WO2024085327A1 - Ultrasonic inspection system - Google Patents
Ultrasonic inspection system Download PDFInfo
- Publication number
- WO2024085327A1 WO2024085327A1 PCT/KR2023/003781 KR2023003781W WO2024085327A1 WO 2024085327 A1 WO2024085327 A1 WO 2024085327A1 KR 2023003781 W KR2023003781 W KR 2023003781W WO 2024085327 A1 WO2024085327 A1 WO 2024085327A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- jig
- wafer
- probe
- inspection
- Prior art date
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 173
- 239000000523 sample Substances 0.000 claims abstract description 186
- 235000012431 wafers Nutrition 0.000 claims abstract description 121
- 238000012546 transfer Methods 0.000 claims abstract description 20
- 108091006146 Channels Proteins 0.000 claims description 62
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 59
- 230000007547 defect Effects 0.000 claims description 54
- 239000012153 distilled water Substances 0.000 claims description 40
- 230000033001 locomotion Effects 0.000 claims description 32
- 230000008878 coupling Effects 0.000 claims description 15
- 238000010168 coupling process Methods 0.000 claims description 15
- 238000005859 coupling reaction Methods 0.000 claims description 15
- 238000002604 ultrasonography Methods 0.000 claims description 15
- 239000007921 spray Substances 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 6
- 230000005484 gravity Effects 0.000 claims description 6
- 238000000034 method Methods 0.000 description 44
- 238000010586 diagram Methods 0.000 description 17
- 238000012360 testing method Methods 0.000 description 16
- 230000008569 process Effects 0.000 description 12
- 238000012545 processing Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 9
- 230000001066 destructive effect Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 238000010801 machine learning Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000013473 artificial intelligence Methods 0.000 description 4
- 238000009659 non-destructive testing Methods 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 230000002950 deficient Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/06—Visualisation of the interior, e.g. acoustic microscopy
- G01N29/0654—Imaging
- G01N29/069—Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/06—Visualisation of the interior, e.g. acoustic microscopy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/225—Supports, positioning or alignment in moving situation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/26—Arrangements for orientation or scanning by relative movement of the head and the sensor
- G01N29/265—Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/0289—Internal structure, e.g. defects, grain size, texture
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/10—Number of transducers
- G01N2291/105—Number of transducers two or more emitters, two or more receivers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/26—Scanned objects
- G01N2291/269—Various geometry objects
- G01N2291/2697—Wafer or (micro)electronic parts
Definitions
- the present invention relates to an ultrasonic inspection system that inspects defects by imaging internal voids, peeling, etc. of semiconductors or electronic components.
- a technology that acquires internal images of an object to be examined using signals with a frequency in the ultrasonic wave region can identify internal defects without modifying the medical field or manufacturing results targeting internal organs of the body or the fetus during pregnancy. It is used in a variety of fields such as non-destructive testing (NDT).
- NDT non-destructive testing
- Pulse Echo Technique one of the conventional non-destructive defect detection technologies, is a technology that detects defects according to the amplitude of energy reflected from defects present inside a non-destructive test object.
- the amount of reflected energy depends on the surface condition of the reflecting surface, there is a disadvantage in that it is difficult to accurately measure the size of the defect.
- the ultrasonic flaw inspection method is gradually increasing in use because it has the advantage of high inspection efficiency due to not only no risk of the inspector being exposed to radiation when handling the inspection equipment, but also excellent inspection sensitivity and fast inspection speed.
- This non-destructive testing method using ultrasonic waves generally irradiates ultrasonic waves generated from an ultrasonic transducer, also known as a probe, into the inside of a non-destructive test object in the form of a beam by using electrical energy generated from an ultrasonic flaw detector.
- the reflected signal reflected from the non-destructive test object and returned to the probe is interpreted as an electrical signal by an ultrasonic flaw detector to determine whether the non-destructive test object is defective and the size of the defect.
- Korean Patent Publication No. 10-2006-0095338 ‘Non-destructive inspection equipment using ultrasonic waves,’ is disclosed.
- This uses a linear motor to enable movement of the probe in three directions (X, Y, and Z axes) to precisely adjust the angle and distance between the probe (meaning the 'probe' of the present invention) and the inspection object. Start configuration.
- it is difficult to precisely control the position of the probe in three directions, and there is also a limit to inspection efficiency due to the application of a single probe.
- Patent Document 1 Korean Patent Publication No. 10-2006-0095338
- the technical problem to be solved by the present invention is to propose a system using a multi-probe unit that can improve the accuracy, reliability, and speed of ultrasonic inspection, which is the biggest problem with the structure using a conventional single probe unit.
- the present invention seeks to propose a system that can perform more accurate position control of the probe unit by breaking away from the conventional three-way control method of the probe unit.
- the present invention to solve the above problems is an ultrasonic inspection system that inspects wafer defects, unloading the wafer from the loading module 101 where the wafers are loaded, and moving the wafer to an inspection position for ultrasonic inspection.
- a transfer robot module 110 equipped with an arm unit for transferring; and an inspection module 130 that includes at least one probe unit 131 and performs ultrasonic scanning on the wafer in the inspection position.
- the inspection module 130 includes at least one jig unit 140 that fixes the probe unit 131 to the upper side of the inspection well for ultrasonic scanning of the wafer, wherein the jig unit (140) is formed in a multi-channel manner having first to N-th channels, and is formed so that first to N-th probe units formed to irradiate preset frequencies, respectively, can be mounted on the first to N-th channels, An ultrasonic inspection system is provided.
- the jig unit 140 extends in one direction and is formed so that the first to N-th probe units can be coupled or disengaged, so that the first to N-th probe units can be replaced, with N channels. It includes a mounting portion 141, and the N channel mounting portions 141 may be arranged to be spaced apart along one direction.
- the ultrasonic inspection system includes a scan control module 150 that controls the probe unit 131 and the jig unit 140; It further includes, and the scan control module 150 may be configured to perform ultrasonic scanning on the wafer by checking the number information of the channel mounting portion 141 and the mounting information of the probe unit 131. .
- the jig unit 140 is connected to the driving means 160 and is configured to perform ultrasonic scanning of the wafer while moving in the ⁇ X direction or ⁇ Y direction, and the scan control module 150 is configured to:
- the movement path of the jig unit 140 can be set through the number information of the channel mounting portions 141 and the mounting information of the probe unit 131.
- the scan control module 150 determines that at least some of the N channel mounting portions 141 are in a mixed state, with inactive channel mounting portions to which no probe units are mounted and active channel mounting portions to which the probe unit 131 is coupled. In this case, ultrasonic scanning of the entire surface of the wafer can be performed by setting the movement path of the jig unit 140 based on the position of the active channel mounting portion.
- the first to Nth probe units may be configured as a multi-frequency combination in which at least some of the probe units have different set frequencies.
- first to Nth probe units are formed to have a first or second set frequency, and the probe unit with the first set frequency and the probe unit with the second set frequency alternate along the one direction. It can be placed like this.
- the present invention is an ultrasonic inspection system that inspects wafer defects, and includes an arm that unloads the wafer from the loading module 101 on which the wafers are loaded and transports the wafer to an inspection position for ultrasonic inspection.
- Transfer robot module (110) equipped with a unit; and an inspection module 130 that includes at least one probe unit 131 and performs ultrasonic scanning on the wafer in the inspection position.
- the inspection module 130 includes a jig unit 140 that fixes the at least one probe unit 131 to the upper side of the inspection well for ultrasonic scanning of the wafer, wherein the jig unit (140) provides an ultrasonic inspection system that is combined with another jig unit (140) in the ⁇ X direction or ⁇ Y direction to form an extendable jig bar assembly (170).
- the jig unit 140 is equipped with a distilled water spray unit 143 that is coupled to the probe unit 131 and sprays distilled water in a waterfall manner onto the wafer positioned below,
- the distilled water injection unit 143 is connected to the distilled water supply unit 180 and has a built-in distilled water passage 144 for receiving distilled water, and the first to L jig units 140 are combined to form the jig bar assembly 170.
- the distilled water passages 144 provided in each of the first to L jig units 140 may be configured to communicate with each other.
- the jig bar assembly 170 is connected to the driving means 160 and is formed to perform ultrasonic scanning of the wafer while moving in the ⁇ X direction or ⁇ Y direction.
- the jig bar assembly 170 may include a damper unit 171 to cushion vibration.
- the jig bar assembly 170 is controlled by a scan control module 150 that is connected to the driving means 160 and sets the movement path of the jig bar assembly 170, and the scan control module 150 ) can set a streamlined path that curves the moving path in the section where the jig bar assembly 170 moves by changing direction in the ⁇ X direction or ⁇ Y direction.
- the jig bar assembly 170 is connected to the driving means 160 and is formed to be movable in the ⁇ X direction or ⁇ Y direction, and connects the driving means 160 and the jig bar assembly 170.
- the present invention can improve the accuracy, reliability, and speed of ultrasonic inspection, which are the biggest problems with the structure using a conventional single probe unit.
- the present invention can perform more accurate position control of the probe unit by breaking away from the conventional three-way control method of the probe unit.
- FIG 1 is an overall configuration diagram of an ultrasonic inspection system according to an embodiment of the present invention.
- Figure 2 is a conceptual diagram dividing the overall configuration of an ultrasonic inspection system according to an embodiment of the present invention by function.
- Figure 3 is an overall conceptual diagram of an ultrasonic inspection system according to an embodiment of the present invention.
- Figure 4 is a perspective view of an ultrasonic inspection system according to an embodiment of the present invention.
- Figure 5 is a perspective view schematically showing the configuration corresponding to the ultrasonic inspection section of Figure 1.
- FIG. 6 is a conceptual diagram schematically showing the operation in FIG. 5.
- Figure 7 is a conceptual diagram of an ultrasonic inspection system according to the first embodiment of the present invention.
- Figure 8 is a schematic diagram of an ultrasonic inspection system according to the first embodiment of the present invention.
- Figure 9 is a schematic diagram showing a modified example of the ultrasonic inspection system according to the first embodiment of the present invention.
- FIG. 10 is a schematic diagram showing the jig unit of FIG. 9 before and after assembly.
- Figure 11 is a schematic diagram schematically showing a state in which the jig units of Figure 10 are combined to form a jig bar assembly.
- Figure 12 is a schematic diagram schematically showing the movement path of the probe unit of the ultrasonic inspection system according to the first embodiment of the present invention.
- Figure 13 is a schematic diagram schematically showing the streamlining of the movement path of the probe unit of the ultrasonic inspection system according to the first embodiment of the present invention.
- Figure 14 is a schematic diagram of an ultrasonic inspection system according to a second embodiment of the present invention.
- Figure 15 is a conceptual diagram of a moving assembly in the ultrasonic inspection system according to the third embodiment of the present invention.
- Figure 16 is a schematic diagram of the operation of the moving assembly in the ultrasonic inspection system according to the third embodiment of the present invention.
- Figure 17 is a schematic diagram showing a modification of Figure 16.
- 18 to 20 are schematic diagrams for explaining a multi-probe unit of an ultrasonic inspection system according to an embodiment of the present invention.
- Figure 21 is a flowchart of an ultrasonic inspection method using an ultrasonic inspection system according to a third embodiment of the present invention.
- FIG. 22 is a flowchart showing the specific operation of the moving assembly in FIG. 21.
- the 'subject' used herein includes the wafer that is the subject of inspection, and includes all objects that can be inspected using ultrasonic irradiation.
- a wafer having a circular plane is used as an example, but the shape and type of the object under test are not limited thereto, and any object to which the present invention can be applied is applicable.
- the ultrasonic inspection system can be largely divided into a loading/unloading section and an ultrasonic inspection section, and there is an additional control/image processing section that is operated by a program (or PC).
- the 'loading/unloading section' consists of the LPM, loading module (FOUP), and transfer robot module.
- the transfer robot module places the wafer in the loading module (FOUP) at the start of ultrasonic inspection or at the completion of ultrasonic inspection. It can be placed.
- the wafer is shipped (hereinafter referred to as 'unloading') by a transfer robot module formed by a dual arm and placed in the inspection position, and when the ultrasonic inspection is completed, the wafer in the inspection position is placed in the loading module.
- 'unloading' a transfer robot module formed by a dual arm and placed in the inspection position, and when the ultrasonic inspection is completed, the wafer in the inspection position is placed in the loading module.
- loading warehousing
- the 'ultrasonic inspection section' can be composed of a wafer aligner, 3-axis linear motion, probe unit, wafer stage (including water bath immersion method), and drying section. After aligning the wafer to the inspection position, ultrasonic inspection is performed using the pulse echo method in the ultrasonic inspection section, and upon completion, the wafer is dried in the drying section.
- the 'control/image processing section' can be composed of a linear motion driver, pulser/receiver, ADC (Analog to Digital Conversion), and PC.
- the linear motion driving unit is configured in a gantry method and can be controlled using a PLC method.
- the linear motion driver may be performed through feedback control according to the ultrasonic inspection results. This will be described later herein as the X-axis, Y-axis, and Z axis, and all known configurations that perform the same function can be applied.
- the pulser unit transmits a square pulse signal to the probe unit, and when the signal reflected by the impedance difference from the defective part of the wafer enters the receiver, the continuous analog signal is converted into a digital signal through the ADC (Analogue to Digital Converter) and transmitted to the PC. Images can be acquired, and ultrasound examinations can be performed through image analysis.
- ADC Analogue to Digital Converter
- the ultrasonic inspection system may be composed of a transfer robot module 110, an inspection module 130, a scan control module 150, and a scan operation module 290.
- the transfer robot module 110 is equipped with an arm unit that unloads the wafers from the loading module 101 on which the wafers are loaded and transfers the wafers to an inspection position for ultrasonic inspection.
- the dual arm method can be applied, where the first arm unit (Gripper1 in FIG. 2) moves the wafer, and after the ultrasonic inspection is completed, the second arm unit (Gripper2 in FIG. 2) moves the wafer in the same way. It works.
- the first and second arm units are operated alternately, and while one arm unit is operating, the other arm unit is maintained in a standby state for wafer transfer.
- the transfer robot module 110 can stably move the wafer in the loading module 101 to the alignment unit through the arm unit to achieve wafer alignment.
- the wafer is transferred again to the inspection module 130 by the transfer robot module 110, and when the ultrasonic inspection is completed, the arm unit moves it to the drying unit and dries it, and when drying is completed, the wafer is transferred to the inspection module 130 by the transfer robot module 110. It is transferred to the loading module (101) by the transfer robot module (110). At this time, after drying, the drying state of the wafer can be checked through a separate sensor unit (not shown).
- the inspection module 130 is provided with a probe unit 131, and since the ultrasonic inspection system according to the present invention uses a multi-channel method, a plurality of probe units 131 may be provided.
- the inspection module 130 performs ultrasonic inspection on the wafer in the current inspection position.
- the inspection module 130 may be provided with a jig unit 140, a moving assembly 360, and a driving means 160.
- the jig unit 140 performs the function of fixing the probe unit 131 above the inspection position for ultrasonic inspection of the wafer. As shown in FIG. 4, it can be arranged to maintain a predetermined height on the probe unit 131 in the inspection position.
- the jig unit 140 is a multi-channel type having first to N-th channels, and each channel has first to N-th channel mounting units (141-1 to 141-1) so that probe units (131-1 to 131-N) are mounted. 141-N) is formed. At this time, the probe units (131-1 to 131-N) are configured to be capable of being coupled/uncoupled from the first to N-th channel mounting portions (141-1 to 141-N), so that the state and user Depending on the selection, the optimal probe unit 131 can be installed.
- each signal generator 132 may be provided.
- 'Pulser Pre-AMP' may be applied to the signal generator 132.
- Two probe units (131-1, 131-2) may be provided below the signal generator 132, and an ultrasonic signal is generated from the signal generator 132 connected to a power source (not shown), and the probe unit It is irradiated onto the wafer through (131-1, 131-2) and configured to receive reflected signals.
- N channel mounting units 141 may be arranged to be spaced apart along one direction.
- the one direction refers to the X direction, but it may be formed in the Y direction depending on the arrangement of the jig unit 140.
- the scan control module 150 is configured to control the operations of the probe unit 131 and the jig unit 140. At this time, the scan control module 150 is configured to transmit and receive calculation information with the scan calculation module 290 and the focusing calculation module 320, so that feedback control can be performed.
- the scan control module 150 is configured to control the driving means 160. It is configured to perform ultrasonic inspection on the wafer while moving the jig unit 140 in the ⁇ X direction or ⁇ Y direction, and can control the pulse echo operation of the probe unit 131.
- an A-scan is performed on the probe unit at the inspection position.
- A-scan determines defects in the wafer by expressing the size (amplitude) of the ultrasonic echo signal received at a point in the vertical direction of the sample in relation to time.
- the waveform of the echo signal on the time side can be expressed, and the vertical side of the graph represents the signal strength (amplitude) and the horizontal side represents time.
- it is a method of checking the change in amplitude over time at a specific reference point.
- ultrasonic beam focusing can be achieved by securing the maximum amplitude for the joint surface while slightly moving the Z-axis distance.
- A-scan irradiates ultrasonic signals in a vertical direction to the wafer by the probe unit 131. At this time, it is configured to adjust the focusing distance with the maximum amplitude on the bonding surface of the wafer (bonding wafer). After that, gates are set before and after the ultrasonic signal reflection signal of the joint surface. Gates are used to limit the inspection area to a certain section. Here, the focusing distance can be adjusted using the Z-axis part 363 (see FIG. 4).
- an I gate Interface Gate
- an A gate can be set to measure the defect and thickness of the inspection target.
- the defect can be set to not be recognized by discarding the value.
- one-dimensional A-Scan data that displays the size of the reflection signal on the time axis from defects generated on the bonding surface inside the wafer is generated using information about the echo signal size (AMP) and time of flight (TOF). do.
- AMP echo signal size
- TOF time of flight
- B-Scan data that images a cross section inside the subject can be selectively generated.
- Each reflection signal received by the probe unit 131 while moving the location determined to be defective at a certain interval is stored in memory and then comprehensively processed to generate C-Scan data of a 3D image. It can be.
- C-scan is configured to irradiate ultrasonic signals by setting the X-axis and Y-axis scan areas on the probe unit 131.
- the jig unit 340 may be configured to irradiate an ultrasonic signal while moving using the
- A-scan and C-scan are performed for each multi-layer surface (for example, when composed of N layers), so that the first to Nth layers An image can be formed.
- Images of the first to Nth layers are transmitted to the image processing unit 293 of the scan operation module 290, so that scan image information can be calculated in a preset manner. This will be described later.
- the probe unit 131 applied to the present invention has a structure in which a water holder is combined. This refers to a method in which water is injected from the external distilled water supply unit 180 through two tubes and sprayed like a waterfall from the end to a nozzle in close contact with the lens in the center of the probe unit 131. Referring to FIG. 11, at this time, ultrasonic waves are generated through the lens of the probe unit 131, and the distilled water spray unit 143 and the lens end of the probe unit 131 are completely adhered to each other without an air gap. It is a structure that stably transmits ultrasonic energy in water without losing the energy of the ultrasonic signal.
- the water used in ultrasonic testing is 'Di water', which means distilled water.
- the present invention can be applied to a water immersion method in which the wafer is completely immersed in water, but when applied in a distilled water spray method as described above, resistance to water can be reduced compared to the water immersion method, thereby improving speed, and the wafer can be completely submerged in water. Since it does not need to be submerged, the generation of bubbles that cause noise can be reduced. Additionally, because the degree of freedom of movement of the probe unit 131 increases, more precise ultrasonic inspection is possible.
- Each jig unit 140 is provided with a distilled water passage 144, and the distilled water passage 144 is connected to the distilled water supply unit 180, and the supplied distilled water is sprayed downward through the distilled water injection unit 143.
- a flow sensor (not shown) may be provided on the side of the distilled water injection unit 143, and the amount of distilled water injected can be controlled using the flow sensor and the flow valve.
- the flow valve uses an electronic valve and can be automatically turned on/off.
- the flow sensor and flow valve play a very important function. If the set frequency is different, the lens size of the probe unit may vary. When the lens size changes, the amount of distilled water sprayed between the lens and the interface changes, so a flow sensor and flow valve control corresponding to the set frequency are required.
- a vacuum chuck and a bubble trap may be provided at the inspection position (also referred to as 'stage') where the wafer is placed.
- the bubble trap is connected to the water circulation system so that distilled water can be continuously and forcefully circulated. Through this, only bubbles in distilled water can be effectively removed, and contamination of distilled water can be prevented through the water purification function.
- An air membrane filter (not shown) may be provided.
- the bubble trap consists of a tube pipe, an air membrane filter, a water purification filter, and a pump. It is located at the bottom of the wafer stage. When water containing bubbles enters the tube, it passes through the membrane filter, and only the bubbles can be effectively removed through the pump. At this time, since a water purification filter is also included, water contamination can be prevented.
- distilled water is used at a rate of 1 to 3 ml or 4 to 10 ml per minute, and can be used separately depending on the size of the probe unit and the test object.
- the probe unit 131 is formed in a detachable structure from the jig unit 140.
- the jig unit 140 may be formed in a multi-channel manner including first to Nth channels.
- first to Nth probe units formed to irradiate preset frequencies can be mounted on the first to Nth channels, respectively.
- each channel can be understood as a module that includes all the functions necessary to generate ultrasonic signals and receive reflected signals.
- the jig unit 140 extends in one direction and may be provided with N channel mounting portions 141-1 and 141-2 along one direction. They are spaced apart at preset intervals. The distance needs to be set to a distance that does not interfere with each other's ultrasonic signals and reflected signals.
- the sprayed distilled water is also configured so as not to interfere.
- the scan control module 150 which controls the operation of the probe unit 131 and the jig unit 140, is configured to check the number information of the channel mounting portion 141 and the mounting information of the probe unit 131. This is because the movement path of the jig unit 140 may be set differently depending on the mounting information of the probe unit 131.
- the moving distance of the jig unit 140 in the X direction may be relatively short.
- the moving distance may be set to be the same and the same position of the wafer may be inspected multiple times.
- the corresponding coordinates of the wafer which is an object of inspection, can be automatically set according to the mounting information of the probe unit 131. If a defect is found at a specific location, the coordinate information is automatically transmitted to the scan operation module 290 and stored in a memory unit (not shown), enabling tracking and management.
- a dual probe unit 131 is disclosed. The description will be made on the assumption that each probe unit 131 is mounted.
- the dual probe unit 131 consists of a single probe unit 131 on both sides of the wafer at 180 degrees, and each can be controlled independently.
- one probe unit 131 is selected and performed for ultrasonic focusing, and then the probe unit 131 is divided into two halves by 180 degrees and a C-scan is performed simultaneously. Through this, scanning can be performed at a faster speed than ultrasonic inspection of a 200 mm or 300 mm wafer in the conventional single probe unit 131 method, thereby increasing the inspection speed.
- the reflection signals obtained by being divided by 180 degrees are finally combined to obtain the entire image of the 300mm wafer.
- This series of processes can be performed in the image processing unit 293 of the scan operation module 290, and this image information is used to determine wafer defect information in a preset manner through the wafer defect determination unit 2931. This includes all information such as type of defect, location of defect, size of defect, etc.
- the jig unit 140 is connected to the driving means 160 and is configured to perform ultrasonic inspection on the wafer while moving in the ⁇ X direction or ⁇ Y direction. At this time, the scan control module 150 sets the movement path of the jig unit 140 through the number information of the channel mounting portion 141 and the mounting information of the probe unit 131.
- the scan control module 150 is in a state in which at least some of the N channel mounting portions 141 are mixed with an inactive channel mounting portion in which no probe unit is mounted and an active channel mounting portion in which the probe unit 131 is coupled. If it is determined, the movement path of the jig unit 140 is set based on the position of the active channel mounting portion. That is, the channel mounting portion 141 can be divided into an inactive channel mounting portion and an active channel mounting portion, and a movement path is created based on the active channel mounting portions (141-1, 141-2, 141-4, and 141-6).
- the first to Nth probe units may be composed of a multi-frequency combination in which at least some of the probe units have different set frequencies. That is, it is a structure in which the probe unit 131 with a different set frequency can be freely attached and detached.
- the jig unit 140 is connected to the driving means 160 using the power transmission unit 172 as a medium.
- the power transmission unit 172 may be composed of a coupling shaft extending in the Z-axis direction and a coupling shaft connection portion formed so that the connecting shaft can move in the X-axis and Y-axis directions.
- the center of gravity of the jig unit 140 may vary, and the probe unit ( According to 131), it is preferable that the coupling axis is formed to be movable in order to maintain the balance of the jig unit 140.
- the weight of the jig unit 140 may be increased. . Inertia increases due to increased weight, and as vibration occurs when changing direction by the driving means 160, a problem of creating an air gap may occur.
- a damper unit 171 may be provided to buffer such vibration. In the process of moving the jig unit 140, ultrasonic inspection is performed, so stable movement of the jig unit 140 is very important, and precise ultrasonic inspection can be performed by cushioning the impact through the damper unit 171. there is.
- Figure 12 shows the process of performing ultrasonic inspection in the X direction.
- the jig unit 140 may perform ultrasonic inspection while repeatedly moving in the ⁇ X direction.
- the X-axis scan width (cover area) can be adjusted according to the set frequency, and the scan range can be set in C-scan mode.
- the movement path is shown to be curved in order to minimize vibration applied when changing the direction of the jig unit 140.
- This setting minimizes vibration when switching vertically in the X or Y direction.
- the curvature of the streamline path can be set considering the size of the wafer, the set frequency, etc. That is, in a straight direction, vibration is cushioned using the above-described damper unit 171, and in a direction change, a streamlined path is formed to minimize applied vibration.
- An example of a wired route setting method is as follows.
- Figure 9 shows a jig bar assembly 170 in which a plurality of jig units 140a and 140b are combined.
- the jig bar assembly 170 may be understood as an extended structure in which a plurality of jig units 140a and 140b are combined in the ⁇ X direction or ⁇ Y direction.
- Figure 9 illustrates a structure in which two jig units (140a, 140b) are combined in the X direction as an example, but the present invention is not limited to this, and jig units can be combined in both the A structure in which the above jig units are mixed and combined in the X and Y directions is also possible.
- the jig bar assembly 170 may be formed as a whole into a 'T-shaped structure'.
- the jig bar assembly 170 has a structure in which a first jig unit 140a and a second jig unit 140b are combined and extended in the X direction.
- a first coupling portion 173a is formed at one end of the first jig unit 140a
- a first coupling portion 173a is formed in the direction facing the first coupling portion 173a among the second jig units 140b.
- Two coupling portions 173b may be formed.
- coupling portions are formed at both ends of the individual jig units 140a and 140b, respectively.
- Figure 10 shows a concept in which when the jig bar assembly 170 is formed, the distilled water flow path 144 is also connected.
- a fitting structure in which the distilled water flow path 144 through which distilled water flows is connected to each other can be built. Any known structure can be applied to this flow path connecting means.
- Figure 19 shows a jig unit 140 formed to have a first or second set frequency. It shows the structure of the jig unit 140 in which set frequencies of 100 MHz and 200 MHz are arranged alternately. As shown in FIG. 19, when two bonding surfaces exist, 100 MHz is configured to inspect the lower bonding surface, and 200 MHz is configured to inspect the upper bonding surface.
- Figure 20 shows an exemplary form of a jig unit 140 having four channel mounting portions.
- the resolution and penetration distance are different for each set frequency.
- the higher the set frequency the higher the resolution, but the ultrasonic penetration distance inside the wafer becomes shorter.
- the defect detection efficiency of the joint surface can be increased by securing resolution and ultrasonic penetration distance through a combination of different set frequencies.
- a wafer with a multi-layered bonding surface consisting of first to fourth bonding surfaces
- more precise analysis is performed, making it possible to achieve both inspection speed and detection efficiency at the same time.
- independent control may be possible for each channel.
- the conventional structure requires performing the same ultrasonic test multiple times while changing the set frequency, whereas the ultrasonic test according to the present invention
- the inspection system can dramatically improve the processing speed of ultrasonic inspection.
- the present invention may be configured in combinations other than those shown in FIGS. 20 and 21.
- probe units in the case of two probe units, they can be configured as 50/100MHz, 50/200MHz, and 100/300MHz, respectively, and in the case of four probe units, they can be configured as 50/100/50/100MHz and 50/200/50/200MHz. , 100/300/100/300MHz, etc. may be a combination. Additionally, six probe units can be configured at 50/100/50/100/50/100MHz, 50/200/50/200/50/200MHz, 100/300/100/300/100/300MHz, etc.
- the detection efficiency for atypical bonding shapes for the bonding surfaces can be improved through having different set frequencies. .
- the higher the set frequency the better the resolution, but the beam size of the ultrasonic signal is small and the ultrasonic penetration distance is short, making it difficult to secure images of various voids and crack shapes with irregular shapes.
- the detection efficiency for defects of various irregular shapes can be improved by using both high and low set frequencies at the same time.
- ultrasonic inspection may be performed with a frequency with a high set frequency focused on the joint surface.
- a high set frequency improves the resolution of the joint surface, and a low frequency has a relatively large ultrasonic beam size, enabling images of various irregular shapes around the joint surface.
- the present invention will describe a case in which a jig bar assembly 170 in which a plurality of jig units 140 are combined is formed.
- the description will be based on a structure in which a single channel mounting portion is formed in an individual jig unit 140.
- Each of the individual jig units 140 is provided with a distilled water passage 144, and when the jig units 140 are connected in the X or Y direction, the respective distilled water passages 144 may also be configured to communicate with each other.
- each of the individual jig units 140 is provided with a flow sensor, and each flow sensor may have a built-in circuit means to transmit an electrical signal. When the individual jig units 140 are physically fastened and connected, they are also electrically connected so that individual flow sensors and flow valves can be controlled.
- the jig unit 240 applied to the second embodiment is formed in a multi-channel system having first to N-th channels, and the first to N-th channels are formed to irradiate preset frequencies, respectively.
- the first to Nth probe units 231-1, 231-2, 231-3, and 231-4 are formed so that they can be mounted. Since the first to Nth probe units 231-1, 231-2, 231-3, and 231-4 are formed to be attachable, if replacement or repair of a specific probe unit is necessary, only the corresponding probe unit can be removed. there is.
- the jig unit 240 applied to the second embodiment is structured so that the distance between the M and M+1 probe units can be changed in the ⁇ X direction or ⁇ Y direction (where N is a natural number and M is a natural number). is a natural number smaller than N).
- the first to fourth probe units (231-1, 231-2, 231-3, and 231-4) are shown, and their respective distances are the first spacing (d1), the second spacing (d2), and the third It can be separated by an interval (d3).
- the first to third intervals d1, d2, and d3 may be changed.
- a variable power transmission unit It can be formed as (272).
- the jig unit 240 extends in one direction (the It includes N channel mounting units (241-1, 241-2, 241-3, 241-4). At this time, the N channel mounting units (241-1, 241-2, 241-3, 241-4) are arranged to be spaced apart along one direction, and by changing the distance between neighboring channel mounting units, It is a configuration that can change the distance.
- a movement guide unit 245 is mounted on the lower part of the jig unit 240 to adjust the distance between probe units.
- the moving guide unit 245 may be formed in a rail manner.
- the channel mounting parts (241-1, 241-2, 241-3, 241-4) are coupled to be movable on the rail, and the channel mounting parts (241-1, 241-2, 241-3, 241-4) have It is a structure in which probe units (231-1, 231-2, 231-3, 231-4) are mounted and fixed.
- the jig unit 240 applied to the present invention is configured to freely and independently control the spacing between the multi-probe units as needed, so when a defect continuously occurs in a specific sector of the wafer, the jig unit 240 In addition to setting the movement path, changing the position of the probe unit mounted on the jig unit 240 has the effect of performing more precise analysis.
- Figure 14 shows the structure of the jig unit 240 extending in the Although the structure is shown, the spacing in the Y direction can also be changed.
- the ultrasonic inspection system can provide a system optimized for a configuration in which the spacing of probe units can be changed.
- the calculation processing and control processing accompanying this can be performed in the scan control module 250.
- the scan control module 250 refers to a controller function module that controls the probe unit 231 and the jig unit 240. Various information related to ultrasound examination can be input and configured to feedback control.
- the scan control module 250 is equipped with area information of the wafer located at the inspection position, information on the number of channel mounting units 241, spacing information between neighboring channel mounting units 241, and each channel mounting unit 241. Ultrasonic inspection can be performed by considering at least one of the set frequency information of the probe unit 231.
- the movement path of the jig unit 240 can be calculated using the above information set.
- the jig unit 240 is configured to perform ultrasonic inspection on a wafer at an inspection position while moving in the ⁇ X direction or ⁇ Y direction, so the movement path of the jig unit 240 is very important. If the movement path is not properly set, there is a problem that ultrasonic inspection of a specific sector of the wafer may be omitted, or, conversely, excessively redundant inspection of all sectors may be performed, which may significantly reduce the inspection speed.
- the ultrasonic inspection system may be equipped with probe units having different set frequencies. Since the characteristics may be different for each set frequency, it is desirable to set the movement path of the jig unit 240 by taking this into consideration.
- the ultrasonic inspection system can receive scan information through ultrasonic inspection using the first to Nth probe units, and determine defects in the wafer in a preset manner using the scan information. As described above, after the X-axis and Y-axis scan areas for the wafer are set for each individual probe unit, ultrasonic inspection is performed.
- the image processing unit 293 generates scanned images for each probe unit and combines them to generate a scanned image for the entire wafer.
- the wafer defect determination unit 2931 uses the scan image received from the image processing unit 293 to determine defects in the wafer.
- the wafer defect determination unit 2931 can obtain various information such as the type and location of the defect as well as the presence or absence of the defect.
- the ultrasonic inspection system includes a machine learning unit 291 that generates an artificial intelligence model.
- the machine learning unit 291 includes an artificial intelligence model 2911 created through machine learning.
- the artificial intelligence model (2911) can be implemented as a deep learning model using CNN (Convolutional Neural Networks).
- the machine learning unit 291 can use the artificial intelligence model 2911 to determine in advance the possibility of a defect in any sector of the wafer. In particular, the machine learning unit 291 can determine the possibility that defects will continuously occur in a specific sector of the wafer and cause the relevant sector to undergo intensive ultrasonic inspection.
- the scan control module 150 receives expected defect sector information for which the possibility of defects in the wafer is determined to be higher than a preset standard, and uses the expected defect sector information to perform an ultrasonic inspection on the channel mounting unit 241. It is configured to adjust the gap between the probe units 231 coupled to.
- the probe unit 231 can be set to be close to the expected defect sector. This means concentrating the existing probe units 231 arranged at equal intervals toward a specific location or moving them toward a specific location. Since a sector in which a defect occurs has a high probability that defects will also occur in sectors adjacent to it, inspection reliability can be improved by intensively inspecting the relevant area.
- the moving speed of the jig unit 240 is controlled based on the defect expected sector information, but when ultrasonic inspection is performed on the position of the expected bonding sector among the wafers, the moving speed of the jig unit 240 is controlled. It can be set to temporarily decrease or repeat movement. This is also to perform more precise ultrasound examination.
- the second embodiment of the ultrasonic inspection system according to the present invention can variably form the gap between probe units.
- a specific probe unit is determined to have a sensing defect, it is necessary to exclude it.
- the present invention includes a sensing failure determination unit 292 that determines sensing failure of the first to Nth probe units in a preset manner.
- the specific sector may be configured to undergo the same ultrasonic inspection using a plurality of probe units.
- the wafer is placed in the inspection position, coordinates are given to the entire area of the wafer, and ultrasonic inspection is performed using multiple probe units for a specific sector with predetermined coordinates, and conversely, the sensing accuracy of the probe unit is improved. It is to judge.
- probe units that provide scan information outside the error range are excluded from performing ultrasonic inspection. At this time, not only the error range but also the number of errors may be configured to be accumulated and stored.
- various algorithms for determining defects in the probe unit can be applied.
- the scan control module 250 is configured to automatically control the positions of the first and third probe units. It can be.
- the third embodiment is a structure including a moving assembly 360.
- the moving assembly 360 can move the jig unit 340 in the ⁇ X direction, ⁇ Y direction, and ⁇ Z direction.
- Figure 4 shows a schematic diagram of an ultrasonic inspection system equipped with a moving assembly 360, which will be referred to together.
- a multi-probe unit method may be applied.
- the moving assembly 360 is provided between the channel mounting part and the probe unit coupled to the channel mounting part, and includes a Z-axis fine driving part 364 that finely moves the probe unit in the ⁇ Z direction.
- a Z-axis fine driving part 364 that finely moves the probe unit in the ⁇ Z direction.
- the Z-axis fine drive unit 364 complements the Z-axis motor unit 363, allowing the position of the probe unit to be controlled more precisely.
- the Z axis drive unit 363 may be configured to have an operating range of 1 to 100 mm, while the Z axis fine drive unit 364 may operate in a range of 0.1 to 1 mm or 0.01 to 1 mm.
- the third embodiment may also use a multi-probe unit method, and their set frequencies may be different from each other. Since the optimal height of the probe unit varies depending on the set frequency, it can be individually controlled using the Z-axis fine drive unit 364. It is desirable to perform ultrasonic inspection while controlling the heights of all multi-probe units using the Z-axis fine drive unit 364.
- the optimal height of the probe unit is related to the focusing of the lens provided in the probe unit.
- the ultrasonic inspection system according to the present invention includes a focusing operation module 320.
- the focusing calculation module 320 is used to calculate optimal focusing information from the wafer.
- optimal focusing information refers to all information or conditions for forming optimal focusing, including focusing distance. As mentioned above, this takes into account the set frequency of each probe unit.
- Figure 16 shows that fine control is performed on individual probe units by the Z-axis fine drive unit 364 in the ultrasonic inspection system according to the present invention.
- Figure 17 shows a system structure equipped with X-axis fine actuators (3611, 3612) and Y-axis fine actuators (3621, 3622) in addition to the Z axis.
- the Z-axis micro-drive unit 364 is mainly used to control the focusing of the probe unit, while the It can be operated during the process. Additionally, it may be used to individually align the positions of the probe units according to the size of the wafer or die, and when applied to the structure of the second embodiment, may be used to finely adjust the spacing between probe units.
- the method according to the present invention includes steps S310 to S350.
- Step S310 is a step in which the wafer, which is an object of inspection, is moved to the inspection position by the transfer robot module 110.
- Step (S320) is a step in which an A-scan is performed on the vertical cross-section of the wafer using the first to N-th probe units, where each of the first to N-th probe units is applied to the bonding surface or the entire cross-section of the wafer. This is the stage where the focusing distance is set to have maximum amplitude. In other words, when A-scan is performed, the focusing distance optimization process for the surface to be analyzed is performed.
- step S330 in the scan operation module 390, using the first scan information obtained through A-scan, a gate for the ultrasonic reflection signal is set, and the X-axis and Y-axis scan areas for the wafer are set. This is the stage where it becomes possible.
- This is the step to prepare for C-scan mode by setting the setting frequency and probe unit with the highest amplitude for the reflection signal from the joint surface or inner surface and setting the gate for the reflection signal.
- Step (S340) is a step in which a C-scan is performed on the scan area of step (S330), and the )
- This is a step in which second scan information for each of the first to Nth probe units is obtained by performing ultrasonic inspection while the first to Nth probe units are moved. That is, ultrasonic inspection is performed on the entire wafer area, and second scan information can be acquired by each individual probe unit.
- Each probe unit may have a different target scan area, and if there are overlapping areas, one of them may be ignored according to a preset method.
- Step S350 is a step in which scan image information for the wafer is calculated based on the second scan information in the image processing unit 293 of the scan operation module 390, and the scan image information for each of the first to Nth probe units is calculated. 2 This is the step of combining scan information into one scan image using a preset method. This is a method that goes through the process of creating and collecting images for each set frequency, and finally displays them as a single scanned image.
- the method of controlling the moving assembly includes steps S321 to S323.
- Step S321 is a step in which the Z-axis positions of the first to Nth probe units are primarily set using the Z-axis eastern part 363 that moves the jig unit 340 in the ⁇ Z direction.
- step S322 in the process of performing an A-scan on the vertical cross section of the wafer using the first to Nth probe units 331, the focusing operation module 320 provides optimal focusing information for the wafer. This is the stage where is created. As the process of optimizing the ultrasonic amplitude for the focusing distance progresses, optimal focusing information can be generated.
- Step S323 is a step in which the first to Nth probe units are finely moved in the ⁇ Z direction by the Z-axis fine drive unit 364 based on optimal focusing information and set to a focusing distance.
- step S323 if there is a probe unit group including at least two probe units with the same set frequency among the first to Nth probe units, A-scan does not need to be performed on all probe units.
- An A-scan is performed for only one probe unit of the probe unit group to generate optimal focusing information, and based on the optimal focusing information, the focusing distance can be set for the entire probe unit group at once.
- the present invention can be configured to transmit and receive information by being connected to the machine learning unit 291 of the scan operation module 290.
- the optimal focusing information is transmitted to the machine learning unit 291 and used as learning data.
- the Z-axis drive unit 363 and the Z-axis fine drive unit 364 can be operated to automatically set the focusing distance through a large amount of learning data.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Acoustics & Sound (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
The present invention relates to an ultrasonic inspection system for inspecting a wafer flaw, and provides an ultrasonic inspection system comprising: a transfer robot module (110) having an arm unit, which unloads a wafer from a loading module (101) on which wafers are loaded, so as to transfer the wafer to a correct inspection position for an ultrasonic inspection; and an inspection module (130), which has at least one probe unit (131) and performs ultrasonic scanning on the wafer at the correct inspection position, wherein the inspection module (130) includes at least one jig unit (140) that fixes the probe unit (131) to the upper side of the correct inspection position for ultrasonic scanning of the wafer, the jig unit (140) is formed in a multi-channel scheme having first to Nth channels, and first to Nth probe units, each emitting preset frequencies, can be mounted on the first to Nth channels, respectively.
Description
본 발명은 초음파검사시스템으로서, 반도체나 전자부품 등의 내부 보이드, 박리 등을 화상화함으로써, 결함을 검사하는 초음파검사시스템에 관한 것이다.The present invention relates to an ultrasonic inspection system that inspects defects by imaging internal voids, peeling, etc. of semiconductors or electronic components.
초음파(ultrasonic wave) 영역의 주파수를 갖는 신호를 활용하여 검사 대상의 내부 이미지를 취득하는 기술이 신체 내부의 장기나 임신 중의 태아를 대상으로 하는 의료 분야나 제조 결과물을 변형시키지 않으면서 내부의 결함을 검출하는 비파괴검사(NDT) 분야 등에서 다양하게 활용되고 있다.A technology that acquires internal images of an object to be examined using signals with a frequency in the ultrasonic wave region can identify internal defects without modifying the medical field or manufacturing results targeting internal organs of the body or the fetus during pregnancy. It is used in a variety of fields such as non-destructive testing (NDT).
비파괴검사 분야 관련해서, 부품 또는 재료의 수명 예측 및 건전성 평가에 있어서 결함의 위치에 대한 정보는 매우 중요하며, 정확하고도 신속한 결함 검출 기술이 요구되고 있다. 종래의 비파괴 결함 검출 기술 중 하나인 펄스 에코 측정법(Pulse Echo Technique)은 비파괴 검사체 내부에 존재하는 결함으로부터 반사되어 돌아오는 에너지 크기(Amplitude)에 따라 결함을 검출하는 기술이다. 그러나, 반사 에너지 크기는 반사면의 표면 상태에 의존적이어서 정확한 결함 크기 측정이 어려운 단점이 있었다.In the field of non-destructive testing, information on the location of defects is very important in predicting the lifespan and evaluating the health of parts or materials, and accurate and rapid defect detection technology is required. Pulse Echo Technique, one of the conventional non-destructive defect detection technologies, is a technology that detects defects according to the amplitude of energy reflected from defects present inside a non-destructive test object. However, since the amount of reflected energy depends on the surface condition of the reflecting surface, there is a disadvantage in that it is difficult to accurately measure the size of the defect.
반면, 초음파 탐상검사 방식은 검사장비 취급 시에 검사자가 방사능에 피폭될 위험성이 없을 뿐만 아니라 검사 감도가 우수하고 검사 속도가 빠르기 때문에 검사효율이 높은 장점이 있어 점차 사용이 증가 추세에 있다.On the other hand, the ultrasonic flaw inspection method is gradually increasing in use because it has the advantage of high inspection efficiency due to not only no risk of the inspector being exposed to radiation when handling the inspection equipment, but also excellent inspection sensitivity and fast inspection speed.
이러한 초음파에 의한 비파괴검사 방법은 일반적으로, 초음파 탐상기(ultrasonic flaw detector)에서 발생하는 전기적 에너지에 의하여 초음파 변환기 일명, 탐촉자에서 발생한 초음파를 빔(beam) 형태로 비파괴 검사체의 내부로 조사하고, 이에 비파괴 검사체에서 반사되어 다시 탐촉자로 되돌아오는 반사신호를 초음파 탐상기에서 전기적 신호로 해석하여, 비파괴 검사체의 결함 여부 및 결함 크기 등을 판단하는 것이다.This non-destructive testing method using ultrasonic waves generally irradiates ultrasonic waves generated from an ultrasonic transducer, also known as a probe, into the inside of a non-destructive test object in the form of a beam by using electrical energy generated from an ultrasonic flaw detector. The reflected signal reflected from the non-destructive test object and returned to the probe is interpreted as an electrical signal by an ultrasonic flaw detector to determine whether the non-destructive test object is defective and the size of the defect.
하지만, 종래의 초음파 탐상검사 방식의 경우 송신되는 파동과 이에 의하여 발생되는 회절파의 전체적인 이동 거리만을 측정할 수 있게 되어, 비파괴 검사체 표면 상에서의 결함 위치 및 비파괴 검사체 표면으로부터의 결함깊이 등 비파괴 검사체 내부에 존재하는 결함의 3차원적인 위치를 정확하게 측정할 수 없는 문제점이 있었다.However, in the case of the conventional ultrasonic inspection method, only the overall moving distance of the transmitted wave and the diffraction wave generated by it can be measured, and non-destructive measurement such as the location of the defect on the surface of the non-destructive test object and the depth of the defect from the surface of the non-destructive test object. There was a problem in that it was not possible to accurately measure the three-dimensional location of defects inside the test object.
종래기술로는 한국공개특허 제10-2006-0095338호인 '초음파를 이용한 비파괴 검사장비'가 개시된다. 이것은 리니어모터를 이용하여 탐침자(본 발명의 '프로브'를 의미함)와 검사대상의 각도, 거리를 정밀하게 조정하도록 탐침자의 3방향(X, Y, Z축 방향)의 이동을 가능하게 하는 구성을 개시한다. 다만, 종래기술은 3방향으로 정밀하게 탐침자의 위치를 제어하기는 어렵고, 또한, 싱글 탐침자 적용에 따른 검사 효율의 한계가 존재한다.As a prior art, Korean Patent Publication No. 10-2006-0095338, ‘Non-destructive inspection equipment using ultrasonic waves,’ is disclosed. This uses a linear motor to enable movement of the probe in three directions (X, Y, and Z axes) to precisely adjust the angle and distance between the probe (meaning the 'probe' of the present invention) and the inspection object. Start configuration. However, in the prior art, it is difficult to precisely control the position of the probe in three directions, and there is also a limit to inspection efficiency due to the application of a single probe.
(특허문헌 1) 한국공개특허 제10-2006-0095338호(Patent Document 1) Korean Patent Publication No. 10-2006-0095338
본 발명에 의해 해결하고자 하는 기술적 과제는, 종래의 싱글 프로브유닛을 적용한 구조의 가장 큰 문제점인 초음파검사의 정확도, 신뢰성 및 신속성을 개선시킬 수 있는 멀티 프로브유닛이 적용된 시스템을 제안하고자 한다.The technical problem to be solved by the present invention is to propose a system using a multi-probe unit that can improve the accuracy, reliability, and speed of ultrasonic inspection, which is the biggest problem with the structure using a conventional single probe unit.
또한, 본 발명은 종래의 프로브유닛 3방향 제어방식을 탈피함으로써, 보다 정확한 프로브유닛의 위치제어를 수행할 수 있는 시스템을 제안하고자 한다.In addition, the present invention seeks to propose a system that can perform more accurate position control of the probe unit by breaking away from the conventional three-way control method of the probe unit.
상기와 같은 과제를 해결하기 위한 본 발명은 웨이퍼(Wafer)의 결함을 검사하는 초음파검사시스템으로서, 웨이퍼들이 로딩된 적재모듈(101)로부터 웨이퍼를 언로딩하여 초음파검사를 위한 검사정위치로 상기 웨이퍼를 이송시키는 암(Arm)유닛이 구비된 이송로봇모듈(110); 및 적어도 하나의 프로브유닛(131)을 구비하여, 상기 검사정위치 상태의 웨이퍼를 대상으로 초음파스캐닝을 수행하는 검사모듈(130); 을 포함하며, 상기 검사모듈(130)은, 상기 웨이퍼의 초음파스캐닝을 위해, 상기 프로브유닛(131)을 상기 검사정위치 상측에 고정시키는 적어도 하나의 지그유닛(140)을 포함하되, 상기 지그유닛(140)은, 제1 내지 제N 채널을 구비하는 멀티채널방식으로 형성되며, 상기 제1 내지 제N 채널에는 미리 설정된 주파수를 각각 조사하도록 형성된 제1 내지 제N 프로브유닛이 장착 가능하도록 형성된, 초음파검사시스템을 제공한다.The present invention to solve the above problems is an ultrasonic inspection system that inspects wafer defects, unloading the wafer from the loading module 101 where the wafers are loaded, and moving the wafer to an inspection position for ultrasonic inspection. A transfer robot module 110 equipped with an arm unit for transferring; and an inspection module 130 that includes at least one probe unit 131 and performs ultrasonic scanning on the wafer in the inspection position. Includes, the inspection module 130 includes at least one jig unit 140 that fixes the probe unit 131 to the upper side of the inspection well for ultrasonic scanning of the wafer, wherein the jig unit (140) is formed in a multi-channel manner having first to N-th channels, and is formed so that first to N-th probe units formed to irradiate preset frequencies, respectively, can be mounted on the first to N-th channels, An ultrasonic inspection system is provided.
또한, 상기 지그유닛(140)은, 일방향으로 연장되되, 상기 제1 내지 제N 프로브유닛이 결합 또는 결합해제 가능하도록 형성되어, 상기 제1 내지 제N 프로브유닛이 교체 가능하도록 형성된, N개의 채널장착부(141)를 포함하고, 상기 N개의 채널장착부(141)는, 상기 일방향을 따라 이격되어 배치될 수 있다.In addition, the jig unit 140 extends in one direction and is formed so that the first to N-th probe units can be coupled or disengaged, so that the first to N-th probe units can be replaced, with N channels. It includes a mounting portion 141, and the N channel mounting portions 141 may be arranged to be spaced apart along one direction.
또한, 상기 초음파검사시스템은, 상기 프로브유닛(131) 및 상기 지그유닛(140)을 제어하는 스캔제어모듈(150); 을 더 포함하며, 상기 스캔제어모듈(150)은, 상기 채널장착부(141)의 개수정보 및 상기 프로브유닛(131)의 장착정보를 확인하여, 상기 웨이퍼에 대한 초음파스캐닝을 수행하도록 형성될 수 있다.In addition, the ultrasonic inspection system includes a scan control module 150 that controls the probe unit 131 and the jig unit 140; It further includes, and the scan control module 150 may be configured to perform ultrasonic scanning on the wafer by checking the number information of the channel mounting portion 141 and the mounting information of the probe unit 131. .
또한, 상기 지그유닛(140)은, 구동수단(160)과 연결되어 ±X 방향 또는 ±Y 방향으로 이동하면서 상기 웨이퍼에 대한 초음파스캐닝을 수행하도록 형성되며, 상기 스캔제어모듈(150)은, 상기 채널장착부(141)의 개수정보 및 상기 프로브유닛(131)의 장착정보를 통해, 상기 지그유닛(140)의 이동경로를 설정할 수 있다.In addition, the jig unit 140 is connected to the driving means 160 and is configured to perform ultrasonic scanning of the wafer while moving in the ±X direction or ±Y direction, and the scan control module 150 is configured to: The movement path of the jig unit 140 can be set through the number information of the channel mounting portions 141 and the mounting information of the probe unit 131.
또한, 상기 스캔제어모듈(150)은, 상기 N개의 채널장착부(141) 중 적어도 일부에 프로브유닛이 장착되지 않은 비활성 채널장착부 및 프로브유닛(131)이 결합된 활성 채널장착부가 혼합된 상태로 판단된 경우, 상기 활성 채널장착부의 위치를 기준으로, 상기 지그유닛(140)의 이동경로를 설정함으로써, 상기 웨이퍼의 전면에 대한 초음파스캐닝을 수행하도록 형성될 수 있다.In addition, the scan control module 150 determines that at least some of the N channel mounting portions 141 are in a mixed state, with inactive channel mounting portions to which no probe units are mounted and active channel mounting portions to which the probe unit 131 is coupled. In this case, ultrasonic scanning of the entire surface of the wafer can be performed by setting the movement path of the jig unit 140 based on the position of the active channel mounting portion.
또한, 상기 제1 내지 제N 프로브유닛은, 적어도 일부가 상이한 설정주파수를 갖도록 형성되는 멀티주파수 조합으로 구성될 수 있다.Additionally, the first to Nth probe units may be configured as a multi-frequency combination in which at least some of the probe units have different set frequencies.
또한, 상기 제1 내지 제N 프로브유닛은, 제1 또는 제2 설정주파수를 갖도록 형성되되, 상기 제1 설정주파수를 갖는 프로브유닛 및 상기 제2 설정주파수를 갖는 프로브유닛은, 상기 일방향을 따라 교번하여 배치될 수 있다.In addition, the first to Nth probe units are formed to have a first or second set frequency, and the probe unit with the first set frequency and the probe unit with the second set frequency alternate along the one direction. It can be placed like this.
한편, 본 발명은 웨이퍼(Wafer)의 결함을 검사하는 초음파검사시스템으로서, 웨이퍼들이 로딩된 적재모듈(101)로부터 웨이퍼를 언로딩하여 초음파검사를 위한 검사정위치로 상기 웨이퍼를 이송시키는 암(Arm)유닛이 구비된 이송로봇모듈(110); 및 적어도 하나의 프로브유닛(131)을 구비하여, 상기 검사정위치 상태의 웨이퍼를 대상으로 초음파스캐닝을 수행하는 검사모듈(130); 을 포함하며, 상기 검사모듈(130)은, 상기 웨이퍼의 초음파스캐닝을 위해, 상기 적어도 하나의 프로브유닛(131)을 상기 검사정위치 상측에 고정시키는 지그유닛(140)을 포함하되, 상기 지그유닛(140)은 다른 지그유닛(140)과 ±X 방향 또는 ±Y 방향으로 결합되어 연장 가능한 지그바조립체(170)를 형성하는, 초음파검사시스템을 제공한다.Meanwhile, the present invention is an ultrasonic inspection system that inspects wafer defects, and includes an arm that unloads the wafer from the loading module 101 on which the wafers are loaded and transports the wafer to an inspection position for ultrasonic inspection. ) Transfer robot module (110) equipped with a unit; and an inspection module 130 that includes at least one probe unit 131 and performs ultrasonic scanning on the wafer in the inspection position. Includes, the inspection module 130 includes a jig unit 140 that fixes the at least one probe unit 131 to the upper side of the inspection well for ultrasonic scanning of the wafer, wherein the jig unit (140) provides an ultrasonic inspection system that is combined with another jig unit (140) in the ±X direction or ±Y direction to form an extendable jig bar assembly (170).
또한, 상기 지그유닛(140)에는, 상기 프로브유닛(131)에 결합되어 하방에 위치된 상기 웨이퍼 상에 워터폴(Water-Fall) 방식으로 증류수를 분사하는 증류수분사부(143)가 구비되며, 상기 증류수분사부(143)는 증류수공급부(180)와 연결되어 증류수를 공급받는 증류수유로(144)를 내장하고, 상기 제1 내지 제L 지그유닛(140)이 결합되어 상기 지그바조립체(170)를 형성한 경우, 상기 제1 내지 제L 지그유닛(140) 각각에 구비된 증류수유로(144)는 서로 연통되도록 구성될 수 있다.In addition, the jig unit 140 is equipped with a distilled water spray unit 143 that is coupled to the probe unit 131 and sprays distilled water in a waterfall manner onto the wafer positioned below, The distilled water injection unit 143 is connected to the distilled water supply unit 180 and has a built-in distilled water passage 144 for receiving distilled water, and the first to L jig units 140 are combined to form the jig bar assembly 170. When formed, the distilled water passages 144 provided in each of the first to L jig units 140 may be configured to communicate with each other.
또한, 상기 지그바조립체(170)는, 구동수단(160)과 연결되어 ±X 방향 또는 ±Y 방향으로 이동하면서 상기 웨이퍼에 대한 초음파스캐닝을 수행하도록 형성되며, 상기 ±X 방향 또는 ±Y 방향으로 상기 지그바조립체(170)가 이동시, 진동을 완충하기 위한 댐퍼부(171)를 포함할 수 있다.In addition, the jig bar assembly 170 is connected to the driving means 160 and is formed to perform ultrasonic scanning of the wafer while moving in the ±X direction or ±Y direction. When the jig bar assembly 170 moves, it may include a damper unit 171 to cushion vibration.
또한, 상기 지그바조립체(170)는, 상기 구동수단(160)과 연결되어 상기 지그바조립체(170)의 이동경로를 설정하는 스캔제어모듈(150)에 의해 제어되되, 상기 스캔제어모듈(150)은, 상기 지그바조립체(170)가 ±X 방향 또는 ±Y 방향으로 방향을 전환하여 이동하는 구간에서, 이동경로를 곡선화하는 유선화경로를 설정할 수 있다.In addition, the jig bar assembly 170 is controlled by a scan control module 150 that is connected to the driving means 160 and sets the movement path of the jig bar assembly 170, and the scan control module 150 ) can set a streamlined path that curves the moving path in the section where the jig bar assembly 170 moves by changing direction in the ±X direction or ±Y direction.
또한, 상기 지그바조립체(170)는, 구동수단(160)과 연결되어 ±X 방향 또는 ±Y 방향으로 이동 가능하도록 형성되되, 상기 구동수단(160) 및 상기 지그바조립체(170)를 연결시키는 동력전달부(172); 를 더 포함하며, 상기 동력전달부(172)는, 상기 지그바조립체(170)의 무게중심 측에 결합되는 결합축을 포함하며, 다른 지그유닛(140)의 결합에 의해, 지그바조립체(170)의 형태가 변경된 경우, 상기 결합축은 새롭게 설정된 무게중심 측으로 이동되도록 형성될 수 있다.In addition, the jig bar assembly 170 is connected to the driving means 160 and is formed to be movable in the ±X direction or ±Y direction, and connects the driving means 160 and the jig bar assembly 170. Power transmission unit (172); It further includes, wherein the power transmission unit 172 includes a coupling shaft coupled to the center of gravity side of the jig bar assembly 170, and by coupling with another jig unit 140, the jig bar assembly 170 When the shape of is changed, the coupling axis may be formed to move toward the newly set center of gravity.
본 발명은 멀티 프로브유닛 방식을 채택함으로써, 종래의 싱글 프로브유닛을 적용한 구조의 가장 큰 문제점인 초음파검사의 정확도, 신뢰성 및 신속성을 개선시킬 수 있다.By adopting the multi-probe unit method, the present invention can improve the accuracy, reliability, and speed of ultrasonic inspection, which are the biggest problems with the structure using a conventional single probe unit.
또한, 본 발명은 종래의 프로브유닛 3방향 제어방식을 탈피함으로써, 보다 정확한 프로브유닛의 위치제어를 수행할 수 있다.In addition, the present invention can perform more accurate position control of the probe unit by breaking away from the conventional three-way control method of the probe unit.
도 1은 본 발명의 일 실시예에 따른 초음파검사시스템의 전체 구성도이다.1 is an overall configuration diagram of an ultrasonic inspection system according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 초음파검사시스템의 전체 구성을 기능별로 구분한 개념도이다.Figure 2 is a conceptual diagram dividing the overall configuration of an ultrasonic inspection system according to an embodiment of the present invention by function.
도 3은 본 발명의 일 실시예에 따른 초음파검사시스템의 전체 개념도이다.Figure 3 is an overall conceptual diagram of an ultrasonic inspection system according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 초음파검사시스템의 사시도이다.Figure 4 is a perspective view of an ultrasonic inspection system according to an embodiment of the present invention.
도 5는 도 1의 초음파검사구간에 해당되는 구성을 개략적으로 도시하는 사시도이다.Figure 5 is a perspective view schematically showing the configuration corresponding to the ultrasonic inspection section of Figure 1.
도 6은 도 5에서의 동작을 개략적으로 나타내는 개념도이다.FIG. 6 is a conceptual diagram schematically showing the operation in FIG. 5.
도 7은 본 발명의 제1 실시예에 따른 초음파검사시스템의 개념도이다.Figure 7 is a conceptual diagram of an ultrasonic inspection system according to the first embodiment of the present invention.
도 8은 본 발명의 제1 실시예에 따른 초음파검사시스템의 개략적인 모식도이다.Figure 8 is a schematic diagram of an ultrasonic inspection system according to the first embodiment of the present invention.
도 9는 본 발명의 제1 실시예에 따른 초음파검사시스템의 변형예를 도시하는 모식도이다.Figure 9 is a schematic diagram showing a modified example of the ultrasonic inspection system according to the first embodiment of the present invention.
도 10은 도 9의 지그유닛의 결합 전 및 결합 후를 나타내는 모식도이다.FIG. 10 is a schematic diagram showing the jig unit of FIG. 9 before and after assembly.
도 11은 도 10의 지그유닛이 결합되어 지그바조립체가 형성된 상태를 개략적으로 나타내는 모식도이다.Figure 11 is a schematic diagram schematically showing a state in which the jig units of Figure 10 are combined to form a jig bar assembly.
도 12는 본 발명의 제1 실시예에 따른 초음파검사시스템의 프로브유닛의 이동경로를 개략적으로 나타내는 모식도이다.Figure 12 is a schematic diagram schematically showing the movement path of the probe unit of the ultrasonic inspection system according to the first embodiment of the present invention.
도 13은 본 발명의 제1 실시예에 따른 초음파검사시스템의 프로브유닛의 이동경로에 대한 유선화를 개략적으로 나타내는 모식도이다.Figure 13 is a schematic diagram schematically showing the streamlining of the movement path of the probe unit of the ultrasonic inspection system according to the first embodiment of the present invention.
도 14는 본 발명의 제2 실시예에 따른 초음파검사시스템의 개략적인 모식도이다.Figure 14 is a schematic diagram of an ultrasonic inspection system according to a second embodiment of the present invention.
도 15는 본 발명의 제3 실시예에 따른 초음파검사시스템 중 무빙어셈블리에 대한 개념도이다.Figure 15 is a conceptual diagram of a moving assembly in the ultrasonic inspection system according to the third embodiment of the present invention.
도 16은 본 발명의 제3 실시예에 따른 초음파검사시스템 중 무빙어셈블리의 동작에 대한 개략적인 모식도이다.Figure 16 is a schematic diagram of the operation of the moving assembly in the ultrasonic inspection system according to the third embodiment of the present invention.
도 17은 도 16의 변형예를 나타내는 모식도이다.Figure 17 is a schematic diagram showing a modification of Figure 16.
도 18 내지 20은 본 발명의 일 실시예에 따른 초음파검사시스템의 멀티프로브유닛을 설명하기 위한 모식도이다.18 to 20 are schematic diagrams for explaining a multi-probe unit of an ultrasonic inspection system according to an embodiment of the present invention.
도 21은 본 발명의 제3 실시예에 따른 초음파검사시스템을 이용한 초음파검사방법에 대한 순서도이다.Figure 21 is a flowchart of an ultrasonic inspection method using an ultrasonic inspection system according to a third embodiment of the present invention.
도 22는 도 21에서 무빙어셈블리의 구체적인 동작을 나타내는 순서도이다.FIG. 22 is a flowchart showing the specific operation of the moving assembly in FIG. 21.
이하에서는 도면을 참조하여 본 발명의 실시예들이 상세하게 설명될 것이다. 이하에서의 설명은 실시예들을 구체화하기 위한 것일 뿐, 본 발명에 따른 권리범위를 제한하거나 한정하기 위한 것은 아니다. 본 발명에 관한 기술 분야에서 통상의 지식을 가진 자가 발명의 상세한 설명 및 실시예들로부터 용이하게 유추할 수 있는 것은 본 발명에 따른 권리범위에 속하는 것으로 해석되어야 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The description below is only intended to specify embodiments and is not intended to limit or limit the scope of rights according to the present invention. What a person skilled in the art related to the present invention can easily infer from the detailed description and examples of the invention should be construed as falling within the scope of rights according to the present invention.
본 발명에서 사용되는 용어는 본 발명에 관한 기술 분야에서 널리 사용되는 일반적인 용어로 기재되었으나, 본 발명에서 사용되는 용어의 의미는 해당 분야에 종사하는 기술자의 의도, 새로운 기술의 출현, 심사기준 또는 판례 등에 따라 달라질 수 있다. 일부 용어는 출원인에 의해 임의로 선정될 수 있고, 이 경우 임의로 선정되는 용어의 의미가 상세하게 설명될 것이다. 본 발명에서 사용되는 용어는 단지 사전적 의미만이 아닌, 명세서의 전반적인 맥락을 반영하는 의미로 해석되어야 한다.The terms used in the present invention are described as general terms widely used in the technical field related to the present invention, but the meaning of the terms used in the present invention is the intention of the technician working in the field, the emergence of new technology, examination standards, or precedents. It may vary depending on etc. Some terms may be arbitrarily selected by the applicant, in which case the meaning of the arbitrarily selected terms will be explained in detail. Terms used in the present invention should be construed not only in their dictionary meaning, but in a meaning that reflects the overall context of the specification.
본 발명에서 사용되는 '구성된다' 또는 '포함한다'와 같은 용어는 명세서에 기재되는 구성 요소들 또는 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 일부 구성 요소들 또는 단계들은 포함되지 않는 경우, 및 추가적인 구성 요소들 또는 단계들이 더 포함되는 경우 또한 해당 용어로부터 의도되는 것으로 해석되어야 한다.Terms such as 'consists' or 'comprises' used in the present invention should not be interpreted as necessarily including all of the components or steps described in the specification, and if some components or steps are not included, And if additional components or steps are further included, they should also be interpreted as intended from the corresponding terms.
후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로써, 이는 사용자, 운용자 및 설계자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.The terms described below are terms defined in consideration of functions in the present invention, and may vary depending on the intentions or practices of users, operators, and designers. Therefore, the definition should be made based on the contents throughout this specification.
본원에서 사용되는 '피검체'는 검사의 대상이 되는 웨이퍼(Wafer)를 포함하되, 초음파 조사를 이용하여 검사를 수행할 수 있는 모든 객체를 포함한다. 본원에서는 원형의 평면을 갖는 웨이퍼를 예로 들어 설명하나, 피검체의 형태 및 종류는 이에 제한되지 않으며, 본 발명이 적용될 수 있는 객체라면 모두 적용 가능하다.The 'subject' used herein includes the wafer that is the subject of inspection, and includes all objects that can be inspected using ultrasonic irradiation. In this application, a wafer having a circular plane is used as an example, but the shape and type of the object under test are not limited thereto, and any object to which the present invention can be applied is applicable.
이하에서는, 도면을 참조하여 본 발명에 따른 초음파검사시스템을 설명한다. 설명을 생략한 부분/구성은 동일한 효과 및 기능을 발휘하는 공지된 모든 수단이 적용될 수 있음을 미리 명시한다.Hereinafter, an ultrasonic inspection system according to the present invention will be described with reference to the drawings. It is specified in advance that all known means that achieve the same effect and function can be applied to parts/configurations whose descriptions are omitted.
도 1 및 2를 참조하여, 본 발명에 따른 초음파검사시스템의 전체 구성 및 동작 원리에 관한 내용을 설명한다.With reference to Figures 1 and 2, the overall configuration and operating principle of the ultrasonic inspection system according to the present invention will be described.
초음파검사시스템은 크게 로딩/언로딩 구간 및 초음파검사 구간으로 구분될 수 있으며, 프로그램(또는 PC)으로 연산처리되는 제어/영상처리 구간이 더 존재한다.The ultrasonic inspection system can be largely divided into a loading/unloading section and an ultrasonic inspection section, and there is an additional control/image processing section that is operated by a program (or PC).
'로딩/언로딩 구간'은 LPM, 적재모듈(FOUP), 이송로봇모듈로 구성되며, 이송로봇모듈에 의해서 적재모듈(FOUP)에 있는 웨이퍼를 초음파검사 시작단계에 배치하거나, 초음파검사 완료단계에 배치시킬 수 있다. 즉, 듀얼암(Dual Arm)으로 형성된 이송로봇모듈에 의해 웨이퍼를 출고(이하 '언로딩'이라 함)하여 검사정위치로 배치시키고, 초음파검사가 완료된 상태에서는, 검사정위치의 웨이퍼를 적재모듈로 입고(이하 '로딩'이라 함)시키는 개념으로 이해될 수 있다.The 'loading/unloading section' consists of the LPM, loading module (FOUP), and transfer robot module. The transfer robot module places the wafer in the loading module (FOUP) at the start of ultrasonic inspection or at the completion of ultrasonic inspection. It can be placed. In other words, the wafer is shipped (hereinafter referred to as 'unloading') by a transfer robot module formed by a dual arm and placed in the inspection position, and when the ultrasonic inspection is completed, the wafer in the inspection position is placed in the loading module. It can be understood as a concept of warehousing (hereinafter referred to as ‘loading’).
'초음파검사 구간'은 웨이퍼 얼라이너, 3축 리니어모션, 프로브유닛, 웨이퍼 스테이지(수조 침지방식 포함), 건조부로 구성될 수 있다. 웨이퍼를 검사정위치에 정렬시킨 후 초음파검사 구간에서 펄스에코(Pulse echo) 방식으로 초음파검사가 이루어지고, 완료되면 건조부에서 웨이퍼 건조가 진행되는 구성이다.The 'ultrasonic inspection section' can be composed of a wafer aligner, 3-axis linear motion, probe unit, wafer stage (including water bath immersion method), and drying section. After aligning the wafer to the inspection position, ultrasonic inspection is performed using the pulse echo method in the ultrasonic inspection section, and upon completion, the wafer is dried in the drying section.
'제어/영상처리 구간'은 리니어모션 구동부, 펄서/리시버, ADC(Analog to Digital Conversion), PC로 구성될 수 있다. 리니어모션 구동부는 갠트리 방식으로 구성되었으며 PLC 방식으로 제어가 수행될 수 있다. 여기서, 리니어모션 구동부는 초음파검사 결과에 따른 피드백제어로 수행될 수 있다. 이는 본원에서 X축, Y축 및 Z축구동부로 명명하여 후술하도록 하며, 동일한 기능을 수행하는 공지된 모든 구성이 적용될 수 있다.The 'control/image processing section' can be composed of a linear motion driver, pulser/receiver, ADC (Analog to Digital Conversion), and PC. The linear motion driving unit is configured in a gantry method and can be controlled using a PLC method. Here, the linear motion driver may be performed through feedback control according to the ultrasonic inspection results. This will be described later herein as the X-axis, Y-axis, and Z axis, and all known configurations that perform the same function can be applied.
펄서부는 스퀘어 펄스신호를 프로브유닛에 전송하고, 웨이퍼의 결함부에서 임피던스 차이로 반사된 신호가 리시버에 들어오면 ADC(Analogue to Digital Converter)를 통해, 연속적인 아날로그 신호가 디지털 신호로 전환되어 PC에서 영상을 획득할 수 있으며, 영상분석을 통해서 초음파 검사가 이루어지는 방식으로 수행될 수 있다.The pulser unit transmits a square pulse signal to the probe unit, and when the signal reflected by the impedance difference from the defective part of the wafer enters the receiver, the continuous analog signal is converted into a digital signal through the ADC (Analogue to Digital Converter) and transmitted to the PC. Images can be acquired, and ultrasound examinations can be performed through image analysis.
도 3 및 4를 참조하여, 본 발명의 전체 구성에 대해 자세히 설명한다.3 and 4, the overall structure of the present invention will be described in detail.
본 발명에 따른 초음파검사시스템은 이송로봇모듈(110), 검사모듈(130), 스캔제어모듈(150) 및 스캔연산모듈(290)로 구성될 수 있다.The ultrasonic inspection system according to the present invention may be composed of a transfer robot module 110, an inspection module 130, a scan control module 150, and a scan operation module 290.
이송로봇모듈(110)은 웨이퍼들이 로딩된 적재모듈(101)로부터 웨이퍼를 언로딩하여 초음파검사를 위한 검사정위치로 웨이퍼를 이송시키는 암(Arm)유닛이 구비된다. 빠른 검사를 위해, 듀얼암 방식이 적용될 수 있으며, 제1 암유닛(도 2의 Gripper1)이 웨이퍼를 이동시키고, 초음파검사가 완료된 이후에, 제2 암유닛(도 2의 Gripper2)이 동일한 방식으로 동작된다. 제1 및 제2 암유닛은 상호 교대로 동작되는 것이 바람직하며, 어느 하나의 암유닛이 동작되는 동안, 다른 암유닛은 웨이퍼 이송의 대기상태로 유지된다.The transfer robot module 110 is equipped with an arm unit that unloads the wafers from the loading module 101 on which the wafers are loaded and transfers the wafers to an inspection position for ultrasonic inspection. For quick inspection, the dual arm method can be applied, where the first arm unit (Gripper1 in FIG. 2) moves the wafer, and after the ultrasonic inspection is completed, the second arm unit (Gripper2 in FIG. 2) moves the wafer in the same way. It works. Preferably, the first and second arm units are operated alternately, and while one arm unit is operating, the other arm unit is maintained in a standby state for wafer transfer.
이송로봇모듈(110)은 암유닛을 통해 적재모듈(101)에 있는 웨이퍼를 얼라인부(정렬부)로 안정적으로 이동하여 웨이퍼 정렬이 이루어질 수 있다.The transfer robot module 110 can stably move the wafer in the loading module 101 to the alignment unit through the arm unit to achieve wafer alignment.
이후 정렬이 완료되면, 다시 이송로봇모듈(110)에 의해 검사모듈(130)로 웨이퍼를 이송하고 초음파검사가 완료되면, 암유닛이 드라이부(건조부)로 이동시켜 건조시키고, 건조가 완료되면 이송로봇모듈(110)에 의해 적재모듈(101)로 이송시킨다. 이 때, 건조 후 별도의 센서부(미도시)를 통해 웨이퍼의 건조 상태를 확인할 수도 있다.After the alignment is completed, the wafer is transferred again to the inspection module 130 by the transfer robot module 110, and when the ultrasonic inspection is completed, the arm unit moves it to the drying unit and dries it, and when drying is completed, the wafer is transferred to the inspection module 130 by the transfer robot module 110. It is transferred to the loading module (101) by the transfer robot module (110). At this time, after drying, the drying state of the wafer can be checked through a separate sensor unit (not shown).
검사모듈(130)은 프로브유닛(131)을 구비하되, 본 발명에 따른 초음파검사시스템은 멀티채널방식이 적용되는 바, 복수의 프로브유닛(131)이 구비될 수 있다. 검사모듈(130)은 현재 검사정위치 상태의 웨이퍼에 초음파검사를 수행한다.The inspection module 130 is provided with a probe unit 131, and since the ultrasonic inspection system according to the present invention uses a multi-channel method, a plurality of probe units 131 may be provided. The inspection module 130 performs ultrasonic inspection on the wafer in the current inspection position.
구체적으로, 검사모듈(130)은 지그유닛(140), 무빙어셈블리(360) 및 구동수단(160)이 구비될 수 있다.Specifically, the inspection module 130 may be provided with a jig unit 140, a moving assembly 360, and a driving means 160.
지그유닛(140)은 웨이퍼의 초음파검사를 위해, 프로브유닛(131)을 검사정위치 상측에 고정시키는 기능을 수행한다. 도 4에 도시된 바와 같이, 검사정위치 상태의 프로브유닛(131) 상에 소정의 높이를 유지하도록 배치될 수 있다.The jig unit 140 performs the function of fixing the probe unit 131 above the inspection position for ultrasonic inspection of the wafer. As shown in FIG. 4, it can be arranged to maintain a predetermined height on the probe unit 131 in the inspection position.
지그유닛(140)은 제1 내지 제N 채널을 구비하는 멀티채널방식이며, 각각의 채널에는 프로브유닛(131-1~131-N)이 장착되도록 제1 내지 제N 채널장착부(141-1~141-N)가 형성된다. 이 때, 프로브유닛(131-1~131-N)은 제1 내지 제N 채널장착부(141-1~141-N) 상에 결합/결합해제 가능하도록 구성되는 바, 피검체인 웨이퍼에 상태 및 사용자의 선택에 따라 최적의 프로브유닛(131)이 장착될 수 있다.The jig unit 140 is a multi-channel type having first to N-th channels, and each channel has first to N-th channel mounting units (141-1 to 141-1) so that probe units (131-1 to 131-N) are mounted. 141-N) is formed. At this time, the probe units (131-1 to 131-N) are configured to be capable of being coupled/uncoupled from the first to N-th channel mounting portions (141-1 to 141-N), so that the state and user Depending on the selection, the optimal probe unit 131 can be installed.
도 5를 참조하면, 신호발생부(132)가 각각 구비될 수 있다. 신호발생부(132)는 'Pulser Pre-AMP'가 적용될 수 있다. 신호발생부(132) 하측에는 2개의 프로브유닛(131-1, 131-2)이 구비될 수 있고, 전원수단(미도시)과 연결된 신호발생부(132)로부터 초음파신호가 발생되고, 프로브유닛(131-1, 131-2)을 통해 웨이퍼 상에 조사되며, 반사신호를 수신하도록 구성된다.Referring to FIG. 5, each signal generator 132 may be provided. 'Pulser Pre-AMP' may be applied to the signal generator 132. Two probe units (131-1, 131-2) may be provided below the signal generator 132, and an ultrasonic signal is generated from the signal generator 132 connected to a power source (not shown), and the probe unit It is irradiated onto the wafer through (131-1, 131-2) and configured to receive reflected signals.
도 7을 먼저 참조하면, N개의 채널장착부(141)는 일방향을 따라 이격되어 배치될 수 있다. 여기서, 상기 일방향은 X방향을 의미하나, 이는 지그유닛(140)의 배치형태에 따라 Y방향으로 형성될 수 있다.Referring first to FIG. 7, N channel mounting units 141 may be arranged to be spaced apart along one direction. Here, the one direction refers to the X direction, but it may be formed in the Y direction depending on the arrangement of the jig unit 140.
스캔제어모듈(150)은 프로브유닛(131) 및 지그유닛(140)의 동작을 제어하도록 구성된다. 이 때, 스캔제어모듈(150)은 스캔연산모듈(290) 및 포커싱연산모듈(320)과 연산정보를 송수신하도록 구성됨으로써, 피드백제어가 수행될 수 있다. 스캔제어모듈(150)은 구동수단(160)을 제어하도록 구성된다. 지그유닛(140)을 ±X 방향 또는 ±Y 방향으로 이동하면서 웨이퍼에 대한 초음파검사를 수행하도록 구성되며, 프로브유닛(131)의 펄스에코방식의 동작을 제어할 수 있다.The scan control module 150 is configured to control the operations of the probe unit 131 and the jig unit 140. At this time, the scan control module 150 is configured to transmit and receive calculation information with the scan calculation module 290 and the focusing calculation module 320, so that feedback control can be performed. The scan control module 150 is configured to control the driving means 160. It is configured to perform ultrasonic inspection on the wafer while moving the jig unit 140 in the ±X direction or ±Y direction, and can control the pulse echo operation of the probe unit 131.
이하에서는 싱글 프로브유닛이 장착됨을 기준으로, 초음파검사 프로세스에 대해 간략하게 설명한다.Below, the ultrasonic inspection process will be briefly described based on the single probe unit being installed.
먼저, 검사정위치에 있는 프로브유닛을 대상으로 A-scan을 수행한다. A-scan은 시료의 수직방향으로 어느 한 점에 대해 수신된 초음파 에코신호의 크기(진폭)을 시간에 대해 표현함으로써, 해당 웨이퍼의 결함을 판단한다. 프로브유닛을 이용하여 시간 측에 대한 에코신호의 파형을 표출할 수 있고, 그래프의 수직측은 신호의 세기(진폭)를, 수평측은 시간을 나타내도록 구성된다. 즉, 특정한 기준점에서 시간이 지남에 따라, 진폭의 변화를 확인하는 방식이다. 이 때, Z축 거리를 미세하게 이동하면서 접합면에 대한 최대 진폭을 확보하는 방식으로 초음파 빔 포커싱이 이루어질 수 있다.First, an A-scan is performed on the probe unit at the inspection position. A-scan determines defects in the wafer by expressing the size (amplitude) of the ultrasonic echo signal received at a point in the vertical direction of the sample in relation to time. Using a probe unit, the waveform of the echo signal on the time side can be expressed, and the vertical side of the graph represents the signal strength (amplitude) and the horizontal side represents time. In other words, it is a method of checking the change in amplitude over time at a specific reference point. At this time, ultrasonic beam focusing can be achieved by securing the maximum amplitude for the joint surface while slightly moving the Z-axis distance.
A-scan은 프로브유닛(131)에 의한 웨이퍼에 대해 수직방향으로 초음파신호를 조사한다. 이 때, 웨이퍼의 접합면(본딩 웨이퍼)에 최대진폭을 갖는 포커싱거리 조절하도록 구성된다. 그 후, 접합면의 초음파신호 반사신호 전후에 게이트를 설정한다. 게이트는 검사하는 영역을 일정구간으로 한정하여 사용하기 위함이다. 여기서, 포커싱거리는 Z축구동부(363)(도 4 참조)를 이용하여 조절될 수 있다.A-scan irradiates ultrasonic signals in a vertical direction to the wafer by the probe unit 131. At this time, it is configured to adjust the focusing distance with the maximum amplitude on the bonding surface of the wafer (bonding wafer). After that, gates are set before and after the ultrasonic signal reflection signal of the joint surface. Gates are used to limit the inspection area to a certain section. Here, the focusing distance can be adjusted using the Z-axis part 363 (see FIG. 4).
예를 들면, 웨이퍼 표면이 매끄럽지 못할 경우 생기는 노이즈를 제거하기 위한 I게이트(Interface Gate)를 설정할 수 있다. 또한, 결함에 대한 에코를 수신할 경우 어느 정도의 양을 결함으로 판단할 것인가를 정하는 척도가 되며 검사대상의 결함 및 두께를 측정할 수 있는 A게이트를 설정할 수 있다.For example, an I gate (Interface Gate) can be set to remove noise that occurs when the wafer surface is not smooth. In addition, when receiving an echo for a defect, it serves as a scale for determining how much of the defect will be judged as a defect, and an A gate can be set to measure the defect and thickness of the inspection target.
이 때, A게이트보다 높은 값이 들어올 경우 결함으로 판단하고 A게이트보다 낮은 값이 들어올 경우 그 값을 버림으로써 결함을 인정하지 않도록 설정할 수 있다.At this time, if a value higher than the A gate is received, it is judged to be a defect, and if a value lower than the A gate is received, the defect can be set to not be recognized by discarding the value.
먼저, 에코신호의 크기(AMP)와 진행시간(TOF)에 관한 정보를 이용하여 웨이퍼 내부의 접합면에 발생된 결함으로부터 반사신호의 크기를 시간축 상에 표시한 1차원적인 A-Scan 데이터를 생성한다.First, one-dimensional A-Scan data that displays the size of the reflection signal on the time axis from defects generated on the bonding surface inside the wafer is generated using information about the echo signal size (AMP) and time of flight (TOF). do.
이 때, 선택적으로 피검체 내부의 단면을 영상화한 B-Scan 데이터를 생성할 수 있다. 프로브유닛(131)에 의해, 결함이 있는 것으로 판단된 위치를 일정 간격만큼 이동하면서 수신한 각각의 반사신호를 메모리에 저장한 후 이를 종합적으로 처리하여 3차원 영상의 C-Scan 데이터를 생성하도록 구성될 수 있다.At this time, B-Scan data that images a cross section inside the subject can be selectively generated. Each reflection signal received by the probe unit 131 while moving the location determined to be defective at a certain interval is stored in memory and then comprehensively processed to generate C-Scan data of a 3D image. It can be.
C-scan은 프로브유닛(131)에 X축 및 Y축 스캔면적을 설정하여 초음파신호를 조사하도록 구성된다. 본 발명의 X축구동부(361) 및 Y축구동부(362)(도 4 참고)를 이용하여 지그유닛(340)이 이동하면서 초음파신호를 조사하도록 구성될 수 있다.C-scan is configured to irradiate ultrasonic signals by setting the X-axis and Y-axis scan areas on the probe unit 131. The jig unit 340 may be configured to irradiate an ultrasonic signal while moving using the
피검체인 웨이퍼가 다층면으로 구성된 본딩 웨이퍼인 경우에는, 각각의 다층면(예를 들어 N개의 층으로 구성된 경우)에 대해 각각 A-scan 및 C-scan이 수행됨으로써, 제1 내지 제N 층의 이미지를 형성할 수 있다.When the wafer under test is a bonding wafer composed of a multi-layer surface, A-scan and C-scan are performed for each multi-layer surface (for example, when composed of N layers), so that the first to Nth layers An image can be formed.
제1 내지 제N 층의 이미지는 스캔연산모듈(290)의 영상처리부(293)에 전송되어 미리 설정된 방식으로 스캔이미지정보가 연산될 수 있다. 이에 대해서는 후술하도록 한다.Images of the first to Nth layers are transmitted to the image processing unit 293 of the scan operation module 290, so that scan image information can be calculated in a preset manner. This will be described later.
도 6, 10 및 11을 참조하여, 본 발명에 따른 초음파검사시스템에 적용될 수 있는 증류수분사방식을 설명한다.Referring to FIGS. 6, 10, and 11, a distilled water injection method applicable to the ultrasonic inspection system according to the present invention will be described.
본 발명에 적용되는 프로브유닛(131)은 워터홀더(water holder)가 결합된 구조이다. 외부의 증류수공급부(180)로부터 2개의 튜브관을 통해 주입되어 끝단에서 프로브유닛(131) 중앙부의 렌즈에 밀착된 노즐로 물이 폭포수처럼 분사가 이루어지는 방식을 의미한다. 도 11을 참조하면, 이 때 프로브유닛(131) 렌즈를 통해서 초음파가 발생되는 것으로, 증류수분사부(143)와 프로브유닛(131)의 렌즈 끝단부에는 에어갭(Air-gap)없이 완전히 밀착되어 초음파신호의 에너지 손실없이 물속에서 초음파 에너지가 안정적으로 전달되는 구조이다. 초음파검사에 사용되는 물은 'Di water'로써 증류수를 의미한다.The probe unit 131 applied to the present invention has a structure in which a water holder is combined. This refers to a method in which water is injected from the external distilled water supply unit 180 through two tubes and sprayed like a waterfall from the end to a nozzle in close contact with the lens in the center of the probe unit 131. Referring to FIG. 11, at this time, ultrasonic waves are generated through the lens of the probe unit 131, and the distilled water spray unit 143 and the lens end of the probe unit 131 are completely adhered to each other without an air gap. It is a structure that stably transmits ultrasonic energy in water without losing the energy of the ultrasonic signal. The water used in ultrasonic testing is 'Di water', which means distilled water.
본 발명은 웨이퍼를 물에 완전히 담그는 수침형 방식에 적용될 수 있으나, 상기와 같이 증류수분사방식으로 적용될 경우, 수침형 방식보다 물에 대한 저항을 줄일 수 있어 속도를 향상시킬 수 있고, 웨이퍼를 완전히 물에 잠기지 않아도 되는 바, 노이즈의 원인이 되는 거품 발생을 감소시킬 수 있다. 또한, 프로브유닛(131)의 이동 자유도가 높아지기 때문에, 보다 정밀한 초음파검사가 가능하다.The present invention can be applied to a water immersion method in which the wafer is completely immersed in water, but when applied in a distilled water spray method as described above, resistance to water can be reduced compared to the water immersion method, thereby improving speed, and the wafer can be completely submerged in water. Since it does not need to be submerged, the generation of bubbles that cause noise can be reduced. Additionally, because the degree of freedom of movement of the probe unit 131 increases, more precise ultrasonic inspection is possible.
개별 지그유닛(140) 내에는 증류수유로(144)가 각각 구비되며, 증류수유로(144)는 증류수공급부(180)와 연결되고, 공급받은 증류수는 증류수분사부(143)를 통해 하방을 향해 분사된다. 이 때, 증류수분사부(143) 측에는 유량센서(미도시)가 구비될 수 있으며, 유량센서 및 유량밸브를 이용하여 분사되는 증류수량이 제어될 수 있다. 유량밸브는 전자식밸브가 적용되어 자동으로 온/오프가 제어될 수 있다.Each jig unit 140 is provided with a distilled water passage 144, and the distilled water passage 144 is connected to the distilled water supply unit 180, and the supplied distilled water is sprayed downward through the distilled water injection unit 143. . At this time, a flow sensor (not shown) may be provided on the side of the distilled water injection unit 143, and the amount of distilled water injected can be controlled using the flow sensor and the flow valve. The flow valve uses an electronic valve and can be automatically turned on/off.
후술하는 바와 같이, 설정주파수가 상이한 멀티 프로브유닛 방식이 적용될 경우, 특히 유량센서 및 유량밸브는 매우 중요한 기능을 한다. 설정주파수가 다른 경우, 프로브유닛의 렌즈크기가 달라질 수 있다. 렌즈크기가 달라지는 경우, 렌즈와 계면 사이에 분사되는 증류수의 양도 달라지기 때문에, 설정주파수에 대응되는 유량센서 및 유량밸브 제어가 필요하다.As will be described later, when a multi-probe unit method with different set frequencies is applied, the flow sensor and flow valve play a very important function. If the set frequency is different, the lens size of the probe unit may vary. When the lens size changes, the amount of distilled water sprayed between the lens and the interface changes, so a flow sensor and flow valve control corresponding to the set frequency are required.
도 6을 다시 참조하면, 웨이퍼가 안착되는 검사정위치('스테이지'라고도 함)에는 진공척(Vacuum chuck) 및 버블트랩이 구비될 수 있다. 버블트랩은 워터순환시스템과 연결되어 증류수가 지속적으로 강제 순환시킬 수 있다. 이를 통해, 증류수의 버블만 효과적으로 제거할 수 있으며, 정수 기능을 통해 증류수 오염을 방지할 수 있다. 에어멤브레인필터(미도시)가 구비될 수 있다.Referring again to FIG. 6, a vacuum chuck and a bubble trap may be provided at the inspection position (also referred to as 'stage') where the wafer is placed. The bubble trap is connected to the water circulation system so that distilled water can be continuously and forcefully circulated. Through this, only bubbles in distilled water can be effectively removed, and contamination of distilled water can be prevented through the water purification function. An air membrane filter (not shown) may be provided.
일 예시적 구조로써, 버블트랩은 튜브관, 에어멤브레인필터, 정수필터, 펌프로 구성된다. 웨이퍼 스테이지 하단부에 위치되어 있으며 버블이 포함된 물이 튜브로 들어오면 멤브레인 필터를 지나가게 되고 이때 펌프를 통해서 버블만 효과적으로 제거할 수 있다. 이 때, 정수필터도 포함하는 바, 물의 오염을 방지할 수 있다.As an exemplary structure, the bubble trap consists of a tube pipe, an air membrane filter, a water purification filter, and a pump. It is located at the bottom of the wafer stage. When water containing bubbles enters the tube, it passes through the membrane filter, and only the bubbles can be effectively removed through the pump. At this time, since a water purification filter is also included, water contamination can be prevented.
초음파검사 과정 중에 버블이 발생하고 버블이 포함된 물은 스테이지를 둘러싸고 있는 물수조의 하단부관을 통해서 이동한다. 버블트랩을 통해서 버블이 제거된 깨끗한 증류수는 지그유닛으로 주입되고, 이 때 초음파와 증류수가 함께 공급되어 웨이퍼를 초음파검사하도록 구성된다.During the ultrasonic inspection process, bubbles are generated and the water containing the bubbles moves through the lower pipe of the water tank surrounding the stage. Clean distilled water from which bubbles have been removed through a bubble trap is injected into the jig unit, and at this time, ultrasonic waves and distilled water are supplied together to ultrasonic inspect the wafer.
참고로, 증류수는 분당 1~3ml or 4~10ml로 구분되어 사용되며, 프로브유닛의 사이즈 및 검사체에 따라 구분되어 사용될 수 있다.For reference, distilled water is used at a rate of 1 to 3 ml or 4 to 10 ml per minute, and can be used separately depending on the size of the probe unit and the test object.
이하에서는, 도 7 내지 13을 참조하여, 본 발명에 따른 초음파검사시스템의 제1 실시예를 설명한다. 본 발명의 주요구성들은 전술하였는 바, 중복 설명은 생략한다.Below, with reference to FIGS. 7 to 13, a first embodiment of the ultrasonic inspection system according to the present invention will be described. Since the main components of the present invention have been described above, redundant description will be omitted.
제1 실시예는 지그유닛(140)에 프로브유닛(131)이 탈착 가능한 구조로 형성된다. 이를 위해, 지그유닛(140)은, 제1 내지 제N 채널을 구비하는 멀티채널방식으로 형성될 수 있다. 이 때, 제1 내지 제N 채널에는 미리 설정된 주파수를 각각 조사하도록 형성된 제1 내지 제N 프로브유닛이 장착 가능하도록 형성된다. 여기서, 각각의 채널은 초음파신호를 발생시키고, 반사신호를 수신하는데 필요한 모든 기능을 포함하는 모듈형태로 이해될 수 있다.In the first embodiment, the probe unit 131 is formed in a detachable structure from the jig unit 140. To this end, the jig unit 140 may be formed in a multi-channel manner including first to Nth channels. At this time, first to Nth probe units formed to irradiate preset frequencies can be mounted on the first to Nth channels, respectively. Here, each channel can be understood as a module that includes all the functions necessary to generate ultrasonic signals and receive reflected signals.
도 7에 도시되는 바와 같이, 지그유닛(140)은 일방향으로 연장되며, 일방향을 따라, N개의 채널장착부(141-1,141-2)가 구비될 수 있다. 이들은 미리 설정된 간격으로 이격 배치된다. 상기 간격은 상호간 초음파신호 및 반사신호의 간섭이 되지 않는 거리로 설정되는 것이 필요하다. 물론, 본 발명이 전술한 증류수분사식일 경우, 분사되는 증류수 역시 간섭되지 않도록 구성되는 것이 바람직하다.As shown in FIG. 7, the jig unit 140 extends in one direction and may be provided with N channel mounting portions 141-1 and 141-2 along one direction. They are spaced apart at preset intervals. The distance needs to be set to a distance that does not interfere with each other's ultrasonic signals and reflected signals. Of course, when the present invention is the distilled water injection type described above, it is preferable that the sprayed distilled water is also configured so as not to interfere.
프로브유닛(131) 및 지그유닛(140)의 동작을 제어하는 스캔제어모듈(150)은 채널장착부(141)의 개수정보 및 프로브유닛(131)의 장착정보를 확인하도록 구성된다. 프로브유닛(131)의 장착정보에 따라, 지그유닛(140)의 이동경로가 상이하게 설정될 수 있기 때문이다. X방향으로 프로브유닛(131)이 촘촘하게 장착된 경우, 지그유닛(140)의 X방향 이동거리가 상대적으로 짧게 형성될 수 있다. 물론, 이 경우에도 이동거리를 동일하게 설정하여, 웨이퍼의 동일한 위치를 복수 회에 검사하도록 설정될 수도 있다. 이를 위해, 프로브유닛(131)의 장착정보에 따라, 피검체인 웨이퍼의 대응되는 좌표가 자동으로 설정될 수 있다. 만약, 특정 위치에서 결함이 발견된 경우, 좌표정보는 자동으로 스캔연산모듈(290)로 전송되어 메모리부(미도시)에 저장되며, 추적 관리가 가능하다.The scan control module 150, which controls the operation of the probe unit 131 and the jig unit 140, is configured to check the number information of the channel mounting portion 141 and the mounting information of the probe unit 131. This is because the movement path of the jig unit 140 may be set differently depending on the mounting information of the probe unit 131. When the probe units 131 are tightly mounted in the X direction, the moving distance of the jig unit 140 in the X direction may be relatively short. Of course, in this case as well, the moving distance may be set to be the same and the same position of the wafer may be inspected multiple times. For this purpose, the corresponding coordinates of the wafer, which is an object of inspection, can be automatically set according to the mounting information of the probe unit 131. If a defect is found at a specific location, the coordinate information is automatically transmitted to the scan operation module 290 and stored in a memory unit (not shown), enabling tracking and management.
도 7에는 듀얼 프로브유닛(131)이 개시된다. 프로브유닛(131)이 각각 장착된 경우를 전제로 설명한다. 듀얼 프로브유닛(131)은 웨이퍼의 180도 기준으로 양쪽에 각각 싱글 프로브유닛(131)이 구성된 것으로 각각 독립적으로 제어가 가능하다. 동작의 일 예시로서, 초음파검사 준비단계에서, 초음파 포커싱하기 위해서는 한 개의 프로브유닛(131)을 선정하여 수행하고 이 후에 180도 양분되어 동시에 C-scan이 진행된다. 이를 통해, 종래의 싱글 프로브유닛(131) 방식에서 200mm 또는 300mm 웨이퍼를 초음파검사하는 것보다 더욱 빠른 속도로 스캐닝이 가능하여 검사 속도를 높일 수 있다. 300mm 웨이퍼를 예시로 설명하면, 각각 180도 양분되어 얻어진 반사신호는 최종적으로 합쳐지고 300mm 웨이퍼에 대한 전체 이미지를 확보할 수 있다. 이러한 일련의 과정은 스캔연산모듈(290)의 영상처리부(293)에서 수행될 수 있고, 이러한 이미지정보는 웨이퍼결함판단부(2931)를 통해 미리 설정된 방식으로 웨이퍼결함정보를 판단하게 된다. 이는 결함의 종류, 결함의 위치, 결함의 크기 등의 모든 정보를 포함한다.In Figure 7, a dual probe unit 131 is disclosed. The description will be made on the assumption that each probe unit 131 is mounted. The dual probe unit 131 consists of a single probe unit 131 on both sides of the wafer at 180 degrees, and each can be controlled independently. As an example of the operation, in the ultrasonic inspection preparation stage, one probe unit 131 is selected and performed for ultrasonic focusing, and then the probe unit 131 is divided into two halves by 180 degrees and a C-scan is performed simultaneously. Through this, scanning can be performed at a faster speed than ultrasonic inspection of a 200 mm or 300 mm wafer in the conventional single probe unit 131 method, thereby increasing the inspection speed. Taking a 300mm wafer as an example, the reflection signals obtained by being divided by 180 degrees are finally combined to obtain the entire image of the 300mm wafer. This series of processes can be performed in the image processing unit 293 of the scan operation module 290, and this image information is used to determine wafer defect information in a preset manner through the wafer defect determination unit 2931. This includes all information such as type of defect, location of defect, size of defect, etc.
지그유닛(140)은 구동수단(160)과 연결되어 ±X 방향 또는 ±Y 방향으로 이동하면서 웨이퍼에 대한 초음파검사를 수행하도록 형성된다. 이 때, 스캔제어모듈(150)은 채널장착부(141)의 개수정보 및 프로브유닛(131)의 장착정보를 통해, 상기 지그유닛(140)의 이동경로를 설정한다.The jig unit 140 is connected to the driving means 160 and is configured to perform ultrasonic inspection on the wafer while moving in the ±X direction or ±Y direction. At this time, the scan control module 150 sets the movement path of the jig unit 140 through the number information of the channel mounting portion 141 and the mounting information of the probe unit 131.
도 8을 참조하면, 스캔제어모듈(150)은, N개의 채널장착부(141) 중 적어도 일부에 프로브유닛이 장착되지 않은 비활성 채널장착부 및 프로브유닛(131)이 결합된 활성 채널장착부가 혼합된 상태로 판단된 경우, 활성 채널장착부의 위치를 기준으로, 지그유닛(140)의 이동경로를 설정한다. 즉, 채널장착부(141)는 비활성 채널장착부 및 활성 채널장착부로 구분될 수 있으며, 활성 채널장착부(141-1, 141-2, 141-4, 141-6)를 기준으로 이동경로가 생성된다.Referring to FIG. 8, the scan control module 150 is in a state in which at least some of the N channel mounting portions 141 are mixed with an inactive channel mounting portion in which no probe unit is mounted and an active channel mounting portion in which the probe unit 131 is coupled. If it is determined, the movement path of the jig unit 140 is set based on the position of the active channel mounting portion. That is, the channel mounting portion 141 can be divided into an inactive channel mounting portion and an active channel mounting portion, and a movement path is created based on the active channel mounting portions (141-1, 141-2, 141-4, and 141-6).
제1 내지 제N 프로브유닛은, 적어도 일부가 상이한 설정주파수를 갖도록 형성되는 멀티주파수 조합으로 구성될 수 있다. 즉, 다른 설정주파수를 갖는 프로브유닛(131)을 자유롭게 탈착할 수 있는 구조이다.The first to Nth probe units may be composed of a multi-frequency combination in which at least some of the probe units have different set frequencies. That is, it is a structure in which the probe unit 131 with a different set frequency can be freely attached and detached.
지그유닛(140)은 구동수단(160)과 연결되되, 동력전달부(172)를 매개체로 하여 연결된다. 동력전달부(172)는 Z축방향으로 연장되는 결합축 및 상기 연결축이 X축 및 Y축방향으로 이동 가능하도록 형성된 결합축연결부로 구성될 수 있다. N개의 채널장착부(141)에 프로브유닛(131-1, 131-2, 131-4, 131-6)의 장착위치에 따라, 지그유닛(140)의 무게중심이 달라질 수 있는 바, 프로브유닛(131)에 따라 지그유닛(140)의 밸런스 유지를 위해 결합축이 이동 가능하도록 형성되는 것이 바람직하다.The jig unit 140 is connected to the driving means 160 using the power transmission unit 172 as a medium. The power transmission unit 172 may be composed of a coupling shaft extending in the Z-axis direction and a coupling shaft connection portion formed so that the connecting shaft can move in the X-axis and Y-axis directions. Depending on the mounting position of the probe units (131-1, 131-2, 131-4, 131-6) on the N channel mounting portions 141, the center of gravity of the jig unit 140 may vary, and the probe unit ( According to 131), it is preferable that the coupling axis is formed to be movable in order to maintain the balance of the jig unit 140.
추가적인 구성으로서, N개의 채널장착부(141)에 복수의 프로브유닛(131-1, 131-2, 131-4, 131-6)이 장착되는 경우, 지그유닛(140)의 무게가 증가될 수 있다. 증가된 무게에 따른 관성이 커지며, 구동수단(160)에 의해 방향 전환시 진동이 발생함에 따라 에어갭이 생성되어는 문제가 발생될 수 있다. 이러한 진동을 완충하는 댐퍼부(171)가 구비될 수 있다. 지그유닛(140)이 이동하는 과정에서, 초음파검사를 수행하는 바, 지그유닛(140)의 안정적인 이동이 매우 중요하며, 댐퍼부(171)를 통해 충격을 완충시킴으로써, 정밀한 초음파검사가 수행될 수 있다.As an additional configuration, when a plurality of probe units (131-1, 131-2, 131-4, 131-6) are mounted on the N channel mounting portions 141, the weight of the jig unit 140 may be increased. . Inertia increases due to increased weight, and as vibration occurs when changing direction by the driving means 160, a problem of creating an air gap may occur. A damper unit 171 may be provided to buffer such vibration. In the process of moving the jig unit 140, ultrasonic inspection is performed, so stable movement of the jig unit 140 is very important, and precise ultrasonic inspection can be performed by cushioning the impact through the damper unit 171. there is.
도 12에는 X방향으로의 초음파검사를 수행하는 과정이 도시된다. 사용자 또는 관리자에 따라, 지그유닛(140)은 ±X 방향으로 반복하여 이동하면서 초음파검사가 수행될 수 있다. X축방향 스캔폭(커버면적)은 설정주파수에 따라 조절될 수 있으며 C-scan 모드에서 스캔범위가 설정되어 진행될 수 있다.Figure 12 shows the process of performing ultrasonic inspection in the X direction. Depending on the user or administrator, the jig unit 140 may perform ultrasonic inspection while repeatedly moving in the ±X direction. The X-axis scan width (cover area) can be adjusted according to the set frequency, and the scan range can be set in C-scan mode.
도 13에는 지그유닛(140)의 방향 전환시 인가되는 진동을 최소화하기 위해, 이동경로의 곡선화가 도시된다. X방향 또는 Y방향으로 수직방향 전환을 하는 경우, 진동을 최소화하는 설정이다. 유선화경로의 곡률은 웨이퍼의 크기, 설정주파수 등을 고려하여 설정될 수 있다. 즉, 직선방향에서는 전술한 댐퍼부(171)를 이용하여 진동을 완충시키며, 방향전환에서는 유선화경로를 형성하여, 인가되는 진동을 최소화시킬 수 있다. 유선화경로 설정방법의 일 예시는 다음과 같다. a) 전체적인 경로를 직선화한 1차 이동경로를 설정, b) 직선화된 1차 이동경로 중 방향전환 구간을 구분, c) 웨이퍼 면적, 프로브유닛의 설정주파수, 프로브유닛의 커버면적(개별 프로브유닛의 스캔면적을 의미함)을 고려하여, 방향전환 구간의 사각화, d) 사각화된 방향전환 구간에서 대각선을 따라 유선화 곡선 설정 및 e) 유선화 곡선의 곡률을 설정하는 순서로 수행될 수 있다.In Figure 13, the movement path is shown to be curved in order to minimize vibration applied when changing the direction of the jig unit 140. This setting minimizes vibration when switching vertically in the X or Y direction. The curvature of the streamline path can be set considering the size of the wafer, the set frequency, etc. That is, in a straight direction, vibration is cushioned using the above-described damper unit 171, and in a direction change, a streamlined path is formed to minimize applied vibration. An example of a wired route setting method is as follows. a) Set the primary movement path that straightens the overall path, b) Classify the direction change section among the straightened primary movement paths, c) Wafer area, set frequency of the probe unit, cover area of the probe unit (of each probe unit) Considering the scan area (meaning the scan area), it can be performed in the following order: squaring the direction change section, d) setting the streamlined curve along the diagonal in the squared direction change section, and e) setting the curvature of the streamlined curve. .
도 9에는 복수의 지그유닛(140a, 140b)이 결합된 지그바조립체(170)가 도시된다. 지그바조립체(170)는 복수의 지그유닛(140a, 140b)이 ±X 방향 또는 ±Y 방향으로 결합되어 연장된 구조체로 이해될 수 있다. 도 9는 2개의 지그유닛(140a, 140b)이 X방향으로 결합된 구조를 일 예시로서 설명하나, 본 발명은 이에 제한되지 않고, X방향 및 Y방향으로 모두 지그유닛이 결합 가능하며, 3개 이상의 지그유닛이 X방향 및 Y방향으로 혼합 결합된 구조도 가능하다. 이런 경우, 지그바조립체(170)는 전체적으로 'T자형 구조'로 형성될 수 있다.Figure 9 shows a jig bar assembly 170 in which a plurality of jig units 140a and 140b are combined. The jig bar assembly 170 may be understood as an extended structure in which a plurality of jig units 140a and 140b are combined in the ±X direction or ±Y direction. Figure 9 illustrates a structure in which two jig units (140a, 140b) are combined in the X direction as an example, but the present invention is not limited to this, and jig units can be combined in both the A structure in which the above jig units are mixed and combined in the X and Y directions is also possible. In this case, the jig bar assembly 170 may be formed as a whole into a 'T-shaped structure'.
도 9를 참조하면, 지그바조립체(170)는 제1 지그유닛(140a) 및 제2 지그유닛(140b)이 X방향으로 결합되어 연장된 구조이다. 이들의 결합을 위해, 제1 지그유닛(140a)의 일측 단부에는 제1 결합부(173a)가 형성되며, 제2 지그유닛(140b) 중 상기 제1 결합부(173a)와 대면하는 방향에는 제2 결합부(173b)가 형성될 수 있다. 지그바조립체(170)의 결합 확장성을 위해, 개별 지그유닛(140a, 140b)의 양측 단부에는 각각 결합부가 형성되는 것이 바람직하다. 도 10에는 지그바조립체(170)가 형성된 경우, 증류수유로(144)도 함께 연결되는 개념을 도시한다. 제1 및 제2 결합부(173a, 173b)가 물리적 결합되면, 증류수가 유동하는 증류수유로(144)가 상호 연결되는 피팅구조가 내장될 수 있다. 이러한 유로 연결수단은 공지된 모든 구조가 적용될 수 있다.Referring to FIG. 9, the jig bar assembly 170 has a structure in which a first jig unit 140a and a second jig unit 140b are combined and extended in the X direction. For their coupling, a first coupling portion 173a is formed at one end of the first jig unit 140a, and a first coupling portion 173a is formed in the direction facing the first coupling portion 173a among the second jig units 140b. Two coupling portions 173b may be formed. For the joint expandability of the jig bar assembly 170, it is preferable that coupling portions are formed at both ends of the individual jig units 140a and 140b, respectively. Figure 10 shows a concept in which when the jig bar assembly 170 is formed, the distilled water flow path 144 is also connected. When the first and second coupling portions 173a and 173b are physically coupled, a fitting structure in which the distilled water flow path 144 through which distilled water flows is connected to each other can be built. Any known structure can be applied to this flow path connecting means.
N개의 채널장착부(141)에 복수의 프로브유닛(131-1, 131-2, 131-4, 131-6)이 장착되는 경우, 멀티주파수 조합에 대해, 도 18 내지 20을 먼저 참조하여 설명한다.When a plurality of probe units (131-1, 131-2, 131-4, 131-6) are mounted on the N channel mounting portions 141, multi-frequency combination will be described with reference to FIGS. 18 to 20 first. .
도 18의 (a) 내지 (d)에는 채널장착부의 개수가 2개, 3개, 4개 및 6개를 갖는 지그유닛(140)의 형태가 도시된다.18 (a) to (d) show the form of the jig unit 140 having 2, 3, 4, and 6 channel mounting portions.
도 19에는 제1 또는 제2 설정주파수를 갖도록 형성된 지그유닛(140)이 도시된다. 100MHz 및 200 MHz의 설정주파수가 교번하여 배치되는 지그유닛(140) 구조를 도시한다. 도 19에 도시된 바와 같이, 2개의 접합면이 존재하는 경우, 100MHz는 하측의 접합면을 검사하고, 200MHz는 상측의 접합면을 검사하도록 구성된다.Figure 19 shows a jig unit 140 formed to have a first or second set frequency. It shows the structure of the jig unit 140 in which set frequencies of 100 MHz and 200 MHz are arranged alternately. As shown in FIG. 19, when two bonding surfaces exist, 100 MHz is configured to inspect the lower bonding surface, and 200 MHz is configured to inspect the upper bonding surface.
도 20에는 4개의 채널장착부를 갖는 지그유닛(140)의 예시적 형태를 도시한다. 설정주파수마다 분해능 및 침투거리가 다르며, 설정주파수가 높을수록 분해능은 높아지나 웨이퍼 내부의 초음파 침투거리는 짧아진다. 이와 같이, 서로 다른 설정주파수 조합을 통해서 분해능과 초음파 침투거리 확보를 통해서 접합면의 결함 검출 효율을 높일 수 있다. 접합면이 다층으로 구성된 웨이퍼(제1 내지 제4 접합면으로 구성됨)의 경우 더욱 정밀한 분석이 이루어지는 바, 검사속도 및 검출 효율성을 동시에 구현이 가능하다. 또한, 서로 다른 설정주파수의 조합의 경우 각 채널마다 독립적으로 제어가 가능할 수 있다.Figure 20 shows an exemplary form of a jig unit 140 having four channel mounting portions. The resolution and penetration distance are different for each set frequency. The higher the set frequency, the higher the resolution, but the ultrasonic penetration distance inside the wafer becomes shorter. In this way, the defect detection efficiency of the joint surface can be increased by securing resolution and ultrasonic penetration distance through a combination of different set frequencies. In the case of a wafer with a multi-layered bonding surface (consisting of first to fourth bonding surfaces), more precise analysis is performed, making it possible to achieve both inspection speed and detection efficiency at the same time. Additionally, in the case of a combination of different set frequencies, independent control may be possible for each channel.
싱글 프로브유닛 또는 싱글 설정주파수와 비교해보면, 접합면이 다층인 웨이퍼를 초음파검사하는 경우, 종래의 구조는 설정주파수를 변경하면서 복수 횟수에 걸쳐 동일한 초음파검사를 수행해야되는 반면, 본원발명에 따른 초음파검사시스템은 초음파검사의 처리속도를 획기적으로 개선시킬 수 있다.Compared to a single probe unit or a single set frequency, when ultrasonic testing a wafer with a multi-layer bonding surface, the conventional structure requires performing the same ultrasonic test multiple times while changing the set frequency, whereas the ultrasonic test according to the present invention The inspection system can dramatically improve the processing speed of ultrasonic inspection.
본 발명은 도 20 및 21에 도시된 이외의 조합으로 구성될 수 있다.The present invention may be configured in combinations other than those shown in FIGS. 20 and 21.
예를 들면, 2개의 프로브유닛의 경우 각각 50/100MHz, 50/200MHz, 100/300MHz 등으로 형성할 수 있으며, 4개의 프로브유닛의 경우 50/100/50/100MHz, 50/200/50/200MHz, 100/300/100/300MHz 등의 조합일 수 있다. 또한, 6개의 프로브유닛의 경우 50/100/50/100/50/100MHz, 50/200/50/200/50/200MHz, 100/300/100/300/100/300MHz 등으로 구성될 수 있다.For example, in the case of two probe units, they can be configured as 50/100MHz, 50/200MHz, and 100/300MHz, respectively, and in the case of four probe units, they can be configured as 50/100/50/100MHz and 50/200/50/200MHz. , 100/300/100/300MHz, etc. may be a combination. Additionally, six probe units can be configured at 50/100/50/100/50/100MHz, 50/200/50/200/50/200MHz, 100/300/100/300/100/300MHz, etc.
도 19 및 20을 참조하면, 두 접합면에 대한 보이드, 크렉, 박리 등에 결함을 검출할 때, 서로 다른 설정주파수를 갖는 통해서 접합면에 대한 비정형화된 결합 형상에 대한 검출 효능을 향상시킬 수 있다. 설정주파수가 높을수록 분해능이 향상되지만, 초음파신호의 빔사이즈(beam size)가 작고, 초음파 침투거리가 짧아 비정형 형상을 갖는 다양한 보이드, 크렉 형상에 대한 이미지를 확보하는데 어려움이 있다. 이러한 어려움을 해결하고자 설정주파수가 높은 것과 낮은 것을 동시에 사용하여 다양한 비정형 형상의 결함에 대한 검출 효능을 향상시킬 수 있다.Referring to Figures 19 and 20, when detecting defects such as voids, cracks, peeling, etc. on two bonding surfaces, the detection efficiency for atypical bonding shapes for the bonding surfaces can be improved through having different set frequencies. . The higher the set frequency, the better the resolution, but the beam size of the ultrasonic signal is small and the ultrasonic penetration distance is short, making it difficult to secure images of various voids and crack shapes with irregular shapes. To solve these difficulties, the detection efficiency for defects of various irregular shapes can be improved by using both high and low set frequencies at the same time.
일 예시적인 동작으로, 서로 다른 설정주파수를 갖는 듀얼 프로브유닛에 있어서, 설정주파수가 높은 주파수를 접합면에 포커싱한 상태에서 초음파검사가 수행될 수 있다. 높은 설정주파수는 접합면에 대한 분해능을 향상시키고, 낮은 주파수는 상대적으로 초음파 빔사이즈가 커서 접합면 주변의 다양한 비정형 형상에 대한 이미지를 확보할 수 있다.As an example operation, in dual probe units having different set frequencies, ultrasonic inspection may be performed with a frequency with a high set frequency focused on the joint surface. A high set frequency improves the resolution of the joint surface, and a low frequency has a relatively large ultrasonic beam size, enabling images of various irregular shapes around the joint surface.
도 11을 참조하여, 본 발명이 복수의 지그유닛(140)이 결합된 지그바조립체(170)가 형성된 경우를 설명한다. 도 11에서는 개별 지그유닛(140)에 싱글 채널장착부가 형성된 구조를 기준으로 설명한다. 다만, 도 9에 도시된 바와 같이, 싱글 지그유닛(140)에 복수의 채널장착부가 형성된 구조에도 적용될 수 있다.Referring to FIG. 11, the present invention will describe a case in which a jig bar assembly 170 in which a plurality of jig units 140 are combined is formed. In FIG. 11, the description will be based on a structure in which a single channel mounting portion is formed in an individual jig unit 140. However, as shown in FIG. 9, it can also be applied to a structure in which a plurality of channel mounting portions are formed in the single jig unit 140.
개별 지그유닛(140)에는 각각 증류수유로(144)가 구비되며, 지그유닛(140)이 X방향 또는 Y방향으로 연결된 경우, 각각의 증류수유로(144)도 상호 연통되도록 구성될 수 있다. 구조적 일 예시로서, 개별 지그유닛(140) 각각에는 유량센서가 구비되며, 유량센서는 전기적신호를 전달할 수 있도록 각각에는 회로수단이 내장될 수 있다. 개별 지그유닛(140)이 물리적으로 체결되어 연결된 경우, 이들은 전기적으로도 연결되어 개별 유량센서 및 유량밸브가 제어될 수 있다.Each of the individual jig units 140 is provided with a distilled water passage 144, and when the jig units 140 are connected in the X or Y direction, the respective distilled water passages 144 may also be configured to communicate with each other. As a structural example, each of the individual jig units 140 is provided with a flow sensor, and each flow sensor may have a built-in circuit means to transmit an electrical signal. When the individual jig units 140 are physically fastened and connected, they are also electrically connected so that individual flow sensors and flow valves can be controlled.
이하에서는 도 14를 참조하여 본 발명에 따른 초음파검사시스템의 제2 실시예에 대해 설명한다. 전술한 제1 실시예와 중복되는 구성에 대한 설명은 생략한다.Hereinafter, a second embodiment of the ultrasonic inspection system according to the present invention will be described with reference to FIG. 14. Descriptions of configurations that overlap with the above-described first embodiment will be omitted.
도 14를 참조하면, 제2 실시예에 적용되는 지그유닛(240)은 제1 내지 제N 채널을 구비하는 멀티채널방식으로 형성되며, 제1 내지 제N 채널에는 미리 설정된 주파수를 각각 조사하도록 형성된 제1 내지 제N 프로브유닛(231-1, 231-2, 231-3, 231-4)이 장착 가능하도록 형성된다. 제1 내지 제N 프로브유닛(231-1, 231-2, 231-3, 231-4)은 장착 가능하게 형성됨에 따라, 특정 프로브유닛의 교체 또는 수리가 필요한 경우, 해당 프로브유닛만을 분리할 수 있다.Referring to FIG. 14, the jig unit 240 applied to the second embodiment is formed in a multi-channel system having first to N-th channels, and the first to N-th channels are formed to irradiate preset frequencies, respectively. The first to Nth probe units 231-1, 231-2, 231-3, and 231-4 are formed so that they can be mounted. Since the first to Nth probe units 231-1, 231-2, 231-3, and 231-4 are formed to be attachable, if replacement or repair of a specific probe unit is necessary, only the corresponding probe unit can be removed. there is.
제2 실시예에 적용되는 지그유닛(240)은 제M 및 제M+1 프로브유닛 사이의 거리가 ±X 방향 또는 ±Y 방향으로 변경 가능하도록 형성된 구조이다(단, N은 자연수이며, M은 N보다 작은 자연수임). 도 14에서는 제1 내지 제4 프로브유닛(231-1, 231-2, 231-3, 231-4)이 도시되며, 각각의 거리는 제1 간격(d1), 제2 간격(d2) 및 제3 간격(d3)로 구분될 수 있다. 여기서 제1 내지 제3 간격(d1, d2, d3)은 변경될 수 있다.The jig unit 240 applied to the second embodiment is structured so that the distance between the M and M+1 probe units can be changed in the ±X direction or ±Y direction (where N is a natural number and M is a natural number). is a natural number smaller than N). In Figure 14, the first to fourth probe units (231-1, 231-2, 231-3, and 231-4) are shown, and their respective distances are the first spacing (d1), the second spacing (d2), and the third It can be separated by an interval (d3). Here, the first to third intervals d1, d2, and d3 may be changed.
또한, 이들의 간격이 변경되는 경우, 지그유닛(240)의 전체 무게중심이 달라질 수 있는 바, 전술한 제1 실시예와 같이, 지그유닛(240)의 안정적인 이동을 위해, 가변적인 동력전달부(272)로 형성될 수 있다.In addition, when their spacing is changed, the overall center of gravity of the jig unit 240 may change. As in the first embodiment described above, for stable movement of the jig unit 240, a variable power transmission unit It can be formed as (272).
구체적으로, 지그유닛(240)은, 일방향(도 14에서는 X방향임)으로 연장되며, 제1 내지 제N 프로브유닛(231-1, 231-2, 231-3, 231-4)이 결합되는 N개의 채널장착부(241-1, 241-2, 241-3, 241-4)를 포함한다. 이 때, N개의 채널장착부(241-1, 241-2, 241-3, 241-4)는, 일방향을 따라 이격되어 배치되되, 이웃하는 채널장착부 사이의 거리를 변경함으로써, 이웃하는 프로브유닛 사이의 거리를 변경시킬 수 있는 구성이다.Specifically, the jig unit 240 extends in one direction (the It includes N channel mounting units (241-1, 241-2, 241-3, 241-4). At this time, the N channel mounting units (241-1, 241-2, 241-3, 241-4) are arranged to be spaced apart along one direction, and by changing the distance between neighboring channel mounting units, It is a configuration that can change the distance.
프로브유닛 사이의 거리를 조절할 수 있도록 지그유닛(240)의 하부에는 이동가이드부(245)가 장착된다. 일 예시로서, 이동가이드부(245)는 레일방식으로 형성될 수 있다. 채널장착부(241-1, 241-2, 241-3, 241-4)가 레일 상에 이동 가능하도록 결합되어 있으며, 채널장착부(241-1, 241-2, 241-3, 241-4)에는 프로브유닛(231-1, 231-2, 231-3, 231-4)이 장착되어 고정되는 구조이다.A movement guide unit 245 is mounted on the lower part of the jig unit 240 to adjust the distance between probe units. As an example, the moving guide unit 245 may be formed in a rail manner. The channel mounting parts (241-1, 241-2, 241-3, 241-4) are coupled to be movable on the rail, and the channel mounting parts (241-1, 241-2, 241-3, 241-4) have It is a structure in which probe units (231-1, 231-2, 231-3, 231-4) are mounted and fixed.
이와 같이, 본 발명에 적용되는 지그유닛(240)은 멀티 프로브유닛 간의 간격을 필요에 따라 자유롭게 독립 제어 가능한 구성인 바, 웨이퍼의 특정 섹터에 지속적으로 결함이 발생될 경우, 지그유닛(240)의 이동경로를 설정하는 것 이외에, 지그유닛(240) 상에 장착된 프로브유닛의 위치를 변경함으로써, 보다 정밀한 분석을 수행할 수 있는 효과가 있다.In this way, the jig unit 240 applied to the present invention is configured to freely and independently control the spacing between the multi-probe units as needed, so when a defect continuously occurs in a specific sector of the wafer, the jig unit 240 In addition to setting the movement path, changing the position of the probe unit mounted on the jig unit 240 has the effect of performing more precise analysis.
도 14에는 X방향으로 연장된 지그유닛(240) 구조가 도시되며, 제1 내지 제N 프로브유닛(231-1, 231-2, 231-3, 231-4) 역시 X방향으로 간격이 변경 가능한 구조를 도시하나, Y방향으로의 간격 역시 변경 가능하도록 구성될 수 있다.Figure 14 shows the structure of the jig unit 240 extending in the Although the structure is shown, the spacing in the Y direction can also be changed.
본 발명에 따른 초음파검사시스템은 프로브유닛의 간격이 변경 가능한 구성에 최적화된 시스템을 제공할 수 있다. 이에 수반되는 연산처리 및 제어처리는 스캔제어모듈(250)에서 수행될 수 있다.The ultrasonic inspection system according to the present invention can provide a system optimized for a configuration in which the spacing of probe units can be changed. The calculation processing and control processing accompanying this can be performed in the scan control module 250.
스캔제어모듈(250)은 프로브유닛(231) 및 지그유닛(240)을 제어하는 컨트럴러 기능의 모듈을 의미한다. 초음파검사와 관련된 여러가지 정보들이 입력되고, 이를 피드백제어하도록 구성될 수 있다.The scan control module 250 refers to a controller function module that controls the probe unit 231 and the jig unit 240. Various information related to ultrasound examination can be input and configured to feedback control.
구체적으로, 스캔제어모듈(250)은 검사정위치에 위치된 웨이퍼의 면적정보, 채널장착부(241)의 개수정보, 이웃하는 채널장착부(241) 사이의 간격정보 및 채널장착부(241) 각각에 장착된 프로브유닛(231)의 설정주파수정보 중 적어도 어느 하나를 고려하여 초음파검사를 수행할 수 있다.Specifically, the scan control module 250 is equipped with area information of the wafer located at the inspection position, information on the number of channel mounting units 241, spacing information between neighboring channel mounting units 241, and each channel mounting unit 241. Ultrasonic inspection can be performed by considering at least one of the set frequency information of the probe unit 231.
일 예시로서, 상기의 정보세트를 이용하여 지그유닛(240)의 이동경로를 연산할 수 있다. 지그유닛(240)은 ±X 방향 또는 ±Y 방향으로 이동하면서, 검사정위치에 있는 웨이퍼에 대한 초음파검사를 수행하도록 형성되는 바, 지그유닛(240)의 이동경로는 매우 중요하다. 이동경로가 적절하게 설정되지 못한 경우, 웨이퍼의 특정섹터의 초음파검사 누락이 발생되거나, 이와는 반대로, 모든 섹터를 과하게 중복검사를 수행하여 검사 속도를 크게 감소시킬 수 있는 문제가 있다.As an example, the movement path of the jig unit 240 can be calculated using the above information set. The jig unit 240 is configured to perform ultrasonic inspection on a wafer at an inspection position while moving in the ±X direction or ±Y direction, so the movement path of the jig unit 240 is very important. If the movement path is not properly set, there is a problem that ultrasonic inspection of a specific sector of the wafer may be omitted, or, conversely, excessively redundant inspection of all sectors may be performed, which may significantly reduce the inspection speed.
이에 따라, 웨이퍼의 면적정보, 채널장착부(241)의 개수정보, 채널장착부(241)들 사이의 간격정보를 이용하여, 지그유닛(240)의 이동경로를 설정하는 것이 바람직하다. 상기의 정보세트를 이용하여, 지그유닛(240)의 X방향 및 Y방향의 이동범위를 설정할 수 있다. 또한, 본 발명에 따른 초음파검사시스템에서는 서로 다른 설정주파수를 갖는 프로브유닛이 장착될 수 있다. 각각의 설정주파수마다 그 특성이 상이할 수 있는 바, 이를 고려하여 지그유닛(240)의 이동경로를 설정하는 것이 바람직하다.Accordingly, it is desirable to set the movement path of the jig unit 240 using the area information of the wafer, the number information of the channel mounting portions 241, and the spacing information between the channel mounting portions 241. Using the above information set, the movement range of the jig unit 240 in the X direction and Y direction can be set. Additionally, the ultrasonic inspection system according to the present invention may be equipped with probe units having different set frequencies. Since the characteristics may be different for each set frequency, it is desirable to set the movement path of the jig unit 240 by taking this into consideration.
본 발명에 따른 초음파검사시스템은 제1 내지 제N 프로브유닛에 의한 초음파검사를 통해, 스캔정보를 전송받고, 스캔정보를 이용하여 미리 설정된 방식으로 웨이퍼의 결함을 판단할 수 있다. 전술한 바와 같이, 웨이퍼에 대한 X축 및 Y축 스캔영역이 개별 프로브유닛마다 설정된 후, 초음파검사가 수행된다.The ultrasonic inspection system according to the present invention can receive scan information through ultrasonic inspection using the first to Nth probe units, and determine defects in the wafer in a preset manner using the scan information. As described above, after the X-axis and Y-axis scan areas for the wafer are set for each individual probe unit, ultrasonic inspection is performed.
도 3을 다시 참조하면, 영상처리부(293)는 프로브유닛 각각에 대한 스캔이미지를 생성하고, 이들을 합성하여 웨이퍼 전체에 대한 스캔이미지를 생성한다.Referring again to FIG. 3, the image processing unit 293 generates scanned images for each probe unit and combines them to generate a scanned image for the entire wafer.
웨이퍼결함판단부(2931)는 영상처리부(293)로부터 전달받은 스캔이미지를 이용하여, 웨이퍼의 결함을 판단한다. 특히, 웨이퍼결함판단부(2931)는, 결함 유무 뿐만 아니라, 결함의 종류, 위치 등의 다양한 정보를 모두 획득할 수 있다.The wafer defect determination unit 2931 uses the scan image received from the image processing unit 293 to determine defects in the wafer. In particular, the wafer defect determination unit 2931 can obtain various information such as the type and location of the defect as well as the presence or absence of the defect.
본 발명에 따른 초음파검사시스템은 인공지능모델을 생성하는 머신러닝부(291)를 포함한다. 머신러닝부(291)는 기계학습을 통해 생성된 인공지능모델(2911)을 포함한다. 인공지능모델(2911)은 CNN(Convolutional Neural Networks)방식의 딥러닝 모델로 구현될 수 있다.The ultrasonic inspection system according to the present invention includes a machine learning unit 291 that generates an artificial intelligence model. The machine learning unit 291 includes an artificial intelligence model 2911 created through machine learning. The artificial intelligence model (2911) can be implemented as a deep learning model using CNN (Convolutional Neural Networks).
머신러닝부(291)에서는 인공지능모델(2911)을 이용하여, 웨이퍼의 임의의 섹터에 대한 결함가능성을 미리 판단할 수 있다. 특히, 머신러닝부(291)는, 웨이퍼 특정 섹터에서 지속적으로 결함이 발생할 가능성을 판단하여 해당 섹터가 집중적으로 초음파검사되도록 할 수 있다. The machine learning unit 291 can use the artificial intelligence model 2911 to determine in advance the possibility of a defect in any sector of the wafer. In particular, the machine learning unit 291 can determine the possibility that defects will continuously occur in a specific sector of the wafer and cause the relevant sector to undergo intensive ultrasonic inspection.
해당 섹터를 집중적으로 초음파검사하기 위해, 스캔제어모듈(150)은 웨이퍼의 결함가능성이 미리 설정된 기준 이상으로 판단된 결함예상섹터정보를 전송받고, 결함예상섹터정보를 이용하여, 채널장착부(241)에 결합된 프로브유닛(231) 사이의 간격을 조절하도록 구성된다.In order to intensively conduct ultrasonic inspection of the sector, the scan control module 150 receives expected defect sector information for which the possibility of defects in the wafer is determined to be higher than a preset standard, and uses the expected defect sector information to perform an ultrasonic inspection on the channel mounting unit 241. It is configured to adjust the gap between the probe units 231 coupled to.
일 예시로서, 결함예상섹터정보를 이용하여, 결함예상섹터 주변으로 프로브유닛(231)이 근접하도록 설정할 수 있다. 이는, 기존의 등간격으로 배치된 프로브유닛(231)들을 특정 위치를 향해 집중시키거나, 특정 위치 측으로 이동시키는 것을 의미한다. 결함이 발생된 섹터는 그와 인접한 섹터들도 결함이 발생될 가능성이 높기 때문에, 해당 영역을 집중적으로 초음파검사하여 검사 신뢰도를 향상시킬 수 있다.As an example, using expected defect sector information, the probe unit 231 can be set to be close to the expected defect sector. This means concentrating the existing probe units 231 arranged at equal intervals toward a specific location or moving them toward a specific location. Since a sector in which a defect occurs has a high probability that defects will also occur in sectors adjacent to it, inspection reliability can be improved by intensively inspecting the relevant area.
또 다른 예시로서, 결함예상섹터정보를 기반으로, 지그유닛(240)의 이동속도를 제어하되, 웨이퍼 중 결합예상섹터의 위치에 대한 초음파검사를 수행할 경우, 지그유닛(240)의 이동속도를 일시적으로 감소시키거나 또는 반복이동하도록 설정할 수 있다. 이 역시 보다 정밀한 초음파검사를 수행하기 위함이다.As another example, the moving speed of the jig unit 240 is controlled based on the defect expected sector information, but when ultrasonic inspection is performed on the position of the expected bonding sector among the wafers, the moving speed of the jig unit 240 is controlled. It can be set to temporarily decrease or repeat movement. This is also to perform more precise ultrasound examination.
전술한 바와 같이, 본 발명에 따른 초음파검사시스템의 제2 실시예는 프로브유닛 사이의 간격을 가변적으로 형성할 수 있다. 멀티 프로브유닛 방식으로 구성될 경우, 특정 프로브유닛이 센싱불량으로 판단된 경우에, 이를 제외할 필요가 있다.As described above, the second embodiment of the ultrasonic inspection system according to the present invention can variably form the gap between probe units. When configured with a multi-probe unit method, if a specific probe unit is determined to have a sensing defect, it is necessary to exclude it.
이를 위해, 본 발명은 미리 설정된 방식으로 상기 제1 내지 제N 프로브유닛의 센싱불량을 판단하는 센싱불량판단부(292)를 포함한다.To this end, the present invention includes a sensing failure determination unit 292 that determines sensing failure of the first to Nth probe units in a preset manner.
센싱불량을 판단하는 일 예시로서, 웨이퍼의 특정 섹터에 대해 초음파검사를 수행하는 과정에서 특정 섹터를 복수의 프로브유닛을 이용하여 동일하게 초음파검사하도록 구성할 수 있다. 웨이퍼는 검사정위치에 배치된 경우, 웨이퍼의 전체 영역에 좌표가 부여되며, 소정의 좌표를 갖는 특정 섹터에 대해 복수의 프로브유닛을 이용하여 초음파검사를 수행하면서, 역으로 프로브유닛의 센싱 정확도를 판단하는 것이다. 복수의 프로브유닛에 의해 수행된 특정 섹터에 대한 스캔정보를 서로 비교함으로써, 오차범위를 벗어나는 스캔정보를 제공하는 프로브유닛은 초음파검사 수행에서 제외하는 것이다. 이 때, 오차범위 뿐만 아니라, 오차횟수도 누적하여 저장되도록 구성될 수 있다. 그 이외에도 프로브유닛의 불량을 판단하는 다양한 알고리즘이 적용될 수 있다.As an example of determining a sensing defect, in the process of performing an ultrasonic inspection on a specific sector of a wafer, the specific sector may be configured to undergo the same ultrasonic inspection using a plurality of probe units. When the wafer is placed in the inspection position, coordinates are given to the entire area of the wafer, and ultrasonic inspection is performed using multiple probe units for a specific sector with predetermined coordinates, and conversely, the sensing accuracy of the probe unit is improved. It is to judge. By comparing scan information for a specific sector performed by a plurality of probe units, probe units that provide scan information outside the error range are excluded from performing ultrasonic inspection. At this time, not only the error range but also the number of errors may be configured to be accumulated and stored. In addition, various algorithms for determining defects in the probe unit can be applied.
일 예시로서, 제2 프로브유닛이 센싱불량으로 판단된 경우, 제2 프로브유닛의 검사결과를 신뢰하기 어려운 바, 제2 프로브유닛의 초음파검사 수행을 중단하고, 제1 및 제3 프로브유닛으로 제2 프로브유닛을 대체할 수 있다. 3개의 프로브유닛을 기준으로 분할되었던 웨이퍼 전체영역은, 2개의 프로브유닛을 기준으로 재분할되어야 하며, 이를 위해, 스캔제어모듈(250)에서 제1 및 제3 프로브유닛의 위치를 자동으로 제어하도록 구성될 수 있다.As an example, when the second probe unit is determined to have a sensing defect, it is difficult to trust the test results of the second probe unit, so the ultrasonic test of the second probe unit is stopped and the first and third probe units are used. 2 Can replace probe unit. The entire wafer area, which was divided based on three probe units, must be redivided based on two probe units, and for this purpose, the scan control module 250 is configured to automatically control the positions of the first and third probe units. It can be.
이하에서는 도 15 내지 17을 참조하여, 본 발명에 따른 초음파검사시스템의 제3 실시예에 대해 설명한다.Hereinafter, a third embodiment of the ultrasonic inspection system according to the present invention will be described with reference to FIGS. 15 to 17.
제3 실시예는 무빙어셈블리(360)를 포함하는 구조이다.The third embodiment is a structure including a moving assembly 360.
무빙어셈블리(360)는 지그유닛(340)을 ±X 방향, ±Y 방향 및 ±Z방향으로 이동시킬 수 있다. 도 4에는 무빙어셈블리(360)가 구비된 초음파검사시스템의 모식도가 도시되며, 함께 참조하도록 한다. 제3 실시예는 전술한 제1 및 제2 실시예와 마찬가지로, 멀티 프로브유닛 방식이 적용될 수 있다.The moving assembly 360 can move the jig unit 340 in the ±X direction, ±Y direction, and ±Z direction. Figure 4 shows a schematic diagram of an ultrasonic inspection system equipped with a moving assembly 360, which will be referred to together. In the third embodiment, like the first and second embodiments described above, a multi-probe unit method may be applied.
무빙어셈블리(360)는 채널장착부와 해당 채널장착부에 결합되는 프로브유닛 사이에 구비되며, 프로브유닛을 ±Z 방향으로 미세 이동시키는 Z축미세구동부(364)를 포함한다. 도 15를 참조하면, X축구동부(361), Y축구동부(362) 및 Z축구동부(363)는 지그유닛(340)을 이동시키는 구성이며, Z축미세구동부(364)는 프로브유닛(364)을 이동시키는 구성이라는 점에서 결합의 객체가 구분된다. 다만, Z축미세구동부(364)는 Z축구동부(363)를 보완함으로써, 프로브유닛의 위치를 보다 정밀하게 제어할 수 있다. 일 예시로서, Z축구동부(363)는 1 내지 100mm의 동작범위를 갖도록 구성될 수 있는데 반해, Z축미세구동부(364)는 0.1 내지 1mm 또는 0.01 내지 1mm 범위로 구분되어 동작될 수 있다.The moving assembly 360 is provided between the channel mounting part and the probe unit coupled to the channel mounting part, and includes a Z-axis fine driving part 364 that finely moves the probe unit in the ±Z direction. Referring to FIG. 15, the ) The object of the combination is distinguished in that it is a composition that moves the object. However, the Z-axis fine drive unit 364 complements the Z-axis motor unit 363, allowing the position of the probe unit to be controlled more precisely. As an example, the Z axis drive unit 363 may be configured to have an operating range of 1 to 100 mm, while the Z axis fine drive unit 364 may operate in a range of 0.1 to 1 mm or 0.01 to 1 mm.
전술한 제1 및 제2 실시예와 마찬가지로, 제3 실시예도 멀티 프로브유닛 방식이 적용될 수 있으며, 이들의 설정주파수는 서로 상이하게 형성될 수 있다. 설정주파수 별로 프로브유닛의 최적높이가 달라지므로, 이는 Z축미세구동부(364)를 이용하여 각각 개별적으로 제어될 수 있다. Z축미세구동부(364)를 이용하여, 모든 멀티 프로브유닛의 높이를 제어한 상태에서 초음파검사가 수행되는 것이 바람직하다.Like the first and second embodiments described above, the third embodiment may also use a multi-probe unit method, and their set frequencies may be different from each other. Since the optimal height of the probe unit varies depending on the set frequency, it can be individually controlled using the Z-axis fine drive unit 364. It is desirable to perform ultrasonic inspection while controlling the heights of all multi-probe units using the Z-axis fine drive unit 364.
프로브유닛의 최적높이는 프로브유닛에 구비된 렌즈의 포커싱과 관련이 있다. 이를 위해, 본 발명에 따른 초음파검사시스템은 포커싱연산모듈(320)을 포함한다. 포커싱연산모듈(320)을 이용하여 웨이퍼로부터의 포커싱최적정보를 연산한다. 여기서 포커싱최적정보란 포커싱거리를 포함하여, 최적 포커싱을 형성시키기 위한, 모든 정보 내지 조건을 의미한다. 이는 전술한 바대로, 프로브유닛 각각의 설정주파수를 고려하는 것이다.The optimal height of the probe unit is related to the focusing of the lens provided in the probe unit. For this purpose, the ultrasonic inspection system according to the present invention includes a focusing operation module 320. The focusing calculation module 320 is used to calculate optimal focusing information from the wafer. Here, optimal focusing information refers to all information or conditions for forming optimal focusing, including focusing distance. As mentioned above, this takes into account the set frequency of each probe unit.
도 16에는 본 발명에 따른 초음파검사시스템에서 Z축미세구동부(364)에 의한 프로브유닛 개별적으로 미세 제어가 수행되는 것이 도시된다.Figure 16 shows that fine control is performed on individual probe units by the Z-axis fine drive unit 364 in the ultrasonic inspection system according to the present invention.
도 17에는 Z축 이외에, X축미세구동부(3611, 3612) 및 Y축미세구동부(3621, 3622)가 구비된 시스템 구조를 도시한다. Z축미세구동부(364)는 주로 프로브유닛의 포커싱을 조절하는데 사용됨에 반해, X축미세구동부(3611, 3612) 및 Y축미세구동부(3621, 3622)는 웨이퍼의 특정 위치에 대한 정밀분석을 수행하는 과정에서 동작될 수 있다. 또한, 웨이퍼의 크기 또는 다이 사이즈에 맞게 개별적으로 프로브유닛의 위치를 정렬하는데 사용될 수도 있고, 제2 실시예의 구조에 적용될 경우, 프로브유닛 간의 간격을 미세하게 조정하기 위해 사용될 수도 있다.Figure 17 shows a system structure equipped with X-axis fine actuators (3611, 3612) and Y-axis fine actuators (3621, 3622) in addition to the Z axis. The Z-axis micro-drive unit 364 is mainly used to control the focusing of the probe unit, while the It can be operated during the process. Additionally, it may be used to individually align the positions of the probe units according to the size of the wafer or die, and when applied to the structure of the second embodiment, may be used to finely adjust the spacing between probe units.
이하에서는 도 21 및 22를 참조하여, 본 발명에 따른 초음파검사시스템을 이용한 방법에 대해 설명한다.Hereinafter, with reference to FIGS. 21 and 22, a method using the ultrasonic inspection system according to the present invention will be described.
도 21을 참조하면, 본 발명에 따른 방법은 단계(S310) 내지 단계(S350)을 포함한다.Referring to FIG. 21, the method according to the present invention includes steps S310 to S350.
단계(S310)은 이송로봇모듈(110)에 의해, 피검체인 웨이퍼가 검사정위치로 이동되는 단계이다.Step S310 is a step in which the wafer, which is an object of inspection, is moved to the inspection position by the transfer robot module 110.
단계(S320)은 제1 내지 제N 프로브유닛을 이용하여, 웨이퍼의 수직단면에 대한 A-scan이 수행되는 단계로서, 제1 내지 제N 프로브유닛 각각이 상기 웨이퍼의 접합면 또는 전체단면에 대해 최대진폭을 갖도록 포커싱거리로 세팅되는 단계이다. 즉, A-scan이 진행될 때, 분석하고자 하는 면에 대한 포커싱거리 최적화 과정이 진행된다.Step (S320) is a step in which an A-scan is performed on the vertical cross-section of the wafer using the first to N-th probe units, where each of the first to N-th probe units is applied to the bonding surface or the entire cross-section of the wafer. This is the stage where the focusing distance is set to have maximum amplitude. In other words, when A-scan is performed, the focusing distance optimization process for the surface to be analyzed is performed.
단계(S330)은 스캔연산모듈(390)에서, A-scan을 통해 획득된 제1 스캔정보를 이용하여, 초음파반사신호에 대한 게이트가 설정되고, 웨이퍼에 대한 X축 및 Y축 스캔면적이 설정되는 단계이다. 접합면 또는 내면의 반사신호에 대해서 가장 높은 진폭을 갖는 설정주파수 및 프로브유닛을 설정하고 반사신호에 대한 게이트를 설정을 통해 C-scan 모드를 준비하는 단계이다.In step S330, in the scan operation module 390, using the first scan information obtained through A-scan, a gate for the ultrasonic reflection signal is set, and the X-axis and Y-axis scan areas for the wafer are set. This is the stage where it becomes possible. This is the step to prepare for C-scan mode by setting the setting frequency and probe unit with the highest amplitude for the reflection signal from the joint surface or inner surface and setting the gate for the reflection signal.
단계(S340)은 단계(S330)의 스캔면적에 대한 C-scan이 수행되는 단계로서, 지그유닛(340)을 ±X 및 ±Y 방향으로 이동시키는 X축구동부(361)와 Y축구동부(362)를 이용하여, 제1 내지 제N 프로브유닛이 이동되면서, 초음파검사가 수행됨으로써, 제1 내지 제N 프로브유닛 각각에 대한 제2 스캔정보가 획득되는 단계이다. 즉, 웨이퍼 전체영역에 대한 초음파검사가 수행되며, 개별 프로브유닛에 의해 각각 제2 스캔정보가 획득될 수 있다. 각각의 프로브유닛은 대상 스캔영역이 서로 상이할 수 있으며, 서로 중복되는 영역이 있을 경우, 미리 설정된 방식에 의해 어느 하나는 무시될 수 있다.Step (S340) is a step in which a C-scan is performed on the scan area of step (S330), and the ) This is a step in which second scan information for each of the first to Nth probe units is obtained by performing ultrasonic inspection while the first to Nth probe units are moved. That is, ultrasonic inspection is performed on the entire wafer area, and second scan information can be acquired by each individual probe unit. Each probe unit may have a different target scan area, and if there are overlapping areas, one of them may be ignored according to a preset method.
단계(S350)은 스캔연산모듈(390)의 영상처리부(293)에서, 제2 스캔정보를 기반으로, 웨이퍼에 대한 스캔이미지정보가 연산되는 단계로서, 제1 내지 제N 프로브유닛 각각에 대한 제2 스캔정보를 미리 설정된 방식을 이용하여, 하나의 스캔이미지로 합성하는 단계이다. 각각의 설정주파수에 대해서 이미지를 생성하고 취합하는 과정을 거쳐서, 최종적으로 하나의 스캔이미지로 나타내는 방식이다.Step S350 is a step in which scan image information for the wafer is calculated based on the second scan information in the image processing unit 293 of the scan operation module 390, and the scan image information for each of the first to Nth probe units is calculated. 2 This is the step of combining scan information into one scan image using a preset method. This is a method that goes through the process of creating and collecting images for each set frequency, and finally displays them as a single scanned image.
이하에서는 초음파검사 과정에서 무빙어셈블리를 제어하는 방법을 설명한다.Below, we will explain how to control the moving assembly during the ultrasonic inspection process.
무빙어셈블리를 제어하는 방법은 단계(S321) 내지 단계(S323)를 포함한다.The method of controlling the moving assembly includes steps S321 to S323.
단계(S321)은 지그유닛(340)을 ±Z 방향으로 이동시키는 Z축구동부(363)를 이용하여, 제1 내지 제N 프로브유닛의 Z축위치가 1차적으로 세팅되는 단계이다.Step S321 is a step in which the Z-axis positions of the first to Nth probe units are primarily set using the Z-axis eastern part 363 that moves the jig unit 340 in the ±Z direction.
단계(S322)는 제1 내지 제N 프로브유닛(331)을 이용하여, 웨이퍼의 수직단면에 대한 A-scan이 수행되는 과정에서, 포커싱연산모듈(320)에 의해, 상기 웨이퍼에 대한 포커싱최적정보가 생성되는 단계이다. 포커싱거리에 대한 초음파진폭 최적화 과정이 진행되면서 포커싱최적정보가 생성될 수 있다.In step S322, in the process of performing an A-scan on the vertical cross section of the wafer using the first to Nth probe units 331, the focusing operation module 320 provides optimal focusing information for the wafer. This is the stage where is created. As the process of optimizing the ultrasonic amplitude for the focusing distance progresses, optimal focusing information can be generated.
단계(S323)은 포커싱최적정보를 기반으로, Z축미세구동부(364)에 의해, 상기 제1 내지 제N 프로브유닛을 ±Z 방향으로 미세 이동되어 포커싱거리로 세팅되는 단계이다.Step S323 is a step in which the first to Nth probe units are finely moved in the ±Z direction by the Z-axis fine drive unit 364 based on optimal focusing information and set to a focusing distance.
이렇게 포커싱거리가 최종적으로 세팅되면, X축구동부(361) 및 Y축구동부(362)를 이용하여 C-scan이 수행될 수 있다.Once the focusing distance is finally set in this way, a C-scan can be performed using the
또한, 단계(S323)에서, 제1 내지 제N 프로브유닛 중 동일한 설정주파수를 갖는 프로브유닛이 적어도 둘 이상 있는 프로브유닛그룹이 있는 경우에는 모든 프로브유닛에 대해 A-scan이 수행될 필요는 없다.Additionally, in step S323, if there is a probe unit group including at least two probe units with the same set frequency among the first to Nth probe units, A-scan does not need to be performed on all probe units.
해당 프로브유닛그룹 중 어느 하나의 프로브유닛에 대해서만, A-scan이 수행되어 포커싱최적정보가 생성되며, 포커싱최적정보를 기반으로, 상기 프로브유닛그룹 전체에 대해 포커싱거리가 한번에 세팅될 수 있다.An A-scan is performed for only one probe unit of the probe unit group to generate optimal focusing information, and based on the optimal focusing information, the focusing distance can be set for the entire probe unit group at once.
한편, 본 발명은 스캔연산모듈(290)의 머신러닝부(291)와 연결되어 정보를 송수신하도록 구성될 수 있다. 포커싱최적정보를 머신러닝부(291)에 전송하여 이를 학습데이터로 활용하는 것이다. 많은 학습데이터를 통해 자동으로 포커싱거리를 세팅하도록 Z축구동부(363) 및 Z축미세구동부(364)가 동작될 수 있다.Meanwhile, the present invention can be configured to transmit and receive information by being connected to the machine learning unit 291 of the scan operation module 290. The optimal focusing information is transmitted to the machine learning unit 291 and used as learning data. The Z-axis drive unit 363 and the Z-axis fine drive unit 364 can be operated to automatically set the focusing distance through a large amount of learning data.
본 발명에서 상기 실시형태는 하나의 예시로서 본 발명이 여기에 한정되는 것은 아니다. 본 발명의 특허청구범위에 기재된 기술적 사상과 실질적으로 동일한 구성을 하고 동일한 작용효과를 이루는 것은 어떠한 것이라도 본 발명의 기술적 범위에 포함된다.In the present invention, the above embodiment is an example and the present invention is not limited thereto. Anything that has substantially the same structure and achieves the same effect as the technical idea described in the claims of the present invention is included in the technical scope of the present invention.
Claims (12)
- 웨이퍼(Wafer)의 결함을 검사하는 초음파검사시스템으로서,An ultrasonic inspection system that inspects wafer defects,웨이퍼들이 로딩된 적재모듈(101)로부터 웨이퍼를 언로딩하여 초음파검사를 위한 검사정위치로 상기 웨이퍼를 이송시키는 암(Arm)유닛이 구비된 이송로봇모듈(110); 및A transfer robot module 110 equipped with an arm unit that unloads wafers from a loading module 101 loaded with wafers and transfers the wafers to an inspection position for ultrasonic inspection; and적어도 하나의 프로브유닛(131)을 구비하여, 상기 검사정위치 상태의 웨이퍼를 대상으로 초음파스캐닝을 수행하는 검사모듈(130);을 포함하며,It includes an inspection module 130 that has at least one probe unit 131 and performs ultrasonic scanning on the wafer in the inspection position,상기 검사모듈(130)은,The inspection module 130 is,상기 웨이퍼의 초음파스캐닝을 위해, 상기 프로브유닛(131)을 상기 검사정위치 상측에 고정시키는 적어도 하나의 지그유닛(140)을 포함하되,For ultrasonic scanning of the wafer, it includes at least one jig unit 140 that fixes the probe unit 131 above the inspection position,상기 지그유닛(140)은,The jig unit 140 is,제1 내지 제N 채널을 구비하는 멀티채널방식으로 형성되며, 상기 제1 내지 제N 채널에는 미리 설정된 주파수를 각각 조사하도록 형성된 제1 내지 제N 프로브유닛이 장착 가능하도록 형성된,It is formed in a multi-channel manner having first to N-th channels, and the first to N-th channels are formed so that first to N-th probe units formed to irradiate preset frequencies can be mounted, respectively,초음파검사시스템.Ultrasound inspection system.
- 제 1항에 있어서,According to clause 1,상기 지그유닛(140)은,The jig unit 140 is,일방향으로 연장되되, 상기 제1 내지 제N 프로브유닛이 결합 또는 결합해제 가능하도록 형성되어, 상기 제1 내지 제N 프로브유닛이 교체 가능하도록 형성된, N개의 채널장착부(141)를 포함하고,It includes N channel mounting portions 141 extending in one direction and formed so that the first to Nth probe units can be coupled or disengaged, so that the first to Nth probe units can be replaced,상기 N개의 채널장착부(141)는,The N channel mounting portions 141 are,상기 일방향을 따라 이격되어 배치되는,Arranged spaced apart along one direction,초음파검사시스템.Ultrasound inspection system.
- 제 2항에 있어서,According to clause 2,상기 초음파검사시스템은,The ultrasonic inspection system is,상기 프로브유닛(131) 및 상기 지그유닛(140)을 제어하는 스캔제어모듈(150);을 더 포함하며,It further includes a scan control module 150 that controls the probe unit 131 and the jig unit 140,상기 스캔제어모듈(150)은,The scan control module 150,상기 채널장착부(141)의 개수정보 및 상기 프로브유닛(131)의 장착정보를 확인하여, 상기 웨이퍼에 대한 초음파스캐닝을 수행하도록 형성된,Formed to perform ultrasonic scanning on the wafer by checking the number information of the channel mounting portion 141 and the mounting information of the probe unit 131,초음파검사시스템.Ultrasound inspection system.
- 제 3항에 있어서,According to clause 3,상기 지그유닛(140)은,The jig unit 140 is,구동수단(160)과 연결되어 ±X 방향 또는 ±Y 방향으로 이동하면서 상기 웨이퍼에 대한 초음파스캐닝을 수행하도록 형성되며,It is connected to the driving means 160 and is configured to perform ultrasonic scanning of the wafer while moving in the ±X direction or ±Y direction,상기 스캔제어모듈(150)은,The scan control module 150,상기 채널장착부(141)의 개수정보 및 상기 프로브유닛(131)의 장착정보를 통해, 상기 지그유닛(140)의 이동경로를 설정하는,Setting the movement path of the jig unit 140 through the number information of the channel mounting portion 141 and the mounting information of the probe unit 131,초음파검사시스템. Ultrasound inspection system.
- 제 4항에 있어서, According to clause 4,상기 스캔제어모듈(150)은,The scan control module 150,상기 N개의 채널장착부(141) 중 적어도 일부에 프로브유닛이 장착되지 않은 비활성 채널장착부 및 프로브유닛(131)이 결합된 활성 채널장착부가 혼합된 상태로 판단된 경우,When it is determined that at least some of the N channel mounting portions 141 are in a mixed state, inactive channel mounting portions to which no probe units are mounted and active channel mounting portions to which the probe unit 131 is coupled,상기 활성 채널장착부의 위치를 기준으로, 상기 지그유닛(140)의 이동경로를 설정함으로써, 상기 웨이퍼의 전면에 대한 초음파스캐닝을 수행하도록 형성된,Formed to perform ultrasonic scanning of the entire surface of the wafer by setting the movement path of the jig unit 140 based on the position of the active channel mounting portion,초음파검사시스템. Ultrasound inspection system.
- 제 2항에 있어서, According to clause 2,상기 제1 내지 제N 프로브유닛은,The first to Nth probe units are,적어도 일부가 상이한 설정주파수를 갖도록 형성되는 멀티주파수 조합으로 구성된,Consisting of a multi-frequency combination, at least some of which are formed to have different set frequencies,초음파검사시스템. Ultrasound inspection system.
- 제 6항에 있어서,According to clause 6,상기 제1 내지 제N 프로브유닛은,The first to Nth probe units are,제1 또는 제2 설정주파수를 갖도록 형성되되,Formed to have a first or second set frequency,상기 제1 설정주파수를 갖는 프로브유닛 및 상기 제2 설정주파수를 갖는 프로브유닛은, 상기 일방향을 따라 교번하여 배치되는,The probe unit having the first set frequency and the probe unit having the second set frequency are arranged alternately along the one direction.초음파검사시스템.Ultrasound inspection system.
- 웨이퍼(Wafer)의 결함을 검사하는 초음파검사시스템으로서,An ultrasonic inspection system that inspects wafer defects,웨이퍼들이 로딩된 적재모듈(101)로부터 웨이퍼를 언로딩하여 초음파검사를 위한 검사정위치로 상기 웨이퍼를 이송시키는 암(Arm)유닛이 구비된 이송로봇모듈(110); 및A transfer robot module 110 equipped with an arm unit that unloads wafers from a loading module 101 loaded with wafers and transfers the wafers to an inspection position for ultrasonic inspection; and적어도 하나의 프로브유닛(131)을 구비하여, 상기 검사정위치 상태의 웨이퍼를 대상으로 초음파스캐닝을 수행하는 검사모듈(130);을 포함하며,It includes an inspection module 130 that has at least one probe unit 131 and performs ultrasonic scanning on the wafer in the inspection position,상기 검사모듈(130)은,The inspection module 130 is,상기 웨이퍼의 초음파스캐닝을 위해, 상기 적어도 하나의 프로브유닛(131)을 상기 검사정위치 상측에 고정시키는 지그유닛(140)을 포함하되, 상기 지그유닛(140)은 다른 지그유닛(140)과 ±X 방향 또는 ±Y 방향으로 결합되어 연장 가능한 지그바조립체(170)를 형성하는,For ultrasonic scanning of the wafer, it includes a jig unit 140 that fixes the at least one probe unit 131 to the upper side of the inspection position, wherein the jig unit 140 is aligned with the other jig unit 140. Combined in the X direction or ±Y direction to form an extendable jig bar assembly 170,초음파검사시스템. Ultrasound inspection system.
- 제 8항에 있어서,According to clause 8,상기 지그유닛(140)에는,In the jig unit 140,상기 프로브유닛(131)에 결합되어 하방에 위치된 상기 웨이퍼 상에 워터폴(Water-Fall) 방식으로 증류수를 분사하는 증류수분사부(143)가 구비되며, 상기 증류수분사부(143)는 증류수공급부(180)와 연결되어 증류수를 공급받는 증류수유로(144)를 내장하고,A distilled water spray unit 143 is coupled to the probe unit 131 and sprays distilled water in a waterfall manner on the wafer positioned below. The distilled water spray unit 143 is a distilled water supply unit. It is connected to (180) and has a built-in distilled water flow path (144) for supplying distilled water,제1 내지 제L 지그유닛(140)이 결합되어 상기 지그바조립체(170)를 형성한 경우, 상기 제1 내지 제L 지그유닛(140) 각각에 구비된 증류수유로(144)는 서로 연통되도록 구성된,When the first to Lth jig units 140 are combined to form the jig bar assembly 170, the distilled water passages 144 provided in each of the first to Lth jig units 140 are configured to communicate with each other. ,초음파검사시스템. Ultrasound inspection system.
- 제 9항에 있어서,According to clause 9,상기 지그바조립체(170)는,The jig bar assembly 170 is,구동수단(160)과 연결되어 ±X 방향 또는 ±Y 방향으로 이동하면서 상기 웨이퍼에 대한 초음파스캐닝을 수행하도록 형성되며,It is connected to the driving means 160 and is configured to perform ultrasonic scanning of the wafer while moving in the ±X direction or ±Y direction,상기 ±X 방향 또는 ±Y 방향으로 상기 지그바조립체(170)가 이동시, 진동을 완충하기 위한 댐퍼부(171)를 포함하는,Comprising a damper unit 171 to cushion vibration when the jig bar assembly 170 moves in the ±X direction or ±Y direction,초음파검사시스템. Ultrasound inspection system.
- 제 10항에 있어서,According to clause 10,상기 지그바조립체(170)는,The jig bar assembly 170 is,상기 구동수단(160)과 연결되어 상기 지그바조립체(170)의 이동경로를 설정하는 스캔제어모듈(150)에 의해 제어되되,It is controlled by a scan control module 150 that is connected to the driving means 160 and sets the movement path of the jig bar assembly 170,상기 스캔제어모듈(150)은,The scan control module 150,상기 지그바조립체(170)가 ±X 방향 또는 ±Y 방향으로 방향을 전환하여 이동하는 구간에서, 이동경로를 곡선화하는 유선화경로를 설정하는,In the section where the jig bar assembly 170 moves by changing direction in the ±X direction or ±Y direction, setting a streamlined path that curves the moving path,초음파검사시스템. Ultrasound inspection system.
- 제 8항에 있어서,According to clause 8,상기 지그바조립체(170)는,The jig bar assembly 170 is,구동수단(160)과 연결되어 ±X 방향 또는 ±Y 방향으로 이동 가능하도록 형성되되, 상기 구동수단(160) 및 상기 지그바조립체(170)를 연결시키는 동력전달부(172);를 더 포함하며,It is connected to the driving means 160 and is formed to be movable in the ± ,상기 동력전달부(172)는,The power transmission unit 172 is,상기 지그바조립체(170)의 무게중심 측에 결합되는 결합축을 포함하며, It includes a coupling shaft coupled to the center of gravity side of the jig bar assembly 170,다른 지그유닛(140)의 결합에 의해, 지그바조립체(170)의 형태가 변경된 경우, 상기 결합축은 새롭게 설정된 무게중심 측으로 이동되도록 형성된, When the shape of the jig bar assembly 170 is changed by combining another jig unit 140, the coupling axis is formed to move toward the newly set center of gravity,초음파검사시스템. Ultrasound inspection system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380013992.9A CN118215842A (en) | 2022-10-17 | 2023-03-22 | Ultrasonic detection system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2022-0132991 | 2022-10-17 | ||
KR1020220132991A KR102520291B1 (en) | 2022-10-17 | 2022-10-17 | Ultrasonic Inspection System |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024085327A1 true WO2024085327A1 (en) | 2024-04-25 |
Family
ID=85976639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/003781 WO2024085327A1 (en) | 2022-10-17 | 2023-03-22 | Ultrasonic inspection system |
Country Status (3)
Country | Link |
---|---|
KR (2) | KR102520291B1 (en) |
CN (1) | CN118215842A (en) |
WO (1) | WO2024085327A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102694849B1 (en) * | 2023-09-15 | 2024-08-13 | 주식회사 엠아이티 | ultrasonic inspection device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011237346A (en) * | 2010-05-12 | 2011-11-24 | Central Res Inst Of Electric Power Ind | Multichannel flaw detector |
KR102187526B1 (en) * | 2020-03-17 | 2020-12-07 | 부경대학교 산학협력단 | Jig for supplying ultrasonic medium and Apparatus for fast scanning with scanning acoustic microscopy therewith |
KR102232470B1 (en) * | 2020-01-02 | 2021-03-25 | 고정세 | A flaw detector with angle adjustment |
KR102399076B1 (en) * | 2021-09-16 | 2022-05-17 | 주식회사 엠아이티 | A defect device automatic inspection apparatus using an ultrasonic probe and an inspection method using the same |
KR102406801B1 (en) * | 2021-09-07 | 2022-06-10 | 주식회사 엠아이티 | A defective element inspection method using an ultrasonic probe and an inspection apparatus using the same |
-
2022
- 2022-10-17 KR KR1020220132991A patent/KR102520291B1/en active IP Right Grant
-
2023
- 2023-03-22 WO PCT/KR2023/003781 patent/WO2024085327A1/en active Application Filing
- 2023-03-22 CN CN202380013992.9A patent/CN118215842A/en active Pending
- 2023-03-29 KR KR1020230040874A patent/KR20240053504A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011237346A (en) * | 2010-05-12 | 2011-11-24 | Central Res Inst Of Electric Power Ind | Multichannel flaw detector |
KR102232470B1 (en) * | 2020-01-02 | 2021-03-25 | 고정세 | A flaw detector with angle adjustment |
KR102187526B1 (en) * | 2020-03-17 | 2020-12-07 | 부경대학교 산학협력단 | Jig for supplying ultrasonic medium and Apparatus for fast scanning with scanning acoustic microscopy therewith |
KR102406801B1 (en) * | 2021-09-07 | 2022-06-10 | 주식회사 엠아이티 | A defective element inspection method using an ultrasonic probe and an inspection apparatus using the same |
KR102399076B1 (en) * | 2021-09-16 | 2022-05-17 | 주식회사 엠아이티 | A defect device automatic inspection apparatus using an ultrasonic probe and an inspection method using the same |
Also Published As
Publication number | Publication date |
---|---|
CN118215842A (en) | 2024-06-18 |
KR102520291B1 (en) | 2023-04-11 |
KR20240053504A (en) | 2024-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102517107B1 (en) | Ultrasonic Inspection System and Ultrasonic Inspection method using the same | |
WO2024147588A1 (en) | Ultrasonic inspection system and ultrasonic inspection method using same | |
WO2024085327A1 (en) | Ultrasonic inspection system | |
US7823451B2 (en) | Pulse echo/through transmission ultrasonic testing | |
JP6445274B2 (en) | Equipment for non-destructive inspection of stringers | |
US7448271B2 (en) | Inspection system and associated method | |
KR100849106B1 (en) | Method for inspecting airframe and device of the same | |
US7508971B2 (en) | Inspection system using coordinate measurement machine and associated method | |
CA2396572C (en) | Automatic carriage alignment | |
KR102399076B1 (en) | A defect device automatic inspection apparatus using an ultrasonic probe and an inspection method using the same | |
WO2019066192A1 (en) | Ultrasonic phased-array rail transducer for railway rail defect inspection | |
CN114137083B (en) | Automatic ultrasonic detection method and device for DOME plate of fusion reactor divertor | |
JPH061370B2 (en) | Mask defect inspection system | |
KR102517103B1 (en) | Ultrasonic Inspection System | |
US11573209B2 (en) | Methods and systems for adaptive accuracy control of ultrasonic non-destructive testing devices | |
WO2020022786A1 (en) | Specimen inspection device and specimen inspection method | |
KR101648425B1 (en) | Apparatus for ultrasonic inspecting composite material of aircraft structure | |
KR102535534B1 (en) | Ultrasonic inspection device and ultrasonic inspection method using the same | |
JPH05232093A (en) | Ultrasonic wave inspection device | |
KR102526911B1 (en) | Ultrasonic inspection device and ultrasonic inspection method using the same | |
KR102694850B1 (en) | Ultrasonic inspection apparatus capable of mass inspection | |
KR102694849B1 (en) | ultrasonic inspection device | |
KR102707910B1 (en) | Ultrasonic Inspection Apparatus | |
KR102700603B1 (en) | Ultrasonic inspection apparatus for curved samples | |
US20220252549A1 (en) | System and method for more efficient ultrasonic inspection of jet-engine disks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 202380013992.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23879913 Country of ref document: EP Kind code of ref document: A1 |