WO2024087054A1 - 叠片式电极组件及其制备方法、电池单体、电池和用电装置 - Google Patents

叠片式电极组件及其制备方法、电池单体、电池和用电装置 Download PDF

Info

Publication number
WO2024087054A1
WO2024087054A1 PCT/CN2022/127691 CN2022127691W WO2024087054A1 WO 2024087054 A1 WO2024087054 A1 WO 2024087054A1 CN 2022127691 W CN2022127691 W CN 2022127691W WO 2024087054 A1 WO2024087054 A1 WO 2024087054A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
electrode assembly
adjacent
pole pieces
pole piece
Prior art date
Application number
PCT/CN2022/127691
Other languages
English (en)
French (fr)
Inventor
雷育永
郭志君
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/127691 priority Critical patent/WO2024087054A1/zh
Publication of WO2024087054A1 publication Critical patent/WO2024087054A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators

Definitions

  • the present application relates to the field of battery technology, and in particular to a laminated electrode assembly, a battery cell, a battery, an electrical device, and a method for preparing the laminated electrode assembly.
  • Electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages of energy conservation and environmental protection.
  • battery technology is an important factor related to their development.
  • the present application provides a laminated electrode assembly, a battery cell, a battery, an electrical device and a method for preparing the laminated electrode assembly.
  • the laminated electrode assembly can effectively improve the performance and safety of the battery.
  • the present application provides a stacked electrode assembly, comprising: a pole piece group, comprising a plurality of pole pieces stacked along a first direction; a diaphragm, the diaphragm being wound to form a spiral structure, the diaphragm being inserted between two adjacent pole pieces to separate the two adjacent pole pieces.
  • the pole pieces of the pole piece group are stacked along the first direction to form a laminated structure, and the diaphragm is wound to form a spiral structure and separates two adjacent pole pieces, and the diaphragm winds and wraps each layer of pole pieces into an integral structure.
  • the pole pieces (especially the parts of the pole pieces that are in contact with the outer shell) are not easy to loosen, thereby effectively reducing the lithium precipitation problem caused by the loose pole pieces, thereby effectively improving the performance and cycle life of the battery using the laminated electrode assembly, and effectively reducing the safety accidents such as combustion and explosion that may be caused by lithium precipitation, and improving the overall performance and safety performance of the battery.
  • the diaphragm is wound to form a spiral structure, which can form a multi-layer wrapping on the edge of the pole piece, thereby effectively reducing the risk of burrs on the edge of the pole piece piercing the diaphragm and causing a short circuit in the battery, which is also conducive to improving the performance and safety performance of the battery.
  • the diaphragm wound into a spiral structure forms a good buffer structure on both sides of the electrode group.
  • the buffer structure of the diaphragm can buffer and protect the electrode, reducing the risk of the electrode being fractured due to the interaction force with the outer shell, further effectively improving the battery's performance and safety performance.
  • the diaphragm includes a plurality of main segments and a plurality of first side segments arranged along the first direction, two adjacent pole pieces are separated by the main segment, the plurality of first side segments are located on one side of the pole piece group along a second direction, the second direction is perpendicular to the first direction, each first side segment connects two main segments, and two adjacent first side segments are connected to each other.
  • the diaphragm is wound to form a spiral structure and is inserted between a plurality of pole pieces stacked along a first direction, and two adjacent pole pieces are separated by the diaphragm.
  • the area of the diaphragm clamped between two adjacent pole pieces forms a plurality of main segments, and the plurality of main segments are arranged along the first direction;
  • the area of the diaphragm not clamped between the pole pieces and located on the same side of the pole piece group along the second direction forms a plurality of first side segments, and the plurality of first side segments are stacked along the second direction.
  • the same circle of the diaphragm has two main segments and one first side segment, and the first side segment connects the same end of the two main segments along the second direction.
  • a passage is formed between two adjacent first side segments and between two adjacent circles of the diaphragm where the two first side segments are located, and the two pole pieces located between the two adjacent circles may overlap each other and short-circuit due to pole piece burrs or other impurities in the above passage.
  • the two adjacent first side segments are connected to each other, which can effectively block or even completely block the passage between the two adjacent first side segments, thereby effectively reducing the risk of short-circuiting caused by overlapping of the electrode pieces between the two adjacent layers in the above-mentioned passage due to burrs on the edge of the electrode pieces or other impurities, so as to further improve the safety performance of the battery using the electrode assembly.
  • a positive electrode sheet is disposed on the inner side of one, and a negative electrode sheet is disposed on the inner side of the other.
  • the possible passage between the positive electrode sheet and the negative electrode sheet between two adjacent circles of the diaphragm is blocked or even blocked, which can further effectively reduce the short circuit caused by the overlap of the positive electrode sheet and the negative electrode sheet between two adjacent circles of the diaphragm, thereby improving the safety performance of the battery.
  • a first connecting portion is provided between two adjacent first side segments, and the two adjacent first side segments are connected by the first connecting portion.
  • two adjacent first side segments are connected by a first connecting portion, which can effectively block or even block the possible passage between the two adjacent first side segments, thereby effectively preventing the pole pieces between two adjacent circles of the diaphragm from overlapping and short-circuiting, and effectively improving the safety performance of the battery.
  • the first connecting part includes colloid.
  • two adjacent first side segments are bonded by colloid, which has a simple process and high reliability, and is conducive to improving the stability of the connection between the two adjacent first side segments, thereby effectively ensuring the effect of preventing the two pole pieces located between the two adjacent circles of the diaphragm from overlapping each other, thereby improving the safety performance of the battery.
  • two adjacent first side segments are connected by heat melting.
  • two adjacent first side segments are connected by hot melt, and the first side segments are connected to each other after melting, which is beneficial to further improve the stability of the connection between the two adjacent first side segments, and will not introduce other materials used for connection into the interior of the electrode assembly, which is beneficial to further improve the safety performance of the electrode assembly.
  • the diaphragm also includes a plurality of second side segments, the plurality of second side segments are located on the other side of the pole piece group along the second direction, each second side segment connects two of the main body segments, and two adjacent second side segments are connected to each other.
  • the first side segment and the second side segment of the diaphragm located on opposite sides of the stacked pole pieces are interconnected, thereby further reducing the possibility of the two pole pieces located between two adjacent circles of the diaphragm overlapping each other, so that the safety of the electrode assembly is effectively guaranteed.
  • the first side segment and the second side segment are interconnected, which can play a good fool-proof effect on the preparation of the electrode assembly.
  • a second connecting portion is provided between two adjacent second side surface segments, and the two adjacent second side surface segments are connected through the second connecting portion.
  • two adjacent second side segments are connected by a second connecting portion, which can effectively block or even block the passage between the two adjacent second side segments, thereby effectively preventing the pole pieces between two adjacent circles of the diaphragm from overlapping and causing a short circuit, thereby effectively improving the safety performance of the battery.
  • the second connecting part includes colloid.
  • two adjacent second side segments are bonded by colloid, which has a simple process and high reliability, and is conducive to improving the stability of the connection between the two adjacent second side segments, thereby effectively ensuring the effect of preventing the two pole pieces located between the two adjacent circles of the diaphragm from overlapping each other, thereby improving the safety performance of the battery.
  • two adjacent second side segments are connected by heat melting.
  • two adjacent second side segments are connected by hot melt, and the second side segments are connected to each other after melting, which is beneficial to further improve the stability of the connection between the two adjacent second side segments, and will not lead other materials used for connection into the interior of the electrode assembly, which is beneficial to further improve the safety performance of the electrode assembly.
  • the multiple pole pieces are divided into a first pole piece and a second pole piece with opposite polarities; the diaphragms are provided with two, namely the first diaphragm and the second diaphragm; wherein the first pole piece is arranged between the first diaphragm and the second diaphragm, and the second pole piece is arranged on the side of the second diaphragm away from the first diaphragm.
  • the first diaphragm and the second diaphragm are stacked and wound together to form a spiral structure.
  • the first pole piece is arranged between the first diaphragm and the second diaphragm, and the second pole piece is arranged on the side of the second diaphragm away from the first diaphragm.
  • the first pole piece and the second pole piece are completely isolated from each other by the first diaphragm and the second diaphragm, and the pole pieces located between two adjacent circles of the diaphragm are both the first pole piece or both the second pole piece.
  • the arrangement of the first diaphragm and the second diaphragm can not only separate the two adjacent pole pieces by the first diaphragm or the second diaphragm, but also avoid the first pole piece and the second pole piece with opposite polarities being located between two adjacent circles of the diaphragm, thereby effectively preventing the first pole piece and the second pole piece with opposite polarities located between two adjacent circles of the diaphragm from overlapping each other and causing a short circuit, thereby also effectively improving the safety performance of the electrode assembly.
  • the second diaphragm is located outside the first diaphragm.
  • the second diaphragm is located on the outside of the first diaphragm, and the second pole piece is located on the side of the second diaphragm away from the first diaphragm.
  • the innermost circle of the diaphragm forms at least one circle of protective layer, which can effectively wrap the tool (such as a winding needle) used to wind the diaphragm in the preparation of the electrode assembly, thereby effectively reducing the risk of scratching the pole piece when the tool is pulled out of the electrode assembly after the preparation of the electrode assembly, thereby effectively improving the structural stability of the electrode assembly, and also helping to improve the performance and safety performance of the battery.
  • the tool such as a winding needle
  • the plurality of pole pieces are all located on the outside of the innermost circle of the diaphragm.
  • the pole pieces are all located on the outer side of the innermost circle of the diaphragm.
  • the diaphragm is a single-layer structure or a double-layer structure including a first diaphragm and a second diaphragm, no pole piece is arranged on the inner side of the innermost circle of the diaphragm.
  • the innermost circle of the diaphragm can form at least one circle of protective layer, which can effectively wrap the tool (such as a winding needle) used to wind the diaphragm when preparing the electrode assembly, thereby effectively reducing the risk of scratching the pole piece when the tool is pulled out of the electrode assembly after the electrode assembly is prepared, thereby effectively improving the structural stability of the electrode assembly, and also helping to improve the performance and safety of the battery.
  • the tool such as a winding needle
  • the plurality of pole pieces are all located on the inner side of the outermost circle of the diaphragm.
  • the pole pieces are all located on the inner side of the outermost circle of the diaphragm, that is, the winding end section of the diaphragm covers the pole piece located on the outermost layer in the stacking direction of the pole pieces, further strengthening the restraining effect of the diaphragm on all the pole pieces of the pole piece group, thereby further reducing the risk of lithium deposition due to the dispersion of individual pole pieces.
  • the diaphragm can effectively insulate and isolate the pole pieces of the electrode assembly from other components of the battery (such as the housing), thereby further effectively improving the safety performance of the battery.
  • the two outermost pole pieces of the pole piece group along the first direction are both negative pole pieces.
  • the outermost electrode sheet of the electrode assembly is the negative electrode sheet, which can effectively increase the negative electrode margin and reduce the risk of lithium plating in the electrode assembly, thereby further improving the safety performance of the electrode assembly.
  • the winding tail end of the diaphragm is fixed to the diaphragm.
  • the winding tail end of the diaphragm is fixed to the diaphragm, which can effectively reduce the risk of the diaphragm wound into a spiral structure becoming loose and spreading, and is conducive to fully exerting the winding and restraining effect of the diaphragm on the electrode piece, thereby further reducing the risk of deformation and lithium deposition due to loose electrode pieces.
  • the present application provides a battery cell, comprising: a housing; and a laminated electrode assembly as described in any of the above schemes, wherein the laminated electrode assembly is accommodated in the housing.
  • the present application provides a battery, comprising the battery cell described in the above scheme.
  • the present application provides an electrical device, comprising a battery according to the above-mentioned solution, wherein the battery is used to provide electrical energy.
  • the present application provides a method for preparing a stacked electrode assembly, comprising: fixing a plurality of electrode sheets to the surface of the diaphragm at intervals along the length direction of the diaphragm; and winding the diaphragm to which the plurality of electrode sheets are fixed so that the plurality of electrode sheets are stacked.
  • the multiple pole pieces that are separately arranged are first fixed to the surface of the diaphragm along the diaphragm, which can effectively reduce the risk of pole piece displacement during the winding process of the diaphragm, thereby effectively improving the efficiency and yield of pole piece preparation, and improving the service life and safety performance of the electrode assembly.
  • the diaphragm with multiple pole pieces fixed is wound so that the multiple pole pieces form a stacked structure, and the diaphragm winds the stacked pole pieces into an integral structure.
  • this method can effectively simplify the pole piece preparation process, reduce production costs and improve production efficiency.
  • the diaphragm includes a main body segment covered by the pole pieces and a side segment connecting two adjacent main body segments; before winding the diaphragm with the multiple pole pieces fixed thereto, the preparation method also includes: applying glue on the surface of the side segment; winding the diaphragm with the multiple pole pieces fixed thereto so that the multiple pole pieces are stacked, including: winding the diaphragm with the multiple pole pieces fixed thereto so that the multiple pole pieces are stacked, and the multiple side segments located on the same side of the multiple stacked pole pieces are bonded to each other.
  • the side segment of the diaphragm located between two adjacent pole pieces is coated with glue before the diaphragm is wound.
  • the side segment of the diaphragm coated with colloid can be bonded to each other through the colloid, so that the passage between the two pole pieces located between the two adjacent circles of the diaphragm is blocked or even blocked, effectively reducing the risk of short circuit caused by the overlap of the two pole pieces.
  • the process is simple and there is no need to reconnect the diaphragm after the electrode assembly is wound.
  • the diaphragm is coated with glue before the diaphragm is wound, and the gluing process is simple. Other positions of the diaphragm or the pole pieces are not easy to interfere with the gluing operation surface, so it is easy to ensure the full uniformity of the gluing, thereby effectively improving the full stability of the connection between the two adjacent side segments.
  • the diaphragm includes a main segment covered by the pole piece and a side segment connecting two adjacent main segments; after winding the diaphragm fixed with the multiple pole pieces, the preparation method also includes: hot melting the multiple side segments located on the same side of the multiple pole pieces arranged in a stacked manner.
  • the side segments of the diaphragm located on the same side of the electrode are heat-melted and connected to each other, so that the passage between two adjacent side segments is blocked or even blocked.
  • the side segments are connected to each other after being melted by heat, which is beneficial to further improve the stability of the connection between the side segments, and will not introduce other substances used for connection into the interior of the electrode assembly, which is beneficial to further improve the safety performance of the electrode assembly.
  • the multiple pole pieces are divided into a first pole piece and a second pole piece with opposite polarities, and the diaphragm is provided with two, namely the first diaphragm and the second diaphragm; the multiple pole pieces are fixed to the surface of the diaphragm at intervals along the length direction of the diaphragm, including: fixing the first pole piece to the surface of the first diaphragm, and fixing the second pole piece to the surface of the second diaphragm; stacking the first diaphragm with the first pole piece fixed and the second diaphragm with the second pole piece fixed, so that the first pole piece is arranged between the first diaphragm and the second diaphragm, and the second pole piece is arranged on the side of the second diaphragm away from the first diaphragm.
  • a first diaphragm and a second diaphragm are provided when preparing the electrode assembly, the first electrode piece is fixed to the surface of the first diaphragm, the second electrode piece is fixed to the surface of the second diaphragm away from the first diaphragm, and then the first diaphragm and the second diaphragm are synchronously wound to form a spiral structure, so that the first electrode piece and the second electrode piece form a laminated structure.
  • the first electrode piece and the second electrode piece are completely isolated from each other by the first diaphragm and the second diaphragm, and the electrode pieces located between two adjacent circles of the diaphragm are all first electrode pieces or all second electrode pieces.
  • first diaphragm and the second diaphragm can not only separate the two adjacent electrode pieces by the first diaphragm or the second diaphragm, but also avoid the first electrode piece and the second electrode piece of opposite polarity being located between two adjacent circles of the diaphragm, thereby effectively preventing the first electrode piece and the second electrode piece of opposite polarity located between two adjacent circles of the diaphragm from overlapping each other and causing a short circuit, thereby also effectively improving the safety performance of the electrode assembly.
  • FIG1 is a schematic diagram of the structure of a vehicle provided in some embodiments of the present application.
  • FIG2 is an exploded view of a battery provided in some embodiments of the present application.
  • FIG3 is an exploded view of a battery cell provided in some embodiments of the present application.
  • FIG4 is a front view of a battery cell provided in some embodiments of the present application.
  • Fig. 5 is a cross-sectional view taken along the line A-A shown in Fig. 4;
  • FIG6 is an axonometric view of a laminated electrode assembly provided in some embodiments of the present application.
  • FIG. 7 is a front view of a laminated electrode assembly provided in some embodiments of the present application.
  • Fig. 8 is a cross-sectional view taken along the line B-B shown in Fig. 7;
  • FIG9 is an axonometric view of a laminated electrode assembly provided in some other embodiments of the present application.
  • FIG10 is a front view of a laminated electrode assembly provided in some other embodiments of the present application.
  • Fig. 11 is a cross-sectional view taken along the line C-C shown in Fig. 10;
  • FIG12 is a schematic diagram of a preparation process of a laminated electrode assembly provided in some embodiments of the present application.
  • FIG13 is a schematic diagram of a structure in which a pole piece is fixed to a surface of a diaphragm in some embodiments of the present application;
  • FIG. 14 is a schematic diagram of the structure in which the pole piece is fixed to the surface of the diaphragm in some other embodiments of the present application.
  • the term “plurality” refers to more than two (including two).
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • multiple battery cells can be directly connected in series, in parallel or in mixed connection to form a battery.
  • Mixed connection means that multiple battery cells are both connected in series and in parallel.
  • Multiple battery cells can also be connected in series, in parallel or in mixed connection to form a battery module, and multiple battery modules can be connected in series, in parallel or in mixed connection to form a battery.
  • the battery may also include a box for encapsulating one or more battery cells. The box can prevent liquids or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell may include a lithium ion secondary battery, a lithium ion primary battery, a lithium sulfur battery, a sodium lithium ion battery, a sodium ion battery or a magnesium ion battery, etc., which is not limited in the present embodiment.
  • the battery cell may be flat, rectangular or in other shapes, etc., which is not limited in the present embodiment.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive electrode sheet and the negative electrode sheet to work.
  • the positive electrode sheet includes a positive electrode collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode collector.
  • the positive electrode collector not coated with the positive electrode active material layer protrudes from the positive electrode collector coated with the positive electrode active material layer.
  • the positive electrode collector not coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganese oxide.
  • the negative electrode sheet includes a negative electrode collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode collector.
  • the negative electrode collector not coated with the negative electrode active material layer protrudes from the negative electrode collector coated with the negative electrode active material layer.
  • the negative electrode collector not coated with the negative electrode active material layer serves as the negative electrode tab.
  • the negative electrode current collector may be made of copper, and the negative electrode active material may be carbon or silicon. In order to ensure that a large current can pass without melting, the positive electrode tabs are multiple and stacked together, and the negative electrode tabs are multiple and stacked together.
  • the material of the separator may be PP (polypropylene) or PE (polyethylene).
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but also widely used in electric vehicles such as electric bicycles, electric motorcycles, electric cars, as well as military equipment and aerospace and other fields. With the continuous expansion of the application field of power batteries, the market demand is also constantly expanding.
  • the electrode assembly is a laminated structure, in which the positive and negative pole pieces of the laminated electrode assembly are separately arranged, the diaphragm extends back and forth in an S shape and is stacked, and the positive and negative pole pieces are arranged on both sides of the diaphragm and stacked layer by layer to form a laminated structure.
  • the laminated electrode assembly can effectively reduce the internal resistance of the battery, and can effectively avoid the gradual release of stress generated when the pole piece is wound, which causes deformation of the electrode assembly and causes safety hazards, so that the performance of the electrode assembly is steadily improved.
  • the electrode layers of the laminated electrode assembly are in a relatively loose state. After the laminated electrode assembly is assembled into the shell of the battery cell, the portion of the electrode layer of the electrode assembly that contacts the shell or the insulating plastic inside the shell is prone to looseness. The looseness between the electrode layers will lead to problems such as lithium precipitation, which will in turn affect the service life of the battery and easily cause battery safety accidents; (2) There are many burrs on the edges of each electrode, which can easily puncture the diaphragm and cause a short circuit, which will also affect the performance and safety of the battery.
  • the applicant has designed a stacked electrode assembly after in-depth research.
  • the multiple pole pieces of the stacked electrode assembly are stacked along a first direction X, the diaphragm is wound to form a spiral structure, and the diaphragm is passed between two adjacent pole pieces to separate the two adjacent pole pieces.
  • the diaphragm of the laminated electrode assembly winds and wraps the layers of pole pieces into an integral structure.
  • the pole pieces especially the parts of the pole pieces that contact the outer shell
  • the safety accidents such as combustion and explosion that may be caused by lithium precipitation, thereby improving the performance and safety performance of the battery.
  • the battery cells disclosed in the embodiments of the present application can be used, but not limited to, in electrical devices such as vehicles, ships or aircraft.
  • a power supply system comprising the battery cells and batteries disclosed in the present application can be used to form the electrical device.
  • the embodiment of the present application provides an electric device using a battery as a power source
  • the electric device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric car, a ship, a spacecraft, etc.
  • the electric toy may include a fixed or mobile electric toy, for example, a game console, an electric car toy, an electric ship toy, an electric airplane toy, etc.
  • the spacecraft may include an airplane, a rocket, a space shuttle, a spacecraft, etc.
  • the battery described in the embodiments of the present application is not limited to the electrical devices described above, but can also be applied to all electrical devices using batteries. However, for the sake of simplicity, the following embodiments are described using an electrical device such as a vehicle as an example.
  • FIG. 1 is a schematic diagram of the structure of a vehicle 1000 provided in some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a battery 100 is provided inside the vehicle 1000, and the battery 100 may be provided at the bottom, head or tail of the vehicle 1000.
  • the battery 100 may be used to power the vehicle 1000, for example, the battery 100 may be used as an operating power source for the vehicle 1000.
  • the vehicle 1000 may also include a controller 200 and a motor 300, and the controller 200 is used to control the battery 100 to power the motor 300, for example, for the starting, navigation and driving power requirements of the vehicle 1000.
  • the battery 100 can be used not only as an operating power source for the vehicle 1000 , but also as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is an exploded view of a battery 100 provided in some embodiments of the present application.
  • the battery 100 may include a box 20 and a battery cell 10, and the battery cell 10 is contained in the box 20.
  • the box 20 is used to provide a storage space for the battery cell 10, and the box 20 may adopt a variety of structures.
  • the box 20 may include a first part 21 and a second part 22, and the first part 21 and the second part 22 cover each other, and the first part 21 and the second part 22 jointly define a storage space for accommodating the battery cell 10.
  • the second part 22 may be a hollow structure with one end open, and the first part 21 may be a plate-like structure, and the first part 21 covers the open side of the second part 22, so that the first part 21 and the second part 22 jointly define a storage space; the first part 21 and the second part 22 may also be hollow structures with one side open, and the open side of the first part 21 covers the open side of the second part 22.
  • the box 20 formed by the first part 21 and the second part 22 may be in a variety of shapes, such as a cuboid, a cube, etc.
  • the battery 100 there may be multiple battery cells 10, and the multiple battery cells 10 may be connected in series, in parallel, or in a mixed connection.
  • a mixed connection means that the multiple battery cells 10 are both connected in series and in parallel.
  • the multiple battery cells 10 may be directly connected in series, in parallel, or in a mixed connection.
  • the battery 100 may also be a battery module formed by first connecting multiple battery cells 10 in series, in parallel, or in a mixed connection, and then connecting multiple battery modules in series, in parallel, or in a mixed connection to form a whole.
  • Each battery cell 10 may be a secondary battery or a primary battery, or may be a lithium-sulfur battery, a sodium-ion battery, or a magnesium-ion battery, but is not limited thereto.
  • FIG. 3 is an exploded view of a battery cell provided in some embodiments of the present application
  • Figure 4 is a front view of a battery cell provided in some embodiments of the present application
  • Figure 5 is a cross-sectional view along the A-A direction shown in Figure 4.
  • the battery cell 10 may include a shell assembly 11 and an electrode assembly, the shell assembly 11 may include a shell 111 and an end cap 112, the shell 111 has an opening, and the end cap 112 covers the opening of the shell 111 and forms a sealed connection, forming a sealed space for accommodating the electrode assembly 12 and the electrolyte.
  • the electrode assembly 12 When assembling the battery cell 10 , the electrode assembly 12 may be placed in the housing 111 first, and the housing 111 may be filled with electrolyte, and then the end cap 112 may be closed on the opening of the housing 111 .
  • the shell 111 can be in various shapes, and the shape of the shell 111 can be determined according to the specific shape of the electrode assembly 12. For example, if the electrode assembly is a rectangular parallelepiped structure, a rectangular parallelepiped shell 111 can be selected. Of course, the end cap 112 can also be in various structures.
  • the shell assembly 11 is not limited to the above structure.
  • the shell assembly 11 may include a shell 111 and two end covers 112.
  • the shell 111 is a hollow structure with openings on opposite sides.
  • One end cover 112 corresponds to an opening of the shell 111 and forms a sealed connection to form a sealed space for accommodating the electrode assembly and the electrolyte.
  • the shell assembly 11 can also include an electric energy lead-out part 113, which can be insulated and arranged on the end cover 112 or the shell 111, and the electric energy lead-out part 113 is used to output the current of the electrode assembly, and the electric energy lead-out part 113 can be directly connected to the pole ear of the electrode assembly.
  • the battery cell 10 can also include an adapter arranged in the shell 111, and the adapter plays the role of current passing and current converging, and the electric energy lead-out part 113 can be connected to the pole ear of the electrode assembly through the adapter.
  • the electrode assembly is a component where an electrochemical reaction occurs in the battery cell 10 , and may include a positive electrode sheet 121 a , a negative electrode sheet 122 a , and a separator 123 .
  • Figure 6 is an isometric view of a laminated electrode assembly provided in some embodiments of the present application
  • Figure 7 is a front view of a laminated electrode assembly provided in some embodiments of the present application
  • Figure 8 is a cross-sectional view along the B-B direction shown in Figure 7.
  • Some embodiments of the present application provide a laminated electrode assembly 12, the laminated electrode assembly 12 includes a pole piece group and a diaphragm 123, the pole piece group includes a plurality of pole pieces stacked along a first direction X; the diaphragm 123 is wound to form a spiral structure, and the diaphragm 123 is inserted between two adjacent pole pieces to separate the two adjacent pole pieces.
  • the electrode sheet group may include the positive electrode sheet 121a and the negative electrode sheet 122a as described above, and the positive electrode sheet 121a and the negative electrode sheet 122a are stacked along the first direction X.
  • the positive electrode sheet 121a and the negative electrode sheet 122a are alternately stacked.
  • the positive electrode sheet 121a may also include a positive electrode tab 1211
  • the negative electrode sheet 122a may also include a negative electrode tab 1221.
  • the positive electrode tab 1211 and the negative electrode tab 1221 of the electrode sheet group may both be located on the same side of the electrode sheet group along the extension direction of the winding central axis of the separator 123 (the third direction Z).
  • the positive electrode tab 1211 and the negative electrode tab 1221 may also be arranged on opposite sides of the electrode sheet group along the extension direction of the winding central axis of the separator 123 (the third direction Z).
  • the positive electrode tab 1211 may be located on one side of the electrode sheet group along the extension direction of the winding central axis of the separator 123 (the third direction Z), and at the same time, the negative electrode tab 1221 is located on the other side of the electrode sheet group along the extension direction of the winding central axis of the separator 123 (the third direction Z).
  • the diaphragm 123 is an integrated structure, one end of the diaphragm in the length direction forms a winding starting end 1233, and the other end forms a winding ending end 1234.
  • the winding ending end 1234 of the diaphragm 123 is rotated and wound around the winding direction of the diaphragm 123 (clockwise direction W shown in FIG. 8), so that the diaphragm 123 is wound to form a spiral structure.
  • the extension direction of the winding center axis of the diaphragm 123 (the third direction Z shown in FIG. 6) is perpendicular to the stacking direction of multiple pole pieces (the first direction X).
  • pole pieces of the pole piece group are clamped on both sides of the diaphragm 123 along its own thickness direction, so that the diaphragm 123 can separate two adjacent pole pieces.
  • the pole piece in order to effectively improve the relative position accuracy of each pole piece, can be fixed to the diaphragm 123 by gluing or other means.
  • the pole pieces of the pole piece group are stacked along the first direction X to form a laminated structure, and the diaphragm 123 is wound to form a spiral structure and separates two adjacent pole pieces, and the diaphragm 123 winds and wraps the pole pieces of each layer into an integral structure.
  • the pole pieces (especially the parts of the pole pieces that are in contact with the shell 111) are not easy to loosen, thereby effectively reducing the lithium precipitation problem caused by the loose pole pieces, thereby effectively improving the performance and cycle life of the battery 100 using the laminated electrode assembly 12, and effectively reducing the safety accidents such as combustion and explosion that may be caused by lithium precipitation, and improving the overall performance and safety performance of the battery 100.
  • the diaphragm 123 is wound to form a spiral structure, which can form a multi-layer wrapping on the edge of the pole piece, thereby effectively reducing the risk of burrs on the edge of the pole piece piercing the diaphragm 123 and causing a short circuit in the battery 100, which is also conducive to improving the performance and safety performance of the battery 100. Furthermore, the diaphragm 123 wound into a spiral structure forms a good buffer structure on both sides of the electrode group.
  • the buffer structure of the diaphragm 123 can buffer and protect the electrode, reducing the risk of the electrode being fractured due to the interaction force with the outer shell, further effectively improving the performance and safety of the battery 100.
  • the diaphragm 123 includes a plurality of main segments 1231 and a plurality of first side segments 1232a arranged along a first direction X, two adjacent pole pieces are separated by the main segment 1231, and the plurality of first side segments 1232a are located on one side of the pole piece group along a second direction Y, the second direction Y is perpendicular to the first direction X, each first side segment 1232a connects two main segments 1231, and two adjacent first side segments 1232a are connected to each other.
  • the diaphragm 123 is wound along the W direction shown in FIG8 to form a spiral structure and is inserted between a plurality of pole pieces stacked along the first direction X. Among them, the region of the diaphragm 123 sandwiched between two adjacent pole pieces forms the above-mentioned main body segment 1231. It can be understood that each coil layer of the diaphragm 123 can have two main body segments 1231, and the region of the diaphragm 123 connecting the same end of the two main body segments 1231 between two adjacent coil layers forms the first side segment 1232a.
  • the plurality of main body segments 1231 of the diaphragm 123 wound to form a spiral structure are stacked along the first direction X
  • the plurality of first side segments 1232a of the diaphragm 123 wound to form a spiral structure are stacked along the second direction Y
  • the second direction Y, the first direction X and the extension direction of the winding center axis of the diaphragm 123 are perpendicular to each other.
  • Two adjacent first side segments 1232a are connected to each other, which means that two adjacent first side segments 1232a along the second direction Y are connected to each other. It can be understood that among all the first side segments 1232a of the diaphragm 123, any two adjacent first side segments 1232a can be connected to each other. Of course, in some other embodiments, only some of the two adjacent first side segments 1232a can be connected to each other. There are many ways to connect the first side segments 1232a of the diaphragm 123 to each other.
  • a blocking structure such as a blocking sheet or a blocking block can be provided between two adjacent first side segments 1232a of the diaphragm 123, and the opposite ends of the blocking structure along the second direction Y are respectively connected to the two adjacent first side segments 1232a, so that the two adjacent first side segments 1232a are connected to each other.
  • connection area of the two adjacent first side segments 1232a connected to each other along the extension direction of the winding center axis of the diaphragm 123 can extend to the two side edges of the diaphragm 123 along the extension direction of the winding center axis of the diaphragm 123.
  • connection area along the extension direction of the winding center axis of the diaphragm 123 may not extend to the two side edges of the diaphragm 123 along the extension direction of the winding center axis of the diaphragm 123, or one end of the connection area along the extension direction of the winding center axis of the diaphragm 123 extends to one side edge of the diaphragm 123 along the extension direction of the winding center axis of the diaphragm 123.
  • the two ends of the connection area along the extension direction of the winding center axis of the diaphragm 123 can extend to the two side edges of the diaphragm 123 along the extension direction of the winding center axis of the diaphragm 123. This effectively improves the adequacy of blocking the passage between the two adjacent first connection segments.
  • the main section 1231 of the diaphragm 123 is erected between two adjacent pole pieces to separate the two adjacent pole pieces.
  • the first side section 1232a is located on the same side of all the pole pieces along a direction perpendicular to the stacking direction of the pole pieces and connected to the main section 1231 to ensure that the entire diaphragm 123 forms a spiral structure.
  • the two adjacent first side sections 1232a located on the same side of all the pole pieces are connected to each other, which can effectively block or even block the passage between the two adjacent first side sections 1232a, thereby effectively reducing the risk of short-circuiting caused by overlapping of the pole pieces between two adjacent circles of the diaphragm 123 in the above-mentioned passage due to other impurities such as burrs on the edges of the pole pieces, thereby further improving the safety performance of the battery 100 using the electrode assembly.
  • a positive electrode sheet 121a is disposed on the inner side of one, and a negative electrode sheet 122a is disposed on the inner side of the other.
  • the inner side of the main body segment 1231 of the diaphragm 123 is relative to the winding center axis of the diaphragm 123 , and the side of any main body segment 1231 close to the winding center axis is the inner side of the main body segment 1231 .
  • the two main sections 1231 connected to the same first side section 1232a are in the same circle of the spirally arranged diaphragm 123, and there is a passage connecting the above-mentioned positive electrode sheet 121a and the negative electrode sheet 122a between the first side section 1232a and an adjacent first side section 1232a located on the inner side of the first side section 1232a (similarly relative to the winding center axis of the diaphragm 123, the side of any first side section 1232a close to the winding center axis is the inner side of the first side section 1232a).
  • the first side section 1232a and an adjacent first side section 1232a located on the inner side of the first side section 1232a are connected to each other, which can effectively reduce the risk of short circuit caused by direct overlap of the above-mentioned positive electrode sheet 121a and the negative electrode sheet 122a, thereby improving the safety performance of the battery.
  • a first connecting portion 124 is disposed between two adjacent first side segments 1232 a , and the two adjacent first side segments 1232 a are connected through the first connecting portion 124 .
  • At least one first connection portion 124 may be provided between any two adjacent first side segments 1232a, and the two adjacent first side segments 1232a are connected by the first connection portion 124.
  • the first connection portion 124 may include a colloid, a protrusion provided on the surface of the first side segment 1232a and made of the same material as the diaphragm 123, a baffle or a block provided between the two adjacent first side segments 1232a, etc.
  • the two adjacent first side segments 1232a can be connected to each other to block or even completely block the passage between the two adjacent first side segments 1232a, it will be sufficient.
  • the opposite ends of the first connecting portion 124 may extend to the edges of the two adjacent first side segments 1232 a on opposite sides along the extension direction of the winding central axis.
  • the two adjacent first side segments 1232a are connected by the first connecting portion 124, and the first connecting portion 124 can effectively block or even block the possible passage between the two adjacent first side segments 1232a, thereby effectively preventing the electrodes between the two adjacent circles of the diaphragm 123 from overlapping and short-circuiting, thereby effectively improving the safety performance of the battery 100.
  • the first connecting portion 124 includes colloid.
  • colloid may be coated between any two adjacent first side segments 1232a, so that the two adjacent first side segments 1232a are bonded to each other through the colloid.
  • the colloid may be coated on one side of the two adjacent first side segments 1232a facing the other first side segment 1232a, or the colloid may be coated on the facing surfaces of the two adjacent first side segments 1232a, so that the two adjacent first side segments 1232a are bonded to each other.
  • the colloid may extend along the extension direction of the winding central axis of the diaphragm 123 to the edges of the first side segments 1232a on the opposite sides along the extension direction of the winding central axis.
  • the two adjacent first side segments 1232a are bonded by colloid, which has a simple process and high reliability, and is conducive to improving the stability of the connection between the two adjacent first side segments 1232a, thereby effectively preventing the two pole pieces located between the two adjacent circles of the diaphragm 123 from overlapping each other, thereby improving the safety performance of the battery 100.
  • two adjacent first side segments 1232a are connected by heat melting.
  • a force may be applied to the two adjacent first side segments 1232a to bring them closer together and the two adjacent first side segments 1232a may be heated to melt the first side segments 1232a, and the melted areas of the two adjacent first side segments 1232a may fuse and adhere to each other to connect the two adjacent first side segments 1232a to each other.
  • the two adjacent first side segments 1232a are connected to each other after melting, which is beneficial to further improve the stability of the connection between the two adjacent first side segments 1232a, and will not introduce other materials used for connection into the electrode assembly, which is beneficial to further improve the safety performance of the electrode assembly.
  • the diaphragm 123 also includes a plurality of second side segments 1232b, which are located on the other side of the pole piece group along the second direction Y, each second side segment 1232b connects two main body segments 1231, and two adjacent second side segments 1232b are connected to each other.
  • the plurality of main segments 1231 of the diaphragm 123 wound to form a spiral structure are stacked along the first direction X
  • the first side segment 1232a is located on the same side of all the main segments 1231 along the second direction Y and are stacked along the second direction Y
  • the second side segment 1232b is located on the other side of all the main segments 1231 along the second direction Y and are stacked along the second direction Y, so that the diaphragm 123 forms a spiral structure
  • the second direction Y, the first direction X and the extension direction of the winding center axis of the diaphragm 123 (the third direction Z shown in FIG. 6 ) are perpendicular to each other.
  • Two adjacent second side segments 1232b are connected to each other, which means that two adjacent second side segments 1232b along the second direction Y are connected to each other. It can be understood that among all the second side segments 1232b of the diaphragm 123, any two adjacent second side segments 1232b can be connected to each other. Of course, in some other embodiments, only some of the adjacent two second side segments 1232b can be connected to each other. There are many ways to connect the second side segments 1232b of the diaphragm 123 to each other.
  • a blocking structure such as a blocking sheet or a blocking block can be provided between two adjacent second side segments 1232b of the diaphragm 123, and the opposite ends of the blocking structure along the second direction Y are respectively connected to the two adjacent second side segments 1232b, so that the two adjacent second side segments 1232b are connected to each other.
  • connection area of the two adjacent second side segments 1232b connected to each other along the extension direction of the winding center axis of the diaphragm 123 can extend to the two side edges of the diaphragm 123 along the extension direction of the winding center axis of the diaphragm 123.
  • connection area along the extension direction of the winding center axis of the diaphragm 123 may not extend to the two side edges of the diaphragm 123 along the extension direction of the winding center axis of the diaphragm 123, or one end of the connection area along the extension direction of the winding center axis of the diaphragm 123 extends to one side edge of the diaphragm 123 along the extension direction of the winding center axis of the diaphragm 123.
  • the two ends of the connection area along the extension direction of the winding center axis of the diaphragm 123 can extend to the two side edges of the diaphragm 123 along the extension direction of the winding center axis of the diaphragm 123. This effectively improves the adequacy of blocking the passage between the two adjacent second connection segments.
  • the first side segment 1232a and the second side segment 1232b of the diaphragm 123 located on opposite sides of the stacked pole pieces are interconnected, thereby further reducing the possibility of overlapping of the two pole pieces between two adjacent layers of the diaphragm 123, so that the safety of the electrode assembly is effectively guaranteed.
  • the first side segment 1232a and the second side segment 1232b are interconnected, which plays a good fool-proof role in the preparation and production of the electrode assembly, and reduces the risk of not taking interference measures in the passage between the positive pole piece 121a and the negative pole piece 122a between two adjacent layers of the diaphragm 123 due to production errors and other reasons, thereby further ensuring the effect of this design on improving the safety of the electrode assembly.
  • a second connecting portion 125 is disposed between two adjacent second side surface segments 1232 b , and the two adjacent second side surface segments 1232 b are connected through the second connecting portion 125 .
  • a second connection portion 125 is disposed between any two adjacent second side segments 1232b, and the two adjacent second side segments 1232b are connected by the second connection portion 125.
  • the second connection portion 125 may be implemented in a variety of forms, for example, the second connection portion 125 may include a colloid, a protrusion disposed on the surface of any second side segment 1232b made of the same material as the diaphragm 123, a blocking piece or a blocking block disposed between the two adjacent second side segments 1232b, etc.
  • the two adjacent second side segments 1232b can be connected to each other to block or even completely block the passage between the two adjacent first side segments 1232a.
  • the opposite ends of the second connecting portion 125 may also extend to the edges of the two adjacent second side segments 1232 b on the opposite sides along the extension direction of the winding central axis.
  • the two adjacent second side segments 1232b are connected by the second connecting portion 125, and the second connecting portion 125 can effectively block or even block the passage between the two adjacent second side segments 1232b, thereby effectively preventing the pole pieces between the two adjacent circles of the diaphragm 123 from overlapping and short-circuiting, and effectively improving the safety performance of the battery 100.
  • the second connection part 125 includes colloid.
  • colloid may be coated between any two adjacent second side surface segments 1232b, so that the two adjacent second side surface segments 1232b are bonded to each other through the colloid.
  • the colloid may be coated on one side of the two adjacent second side segments 1232b facing the other second side segment 1232b, or the colloid may be coated on the facing surfaces of the two adjacent second side segments 1232b, so that the two adjacent second side segments 1232b are bonded to each other.
  • the colloid may extend along the extension direction of the winding central axis of the diaphragm 123 to the edges of the second side segments 1232b on the opposite sides along the extension direction of the winding central axis.
  • the two adjacent second side segments 1232b are bonded by colloid, which has a simple process and high reliability, and is conducive to improving the stability of the connection between the two adjacent second side segments 1232b, thereby effectively preventing the two pole pieces located between the two adjacent circles of the diaphragm 123 from overlapping each other, thereby improving the safety performance of the battery 100.
  • two adjacent second side segments 1232b are connected by heat melting.
  • a force may be applied to two adjacent second side segments 1232b to bring the two adjacent second side segments 1232b closer to each other and the two adjacent second side segments 1232b may be heated to melt the second side segments 1232b, and the melted areas of the two adjacent second side segments 1232b may fuse and adhere to each other, so that the two adjacent second side segments 1232b may be connected to each other.
  • the two adjacent second side segments 1232b are connected to each other after melting, which is beneficial to further improve the stability of the connection between the two adjacent second side segments 1232b, and will not introduce other materials used for connection into the electrode assembly, which is beneficial to further improve the safety performance of the electrode assembly.
  • Figure 9 is an isometric view of a laminated electrode assembly provided in some other embodiments of the present application
  • Figure 10 is a front view of a laminated electrode assembly provided in some other embodiments of the present application
  • Figure 11 is a cross-sectional view in the C-C direction shown in Figure 10.
  • the plurality of pole pieces are divided into a first pole piece 121 and a second pole piece 122 with opposite polarities; two diaphragms 123 are provided, namely a first diaphragm 123a and a second diaphragm 123b; wherein the first pole piece 121 is provided between the first diaphragm 123a and the second diaphragm 123b, and the second pole piece 122 is provided on the side of the second diaphragm 123b away from the first diaphragm 123a.
  • the first pole piece and the second pole piece 122 have opposite polarities.
  • the first pole piece 121 may be a positive pole piece 121a
  • the second pole piece 122 may be a negative pole piece 122a.
  • the first pole piece 121 may also be a negative pole piece 122a
  • the second pole piece 122 may be a positive pole piece 121a.
  • the first pole piece 121 is a negative pole piece 122a
  • the second pole piece 122 is a positive pole piece 121a.
  • the length and size shape of the first diaphragm 123a and the second diaphragm 123b can be the same or different.
  • the first diaphragm 123a has a first diaphragm winding starting end 1233a and a first diaphragm winding ending end 1234a.
  • the second diaphragm 123b also has a second diaphragm winding starting end 1233b and a second diaphragm winding ending end 1234b.
  • first diaphragm winding starting end 1233a and the second diaphragm winding starting end 1233b can be flush or uneven, and the first diaphragm winding ending end 1234a and the second diaphragm winding ending end 1234b can also be flush or uneven.
  • the first diaphragm 123a and the second diaphragm 123b are stacked and synchronously wound to form a spiral structure, the first pole piece 121 is sandwiched between the first diaphragm 123a and the first diaphragm 123a along the winding direction W of the diaphragm 123, and the second pole piece 122 is sandwiched on the side of the second diaphragm 123b away from the first diaphragm 123a along the winding direction W of the diaphragm 123, so that the second diaphragm 123b is sandwiched between the first pole piece 121 and the second pole piece 122. Finally, the first pole piece 121 and the second pole piece 122 are stacked along the first direction X to form a stacked structure.
  • the first diaphragm 123a and the second diaphragm 123b are stacked and wound together to form a spiral structure.
  • the first electrode piece 121 is arranged between the first diaphragm 123a and the second diaphragm 123b, and the second electrode piece 122 is arranged on the side of the second diaphragm 123b away from the first diaphragm 123a. In this way, after the electrode assembly is wound, the first electrode piece 121 and the second electrode piece 122 are completely isolated from each other by the first diaphragm 123a and the second diaphragm 123b.
  • the electrode pieces located between two adjacent circles of the diaphragm 123 are all the first electrode piece 121 or the second electrode piece 122.
  • the arrangement of the first diaphragm 123a and the second diaphragm 123b can not only separate the two adjacent electrode pieces by the first diaphragm 123a or the second diaphragm 123b, but also avoid the first electrode piece 121 and the second electrode piece 122 with opposite polarities being located between two adjacent circles of the diaphragm 123, thereby effectively preventing the first electrode piece 121 and the second electrode piece 122 with opposite polarities located between two adjacent circles of the diaphragm 123 from overlapping each other.
  • the problem of short circuit caused by connection can also be effectively improved the safety performance of the electrode assembly.
  • the second diaphragm 123b is located outside the first diaphragm 123a.
  • the outside and inside of the diaphragm 123 are also relative to the winding center axis after the diaphragm 123 is wound into a spiral structure.
  • the side of the first diaphragm 123a close to the winding center axis is the inside of the first diaphragm 123a, and the side away from the winding center axis is the outside of the first diaphragm 123a.
  • the second diaphragm 123b is located on the outside of the first diaphragm 123a, which means that the second diaphragm 123b is located on the side of the first diaphragm 123a away from the winding center axis.
  • the first pole piece 121 is arranged between the first diaphragm 123a and the second diaphragm 123b, and the second pole piece 122 is arranged on the side of the second diaphragm 123b away from the first diaphragm 123a, and the second diaphragm 123b is located on the outside of the first diaphragm 123a, after the first diaphragm 123a and the second diaphragm 123b are wound into a spiral structure, the first diaphragm 123a can be wound into the innermost circle 1235 of the laminated electrode assembly 12, and the first pole piece 121 or the second pole piece 122 is not arranged in the innermost circle 1235.
  • the innermost circle 1235 of the diaphragm 123 forms at least one circle of protective layer, and the protective layer can effectively wrap the tool (such as a winding needle) used to wind the diaphragm 123 for preparing the electrode assembly, thereby effectively reducing the risk of scratching the pole piece when the tool is pulled out of the electrode assembly after the electrode assembly is prepared, thereby effectively improving the structural stability of the electrode assembly, and also helping to improve the performance and safety performance of the battery 100.
  • the tool such as a winding needle
  • the plurality of pole pieces are located outside the innermost circle 1235 of the diaphragm 123 .
  • the first circle of the diaphragm 123 formed by winding from the winding starting end 1233 of the diaphragm 123 along the winding direction W of the diaphragm 123 is the innermost circle 1235 of the diaphragm 123 .
  • the outer side of the innermost circle 1235 of the diaphragm 123 is also relative to the winding center axis after the diaphragm 123 is wound into a spiral structure.
  • the side of the innermost circle 1235 of the diaphragm 123 that is away from the winding center axis is the outer side of the innermost circle 1235 of the diaphragm 123.
  • the diaphragm 123 includes a first diaphragm 123a and a second diaphragm 123b
  • the innermost circle 1235 of the diaphragm 123 refers to the first circle formed by winding the first diaphragm 123a from the starting end 1233a of the first diaphragm along the winding direction W of the diaphragm 123
  • the innermost circle 1235 of the diaphragm 123 refers to the first circle formed by winding the second diaphragm 123b from the starting end 1233b of the second diaphragm along the winding direction W of the diaphragm 123.
  • the plurality of pole pieces are all located outside the innermost circle 1235 of the diaphragm 123 means that the pole pieces of the pole piece group are not arranged within the range surrounded by the innermost circle 1235 of the diaphragm 123 , that is, the innermost circle 1235 of the diaphragm 123 has no pole piece.
  • the pole pieces are all located on the outer side of the innermost circle 1235 of the diaphragm 123.
  • the diaphragm 123 is a single-layer structure or a double-layer structure including the first diaphragm 123a and the second diaphragm 123b, no pole piece is arranged on the inner side of the innermost circle 1235 of the diaphragm 123.
  • the innermost circle 1235 of the diaphragm 123 can form at least one circle of protective layer, which can effectively wrap the tool (such as a winding needle) used to wind the diaphragm 123 when preparing the electrode assembly, thereby effectively reducing the risk of scratching the pole piece when the tool is pulled out of the electrode assembly after the electrode assembly is prepared, thereby effectively improving the structural stability of the electrode assembly, and also helping to improve the performance and safety performance of the battery 100.
  • the tool such as a winding needle
  • the plurality of pole pieces are located on the inner side of the outermost circle 1236 of the diaphragm 123 .
  • the first circle of the diaphragm 123 formed by winding from the winding end 1234 of the diaphragm 123 in the opposite direction of the winding direction W of the diaphragm 123 is the outermost circle 1236 of the diaphragm 123 .
  • the inner side of the outermost circle 1236 of the diaphragm 123 is also relative to the winding center axis after the diaphragm 123 is wound into a spiral structure.
  • the side of the outermost circle 1236 of the diaphragm 123 close to the winding center axis is the inner side of the outermost circle 1236 of the diaphragm 123.
  • the diaphragm 123 includes a first diaphragm 123a and a second diaphragm 123b
  • the outermost circle 1236 of the diaphragm 123 refers to the first circle formed by winding the second diaphragm 123b from the second diaphragm winding end 1234b in the reverse direction of the winding direction W of the diaphragm 123
  • the outermost circle 1236 of the diaphragm 123 refers to the first circle formed by winding the first diaphragm 123a from the first diaphragm winding end 1234a in the reverse direction of the winding direction W of the diaphragm 123.
  • That the plurality of pole pieces are all located inside the outermost circle 1236 of the diaphragm 123 means that the pole pieces are all within the range surrounded by the outermost circle 1236 of the diaphragm 123 , that is, the outermost circle 1236 of the diaphragm 123 covers the outermost pole piece of the pole piece group along the first direction X.
  • the diaphragm 123 after the diaphragm 123 covers the outermost pole piece of the pole piece group along the first direction X, it can continue to be wound along the winding direction W of the diaphragm 123 for a certain length or more than one circle to further improve the wrapping strength and stability of the pole piece of the diaphragm 123.
  • the pole pieces are all located on the inner side of the outermost circle 1236 of the diaphragm 123, that is, the outermost circle 1236 of the diaphragm 123 covers the pole piece located on the outermost layer in the stacking direction of the pole pieces, thereby further strengthening the restraining effect of the diaphragm 123 on all pole pieces of the pole piece group, thereby further reducing the risk of lithium deposition due to the dispersion of individual pole pieces.
  • the diaphragm 123 can effectively insulate and isolate the pole pieces of the electrode assembly from other components of the battery 100 (such as the housing 111), thereby further effectively improving the safety performance of the battery 100.
  • the two outermost pole pieces of the pole piece group along the first direction X are both negative pole pieces 122a.
  • the electrode plate group includes a positive electrode plate 121a and a negative electrode plate 122a, and multiple electrode plates of the electrode plate group are stacked along the first direction X.
  • the electrode plate located on one side of the electrode plate group along the first direction X is the negative electrode plate 122a, and the electrode plate located on the other side of the electrode plate group along the first direction X is also the negative electrode plate 122a.
  • the outermost electrode sheet of the electrode assembly is the negative electrode sheet 122a, which can effectively increase the negative electrode margin and reduce the risk of lithium plating in the laminated electrode assembly, thereby further improving the safety performance of the electrode assembly.
  • the rolled tail end 1234 of the diaphragm 123 is fixed to the diaphragm 123 .
  • the tail end of the diaphragm 123 can be fixed by any conventional method including the aforementioned colloid bonding, hot melting and the like.
  • the winding tail end 1234 of the diaphragm 123 can be fixed to the main section 1231 of the diaphragm 123, or to the first side section 1232a of the diaphragm 123, or to the second side section 1232b of the diaphragm 123.
  • the first diaphragm winding tail end 1234a and the second diaphragm winding tail end 1234b may be aligned along the winding direction W of the diaphragm 123, or may not be aligned.
  • the first diaphragm winding tail end 1234a and the second diaphragm winding tail end 1234b may be fixed to any position of the first diaphragm 123a or the second diaphragm 123b, the first diaphragm winding tail end 1234a and the second diaphragm winding tail end 1234b may be fixed together, or the first diaphragm winding tail end 1234a and the second diaphragm winding tail end 1234b may be fixed separately.
  • the winding tail end 1234 of the diaphragm 123 is fixed to the diaphragm 123, which can effectively reduce the risk of the diaphragm 123 wound into a spiral structure becoming loose and unravelling, and is conducive to fully exerting the winding and restraining effect of the diaphragm 123 on the electrode, thereby further reducing the risk of deformation and lithium deposition due to loose electrode.
  • Some embodiments of the present application further provide a battery cell 10, which includes a housing and a laminated electrode assembly 12 of any of the above solutions, and the laminated electrode assembly 12 is accommodated in the housing.
  • the housing can be any of the above-mentioned forms of the shell assembly 11.
  • Some embodiments of the present application further provide a battery 100 including the battery cell 10 of the above-mentioned solution.
  • Some embodiments of the present application further provide an electrical device, which includes the battery cell 10 of the above solution, and the battery cell 10 is used to provide electrical energy; or, the electrical device includes the battery 100 of the above solution, and the battery 100 is used to provide electrical energy.
  • the electrical device may be any of the aforementioned systems or devices.
  • Figure 12 is a schematic diagram of the preparation process of a laminated electrode assembly provided in some embodiments of the present application
  • Figure 13 is a schematic diagram of the structure of a pole piece fixed to the surface of a diaphragm in some embodiments of the present application
  • Figure 14 is a schematic diagram of the structure of a pole piece fixed to the surface of a diaphragm in some embodiments of the present application.
  • the length direction V of the diaphragm 123 refers to the extension direction of the diaphragm 123 from the winding starting end 1233 of the diaphragm 123 to the winding ending end 1234 of the diaphragm 123 before the diaphragm 123 is wound.
  • the pole pieces of the pole piece group may include a first pole piece 121 and a second pole piece 122 with opposite polarities, and the first pole piece 121 and the second pole piece 122 are alternately stacked along the first direction X.
  • the first pole piece 121 and the second pole piece 122 can be fixed to the same surface of the diaphragm 123.
  • the pole pieces can be a unit with the first pole piece 121, the second pole piece 122, the second pole piece 122, and the first pole piece 121 arranged in sequence along the length direction V of the diaphragm, and one or more units are arranged in sequence along the length direction V of the diaphragm and fixed to the same surface of the diaphragm 123.
  • the implementation method of fixing the pole piece to the surface of the diaphragm 123 may also be different (the arrangement of the pole pieces when two diaphragms are provided will be described in detail below), as long as the diaphragm 123 is wound into a spiral structure, the first pole piece 121 and the second pole piece 122 can be alternately stacked along the first direction X and the two adjacent pole pieces are separated by the diaphragm 123.
  • the electrode can be bonded to the diaphragm 123 by means of colloid, tape, etc., wherein the tape refers to a structure with glue applied on at least one side of the substrate, and the substrate can be made of polyethylene, polypropylene, paper, etc.
  • the spacing distance between two adjacent pole pieces can be gradually increased along the direction from the winding starting end 1233 of the diaphragm 123 to the winding ending end 1234 of the diaphragm 123 to improve the accuracy of stacking of each pole piece along the first direction X after the diaphragm 123 is wound into a spiral structure.
  • the diaphragm 123 can be wound from the winding starting end 1233 of the diaphragm along the winding direction W of the diaphragm. Finally, the winding starting end 1233 of the diaphragm 123 is located at the innermost circle of the spiral structure, and the winding ending end 1234 of the diaphragm 123 is located at the outermost circle of the spiral structure. At the same time, the first pole piece 121 and the second pole piece 122 are alternately stacked along the first direction X and two adjacent pole pieces are separated by the diaphragm 123.
  • the multiple pole pieces that are separately arranged are fixed to the surface of the diaphragm 123 along the diaphragm 123, which can effectively reduce the risk of pole piece displacement during the winding process of the diaphragm 123, thereby effectively improving the efficiency and yield of pole piece preparation, and improving the service life and safety performance of the electrode assembly.
  • the diaphragm 123 with multiple pole pieces is wound so that the multiple pole pieces form a stacked structure, and the diaphragm 123 winds the stacked pole pieces into an integral structure. Compared with the method of inserting pole pieces in batches during the winding process of the diaphragm 123, this method can effectively simplify the pole piece preparation process, reduce production costs and improve production efficiency.
  • the diaphragm 123 includes a main segment 1231 covered by a pole piece and a side segment 1232 connecting two adjacent main segments 1231; before winding the diaphragm 123 with multiple pole pieces fixed thereto, the preparation method also includes: applying glue on the surface of the side segment 1232; winding the diaphragm 123 with multiple pole pieces fixed thereto so that the multiple pole pieces are stacked, including: winding the diaphragm 123 with multiple pole pieces fixed thereto so that the multiple pole pieces are stacked, and the multiple side segments 1232 located on the same side of the multiple stacked pole pieces are bonded to each other.
  • the main section 1231 is the area of the diaphragm 123 covered by the pole piece fixed on the diaphragm 123
  • the side section 1232 is the area of the diaphragm 123 located between two adjacent pole pieces.
  • the main section 1231 is sandwiched between two adjacent pole pieces along the first direction X
  • the side section 1232 is located on the opposite sides of the pole piece group along the second direction Y and connected to the main section 1231.
  • multiple side sections 1232 located on the same side of the pole piece group along the second direction Y are stacked along the second direction Y.
  • the extension direction of the winding center axis (the third direction Z shown in Figure 6) of the diaphragm 123 wound to form a spiral structure
  • the first direction X and the second direction Y are perpendicular to each other.
  • the mutual bonding of the multiple side segments 1232 located on the same side of the multiple pole pieces means that after the diaphragm 123 fixed with the first pole piece 121 and the second pole piece 122 is wound to form a spiral structure, the side segments 1232 are stacked along the second direction Y, and two adjacent side segments 1232 located on the same side of the multiple pole pieces along the second direction Y can be bonded to each other by means of a colloid coated on the surface of the side segments 1232.
  • the two side segments 1232 adjacent along the second direction Y can be bonded to each other through the colloid, so that the passage between the two pole pieces located between the two adjacent circles of the diaphragm 123 is blocked or even blocked, effectively reducing the risk of short circuit caused by the overlap of the two pole pieces.
  • the process is simple, and there is no need to reconnect the diaphragm 123 after the electrode assembly is wound.
  • the diaphragm 123 is coated with glue before winding, and the gluing process is simple. Other positions or pole pieces of the diaphragm 123 are not easy to interfere with the gluing operation surface, so as to ensure the full uniformity of the gluing, thereby effectively improving the full stability of the connection between the two adjacent side segments 1232.
  • the diaphragm 123 includes a main segment 1231 covered by a pole piece and a side segment 1232 connecting two adjacent main segments 1231; after winding the diaphragm 123 fixed with multiple pole pieces, the preparation method also includes: hot-melting the multiple side segments 1232 located on the same side of the multiple stacked pole pieces.
  • the mutual thermal melting of the multiple side segments 1232 located on the same side of the multiple stacked pole pieces means that after the diaphragm 123 fixed with the first pole piece 121 and the second pole piece 122 is wound to form a spiral structure, a force is applied to the side segments 1232 located on the same side of the pole piece group along the second direction Y, so that the multiple side segments 1232 are gathered to one side or the middle along the second direction Y, and the multiple side segments 1232 are heated at the same time, and the multiple side segments 1232 are melted by the heat, and the molten areas of the multiple side segments 1232 are fused with each other, so that the multiple side segments 1232 are connected to each other.
  • all the side segments 1232 located on the same side of the pole piece group along the second direction Y can be connected to each other by thermal melting, and some of the side segments 1232 located on the same side of the pole piece group along the second direction Y can also be connected to each other by thermal melting.
  • the side segments 1232 of the diaphragm 123 located on the same side of the electrode are connected to each other by heat melting, so that the passage between the adjacent side segments 1232 is blocked or even blocked.
  • the side segments 1232 are connected to each other after being melted by heat, which is beneficial to further improve the stability of the connection between the side segments 1232, and will not introduce other materials used for connection into the interior of the electrode assembly, which is beneficial to further improve the safety performance of the electrode assembly.
  • multiple pole pieces are divided into a first pole piece 121 and a second pole piece 122 with opposite polarities, and the diaphragm 123 is provided with two, namely the first diaphragm 123a and the second diaphragm 123b; the multiple pole pieces are fixed to the surface of the diaphragm 123 at intervals along the length direction V of the diaphragm, including: fixing the first pole piece 121 to the surface of the first diaphragm 123a, and fixing the second pole piece 122 to the surface of the second diaphragm 123b; the first diaphragm 123a fixed with the first pole piece 121 and the second diaphragm 123b fixed with the second pole piece 122 are stacked, so that the first pole piece 121 is arranged between the first diaphragm 123a and the second diaphragm 123b, and the second pole piece 122 is arranged
  • the first electrode piece 121 can be a positive electrode piece 121a
  • the second electrode piece 122 can be a negative electrode piece 122a
  • the first electrode piece 121 can also be a negative electrode piece 122a
  • the second electrode piece 122 can be a positive electrode piece 121a.
  • the first pole piece 121 is fixed at intervals on the surface of the first diaphragm 123a
  • the second pole piece 122 is fixed at intervals on the surface of the second diaphragm 123b.
  • the first pole piece 121 is sandwiched between the first diaphragm 123a and the second diaphragm 123b, and at the same time, the second pole piece 122 and the first pole piece 121 clamp the second diaphragm 123b. That is, along the thickness direction of the diaphragm 123, the first diaphragm 123a, the first pole piece 121, the second diaphragm 123b, and the second pole piece 122 are stacked in sequence.
  • the stacked structure of the first diaphragm 123a and the second diaphragm 123b is wound so that the first diaphragm 123a and the second diaphragm 123b are wound to form a spiral structure, so that the first pole piece 121 and the second pole piece 122 can be alternately stacked along the first direction X and two adjacent pole pieces are separated by the diaphragm 123.
  • the first electrode piece 121 and the second electrode piece 122 are completely isolated from each other by the first diaphragm 123a and the second diaphragm 123b, and the electrode pieces located between two adjacent circles of the diaphragm 123 are both the first electrode piece 121 or the second electrode piece 122.
  • the setting of the first diaphragm 123a and the second diaphragm 123b can not only separate the two adjacent electrode pieces by the first diaphragm 123a or the second diaphragm 123b, but also avoid the first electrode piece 121 and the second electrode piece 122 with opposite polarities being located between two adjacent circles of the diaphragm 123, thereby effectively preventing the first electrode piece 121 and the second electrode piece 122 with opposite polarities located between two adjacent circles of the diaphragm 123 from overlapping each other and causing a short circuit, thereby also effectively improving the safety performance of the electrode assembly.
  • some embodiments of the present application provide a laminated electrode assembly 12, which includes a diaphragm 123 and a pole piece group, the pole piece group includes a plurality of pole pieces stacked along a first direction X; the diaphragm 123 is wound to form a spiral structure, and the diaphragm 123 is inserted between two adjacent pole pieces to separate the two adjacent pole pieces.
  • the diaphragm 123 includes a plurality of main body segments 1231, a plurality of first side segments 1232a and a plurality of second side segments 1232b arranged along the first direction X, the two adjacent pole pieces are separated by the main body segment 1231, the plurality of first side segments 1232a are located on one side of the pole piece group along the second direction Y, and the plurality of second side segments 1232b are located on the other side of the pole piece group along the second direction Y, each first side segment 1232a connects two main body segments 1231, and each second side segment 1232b also connects two main body segments 1231.
  • first side segments 1231 connected to the same first side segment 1232a, one is provided with a positive electrode sheet 121a on its inner side, and the other is provided with a negative electrode sheet 122a on its inner side, and the two adjacent first side segments 1232a are bonded to each other through colloid.
  • the two adjacent second side segments 1232b are bonded to each other through colloid.
  • the first direction X and the second direction Y are perpendicular to each other.
  • the method for preparing the laminated electrode assembly 12 includes:
  • a plurality of pole pieces are fixed to the surface of the diaphragm 123 at intervals along the length direction V of the diaphragm.
  • the diaphragm 123 includes a main body section 1231 covered by the pole pieces and a side section 1232 connecting two adjacent main body sections 1231;
  • the diaphragm 123 with the plurality of pole pieces fixed thereto is wound so that the plurality of pole pieces are stacked and the plurality of side segments 1232 located on the same side of the stacked plurality of pole pieces are bonded to each other.
  • a laminated electrode assembly 12 which includes a diaphragm 123 and a pole piece group.
  • the pole piece group includes a plurality of pole pieces stacked along a first direction X, and the plurality of pole pieces are divided into a first pole piece 121 and a second pole piece 122 with opposite polarities.
  • the diaphragm 123 is provided with two, namely, a first diaphragm 123a and a second diaphragm 123b.
  • the first pole piece 121 is arranged between the first diaphragm 123a and the second diaphragm 123b
  • the second pole piece 122 is arranged on the side of the second diaphragm 123b away from the first diaphragm 123a
  • the first diaphragm 123a and the second diaphragm 123b are synchronously wound to form a spiral structure
  • the first pole piece 121 and the second pole piece 122 are stacked along the first direction X
  • the first diaphragm 123a and the second diaphragm 123b are alternately arranged between two adjacent pole pieces.
  • the preparation method of the stacked electrode assembly 12 includes: fixing the first electrode plate 121 to the surface of the first diaphragm 123a, and fixing the second electrode plate 122 to the surface of the second diaphragm 123b; stacking the first diaphragm 123a fixed with the first electrode plate 121 and the second diaphragm 123b fixed with the second electrode plate 122, so that the first electrode plate 121 is arranged between the first diaphragm 123a and the second diaphragm 123b, and the second electrode plate 122 is arranged on the side of the second diaphragm 123b away from the first diaphragm 123a; synchronously winding the stacked structure of the first diaphragm 123a fixed with the first electrode plate 121 and the second diaphragm 123b fixed with the second electrode plate 122, so that multiple first electrode plates 121 and multiple second electrode plates 122 are stacked along the first direction X.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请提供了一种叠片式电极组件及其制备方法、电池单体、电池和用电装置,叠片式电极组件包括:极片组,包括沿第一方向层叠设置的多个极片;隔膜,所述隔膜卷绕形成螺旋结构,所述隔膜穿设于相邻两个所述极片之间,以将相邻两个所述极片隔开。本申请技术方案的叠片式电极组件的极片沿第一方向层叠设置而形成极片层叠式结构,而隔膜卷绕形成螺旋结构并将相邻两个极片隔开,这样的结构可有效提高应用该叠片式电极组件的电池的使用性能和循环寿命,并有效降低因析锂而可能引起的燃烧、爆炸等安全事故,整体提高电池的使用性能和安全性能。

Description

叠片式电极组件及其制备方法、电池单体、电池和用电装置 技术领域
本申请涉及电池技术领域,具体而言,涉及一种叠片式电极组件、电池单体、电池、用电装置及叠片式电极组件的制备方法。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术中,如何提高电池的使用性能和安全性能,是一个亟待解决的问题。
发明内容
本申请提供一种叠片式电极组件、电池单体、电池、用电装置及叠片式电极组件的制备方法,该叠片式电极组件能够有效提高电池的使用性能和安全性能。
第一方面,本申请提供了一种叠片式电极组件,包括:极片组,包括沿第一方向层叠设置的多个极片;隔膜,所述隔膜卷绕形成螺旋结构,所述隔膜穿设于相邻两个所述极片之间,以将相邻两个所述极片隔开。
本申请技术方案的叠片式电极组件中,极片组的极片沿第一方向层叠设置而形成叠片式结构,而隔膜卷绕形成螺旋结构并将相邻两个极片隔开,隔膜将各层极片缠绕、包裹成整体结构。一方面,将这样的电极组件装配至电池单体的外壳后,极片(尤其是极片的与外壳接触的部位)不容易松散开,从而有效降低因极片松散而导致的析锂问题,进而有效提高应用该叠片式电极组件的电池的使用性能和循环寿命,并有效降低因析锂而可能引起的燃烧、爆炸等安全事故,整体提高电池的使用性能和安全性能。另一方面,隔膜卷绕形成螺旋结构,可对极片的边缘形成多层包裹,从而有效降低极片边缘的毛刺刺穿隔膜而引发电池短路的风险,同样有利于提高电池的使用性能和安全性能。再者,卷绕成螺旋结构的隔膜在极片组的两侧形成很好的缓冲结构,当叠片电极组件的侧面接触到电池单体的外壳内壁时,隔膜的缓冲结构能够对极片起到缓冲、保护作用,降低极片因与外壳的相互作用力而被压裂的风险,进一步有效提高电池的使用性能和安全性能。
根据本申请的一些实施例,所述隔膜包括沿所述第一方向排列的多个主体段和多个第一侧面段,相邻两个所述极片通过所述主体段隔开,所述多个第一侧面段位于所述极片组沿第二方向的一侧,所述第二方向垂直于所述第一方向,每个所述第一侧面段连接两个所述主体段,相邻两个所述第一侧面段相互连接。
上述技术方案中,隔膜卷绕形成螺旋结构且穿设于沿第一方向层叠设置的多个极片之间,相邻两个极片均通过隔膜隔开。其中,隔膜的被夹持在相邻两个极片之间的区域形成多个主体段,多个主体段沿第一方向排列;隔膜的未被夹持在极片之间的且位于极片组的沿第二方向的同一侧的区域形成多个第一侧面段,多个第一侧面段沿第二方向层叠设置。隔膜的同一圈具有两个主体段和一个第一侧面段,第一侧面段连接两个主体段的沿第二方向的同一端。相邻两个第一侧面段之间在隔膜的该两个第一侧面段所在的相邻两圈层之间形成通路,位于该相邻两圈层之间的两个极片存在在上述通路中因极片毛刺或其他杂质而相互搭接并发生短路的可能。而相邻两个第一侧面段相互连接,可有效阻挡甚至完全阻断相邻两个第一侧面段之间的通路,从而有效降低位于该相邻两圈层之间的极片在上述通路中因极片边缘毛刺或其他杂质而相互搭接发生短路的风险,以进一步提高应用该电极组件的电池的安全性能。
根据本申请的一些实施例,同一个所述第一侧面段连接的两个所述主体段中,一者的内侧设置有正极极片,另一者的内侧设置有负极极片。
上述技术方案中,阻挡甚至阻断位于隔膜的相邻两圈层之间的正极极片和负极极片之间的可能存在的通路,可进一步有效降低位于隔膜相邻两圈层之间的正极极片和负极片相互搭接而发生短路,进而提高电池的安全性能。
根据本申请的一些实施例,相邻两个所述第一侧面段之间设置有第一连接部,相邻两个所 述第一侧面段通过所述第一连接部连接。
上述技术方案中,相邻两个第一侧面段通过第一连接部连接,第一连接部可有效阻挡甚至阻断相邻两个第一侧面段之间可能存在的通路,从而有效防止位于隔膜相邻两圈层之间的极片相互搭接而发生短路,有效提高电池的安全性能。
根据本申请的一些实施例,所述第一连接部包括胶体。
上述技术方案中,相邻两个第一侧面段通过胶体粘接,其工艺简单可靠性强,有利于提高相邻两个第一侧面段连接的稳定性,从而有效保障防止位于隔膜相邻两圈层之间的两个极片相互搭接的效果,提高电池的安全性能。
根据本申请的一些实施例,其中,相邻两个所述第一侧面段热熔连接。
上述技术方案中,相邻两个第一侧面段热熔连接,第一侧面段熔融后相互连接,有利于进一步提高相邻两个第一侧面段连接的稳定性,且不会向电极组件内部引入其他用于连接的物质,有利于进一步提高电极组件的安全性能。
根据本申请的一些实施例,所述隔膜还包括多个第二侧面段,所述多个第二侧面段位于所述极片组沿所述第二方向的另一侧,每个所述第二侧面段连接两个所述主体段,相邻两个所述第二侧面段相互连接。
上述技术方案中,隔膜的位于叠置极片的相对两侧的第一侧面段和第二侧面段均相互连接,从而进一步降低位于隔膜的相邻两圈层之间的两个极片相互搭接的可能性,使得电极组件的安全性得到有效保障。并且,第一侧面段和第二侧面段均相互连接,能够对电极组件的制备起到良好的防呆效果,相较于仅将相邻两个第一侧面段相互连接的实施方式,可有效降低因生产失误等原因颠倒第一侧面段和第二侧面段的位置、造成同位于隔膜相邻两圈层之间的正极极片和负极极片之间的通路未被阻挡的风险,从而进一步保障了对电极组件的安全性的提高效果。
根据本申请的一些实施例,相邻两个所述第二侧面段之间设置有第二连接部,相邻两个所述第二侧面段通过所述第二连接部连接。
上述技术方案中,相邻两个第二侧面段通过第二连接部连接,第二连接部可有效阻挡甚至阻断相邻两个第二侧面段之间的通路,从而有效防止位于隔膜的相邻两圈层之间的极片相互搭接而发生短路,有效提高电池的安全性能。
根据本申请的一些实施例,所述第二连接部包括胶体。
上述技术方案中,相邻两个第二侧面段通过胶体粘接,其工艺简单可靠性强,有利于提高相邻两个第二侧面段连接的稳定性,从而有效保障防止位于隔膜的相邻两圈层之间的两个极片相互搭接的效果,提高电池的安全性能。
根据本申请的一些实施例,相邻两个所述第二侧面段热熔连接。
上述技术方案中,相邻两个第二侧面段热熔连接,第二侧面段熔融后相互连接,有利于进一步提高相邻两个第二侧面段连接的稳定性,且不会向电极组件内部引出其他用于连接的物质,有利于进一步提高电极组件的安全性能。
根据本申请的一些实施例,所述多个极片分为极性相反的第一极片和第二极片;所述隔膜设置有两个,分别为第一隔膜和第二隔膜;其中,所述第一极片设置在所述第一隔膜和所述第二隔膜之间,所述第二极片设置在所述第二隔膜背离所述第一隔膜的一侧。
上述技术方案中,第一隔膜和第二隔膜叠置并共同卷绕呈螺旋结构,在此基础上,第一极片设置在第一隔膜和第二隔膜之间,而第二极片设置在第二隔膜背离第一隔膜的一侧,这样,电极组件卷绕完成后,第一极片和第二极片通过第一隔膜和第二隔膜完全相互隔离,位于隔膜的相邻两圈层之间的极片均为第一极片或均为第二极片,第一隔膜和第二隔膜的设置既能使相邻两个极片通过第一隔膜或第二隔膜隔开,也能避免极性相反的第一极片和第二极片位于隔膜的相邻两圈层之间,从而有效防止位于隔膜相邻两圈层之间的极性相反的第一极片和第二极片相互搭接而发生短路的问题,进而同样能够有效提高电极组件的安全性能。
根据本申请的一些实施例,所述第二隔膜位于所述第一隔膜的外侧。
上述技术方案中,第二隔膜位于第一隔膜的外侧,同时,第二极片位于第二隔膜背离第一隔膜的一侧,第一隔膜和第二隔膜卷绕成螺旋结构后,第一隔膜绕成电极组件的最内圈,且该最内圈内不设置第一极片或第二极片。这样,隔膜的最内圈形成至少一圈保护层,该保护层可有效包裹制备电极组件的用于卷绕隔膜的工具(比如卷针),从而有效降低电极组件制备完成后,该工具抽出电极组件时划伤极片的风险,进而有效提高电极组件的结构稳定性,同样有利于提高电池的使用 性能和安全性能。
根据本申请的一些实施例,所述多个极片均位于所述隔膜的最内圈的外侧。
上述技术方案中,极片均位于隔膜的最内圈的外侧,这样,无论隔膜为单层结构,还是包括第一隔膜和第二隔膜的双层结构,隔膜的最内圈的内侧均不设置极片。这样,隔膜的最内圈可以形成至少一圈保护层,该保护层可有效包裹制备电极组件时用于卷绕隔膜的工具(比如卷针),从而有效降低电极组件制备完成后,该工具抽出电极组件时划伤极片的风险,进而有效提高电极组件的结构稳定性,同样有利于提高电池的使用性能和安全性能。
根据本申请的一些实施例,所述多个极片均位于所述隔膜的最外圈的内侧。
上述技术方案中,极片均位于隔膜的最外圈的内侧,即隔膜的卷绕末段包覆了位于极片的层叠方向上最外层的极片,进一步加强隔膜对极片组的所有极片的约束作用,从而进一步降低个别极片分散而出现析锂的风险。同时,隔膜可有效绝缘隔离电极组件的极片和电池的其他构件(比如壳体),进而进一步有效提高电池的安全性能。
根据本申请的一些实施例,所述极片组的沿所述第一方向的最外侧的两个极片均为负极极片。
上述技术方案中,电极组件的最外层的极片为负极极片,可有效增加负极余量,降低电极组件出现析锂的风险,从而进一步提高电极组件的安全性能。
根据本申请的一些实施例,所述隔膜的卷绕收尾端固定于所述隔膜。
上述技术方案中,隔膜的卷绕收尾端固定于隔膜,可有效降低卷绕成螺旋结构的隔膜出现返松、散开的风险,有利于充分发挥隔膜对极片的缠绕、约束作用,从而进一步降低因极片松散而出现变形、析锂的问题的风险。
第二方面,本申请提供了一种电池单体,包括:外壳;如上述任一方案所述的叠片式电极组件,所述叠片式电极组件容置于所述外壳内。
第三方面,本申请提供了一种电池,包括上述方案所述的电池单体。
第四方面,本申请提供了一种用电装置,包括上述方案的电池,所述电池用于提供电能。
第五方面,本申请提供了一种叠片式电极组件的制备方法,包括:将多个极片沿隔膜的长度方向间隔固定于所述隔膜的表面;对固定有所述多个极片的所述隔膜进行卷绕,以使所述多个极片层叠设置。
本申请技术方案中,先将分体设置的多个极片沿隔膜的方式固定于隔膜表面,可有效降低隔膜卷绕过程中极片移位的风险,进而有效提高极片制备效率和良率,提高电极组件的使用寿命和安全性能。将固定有多个极片的隔膜进行卷绕,使得多个极片形成层叠结构,同时隔膜将该层叠设置的极片缠绕为整体结构,相较于在隔膜卷绕过程中分次插入极片的方式,该方法可有效简化极片制备工艺,降低生产成本并提高生产效率。且避免隔膜卷绕过程中插入极片而容易引发极片位置精度低的问题,从而有效提高电极组件生产良率,使得电极组件的质量得到有效保障,进而有效提高电池的使用性能和安全性能。
根据本申请的一些实施例,所述隔膜包括被所述极片覆盖的主体段和连接相邻两个主体段的侧面段;在所述对固定有所述多个极片的所述隔膜进行卷绕之前,所述制备方法还包括:在所述侧面段的表面进行涂胶;所述对固定有所述多个极片的所述隔膜进行卷绕,以使所述多个极片层叠设置,包括:对固定有所述多个极片的所述隔膜进行卷绕,以使所述多个极片层叠设置,并且使位于层叠设置的所述多个极片同一侧的多个所述侧面段相互粘接。
上述技术方案中,在隔膜卷绕之前对隔膜的位于相邻两个极片之间的侧面段涂胶,固定有极片的隔膜卷绕完成后,涂有胶体的隔膜的侧面段能够通过该胶体相互粘接,从而使位于隔膜相邻两圈层之间的两个极片之间的通路被阻挡甚至阻断,有效降低该两个极片相互搭接而发生短路的风险。该工艺简单,无需在电极组件卷绕完成后对隔膜进行再次连接加工。并且,在隔膜卷绕前对隔膜进行涂胶,其涂胶工艺简单,隔膜的其他位置或极片不易对涂胶作业面形成干涉,从而便于保障涂胶的充分均匀性,进而有效提高相邻两个侧面段相互连接的充分稳定性。
根据本申请的一些实施例,所述隔膜包括被所述极片覆盖的主体段和连接相邻两个主体段的侧面段;在所述对固定有所述多个极片的所述隔膜进行卷绕之后,所述制备方法还包括:将位于层叠设置的所述多个极片同一侧的多个所述侧面段相互热熔。
上述技术方案中,在隔膜卷绕结束后,将隔膜的位于极片同一侧的侧面段相互热熔连接,以使相邻两个侧面段之间的通路被阻挡甚至阻断,侧面段受热熔融后相互连接,有利于进一步提高 侧面段相互连接的稳定性,且不会向电极组件内部引入其他用于连接的物质,有利于进一步提高电极组件的安全性能。
根据本申请的一些实施例,所述多个极片分为极性相反的第一极片和第二极片,所述隔膜设置有两个,分别为第一隔膜和第二隔膜;所述将多个极片沿隔膜的长度方向间隔固定于所述隔膜的表面,包括:将所述第一极片固定于所述第一隔膜的表面,将所述第二极片固定于所述第二隔膜的表面;将固定有所述第一极片的所述第一隔膜和固定有所述第二极片的所述第二隔膜层叠设置,使所述第一极片设置在所述第一隔膜和所述第二隔膜之间,所述第二极片设置在所述第二隔膜背离所述第一隔膜的一侧。
上述技术方案中,制备电极组件时设置第一隔膜和第二隔膜,将第一极片固定于第一隔膜的表面,将第二极片固定于第二隔膜的背离第一隔膜的表面,再将第一隔膜和第二隔膜同步卷绕形成螺旋结构,使得第一极片和第二极片形成叠片式结构。电极组件卷绕完成后,第一极片和第二极片通过第一隔膜和第二隔膜完全相互隔离,位于隔膜的相邻两圈层之间的极片均为第一极片或均为第二极片,第一隔膜和第二隔膜的设置既能使相邻两个极片通过第一隔膜或第二隔膜隔开,也能避免极性相反的第一极片和第二极片位于隔膜的相邻两圈层之间,从而有效防止位于隔膜相邻两圈层之间的极性相反的第一极片和第二极片相互搭接而发生短路的问题,进而同样能够有效提高电极组件的安全性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸图;
图3为本申请一些实施例提供的电池单体的爆炸图;
图4为本申请一些实施例提供的电池单体的主视图;
图5为图4所示的A-A方向的剖面图;
图6为本申请一些实施例提供的叠片式电极组件的轴测图;
图7为本申请一些实施例提供的叠片式电极组件的主视图;
图8为图7所示的B-B方向的剖面图;
图9为本申请又一些实施例提供的叠片式电极组件的轴测图;
图10为本申请又一些实施例提供的叠片式电极组件的主视图;
图11为图10所示的C-C方向的剖面图;
图12为本申请一些实施例提供的叠片式电极组件的制备流程示意图;
图13为本申请一些实施例的极片固定于隔膜表面的结构示意图;
图14为本申请又一些实施例的极片固定于隔膜表面的结构示意图。
在附图中,附图并未按照实际的比例绘制。
标记说明:1000-车辆;100-电池;10-电池单体;11-壳体组件;111-壳体;112-端盖;113-电能引出部;12-叠片式电极组件;121-第一极片;121a-正极极片;1211-正极极耳;122-第二极片;122a-负极极片;1221-负极极耳;123-隔膜;123a-第一隔膜;123b-第二隔膜;1231-主体段;1232-侧面段;1232a-第一侧面段;1232b-第二侧面段;1233-卷绕起始端;1233a-第一隔膜卷绕起始端;1233b-第二隔膜卷绕起始端;1234-卷绕收尾端;1234a-第一隔膜卷绕收尾端;1234b-第二隔膜卷绕收尾端;1235-最内圈;1236-最外圈;124-第一连接部;125-第二连接部;20-箱体;21-第一部分;22-第二部分;200-控制器;300-马达。
X-第一方向;Y-第二方向;Z-第三方向;W-卷绕方向;V-隔膜的长度方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请 的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“设置”“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接、信号连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。其中,多个电池单体之间可以串联、并联或者混联直接组成电池,混联指的是,多个电池单体中既有串联又有并联。多个电池单体也可以先串联、并联或者混联组成电池模块,多个电池模块再串联、并联或者混联组成电池。电池还可以包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈扁平体、长方体或其它形状等,本申请实施例对此也不限定。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其 市场的需求量也在不断地扩增。
在电池技术中,如何提高电池的使用性能和安全性能,是一个亟待解决的问题。
在一些技术中,电极组件为叠片式结构,该叠片式电极组件的正极极片和负极极片均分体设置,隔膜呈S型往复延伸并堆叠,正极极片和负极极片分设于隔膜的两侧而逐层堆叠形成叠片式结构。相较于卷绕式电极组件,叠片式电极组件可有效降低电池内阻,且可有效避免极片卷绕时产生的应力逐渐释放而导致电极组件变形并引发的安全隐患,使得电极组件的性能得到稳定提升。
然而,申请人发现,应用该种叠片式电极组件的电池依然存在较大的安全隐患。
本申请人经过深入研究,发现其原因主要在于:(1)叠片式电极组件的各极片层之间呈现较为松散的状态。将该叠片式电极组件装配到电池单体的壳体内部后,该电极组件的极片层的与壳体或壳体内的绝缘塑胶接触的部分易呈散开状态。而极片层间松散会导致析锂等问题,进而影响电池的使用寿命且易引发电池安全事故;(2)各极片的边缘毛刺较多,容易刺破隔膜而发生短路问题,也会影响电池的使用性能和安全性能。
基于以上原因,为了有效提高应用叠片式电极组件的电池的使用性能和安全性能,申请人经过深入研究,设计了一种叠片式电极组件,该叠片式电极组件的多个极片沿第一方向X层叠设置,隔膜卷绕形成螺旋结构,并且隔膜穿设于相邻两个极片之间以将相邻两个极片隔开。
该叠片式电极组件的隔膜将各层极片缠绕、包裹成整体结构。一方面,将这样的电极组件装配至电池单体的外壳后,极片(尤其是极片的与外壳接触的部位)不容易松散开,从而有效降低因极片松散而导致的析锂问题,进而有效提高应用该叠片式电极组件的电池的使用性能和循环寿命,并有效降低因析锂而可能引起的燃烧、爆炸等安全事故,提高电池的使用性能和安全性能。
本申请实施例公开的电池单体可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池单体、电池等组成该用电装置的电源系统。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
本申请的实施例描述的电池不仅仅局限适用于上述所描述的用电装置,还可以适用于所有使用电池的用电装置,但为描述简洁,以下实施例以一种用电装置为车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在其他一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的爆炸图,电池100可以包括箱体20和电池单体10,电池单体10容纳于箱体20内。其中,箱体20用于为电池单体10提供容纳空间,箱体20可以采用多种结构。在一些实施例中,箱体20可以包括第一部分21和第二部分22,第一部分21与第二部分22相互盖合,第一部分21和第二部分22共同限定出用于容纳电池单体10的容纳空间。第二部分22可以为一端开口的空心结构,第一部分21可以为板状结构,第一部分21盖合于第二部分22的开口侧,以使第一部分21与第二部分22共同限定出容纳空间;第一部分21和第二部分22也可以是均为一侧开口的空心结构,第一部分21的开口侧盖合于第二部分22的开口侧。当然,第一部分21和第二部分22形成的箱体20可以是多种形状,比如,长方体、正方体等。
在电池100中,电池单体10可以是多个,多个电池单体10之间可串联或并联或混联,混联是指多个电池单体10中既有串联又有并联。多个电池单体10之间可直接串联或并联或混联在一起,当然,电池100也可以是多个电池单体10先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体。
每个电池单体10可以为二次电池或一次电池,也可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。
请参照图3至图5,图3为本申请一些实施例提供的电池单体的爆炸图;图4为本申请一些实施例提供的电池单体的主视图;图5为图4所示的A-A方向的剖面图。电池单体10可以包括壳体组件11和电极组件,壳体组件11可以包括壳体111和端盖112,壳体111具有开口,端盖112盖合于壳体111的开口处并形成密封连接,形成用于容纳电极组件12和电解质的密封空间。
在组装电池单体10时,可先将电极组件12放入壳体111内,并向壳体111内填充电解质,再将端盖112盖合于壳体111的开口。
壳体111可以是多种形状,壳体111的形状可根据电极组件12的具体形状来确定。比如,若电极组件为长方体结构,则可选用长方体壳体111。当然,端盖112也可以是多种结构。
可理解的,壳体组件11并不仅仅局限于上述结构,比如,壳体组件11可以包括壳体111和两个端盖112,壳体111为相对的两侧开口的空心结构,一个端盖112对应盖合于壳体111的一个开口处并形成密封连接,以形成用于容纳电极组件和电解质的密封空间。
其中,壳体组件11还可以包括电能引出部113,电能引出部113可以绝缘设置在端盖112上或壳体111上,电能引出部113用于输出电极组件电流,电能引出部113可以与电极组件的极耳直接连接,当然,在其他一些实施例中,电池单体10还可以包括设置在壳体111内的转接件,转接件起到过流和汇流的作用,电能引出部113可以与电极组件的极耳通过转接件连接。
电极组件是电池单体10中发生电化学反应的部件。电极组件可以包括正极极片121a、负极极片122a和隔膜123。
请参照图6至图8,图6为本申请一些实施例提供的叠片式电极组件的轴测图;图7为本申请一些实施例提供的叠片式电极组件的主视图;图8为图7所示的B-B方向的剖面图。本申请一些实施例提供了一种叠片式电极组件12,叠片式电极组件12包括极片组和隔膜123,极片组包括沿第一方向X层叠设置的多个极片;隔膜123卷绕形成螺旋结构,隔膜123穿设于相邻两个极片之间,以将相邻两个极片隔开。
具体而言,如图6和图8所示,极片组可以包括如前所述的正极极片121a和负极极片122a,正极极片121a和负极极片122a沿第一方向X层叠设置,示例性的,沿第一方向X,正极极片121a和负极极片122a交替层叠设置。
如前所述,正极极片121a还可以包括正极极耳1211,负极极片122a也可以包括负极极耳1221,极片组的正极极耳1211和负极极耳1221可以均位于该极片组的沿隔膜123的卷绕中心轴延伸方向(第三方向Z)的同一侧,当然,正极极耳1211和负极极耳1221也可以分设于该极片组的沿隔膜123的卷绕中心轴延伸方向(第三方向Z)的相对两侧。示例性的,如图6所示,正极极耳1211可以位于该极片组的沿隔膜123的卷绕中心轴延伸方向(第三方向Z)的一侧,同时,负极极耳1221位于该极片组的沿隔膜123的卷绕中心轴延伸方向(第三方向Z)的另一侧。
隔膜123呈一体式结构,隔膜的长度方向的一端形成卷绕起始端1233,另一端形成卷绕收尾端1234,隔膜123的卷绕收尾端1234绕隔膜123的卷绕方向(图8中所示的顺时针方向W)旋转卷绕,使隔膜123卷绕形成螺旋结构。可以理解的是,隔膜123的卷绕中心轴的延伸方向(图6中所示的第三方向Z)与多个极片的层叠方向(第一方向X)垂直。极片组的极片夹设在隔膜123的沿其自身厚度方向的两侧,使隔膜123的能够隔开相邻两个极片。在一些实施例中,为了有效提高各极片的相对位置精度,可以将极片通过胶粘或其他方式固定于隔膜123。
极片组的极片沿第一方向X层叠设置而形成叠片式结构,而隔膜123卷绕形成螺旋结构并将相邻两个极片隔开,隔膜123将各层极片缠绕、包裹成整体结构。一方面,将这样的电极组件装配至电池单体10的壳体111后,极片(尤其是极片的与壳体111接触的部位)不容易松散开,从而有效降低因极片松散而导致的析锂问题,进而有效提高应用该叠片式电极组件12的电池100的使用性能和循环寿命,并有效降低因析锂而可能引起的燃烧、爆炸等安全事故,整体提高电池100的使用性能和安全性能。另一方面,隔膜123卷绕形成螺旋结构,可对极片的边缘形成多层包裹,从而有效降低极片边缘的毛刺刺穿隔膜123而引发电池100短路的风险,同样有利于提高电池100的使用性能和安全性能。再者,卷绕成螺旋结构的隔膜123在极片组的两侧形成很好的缓冲结构,当叠片电极组件的侧面接触到电池单体10的外壳内壁时,隔膜123的缓冲结构能够对极片起到缓冲、保护作用,降低极片因与外壳的相互作用力而被压裂的风险,进一步有效提高电池100的使用性能和安全性能。
根据本申请的一些实施例,请继续参照图8,隔膜123包括沿第一方向X排列的多个主体段1231和多个第一侧面段1232a,相邻两个极片通过主体段1231隔开,多个第一侧面段1232a位 于极片组沿第二方向Y的一侧,第二方向Y垂直于第一方向X,每个第一侧面段1232a连接两个主体段1231,相邻两个第一侧面段1232a相互连接。
具体而言,隔膜123沿图8中所示的W方向卷绕形成螺旋结构且穿设于沿第一方向X层叠设置的多个极片之间。其中,隔膜123的夹设在相邻两个极片之间的区域形成上述主体段1231,可以理解的是,隔膜123的每个圈层可以具有两个主体段1231,隔膜123的连接相邻两圈层之间的两个主体段1231的同一端的区域形成第一侧面段1232a。可以理解的是,卷绕形成螺旋结构的隔膜123的多个主体段1231沿第一方向X层叠设置,卷绕形成螺旋结构的隔膜123的多个第一侧面段1232a沿第二方向Y层叠设置,第二方向Y、第一方向X与隔膜123的卷绕中心轴的延伸方向(图6所示的第三方向Z)两两垂直。
相邻两个第一侧面段1232a相互连接,是指沿第二方向Y相邻的两个第一侧面段1232a相互连接。可以理解的是,隔膜123的所有第一侧面段1232a中,可以任意两个相邻第一侧面段1232a可以相互连接,当然,在其他一些实施例中,也可以只有部分个相邻的两个第一侧面段1232a相互连接。隔膜123的第一侧面段1232a相互连接的方式有多种,比如,隔膜123的相邻两个第一侧面段1232a之间可以设置类似挡片、挡块等封堵结构,封堵结构的沿第二方向Y的相对两端分别与相邻两个第一侧面段1232a连接,从而使相邻两个第一侧面段1232a相互连接。
相邻两个第一侧面段1232a相互连接的连接区的沿隔膜123的卷绕中心轴的延伸方向(图6所示的第三方向Z)的两端可以延伸至隔膜123的沿隔膜123的卷绕中心轴的延伸方向的两侧边缘。当然,上述连接区的沿隔膜123的卷绕中心轴的延伸方向的两端也可以不延伸至隔膜123的沿隔膜123的卷绕中心轴的延伸方向的两侧边缘,或者,上述连接区的沿隔膜123的卷绕中心轴的延伸方向的一端延伸至隔膜123的沿隔膜123的卷绕中心轴的延伸方向的一侧边缘。示例性的,上述连接区的沿隔膜123的卷绕中心轴的延伸方向的两端可以延伸至隔膜123的沿隔膜123的卷绕中心轴的延伸方向的两侧边缘。以有效提高对相邻两个第一连接段之间的通路进行阻断的充分性。
隔膜123的主体段1231架设在相邻两个极片之间以隔开该相邻两个极片,第一侧面段1232a位于所有极片的沿垂直于极片层叠方向的同一侧而连接主体段1231,以保证整个隔膜123形成螺旋结构,位于所有极片同一侧的相邻两个第一侧面段1232a相互连接,可有效阻挡甚至阻断相邻两个第一侧面段1232a之间的通路,从而有效降低位于隔膜123相邻两圈层之间的极片在上述通路中因极片边缘毛刺等其他杂质而相互搭接发生短路的风险,从而进一步提高应用该电极组件的电池100的安全性能。
根据本申请的一些实施例,请继续参照图8,同一个第一侧面段1232a连接的两个主体段1231中,一者的内侧设置有正极极片121a,另一者的内侧设置有负极极片122a。
需要说明的是,隔膜123的主体段1231的内侧是相对于隔膜123的卷绕中心轴而言的,任意主体段1231的靠近卷绕中心轴的一侧为该主体段1231的内侧。
与同一个第一侧面段1232a连接的两个主体段1231处于螺旋设置的隔膜123的同一圈层,该第一侧面段1232a和位于该第一侧面段1232a的内侧(同样相对于隔膜123的卷绕中心轴而言,任意第一侧面段1232a的靠近卷绕中心轴一侧为该第一侧面段1232a的内侧)的与之相邻的一个第一侧面段1232a之间存在连通上述正极极片121a和负极极片122a的通路,该第一侧面段1232a和位于该第一侧面段1232a内侧的与之相邻的一个第一侧面段1232a相互连接,可有效降低上述正极极片121a和负极极片122a直接相互搭接而发生短路的风险,进而提高电池的安全性能。
根据本申请的一些实施例,相邻两个所述第一侧面段1232a之间设置有第一连接部124,相邻两个所述第一侧面段1232a通过所述第一连接部124连接。
具体而言,如图8所示,沿第二方向Y,任意相邻的两个第一侧面段1232a之间可以均设置有至少一个第一连接部124,该相邻两个第一侧面段1232a通过上述第一连接部124连接。可以理解的是,第一连接部124的实施形式有多种,比如,第一连接部124可以包括胶体、与隔膜123材质相同的设置在第一侧面段1232a表面的凸出部、设置在该相邻两个第一侧面段1232a之间的挡片、挡块等等。只要能够实现该相邻两个第一侧面段1232a相互连接,以阻挡甚至完全阻断该相邻两个第一侧面段1232a之间的通路即可。
如前所述,沿隔膜123的卷绕中心轴的延伸方向,第一连接部124的相对两端可以延伸至该相邻两个第一侧面段1232a的沿卷绕中心轴延伸方向的相对两侧的边缘。
相邻两个第一侧面段1232a通过第一连接部124连接,第一连接部124可有效阻挡甚至阻断相邻两个第一侧面段1232a之间可能存在的通路,从而有效防止位于隔膜123相邻两圈层之间的 极片相互搭接而发生短路,有效提高电池100的安全性能。
根据本申请的一些实施例,所述第一连接部124包括胶体。
也就是说,沿第二方向Y,任意相邻的两个第一侧面段1232a之间可以涂覆胶体,以使该相邻两个第一侧面段1232a通过胶体相互粘接。
在实际应用中,可以在该相邻两个第一侧面段1232a的其中一个第一侧面段1232a的朝向另一个第一侧面段1232a的一侧涂覆胶体,也可以在该相邻两个第一侧面段1232a的相向的表面均涂覆胶体,以使该相邻两个第一侧面段1232a相互粘接。胶体可以沿隔膜123的卷绕中心轴的延伸方向延伸至第一侧面段1232a的沿卷绕中心轴的延伸方向的相对两侧的边缘。
相邻两个第一侧面段1232a通过胶体粘接,其工艺简单可靠性强,有利于提高相邻两个第一侧面段1232a连接的稳定性,从而有效保障防止位于隔膜123相邻两圈层之间的两个极片相互搭接的效果,提高电池100的安全性能。
根据本申请的一些实施例,其中,相邻两个第一侧面段1232a热熔连接。
具体而言,可对相邻两个第一侧面段1232a施加相互靠近的作用力并对该相邻两个第一侧面段1232a进行加热,以使第一侧面段1232a发生熔融,两个相邻第一侧面段1232a的发生熔融的区域相互融合黏连,以使该两个相邻的第一侧面段1232a相互连接。
相邻两个第一侧面段1232a熔融后相互连接,有利于进一步提高相邻两个第一侧面段1232a连接的稳定性,且不会向电极组件内部引入其他用于连接的物质,有利于进一步提高电极组件的安全性能。
根据本申请的一些实施例,隔膜123还包括多个第二侧面段1232b,多个第二侧面段1232b位于极片组沿第二方向Y的另一侧,每个第二侧面段1232b连接两个主体段1231,相邻两个第二侧面段1232b相互连接。
具体而言,卷绕形成螺旋结构的隔膜123的多个主体段1231沿第一方向X层叠设置,第一侧面段1232a位于所有主体段1231的沿第二方向Y的同一侧且沿第二方向Y层叠设置,第二侧面段1232b位于所有主体段1231的沿第二方向Y的另一侧且沿第二方向Y层叠设置,从而使得隔膜123形成螺旋结构,第二方向Y、第一方向X与隔膜123的卷绕中心轴的延伸方向(图6所示的第三方向Z)两两垂直。
相邻两个第二侧面段1232b相互连接,是指沿第二方向Y相邻的两个第二侧面段1232b相互连接。可以理解的是,隔膜123的所有第二侧面段1232b中,可以是任意相邻两个第二侧面段1232b相互连接,当然,在其他一些实施例中,也可以只有部分个的相邻的两个第二侧面段1232b相互连接。隔膜123的第二侧面段1232b相互连接的方式有多种,比如,隔膜123的相邻两个第二侧面段1232b之间可以设置类似挡片、挡块等封堵结构,封堵结构的沿第二方向Y的相对两端分别与相邻两个第二侧面段1232b连接,从而使相邻两个第二侧面段1232b相互连接。
相邻两个第二侧面段1232b相互连接的连接区的沿隔膜123的卷绕中心轴的延伸方向的两端可以延伸至隔膜123的沿隔膜123的卷绕中心轴的延伸方向的两侧边缘。当然,上述连接区的沿隔膜123的卷绕中心轴的延伸方向的两端也可以不延伸至隔膜123的沿隔膜123的卷绕中心轴的延伸方向的两侧边缘,或者,上述连接区的沿隔膜123的卷绕中心轴的延伸方向的一端延伸至隔膜123的沿隔膜123的卷绕中心轴的延伸方向的一侧边缘。示例性的,上述连接区的沿隔膜123的卷绕中心轴的延伸方向的两端可以延伸至隔膜123的沿隔膜123的卷绕中心轴的延伸方向的两侧边缘。以有效提高对相邻两个第二连接段之间的通路进行阻断的充分性。
隔膜123的位于叠置极片的相对两侧的第一侧面段1232a和第二侧面段1232b均相互连接,从而进一步降低隔膜123相邻两圈层之间的两个极片相互搭接的可能性,使得电极组件的安全性得到有效保障,且第一侧面段1232a和第二侧面段1232b均相互连接,对电极组件的制备生产起到良好的防呆性,降低因生产失误等原因而造成的位于隔膜123相邻两圈层之间的正极极片121a和负极极片122a之间的通路未采取干涉措施的风险,从而进一步保障了该设计对电极组件的安全性的提高效果。
根据本申请的一些实施例,相邻两个第二侧面段1232b之间设置有第二连接部125,相邻两个第二侧面段1232b通过第二连接部125连接。
具体而言,沿第二方向Y,任意相邻的两个第二侧面段1232b之间设置有第二连接部125,该相邻两个第二侧面段1232b通过上述第二连接部125连接。相应的,第二连接部125的实施形式也可以有多种,比如,第二连接部125可以包括胶体、与隔膜123材质相同的设置在任意第 二侧面段1232b表面的凸出部、设置在该相邻两个第二侧面段1232b之间的挡片、挡块等等。只要能够实现该相邻两个第二侧面段1232b相互连接,以阻挡甚至完全阻断该相邻两个第一侧面段1232a之间的通路即可。
如前所述,沿隔膜123的卷绕中心轴的延伸方向,第二连接部125的相对两端也可以延伸至该相邻两个第二侧面段1232b的沿卷绕中心轴延伸方向的相对两侧的边缘。
相邻两个第二侧面段1232b通过第二连接部125连接,第二连接部125可有效阻挡甚至阻断相邻两个第二侧面段1232b之间的通路,从而有效防止位于隔膜123相邻两圈层之间的极片相互搭接而发生短路,有效提高电池100的安全性能。
根据本申请的一些实施例,第二连接部125包括胶体。
也就是说,沿第二方向Y,任意相邻的两个第二侧面段1232b之间可以涂覆胶体,以使该相邻两个第二侧面段1232b通过胶体相互粘接。
在实际应用中,可以在该相邻两个第二侧面段1232b的其中一个第二侧面段1232b的朝向另一个第二侧面段1232b的一侧涂覆胶体,也可以在该相邻两个第二侧面段1232b的相向的表面均涂覆胶体,以使该相邻两个第二侧面段1232b相互粘接。胶体可以沿隔膜123的卷绕中心轴的延伸方向延伸至第二侧面段1232b的沿卷绕中心轴的延伸方向的相对两侧的边缘。
相邻两个第二侧面段1232b通过胶体粘接,其工艺简单可靠性强,有利于提高相邻两个第二侧面段1232b连接的稳定性,从而有效保障防止位于隔膜123相邻两圈层之间的两个极片相互搭接的效果,提高电池100的安全性能。
根据本申请的一些实施例,相邻两个第二侧面段1232b热熔连接。
具体而言,可对相邻两个第二侧面段1232b施加使该两个相邻的第二侧面段1232b相互靠近的作用力并对该相邻两个第二侧面段1232b进行加热,以使第二侧面段1232b发生熔融,两个相邻第二侧面段1232b的发生熔融的区域相互融合黏连,使该两个相邻第二侧面段1232b相互连接。
相邻两个第二侧面段1232b熔融后相互连接,有利于进一步提高相邻两个第二侧面段1232b连接的稳定性,且不会向电极组件内部引入其他用于连接的物质,有利于进一步提高电极组件的安全性能。
根据本申请的又一些实施例,请参照图9至图11,图9为本申请又一些实施例提供的叠片式电极组件的轴测图;图10为本申请又一些实施例提供的叠片式电极组件的主视图;图11为图10所示的C-C方向的剖面图。多个极片分为极性相反的第一极片121和第二极片122;隔膜123设置有两个,分别为第一隔膜123a和第二隔膜123b;其中,第一极片121设置在第一隔膜123a和第二隔膜123b之间,第二极片122设置在第二隔膜123b背离第一隔膜123a的一侧。
第一极片和第二极片122极性相反,在一些实施例中,第一极片121可以为正极极片121a,则第二极片122为负极极片122a。当然,第一极片121也可以为负极极片122a,同时,第二极片122为正极极片121a。示例性的,第一极片121为负极极片122a,同时,第二极片122为正极极片121a。
其中,第一隔膜123a和第二隔膜123b的长度和尺寸形状可以相同,也可以不同,第一隔膜123a具有第一隔膜卷绕起始端1233a和第一隔膜卷绕收尾端1234a,同样的,第二隔膜123b也具有第二隔膜卷绕起始端1233b和第二隔膜卷绕收尾端1234b,沿隔膜123的卷绕方向W,第一隔膜卷绕起始端1233a和第二隔膜卷绕起始端1233b可以平齐也可以不平齐,第一隔膜卷绕收尾端1234a和第二隔膜卷绕收尾端1234b也可以平齐或不平齐。第一隔膜123a和第二隔膜123b层叠设置并同步卷绕形成螺旋结构,第一极片121沿隔膜123的卷绕方向W间隔夹持在第一隔膜123a和第一隔膜123a之间,第二极片122沿隔膜123的卷绕方向W间隔设置在第二隔膜123b的背离第一隔膜123a的一侧,以使第二隔膜123b夹持在第一极片121和第二极片122之间。最终,第一极片121和第二极片122沿第一方向X叠置而形成层叠结构。
第一隔膜123a和第二隔膜123b叠置并共同卷绕呈螺旋结构,在此基础上,第一极片121设置在第一隔膜123a和第二隔膜123b之间,而第二极片122设置在第二隔膜123b背离第一隔膜123a的一侧,这样,电极组件卷绕完成后,第一极片121和第二极片122通过第一隔膜123a和第二隔膜123b完全相互隔离,位于隔膜123相邻两圈层之间的极片均为第一极片121或均为第二极片122,第一隔膜123a和第二隔膜123b的设置既能使相邻两个极片通过第一隔膜123a或第二隔膜123b隔开,也能避免极性相反的第一极片121和第二极片122位于隔膜123的相邻两圈层之间,从而有效防止位于隔膜123相邻两圈层之间的极性相反的第一极片121和第二极片122相互搭 接而发生短路的问题,进而同样能够有效提高电极组件的安全性能。
根据本申请的一些实施例,第二隔膜123b位于第一隔膜123a的外侧。
与之前所述相应,隔膜123的外侧、内侧也是相对于隔膜123卷绕呈螺旋结构后的卷绕中心轴而言的,第一隔膜123a的靠近卷绕中心轴的一侧为第一隔膜123a的内侧,背离卷绕中心轴的一侧为第一隔膜123a的外侧。而第二隔膜123b位于第一隔膜123a的外侧是指第二隔膜123b位于第一隔膜123a的背离卷绕中心轴的一侧。
因第一极片121设置在第一隔膜123a和第二隔膜123b之间,而第二极片122设置在第二隔膜123b背离第一隔膜123a的一侧,同时第二隔膜123b位于第一隔膜123a的外侧。所以第一隔膜123a和第二隔膜123b卷绕成螺旋结构后,第一隔膜123a可以绕成该叠片式电极组件12的最内圈1235,且该最内圈1235内不设置第一极片121或第二极片122。这样,隔膜123的最内圈1235形成至少一圈保护层,该保护层可有效包裹制备电极组件的用于卷绕隔膜123的工具(比如卷针),从而有效降低电极组件制备完成后,该工具抽出电极组件时划伤极片的风险,进而有效提高电极组件的结构稳定性,同样有利于提高电池100的使用性能和安全性能。
根据本申请的一些实施例,多个极片均位于隔膜123的最内圈1235的外侧。
具体而言,隔膜123自隔膜123的卷绕起始端1233沿隔膜123的卷绕方向W卷绕形成的第一圈为隔膜123的最内圈1235。
隔膜123的最内圈1235的外侧也是相对于隔膜123卷绕呈螺旋结构后的卷绕中心轴而言的,隔膜123的最内圈1235的背离卷绕中心轴的一侧为隔膜123的最内圈1235的外侧。
需要说明的是,在“隔膜123设置有两个,隔膜123包括第一隔膜123a和第二隔膜123b”的实施形式中,如果第一隔膜123a位于第二隔膜123b的内侧,隔膜123的最内圈1235是指第一隔膜123a自第一隔膜卷绕起始端1233a沿隔膜123的卷绕方向W卷绕形成的第一圈,如果第二隔膜123b位于第一隔膜123a的内侧,隔膜123的最内圈1235是指第二隔膜123b自第二隔膜卷绕起始端1233b沿隔膜123的卷绕方向W卷绕形成的第一圈。
多个极片均位于隔膜123的最内圈1235的外侧是指极片组的极片均不设置在被隔膜123的最内圈1235包围的范围内,也即,隔膜123的最内圈1235不设置极片。
极片均位于隔膜123的最内圈1235的外侧,这样,无论隔膜123为单层结构,还是包括第一隔膜123a和第二隔膜123b在内的双层结构,隔膜123的最内圈1235的内侧均不设置极片。这样,隔膜123的最内圈1235可以形成至少一圈保护层,该保护层可有效包裹制备电极组件时用于卷绕隔膜123的工具(比如卷针),从而有效降低电极组件制备完成后,该工具抽出电极组件时划伤极片的风险,进而有效提高电极组件的结构稳定性,同样有利于提高电池100的使用性能和安全性能。
根据本申请的一些实施例,多个极片均位于隔膜123的最外圈1236的内侧。
具体而言,隔膜123自隔膜123的卷绕收尾端1234沿隔膜123的卷绕方向W的反向卷绕形成的第一圈为隔膜123的最外圈1236。
隔膜123的最外圈1236的内侧也是相对于隔膜123卷绕呈螺旋结构后的卷绕中心轴而言的,隔膜123的最外圈1236的靠近卷绕中心轴的一侧为隔膜123的最外圈1236的内侧。
需要说明的是,在“隔膜123设置有两个,隔膜123包括第一隔膜123a和第二隔膜123b”的实施形式中,如果第一隔膜123a位于第二隔膜123b的内侧,隔膜123的最外圈1236是指第二隔膜123b自第二隔膜卷绕收尾端1234b沿隔膜123的卷绕方向W的反向卷绕形成的第一圈,如果第二隔膜123b位于第一隔膜123a的内侧,隔膜123的最外圈1236是指第一隔膜123a自第一隔膜卷绕收尾端1234a沿隔膜123的卷绕方向W的反向卷绕形成的第一圈。
多个极片均位于隔膜123的最外圈1236的内侧是指极片均在隔膜123的最外圈1236包围的范围内,也即,隔膜123的最外圈1236覆盖位于极片组的沿第一方向X的最外侧的极片。
在一些实施例中,隔膜123覆盖位于极片组的沿第一方向X的最外侧的极片后,还可以继续沿隔膜123的卷绕方向W卷绕一段长度或者卷绕一圈以上,以进一步提高隔膜123的极片的包裹强度和稳定性。
极片均位于隔膜123的最外圈1236的内侧,即隔膜123的最外圈1236包覆了位于极片的层叠方向上最外层的极片,从而进一步加强隔膜123对极片组的所有极片的约束作用,从而进一步降低个别极片分散而出现析锂的风险。同时,隔膜123可有效绝缘隔离电极组件的极片和电池100的其他构件(比如壳体111),进而进一步有效提高电池100的安全性能。
根据本申请的一些实施例,极片组的沿第一方向X的最外侧的两个极片均为负极极片122a。
如前所述,极片组包括正极极片121a和负极极片122a,极片组的多个极片沿第一方向X层叠设置,位于极片组的沿第一方向X的一侧的极片为负极极片122a,且位于极片组的沿第一方向X的另一侧的极片也为负极极片122a。
电极组件的最外层的极片为负极极片122a,可有效增加负极余量,降低该叠片式电极组件出现析锂的风险,从而进一步提高电极组件的安全性能。
根据本申请的一些实施例,隔膜123的卷绕收尾端1234固定于隔膜123。
隔膜123的收尾端可以通过包括前述的胶体粘接、热熔等方式在内的任意一种常规方式实现固定。
可以理解的是,基于“隔膜123包括主体段1231、第一侧面段1232a和第二侧面段1232b”的实施形式,隔膜123的卷绕收尾端1234可以固定于隔膜123的主体段1231、也可以固定于隔膜123的第一侧面段1232a,或者固定于隔膜123的第二侧面段1232b。
基于“隔膜123设置有两个,包括第一隔膜123a和第二隔膜123b”的实施形式,第一隔膜卷绕收尾端1234a和第二隔膜卷绕收尾端1234b可以沿隔膜123的卷绕方向W对齐,也可以不对齐。第一隔膜卷绕收尾端1234a和第二隔膜卷绕收尾端1234b可以固定于第一隔膜123a或第二隔膜123b的任意位置,第一隔膜卷绕收尾端1234a和第二隔膜卷绕收尾端1234b可以一起固定,第一隔膜卷绕收尾端1234a和第二隔膜卷绕收尾端1234b也可以分别单独固定。
隔膜123的卷绕收尾端1234固定于隔膜123,可有效降低卷绕成螺旋结构的隔膜123出现返松、散开的风险,有利于充分发挥隔膜123对极片的缠绕、约束作用,从而进一步降低因极片松散而出现变形、析锂的问题的风险。
本申请一些实施例还提供了一种电池单体10,该电池单体10包括外壳和上述任一方案的叠片式电极组件12,叠片式电极组件12容置于外壳内。其中,外壳可以是前述的任意一种形式的壳体组件11。
本申请一些实施例还提供了一种电池100,包括上述方案的电池单体10。
本申请一些实施例还提供了一种用电装置,该用电装置包括上述方案的电池单体10,电池单体10用于提供电能;或者,该用电装置包括上述方案的电池100,电池100用于提供电能。
其中,用电装置可以是前述的任意一种系统或设备。
请参照图6至图11,并进一步参照图12至图14,图12为本申请一些实施例提供的叠片式电极组件的制备流程示意图;图13为本申请一些实施例的极片固定于隔膜表面的结构示意图;图14为本申请又一些实施例的极片固定于隔膜表面的结构示意图。本申请一些实施例还提供了一种叠片式电极组件12的制备方法,该种叠片式电极组件12的制备方法包括:
S1:将多个极片沿隔膜的长度方向V间隔固定于隔膜123的表面;
S2:对固定有多个极片的隔膜123进行卷绕,以使多个极片层叠设置。
隔膜123的长度方向V是指隔膜123在卷绕前,隔膜123的自隔膜123的卷绕起始端1233至隔膜123的卷绕收尾端1234的延伸方向。
如前所述,极片组的极片可以包括极性相反的第一极片121和第二极片122,第一极片121和第二极片122沿第一方向X交替叠置。基于此,第一极片121和第二极片122可以固定于隔膜123的同一个表面,具体而言,极片可以以沿隔膜的长度方向V依次间隔排列的第一极片121、第二极片122、第二极片122、第一极片121为一个单元,将一个或多个单元沿隔膜的长度方向V顺序排列并固定于隔膜123的同一表面。当然,在其他一些实施例中,基于隔膜123的实施结构不同,极片固定于隔膜123的表面的实施方式也可以不同(下文会详细介绍隔膜设置两个时,极片的排设置方式),只要隔膜123卷绕成螺旋结构后,第一极片121和第二极片122能够沿第一方向X交替叠置且相邻两个极片均通过隔膜123隔开即可。
极片固定于隔膜123的方式也可以有多种,比如极片可以通过胶体、胶带等方式粘接于隔膜123,其中,胶带是指在基材的至少一面涂胶的结构,基材可以为聚乙烯、聚丙烯、纸等材质。
可以理解的是,沿隔膜123的卷绕起始端1233指向隔膜123的卷绕收尾端1234的方向,相邻两个极片之间的间隔距离可以逐渐增加,以提高隔膜123卷绕成螺旋结构后,各极片沿第一方向X叠置的精度。
将极片固定于隔膜123后,可以将隔膜123自隔膜的卷绕起始端1233沿隔膜的卷绕方向 W进行卷绕,最终,隔膜123的卷绕起始端1233位于螺旋结构的最内圈,隔膜123的卷绕收尾端1234位于螺旋结构的最外圈,同时,第一极片121和第二极片122沿第一方向X交替叠置且相邻两个极片均通过隔膜123隔开。
先将分体设置的多个极片沿隔膜123的方式固定于隔膜123表面,可有效降低隔膜123卷绕过程中极片移位的风险,进而有效提高极片制备效率和良率,提高电极组件的使用寿命和安全性能。将固定有多个极片的隔膜123进行卷绕,使得多个极片形成层叠结构,同时隔膜123将该层叠设置的极片缠绕为整体结构,相较于在隔膜123卷绕过程中分次插入极片的方式,该方法可有效简化极片制备工艺,降低生产成本并提高生产效率。且避免隔膜123卷绕过程中插入极片而容易引发极片位置精度低的问题,从而有效提高电极组件生产良率,使得电极组件的质量得到有效保障,进而有效提高电池100的使用性能和安全性能。
根据本申请的一些实施例,隔膜123包括被极片覆盖的主体段1231和连接相邻两个主体段1231的侧面段1232;在对固定有多个极片的隔膜123进行卷绕之前,制备方法还包括:在侧面段1232的表面进行涂胶;对固定有多个极片的隔膜123进行卷绕,以使多个极片层叠设置,包括:对固定有多个极片的隔膜123进行卷绕,以使多个极片层叠设置,并且使位于层叠设置的多个极片同一侧的多个侧面段1232相互粘接。
在隔膜123卷绕之前,主体段1231为隔膜123的被固定在隔膜123上的极片覆盖的区域,侧面段1232为隔膜123的位于相邻两个极片之间的区域。隔膜123卷绕形成螺旋结构后,主体段1231夹设在沿第一方向X相邻的两个极片之间,侧面段1232位于极片组的沿第二方向Y的相对两侧并连接主体段1231,同时,位于极片组的沿第二方向Y同一侧的多个侧面段1232沿第二方向Y层叠设置。其中,隔膜123卷绕形成螺旋结构的卷绕中心轴的延伸方向(图6所示的第三方向Z)、第一方向X以及第二方向Y两两垂直。
位于多个极片同一侧的多个侧面段1232相互粘接是指固定有第一极片121和第二极片122的隔膜123卷绕形成螺旋结构后,侧面段1232沿第二方向Y层叠设置,位于多个极片的沿第二方向Y同一侧的相邻两个侧面段1232可通过涂在侧面段1232的表面的胶体实现相互粘接。
将固定有极片的隔膜123卷绕完成后,沿第二方向Y相邻的两个侧面段1232能够通过该胶体相互粘接,从而使位于隔膜123相邻两圈层之间的两个极片之间的通路被阻挡甚至阻断,有效降低该两个极片相互搭接而发生短路的风险。该工艺简单,无需在电极组件卷绕完成后对隔膜123进行再次连接加工。并且,在隔膜123卷绕前对隔膜123进行涂胶,其涂胶工艺简单,隔膜123的其他位置或极片不易对涂胶作业面形成干涉,从而便于保障涂胶的充分均匀性,进而有效提高相邻两个侧面段1232相互连接的充分稳定性。
根据本申请的一些实施例,隔膜123包括被极片覆盖的主体段1231和连接相邻两个主体段1231的侧面段1232;在对固定有多个极片的隔膜123进行卷绕之后,制备方法还包括:将位于层叠设置的多个极片同一侧的多个侧面段1232相互热熔。
位于层叠设置的多个极片同一侧的多个侧面段1232相互热熔是指在固定有第一极片121和第二极片122的隔膜123卷绕形成螺旋结构后,对位于极片组的沿第二方向Y的同一侧的侧面段1232施加作用力,使该多个侧面段1232沿第二方向Y向一侧或中间收拢,同时对该多个侧面段1232进行加热,该多个侧面段1232受热熔融,该多个侧面段1232的熔融区域相互融合,从而使多个侧面段1232相互连接。其中,可以将位于极片组的沿第二方向Y同一侧的所有侧面段1232相互热熔连接,也可以将位于极片组的沿第二方向Y同一侧的部分个侧面段1232相互热熔连接。
在隔膜123卷绕结束后,将隔膜123的位于极片同一侧的侧面段1232相互热熔连接,以使相邻两侧侧面段1232之间的通路被阻挡甚至阻断,侧面段1232受热熔融后相互连接,有利于进一步提高侧面段1232相互连接的稳定性,且不会向电极组件内部引入其他用于连接的物质,有利于进一步提高电极组件的安全性能。
根据本申请的一些实施例,请参照图9至图11,并进一步参照图14,多个极片分为极性相反的第一极片121和第二极片122,隔膜123设置有两个,分别为第一隔膜123a和第二隔膜123b;将多个极片沿隔膜的长度方向V间隔固定于隔膜123的表面,包括:将第一极片121固定于第一隔膜123a的表面,将第二极片122固定于第二隔膜123b的表面;将固定有第一极片121的第一隔膜123a和固定有第二极片122的第二隔膜123b层叠设置,使第一极片121设置在第一隔膜123a和第二隔膜123b之间,第二极片122设置在第二隔膜123b背离第一隔膜123a的一侧。
如前所述,可以第一极片121为正极极片121a,第二极片122为负极极片122a。当然, 也可以第一极片121为负极极片122a,第二极片122为正极极片121a。
隔膜123设置有两个,第一极片121间隔固定于第一隔膜123a的表面,第二极片122间隔固定于第二隔膜123b的表面,第一隔膜123a和第二隔膜123b沿隔膜123的厚度方向层叠设置后,第一极片121夹设在第一隔膜123a和第二隔膜123b之间,同时,第二极片122和第一极片121夹持第二隔膜123b。也就是说,沿隔膜123的厚度方向,第一隔膜123a、第一极片121、第二隔膜123b、第二极片122依次层叠设置。
将固定有第一极片121的第一隔膜123a和固定有第二极片122的第二隔膜123b层叠设置后,卷绕第一隔膜123a和第二隔膜123b的叠置结构,使第一隔膜123a和第二隔膜123b卷绕形成螺旋结构,以使第一极片121和第二极片122能够沿第一方向X交替叠置且相邻两个极片均通过隔膜123隔开即可。
电极组件卷绕完成后,第一极片121和第二极片122通过第一隔膜123a和第二隔膜123b完全相互隔离,位于隔膜123相邻两圈层之间的极片均为第一极片121或均为第二极片122,第一隔膜123a和第二隔膜123b的设置既能使相邻两个极片通过第一隔膜123a或第二隔膜123b隔开,也能避免极性相反的第一极片121和第二极片122共同位于隔膜123的相邻两圈层之间,从而有效防止位于隔膜123相邻两圈层之间的极性相反的第一极片121和第二极片122相互搭接而发生短路的问题,进而同样能够有效提高电极组件的安全性能。
请参照图6至图8,本申请一些实施例提供了一种叠片式电极组件12,该叠片式电极组件12包括隔膜123和极片组,极片组包括沿第一方向X层叠设置的多个极片;隔膜123卷绕形成螺旋结构,隔膜123穿设于相邻两个极片之间,以将相邻两个极片隔开。隔膜123包括沿第一方向X排列的多个主体段1231、多个第一侧面段1232a和多个第二侧面段1232b,相邻两个极片通过主体段1231隔开,多个第一侧面段1232a位于极片组沿第二方向Y的一侧,多个第二侧面段1232b位于极片组沿第二方向Y的另一侧,每个第一侧面段1232a连接两个主体段1231,每个第二侧面段1232b也连接两个主体段1231。同一个第一侧面段1232a连接的两个主体段1231中,一者的内侧设置有正极极片121a,另一者的内侧设置有负极极片122a,相邻两个第一侧面段1232a通过胶体相互粘接。相邻两个第二侧面段1232b通过胶体相互粘接。其中,第一方向X和第二方向Y相互垂直。
请参照图12和图13,该叠片式电极组件12的制备方法包括:
将多个极片沿隔膜的长度方向V间隔固定于隔膜123的表面,隔膜123包括被极片覆盖的主体段1231和连接相邻两个主体段1231的侧面段1232;
在侧面段1232的表面进行涂胶;
对固定有多个极片的隔膜123进行卷绕,以使多个极片层叠设置,并且使位于层叠设置的多个极片同一侧的多个侧面段1232相互粘接。
请参照图9至图11,本申请一些实施例提供了一种叠片式电极组件12,该叠片式电极组件12包括隔膜123和极片组,极片组包括沿第一方向X层叠设置的多个极片,多个极片分为极性相反的第一极片121和第二极片122,隔膜123设置有两个,分别为第一隔膜123a和第二隔膜123b。其中,第一极片121设置在第一隔膜123a和第二隔膜123b之间,第二极片122设置在第二隔膜123b背离第一隔膜123a的一侧,第一隔膜123a和第二隔膜123b同步卷绕形成螺旋结构,第一极片121和第二极片122沿第一方向X层叠设置,沿第一方向X,第一隔膜123a和第二隔膜123b交替穿设于相邻两个极片之间。
请参照图12和图14,该叠片式电极组件12的制备方法包括:将第一极片121固定于第一隔膜123a的表面,将第二极片122固定于第二隔膜123b的表面;将固定有第一极片121的第一隔膜123a和固定有第二极片122的第二隔膜123b层叠设置,使第一极片121设置在第一隔膜123a和第二隔膜123b之间,第二极片122设置在第二隔膜123b背离第一隔膜123a的一侧;将固定有第一极片121的第一隔膜123a和固定有第二极片122的第二隔膜123b的叠置结构同步进行卷绕,以使多个第一极片121和多个第二极片122沿第一方向X层叠设置。
需要说明的是,在不冲突的情况下,本申请中的实施例中的特征可以相互结合。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (23)

  1. 一种叠片式电极组件,包括:
    极片组,包括沿第一方向层叠设置的多个极片;
    隔膜,所述隔膜卷绕形成螺旋结构,所述隔膜穿设于相邻两个所述极片之间,以将相邻两个所述极片隔开。
  2. 根据权利要求1所述的叠片式电极组件,其中,所述隔膜包括沿所述第一方向排列的多个主体段和多个第一侧面段,相邻两个所述极片通过所述主体段隔开,所述多个第一侧面段位于所述极片组沿第二方向的一侧,所述第二方向垂直于所述第一方向,每个所述第一侧面段连接两个所述主体段,相邻两个所述第一侧面段相互连接。
  3. 根据权利要求2所述的叠片式电极组件,其中,同一个所述第一侧面段连接的两个所述主体段中,一者的内侧设置有正极极片,另一者的内侧设置有负极极片。
  4. 根据权利要求2或3所述的叠片式电极组件,其中,相邻两个所述第一侧面段之间设置有第一连接部,相邻两个所述第一侧面段通过所述第一连接部连接。
  5. 根据权利要求4所述的叠片式电极组件,其中,所述第一连接部包括胶体。
  6. 根据权利要求2或3所述的叠片式电极组件,其中,相邻两个所述第一侧面段热熔连接。
  7. 根据权利要求2-6中任一项所述的叠片式电极组件,其中,所述隔膜还包括多个第二侧面段,所述多个第二侧面段位于所述极片组沿所述第二方向的另一侧,每个所述第二侧面段连接两个所述主体段,相邻两个所述第二侧面段相互连接。
  8. 根据权利要求7所述的叠片式电极组件,其中,相邻两个所述第二侧面段之间设置有第二连接部,相邻两个所述第二侧面段通过所述第二连接部连接。
  9. 根据权利要求8所述的叠片式电极组件,其中,所述第二连接部包括胶体。
  10. 根据权利要求7所述的叠片式电极组件,其中,相邻两个所述第二侧面段热熔连接。
  11. 根据权利要求1所述的叠片式电极组件,其中,所述多个极片分为极性相反的第一极片和第二极片;
    所述隔膜设置有两个,分别为第一隔膜和第二隔膜;
    其中,所述第一极片设置在所述第一隔膜和所述第二隔膜之间,所述第二极片设置在所述第二隔膜背离所述第一隔膜的一侧。
  12. 根据权利要求11所述的叠片式电极组件,其中,所述第二隔膜位于所述第一隔膜的外侧。
  13. 根据权利要求1-12中任一项所述的叠片式电极组件,其中,所述多个极片均位于所述隔膜的最内圈的外侧。
  14. 根据权利要求1-13中任一项所述的叠片式电极组件,其中,所述多个极片均位于所述隔膜的最外圈的内侧。
  15. 根据权利要求1-14中任一项所述的叠片式电极组件,其中,所述极片组的沿所述第一方向的最外侧的两个极片均为负极极片。
  16. 根据权利要求1-15中任一项所述的叠片式电极组件,其中,所述隔膜的卷绕收尾端固定于所述隔膜。
  17. 一种电池单体,包括:
    外壳;
    如权利要求1-16中任一项所述的叠片式电极组件,所述叠片式电极组件容置于所述外壳内。
  18. 一种电池,包括权利要求17所述的电池单体。
  19. 一种用电装置,包括如权利要求17所述的电池单体,所述电池单体用于提供电能;或者,包括如权利要求18所述的电池,所述电池用于提供电能。
  20. 一种叠片式电极组件的制备方法,包括:
    将多个极片沿隔膜的长度方向间隔固定于所述隔膜的表面;
    对固定有所述多个极片的所述隔膜进行卷绕,以使所述多个极片层叠设置。
  21. 根据权利要求20所述的叠片式电极组件的制备方法,其中,所述隔膜包括被所述极片覆盖的主体段和连接相邻两个主体段的侧面段;
    在所述对固定有所述多个极片的所述隔膜进行卷绕之前,所述制备方法还包括:在所述侧面段 的表面进行涂胶;
    所述对固定有所述多个极片的所述隔膜进行卷绕,以使所述多个极片层叠设置,包括:对固定有所述多个极片的所述隔膜进行卷绕,以使所述多个极片层叠设置,并且使位于层叠设置的所述多个极片同一侧的多个所述侧面段相互粘接。
  22. 根据权利要求20所述的叠片式电极组件的制备方法,其中,所述隔膜包括被所述极片覆盖的主体段和连接相邻两个主体段的侧面段;
    在所述对固定有所述多个极片的所述隔膜进行卷绕之后,所述制备方法还包括:
    将位于层叠设置的所述多个极片同一侧的多个所述侧面段相互热熔。
  23. 根据权利要求20所述的叠片式电极组件的制备方法,其中,所述多个极片分为极性相反的第一极片和第二极片,所述隔膜设置有两个,分别为第一隔膜和第二隔膜;
    所述将多个极片沿隔膜的长度方向间隔固定于所述隔膜的表面,包括:
    将所述第一极片固定于所述第一隔膜的表面,将所述第二极片固定于所述第二隔膜的表面;
    将固定有所述第一极片的所述第一隔膜和固定有所述第二极片的所述第二隔膜层叠设置,使所述第一极片设置在所述第一隔膜和所述第二隔膜之间,所述第二极片设置在所述第二隔膜背离所述第一隔膜的一侧。
PCT/CN2022/127691 2022-10-26 2022-10-26 叠片式电极组件及其制备方法、电池单体、电池和用电装置 WO2024087054A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/127691 WO2024087054A1 (zh) 2022-10-26 2022-10-26 叠片式电极组件及其制备方法、电池单体、电池和用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/127691 WO2024087054A1 (zh) 2022-10-26 2022-10-26 叠片式电极组件及其制备方法、电池单体、电池和用电装置

Publications (1)

Publication Number Publication Date
WO2024087054A1 true WO2024087054A1 (zh) 2024-05-02

Family

ID=90829760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127691 WO2024087054A1 (zh) 2022-10-26 2022-10-26 叠片式电极组件及其制备方法、电池单体、电池和用电装置

Country Status (1)

Country Link
WO (1) WO2024087054A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040092105A (ko) * 2003-04-25 2004-11-03 주식회사 에너랜드 분리된 2겹의 격리막을 이용한 적층형 리튬이차전지 및 그제조방법
JP2011014238A (ja) * 2009-06-30 2011-01-20 Panasonic Corp 非水電解質二次電池用電極群及び非水電解質二次電池
CN102769146A (zh) * 2012-06-29 2012-11-07 宁德新能源科技有限公司 一种锂离子电池极芯及其制备方法
CN205985229U (zh) * 2016-03-23 2017-02-22 合肥国轩高科动力能源有限公司 一种锂离子电池
CN110429239A (zh) * 2019-06-27 2019-11-08 恒大新能源科技集团有限公司 一种软包装锂离子电池极片的组装方法及极片层叠结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040092105A (ko) * 2003-04-25 2004-11-03 주식회사 에너랜드 분리된 2겹의 격리막을 이용한 적층형 리튬이차전지 및 그제조방법
JP2011014238A (ja) * 2009-06-30 2011-01-20 Panasonic Corp 非水電解質二次電池用電極群及び非水電解質二次電池
CN102769146A (zh) * 2012-06-29 2012-11-07 宁德新能源科技有限公司 一种锂离子电池极芯及其制备方法
CN205985229U (zh) * 2016-03-23 2017-02-22 合肥国轩高科动力能源有限公司 一种锂离子电池
CN110429239A (zh) * 2019-06-27 2019-11-08 恒大新能源科技集团有限公司 一种软包装锂离子电池极片的组装方法及极片层叠结构

Similar Documents

Publication Publication Date Title
CN216085053U (zh) 电池和用电设备
US20220344698A1 (en) Battery cell, manufacturing method and manufacturing system therefor, battery and electric device
CN216354652U (zh) 电极组件及动力电池
CN212161993U (zh) 电极组件、电池、电池模块、电池组、使用电池的装置和电极组件的制造装置
WO2023065923A1 (zh) 电池单体、电池和用电设备
CN216872134U (zh) 电池和用电设备
WO2023004823A1 (zh) 卷绕式电极组件、电池单体、电池及用电设备
WO2024104140A1 (zh) 极片、电池单体、电极组件、电池及用电设备
WO2023083028A1 (zh) 一种电芯、电池及用电装置
CN219303812U (zh) 电池单体、电池及用电装置
WO2023020119A1 (zh) 电极组件、电池单体、电池及用电设备
CN216354646U (zh) 动力电池
CN217468711U (zh) 电极组件、电池单体、电池及用电装置
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023138416A1 (zh) 电池单体及其制作方法、电池、用电装置
WO2024087054A1 (zh) 叠片式电极组件及其制备方法、电池单体、电池和用电装置
US20220246993A1 (en) Electrode assembly, battery cell, battery, and method and device for manufacturing electrode assembly
WO2023159486A1 (zh) 电池、用电设备、制备电池的方法和设备
CN116745926A (zh) 电极组件及其制造方法、电池单体、电池和用电装置
CN116686157A (zh) 卷绕式电极组件、电池单体、电池及用电设备
WO2023065366A1 (zh) 电池、用电设备、制备电池单体的方法和设备
WO2023155640A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法
CN217468707U (zh) 电化学装置及用电设备
WO2024055311A1 (zh) 电池单体、电池及用电设备
WO2023133737A1 (zh) 电池、用电设备、制备电池的方法和设备