下,天线辐射体10对应的天线波长为120mm的情况下,可以设置d1和d2均大于并且小于需要说明的是,若d1和d2小于或等于则可能导致天线辐射体10与接地板20之间形成的耦合电容太大,影响天线辐射体10对外辐射;若d1和d2大于或等于则可能导致天线辐射体10与接地板20之间的耦合太弱,无法减少天线辐射体10的长度。
可选地,所述天线辐射体10的长度大于目标数值;所述目标数值为所述天线辐射体10对应的天线波长与预设数值的乘积。
本实施例中,在天线辐射体10的工作频段为2.5GHz的情况下,天线辐射体10对应的天线波长为120mm的情况下,预设数值为0.7,目标数值为天线波长与预设数值的乘积,即
在上述情况下,具备4个凸台的天线辐射体10的长度等于即87mm,大于目标数值。本实施例中,通过在天线辐射体10上设置凸台,相比于未设置凸台的天线辐射体10,进一步的减少了天线辐射体10的长度,实现了天线辐射体10的小型化。
可选地,可以设置第一馈电端口P1与第二馈电端口P2之间的长度为即46.75mm;设置天线辐射体10的宽度为即2mm;设置天线辐射体10与接地板20之间的距离为即4mm。
可选地,所述导电体30为电容,所述天线辐射体10包括第五凸台15和第六凸台16,所述第五凸台15设置在所述第一馈电端口P1和所述第二馈电端口P2之间,所述第六凸台16设置在所述第二馈电端口P2和所述电感L之间,且所述第五凸台15与所述第一馈电端口P1之间的长度和所述第六凸台16与所述天线辐射体10的第一端之间的长度相同。
如图16所示,天线辐射体10包括2个凸台,即第五凸台15和第六凸台16,且导电 体30为电容。可选地,上述电容为1.8pf电容。
上述天线辐射体10的S参数的仿真结果如图17所示,从图17中可以得到,在N41频段,S21参数最小在-21.88dB,表示第一天线和第二天线之间的隔离效果较好。
为进一步说明第一天线和第二天线之间的隔离效果,请参阅图18,如图18所示,在第一天线通过第一馈电端口P1激励的情况下,从第一馈电端口P1流向第二馈电端口P2的电流较小,表示第一馈电端口P1和第二馈电端口P2之间形成隔离。以及参阅图19,如图19所示,在第二天线通过第二馈电端口P2激励的情况下,从第二馈电端口P2流向第一馈电端口P1的电流较小,表示第一馈电端口P1和第二馈电端口P2之间形成隔离。
进一步的,请参阅图20,容易理解的是,天线辐射体10的第一端通过第三电容C3与接地板20电连接;第五凸台15和接地板20之间形成图20中的第四电容C4;第六凸台16和接地板20之间形成图20中的第五电容C5。在第一天线通过第一馈电端口P1激励的情况下,第二馈电端口P2短路,第一馈电端口P1流向第二馈电端口P2的电流较小。在第二天线通过第二馈电端口P2激励的情况下,第一馈电端口P1短路,第二馈电端口P2流向第一馈电端口P1的电流较小。以此第一馈电端口P1和第二馈电端口P2之间形成隔离,实现第一天线和第二天线之间的解耦。
在天线辐射体10的工作频段为2.5GHz的情况下,天线辐射体10对应的天线波长为120mm的情况下,可以设置d1和d2均大于并且小于
可选地,所述天线辐射体10的长度小于目标数值;所述目标数值为所述天线辐射体10对应的天线波长与预设数值的乘积。
本实施例中,在天线辐射体10的工作频段为2.5GHz的情况下,天线辐射体10对应的天线波长为120mm的情况下,预设数值为0.7,目标数值为天线波长与预设数值的乘积,即
在上述情况下,具备2个凸台的天线辐射体10的长度等于即65mm,小于目标数值。在天线辐射体10包括凸台的情况下,通过将导电体设置为电容,减少天线辐射体10的长度,实现天线的小型化,进而节省电子设备的内部空间。
可选地,可以设置第一馈电端口P1与第二馈电端口P2之间的长度为即26.25mm;设置天线辐射体10的宽度为即2mm;设置天线辐射体10与接地板20之间的距离为即4mm。
本申请实施例中,上述电子设备可为计算机(Computer)、手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant, 简称PDA)、移动上网电子设备(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)、电子阅读器、导航仪、数码相机等。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (10)

  1. 一种电子设备,包括天线辐射体、第一馈电端口、第二馈电端口、接地板和导电体;
    所述天线辐射体的第一端通过所述导电体与所述接地板电连接;
    所述第一馈电端口设置在所述天线辐射体的第二端,且所述第一馈电端口与所述天线辐射体的第二端导电连接,用于形成第一天线;
    所述第二馈电端口设置在所述天线辐射体的低阻区域,且所述第二馈电端口与所述天线辐射体的低阻区域导电连接,用于形成第二天线;
    其中,所述第一天线和所述第二天线为同频段天线。
  2. 根据权利要求1所述的电子设备,其中,所述导电体为导电金属件,所述天线辐射体的长度等于所述天线辐射体对应的天线波长。
  3. 根据权利要求1所述的电子设备,其中,所述导电体为电感,所述天线辐射体的长度小于所述天线辐射体对应的天线波长。
  4. 根据权利要求3所述的电子设备,其中,所述天线辐射体对应的目标长度与所述电感对应的等效长度的和值,等于所述天线辐射体对应的天线波长的二分之一,所述天线辐射体对应的目标长度为所述第二馈电端口与所述天线辐射体的第一端之间的长度。
  5. 根据权利要求1所述的电子设备,其中,所述天线辐射体包括至少一对凸台,所述一对凸台中的一个凸台设置在所述第一馈电端口与所述第二馈电端口之间,所述一对凸台中的另一个凸台设置在所述第二馈电端口与所述导电体之间,所述接地板包括与所述凸台相对设置的凹槽,且所述凸台部分位于对应的凹槽内。
  6. 根据权利要求5所述的电子设备,其中,所述导电体为导电金属件,所述天线辐射体包括间隔预设距离设置的第一凸台、第二凸台、第三凸台和第四凸台,所述第一凸台和所述第二凸台设置在所述第一馈电端口和所述第二馈电端口之间,所述第三凸台和所述第四凸台设置在所述第二馈电端口和所述导电金属件之间。
  7. 根据权利要求6所述的电子设备,其中,所述天线辐射体的长度大于目标数值;所述目标数值为所述天线辐射体对应的天线波长与预设数值的乘积。
  8. 根据权利要求5所述的电子设备,其中,所述导电体为电容,所述天线辐射体包括第五凸台和第六凸台,所述第五凸台设置在所述第一馈电端口和所述第二馈电端口之间,所述第六凸台设置在所述第二馈电端口和电感之间,且所述第五凸台与所述第一馈电端口之间的长度和所述第六凸台与所述天线辐射体的第一端之间的长度相同。
  9. 根据权利要求8所述的电子设备,其中,所述天线辐射体的长度小于目标数值;所述目标数值为所述天线辐射体对应的天线波长与预设数值的乘积。
  10. 根据权利要求5-9中任一项所述的电子设备,其中,所述凹槽包括相互垂直的第一侧壁和第二侧壁,且所述第一侧壁与所述天线辐射体平行设置。
PCT/CN2023/125889 2022-10-28 2023-10-23 电子设备 WO2024088202A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211334725.5A CN115663473A (zh) 2022-10-28 2022-10-28 电子设备
CN202211334725.5 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024088202A1 true WO2024088202A1 (zh) 2024-05-02

Family

ID=84992575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125889 WO2024088202A1 (zh) 2022-10-28 2023-10-23 电子设备

Country Status (2)

Country Link
CN (1) CN115663473A (zh)
WO (1) WO2024088202A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663473A (zh) * 2022-10-28 2023-01-31 维沃移动通信有限公司 电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060109179A1 (en) * 2003-04-28 2006-05-25 Harald Humpfer Antenna device
WO2006098089A1 (ja) * 2005-03-15 2006-09-21 Matsushita Electric Industrial Co., Ltd. アンテナ装置およびそれを用いた無線通信機
CN104241818A (zh) * 2013-06-24 2014-12-24 深圳富泰宏精密工业有限公司 天线结构及应用该天线结构的无线通信装置
CN109546311A (zh) * 2018-12-12 2019-03-29 维沃移动通信有限公司 一种天线结构及通信终端
WO2022213611A1 (zh) * 2021-04-06 2022-10-13 深圳市广和通无线股份有限公司 天线组件、天线装置及射频控制方法
CN115663473A (zh) * 2022-10-28 2023-01-31 维沃移动通信有限公司 电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060109179A1 (en) * 2003-04-28 2006-05-25 Harald Humpfer Antenna device
WO2006098089A1 (ja) * 2005-03-15 2006-09-21 Matsushita Electric Industrial Co., Ltd. アンテナ装置およびそれを用いた無線通信機
CN104241818A (zh) * 2013-06-24 2014-12-24 深圳富泰宏精密工业有限公司 天线结构及应用该天线结构的无线通信装置
CN109546311A (zh) * 2018-12-12 2019-03-29 维沃移动通信有限公司 一种天线结构及通信终端
WO2022213611A1 (zh) * 2021-04-06 2022-10-13 深圳市广和通无线股份有限公司 天线组件、天线装置及射频控制方法
CN115663473A (zh) * 2022-10-28 2023-01-31 维沃移动通信有限公司 电子设备

Also Published As

Publication number Publication date
CN115663473A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
EP3896790B1 (en) Antenna structure and communication terminal
US10819031B2 (en) Printed circuit board antenna and terminal
US8044873B2 (en) Antennas with periodic shunt inductors
TWI497831B (zh) 偶極天線及射頻裝置
TWI234901B (en) Printed inverted-F antenna
WO2024088202A1 (zh) 电子设备
WO2017197975A1 (zh) 一种天线和终端设备
AU4892800A (en) An antenna with stacked resonant structures and a multi- frequency radiocommunications system including it
JP2002290139A (ja) プレーナアンテナ装置
CN106816696B (zh) 一种Vivaldi天线
TW201941493A (zh) 天線結構
US20170194694A1 (en) Dual-band wi-fi antenna and mobile terminal
WO2023207714A1 (zh) 一种电子设备
TWM599482U (zh) 多頻天線裝置
WO2023103547A1 (zh) Wifi天线模块及终端设备
TWM624820U (zh) 多頻天線裝置
JP2009272988A (ja) アンテナ
TW202141854A (zh) 偶極天線
KR102485241B1 (ko) 하이브리드 안테나
TWI467853B (zh) 雙頻天線及應用該雙頻天線之無線通訊裝置
US20240106117A1 (en) Wideband antenna structure
TWM631242U (zh) 多頻雙天線裝置
TWM635400U (zh) 雙頻雙天線裝置
TW201530910A (zh) 可攜式電子裝置之多頻天線
CN114824768B (zh) 回路天线及tws耳机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881780

Country of ref document: EP

Kind code of ref document: A1