WO2023207714A1 - 一种电子设备 - Google Patents

一种电子设备 Download PDF

Info

Publication number
WO2023207714A1
WO2023207714A1 PCT/CN2023/089263 CN2023089263W WO2023207714A1 WO 2023207714 A1 WO2023207714 A1 WO 2023207714A1 CN 2023089263 W CN2023089263 W CN 2023089263W WO 2023207714 A1 WO2023207714 A1 WO 2023207714A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
metal
point
frame
capacitor
Prior art date
Application number
PCT/CN2023/089263
Other languages
English (en)
French (fr)
Inventor
程孝奇
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023207714A1 publication Critical patent/WO2023207714A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure

Definitions

  • This application belongs to the technical field of electronic equipment, and specifically relates to an electronic equipment.
  • the purpose of the embodiments of the present application is to provide an electronic device that can solve the problem in the related art that metal parts have an excessive impact on antenna performance.
  • an electronic device which includes:
  • Metal frame, metal parts and first circuit board are Metal frame, metal parts and first circuit board
  • the metal frame is provided with a first fracture seam and a second fracture seam, and the first fracture seam and the second fracture seam separate the metal frame body to form a first frame body and a second frame body, so
  • the first frame is provided with at least one feed point and at least one ground point
  • the second frame is provided with at least one feed point and at least one ground point;
  • the metal piece is located in the enclosed area of the metal frame and adjacent to the at least one antenna.
  • a metal grounding point is provided on the metal piece, and the metal grounding point is connected to the antenna tuning network.
  • the ground portion of the first circuit board is electrically connected.
  • the metal frame of the electronic device is divided into a first frame and a second frame, and at least one feeding point and a grounding point are respectively provided on the first frame and the second frame.
  • the metal part is located in the enclosed area of the metal frame and adjacent to at least one antenna.
  • a metal part grounding point is provided on the metal part, and the metal part grounding point is electrically connected to the grounding part of the first circuit board through the antenna tuning network. Connection, so that the tuning function of the antenna tuning network can be used to make the metal part's ground point show different on-off characteristics for the corresponding antenna frequency band, thereby weakening the impact of the metal part on the performance of some frequency bands of the nearby antenna.
  • Figure 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of the radiation efficiency of the first antenna provided by the embodiment of the present application in the presence of metal parts and grounding and in the absence of metal parts;
  • Figure 3 is a schematic diagram of the radiation efficiency of the third antenna provided by the embodiment of the present application in the presence of metal parts and grounding and in the absence of metal parts;
  • Figure 4 is a schematic diagram of the connection structure between the grounding point of a metal piece and the grounding part of the first circuit board provided by the embodiment of the present application;
  • FIG. 5 is a schematic diagram of an antenna tuning network provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of the S parameters of the third antenna provided by the embodiment of the present application when the metal part is directly grounded and grounded through the antenna tuning network;
  • Figure 7 is a schematic diagram of the radiation efficiency of the third antenna provided by the embodiment of the present application when the metal part is directly grounded and grounded through the antenna tuning network;
  • Figure 8 is a schematic diagram of the gap provided by the embodiment of the present application.
  • Figure 9 is a schematic diagram of the current flow before and after a gap is opened in the metal part provided by the embodiment of the present application.
  • Figure 10 is a schematic diagram of the radiation efficiency of the third antenna before and after opening a gap in the metal part provided by the embodiment of the present application;
  • Figure 11 is a schematic diagram of the connection structure between another metal part grounding point and the grounding part of the first circuit board provided by the embodiment of the present application;
  • Figure 12 is a schematic diagram of another antenna tuning network provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the figures so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in orders other than those illustrated or described herein, and that "first,” “second,” etc. are distinguished Objects are usually of one type, and the number of objects is not limited. For example, the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • An embodiment of the present application provides an electronic device, which includes a metal frame, a metal piece, and a first circuit board: the metal frame may be in a closed ring shape, and the metal frame is provided with a first slit and a second circuit board.
  • the first broken seam and the second broken seam separate the metal frame into two independent parts, namely the first frame body and the second frame body, that is to say, the first frame body and the second frame body are are discontinuous, and the first frame is provided with at least one feed point and at least one ground point, and the second frame is also provided with at least one feed point and at least one ground point, then at least one of the first frame Part of it serves as the radiating arm of the corresponding antenna.
  • the second frame serves as the radiating arm of the corresponding antenna; and the metal piece is located in the enclosed area of the metal frame, and the metal piece is connected with the first frame and the second The frames are adjacent, that is, the distance between the two is relatively close, with a certain gap.
  • the first frame and the second frame can be coupled through the fracture gap; in order to reduce the influence of the metal parts on nearby antennas, a set of There is a metal part grounding point, and the metal part grounding point is electrically connected to the grounding part provided on the first circuit board through the antenna tuning network. Therefore, the tuning function of the antenna tuning network is used to make the metal part grounding point appear to the corresponding antenna frequency band. Different on-off characteristics, thereby weakening the impact of metal parts on the performance of some frequency bands of nearby antennas.
  • the metal frame may be a metal frame or other structure of an electronic device.
  • the first breaking seam and the second breaking seam can be opened on the metal frame.
  • the same border can also be provided on two borders of the metal frame.
  • the antenna tuning network can perform impedance matching, thereby achieving different impedance characteristics.
  • the metal frame of the electronic device is divided into a first frame and a second frame, and at least one feeding point and a grounding point are respectively provided on the first frame and the second frame.
  • the metal part is located in the enclosed area of the metal frame and adjacent to at least one antenna.
  • a metal part grounding point is provided on the metal part, and the metal part grounding point is electrically connected to the grounding part of the first circuit board through the antenna tuning network. Connection, so that the tuning function of the antenna tuning network can be used to make the metal part's ground point show different on-off characteristics for the corresponding antenna frequency band, thereby weakening the impact of the metal part on the performance of some frequency bands of the nearby antenna.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device includes a metal frame, a metal piece 5 and a first circuit board 7, wherein the metal frame is provided with a first break 1 and a second break 2 , the first fracture 1 and the second fracture 2 separate the metal frame into a first frame 3 and a second frame 4, and the metal piece 5 is located in the enclosed area of the metal frame.
  • the first feed point E and the first ground point F of the first antenna are provided on the first frame 3.
  • the arrow pointing to the first feed point E in Figure 1 represents the feed signal input of the first antenna.
  • At least part of the first frame 3 serves as the antenna radiating arm of the first antenna.
  • the first frame 3 is also provided with a second feed point D and a second ground point G of the second antenna. In Figure 1, it points to the second feed point D.
  • the arrow of the feed point D represents the feed signal input of the second antenna.
  • At least part of the first frame 3 also serves as the antenna radiating arm of the second antenna, and the second frame 4 is provided with a third antenna of the third antenna.
  • the arrow pointing to the third feed point B in Figure 1 represents the feed signal input of the third antenna.
  • At least part of the second frame 4 also serves as the antenna radiation of the third antenna.
  • arm, optionally, the third antenna may also use at least part of the first frame as a parasitic radiation arm.
  • the first ground point F is grounded through the sixth capacitor C6, and the second ground point G and the third ground point A can be directly grounded.
  • the second feed point D and the second ground point G are respectively located at both ends of the first frame 3 in the length direction, and the first feed point E and the first ground point F are located at the second feed point D and the second Between the ground points G, the third feed point B is located at one end of the second frame 4 close to the first break 1 .
  • the length DE between the second feed point D and the first feed point E is 13mm ⁇ 15mm
  • the length DF between the second feed point D and the first ground point F is 30mm ⁇ 33mm
  • the length DG between the second feed point D and the second ground point G is 43mm ⁇ 46mm
  • the length AC between the third grounding point A and the end point of the second frame 4 close to the first break 1 is 14 mm to 15 mm
  • the length BC between them is 3mm ⁇ 4mm.
  • the size of the sixth capacitor C6 is 10 pF
  • the feed path of the first antenna can be connected with a capacitor in series to isolate the second antenna
  • the feed path of the second antenna can be connected with an inductor in series with the first antenna
  • one is a Global Positioning System (GPS) antenna
  • the operating frequency band supports the GPS L1 and GPS L5 frequency bands
  • the other is a near field communication (Near Field Communication, NFC) antenna
  • the working frequency band supports the frequency band corresponding to NFC
  • the remaining one is a Wireless Fidelity (WiFi) antenna
  • the working frequency band supports WiFi 2.4G and WiFi 5G frequency bands.
  • the first antenna may be a GPS antenna
  • the second antenna may be an NFC antenna
  • the third antenna may be a WiFi antenna.
  • the antenna type in the embodiment of the present application is not limited to the above type, and may also be an antenna supporting the 4th Generation (4G) and 5th Generation ( 5th Generation, 5G) operating frequency bands. I won’t go into details here.
  • the material of the metal part 5 is aluminum alloy, etc.
  • the distance L1 between the outer shape of the metal part 5 and the first frame 3 of the metal frame is 4 mm to 6 mm
  • the distance L1 between the outer shape of the metal part 5 and the first frame 3 of the metal frame The distance L2 between the second frame 4 of the body is 2.2 mm to 3.3 mm. It can be seen that the distance between the metal piece 5 and the metal frame is relatively close, that is, the distance between the metal piece 5 and the antenna is relatively close.
  • the metal piece 5 is rectangular.
  • the electronic device further includes a camera module 6, and a corresponding mounting hole 16 is provided on the metal piece 5, and the camera module 6 is disposed in the mounting hole 16, wherein the camera module 6 is a rear camera module 6, that is to say, the metal piece 5 is a metal device for the rear camera.
  • Figure 2 is a schematic diagram of the radiation efficiency of the first antenna provided by the embodiment of the present application in the presence of metal parts and grounding and the absence of metal parts.
  • Figure 3 is a schematic diagram of the radiation efficiency of the first antenna provided by the embodiment of the present application. Schematic diagram of the radiation efficiency of the third antenna in the presence of metal parts and grounding and in the absence of metal parts.
  • the dotted line is the radiation efficiency of the first antenna when there is no metal part 5
  • the solid line is the radiation efficiency of the first antenna when there is metal part 5 and is grounded.
  • the impact on the L1/L5 frequency band of the first antenna is relatively small, about 0.3dB; the dotted line in Figure 3 is the radiation efficiency of the third antenna when there is no metal component 5, and the solid line is The radiation efficiency of the third antenna when there is a metal part 5 and it is grounded.
  • the impact on the WiFi 2.4G frequency band of the third antenna is about 0.5dB.
  • the maximum impact is 0.9dB, and for WiFi 5.8G, the maximum impact is 1.3dB.
  • adding metal parts 5 and grounding them has a greater impact on the performance of the third antenna. If the second antenna is an NFC antenna, its influence does not need to be considered due to its low operating frequency.
  • the above grounding method is direct grounding without grounding through the antenna tuning network 11 .
  • the traditional optimization solution is based on the antenna itself, optimizing the size and clearance.
  • the antenna solution is fixed, due to the stacking constraints of the overall machine layout, there is little room for optimization of the antenna itself.
  • the tuning function of the antenna tuning network 11 is used to make the metal part The grounding point presents different on-off characteristics for the corresponding antenna frequency bands, thereby weakening the impact of the metal piece 5 on the performance of some frequency bands of the nearby antenna.
  • the number of metal part grounding points on the metal part 5 is at least one, and at least one metal part grounding point is connected to the grounding part 72 of the first circuit board 7 through the antenna tuning network 11 . That is to say, the number and location of the antennas that need to be improved can be flexibly set up on the metal piece 5 at a position adjacent to it, and the metal piece grounding point can be grounded through the antenna tuning network 11. Through the tuning function of the antenna tuning network 11, the effect of improving antenna performance can be achieved. Among them, optionally, one metal part grounding point is connected to an antenna tuning network 11 .
  • the number of metal parts grounding points is 4, of which one metal part grounding point is electrically connected to the grounding part 72 of the first circuit board 7 through the antenna tuning network 11, and the other three The metal component grounding point is directly electrically connected to the grounding portion 72 of the first circuit board 7 .
  • the grounding point of the metal part close to the antenna has a critical impact on the performance of the antenna. Therefore, optionally, the grounding point of the metal part connected to the antenna tuning network 11 is located on the metal part 5 close to the first antenna and/or the third antenna.
  • the metal part grounding point connected to the antenna tuning network 11 is set near the first break 1 , or in other words, between the metal part grounding point connected to the antenna tuning network 11 and the first break 1
  • the distance is less than a certain preset threshold to ensure the effect of reducing the influence of the metal piece 5. That is to say, the grounding point of the metal parts connected to the antenna tuning network 11 is generally close to the first break 1.
  • This solution generally improves high frequencies better than low frequencies because high frequencies are highly directional. Under certain conditions, such as near the first fracture 1, some frequency bands can be changed by changing the grounding state.
  • the coupling between the antenna radiation field and the metal part 5 (shown as performance absorption), the frequency band of the first antenna is L1+L5, which is farther away from the metal frame, and the overall impact of the metal part 5 is small (about 0.3dB) after it is directly grounded. , the coupling and absorption of energy are also smaller, and changing the grounding state through a certain point on the metal part 5 usually has a certain effect.
  • the metal part grounding point includes a first metal part grounding point G1, a second metal part grounding point G2, a third metal part grounding point G3 and a fourth metal part grounding point G4, which are connected to the antenna tuning network 11
  • the metal part grounding point is the first metal part grounding point G1
  • the first metal part grounding point G1 is located close to the first fracture 1 .
  • FIG. 4 is a schematic diagram of the connection structure between the ground point of a metal piece and the ground portion of the first circuit board provided by an embodiment of the present application.
  • the first circuit board 7 is located below the metal part 5.
  • a first antenna clearance area 70 is provided on the first circuit board 7, and a first antenna clearance area 70 is provided on the first circuit board 7.
  • the grounding spring 10 is electrically connected to the grounding point of the metal part.
  • the grounding spring 10 is electrically connected to the first end 110 of the antenna tuning network 11.
  • the second end 111 of the antenna tuning network 11 is connected to the ground of the first circuit board 7.
  • Part 72 is electrically connected.
  • the specific connection method between the metal part grounding point and the grounding elastic piece 10 is: the metal part grounding point is connected to the steel piece 9 through the lock screw 8, and the steel piece 9 is connected to the grounding elastic piece 10.
  • the first circuit board 7 is also provided with a second antenna clearance area 71.
  • the first antenna clearance area 70 and the second antenna clearance area 71 cannot be completely covered with copper, and can be made of FR4 or other materials; while the first circuit board 7
  • the ground portion 72 above is composed of a copper laying area.
  • the electronic device further includes a second circuit board 101 , and the ground portion 72 of the first circuit board 7 is electrically connected to the ground portion 72 of the second circuit board 101 through the connector 12 .
  • the antenna tuning network 11 is an LC circuit, that is, a tuning circuit composed of a capacitor and an inductor.
  • FIG. 5 is a schematic diagram of an antenna tuning network provided by an embodiment of the present application.
  • the antenna tuning network 11 in the embodiment of the present application is an LC circuit.
  • the LC circuit includes a first inductor L1, a first capacitor C1 and a second capacitor C2, where the first inductor L1 and the first capacitor C1 After being connected in series, it is connected in parallel with the second capacitor C2.
  • the first end 110 of the antenna tuning network 11 is connected to the first end of the first inductor L1 and the first end of the second capacitor C2 respectively, and the first end of the first inductor L1
  • the second terminal is connected to the first terminal of the first capacitor C1
  • the second terminal 111 of the antenna tuning network 11 is connected to the second terminal of the first capacitor C1 and the second terminal of the second capacitor C2 respectively.
  • One of the first end 110 and the second end of the antenna tuning network 11 is connected to the ground elastic piece 10 , and the other end is connected to the ground portion 72 of the first circuit board 7 .
  • the size of the first inductor L1 is 2nH ⁇ 3nH
  • the size of the first capacitor C1 is 3.9pF ⁇ 4.7pF
  • the size of the second capacitor C2 is 2.4pF ⁇ 3pF.
  • Figure 6 is a schematic diagram of the S parameters of the third antenna provided by the embodiment of the present application when the metal part is directly grounded and grounded through the antenna tuning network.
  • Figure 7 is a schematic diagram of the S parameters provided by the embodiment of the present application. Schematic diagram of the radiation efficiency of the third antenna when the metal part is directly grounded and grounded through the antenna tuning network.
  • the dotted line in Figure 6 is the S-parameter curve of the third antenna when the metal part 5 is directly grounded, and the solid line is the S-parameter curve of the third antenna when the metal part 5 is grounded through the antenna tuning network 11; in Figure 7 The dotted line is the radiation efficiency curve of the third antenna when the metal part 5 is directly grounded, and the solid line is the radiation efficiency curve of the third antenna when the metal part 5 is grounded through the antenna tuning network 11 .
  • the antenna tuning network 11 shows a large capacitance to the L1/L5 frequency band of the first antenna, which is similar to a short circuit. At this time, the impact on the first antenna is very small. At this time, the solution is to directly connect the grounding point of the metal part to the ground. In comparison, the efficiency of the first antenna under the two solutions is almost the same; while the antenna tuning network 11 shows a large inductance for the WiFi 2.4G of the third antenna, which is almost an open circuit, and also shows a small inductance of 2pF to 3pF for the WiFi 5G of the third antenna.
  • Capacitance compared with the solution of directly grounding the metal parts grounding point, the S parameter of the third antenna is not much different, but the solution of using the antenna tuning network 11 to ground increases the average efficiency of WiFi 2.4G of the third antenna by about 0.5dB. , the bandwidth becomes wider, and the efficiency of WiFi 5.15 ⁇ 5.55G increases by about 0.6dB. Therefore, in the embodiment of the present application, a metal piece grounding point is provided on the metal piece 5 in an area close to the antenna, and the metal piece grounding point is grounded through the antenna tuning network 11 , so that it exhibits different responses to different frequency bands of different antennas. The capacitance or inductance characteristics are used to weaken the influence of the metal part 5 on the surrounding specific antenna frequency band, thereby achieving the purpose of optimizing the antenna performance.
  • a gap 13 is provided in the area adjacent to the third antenna on the metal piece 5 , or in other words, from the third grounding point A on the metal piece 5 to the second frame 4 to the first gap 1
  • This part and the area adjacent to the first frame 3 are provided with a gap 13, and the shape of the gap 13 is consistent with that of the second frame 4.
  • the portion from the third grounding point A to the first fracture 1 corresponds to the shape formed by the second frame 4 together. That is to say, a slot 13 penetrating the plane of the metal piece 5 is opened in the area of the metal piece 5 close to the third antenna, and the cross-sectional shape of the slot 13 is determined according to the shape of the third antenna.
  • the third antenna is an L-shaped antenna, that is, it includes a radiating arm AC segment and a parasitic radiating arm DG segment.
  • the two together form an L shape, and the shape of the slot 13 can be correspondingly set to an L shape.
  • the gap 13 is also filled with an insulating medium, which may be plastic or other materials, and the outer surface of the metal piece 5 is covered with decorative glass or ceramic material.
  • FIG. 8 is a schematic diagram of a gap provided by an embodiment of the present application.
  • the shape of the gap 13 can be L-shaped.
  • the L-shaped includes two sections, namely a narrow part and a wide part.
  • the width W1 of the narrow part is 1 mm to 1.5 mm.
  • the length is 9 ⁇ 11mm
  • the width W2 of the wide part is 2mm ⁇ 2.5mm
  • the length is 9mm ⁇ 11mm.
  • FIG. 9 is a schematic diagram of the current flow before and after the gap 13 is opened in the metal piece 5 according to the embodiment of the present application.
  • the inventor's research and analysis found that the WiFi5.15 ⁇ 5.55G frequency band of the third antenna has strong electric field coupling in the area close to the antenna on the metal piece 5 (i.e., the part outlined by the dotted line in Figure 9) , causing part of the antenna radiation energy to be bound here, resulting in lower radiation efficiency in the corresponding frequency band of the third antenna.
  • the embodiment of the present application by opening slits 13 in the metal part 5 in areas where strong electric field coupling occurs in certain frequency bands of the antenna, the current and electric field distribution there can be changed.
  • the dotted arrow represents the direction of the current.
  • the resonant frequency as 5.25GHz as an example
  • FIG. 10 is a schematic diagram of the radiation efficiency of the third antenna before and after opening a gap in the metal part provided by the embodiment of the present application. As shown in Figure 10, it can be seen from the comparative radiation efficiency curve that after opening gap 13, the radiation efficiency of the WiFi 5.15 ⁇ 5.55G frequency band of the third antenna can be increased by 0.5dB on average.
  • the shape of the slot 13 can be determined according to the shape of the antenna with a stronger coupling effect on the metal piece 5 among all antennas.
  • the third antenna consists of an L-shaped If the antenna is formed of branches, the shape of the slot 13 can be set to correspond to the third antenna, that is, it is L-shaped.
  • the antenna tuning network 11 is an antenna tuner.
  • Figure 11 is a schematic diagram of the connection structure between another metal component grounding point and the grounding portion of the first circuit board provided by an embodiment of the present application.
  • Figure 12 is another schematic diagram of a connection structure provided by an embodiment of the present application. Schematic diagram of an antenna tuning network. Compared with the connection method in Figure 4, the connection method between the metal part ground point and the ground portion 72 of the first circuit board 7 in Figure 11 is only different in the structure of the antenna tuning network 11. For details, please refer to the above introduction. This will not be described again.
  • the antenna tuning network 11 includes a switch 112, a second inductor L2, a third inductor L3, a fourth inductor L4, a third capacitor C3, a fourth capacitor C4 and a fifth capacitor C5, wherein the antenna tuning network
  • the first terminal 110 of 11 is connected to the first terminal of the second inductor L2, the first terminal of the third inductor L3, the first terminal of the fourth inductor L4, the first terminal of the fourth capacitor C4 and the fifth terminal through the switch 112.
  • the first end of the capacitor C5 is electrically connected, the second end of the second inductor L2 is connected to the first end of the third capacitor C3, and the second end 111 of the antenna tuning network 11 is respectively connected to the second end of the third capacitor C3 and the first end of the third capacitor C3.
  • the second terminal of the third inductor L3, the second terminal of the fourth inductor L4, the second terminal of the fourth capacitor C4 and the second terminal of the fifth capacitor C5 are connected.
  • the antenna tuning network 11 can be switched to a different LC circuit, or an L circuit, or a C circuit, or a parallel combination of the above circuits by switching the switch 112, so that the metal on the metal part 5 can be flexibly adjusted.
  • the grounding state of the component's grounding point can not only optimize the performance of a specific antenna frequency band, but also tune the clutter generated by the metal component 5 . That is to say, when the antenna works in a specific frequency band, different capacitance or inductance characteristics are constructed by switching the switch 112 to move the clutter out of the interfering antenna frequency band, thereby optimizing the performance of some antenna frequency bands. Moreover, because the impedance matching adjustment range is wider, the antennas that can improve performance are not limited to GPS frequency bands, NFC operating frequency bands, WiFi frequency bands, etc., but can also be implemented such as Middle High Band (MHB), N78, N79, etc. Band improvements.
  • MHB Middle High Band
  • the metal frame of the electronic device is divided into a first frame and a second frame, and at least one feeding point and a grounding point are respectively provided on the first frame and the second frame.
  • the metal part is located in the enclosed area of the metal frame and adjacent to at least one antenna.
  • a metal part grounding point is provided on the metal part, and the metal part grounding point is electrically connected to the grounding part of the first circuit board through the antenna tuning network.
  • the line frequency band exhibits different on-off characteristics, thereby weakening the impact of the metal parts on the performance of some frequency bands of the nearby antenna; and by opening holes at appropriate positions on the metal parts to change the distribution of current and electric field in some areas close to the antenna, it also It can weaken the influence of the metal body on the specific frequency band of the antenna, thereby improving the performance of the antenna.
  • the electronic device in the embodiment of the present application may be a terminal, or may be other devices besides the terminal.
  • the electronic device can be a mobile phone, a tablet computer, a notebook computer, a handheld computer, a vehicle-mounted electronic device, a mobile Internet device (MID), or an augmented reality (Augmented Reality, AR)/virtual reality (Virtual Reality, VR) ) equipment, robots, wearable devices, ultra-mobile personal computers (Ultra-Mobile Personal Computer, UMPC), netbooks or personal digital assistants (personal digital assistant, PDA), etc., and can also be personal computers (Personal Computer, PC), TVs Television (TV), teller machine or self-service machine, etc. are not specifically limited in the embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)
  • Structure Of Receivers (AREA)
  • Telephone Set Structure (AREA)

Abstract

本申请公开了一种电子设备,属于电子设备技术领域。所述电子设备包括金属框体、金属件和第一电路板;所述金属框体上开设有第一断缝和第二断缝,所述第一断缝和所述第二断缝将所述金属框体分隔形成第一框体和第二框体,所述第一框体上设置有至少一个馈电点和至少一个接地点,所述第二框体上设置有至少一个馈电点和至少一个接地点;所述金属件位于所述金属框体的围合区域内,且与所述至少一个天线相邻,所述金属件上设置有金属件接地点,所述金属件接地点通过天线调谐网络与所述第一电路板的接地部电连接。

Description

一种电子设备
相关申请的交叉引用
本申请主张在2022年4月25日在中国提交的中国专利申请No.202210442587.6的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于电子设备技术领域,具体涉及一种电子设备。
背景技术
随着通讯技术的发展,终端天线频段及数量都急剧增加,另一方面终端的后置摄像头的数量也在增加,摄像头模组的体积也相应增大,导致后摄金属装饰件变大,最终留给天线布局的空间越来越小;后摄金属装饰件在变大的同时,距离天线本体也越来越近,这就导致后摄金属装饰件对天线辐射性能的影响越来越大,如何减小金属装饰件对天线的影响是一个亟待解决的难题。
发明内容
本申请实施例的目的是提供一种电子设备,能够解决相关技术中金属件对天线性能影响过大的问题。
第一方面,本申请实施例提供了一种电子设备,该电子设备包括:
金属框体、金属件和第一电路板;
所述金属框体上开设有第一断缝和第二断缝,所述第一断缝和所述第二断缝将所述金属框体分隔形成第一框体和第二框体,所述第一框体上设置有至少一个馈电点和至少一个接地点,所述第二框体上设置有至少一个馈电点和至少一个接地点;
所述金属件位于所述金属框体的围合区域内,且与所述至少一个天线相邻,所述金属件上设置有金属件接地点,所述金属件接地点通过天线调谐网络与所述第一电路板的接地部电连接。
在本申请实施例中,将电子设备的金属框体划分为第一框体和第二框体,并在第一框体和第二框体上各设置至少一个馈电点和接地点,由于金属件位于金属框体的围合区域内并与至少一个天线相邻,通过在金属件上设置金属件接地点,并使该金属件接地点通过天线调谐网络与第一电路板的接地部电连接,从而可以利用天线调谐网络的调谐功能来使金属件接地点对相应的天线频段呈现不同的通断特征,从而减弱金属件对附近天线部分频段的性能影响。
附图说明
图1为本申请实施例提供的一种电子设备的结构示意图;
图2为本申请实施例提供的第一天线在存在金属件并接地和不存在金属件两种情况下的辐射效率的示意图;
图3为本申请实施例提供的第三天线在存在金属件并接地和不存在金属件两种情况下的辐射效率的示意图;
图4为本申请实施例提供的一种金属件接地点与第一电路板的接地部之间的连接结构示意图;
图5为本申请实施例提供的一种天线调谐网络的示意图;
图6为本申请实施例提供的第三天线的S参数在金属件直接接地和通过天线调谐网络接地两种情况下的示意图;
图7为本申请实施例提供的第三天线的辐射效率在金属件直接接地和通过天线调谐网络接地两种情况下的示意图;
图8为本申请实施例提供的缝隙的示意图;
图9为本申请实施例提供的金属件开设缝隙前后的电流流向示意图;
图10为本申请实施例提供的金属件开设缝隙前后的第三天线的辐射效率示意图;
图11为本申请实施例提供的另一种金属件接地点与第一电路板的接地部之间的连接结构示意图;
图12为本申请实施例提供的另一种天线调谐网络的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的电子设备进行详细地说明。
本申请实施例提供了一种电子设备,该电子设备包括金属框体、金属件和第一电路板:其中,金属框体可呈封闭环形,金属框体上开设有第一断缝和第二断缝,该第一断缝和第二断缝将金属框体分隔形成相互独立的两部分,即第一框体和第二框体,也就是说,第一框体和第二框体之间不连续,并且,第一框体上设置有至少一个馈电点和至少一个接地点,第二框体上也设置有至少一个馈电点和至少一个接地点,则第一框体的至少部分作为了相应天线的辐射臂,同样的,第二框体的至少部分作为了相应天线的辐射臂;而金属件位于金属框体的围合区域内,金属件与第一框体以及第二框体相邻,即两者之间的距离比较近,具有一定的间隙,第一框体和第二框体可通过断缝缝隙耦合;为了降低金属件对附近天线的影响,金属件上设置有金属件接地点,该金属件接地点通过天线调谐网络与第一电路板上设置的接地部电连接,由此,利用天线调谐网络的调谐功能来使金属件接地点对相应的天线频段呈现不同的通断特征,从而减弱金属件对附近天线部分频段的性能影响。
本申请实施例中,可选的,金属框体可以是电子设备的金属边框等结构。
本申请实施例中,可选的,第一断缝和第二断缝可以开设于金属框体的 同一条边框,也可以分别开设于金属框体的两条边框上。
本申请实施例中,天线调谐网络可以进行阻抗匹配,继而实现不同的阻抗特性。
在本申请实施例中,将电子设备的金属框体划分为第一框体和第二框体,并在第一框体和第二框体上各设置至少一个馈电点和接地点,由于金属件位于金属框体的围合区域内并与至少一个天线相邻,通过在金属件上设置金属件接地点,并使该金属件接地点通过天线调谐网络与第一电路板的接地部电连接,从而可以利用天线调谐网络的调谐功能来使金属件接地点对相应的天线频段呈现不同的通断特征,从而减弱金属件对附近天线部分频段的性能影响。
请参考图1,图1为本申请实施例提供的一种电子设备的结构示意图。如图1所示,本申请的一些实施例中,电子设备包括金属框体、金属件5和第一电路板7,其中,金属框体上开设有第一断缝1和第二断缝2,第一断缝1和第二断缝2将金属框体分隔为第一框体3和第二框体4,金属件5即位于金属框体的围合区域内。其中,第一框体3上设置有第一天线的第一馈电点E和第一接地点F,图1中指向第一馈电点E的箭头即代表第一天线的馈电信号输入,第一框体3的至少部分即作为第一天线的天线辐射臂,第一框体3上还设置有第二天线的第二馈电点D和第二接地点G,图1中指向第二馈电点D的箭头即代表第二天线的馈电信号输入,第一框体3的至少部分也作为第二天线的天线辐射臂,而第二框体4上设置有第三天线的第三馈电点B和第三接地点A,图1中指向第三馈电点B的箭头即代表第三天线的馈电信号输入,第二框体4的至少部分也作为第三天线的天线辐射臂,可选的,第三天线还可以将第一框体的至少部分作为寄生辐射臂。
本申请的一些实施例中,可选的,第一接地点F通过第六电容C6接地,第二接地点G和第三接地点A可直接接地。第二馈电点D和第二接地点G分别位于第一框体3的长度方向上的两端,而第一馈电点E和第一接地点F位于第二馈电点D和第二接地点G之间,第三馈电点B则位于第二框体4上靠近第一断缝1的一端。
本申请的一些实施例中,第二馈电点D和第一馈电点E之间的长度DE 为13mm~15mm,第二馈电点D和第一接地点F之间的长度DF为30mm~33mm,第二馈电点D和第二接地点G之间的长度DG为43mm~46mm,第三接地点A到第二框体4的靠近第一断缝1的端点之间的长度AC为14mm~15mm,第三馈电点B到第二框体4的靠近第一断缝1的端点之间的长度BC为3mm~4mm。
本申请的一些实施例中,第六电容C6的大小为10pF,第一天线的馈路可串联电容以隔离第二天线,第二天线的馈路可串联电感以隔离第一天线。
本申请的一些实施例中,第一天线、第二天线和第三天线中,一个为全球定位系统(Global Positioning System,GPS)天线,工作频段支持GPS L1和GPS L5频段,一个为近场通信(Near Field Communication,NFC)天线,工作频段支持NFC对应的频段,余下一个为无线保真(Wireless Fidelity,WiFi)天线,工作频段支持WiFi 2.4G和WiFi 5G频段。具体的,可以是第一天线为GPS天线,第二天线为NFC天线,第三天线为WiFi天线。当然,可以知道,本申请实施例中的天线类型并不局限于上述类型,还可以是支持第4代(4th Generation,4G)、第5代(5th Generation,5G)工作频段的天线,在此不再赘述。
本申请的一些实施例中,金属件5的材质为铝合金等,金属件5的外形距离金属框体的第一框体3的距离L1为4mm~6mm,而金属件5的外形距离金属框体的第二框体4的距离L2为2.2mm~3.3mm,可见,金属件5与金属框体的距离较近,即金属件5与天线距离较近。可选的,金属件5呈矩形。
本申请的另一些实施例中,电子设备还包括摄像头模组6,而在金属件5上对应开设有安装孔16,摄像头模组6即设置于该安装孔16内,其中,该摄像头模组6为后摄摄像头模组6,也就是说,金属件5为后摄摄像头的金属装置件。
请参考图2和图3,图2为本申请实施例提供的第一天线在存在金属件并接地和不存在金属件两种情况下的辐射效率的示意图,图3为本申请实施例提供的第三天线在存在金属件并接地和不存在金属件两种情况下的辐射效率的示意图。图2中虚线为第一天线在不存在金属件5时的辐射效率,实线为第一天线在存在金属件5且接地时的辐射效率,可以看出,在加装了金属 件5并使其接地后,对第一天线的L1/L5频段影响相对较小,约为0.3dB左右;图3中虚线为第三天线在不存在金属件5时的辐射效率,实线为第三天线在存在金属件5且接地时的辐射效率,从图3可以看出,在加装了金属件5并使其接地后,对第三天线的WiFi 2.4G频段影响约为0.5dB,而对WiFi 5.1G则最大有0.9dB的影响,对WiFi 5.8G最大有1.3dB的影响,总体上而言,加装金属件5并接地的情况下对第三天线的性能影响较大,第二天线若为NFC天线,则由于工作频率较低,可以不考虑其所受影响。上述接地的方式是直接接地,而未经由天线调谐网络11接地。
相关技术中,针对金属框体上的天线,传统的优化方案是基于天线自身,优化尺寸和净空,但是当天线方案固定时,受整机布局堆叠限制,天线自身可以优化的空间很少。而本申请实施例中,从影响天线性能的周边环境出发,即考虑对金属件5的接地作出改变,使金属件5通过天线调谐网络11接地,利用天线调谐网络11的调谐功能来使金属件接地点对相应的天线频段呈现不同的通断特征,从而减弱金属件5对附近天线部分频段的性能影响。
本申请实施例中,金属件5上的金属件接地点的数量至少为一个,至少一个金属件接地点通过天线调谐网络11连接第一电路板7的接地部72。也就是说,可以灵活根据实际需要改善的天线的数量和所处的位置,在金属件5上与其相邻的位置设置金属件接地点,并使该金属件接地点通过天线调谐网络11接地,通过天线调谐网络11的调谐功能,可以实现改善天线性能的效果。其中,可选的,一个金属件接地点对应连接一个天线调谐网络11。
本申请的一些实施例中,可选的,金属件接地点的数量为4个,其中一个金属件接地点通过天线调谐网络11与第一电路板7的接地部72电连接,而其他三个金属件接地点直接与第一电路板7的接地部72电连接。通过分析发现,靠近天线的金属件接地点对天线性能影响比较关键,因此,可选的,与天线调谐网络11连接的金属件接地点位于金属件5上靠近第一天线和/或第三天线的区域,具体来说,与天线调谐网络11连接的金属件接地点设置于第一断缝1的附近,或者说,与天线调谐网络11连接的金属件接地点与第一断缝1之间的距离小于某一预设阈值,以确保其降低金属件5影响的效果。也就是说,与天线调谐网络11连接的金属件接地点一般是靠近第一断缝1, 此方案一般是对高频的改善效果相对低频的改善效果更好一些,因为高频的方向性强,在特定条件下,如在第一断缝1附近,通过改变接地状态,改变某些频段天线辐射场与金属件5之间的耦合(表现为性能吸收),第一天线的频段是L1+L5,距离金属框体较远一些,金属件5直接接地后整体影响小(0.3dB左右),能量的耦合和吸收也较小,再通过金属件5上的某一点改变其接地状态通常也有一定的效果。
如图1所示,金属件接地点包括第一金属件接地点G1、第二金属件接地点G2、第三金属件接地点G3和第四金属件接地点G4,与天线调谐网络11连接的金属件接地点为第一金属件接地点G1,该第一金属件接地点G1靠近第一断缝1设置。
请参考图4,图4为本申请实施例提供的一种金属件接地点与第一电路板的接地部之间的连接结构示意图。如图4所示,本申请实施例中,第一电路板7位于金属件5的下方,在第一电路板7上设置有第一天线净空区70,在第一天线净空区70上设置有接地弹片10,金属件接地点与接地弹片10电连接,而接地弹片10则与天线调谐网络11的第一端110电连接,天线调谐网络11的第二端111与第一电路板7的接地部72电连接。其中,金属件接地点与接地弹片10之间的具体连接方式为:金属件接地点通过锁螺丝8连接钢片9,钢片9再与接地弹片10连接。可选的,第一电路板7上还设置有第二天线净空区71,第一天线净空区70和第二天线净空区71不能全部铺铜,可以采用FR4等材质;而第一电路板7上的接地部72即由铺铜区构成。
本申请的一些实施例中,电子设备还包括第二电路板101,第一电路板7的接地部72通过连接件12与第二电路板101的接地部72电连接。
本申请的一些实施例中,天线调谐网络11为LC电路,即由电容和电感构成的调谐电路。
请参考图5,图5为本申请实施例提供的一种天线调谐网络的示意图。如图5所示,本申请实施例中的天线调谐网络11为LC电路,该LC电路包括第一电感L1、第一电容C1和第二电容C2,其中,第一电感L1和第一电容C1串联后与第二电容C2并联。具体来说,天线调谐网络11的第一端110分别与第一电感L1的第一端和第二电容C2的第一端连接,第一电感L1的 第二端与第一电容C1的第一端连接,天线调谐网络11的第二端111分别与第一电容C1的第二端以及第二电容C2的第二端连接。天线调谐网络11的第一端110和第二端中的一端与接地弹片10连接,另一端与第一电路板7的接地部72连接。
本申请的一些实施例中,可选的,第一电感L1的大小为2nH~3nH,第一电容C1的大小为3.9pF~4.7pF,第二电容C2的大小为2.4pF~3pF。
请参考图6和图7,图6为本申请实施例提供的第三天线的S参数在金属件直接接地和通过天线调谐网络接地两种情况下的示意图,图7为本申请实施例提供的第三天线的辐射效率在金属件直接接地和通过天线调谐网络接地两种情况下的示意图。图6中的虚线为在金属件5直接接地情况下的第三天线的S参数曲线,实线为在金属件5通过天线调谐网络11接地情况下的第三天线的S参数曲线;图7中的虚线为在金属件5直接接地情况下的第三天线的辐射效率曲线,实线为在金属件5通过天线调谐网络11接地情况下的第三天线的辐射效率曲线。
下面结合图6和图7介绍上述天线调谐网络11的工作原理。
本申请实施例中,天线调谐网络11对第一天线的L1/L5频段呈现出大电容,近似于短路,此时对第一天线的影响很小,此时与金属件接地点直接接地的方案相比较,两种方案下第一天线的效率几乎一样;而天线调谐网络11对于第三天线的WiFi 2.4G呈现出大电感,近似开路,对第三天线的WiFi 5G同样呈现2pF~3pF的小电容,此时与金属件接地点直接接地的方案相比较,第三天线的S参数差异不大,但采用天线调谐网络11接地的方案使得第三天线的WiFi 2.4G的平均效率提升0.5dB左右,带宽变宽,而WiFi 5.15~5.55G的效率提升0.6dB左右。由此,本申请实施例中,通过在金属件5上靠近天线的区域设置金属件接地点,并使该金属件接地点通过天线调谐网络11接地,使得其对不同天线的不同频段呈现不同的电容或电感特性,来减弱金属件5对周围特定天线频段的影响,从而实现优化天线性能的目的。
本申请的一些实施例中,金属件5上与第三天线相邻的区域设置有缝隙13,或者说,金属件5上与第二框体4的第三接地点A到第一断缝1这一部分以及第一框体3相邻的区域设置有缝隙13,缝隙13的形状与第二框体4 上的第三接地点A到第一断缝1的部分和第二框体4共同构成的形状相对应。也就是说,在金属件5上靠近第三天线的区域开设贯穿金属件5平面的缝隙13,并且,该缝隙13的横截面形状根据第三天线的形状确定。可选的,第三天线为L型天线,即包括辐射臂AC段和寄生辐射臂DG段,两者共同构成L型,则缝隙13的形状可以对应设置为L型。可选的,在缝隙13内还填充有绝缘介质,该绝缘介质可以为塑胶等材料,而金属件5的外表面覆盖有装饰玻璃或陶瓷材料。
请参考图8,图8为本申请实施例提供的缝隙的示意图。如图8所示,本申请实施例中,可选的,缝隙13的形状可以为L型,该L型包括两段,分别为窄部和宽部,窄部的宽度W1为1mm~1.5mm,长度为9~11mm,宽部的宽度W2为2mm~2.5mm,长度为9mm~11mm。
请参考图9,图9为本申请实施例提供的金属件5开设缝隙13前后的电流流向示意图。如图9所示,经发明人研究分析发现,第三天线的WiFi5.15~5.55G频段在金属件5上靠近天线的区域(即图9中虚线框框出来的部分)有较强的电场耦合,导致部分天线辐射能量束缚在此处,导致第三天线相应频段的辐射效率较低。本申请实施例中,通过在金属件5上对天线的某些频段产生较强电场耦合的区域开设缝隙13,可以改变此处的电流以及电场分布。图9中,虚线箭头代表电流方向,以谐振频率为5.25GHz为例,在未开设缝隙13之前,在金属件5上的第一位置E1和第二位置E2处有反向的电流,即存在两处大电场耦合;而在开设缝隙13之后,只在第三位置E3处有反向电流,也即只存在一处大电场耦合点,也就是说,在开设缝隙13之后,第三天线在该频段下与金属件5的电场耦合将相应减弱,从而减弱金属件5对天线特定频段性能的影响。
请参考图10,图10为本申请实施例提供的金属件开设缝隙前后的第三天线的辐射效率示意图。如图10所示,从对比的辐射效率曲线可以看出,在开设缝隙13后,第三天线的WiFi5.15~5.55G频段的辐射效率平均可以提升0.5dB。
本申请的一些实施例中,可选的,缝隙13的形状可以根据所有天线中对金属件5产生的耦合作用较强的天线的形状确定。例如第三天线由L型的分 枝构成,则可以将缝隙13的形状设置为与第三天线对应,即呈现L型。
本申请的另一些实施例中,天线调谐网络11为天线调谐器。
请参考图11和图12,图11为本申请实施例提供的另一种金属件接地点与第一电路板的接地部之间的连接结构示意图,图12为本申请实施例提供的另一种天线调谐网络的示意图。图11中的金属件接地点与第一电路板7的接地部72之间的连接方式与图4中的连接方式相比,仅是天线调谐网络11的结构不同,具体可参照上述介绍,在此不再赘述。
如图12所示,天线调谐网络11包括切换开关112、第二电感L2、第三电感L3、第四电感L4、第三电容C3、第四电容C4和第五电容C5,其中,天线调谐网络11的第一端110通过切换开关112分别与第二电感L2的第一端、第三电感L3的第一端、第四电感L4的第一端、第四电容C4的第一端以及第五电容C5的第一端电连接,第二电感L2的第二端与第三电容C3的第一端连接,而天线调谐网络11的第二端111则分别与第三电容C3的第二端、第三电感L3的第二端、第四电感L4的第二端、第四电容C4的第二端以及第五电容C5的第二端连接。本申请实施例中,通过切换开关112可以使得天线调谐网络11切换至不同的LC电路、或者L电路、或者C电路或者上述各电路的并联组合,由此可以灵活地调节金属件5上的金属件接地点的对地状态,不仅仅可以实现优化特定天线频段性能的作用,还可以实现调谐金属件5产生的杂波的作用。也就是说,当天线工作在特定频段时,通过切换开关112的切换,构造不同的电容或电感特性,将杂波移出干扰天线频段外,从而实现部分天线频段性能的优化。并且,由于阻抗的匹配调节范围更大,因此可改善性能的天线不局限于GPS频段、NFC工作频段、WiFi频段等,还可以实现如中高频段(Middle High Band,MHB)、N78、N79等频段的改善。
在本申请实施例中,将电子设备的金属框体划分为第一框体和第二框体,并在第一框体和第二框体上各设置至少一个馈电点和接地点,由于金属件位于金属框体的围合区域内并与至少一个天线相邻,通过在金属件上设置金属件接地点,并使该金属件接地点通过天线调谐网络与第一电路板的接地部电连接,从而可以利用天线调谐网络的调谐功能来使金属件接地点对相应的天 线频段呈现不同的通断特征,从而减弱金属件对附近天线部分频段的性能影响;并且,通过在金属件上合适的位置开孔以改变其靠近天线的部分区域的电流和电场的分布,也可以减弱金属件本体对天线的特定频段的影响,从而实现天线性能的提升。
本申请实施例中的电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、移动上网装置(Mobile Internet Device,MID)、增强现实(Augmented Reality,AR)/虚拟现实(Virtual Reality,VR)设备、机器人、可穿戴设备、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,还可以为个人计算机(Personal Computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (11)

  1. 一种电子设备,包括金属框体、金属件和第一电路板;
    所述金属框体上开设有第一断缝和第二断缝,所述第一断缝和所述第二断缝将所述金属框体分隔形成第一框体和第二框体,所述第一框体上设置有至少一个馈电点和至少一个接地点,所述第二框体上设置有至少一个馈电点和至少一个接地点;
    所述金属件位于所述金属框体的围合区域内,且与所述第一框体以及所述第二框体相邻,所述金属件上设置有金属件接地点,所述金属件接地点通过天线调谐网络与所述第一电路板的接地部电连接。
  2. 根据权利要求1所述的电子设备,其中,所述第一框体上设置有第一天线的第一馈电点和第一接地点,第一框体上还设置有第二天线的第二馈电点和第二接地点,第二框体上设置有第三天线的第三馈电点和第三接地点。
  3. 根据权利要求2所述的电子设备,其中,所述第一接地点通过第六电容接地,所述第二馈电点和所述第二接地点分别位于所述第一框体的长度方向上的两端,所述第一馈电点和所述第一接地点位于所述第二馈电点和所述第二接地点之间,所述第三馈电点位于所述第二框体上靠近所述第一断缝的一端。
  4. 根据权利要求3所述的电子设备,其中,所述金属件上与所述第三天线相邻的区域设置有缝隙,所述缝隙的形状与所述第二框体上所述第三接地点到所述第一断缝的部分和所述第一框体组合构成的形状相对应。
  5. 根据权利要求4所述的电子设备,其中,所述缝隙的形状为L型。
  6. 根据权利要求4所述的电子设备,其中,所述缝隙内填充有绝缘介质。
  7. 根据权利要求1所述的电子设备,其中,所述第一电路板上设置有天线净空区,所述天线净空区上设置有接地弹片,所述金属件接地点与所述接地弹片电连接,所述接地弹片与所述天线调谐网络的第一端电连接,所述天线调谐网络的第二端与所述第一电路板的接地部电连接。
  8. 根据权利要求1所述的电子设备,其中,所述天线调谐网络为LC电路,所述LC电路包括第一电感、第一电容和第二电容,所述第一电感和所 述第一电容串联后与所述第二电容并联。
  9. 根据权利要求1所述的电子设备,其中,所述天线调谐网络包括切换开关、第二电感、第三电感、第四电感、第三电容、第四电容和第五电容,所述天线调谐网络的第一端通过所述切换开关分别与所述第二电感的第一端、第三电感的第一端、第四电感的第一端、第四电容的第一端以及第五电容的第一端电连接,所述第二电感的第二端与所述第三电容的第一端连接,所述天线调谐网络的第二端分别与所述第三电容的第二端、所述第三电感的第二端、所述第四电感的第二端、所述第四电容的第二端以及所述第五电容的第二端连接。
  10. 根据权利要求2所述的电子设备,其中,所述第一天线为GPS天线,所述第二天线为NFC天线,所述第三天线为WiFi天线。
  11. 根据权利要求1所述的电子设备,所述电子设备还包括摄像头模组,所述金属件上开设有安装孔,所述摄像头模组设置于所述安装孔内。
PCT/CN2023/089263 2022-04-25 2023-04-19 一种电子设备 WO2023207714A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210442587.6 2022-04-25
CN202210442587.6A CN114865306A (zh) 2022-04-25 2022-04-25 一种电子设备

Publications (1)

Publication Number Publication Date
WO2023207714A1 true WO2023207714A1 (zh) 2023-11-02

Family

ID=82632701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089263 WO2023207714A1 (zh) 2022-04-25 2023-04-19 一种电子设备

Country Status (2)

Country Link
CN (1) CN114865306A (zh)
WO (1) WO2023207714A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114865306A (zh) * 2022-04-25 2022-08-05 维沃移动通信有限公司 一种电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509365A (zh) * 2019-01-31 2020-08-07 北京小米移动软件有限公司 天线组件以及移动终端
CN112736459A (zh) * 2020-12-24 2021-04-30 维沃移动通信有限公司 双天线系统、射频架构和电子设备
CN113471678A (zh) * 2021-06-11 2021-10-01 荣耀终端有限公司 一种终端天线及电子设备
US20210320392A1 (en) * 2020-04-10 2021-10-14 Chiun Mai Communication Systems, Inc. Antenna structure and electronic device using same
CN114122710A (zh) * 2020-08-28 2022-03-01 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的电子设备
CN114865306A (zh) * 2022-04-25 2022-08-05 维沃移动通信有限公司 一种电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509365A (zh) * 2019-01-31 2020-08-07 北京小米移动软件有限公司 天线组件以及移动终端
US20210320392A1 (en) * 2020-04-10 2021-10-14 Chiun Mai Communication Systems, Inc. Antenna structure and electronic device using same
CN114122710A (zh) * 2020-08-28 2022-03-01 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的电子设备
CN112736459A (zh) * 2020-12-24 2021-04-30 维沃移动通信有限公司 双天线系统、射频架构和电子设备
CN113471678A (zh) * 2021-06-11 2021-10-01 荣耀终端有限公司 一种终端天线及电子设备
CN114865306A (zh) * 2022-04-25 2022-08-05 维沃移动通信有限公司 一种电子设备

Also Published As

Publication number Publication date
CN114865306A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
US10511081B2 (en) Antenna structure and wireless communication device using same
CN108879116B (zh) 一种天线系统及终端
US8836588B2 (en) Antenna device and electronic apparatus including antenna device
CN113517546B (zh) 一种电子设备
US10236558B2 (en) LTE full-band cellphone antenna structure
US10297907B2 (en) Mobile device
US10256525B2 (en) Antenna structure and wireless communication device using same
US20090102724A1 (en) Circular polarized antenna, semiconductor module, and wireless communication device
US20120105292A1 (en) Communication Device and Antenna Thereof
US20180248264A1 (en) Antenna structure and wireless communication device using same
JP2013098974A (ja) スロットアンテナ
WO2023207714A1 (zh) 一种电子设备
CN101821901B (zh) 短边方向滑动式无线装置
CN113078449A (zh) 天线结构及具有该天线结构的无线通信装置
US11942702B2 (en) Wireless communication apparatus
CN112825386A (zh) 天线结构及具有该天线结构的无线通信装置
WO2017206074A1 (zh) 一种天线和电子设备
CN112768875B (zh) 电子设备
EP2728665B1 (en) Communication device and wide-band antenna element therein
CN113078445A (zh) 天线结构及具有该天线结构的无线通信装置
US20230231310A1 (en) Antenna structure
US11424536B2 (en) Multiband compatible antenna and radio communication device
EP2752939B1 (en) Communication device comprising antenna elements
EP1364428B1 (en) Wireless terminal
CN107394383B (zh) 槽隙平面倒l天线及蓝牙通讯装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795147

Country of ref document: EP

Kind code of ref document: A1