WO2024085167A1 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
WO2024085167A1
WO2024085167A1 PCT/JP2023/037634 JP2023037634W WO2024085167A1 WO 2024085167 A1 WO2024085167 A1 WO 2024085167A1 JP 2023037634 W JP2023037634 W JP 2023037634W WO 2024085167 A1 WO2024085167 A1 WO 2024085167A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
flow path
gas
container
port
Prior art date
Application number
PCT/JP2023/037634
Other languages
French (fr)
Japanese (ja)
Inventor
知行 苅谷
朝禎 笹渕
Original Assignee
伸和コントロールズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伸和コントロールズ株式会社 filed Critical 伸和コントロールズ株式会社
Publication of WO2024085167A1 publication Critical patent/WO2024085167A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes

Definitions

  • the embodiment of the present invention relates to a cooling system that utilizes a decrease in the temperature of a refrigerant caused by reduced pressure.
  • Vapor compression refrigeration systems are widely used in many fields.
  • the refrigerant is compressed in the compressor, and the refrigerant flowing out of the compressor is cooled in the condenser.
  • the refrigerant flowing out of the condenser is expanded in the expansion valve, and the refrigerant flowing out of the expansion valve exchanges heat with the temperature-controlled object in the evaporator.
  • the refrigerant cools the object by absorbing heat from the temperature-controlled object in the evaporator.
  • the refrigerant flowing out of the evaporator circulates to the compressor, and then releases heat in the condenser.
  • the refrigerants used in vapor compression refrigeration units are usually fluorinated refrigerants. Fluorinated refrigerants are greenhouse gases and can be flammable, but they offer various advantages, such as the ability to achieve highly efficient operation.
  • cooling devices that do not use compressors are known, such as boiling cooling devices disclosed in JP2011-142298A, WO2017/119113A1, and JP2021-162195A.
  • the boiling cooling device When exchanging heat between the liquid and the temperature-controlled object, the boiling cooling device vaporizes the liquid, and can efficiently cool the temperature-controlled object by absorbing heat through latent heat.
  • a pump is required to circulate the liquid or the gas that has been vaporized, but the pump does not require lubricating oil, or if it does, only a small amount is required. Furthermore, the energy consumption of the pump is relatively small. Therefore, the boiling cooling device can be said to be a device with excellent environmental performance.
  • the temperature of the circulating liquid is usually close to its boiling point under atmospheric pressure, and cooling at temperatures well below 0°C is not possible, for example, and the cooling temperature and temperature control targets are severely restricted. For this reason, it is difficult to ensure high refrigeration capacity at low or ultra-low temperature ranges using a boiling cooling device.
  • HFO solvents that have low GWP and are non-flammable and can be used as antifreeze have been put into practical use. Such solvents have boiling points of, for example, 70°C or higher under atmospheric pressure, and are therefore not suitable for vapor compression refrigeration equipment.
  • a thermal cycle can be realized using such HFO solvents, it may be possible to realize a cooling system that can ensure low environmental impact, high safety, and high refrigeration capacity, which are currently strongly desired.
  • the inventors therefore conducted intensive research to realize a new cooling system that can enable the use of HFO-based solvents such as those mentioned above as refrigerants in a thermal cycle. More generally, they conducted intensive research to realize a new cooling system that can shift a range of substances that is different from the range of refrigerants that can be used in vapor compression refrigeration devices to refrigerants that can be used in a thermal cycle. They discovered that the above cooling system could be realized by a structure in which the temperature of the refrigerant is lowered by reducing the pressure to cool it, and then the heat absorbed by the refrigerant is released under atmospheric pressure, which led to the invention of the present invention.
  • the object of the present invention is to provide a cooling system that allows substances that have not been used in conventional refrigeration methods to be used as refrigerants in a heat cycle, or that can expand the range of substances that can be used as refrigerants in a heat cycle.
  • One embodiment of the present invention relates to the following aspects "1" to "18".
  • a container including an outlet and an inlet and configured to store a liquid refrigerant; a pressure reducing device connected to the outlet and configured to adjust the pressure in the container to a pressure lower than atmospheric pressure by sucking gas from the container through the outlet; a refrigerant circulation device including a refrigerant flow path connected to the pressure reducing device and the inlet, the refrigerant being liquefied from the gas sucked from the container by the pressure reducing device and flowing into the container through the inlet, A cooling system that cools a temperature-controlled object using the refrigerant in the container.
  • the pressure reducing device is A gas flow path connected to the outlet; a gas suction pump provided in the gas flow path and configured to suck the gas from the container into the gas flow path; a reservoir tank connected to the gas flow path and configured to store the gas flowing out of the gas flow path and/or the refrigerant in a liquid state liquefied from the gas,
  • the refrigerant circulating device further includes a buffer container that is provided in the refrigerant flow path so as to form a part of the refrigerant flow path and stores the refrigerant in a liquid state,
  • the cooling system according to any one of claims 2 to 5, wherein the liquid refrigerant drawn from the reservoir tank into the refrigerant flow path passes through the buffer container and then flows into the container.
  • the cooling system further includes a heat exchanger connected to the refrigerant flow path and configured to cool the liquid refrigerant flowing through the refrigerant flow path,
  • a heat exchanger connected to the refrigerant flow path and configured to cool the liquid refrigerant flowing through the refrigerant flow path,
  • the gas suction pump is configured to suck the gas by rotation of a motor,
  • the cooling system according to any one of [2] to [8], wherein the gas suction pump adjusts the rotation speed of the motor in accordance with the temperature in the container, the pressure in the container, the temperature of the heat medium cooled by the refrigerant, or the temperature of the temperature-controlled object.
  • a flow control valve is provided in the gas flow path on the upstream or downstream side of the gas suction pump to control the flow rate of the gas flowing through the gas flow path by adjusting the opening degree,
  • the cooling system according to any one of [2] to [9], wherein the flow control valve adjusts its opening degree according to the temperature in the container, the pressure in the container, the temperature of the heat medium cooled by the refrigerant, or the temperature of the temperature-controlled object.
  • [11] Further comprising a gas supply device for supplying gas into the container, The cooling system according to any one of [2] to [10], wherein the gas supply device adjusts the amount of the gas supplied into the container in accordance with the temperature in the container, the pressure in the container, the temperature of the heat medium cooled by the refrigerant, or the temperature of the temperature-controlled object.
  • the cooling system further includes a heat exchanger connected to the refrigerant flow path and configured to cool the liquid refrigerant flowing through the refrigerant flow path, the refrigerant circulation device is provided in a portion of the refrigerant flow path downstream of a portion to which the heat exchanger is connected, and includes a three-way valve including a first port, a second port, and a third port; the three-way valve is capable of adjusting a flow rate of the refrigerant flowing into the first port and flowing out from the second port, and a flow rate of the refrigerant flowing into the first port and flowing out from the third port, the three-way valve constitutes a part of the refrigerant flow path with a flow path between the first port and the second port,
  • the cooling system according to any one of [1] to [11], wherein the third port and a portion of the refrigerant flow path upstream of a portion to which the heat exchanger is connected are connected by a bypass flow path.
  • the three-way valve When a liquid level of the refrigerant in a liquid state in the container exceeds a predetermined level, the three-way valve reduces a flow rate of the refrigerant flowing into the first port and flowing out of the second port and increases a flow rate of the refrigerant flowing into the first port and flowing out of the third port,
  • the cooling system of [12], wherein the three-way valve increases a flow rate of the refrigerant flowing into the first port and flowing out of the second port and decreases a flow rate of the refrigerant flowing into the first port and flowing out of the third port when a liquid level of the refrigerant in the container falls below a predetermined level.
  • the three-way valve blocks the flow of the refrigerant flowing into the first port and flowing out of the second port and allows the flow of the refrigerant flowing into the first port and flowing out of the third port,
  • the cooling system of [12] wherein the three-way valve allows the refrigerant to flow into the first port and flow out of the second port and blocks the flow of the refrigerant to flow into the first port and flow out of the third port when a liquid level of the refrigerant in the container falls below a predetermined level.
  • the heating device further includes a heat medium flow device including a heat medium flow path through which the heat medium flows, the heat medium flow path includes a heat exchange portion disposed in the container and exchanging heat between the heat medium and the refrigerant;
  • the cooling system according to any one of [1] to [14], wherein the heat medium flow path sends the heat medium from outside the container to the heat exchange section and sends the heat medium that has been heat exchanged in the heat exchange section to the outside of the container.
  • a cooling system according to any one of [1] to [15], in which the refrigerant is a substance whose boiling point at atmospheric pressure is 30°C or higher.
  • the present invention makes it possible to use substances that have not been used in conventional refrigeration methods as refrigerants in heat cycles, or to expand the range of substances that can be used as refrigerants in heat cycles.
  • FIG. 1 is a diagram illustrating a cooling system according to a first embodiment.
  • 2 is a block diagram showing a functional configuration of a controller constituting the cooling system of FIG. 1 .
  • FIG. 2 is a ph diagram of an example of a refrigerant used in the cooling system of FIG. 1.
  • FIG. 13 is a diagram illustrating a cooling system according to a second embodiment.
  • FIG. 13 is a diagram illustrating a cooling system according to a third embodiment.
  • FIG. 13 is a diagram illustrating a cooling system according to a fourth embodiment.
  • First Embodiment 1 is a schematic diagram of a cooling system S1 according to a first embodiment. First, the configuration of the cooling system S1 will be described.
  • a cooling system S1 includes a sealed container 10, a pressure reducing device 20, a refrigerant circulating device 30, a heat exchanger 40, a heat medium circulating device 50, a gas supplying device 60, and a controller 100.
  • a liquid refrigerant is stored in the sealed container 10.
  • the pressure reducing device 20 is connected to the sealed container 10 and reduces the pressure in the sealed container 10 by sucking in the gas present in the sealed container 10 or the gas evaporated in the sealed container 10.
  • the refrigerant circulation device 30 is connected to the pressure reducing device 20 and causes the liquid refrigerant liquefied from the gas sucked from the sealed container 10 by the pressure reducing device 20 to flow and flow back into the sealed container 10.
  • the refrigerant circulation device 30 is also connected to the heat exchanger 40 outside the sealed container 10. As a result, the refrigerant circulated by the refrigerant circulation device 30 circulates between the sealed container 10 and the heat exchanger 40.
  • the cooling system S1 cools the heat medium circulated by the heat medium circulating device 50 in the sealed container 10, and the heat medium circulating device 50 sends the cooled heat medium to the temperature control target T.
  • the refrigerant circulation device 30 also releases the heat absorbed by the refrigerant from the heat medium from the heat exchanger 40.
  • the pressure reducing device 20 also releases heat from the cooling section 25 described below. This allows the heat medium to be continuously cooled.
  • the pressure inside the sealed container 10 is reduced by the pressure reducing device 20 to a pressure lower than atmospheric pressure.
  • the refrigerant flow environment in the refrigerant circulation device 30 outside the sealed container 10 and the refrigerant flow environment in the heat exchanger 40 are set to a pressure higher than the pressure inside the sealed container 10, for example, atmospheric pressure. In such an environment, when the refrigerant flows from the heat exchanger 40 into the sealed container 10, the refrigerant expands and the temperature of the refrigerant drops inside the sealed container 10. As a result, the heat medium can be cooled by the refrigerant whose temperature has been lowered inside the sealed container 10.
  • the refrigerant evaporates due to heat exchange with the heat medium, and in this case, the heat medium can be efficiently cooled by the latent heat of vaporization of the refrigerant.
  • the evaporated refrigerant is in a gaseous state and is sucked in by the pressure reducing device 20.
  • the refrigerant circulated by the refrigerant circulation device 30 is not particularly limited, but is, for example, a substance that becomes liquid under atmospheric pressure and at a standard environmental temperature (e.g., 25°C) and that becomes -5°C or lower when expanded from this state in an environment of, for example, 0.1 atmosphere, and preferably becomes -30°C or lower when expanded in an environment of 0.01 atmosphere.
  • a standard environmental temperature e.g. 25°C
  • atmospheric pressure means 1 atmosphere, or in other words, 0.1 MPa (Abs).
  • the sealed container 10 includes a first outlet 11, a second outlet 12, an inlet 13, a gas receiving port 14, a heat medium inlet 15, and a heat medium outlet 16, and is a container that prevents the outflow and leakage of gas and liquid from any part other than these ports (11-16).
  • the sealed container 10 is constructed in a structure that allows it to maintain its shape when the internal pressure is reduced, and is a so-called vacuum insulated container.
  • the sealed container 10 maintains its shape when decompressed depends on the internal pressure to be reduced, but when the pressure is reduced to, for example, 0.1 atmospheres, it is preferable that the outer shell of the sealed container 10 is formed from a thick, hard metal or the like.
  • the specific structure of the sealed container 10 can be appropriately determined according to the expected degree of pressure reduction, and is not particularly limited.
  • the sealed container 10 may also include a container body with an opening, and a lid for opening and closing the opening. In this case, it is necessary to ensure sufficient airtightness and sealing when the lid is closed.
  • the sealed container 10 is configured to store liquid refrigerant, with the symbol Lf indicating a pool of liquid refrigerant and the symbol Gf indicating a gas phase portion. That is, in this embodiment, the sealed container 10 stores liquid refrigerant while forming a gas phase portion Gf.
  • the gas phase portion Gf is formed, the liquid refrigerant is prevented from entering the pressure reducing device 20, and the operating state of the pressure reducing device 20 can be stabilized. Furthermore, breakdowns in the pressure reducing device 20 can be suppressed.
  • the environment in which the liquid refrigerant and the gas phase portion Gf coexist within the sealed container 10 can be created by controlling the operation of the pressure reducing device 20, the refrigerant circulation device 30, and the gas supply device 60.
  • the first outlet 11 is connected to the pressure reducing device 20 and is an opening intended to allow gas to flow out. Therefore, it is preferable that it opens in the gas phase portion Gf of the sealed container.
  • the gas receiving port 14 is connected to the gas supply device 60 as described below, and this gas receiving port 14 also preferably opens in the gas phase portion Gf of the sealed container 10, similar to the first outlet 11.
  • the first outlet 11 and the gas receiving port 14 are preferably provided in the upper part of the top wall or side wall of the sealed container 10. In the illustrated example, the first outlet 11 and the gas receiving port 14 are formed in the top wall of the sealed container 10.
  • the second outlet 12 is an opening for discharging the liquid refrigerant in the sealed container 10.
  • the inlet 13 is an opening for receiving the liquid refrigerant circulated by the refrigerant circulation device 30.
  • the second outlet 12 and the inlet 13 preferably open to the liquid phase portion of the sealed container 10, and are preferably provided in the bottom wall or the lower part of the side wall of the sealed container 10.
  • the second outlet 12 is formed in the bottom wall of the sealed container 10, and the inlet 13 is formed below the middle position in the vertical direction of the side wall of the sealed container 10.
  • the heat medium inlet 15 and the heat medium outlet 16 preferably open to the liquid phase portion of the sealed container 10, and in the illustrated example, the heat medium inlet 15 and the heat medium outlet 16 are formed in the bottom wall of the sealed container 10.
  • the pressure reducing device 20 is connected to the first outlet 11 and adjusts the pressure inside the sealed container 10 to a pressure lower than atmospheric pressure by sucking gas from the sealed container 10 through the first outlet 11.
  • the pressure reducing device 20 in this embodiment includes a gas flow path 21 connected to the first outlet 11, a gas suction pump 22 provided on the gas flow path 21 and sucking gas from the sealed container 10 into the gas flow path 21, and a reservoir tank 23 connected to the downstream end 21B of the gas flow path 21 and storing the gas flowing out from the downstream end 21B.
  • the gas flow path 21 includes an upstream end 21A connected to the first outlet 11 and a downstream end 21B connected to the reservoir tank 23.
  • the gas suction pump 22 is provided in a portion of the gas flow path 21 between the upstream end 21A and the downstream end 21B.
  • the type of the gas suction pump 22 is not particularly limited, but it is preferable that it is a dry vacuum pump in which lubricating oil does not flow out or hardly flows out into the suction path (gas flow path 21).
  • the dry vacuum pump may be a diaphragm type dry vacuum pump, an oscillating piston type dry vacuum pump, a rotary vane type dry vacuum pump, a scroll type dry vacuum pump, etc., and is different from the types exemplified above.
  • the gas suction pump 22 may also be a wet vacuum pump.
  • the gas suction pump 22 is a dry vacuum pump.
  • the gas suction pump 22 includes a motor 22M, such as an AC motor or a brushless DC motor, that is controlled by an inverter.
  • the gas suction pump 22 can adjust the amount of gas suctioned and the pressure inside the sealed container 10 by adjusting the rotation speed of the motor 22M. More specifically, the rotation speed of the motor 22M is adjusted by adjusting the frequency of the AC current supplied to the motor 22M using an inverter (not shown).
  • a flow control valve 24 is provided in the gas flow path 21, and the pressure inside the sealed container 10 can also be adjusted by adjusting the opening of the flow control valve 24.
  • the flow control valve 24 can adjust the flow rate of the gas flowing through the gas flow path 21 by adjusting its opening. This adjusts the amount of gas suction, making it possible to adjust the pressure inside the sealed container 10.
  • the gas suction pump 22 and the flow control valve 24 may operate simultaneously to adjust the pressure inside the sealed container 10.
  • the operating state of the gas suction pump 22 may be maintained constant and the opening of the flow control valve 24 may be adjusted, or the opening of the flow control valve 24 may be maintained constant and the operating state of the gas suction pump 22 may be controlled.
  • the flow control valve 24 is provided in the gas flow path 21 upstream of the gas suction pump 22, but may be provided downstream of the gas suction pump 22.
  • the flow control valve 24 is, for example, a butterfly valve, but is not limited to this.
  • the gas suction pump 22 and the flow control valve 24 are electrically connected to the controller 100 and are controlled by the controller 100.
  • the gas suction pump 22 is electrically connected to the controller 100 via an inverter (not shown).
  • the flow control valve 24 may be a valve that adjusts the opening of the valve body by an electric motor such as a stepping motor or a servo motor.
  • the controller 100 is electrically connected to the electric motor.
  • the flow control valve 24 may be an electromagnetic proportional valve, etc.
  • the pressure inside the reservoir tank 23 is higher than the pressure inside the sealed container 10, and is set to, for example, atmospheric pressure. This makes it easier for the reservoir tank 23 to liquefy at least a portion of the gas flowing out from the downstream end 21B of the gas flow path 21 into liquid refrigerant and store the liquid refrigerant.
  • the reservoir tank 23 may have, for example, an openable lid to reduce power consumption of the gas suction pump 22 when the pressure rises, for safety reasons, and for filling or replenishing the refrigerant. That is, the reservoir tank 23 may have a container body with an opening and a lid that opens and closes the opening. In this case, it is necessary to ensure sufficient airtightness and sealing when the lid is closed.
  • the pressure reducing device 20 further includes a cooling section 25 that cools the portion of the gas flow path 21 downstream of the gas suction pump 22. This promotes liquefaction of the gas flowing out from the downstream end 21B of the gas flow path 21, and can suppress, for example, a rise in pressure inside the reservoir tank 23.
  • the cooling section 25 is, for example, composed of a cooling fan. However, the configuration of the cooling section 25 is not particularly limited, and may be a heat exchanger or the like.
  • the cooling section 25 may cool the reservoir tank 23. In this case, the cooling section 25 may cool the inside or the outside of the reservoir tank 23.
  • the refrigerant circulation device 30 includes a refrigerant flow path 31 that connects the pressure reducing device 20 and the inlet 13, and a circulation pump 32 that is provided in the refrigerant flow path 31 and draws liquid refrigerant in the reservoir tank 23 into the refrigerant flow path 31. More specifically, the refrigerant flow path 31 is connected to the reservoir tank 23 in the pressure reducing device 20. The refrigerant circulation device 30 circulates the liquid refrigerant received from the reservoir tank 23 and causes it to flow into the sealed container 10 from the inlet 13.
  • the refrigerant circulation device 30 in this embodiment further includes a buffer container 33 and a three-way valve 34 provided in the refrigerant flow path 31.
  • the circulation pump 32, the buffer container 33, and the three-way valve 34 are provided in the refrigerant flow path 31 so as to each form part of the refrigerant flow path 31.
  • the circulation pump 32 is disposed downstream of the buffer container 33, and the three-way valve 34 is disposed downstream of the circulation pump 32, but such an arrangement is not particularly limited.
  • the refrigerant flow path 31 includes an upstream end 31A connected to the reservoir tank 23 and a downstream end 31B connected to the inlet 13.
  • the upstream end 31A is connected to the bottom wall of the reservoir tank 23 and communicates with the reservoir tank 23.
  • the circulation pump 32, the buffer container 33, and the three-way valve 34 are each provided in the portion of the refrigerant flow path 31 between the upstream end 31A and the downstream end 31B.
  • the type of the circulation pump 32 is not particularly limited, and it may be a non-positive-displacement pump or a positive-displacement pump.
  • the circulation pump 32 includes a motor 32M, such as an AC motor or a brushless DC motor, that is controlled by an inverter.
  • the circulation pump 32 adjusts the amount of liquid drawn in by adjusting the rotation speed of the motor 32M, and is capable of adjusting the flow rate of the refrigerant flowing through the refrigerant flow path 31. More specifically, the rotation speed of the motor 32M is adjusted by adjusting the frequency of the AC current supplied to the motor 32M using an inverter (not shown).
  • the pressure of the refrigerant is increased.
  • the temperature of the refrigerant rises.
  • the above-mentioned heat exchanger 40 is connected to the refrigerant flow path 31, and the heat exchanger 40 is connected to the refrigerant flow path 31 downstream of the circulation pump 32. This allows the heat exchanger 40 to efficiently cool the refrigerant.
  • the buffer container 33 includes an inlet 33A that receives the refrigerant drawn from the reservoir tank 23, and an outlet 33B that allows the refrigerant to flow out.
  • the liquid refrigerant drawn from the reservoir tank 23 into the refrigerant flow path 31 passes through the buffer container 33 from the inlet 33A through the outlet 33B, and then flows into the sealed container 10.
  • the buffer container 33 is adapted to store a certain amount of liquid refrigerant, and in this embodiment, the buffer container 33 stores liquid refrigerant so that its storage space is filled.
  • the storage space of the buffer container 33 does not have to be filled with liquid refrigerant. However, the greater the amount of liquid refrigerant occupying the storage space of the buffer container 33, the smoother the refrigerant can be discharged from the outlet 33B.
  • the storage space of the buffer container 33 is filled with liquid refrigerant, and even if this is not the case, the amount of liquid refrigerant stored in the storage space of the buffer container 33 is preferably 50% or more in terms of volume ratio to the storage space, and may be 70% or more, 80% or more, or 90% or more.
  • the outlet 33B is provided at the bottom of the side wall of the buffer container 33. This allows the refrigerant to pass through the buffer container 33 smoothly.
  • the buffer container 33 receives liquid refrigerant from the receiving port 33A, but in this embodiment, the reservoir tank 23 is disposed above the buffer container 33, so that the liquid refrigerant stored in the reservoir tank 23 can be smoothly sent to the buffer container 33 by its own weight.
  • the receiving port 33A is provided at the top of the buffer container 33, specifically on the top wall, which makes it possible to reduce the piping length of the portion of the refrigerant flow path 31 between the reservoir tank 23 and the buffer container 33.
  • the buffer container 33 basically receives liquid refrigerant from the receiving port 33A, but may also receive gas containing unliquefied vaporized refrigerant.
  • the liquid refrigerant or gas received in the buffer container 33 may be relatively high in temperature, but when liquid refrigerant or gas from the reservoir tank 23 flows into the buffer container 33 that stores liquid refrigerant, undesired disturbances in the temperature of the refrigerant circulated by the refrigerant circulation device 30 can be suppressed.
  • the refrigerant or gas can flow out of the buffer container 33 after being mixed with the liquid refrigerant already stored in the buffer container 33, and therefore undesired disturbances in the temperature of the refrigerant flowing downstream of the buffer container 33 can be suppressed.
  • the three-way valve 34 is provided in a portion of the refrigerant flow path 31 downstream of the portion to which the heat exchanger 40 described below is connected.
  • the three-way valve 34 includes a first port 341, a second port 342, and a third port 343.
  • the three-way valve 34 can adjust the flow rate of the refrigerant that flows into the first port 341 and flows out from the second port 342, and the flow rate of the refrigerant that flows into the first port 341 and flows out from the third port 343.
  • the three-way valve 34 constitutes part of the refrigerant flow path 31 in the flow path between the first port 341 and the second port 342.
  • the third port 343 is connected to a portion of the refrigerant flow path 31 upstream of the portion to which the heat exchanger 40 is connected by a bypass flow path 38. More specifically, the bypass flow path 38 is connected to the buffer container 33.
  • the three-way valve 34 can send some or all of the refrigerant cooled by the heat exchanger 40 in the refrigerant flow path 31 to the buffer container 33 without sending it to the sealed container 10.
  • the amount of liquid refrigerant stored in the sealed container 10 can increase or decrease depending on the operating state of the cooling system S1. If the amount of liquid refrigerant stored in the sealed container 10 becomes excessively large, there is an increased risk that the pressure reducing device 20 will suck in the liquid refrigerant. For example, in such a case, the three-way valve 34 can prevent the amount of liquid refrigerant in the sealed container 10 from becoming excessive by reducing or blocking the flow rate of the refrigerant flowing to the sealed container 10.
  • the three-way valve 34 in this embodiment is a proportional three-way valve.
  • the three-way valve 34 may be a valve that adjusts the opening of the valve body using an electric motor such as a stepping motor or a servo motor, in which case the electric motor is electrically connected to the controller 100.
  • the three-way valve 34 may be an electromagnetic proportional three-way valve or a two-position three-way valve.
  • the second outlet 12 in the sealed container 10 is an opening for discharging the liquid refrigerant in the sealed container 10, but in this embodiment, the second outlet 12 is connected to the refrigerant flow path 31, more specifically to the buffer container 33, by a vent flow path 28.
  • a vent control valve 29 is provided in the vent flow path 28. By opening the vent control valve 29, the vent flow path 28 can allow the liquid refrigerant in the sealed container 10 to flow directly into the buffer container 33.
  • the vent control valve 29 may be opened when the amount of liquid refrigerant stored in the sealed container 10 becomes excessive.
  • the heat exchanger 40 is connected to the refrigerant flow path 31 downstream of the circulation pump 32 and upstream of the three-way valve 34. As described above, the cooling system S1 cools the heat medium circulated by the heat medium circulating device 50 inside the sealed container 10. The refrigerant circulating device 30 then releases the heat absorbed by the refrigerant from the heat medium from the heat exchanger 40. In other words, the heat exchanger 40 cools the liquid refrigerant flowing through the refrigerant flow path 31.
  • the heat exchanger 40 in this embodiment is a liquid-cooled heat exchanger, and is connected to a cooling water flow path 44 through which cooling water flows to cool the refrigerant.
  • the cooling water may be water or another liquid.
  • the heat exchanger 40 may also be an air-cooled heat exchanger.
  • the heat medium flow device 50 includes a heat medium flow path 51 through which the heat medium flows, and a heat exchange unit 52 and a pump 53 provided in the heat medium flow path 51.
  • the heat exchange unit 52 and the pump 53 are provided between the upstream end 51A and the downstream end 51B of the heat medium flow path 51, and the upstream end 51A and the downstream end 51B of the heat medium flow path 51 are connected to the temperature control target T. In this way, the heat medium flow device 50 circulates the heat medium through the temperature control target T.
  • the heat medium flow path 51 in this embodiment enters the sealed container 10 from the heat medium inlet 15 in the sealed container 10, and then extends to the outside of the sealed container 10 from the heat medium outlet 16.
  • the upstream end 51A, downstream end 51B, and temperature control target T of the heat medium flow path 51 are located outside the sealed container 10.
  • the heat exchange unit 52 is provided in a portion of the heat medium flow path 51 located inside the sealed container 10, that is, the heat exchange unit 52 is disposed inside the sealed container 10.
  • the heat medium flow path 51 sends the heat medium from the outside of the sealed container 10 to the heat exchange unit 52, and sends the heat medium that has been heat exchanged in the heat exchange unit 52 to the outside of the sealed container 10.
  • the heat medium is not particularly limited, but in this embodiment, it is an antifreeze liquid.
  • the heat medium may be the same as the refrigerant circulated between the sealed container 10 and the heat exchanger 40. That is, the heat medium is a substance that becomes -5°C or lower when expanded, for example, from atmospheric pressure and a standard environmental temperature (for example, 25°C) to an environment of 0.1 atmosphere, and preferably becomes -30°C or lower when expanded in an environment of 0.01 atmosphere. If the refrigerant and the heat medium are the same, it is advantageous in terms of manufacturing efficiency and cost.
  • the heat medium may be water, etc.
  • the heat exchange unit 52 exchanges heat between the heat medium being passed through and the refrigerant inside the sealed container 10.
  • the heat exchange unit 52 may be composed of a heat exchanger such as a fin tube, or may be composed of a pipe material and form a shell-and-tube type structure together with the sealed container 10.
  • the heat exchange unit 52 may also be a structure that contacts the outer surface of the sealed container 10. In this case, the entire heat medium flow device 50 is disposed outside the sealed container 10.
  • the pump 53 is provided in a portion of the heat medium flow path 51 located outside the sealed container 10.
  • the type of the pump 53 is not particularly limited, and it may be a non-positive-displacement pump or a positive-displacement pump.
  • the pump 53 includes a motor 53M, such as an AC motor or a brushless DC motor, that is controlled by an inverter.
  • the pump 53 can adjust the amount of liquid drawn in by adjusting the rotation speed of the motor 53M, thereby adjusting the flow rate of the refrigerant flowing through the heat medium flow path 51. More specifically, the rotation speed of the motor 53M is adjusted by adjusting the frequency of the AC current supplied to the motor 53M using an inverter (not shown).
  • the upstream end 51A and downstream end 51B of the heat medium flow path 51 are connected to the temperature-control target T.
  • the heat medium flow device 50 may have a temperature control unit that connects the upstream end 51A and downstream end 51B of the heat medium flow path 51, and may be configured to exchange heat between the temperature control unit and the temperature-control target T.
  • the heat medium flow device 50 may also be configured to discharge the heat medium from the downstream end 50B.
  • the gas supply device 60 is connected to the gas inlet 14 of the sealed container 10, and is capable of supplying gas into the sealed container 10.
  • the gas supply device 60 is provided, for example, to suppress a sudden drop in pressure inside the sealed container 10.
  • the gas supply device 60 can adjust the amount of gas supplied into the sealed container 10 according to the temperature inside the sealed container 10, the pressure inside the sealed container 10, the temperature of the heat medium cooled by the refrigerant, or the temperature of the temperature control target T.
  • the gas supply device 60 specifically includes a gas flow path 61, a gas flow control valve 62 provided in the gas flow path 61, and a gas source 63 connected to the upstream end of the gas flow path 61 and supplying gas to the gas flow path 61.
  • the gas flow control valve 62 is electrically connected to a controller 100 and is controlled by the controller 100.
  • the gas flow control valve 62 may be a valve that adjusts the opening of a valve body by an electric motor such as a stepping motor or a servo motor. In this case, the controller 100 is electrically connected to the electric motor.
  • the gas flow control valve 62 may be an electromagnetic proportional valve, etc.
  • the gas stored in the gas source 63 is nitrogen.
  • the gas stored in the gas source 63 may be an inert gas such as neon or argon. It is desirable that the gas to be supplied is controlled to a temperature similar to that of the refrigerant in the sealed container 10 when it is supplied into the sealed container 10.
  • the cooling system S1 also includes a refrigerant temperature sensor 71 that detects the temperature inside the sealed container 10, a pressure sensor 72 that detects the pressure inside the sealed container 10, a liquid level sensor 73 that detects the liquid level of the liquid refrigerant inside the sealed container 10, and a heat medium temperature sensor 74 that detects the temperature of the heat medium that has been cooled by the refrigerant inside the sealed container 10 and flows out of the sealed container 10.
  • a refrigerant temperature sensor 71 that detects the temperature inside the sealed container 10
  • a pressure sensor 72 that detects the pressure inside the sealed container 10
  • a liquid level sensor 73 that detects the liquid level of the liquid refrigerant inside the sealed container 10
  • a heat medium temperature sensor 74 that detects the temperature of the heat medium that has been cooled by the refrigerant inside the sealed container 10 and flows out of the sealed container 10.
  • the refrigerant temperature sensor 71 detects the temperature of the liquid refrigerant in the sealed container 10 and identifies the detected temperature as the temperature inside the sealed container 10. However, the refrigerant temperature sensor 71 may also detect the temperature of the gas phase portion of the sealed container 10 and identify this as the temperature of the refrigerant inside the sealed container 10.
  • the pressure sensor 72 detects the pressure of the gas phase portion Gf in the sealed container 10, and identifies the detected pressure as the pressure inside the sealed container 10.
  • the liquid level sensor 73 is an optical sensor such as a laser displacement meter, and irradiates the refrigerant liquid level with light from the top wall of the sealed container 10 and receives the reflected light to calculate the height of the liquid level. However, the liquid level sensor 73 may also be a float type sensor.
  • the heat medium temperature sensor 74 detects the temperature of the heat medium flowing outside the sealed container 10, downstream of the heat exchanger 52 in the heat medium flow path 51. Each sensor (71 to 74) is electrically connected to the controller 100, and the detection results of each sensor are sent to the controller 100.
  • the controller 100 is electrically connected to each of the above-mentioned sensors (71-74), and is also electrically connected to the gas suction pump 22, the flow control valve 24, the circulation pump 32, the three-way valve 34, and the gas flow adjustment valve 62.
  • the controller 100 may be configured, for example, as a computer having a CPU, ROM, etc. In this case, various processes are performed according to the programs stored in the ROM.
  • the controller 100 may also be configured as other processors or electrical circuits (for example, an FPGA (Field Programmable Gate Alley), etc.).
  • Fig. 2 is a block diagram showing the functional configuration of the controller 100.
  • the controller 100 has a sensor information acquisition unit 101, a circulation pump adjustment unit 102, a bypass amount adjustment unit 103, a rotation speed adjustment unit 104, a valve opening adjustment unit 105, and a gas supply amount adjustment unit 106.
  • the controller 100 may be configured, for example, by one computer or by multiple computers. When configured by multiple computers, the multiple functional units may be distributed among the multiple computers.
  • the sensor information acquisition unit 101 is a part that acquires the detection results from the above-mentioned refrigerant temperature sensor 71, pressure sensor 72, liquid level sensor 73, and heat medium temperature sensor 74.
  • the sensor information acquisition unit 101 provides one or more pieces of information related to the acquired detection results to the bypass amount adjustment unit 103, the rotation speed adjustment unit 104, the valve opening adjustment unit 105, and the gas supply amount adjustment unit 106.
  • the circulation pump adjustment unit 102 is electrically connected to the circulation pump 32 and controls the operation of the circulation pump 32. More specifically, the circulation pump adjustment unit 102 is connected to the motor 32M of the circulation pump 32 via an inverter. The circulation pump adjustment unit 102 adjusts the frequency of the AC current supplied from the inverter to the motor 32M, thereby adjusting the flow rate of the refrigerant flowing through the refrigerant flow path 31.
  • the target flow rate of the refrigerant is input and held in the circulation pump adjustment unit 102, for example, by an input device (not shown), and the circulation pump adjustment unit 102 adjusts the rotation speed of the motor 32M of the circulation pump 32 so that the flow rate of the refrigerant matches the target flow rate.
  • the bypass amount adjustment unit 103 is electrically connected to the three-way valve 34 and controls the operation of the three-way valve 34.
  • the target liquid level of the liquid refrigerant in the sealed container 10 is input and held in the bypass amount adjustment unit 103, for example, by an input device (not shown).
  • the bypass amount adjustment unit 103 then controls the three-way valve 34 using the detection result from the liquid level sensor 73 so that the liquid level of the liquid refrigerant in the sealed container 10 is maintained at the above-mentioned target height as a predetermined height.
  • the three-way valve 34 is controlled according to the difference between the liquid level detected by the liquid level sensor 73 and the target height.
  • the three-way valve 34 in response to a command from the bypass amount adjustment unit 103, when the liquid level of the liquid refrigerant in the sealed container 10 exceeds a predetermined level, the three-way valve 34 reduces the flow rate of the refrigerant flowing into the first port 341 and flowing out from the second port 342, and increases the flow rate of the refrigerant flowing into the first port 341 and flowing out from the third port 343.
  • the three-way valve 34 increases the flow rate of the refrigerant flowing into the first port 341 and flowing out from the second port 342, and decreases the flow rate of the refrigerant flowing into the first port 341 and flowing out from the third port 343.
  • the three-way valve 34 may block the flow of the refrigerant that flows into the first port 341 and flows out from the second port 342, and allow the flow of the refrigerant that flows into the first port 341 and flows out from the third port 343.
  • the three-way valve 34 may allow the flow of the refrigerant that flows into the first port 341 and flows out from the second port 342, and block the flow of the refrigerant that flows into the first port 341 and flows out from the third port 343.
  • the rotation speed adjustment unit 104 is electrically connected to the gas suction pump 22 and controls the operation of the gas suction pump 22. More specifically, the rotation speed adjustment unit 104 is connected to the motor 22M in the gas suction pump 22 via an inverter. The rotation speed adjustment unit 104 adjusts the frequency of the alternating current supplied from the inverter to the motor 22M, thereby adjusting the flow rate of gas passing through the gas flow path 21 in the pressure reduction device 20.
  • the target temperature of the heat medium circulated by the heat medium flow device 50 is input and held in the rotation speed adjustment unit 104, for example, by an input device (not shown), and the rotation speed adjustment unit 104 adjusts the rotation speed of the motor 22M of the gas suction pump 22 so that the temperature detected by the heat medium temperature sensor 74 matches the target temperature, thereby reducing the pressure inside the sealed container 10.
  • the gas suction pump 22 may be controlled according to the difference between the temperature of the heat medium detected by the heat medium temperature sensor 74 and the target temperature.
  • the gas suction pump 22 of the pressure reducing device 20 is controlled so that the temperature of the heat medium matches the target temperature, but instead, the rotation speed of the motor 22M may be adjusted so that the temperature inside the sealed container 10 (detection result of the refrigerant temperature sensor 71), the temperature of the temperature control target T (detection result of a temperature sensor not shown), or the pressure inside the sealed container 10 matches their respective target values.
  • the valve opening adjustment unit 105 is electrically connected to the flow control valve 24 and controls the operation of the flow control valve 24.
  • the valve opening adjustment unit 105 adjusts the opening of the flow control valve 24 to adjust the flow rate of gas passing through the gas flow path 21 in the pressure reducing device 20.
  • the valve opening adjustment unit 105 may adjust the opening of the flow control valve 24 according to the temperature inside the sealed container 10 (detection result of the refrigerant temperature sensor 71), the pressure inside the sealed container 10 (detection result of the pressure sensor 72), the temperature of the heat medium cooled by the refrigerant (detection result of the heat medium temperature sensor 74), or the temperature of the temperature control target T (detection result of a temperature sensor not shown).
  • such control of the flow control valve 24 may be performed after the gas suction pump 22 is controlled so that the temperature of the heat medium coincides with the target temperature and the operating state of the gas suction pump 22 is maintained constant.
  • the temperature or pressure of the refrigerant inside the sealed container 10 may fluctuate.
  • the opening of the flow control valve 24 may be adjusted according to the temperature inside the sealed container 10, the pressure inside the sealed container 10, the temperature of the heat medium cooled by the refrigerant, or the temperature of the temperature control target T so that it coincides with the target temperature or target pressure.
  • the gas suction pump 22 and the flow control valve 24 may operate simultaneously. Alternatively, the operating state of the gas suction pump 22 may be maintained constant and the opening of the flow control valve 24 may be adjusted, or the opening of the flow control valve 24 may be maintained constant and the operating state of the gas suction pump 22 may be controlled.
  • the gas supply amount adjustment unit 106 is electrically connected to the gas flow rate adjustment valve 62 and controls the operation of the gas flow rate adjustment valve 62.
  • the gas supply amount adjustment unit 106 adjusts the amount of gas supplied into the sealed container 10 by adjusting the opening degree of the gas flow rate adjustment valve 62.
  • the gas supply device 60 may adjust the amount of gas supplied into the sealed container 10 according to the temperature inside the sealed container 10 (detection result of the refrigerant temperature sensor 71), the pressure inside the sealed container 10 (detection result of the pressure sensor 72), the temperature of the heat medium cooled by the refrigerant (detection result of the heat medium temperature sensor 74), or the temperature of the temperature-controlled object T (detection result of a temperature sensor not shown) by controlling the gas flow rate adjustment valve 62 with the gas supply amount adjustment unit 106.
  • the refrigerant is, for example, a substance that becomes liquid under atmospheric pressure and at a standard environmental temperature (for example, 25°C), and when expanded from this state in an environment of, for example, 0.1 atmospheric pressure, the temperature becomes -5°C or lower, and preferably, when expanded in an environment of 0.01 atmospheric pressure, the temperature becomes -30°C or lower.
  • the refrigerant is preferably a low environmental load refrigerant with a global warming potential (GWP) of 10 or less.
  • GWP global warming potential
  • HFO-1336mzz-Z which has a GWP of 2 and is non-flammable, can be suitably used as the refrigerant.
  • the heat medium circulated by the heat medium flow device 50 may also be HFO-1336mzz-Z.
  • the refrigerant may be Opteon SF33 (TM) manufactured by Mitsui-Chemours Fluoroproducts, Inc.
  • Figure 3 is a pH diagram of HFO-1336mzz-Z.
  • HFO-1336mzz-Z is cooled in the heat exchanger 40 and transitions to the above-mentioned state St1, and then flows into the sealed container 10, where it is depressurized and can transition to, for example, state St2.
  • HFO-1336mzz-Z can transition from state St2 to state St3 by exchanging heat with a heat medium, and then flows out of the sealed container 10 to the outside of the depressurizing device 20, whereupon it can transition from state St3 to state St4. Therefore, HFO-1336mzz-Z can be suitably used in the cooling system S1.
  • refrigerants that can be used in the cooling system S1, such as water or ethanol.
  • the target temperature of the heat medium circulated by the heat medium circulating device 50 is input and maintained. Then, after a predetermined amount of liquid refrigerant is filled into the sealed container 10, the reservoir tank 23, and the buffer container 33, the circulation pump 32 of the refrigerant circulating device 30 and the pump 53 of the heat medium circulating device 50 are driven. At this time, the three-way valve 34 and the vent control valve 29 are controlled so that the liquid level of the liquid refrigerant in the sealed container 10 becomes a predetermined level.
  • the three-way valve 34 blocks the flow of the refrigerant that flows into the first port 341 and flows out of the second port 342, and allows the flow of the refrigerant that flows into the first port 341 and flows out of the third port 343. That is, a state is created in which the liquid refrigerant does not flow from the refrigerant circulating device 30 into the sealed container 10.
  • the pressure reducing device 20 is driven, and the pressure inside the sealed container 10 is reduced by the pressure reducing device 20 to a pressure lower than atmospheric pressure.
  • the pressure reducing device 20 adjusts the rotation speed of the motor 22M of the gas suction pump 22 until the temperature detected by the heat medium temperature sensor 74 matches the target temperature. Then, after the temperature detected by the heat medium temperature sensor 74 matches the target temperature, at least one of the rotation speed of the motor 22M of the gas suction pump 22, the opening of the flow control valve 24, and the opening of the gas flow rate adjustment valve 62 of the gas supply device 60 is controlled to maintain the target temperature. This completes the startup operation.
  • the pressure inside the sealed container 10 is reduced to a pressure lower than atmospheric pressure by the pressure reducing device 20, and the refrigerant flow environment in the refrigerant circulation device 30 outside the sealed container 10 and the refrigerant flow environment in the heat exchanger 40 are set to a pressure higher than the pressure inside the sealed container 10, for example, atmospheric pressure.
  • the refrigerant flow environment in the refrigerant circulation device 30 and the refrigerant flow environment in the heat exchanger 40 do not have to be strictly atmospheric pressure, and may be a pressure slightly lower than atmospheric pressure.
  • the heat medium circulated by the heat medium circulating device 50 is shifted to a state in which it cools the temperature-controlled object T.
  • the refrigerant flows out of the sealed container 10, is cooled by the cooling section 25 and the heat exchanger 40, and then flows back into the sealed container 10. This allows the heat medium to be continuously cooled by the refrigerant.
  • the refrigerant that has absorbed the heat of the heat medium flows out of the sealed container 10, and is cooled by the cooling section 25 and the heat exchanger 40, and transitions from state St4 to state St1 in FIG. 3.
  • the refrigerant is then depressurized by flowing into the sealed container 10, and transitions to state St2.
  • the refrigerant then transitions from state St2 to state St3 by exchanging heat with the heat medium in the sealed container 10.
  • the refrigerant then transitions from state St3 to state St4 by flowing out of the pressure reducing device 20 from the sealed container 10.
  • the refrigerant is then cooled by the cooling section 25 and the heat exchanger 40, and transitions from state St4 to state St1.
  • the heat medium is continuously cooled by the refrigerant.
  • the cooling system S1 includes a sealed container 10 including a first outlet 11 and an inlet 13 for storing a liquid refrigerant, a pressure reducing device 20 connected to the first outlet 11 and for adjusting the pressure inside the sealed container 10 to a pressure lower than atmospheric pressure by sucking gas from the sealed container 10 through the first outlet 11, and a refrigerant circulation device 30 including a refrigerant flow path 31 connected to the pressure reducing device 20 and the inlet 13 for causing the liquid refrigerant liquefied from the gas sucked from the sealed container 10 by the pressure reducing device 20 to flow into the sealed container 10 through the inlet 13, and the temperature control target T is cooled by the refrigerant in the sealed container 10.
  • a substance that becomes liquid under atmospheric pressure and at a standard environmental temperature (e.g., 25°C) and that becomes -5°C or lower when expanded from this state in an environment of, for example, 0.1 atmospheric pressure can be used as the refrigerant.
  • a standard environmental temperature e.g. 25°C
  • the compressor will compress the liquid, so the compressor will not function properly and the substance will not evaporate in the evaporator. Therefore, the above refrigerant is not suitable for a vapor compression refrigeration cycle.
  • the cooling system S1 does not use compression, but rather reduces the pressure of the above refrigerant in the sealed container 10, making it possible to cool the heat medium, and the heat of the heat medium can be released from the cooling unit 25 and the heat exchanger 40, thereby realizing a heat cycle. Therefore, according to this embodiment, it becomes possible to use a substance that has not been used in conventional refrigeration methods as a refrigerant for a heat cycle, or the range of substances that can be used as a refrigerant for a heat cycle can be expanded.
  • the decompression device 20 is provided with the cooling unit 25, so that heat is released between the cooling unit 25 and the heat exchanger 40.
  • a configuration may be adopted in which heat is dissipated only by the cooling unit 25 without providing a heat exchanger 40, or heat may be dissipated only by the heat exchanger 40 without providing a cooling unit 25.
  • the cooling system S1 is capable of using, for example, HFO-1336mzz-Z, which has a GWP of 2 and is non-flammable, as a refrigerant. This makes it possible to achieve a cooling operation with a low GWP and ensured safety, which is currently not possible with vapor compression refrigeration cycles. No other cooling method is known that provides such a low GWP, low environmental impact, and ensures safety. Therefore, the realization of such a cooling system S1 has the potential to greatly contribute to protecting the global environment. In addition, because the cooling system S1 does not use a compressor, the situation in which lubricating oil leaks into the refrigerant is suppressed, which is also beneficial in this respect.
  • this embodiment has various features to operate the cooling system S1 economically and stably.
  • the pressure reducing device 20 includes a gas flow path 21 connected to the first outlet 11, a gas suction pump 22 provided in the gas flow path 21 to draw gas from the sealed container 10 into the gas flow path 21, and a reservoir tank 23 connected to the downstream end 21B of the gas flow path 21 to store the gas flowing out from the downstream end 21B. This makes it easier to vaporize the gas in the reservoir tank 23, and prevents the refrigerant in gaseous state from returning to the sealed container 10 by the refrigerant circulation device 30.
  • the pressure in the reservoir tank 23 is higher than the pressure in the sealed container 10, and the reservoir tank 23 liquefies at least a portion of the gas flowing out from the downstream end 21B of the gas flow path 21 into liquid refrigerant and stores the liquid refrigerant. This effectively prevents the refrigerant in a gaseous state from returning to the sealed container 10 by the refrigerant circulation device 30.
  • the refrigerant circulation device 30 further includes a buffer container 33 that is provided in the refrigerant flow path 31 so as to form a part of the refrigerant flow path 31 and stores liquid refrigerant.
  • the gas stored in the reservoir tank 23 or liquid refrigerant that is at least partially liquefied from the gas is caused to flow into the buffer container 33.
  • the gas or liquid refrigerant from the reservoir tank 23 can be mixed with the liquid refrigerant stored in the buffer container 33 and then flow out of the buffer container 33. This can prevent undesirable temperature disturbances of the refrigerant flowing downstream of the buffer container 33.
  • the refrigerant circulation device 30 also includes a three-way valve 34 that is provided in a portion of the refrigerant flow path 31 downstream of the portion where the heat exchanger 40 is connected, and includes a first port 341, a second port 342, and a third port 343.
  • the three-way valve 34 constitutes a part of the refrigerant flow path 31 in the flow path between the first port 341 and the second port 342.
  • the third port 343 is also connected to a portion of the refrigerant flow path 31 upstream of the portion where the heat exchanger 40 is connected (the buffer container 33 in this embodiment) by a bypass flow path 38.
  • the cooling system S1 allows the cooling system S1 to operate stably, improving the accuracy of temperature control. For example, if the amount of liquid refrigerant stored in the sealed container 10 becomes excessively large, there is an increased risk that the pressure reducing device 20 will suck in the liquid refrigerant. In this case, there is a risk that the operation of the pressure reducing device 20 will become unstable or that the pressure reducing device 20 will be damaged. In such a case, for example, the three-way valve 34 can prevent a situation in which the amount of liquid refrigerant in the sealed container 10 becomes excessive by reducing or blocking the flow rate of the refrigerant flowing to the sealed container 10 side.
  • This embodiment differs from the first embodiment in that the vent passage 28 connecting the sealed container 10 and the buffer container 33 and the vent control valve 29 on the vent passage 28 are not provided.
  • the cooling system S2 according to this second embodiment also provides the same effects as the first embodiment. Furthermore, according to this embodiment, the device configuration can be simplified.
  • a cooling system S3 according to a third embodiment will be described with reference to Fig. 5. Note that, among the components in this embodiment, the same components as those in the first and second embodiments are denoted by the same reference numerals, and duplicated descriptions will be omitted.
  • the refrigerant circulation device 30 does not include a circulation pump 32 and a three-way valve 34.
  • a heat exchanger 40 is disposed inside the buffer container 33.
  • the heat exchanger 40 may be configured to contact the outer wall of the buffer container 33, or may be connected to the upstream or downstream part of the buffer container 33 in the refrigerant flow path 31.
  • a return amount adjustment valve 80 is provided in the refrigerant flow path 31.
  • the return amount adjustment valve 80 is a valve that adjusts the flow rate of liquid refrigerant flowing from the reservoir tank 23 into the sealed container 10.
  • the return amount adjustment valve 80 is controlled by the controller 100, and adjusts the flow rate of liquid refrigerant flowing into the sealed container 10 so that the liquid level of the liquid refrigerant in the sealed container 10 is maintained at a predetermined height, for example.
  • the return amount adjustment valve 80 may be an opening/closing valve or a proportional valve.
  • the target temperature of the heat medium circulated by the heat medium circulating device 50 is input and maintained. Then, after a predetermined amount of liquid refrigerant is filled into the sealed container 10, the reservoir tank 23, and the buffer container 33, the pump 53 of the heat medium circulating device 50 is driven. At this time, the return amount adjustment valve 80 is controlled so that the liquid level of the liquid refrigerant in the sealed container 10 becomes a predetermined level. In this embodiment, when the return amount adjustment valve 80 opens, the liquid refrigerant naturally flows into the sealed container 10 due to its own weight, but a circulation pump 32 may also be provided. Then, after the liquid level of the liquid refrigerant in the sealed container 10 matches the predetermined level, the return amount adjustment valve 80 is closed.
  • the pressure reducing device 20 is driven, and the pressure in the sealed container 10 is reduced by the pressure reducing device 20 to a pressure lower than atmospheric pressure.
  • the pressure reducing device 20 adjusts the rotation speed of the motor 22M of the gas suction pump 22 until the temperature detected by the heat medium temperature sensor 74 matches the target temperature. After the temperature detected by the heat medium temperature sensor 74 matches the target temperature, at least one of the rotation speed of the motor 22M of the gas suction pump 22, the opening of the flow control valve 24, and the opening of the gas flow rate adjustment valve 62 of the gas supply device 60 is controlled to maintain the target temperature. This completes the start-up operation.
  • the pressure in the sealed container 10 is reduced by the pressure reducing device 20 to a pressure lower than atmospheric pressure, and the refrigerant flow environment in the refrigerant circulation device 30 outside the sealed container 10 is set to a pressure higher than the pressure in the sealed container 10, for example, atmospheric pressure.
  • the refrigerant flow environment in the refrigerant circulation device 30 does not have to be strictly atmospheric pressure, and may be slightly lower than atmospheric pressure.
  • the heat medium circulated by the heat medium circulating device 50 is shifted to a state in which it cools the temperature-controlled object T.
  • the refrigerant flows out of the sealed container 10, is cooled by the cooling section 25 and the heat exchanger 40, and then flows back into the sealed container 10. This allows the heat medium to be continuously cooled by the refrigerant.
  • the cooling system S3 according to the third embodiment can achieve the same effects as the first embodiment and can simplify the device configuration.
  • a cooling system S4 according to a fourth embodiment will be described with reference to Fig. 6. Note that, among the components in this embodiment, the same components as those in the first to third embodiments are denoted by the same reference numerals, and duplicated descriptions will be omitted.
  • This embodiment is further simplified by removing the buffer vessel 33 from the refrigerant circulation device 30 in the third embodiment and not using the heat exchanger 40.
  • the cooling system S4 can be operated in the manner described in the third embodiment. This embodiment is beneficial in terms of simplifying the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)

Abstract

A cooling system according to an embodiment of the present invention comprises: a sealed container 10 that includes a first outflow port 11 and an inflow port 13, and that stores a liquid refrigerant; a pressure reduction device 20 that is connected to the first outflow port 11 and adjusts the pressure in the sealed container 10 to be lower than the atmospheric pressure by sucking a gas from the sealed container 10 through the first outflow port 11; and a refrigerant circulation device 30 that includes a refrigerant flow channel 31 connected to the pressure reduction device 20 and the inflow port 13 and that allows the liquid refrigerant, obtained by liquefying the gas sucked from the sealed container 10 by the pressure reduction device 20, to flow through the inflow port 13 into the sealed container 10.

Description

冷却システムCooling System
 本発明の実施の形態は、減圧による冷媒の温度降下を利用する冷却システムに関する。 The embodiment of the present invention relates to a cooling system that utilizes a decrease in the temperature of a refrigerant caused by reduced pressure.
 蒸気圧縮式の冷凍装置は、多くの分野で広く利用されている。 Vapor compression refrigeration systems are widely used in many fields.
 蒸気圧縮式の冷凍装置では、圧縮機で冷媒が圧縮され、圧縮機から流出する冷媒が凝縮器で冷却される。凝縮器から流出する冷媒は膨張弁で膨張され、膨張弁から流出する冷媒は、蒸発器で温度制御対象と熱交換を行う。冷媒は、蒸発器で温度制御対象の熱を吸収することで冷却を行う。蒸発器から流出する冷媒は圧縮機に循環し、その後、凝縮器で熱を放出する。 In a vapor compression refrigeration system, the refrigerant is compressed in the compressor, and the refrigerant flowing out of the compressor is cooled in the condenser. The refrigerant flowing out of the condenser is expanded in the expansion valve, and the refrigerant flowing out of the expansion valve exchanges heat with the temperature-controlled object in the evaporator. The refrigerant cools the object by absorbing heat from the temperature-controlled object in the evaporator. The refrigerant flowing out of the evaporator circulates to the compressor, and then releases heat in the condenser.
 蒸気圧縮式の冷凍装置で使用される冷媒は、通常、フッ素系冷媒である。フッ素系冷媒は、温室効果ガスであり、燃性を有する場合もあるが、高効率の運転を実現できる等の種々のメリットを有する。 The refrigerants used in vapor compression refrigeration units are usually fluorinated refrigerants. Fluorinated refrigerants are greenhouse gases and can be flammable, but they offer various advantages, such as the ability to achieve highly efficient operation.
 一方で、フッ素系冷媒が環境に与える影響を考慮し、従前より、地球温暖化係数(GWP)を低く抑えることのできる蒸気圧縮式用のフッ素系冷媒の開発が進められている。そして、非常にGWPの低い蒸気圧縮式用のHFO系冷媒が既に実用化されている。具体的には、例えばGWPが10以下のHFO系冷媒が実用化されている。しかしながら、この冷媒は、燃性や毒性について安全性が十分に確保されているとは必ずしも言えない状況である。そのため、低GWP且つ安全性を確保できる蒸気圧縮式用の冷媒の開発は、現在も盛んに行われている。 On the other hand, in consideration of the impact that fluorine-based refrigerants have on the environment, development of fluorine-based refrigerants for vapor compression systems that can keep the global warming potential (GWP) low has been progressing. HFO-based refrigerants for vapor compression systems with very low GWP have already been put to practical use. Specifically, for example, HFO-based refrigerants with a GWP of 10 or less have been put to practical use. However, it cannot be said that these refrigerants are fully safe in terms of flammability and toxicity. For this reason, development of refrigerants for vapor compression systems that can ensure low GWP and safety is still being actively pursued.
 また、蒸気圧縮式の冷凍装置で用いられる圧縮機は、長期にわたり運転を行う。そのため、回転部分等の駆動部分を潤滑油で潤滑する必要がある。ただし、潤滑油は、冷媒側への流出の問題がある。そして、この潤滑油の流出により、圧縮機における油切れが生じることがあり、圧縮機の運転の安定性が損なわれることがある。また、蒸発器に潤滑油が滞留することにより、蒸発器の冷却効率が損なわれることがある。そのため、蒸気圧縮式の冷凍装置は、圧縮機を使用する点でも種々改善の余地を有している。 In addition, the compressors used in vapor compression refrigeration systems operate for long periods of time. For this reason, it is necessary to lubricate the rotating parts and other moving parts with lubricating oil. However, there is a problem with lubricating oil leaking into the refrigerant side. This leakage of lubricating oil can cause the compressor to run out of oil, which can impair the stability of the compressor's operation. Furthermore, retention of lubricating oil in the evaporator can impair the cooling efficiency of the evaporator. For this reason, vapor compression refrigeration systems have room for various improvements in terms of the use of compressors.
 一方で、圧縮機を使用しない冷却装置としては、例えばJP2011-142298A、WO2017/119113A1、及びJP2021-162195Aに開示されるような沸騰冷却装置が知られている。 On the other hand, cooling devices that do not use compressors are known, such as boiling cooling devices disclosed in JP2011-142298A, WO2017/119113A1, and JP2021-162195A.
 沸騰冷却装置は、液体を温度制御対象と熱交換させる際に、液体を気化させることで、潜熱による吸熱により効率的に温度制御対象を冷却できる。そして、通常、液体又はこれが気化した気体を循環させるためのポンプが必要になるが、ポンプは、潤滑油が不要か又は必要であっても少量で済む。また、ポンプのエネルギー消費量は比較的小さい。したがって、沸騰冷却装置は、環境性能に優れた装置と言える。 When exchanging heat between the liquid and the temperature-controlled object, the boiling cooling device vaporizes the liquid, and can efficiently cool the temperature-controlled object by absorbing heat through latent heat. Normally, a pump is required to circulate the liquid or the gas that has been vaporized, but the pump does not require lubricating oil, or if it does, only a small amount is required. Furthermore, the energy consumption of the pump is relatively small. Therefore, the boiling cooling device can be said to be a device with excellent environmental performance.
 ただし、沸騰冷却装置では、通常、循環させる液体の温度が大気圧下での沸点近傍となり、例えば0℃を大きく下回る温度帯での冷却はできず、冷却温度及び温度制御対象が非常に制約される。そのため、沸騰冷却装置により、低温又は超低温の温度帯で高い冷凍能力を確保することは困難である。 However, in a boiling cooling device, the temperature of the circulating liquid is usually close to its boiling point under atmospheric pressure, and cooling at temperatures well below 0°C is not possible, for example, and the cooling temperature and temperature control targets are severely restricted. For this reason, it is difficult to ensure high refrigeration capacity at low or ultra-low temperature ranges using a boiling cooling device.
 近年、上述したようにHFO系冷媒の開発が進められる一方で、環境負荷の小さい不凍液の開発も進められている。そして、GWPが低く且つ不燃性の、不凍液として使用され得るHFO系溶剤が実用化された。このような溶剤は、大気圧下での沸点が例えば70℃以上であるため、蒸気圧縮式の冷凍装置には適合しない。しかしながら、このようなHFO系溶剤を用いて熱サイクルを実現できれば、現在強く求められている低環境負荷、高い安全性及び高い冷凍能力を確保し得る冷却システムを実現できる可能性がある。 In recent years, while the development of HFO refrigerants has progressed as described above, the development of antifreeze with low environmental impact has also progressed. HFO solvents that have low GWP and are non-flammable and can be used as antifreeze have been put into practical use. Such solvents have boiling points of, for example, 70°C or higher under atmospheric pressure, and are therefore not suitable for vapor compression refrigeration equipment. However, if a thermal cycle can be realized using such HFO solvents, it may be possible to realize a cooling system that can ensure low environmental impact, high safety, and high refrigeration capacity, which are currently strongly desired.
 そこで、本件発明者は、例えば上述したようなHFO系溶剤を熱サイクルの冷媒として使用可能とすることができる新規の冷却システムの実現のために鋭意研究を行った。より一般化して言うと、蒸気圧縮式の冷凍装置で使用可能であった冷媒の範囲とは異なる範囲の物質を、熱サイクルで使用可能な冷媒にシフトさせることができる新規の冷却システムの実現のために鋭意研究を行った。そして、減圧により冷媒の温度を降下させて冷却させた後、大気圧下で冷媒が吸収した熱を放出する構造により、上記冷却システムを実現し得ることを知見し、本発明を創案するに至った。 The inventors therefore conducted intensive research to realize a new cooling system that can enable the use of HFO-based solvents such as those mentioned above as refrigerants in a thermal cycle. More generally, they conducted intensive research to realize a new cooling system that can shift a range of substances that is different from the range of refrigerants that can be used in vapor compression refrigeration devices to refrigerants that can be used in a thermal cycle. They discovered that the above cooling system could be realized by a structure in which the temperature of the refrigerant is lowered by reducing the pressure to cool it, and then the heat absorbed by the refrigerant is released under atmospheric pressure, which led to the invention of the present invention.
 すなわち、本発明の課題は、従来の冷凍方式では使用されることがなかった物質を熱サイクルの冷媒として使用できるようになる、又は、熱サイクルの冷媒として使用できる物質の範囲を拡大させることができる冷却システムを提供することである。 In other words, the object of the present invention is to provide a cooling system that allows substances that have not been used in conventional refrigeration methods to be used as refrigerants in a heat cycle, or that can expand the range of substances that can be used as refrigerants in a heat cycle.
 本発明の一実施の形態は、以下の態様「1」~「18」に関連する。 One embodiment of the present invention relates to the following aspects "1" to "18".
[1] 流出口及び流入口を含み、液状の冷媒を貯留する容器と、
 前記流出口に接続し、前記流出口を通して前記容器から気体を吸引することで前記容器内の圧力を大気圧よりも小さい圧力に調節する減圧装置と、
 前記減圧装置と前記流入口とに接続される冷媒流路を含み、前記減圧装置が前記容器から吸引した前記気体から液化した液状の前記冷媒を、前記流入口を通して前記容器に流入させる冷媒循環装置と、を備え、
 前記容器内の前記冷媒により、温度制御対象を冷却する、冷却システム。
[1] A container including an outlet and an inlet and configured to store a liquid refrigerant;
a pressure reducing device connected to the outlet and configured to adjust the pressure in the container to a pressure lower than atmospheric pressure by sucking gas from the container through the outlet;
a refrigerant circulation device including a refrigerant flow path connected to the pressure reducing device and the inlet, the refrigerant being liquefied from the gas sucked from the container by the pressure reducing device and flowing into the container through the inlet,
A cooling system that cools a temperature-controlled object using the refrigerant in the container.
[2] 前記減圧装置は、
 前記流出口に接続される気体流路と、
 前記気体流路に設けられ、前記容器から前記気体流路に前記気体を吸引する気体吸引ポンプと、
 前記気体流路に接続され、前記気体流路から流出する前記気体及び/又は前記気体から液化した液状の前記冷媒を貯留するリザーバタンクと、を含み、
 前記冷媒流路は、前記リザーバタンクに接続する、[1]に記載の冷却システム。
[2] The pressure reducing device is
A gas flow path connected to the outlet;
a gas suction pump provided in the gas flow path and configured to suck the gas from the container into the gas flow path;
a reservoir tank connected to the gas flow path and configured to store the gas flowing out of the gas flow path and/or the refrigerant in a liquid state liquefied from the gas,
The cooling system according to claim 1, wherein the refrigerant flow path is connected to the reservoir tank.
[3] 前記リザーバタンク内の圧力は、前記容器内の圧力よりも高く、前記リザーバタンクは、前記気体流路から流出する前記気体の少なくとも一部を液状の前記冷媒に液化し、液状の前記冷媒を貯留する、[2]に記載の冷却システム。 [3] The cooling system described in [2], in which the pressure in the reservoir tank is higher than the pressure in the container, and the reservoir tank liquefies at least a portion of the gas flowing out of the gas flow path into the liquid refrigerant and stores the liquid refrigerant.
[4] 前記冷媒循環装置は、前記冷媒流路に設けられ、前記リザーバタンクから液状の前記冷媒を前記冷媒流路に引き込む循環ポンプをさらに含む、[2]又は[3]に記載の冷却システム。 [4] The cooling system described in [2] or [3], wherein the refrigerant circulation device further includes a circulation pump provided in the refrigerant flow path and drawing the liquid refrigerant from the reservoir tank into the refrigerant flow path.
[5] 前記減圧装置は、前記気体流路における前記気体吸引ポンプの下流側の部分及び/又は前記リザーバタンクを冷却する冷却部をさらに含む、[2]乃至[4]のいずれかに記載の冷却システム。 [5] The cooling system according to any one of [2] to [4], wherein the pressure reducing device further includes a cooling unit that cools a portion of the gas flow path downstream of the gas suction pump and/or the reservoir tank.
[6] 前記冷媒循環装置は、前記冷媒流路の一部を形成するように前記冷媒流路に設けられ、液状の前記冷媒を貯留する緩衝容器をさらに含み、
 前記リザーバタンクから前記冷媒流路に引き込まれる液状の前記冷媒は、前記緩衝容器を通過した後、前記容器に流入する、[2]乃至[5]のいずれかに記載の冷却システム。
[6] The refrigerant circulating device further includes a buffer container that is provided in the refrigerant flow path so as to form a part of the refrigerant flow path and stores the refrigerant in a liquid state,
The cooling system according to any one of claims 2 to 5, wherein the liquid refrigerant drawn from the reservoir tank into the refrigerant flow path passes through the buffer container and then flows into the container.
[7] 前記冷媒流路に接続し、前記冷媒流路を通流する液状の前記冷媒を冷却する熱交換器をさらに備え、
 前記緩衝容器は、前記冷媒流路における前記熱交換器が接続する部分よりも上流側の部分に設けられる、[6]に記載の冷却システム。
[7] The cooling system further includes a heat exchanger connected to the refrigerant flow path and configured to cool the liquid refrigerant flowing through the refrigerant flow path,
The cooling system according to claim 6, wherein the buffer container is provided in a portion of the refrigerant flow path upstream of a portion to which the heat exchanger is connected.
[8] 前記リザーバタンクは、前記緩衝容器の上方に配置される、[6]又は[7]に記載の冷却システム。 [8] A cooling system as described in [6] or [7], in which the reservoir tank is disposed above the buffer container.
[9] 前記気体吸引ポンプは、モータの回転により前記気体を吸引するように構成され、
 前記気体吸引ポンプは、前記モータの回転数を、前記容器内の温度、前記容器 内の圧力、前記冷媒により冷却された熱媒体の温度、又は前記温度制御対象の温度に応じて調節する、[2]乃至[8]のいずれかに記載の冷却システム。
[9] The gas suction pump is configured to suck the gas by rotation of a motor,
The cooling system according to any one of [2] to [8], wherein the gas suction pump adjusts the rotation speed of the motor in accordance with the temperature in the container, the pressure in the container, the temperature of the heat medium cooled by the refrigerant, or the temperature of the temperature-controlled object.
[10] 前記気体流路における前記気体吸引ポンプの上流側又は下流側の部分に、開度の調節により前記気体流路を通流する前記気体の流量を制御する流量制御弁が設けられ、
 前記流量制御弁は、その開度を、前記容器内の温度、前記容器内の圧力、又は前記冷媒により冷却された熱媒体の温度、又は前記温度制御対象の温度に応じて調節する、[2]乃至[9]のいずれかに記載の冷却システム。
[10] A flow control valve is provided in the gas flow path on the upstream or downstream side of the gas suction pump to control the flow rate of the gas flowing through the gas flow path by adjusting the opening degree,
The cooling system according to any one of [2] to [9], wherein the flow control valve adjusts its opening degree according to the temperature in the container, the pressure in the container, the temperature of the heat medium cooled by the refrigerant, or the temperature of the temperature-controlled object.
[11] 前記容器内にガスを供給するガス供給装置をさらに備え、
 前記ガス供給装置は、前記容器内に供給する前記ガスの量を、前記容器内の温度、前記容器内の圧力、前記冷媒により冷却された熱媒体の温度、又は前記温度制御対象の温度に応じて調節する、[2]乃至[10]のいずれかに記載の冷却システム。
[11] Further comprising a gas supply device for supplying gas into the container,
The cooling system according to any one of [2] to [10], wherein the gas supply device adjusts the amount of the gas supplied into the container in accordance with the temperature in the container, the pressure in the container, the temperature of the heat medium cooled by the refrigerant, or the temperature of the temperature-controlled object.
[12] 前記冷媒流路に接続し、前記冷媒流路を通流する液状の前記冷媒を冷却する熱交換器をさらに備え、
 前記冷媒循環装置は、前記冷媒流路における前記熱交換器が接続する部分よりも下流側の部分に設けられ、第1ポート、第2ポート及び第3ポートを含む三方弁を含み、
 前記三方弁は、前記第1ポートに流入し前記第2ポートから流出する前記冷媒の流量と、前記第1ポートに流入し前記第3ポートから流出する前記冷媒の流量とを調節可能であり、
 前記三方弁は、前記第1ポート及び前記第2ポートの間の流路で前記冷媒流路の一部を構成し、
 前記第3ポートと、前記冷媒流路における前記熱交換器が接続する部分よりも上流側の部分とは、バイパス流路によって接続されている、[1]乃至[11]のいずれかに記載の冷却システム。
[12] The cooling system further includes a heat exchanger connected to the refrigerant flow path and configured to cool the liquid refrigerant flowing through the refrigerant flow path,
the refrigerant circulation device is provided in a portion of the refrigerant flow path downstream of a portion to which the heat exchanger is connected, and includes a three-way valve including a first port, a second port, and a third port;
the three-way valve is capable of adjusting a flow rate of the refrigerant flowing into the first port and flowing out from the second port, and a flow rate of the refrigerant flowing into the first port and flowing out from the third port,
the three-way valve constitutes a part of the refrigerant flow path with a flow path between the first port and the second port,
The cooling system according to any one of [1] to [11], wherein the third port and a portion of the refrigerant flow path upstream of a portion to which the heat exchanger is connected are connected by a bypass flow path.
[13] 前記三方弁は、前記容器内の液状の前記冷媒の液面高さが所定の高さを越えた場合に、前記第1ポートに流入し前記第2ポートから流出する前記冷媒の流量を減少させ、前記第1ポートに流入し前記第3ポートから流出する前記冷媒の流量を増加させ、
 前記三方弁は、前記容器内の液状の前記冷媒の液面高さが所定の高さを下回った場合に、前記第1ポートに流入し前記第2ポートから流出する前記冷媒の流量を増加させ、前記第1ポートに流入し前記第3ポートから流出する前記冷媒の流量を減少させる、[12]に記載の冷却システム。
[13] When a liquid level of the refrigerant in a liquid state in the container exceeds a predetermined level, the three-way valve reduces a flow rate of the refrigerant flowing into the first port and flowing out of the second port and increases a flow rate of the refrigerant flowing into the first port and flowing out of the third port,
The cooling system of [12], wherein the three-way valve increases a flow rate of the refrigerant flowing into the first port and flowing out of the second port and decreases a flow rate of the refrigerant flowing into the first port and flowing out of the third port when a liquid level of the refrigerant in the container falls below a predetermined level.
[14] 前記三方弁は、前記容器内の液状の前記冷媒の液面高さが所定の高さを越えた場合に、前記第1ポートに流入し前記第2ポートから流出する前記冷媒の通流を遮断し、前記第1ポートに流入し前記第3ポートから流出する前記冷媒の通流を許容し、
 前記三方弁は、前記容器内の液状の前記冷媒の液面高さが所定の高さを下回った場合に、前記第1ポートに流入し前記第2ポートから流出する前記冷媒の通流を許容し、前記第1ポートに流入し前記第3ポートから流出する前記冷媒の通流を遮断する、[12]に記載の冷却システム。
[14] When a liquid level of the refrigerant in a liquid state in the container exceeds a predetermined level, the three-way valve blocks the flow of the refrigerant flowing into the first port and flowing out of the second port and allows the flow of the refrigerant flowing into the first port and flowing out of the third port,
The cooling system of [12], wherein the three-way valve allows the refrigerant to flow into the first port and flow out of the second port and blocks the flow of the refrigerant to flow into the first port and flow out of the third port when a liquid level of the refrigerant in the container falls below a predetermined level.
[15] 熱媒体を通流させる熱媒体流路を含む熱媒体通流装置をさらに備え、
 前記熱媒体流路は、前記容器内に配置され、前記熱媒体と前記冷媒とを熱交換させる熱交換部を含み、
 前記熱媒体流路は、前記容器の外部から前記熱交換部に前記熱媒体を送り、前記熱交換部で熱交換した前記熱媒体を前記容器の外部に送る、[1]乃至[14]のいずれかに記載の冷却システム。
[15] The heating device further includes a heat medium flow device including a heat medium flow path through which the heat medium flows,
the heat medium flow path includes a heat exchange portion disposed in the container and exchanging heat between the heat medium and the refrigerant;
The cooling system according to any one of [1] to [14], wherein the heat medium flow path sends the heat medium from outside the container to the heat exchange section and sends the heat medium that has been heat exchanged in the heat exchange section to the outside of the container.
[16] 前記冷媒は、大気圧下での沸点が30℃以上となる物質である、[1]乃至[15]のいずれかに記載の冷却システム。 [16] A cooling system according to any one of [1] to [15], in which the refrigerant is a substance whose boiling point at atmospheric pressure is 30°C or higher.
[17] 前記冷媒は、GWPが10以下である、[1]乃至[16]のいずれかに記載の冷却システム。 [17] A cooling system according to any one of [1] to [16], wherein the refrigerant has a GWP of 10 or less.
[18] 前記冷媒は、HFO-1336mzz-Zである、[1]乃至[17]のいずれかに記載の冷却システム。 [18] A cooling system according to any one of [1] to [17], wherein the refrigerant is HFO-1336mzz-Z.
 本発明によれば、従来の冷凍方式では使用されることがなかった物質を熱サイクルの冷媒として使用できるようになる、又は、熱サイクルの冷媒として使用できる物質の範囲を拡大させることができる。 The present invention makes it possible to use substances that have not been used in conventional refrigeration methods as refrigerants in heat cycles, or to expand the range of substances that can be used as refrigerants in heat cycles.
第1の実施の形態に係る冷却システムを概略的に示す図である。1 is a diagram illustrating a cooling system according to a first embodiment. 図1の冷却システムを構成するコントローラの機能構成を示すブロック図である。2 is a block diagram showing a functional configuration of a controller constituting the cooling system of FIG. 1 . 図1の冷却システムで用いる冷媒の一例のp-h線図である。FIG. 2 is a ph diagram of an example of a refrigerant used in the cooling system of FIG. 1. 第2の実施の形態に係る冷却システムを概略的に示す図である。FIG. 13 is a diagram illustrating a cooling system according to a second embodiment. 第3の実施の形態に係る冷却システムを概略的に示す図である。FIG. 13 is a diagram illustrating a cooling system according to a third embodiment. 第4の実施の形態に係る冷却システムを概略的に示す図である。FIG. 13 is a diagram illustrating a cooling system according to a fourth embodiment.
 以下、各実施の形態を説明する。 Each embodiment is explained below.
<第1の実施の形態>
 図1は、第1の実施の形態に係る冷却システムS1の概略図である。まず、冷却システムS1の構成について説明する。
First Embodiment
1 is a schematic diagram of a cooling system S1 according to a first embodiment. First, the configuration of the cooling system S1 will be described.
(冷却システムの構成)
 図1示すように、第1の実施の形態に係る冷却システムS1は、密封容器10と、減圧装置20と、冷媒循環装置30と、熱交換器40と、熱媒体通流装置50と、ガス供給装置60と、コントローラ100と、を備えている。
(Cooling system configuration)
As shown in FIG. 1 , a cooling system S1 according to the first embodiment includes a sealed container 10, a pressure reducing device 20, a refrigerant circulating device 30, a heat exchanger 40, a heat medium circulating device 50, a gas supplying device 60, and a controller 100.
 冷却システムS1では、密封容器10に液状の冷媒が貯留される。減圧装置20は密封容器10と接続し、密封容器10内に存在する気体又は密封容器10内で気化した気体を吸引することにより、密封容器10内の圧力を減圧する装置である。そして、冷媒循環装置30は減圧装置20と接続し、減圧装置20が密封容器10から吸引した気体から液化した液状の冷媒を通流させ、密封容器10に流入させて戻す。また、冷媒循環装置30は、密封容器10の外部で熱交換器40と接続する。これにより、冷媒循環装置30が通流させる冷媒は、密封容器10と熱交換器40との間で循環する。そして、冷却システムS1は、密封容器10内で熱媒体通流装置50が通流させる熱媒体を冷却し、熱媒体通流装置50は冷却された熱媒体を温度制御対象Tに送る。また、冷媒循環装置30は、冷媒が熱媒体から吸収した熱を熱交換器40から放出する。さらに、本実施の形態では、減圧装置20が後述の冷却部25からも熱を放出する。これにより、熱媒体が連続的に冷却される。 In the cooling system S1, a liquid refrigerant is stored in the sealed container 10. The pressure reducing device 20 is connected to the sealed container 10 and reduces the pressure in the sealed container 10 by sucking in the gas present in the sealed container 10 or the gas evaporated in the sealed container 10. The refrigerant circulation device 30 is connected to the pressure reducing device 20 and causes the liquid refrigerant liquefied from the gas sucked from the sealed container 10 by the pressure reducing device 20 to flow and flow back into the sealed container 10. The refrigerant circulation device 30 is also connected to the heat exchanger 40 outside the sealed container 10. As a result, the refrigerant circulated by the refrigerant circulation device 30 circulates between the sealed container 10 and the heat exchanger 40. The cooling system S1 cools the heat medium circulated by the heat medium circulating device 50 in the sealed container 10, and the heat medium circulating device 50 sends the cooled heat medium to the temperature control target T. The refrigerant circulation device 30 also releases the heat absorbed by the refrigerant from the heat medium from the heat exchanger 40. Furthermore, in this embodiment, the pressure reducing device 20 also releases heat from the cooling section 25 described below. This allows the heat medium to be continuously cooled.
 冷却システムS1では、後述するように、密封容器10内の圧力が減圧装置20によって大気圧よりも小さい圧力に減圧される。一方で、密封容器10外である冷媒循環装置30における冷媒通流環境及び熱交換器40の冷媒通流環境は、密封容器10内の圧力よりも大きい圧力であって、例えば大気圧に設定される。このような環境において、熱交換器40から密封容器10内に冷媒が流入すると、冷媒は膨張し、冷媒の温度は密封容器10内で降温する。これにより、密封容器10内で降温された冷媒により、熱媒体を冷却できる。この際、冷媒は熱媒体との熱交換により蒸発し、この場合は、冷媒の気化潜熱により熱媒体を効率的に冷却できる。そして、上記蒸発した冷媒は気体の状態であり、減圧装置20によって吸引される。 In the cooling system S1, as described below, the pressure inside the sealed container 10 is reduced by the pressure reducing device 20 to a pressure lower than atmospheric pressure. On the other hand, the refrigerant flow environment in the refrigerant circulation device 30 outside the sealed container 10 and the refrigerant flow environment in the heat exchanger 40 are set to a pressure higher than the pressure inside the sealed container 10, for example, atmospheric pressure. In such an environment, when the refrigerant flows from the heat exchanger 40 into the sealed container 10, the refrigerant expands and the temperature of the refrigerant drops inside the sealed container 10. As a result, the heat medium can be cooled by the refrigerant whose temperature has been lowered inside the sealed container 10. At this time, the refrigerant evaporates due to heat exchange with the heat medium, and in this case, the heat medium can be efficiently cooled by the latent heat of vaporization of the refrigerant. The evaporated refrigerant is in a gaseous state and is sucked in by the pressure reducing device 20.
 冷媒循環装置30が循環させる冷媒は特に限定されないが、例えば大気圧下で且つ標準的な環境温度(例えば25℃)で液状となる物質であって、この状態から例えば0.1気圧の環境で膨張された場合に-5℃以下になる物質であり、望ましくは0.01気圧の環境で膨張された場合に-30℃以下になる物質である。このような物質を冷媒として用いた場合には、低温域までの冷却が可能となる。なお、本明細書において大気圧とは、1気圧であって、言い換えると0.1MPa(Abs)を意味する。以下、冷却システムS1の各部について詳述する。 The refrigerant circulated by the refrigerant circulation device 30 is not particularly limited, but is, for example, a substance that becomes liquid under atmospheric pressure and at a standard environmental temperature (e.g., 25°C) and that becomes -5°C or lower when expanded from this state in an environment of, for example, 0.1 atmosphere, and preferably becomes -30°C or lower when expanded in an environment of 0.01 atmosphere. When such a substance is used as a refrigerant, cooling down to low temperatures is possible. Note that in this specification, atmospheric pressure means 1 atmosphere, or in other words, 0.1 MPa (Abs). Each part of the cooling system S1 will be described in detail below.
 密封容器10は、第1流出口11、第2流出口12、流入口13、ガス受入口14、熱媒体入口15、及び熱媒体出口16を含み、これら各口部(11~16)以外の部分からの気体及び液体の流出及び漏出が防止される容器である。密封容器10は、内部の圧力を減圧された際にその形状を維持できる構造に構成され、いわゆる真空断熱容器である。 The sealed container 10 includes a first outlet 11, a second outlet 12, an inlet 13, a gas receiving port 14, a heat medium inlet 15, and a heat medium outlet 16, and is a container that prevents the outflow and leakage of gas and liquid from any part other than these ports (11-16). The sealed container 10 is constructed in a structure that allows it to maintain its shape when the internal pressure is reduced, and is a so-called vacuum insulated container.
 減圧時の密封容器10の形状の維持は、減圧される内部の圧力にもよるが、例えば0.1気圧まで減圧される場合には、密封容器10の外殻部分は、厚さの大きい硬質の金属等から形成されることが好ましい。ただし、密封容器10の具体的な構造は、減圧を予定する程度に応じて適宜決定されればよく、特に限定されない。また、密封容器10は、開口を有する容器本体と、開口を開閉する蓋とを備えてもよい。この場合には、蓋を閉じた際の十分な気密性及び密封性を確保することが必要となる。 Whether the sealed container 10 maintains its shape when decompressed depends on the internal pressure to be reduced, but when the pressure is reduced to, for example, 0.1 atmospheres, it is preferable that the outer shell of the sealed container 10 is formed from a thick, hard metal or the like. However, the specific structure of the sealed container 10 can be appropriately determined according to the expected degree of pressure reduction, and is not particularly limited. The sealed container 10 may also include a container body with an opening, and a lid for opening and closing the opening. In this case, it is necessary to ensure sufficient airtightness and sealing when the lid is closed.
 密封容器10は、液状の冷媒を貯留するようになっており、符号Lfは、液状の冷媒の液溜まりを示し、符号をGfは、気相部分を示す。すなわち、本実施の形態では、密封容器10が、液状の冷媒を気相部分Gfを形成しつつ貯留している。後述する減圧装置20は、密封容器10内の気体を吸引することにより、密封容器10内の圧力を減圧する。ここで、気相部分Gfが形成される場合、減圧装置20に液状の冷媒が進入することが防止され、減圧装置20の運転状態を安定させることができる。また、減圧装置20の故障を抑制できる。 The sealed container 10 is configured to store liquid refrigerant, with the symbol Lf indicating a pool of liquid refrigerant and the symbol Gf indicating a gas phase portion. That is, in this embodiment, the sealed container 10 stores liquid refrigerant while forming a gas phase portion Gf. The pressure reducing device 20, which will be described later, reduces the pressure inside the sealed container 10 by sucking in the gas inside the sealed container 10. Here, when the gas phase portion Gf is formed, the liquid refrigerant is prevented from entering the pressure reducing device 20, and the operating state of the pressure reducing device 20 can be stabilized. Furthermore, breakdowns in the pressure reducing device 20 can be suppressed.
 密封容器10内で液状の冷媒と気相部分Gfとを並存させる環境は、減圧装置20、冷媒循環装置30、及びガス供給装置60の動作を制御することにより、形成できる。 The environment in which the liquid refrigerant and the gas phase portion Gf coexist within the sealed container 10 can be created by controlling the operation of the pressure reducing device 20, the refrigerant circulation device 30, and the gas supply device 60.
 第1流出口11は、減圧装置20に接続され、気体を流出させることが予定された開口である。したがって、密封容器の気相部分Gfで開口することが好ましい。また、ガス受入口14は後述するようにガス供給装置60に接続され、このガス受入口14も、第1流出口11と同様に、密封容器10の気相部分Gfに開口することが好ましい。第1流出口11及びガス受入口14は、密封容器10の上壁又は側壁の上部に設けられることが好ましい。図示の例では、第1流出口11及びガス受入口14が密封容器10の上壁に形成されている。 The first outlet 11 is connected to the pressure reducing device 20 and is an opening intended to allow gas to flow out. Therefore, it is preferable that it opens in the gas phase portion Gf of the sealed container. In addition, the gas receiving port 14 is connected to the gas supply device 60 as described below, and this gas receiving port 14 also preferably opens in the gas phase portion Gf of the sealed container 10, similar to the first outlet 11. The first outlet 11 and the gas receiving port 14 are preferably provided in the upper part of the top wall or side wall of the sealed container 10. In the illustrated example, the first outlet 11 and the gas receiving port 14 are formed in the top wall of the sealed container 10.
 第2流出口12は密封容器10内の液状の冷媒を排出するための開口である。流入口13は、冷媒循環装置30が通流させる液状の冷媒を受け入れる開口である。第2流出口12及び流入口13は、密封容器10の液相部分に開口することが好ましく、密封容器10の底壁又は側壁の下部に設けられることが好ましい。図示の例では、第2流出口12が密封容器10の底壁に形成され、流入口13は密封容器10の側壁の上下方向の中間位置よりも下方に形成されている。また、熱媒体入口15及び熱媒体出口16は密封容器10の液相部分に開口することが好ましく、図示の例では、熱媒体入口15及び熱媒体出口16が密封容器10の底壁に形成されている。 The second outlet 12 is an opening for discharging the liquid refrigerant in the sealed container 10. The inlet 13 is an opening for receiving the liquid refrigerant circulated by the refrigerant circulation device 30. The second outlet 12 and the inlet 13 preferably open to the liquid phase portion of the sealed container 10, and are preferably provided in the bottom wall or the lower part of the side wall of the sealed container 10. In the illustrated example, the second outlet 12 is formed in the bottom wall of the sealed container 10, and the inlet 13 is formed below the middle position in the vertical direction of the side wall of the sealed container 10. In addition, the heat medium inlet 15 and the heat medium outlet 16 preferably open to the liquid phase portion of the sealed container 10, and in the illustrated example, the heat medium inlet 15 and the heat medium outlet 16 are formed in the bottom wall of the sealed container 10.
 減圧装置20は、第1流出口11に接続し、第1流出口11を通して密封容器10から気体を吸引することで密封容器10内の圧力を大気圧よりも小さい圧力に調節する装置である。詳しくは、本実施の形態における減圧装置20は、第1流出口11に接続される気体流路21と、気体流路21上に設けられ、密封容器10から気体流路21に気体を吸引する気体吸引ポンプ22と、気体流路21の下流端21Bに接続され、下流端21Bから流出する気体を貯留するリザーバタンク23と、を含む。 The pressure reducing device 20 is connected to the first outlet 11 and adjusts the pressure inside the sealed container 10 to a pressure lower than atmospheric pressure by sucking gas from the sealed container 10 through the first outlet 11. In more detail, the pressure reducing device 20 in this embodiment includes a gas flow path 21 connected to the first outlet 11, a gas suction pump 22 provided on the gas flow path 21 and sucking gas from the sealed container 10 into the gas flow path 21, and a reservoir tank 23 connected to the downstream end 21B of the gas flow path 21 and storing the gas flowing out from the downstream end 21B.
 気体流路21は、第1流出口11に接続される上流端21Aと、リザーバタンク23に接続される下流端21Bと、を含む。気体吸引ポンプ22は、気体流路21における上流端21Aと下流端21Bとの間の部分に設けられている。 The gas flow path 21 includes an upstream end 21A connected to the first outlet 11 and a downstream end 21B connected to the reservoir tank 23. The gas suction pump 22 is provided in a portion of the gas flow path 21 between the upstream end 21A and the downstream end 21B.
 気体吸引ポンプ22の形式は特に限られないが、潤滑油が吸引経路(気体流路21)側に流出しない又はほとんど流出しないドライ真空ポンプであることが好ましい。ドライ真空ポンプは、ダイアフラム型ドライ真空ポンプ、揺動ピストン型ドライ真空ポンプ、回転翼型ドライ真空ポンプ、スクロール型ドライ真空ポンプ等でもよく、以上に例示した方式とは異なるものである。ただし、気体吸引ポンプ22は湿式の真空ポンプでもよい。 The type of the gas suction pump 22 is not particularly limited, but it is preferable that it is a dry vacuum pump in which lubricating oil does not flow out or hardly flows out into the suction path (gas flow path 21). The dry vacuum pump may be a diaphragm type dry vacuum pump, an oscillating piston type dry vacuum pump, a rotary vane type dry vacuum pump, a scroll type dry vacuum pump, etc., and is different from the types exemplified above. However, the gas suction pump 22 may also be a wet vacuum pump.
 本実施の形態における気体吸引ポンプ22はドライ真空ポンプである。そして、気体吸引ポンプ22は、例えば交流モータ、ブラシレス直流モータ等、インバータにより制御されるモータ22Mを含む。そして、気体吸引ポンプ22は、モータ22Mの回転数を調節することにより、気体の吸引量を調節し、密封容器10内の圧力を調節可能となっている。モータ22Mの回転数は、詳しくはモータ22Mに供給される交流電流の周波数を図示しないインバータにより調節することで行われる。 In this embodiment, the gas suction pump 22 is a dry vacuum pump. The gas suction pump 22 includes a motor 22M, such as an AC motor or a brushless DC motor, that is controlled by an inverter. The gas suction pump 22 can adjust the amount of gas suctioned and the pressure inside the sealed container 10 by adjusting the rotation speed of the motor 22M. More specifically, the rotation speed of the motor 22M is adjusted by adjusting the frequency of the AC current supplied to the motor 22M using an inverter (not shown).
 また、本実施の形態では、気体流路21に流量制御弁24が設けられ、流量制御弁24の開度を調節することによっても、密封容器10内の圧力を調節可能となっている。流量制御弁24は、その開度を調節することにより、気体流路21を通流する気体の流量を調節できる。これにより、気体の吸引量が調節されるため、密封容器10内の圧力の調節が可能となる。 In addition, in this embodiment, a flow control valve 24 is provided in the gas flow path 21, and the pressure inside the sealed container 10 can also be adjusted by adjusting the opening of the flow control valve 24. The flow control valve 24 can adjust the flow rate of the gas flowing through the gas flow path 21 by adjusting its opening. This adjusts the amount of gas suction, making it possible to adjust the pressure inside the sealed container 10.
 気体吸引ポンプ22及び流量制御弁24は、同時に動作して密封容器10内の圧力を調節してもよい。また、気体吸引ポンプ22の運転状態が一定に維持され、流量制御弁24の開度が調節されてもよいし、流量制御弁24の開度が一定に維持され、気体吸引ポンプ22の運転状態が制御されてもよい。 The gas suction pump 22 and the flow control valve 24 may operate simultaneously to adjust the pressure inside the sealed container 10. Alternatively, the operating state of the gas suction pump 22 may be maintained constant and the opening of the flow control valve 24 may be adjusted, or the opening of the flow control valve 24 may be maintained constant and the operating state of the gas suction pump 22 may be controlled.
 流量制御弁24は、本実施の形態では気体流路21における気体吸引ポンプ22の上流側の部分に設けられるが、気体吸引ポンプ22の下流側の部分に設けられてもよい。流量制御弁24は例えばバタフライバルブで構成されるが、特に限られるものではない。 In this embodiment, the flow control valve 24 is provided in the gas flow path 21 upstream of the gas suction pump 22, but may be provided downstream of the gas suction pump 22. The flow control valve 24 is, for example, a butterfly valve, but is not limited to this.
 気体吸引ポンプ22及び流量制御弁24は、コントローラ100に電気的に接続され、コントローラ100によって制御される。本実施の形態では、気体吸引ポンプ22が、図示しないインバータを介してコントローラ100に電気的に接続される。流量制御弁24は、例えばステッピングモータやサーボモータ等の電気モータにより弁体の開度を調節する弁でもよい。この場合、コントローラ100は上記電気モータに電気的に接続する。なお、流量制御弁24は電磁比例弁などでもよい。 The gas suction pump 22 and the flow control valve 24 are electrically connected to the controller 100 and are controlled by the controller 100. In this embodiment, the gas suction pump 22 is electrically connected to the controller 100 via an inverter (not shown). The flow control valve 24 may be a valve that adjusts the opening of the valve body by an electric motor such as a stepping motor or a servo motor. In this case, the controller 100 is electrically connected to the electric motor. The flow control valve 24 may be an electromagnetic proportional valve, etc.
 リザーバタンク23内の圧力は、密封容器10内の圧力よりも高くなっており、例えば大気圧に設定される。これにより、リザーバタンク23は、気体流路21の下流端21Bから流出する気体の少なくとも一部を液状の冷媒に液化して、液状の冷媒を貯留し易くなる。リザーバタンク23は、圧力上昇時の気体吸引ポンプ22の消費電力を抑えるため、安全性のため、また冷媒の充填又は補給のため、例えば開閉可能な蓋を有してもよい。すなわち、リザーバタンク23は、開口を有する容器本体と、開口を開閉する蓋とを備えてもよい。この場合には、蓋を閉じた際の十分な気密性及び密封性を確保することが必要となる。 The pressure inside the reservoir tank 23 is higher than the pressure inside the sealed container 10, and is set to, for example, atmospheric pressure. This makes it easier for the reservoir tank 23 to liquefy at least a portion of the gas flowing out from the downstream end 21B of the gas flow path 21 into liquid refrigerant and store the liquid refrigerant. The reservoir tank 23 may have, for example, an openable lid to reduce power consumption of the gas suction pump 22 when the pressure rises, for safety reasons, and for filling or replenishing the refrigerant. That is, the reservoir tank 23 may have a container body with an opening and a lid that opens and closes the opening. In this case, it is necessary to ensure sufficient airtightness and sealing when the lid is closed.
 本実施の形態では、減圧装置20が、気体流路21における気体吸引ポンプ22の下流側の部分を冷却する冷却部25をさらに含む。これにより、気体流路21の下流端21Bから流出する気体の液化が促進され、例えばリザーバタンク23内の圧力上昇が抑制され得る。冷却部25は、例えば冷却ファンで構成される。ただし、冷却部25の構成は特に限られるものではなく、熱交換器等でもよい。なお、冷却部25は、リザーバタンク23を冷却してもよい。この場合、冷却部25は、リザーバタンク23の内部を冷却してもよいし、外部を冷却してもよい。 In this embodiment, the pressure reducing device 20 further includes a cooling section 25 that cools the portion of the gas flow path 21 downstream of the gas suction pump 22. This promotes liquefaction of the gas flowing out from the downstream end 21B of the gas flow path 21, and can suppress, for example, a rise in pressure inside the reservoir tank 23. The cooling section 25 is, for example, composed of a cooling fan. However, the configuration of the cooling section 25 is not particularly limited, and may be a heat exchanger or the like. The cooling section 25 may cool the reservoir tank 23. In this case, the cooling section 25 may cool the inside or the outside of the reservoir tank 23.
 冷媒循環装置30は、減圧装置20と流入口13とに接続する冷媒流路31と、冷媒流路31に設けられ、リザーバタンク23内の液状の冷媒を冷媒流路31に引き込む循環ポンプ32とを含む。詳しくは、冷媒流路31は、減圧装置20におけるリザーバタンク23に接続されている。冷媒循環装置30は、リザーバタンク23から受け入れた液状の冷媒を通流させ、流入口13から密封容器10に流入させる。 The refrigerant circulation device 30 includes a refrigerant flow path 31 that connects the pressure reducing device 20 and the inlet 13, and a circulation pump 32 that is provided in the refrigerant flow path 31 and draws liquid refrigerant in the reservoir tank 23 into the refrigerant flow path 31. More specifically, the refrigerant flow path 31 is connected to the reservoir tank 23 in the pressure reducing device 20. The refrigerant circulation device 30 circulates the liquid refrigerant received from the reservoir tank 23 and causes it to flow into the sealed container 10 from the inlet 13.
 また、本実施の形態における冷媒循環装置30は、冷媒流路31に設けられる緩衝容器33及び三方弁34をさらに含む。本実施の形態では、循環ポンプ32、緩衝容器33及び三方弁34がそれぞれ冷媒流路31の一部を構成するように冷媒流路31に設けられる。緩衝容器33の下流側に循環ポンプ32が配置され、循環ポンプ32の下流側に三方弁34が配置されるが、このような配置は特に限られるものではない。 The refrigerant circulation device 30 in this embodiment further includes a buffer container 33 and a three-way valve 34 provided in the refrigerant flow path 31. In this embodiment, the circulation pump 32, the buffer container 33, and the three-way valve 34 are provided in the refrigerant flow path 31 so as to each form part of the refrigerant flow path 31. The circulation pump 32 is disposed downstream of the buffer container 33, and the three-way valve 34 is disposed downstream of the circulation pump 32, but such an arrangement is not particularly limited.
 冷媒流路31は、リザーバタンク23に接続される上流端31Aと、流入口13に接続される下流端31Bと、を含む。上流端31Aは、リザーバタンク23の底壁に接続され、リザーバタンク23に連通する。循環ポンプ32、緩衝容器33及び三方弁34はそれぞれ、冷媒流路31における上流端31Aと下流端31Bとの間の部分に設けられている。 The refrigerant flow path 31 includes an upstream end 31A connected to the reservoir tank 23 and a downstream end 31B connected to the inlet 13. The upstream end 31A is connected to the bottom wall of the reservoir tank 23 and communicates with the reservoir tank 23. The circulation pump 32, the buffer container 33, and the three-way valve 34 are each provided in the portion of the refrigerant flow path 31 between the upstream end 31A and the downstream end 31B.
 循環ポンプ32の形式は特に限られず、非容積式のポンプでもよいし、容積式のポンプでもよい。循環ポンプ32は、例えば交流モータ、ブラシレス直流モータ等、インバータにより制御されるモータ32Mを含む。そして、循環ポンプ32は、モータ32Mの回転数を調節することにより、液体の引き込み量を調節し、冷媒流路31を通流する冷媒の流量を調節可能となっている。モータ32Mの回転数は、詳しくはモータ32Mに供給される交流電流の周波数を図示しないインバータにより調節することで行われる。 The type of the circulation pump 32 is not particularly limited, and it may be a non-positive-displacement pump or a positive-displacement pump. The circulation pump 32 includes a motor 32M, such as an AC motor or a brushless DC motor, that is controlled by an inverter. The circulation pump 32 adjusts the amount of liquid drawn in by adjusting the rotation speed of the motor 32M, and is capable of adjusting the flow rate of the refrigerant flowing through the refrigerant flow path 31. More specifically, the rotation speed of the motor 32M is adjusted by adjusting the frequency of the AC current supplied to the motor 32M using an inverter (not shown).
 また、冷媒が循環ポンプ32を通過する際に、冷媒の圧力は昇圧される。冷媒が昇圧されると、冷媒の温度は上がる。冷媒流路31には上述した熱交換器40が接続されるが、熱交換器40は、循環ポンプ32の下流側で冷媒流路31に接続される。これにより、熱交換器40は、冷媒を効率的に冷却できる。 In addition, when the refrigerant passes through the circulation pump 32, the pressure of the refrigerant is increased. When the pressure of the refrigerant is increased, the temperature of the refrigerant rises. The above-mentioned heat exchanger 40 is connected to the refrigerant flow path 31, and the heat exchanger 40 is connected to the refrigerant flow path 31 downstream of the circulation pump 32. This allows the heat exchanger 40 to efficiently cool the refrigerant.
 緩衝容器33は、リザーバタンク23内から引き込まれた冷媒を受け入れる受入口33Aと、冷媒を流出させる排出口33Bとを含む。これにより、リザーバタンク23内から冷媒流路31に引き込まれる液状の冷媒は、受入口33Aから排出口33Bを通して緩衝容器33を通過した後、密封容器10に流入する。 The buffer container 33 includes an inlet 33A that receives the refrigerant drawn from the reservoir tank 23, and an outlet 33B that allows the refrigerant to flow out. As a result, the liquid refrigerant drawn from the reservoir tank 23 into the refrigerant flow path 31 passes through the buffer container 33 from the inlet 33A through the outlet 33B, and then flows into the sealed container 10.
 緩衝容器33は一定量の液状の冷媒を貯留するようになっており、本実施の形態における緩衝容器33は、その貯留空間が満たされるように液状の冷媒を貯留する。緩衝容器33の貯留空間は液状の冷媒に満たされなくてもよい。ただし、緩衝容器33の貯留空間を占める液状の冷媒の量が多いほうが、排出口33Bから冷媒をスムーズに排出できる。この観点で、緩衝容器33の貯留空間は液状の冷媒で満たされることが好ましく、そうでない場合であっても、緩衝容器33の貯留空間における液状の冷媒が貯留される量は、上記貯留空間に対する体積割合で50%以上がよく、70%以上、80%以上、90%以上でもよい。 The buffer container 33 is adapted to store a certain amount of liquid refrigerant, and in this embodiment, the buffer container 33 stores liquid refrigerant so that its storage space is filled. The storage space of the buffer container 33 does not have to be filled with liquid refrigerant. However, the greater the amount of liquid refrigerant occupying the storage space of the buffer container 33, the smoother the refrigerant can be discharged from the outlet 33B. From this perspective, it is preferable that the storage space of the buffer container 33 is filled with liquid refrigerant, and even if this is not the case, the amount of liquid refrigerant stored in the storage space of the buffer container 33 is preferably 50% or more in terms of volume ratio to the storage space, and may be 70% or more, 80% or more, or 90% or more.
 本実施の形態では排出口33Bが、緩衝容器33の側壁の下部に設けられる。これにより、冷媒が緩衝容器33をスムーズに通過し得る。 In this embodiment, the outlet 33B is provided at the bottom of the side wall of the buffer container 33. This allows the refrigerant to pass through the buffer container 33 smoothly.
 緩衝容器33は、液状の冷媒を受入口33Aから受け入れるが、本実施の形態では、リザーバタンク23が緩衝容器33の上方に配置されることにより、リザーバタンク23に貯留される液状の冷媒をその自重によって緩衝容器33にスムーズに送ることが可能となる。受入口33Aは、緩衝容器33の上部、具体的には上壁に設けられ、これにより冷媒流路31におけるリザーバタンク23と緩衝容器33との間の部分の配管長が抑制され得る。 The buffer container 33 receives liquid refrigerant from the receiving port 33A, but in this embodiment, the reservoir tank 23 is disposed above the buffer container 33, so that the liquid refrigerant stored in the reservoir tank 23 can be smoothly sent to the buffer container 33 by its own weight. The receiving port 33A is provided at the top of the buffer container 33, specifically on the top wall, which makes it possible to reduce the piping length of the portion of the refrigerant flow path 31 between the reservoir tank 23 and the buffer container 33.
 緩衝容器33は、基本的には液状の冷媒を受入口33Aから受け入れるが、液化していない気化冷媒を含む気体を受け入れる場合もある。ここで、緩衝容器33に受け入れられる液状の冷媒又は気体は比較的温度が高い場合があるが、リザーバタンク23からの液状の冷媒又は気体が、液状の冷媒を貯留する緩衝容器33に流入される場合には、冷媒循環装置30が循環させる冷媒の温度が不所望に乱れることが抑制され得る。すなわち、緩衝容器33に受け入れられる液状の冷媒又は気体は比較的温度が高い場合であっても、当該冷媒又は気体は既に緩衝容器33に貯留された液状の冷媒に混ぜられた後に、緩衝容器33から流出し得るため、緩衝容器33の下流側を通流する冷媒の温度が不所望に乱れることが抑制され得る。 The buffer container 33 basically receives liquid refrigerant from the receiving port 33A, but may also receive gas containing unliquefied vaporized refrigerant. Here, the liquid refrigerant or gas received in the buffer container 33 may be relatively high in temperature, but when liquid refrigerant or gas from the reservoir tank 23 flows into the buffer container 33 that stores liquid refrigerant, undesired disturbances in the temperature of the refrigerant circulated by the refrigerant circulation device 30 can be suppressed. In other words, even if the liquid refrigerant or gas received in the buffer container 33 is relatively high in temperature, the refrigerant or gas can flow out of the buffer container 33 after being mixed with the liquid refrigerant already stored in the buffer container 33, and therefore undesired disturbances in the temperature of the refrigerant flowing downstream of the buffer container 33 can be suppressed.
 三方弁34は、冷媒流路31における後述の熱交換器40が接続する部分よりも下流側の部分に設けられている。三方弁34は、第1ポート341、第2ポート342及び第3ポート343を含む。そして、三方弁34は、第1ポート341に流入し第2ポート342から流出する冷媒の流量と、第1ポート341に流入し第3ポート343から流出する冷媒の流量とを調節可能である。 The three-way valve 34 is provided in a portion of the refrigerant flow path 31 downstream of the portion to which the heat exchanger 40 described below is connected. The three-way valve 34 includes a first port 341, a second port 342, and a third port 343. The three-way valve 34 can adjust the flow rate of the refrigerant that flows into the first port 341 and flows out from the second port 342, and the flow rate of the refrigerant that flows into the first port 341 and flows out from the third port 343.
 三方弁34は、第1ポート341及び第2ポート342の間の流路で冷媒流路31の一部を構成している。また、第3ポート343は、冷媒流路31における熱交換器40が接続する部分よりも上流側の部分と、バイパス流路38によって接続されている。詳しくは、バイパス流路38は、緩衝容器33と接続している。これにより、本実施の形態では、三方弁34は、冷媒流路31において熱交換器40で冷却された冷媒の一部又は全部を、密封容器10に送らずに、緩衝容器33に送ることができる。 The three-way valve 34 constitutes part of the refrigerant flow path 31 in the flow path between the first port 341 and the second port 342. The third port 343 is connected to a portion of the refrigerant flow path 31 upstream of the portion to which the heat exchanger 40 is connected by a bypass flow path 38. More specifically, the bypass flow path 38 is connected to the buffer container 33. As a result, in this embodiment, the three-way valve 34 can send some or all of the refrigerant cooled by the heat exchanger 40 in the refrigerant flow path 31 to the buffer container 33 without sending it to the sealed container 10.
 密封容器10内に貯留される液状の冷媒の量は、冷却システムS1の運転状態に応じて増減し得る。密封容器10内に貯留される液状の冷媒の量が過剰に多くなった場合には、減圧装置20が液状の冷媒を吸引するリスクが高まる。例えばこのような場合に、三方弁34は、密封容器10側へ通流する冷媒の流量を減少させる又は遮断することにより、密封容器10内の液状の冷媒が過剰に多くなる状況を回避できる。 The amount of liquid refrigerant stored in the sealed container 10 can increase or decrease depending on the operating state of the cooling system S1. If the amount of liquid refrigerant stored in the sealed container 10 becomes excessively large, there is an increased risk that the pressure reducing device 20 will suck in the liquid refrigerant. For example, in such a case, the three-way valve 34 can prevent the amount of liquid refrigerant in the sealed container 10 from becoming excessive by reducing or blocking the flow rate of the refrigerant flowing to the sealed container 10.
 本実施の形態における三方弁34は、比例式の三方弁である。三方弁34は、例えばステッピングモータやサーボモータ等の電気モータにより弁体の開度を調節する弁でもよく、この場合、コントローラ100に上記電気モータを電気的に接続する。ただし、三方弁34は電磁比例式の三方弁でもよいし、二位置の三方弁でもよい。 The three-way valve 34 in this embodiment is a proportional three-way valve. The three-way valve 34 may be a valve that adjusts the opening of the valve body using an electric motor such as a stepping motor or a servo motor, in which case the electric motor is electrically connected to the controller 100. However, the three-way valve 34 may be an electromagnetic proportional three-way valve or a two-position three-way valve.
 また、上述したように密封容器10における第2流出口12は密封容器10内の液状の冷媒を排出するための開口であるが、本実施の形態では、第2流出口12は、ベント流路28により、冷媒流路31に、詳しくは緩衝容器33に接続されている。そして、ベント流路28にはベント制御弁29が設けられている。ベント流路28は、ベント制御弁29を開放されることで密封容器10内の液状の冷媒を緩衝容器33に直接的に流入させることができる。ベント制御弁29は、密封容器10内に貯留される液状の冷媒の量が過剰に多くなった場合に開放されてもよい。 As described above, the second outlet 12 in the sealed container 10 is an opening for discharging the liquid refrigerant in the sealed container 10, but in this embodiment, the second outlet 12 is connected to the refrigerant flow path 31, more specifically to the buffer container 33, by a vent flow path 28. A vent control valve 29 is provided in the vent flow path 28. By opening the vent control valve 29, the vent flow path 28 can allow the liquid refrigerant in the sealed container 10 to flow directly into the buffer container 33. The vent control valve 29 may be opened when the amount of liquid refrigerant stored in the sealed container 10 becomes excessive.
 熱交換器40は、冷媒流路31における循環ポンプ32の下流側であって三方弁34の上流の部分に接続する。上述したように冷却システムS1は、密封容器10内で熱媒体通流装置50が通流させる熱媒体を冷却する。そして、冷媒循環装置30は、冷媒が熱媒体から吸収した熱を熱交換器40から放出する。すなわち、熱交換器40は、冷媒流路31を通流する液状の冷媒を冷却する。 The heat exchanger 40 is connected to the refrigerant flow path 31 downstream of the circulation pump 32 and upstream of the three-way valve 34. As described above, the cooling system S1 cools the heat medium circulated by the heat medium circulating device 50 inside the sealed container 10. The refrigerant circulating device 30 then releases the heat absorbed by the refrigerant from the heat medium from the heat exchanger 40. In other words, the heat exchanger 40 cools the liquid refrigerant flowing through the refrigerant flow path 31.
 本実施の形態における熱交換器40は液冷式の熱交換器であり、冷媒を冷却するための冷却水を通流させる冷却水流路44に接続されている。冷却水は水でもよいし、他の液体でもよい。また、熱交換器40は空冷式の熱交換器でもよい。 The heat exchanger 40 in this embodiment is a liquid-cooled heat exchanger, and is connected to a cooling water flow path 44 through which cooling water flows to cool the refrigerant. The cooling water may be water or another liquid. The heat exchanger 40 may also be an air-cooled heat exchanger.
 熱媒体通流装置50は、熱媒体を通流させる熱媒体流路51と、熱媒体流路51に設けられた熱交換部52及びポンプ53と、を含む。本実施の形態における熱媒体通流装置50では、熱媒体流路51の上流端51Aと下流端51Bとの間に熱交換部52及びポンプ53が設けられ、熱媒体流路51の上流端51Aと下流端51Bとが温度制御対象Tに接続される。これにより、熱媒体通流装置50は、熱媒体を温度制御対象Tを介して循環させる。 The heat medium flow device 50 includes a heat medium flow path 51 through which the heat medium flows, and a heat exchange unit 52 and a pump 53 provided in the heat medium flow path 51. In the heat medium flow device 50 of this embodiment, the heat exchange unit 52 and the pump 53 are provided between the upstream end 51A and the downstream end 51B of the heat medium flow path 51, and the upstream end 51A and the downstream end 51B of the heat medium flow path 51 are connected to the temperature control target T. In this way, the heat medium flow device 50 circulates the heat medium through the temperature control target T.
 詳しくは、本実施の形態における熱媒体流路51は、密封容器10における熱媒体入口15から密封容器10に入り込み、その後、熱媒体出口16から密封容器10の外部に延び出す。そして、熱媒体流路51の上流端51A、下流端51B及び温度制御対象Tは密封容器10の外部に位置する。また、本実施の形態に係る熱媒体通流装置50では、熱交換部52が熱媒体流路51における密封容器10内に位置する部分に設けられ、すなわち、熱交換部52が密封容器10内に配置される。これにより、熱媒体流路51は、密封容器10の外部から熱交換部52に熱媒体を送り、熱交換部52で熱交換した熱媒体を密封容器10の外部に送る。 More specifically, the heat medium flow path 51 in this embodiment enters the sealed container 10 from the heat medium inlet 15 in the sealed container 10, and then extends to the outside of the sealed container 10 from the heat medium outlet 16. The upstream end 51A, downstream end 51B, and temperature control target T of the heat medium flow path 51 are located outside the sealed container 10. In addition, in the heat medium flow device 50 according to this embodiment, the heat exchange unit 52 is provided in a portion of the heat medium flow path 51 located inside the sealed container 10, that is, the heat exchange unit 52 is disposed inside the sealed container 10. As a result, the heat medium flow path 51 sends the heat medium from the outside of the sealed container 10 to the heat exchange unit 52, and sends the heat medium that has been heat exchanged in the heat exchange unit 52 to the outside of the sealed container 10.
 熱媒体は特に限られるものではないが、本実施の形態では不凍液である。熱媒体は、密封容器10及び熱交換器40との間で循環される冷媒と同じでもよい。すなわち、熱媒体は、例えば大気圧下で且つ標準的な環境温度(例えば25℃)の状態から例えば0.1気圧の環境で膨張された場合に、-5℃以下になる物質であり、望ましくは0.01気圧の環境で膨張された場合に-30℃以下になる物質である。冷媒と熱媒体とが同じである場合、製造効率やコスト面で有利になる。ただし、熱媒体は水等でもよい。 The heat medium is not particularly limited, but in this embodiment, it is an antifreeze liquid. The heat medium may be the same as the refrigerant circulated between the sealed container 10 and the heat exchanger 40. That is, the heat medium is a substance that becomes -5°C or lower when expanded, for example, from atmospheric pressure and a standard environmental temperature (for example, 25°C) to an environment of 0.1 atmosphere, and preferably becomes -30°C or lower when expanded in an environment of 0.01 atmosphere. If the refrigerant and the heat medium are the same, it is advantageous in terms of manufacturing efficiency and cost. However, the heat medium may be water, etc.
 熱交換部52は、通流させる熱媒体を密封容器10内の冷媒と熱交換させる。熱交換部52はフィンチューブ等の熱交換器で構成されてもよいし、管材から構成され密封容器10とともにシェルアンドチューブのような構成を形成するものでもよい。また、熱交換部52は、密封容器10の外面に接するような構造物でもよい。この場合、熱媒体通流装置50の全体が密封容器10の外部に配置されることになる。 The heat exchange unit 52 exchanges heat between the heat medium being passed through and the refrigerant inside the sealed container 10. The heat exchange unit 52 may be composed of a heat exchanger such as a fin tube, or may be composed of a pipe material and form a shell-and-tube type structure together with the sealed container 10. The heat exchange unit 52 may also be a structure that contacts the outer surface of the sealed container 10. In this case, the entire heat medium flow device 50 is disposed outside the sealed container 10.
 ポンプ53は、熱媒体流路51における密封容器10の外部に位置する部分に設けられている。ポンプ53の形式は特に限られず、非容積式のポンプでもよいし、容積式のポンプでもよい。ポンプ53は、例えば交流モータ、ブラシレス直流モータ等、インバータにより制御されるモータ53Mを含む。そして、ポンプ53は、モータ53Mの回転数を調節することにより、液体の引き込み量を調節し、熱媒体流路51を通流する冷媒の流量を調節可能となっている。モータ53Mの回転数は、詳しくはモータ53Mに供給される交流電流の周波数を図示しないインバータにより調節することで行われる。 The pump 53 is provided in a portion of the heat medium flow path 51 located outside the sealed container 10. The type of the pump 53 is not particularly limited, and it may be a non-positive-displacement pump or a positive-displacement pump. The pump 53 includes a motor 53M, such as an AC motor or a brushless DC motor, that is controlled by an inverter. The pump 53 can adjust the amount of liquid drawn in by adjusting the rotation speed of the motor 53M, thereby adjusting the flow rate of the refrigerant flowing through the heat medium flow path 51. More specifically, the rotation speed of the motor 53M is adjusted by adjusting the frequency of the AC current supplied to the motor 53M using an inverter (not shown).
 なお、本実施の形態では、熱媒体流路51の上流端51Aと下流端51Bとが温度制御対象Tに接続される。ただし、熱媒体通流装置50は熱媒体流路51の上流端51Aと下流端51Bとを接続する温度制御部を有し、温度制御部と温度制御対象Tとを熱交換させる構成でもよい。また、熱媒体通流装置50は、下流端50Bから熱媒体を放水する構成でもよい。 In this embodiment, the upstream end 51A and downstream end 51B of the heat medium flow path 51 are connected to the temperature-control target T. However, the heat medium flow device 50 may have a temperature control unit that connects the upstream end 51A and downstream end 51B of the heat medium flow path 51, and may be configured to exchange heat between the temperature control unit and the temperature-control target T. The heat medium flow device 50 may also be configured to discharge the heat medium from the downstream end 50B.
 ガス供給装置60は、密封容器10のガス受入口14に接続し、密封容器10内にガスを供給することが可能となっている。ガス供給装置60は、例えば密封容器10内の圧力の急降下を抑制するために設けられている。詳しくは、ガス供給装置60は、密封容器10内に供給するガスの量を、密封容器10内の温度、密封容器10内の圧力、又は冷媒により冷却された熱媒体の温度、又は温度制御対象Tの温度に応じて調節することができる。 The gas supply device 60 is connected to the gas inlet 14 of the sealed container 10, and is capable of supplying gas into the sealed container 10. The gas supply device 60 is provided, for example, to suppress a sudden drop in pressure inside the sealed container 10. In detail, the gas supply device 60 can adjust the amount of gas supplied into the sealed container 10 according to the temperature inside the sealed container 10, the pressure inside the sealed container 10, the temperature of the heat medium cooled by the refrigerant, or the temperature of the temperature control target T.
 ガス供給装置60は、詳しくは、ガス流路61と、ガス流路61に設けられたガス流量調節弁62と、ガス流路61の上流端に接続し、ガス流路61にガスを供給するガス源63と、を含む。ガス流量調節弁62は、コントローラ100に電気的に接続され、コントローラ100によって制御される。ガス流量調節弁62は、例えばステッピングモータやサーボモータ等の電気モータにより弁体の開度を調節する弁でもよい。この場合、コントローラ100は上記電気モータに電気的に接続する。なお、ガス流量調節弁62は電磁比例弁などでもよい。 The gas supply device 60 specifically includes a gas flow path 61, a gas flow control valve 62 provided in the gas flow path 61, and a gas source 63 connected to the upstream end of the gas flow path 61 and supplying gas to the gas flow path 61. The gas flow control valve 62 is electrically connected to a controller 100 and is controlled by the controller 100. The gas flow control valve 62 may be a valve that adjusts the opening of a valve body by an electric motor such as a stepping motor or a servo motor. In this case, the controller 100 is electrically connected to the electric motor. The gas flow control valve 62 may be an electromagnetic proportional valve, etc.
 ガス源63が貯蔵するガスは本実施の形態では窒素である。ただし、ガス源63が貯蔵するガスは、例えばネオン、アルゴン等の不活性ガスでもよい。供給されるガスは、密封容器10内に供給された際に、密封容器10内の冷媒と同程度の温度に制御されていることが望ましい。 In this embodiment, the gas stored in the gas source 63 is nitrogen. However, the gas stored in the gas source 63 may be an inert gas such as neon or argon. It is desirable that the gas to be supplied is controlled to a temperature similar to that of the refrigerant in the sealed container 10 when it is supplied into the sealed container 10.
 また、冷却システムS1は、密封容器10内の温度を検出する冷媒温度センサ71と、密封容器10の圧力を検出する圧力センサ72と、密封容器10内の液状の冷媒の液面高さを検出する液面センサ73と、密封容器10内で冷媒に冷却されて密封容器10の外部に流出した熱媒体の温度を検出する熱媒体温度センサ74と、をさらに備えている。 The cooling system S1 also includes a refrigerant temperature sensor 71 that detects the temperature inside the sealed container 10, a pressure sensor 72 that detects the pressure inside the sealed container 10, a liquid level sensor 73 that detects the liquid level of the liquid refrigerant inside the sealed container 10, and a heat medium temperature sensor 74 that detects the temperature of the heat medium that has been cooled by the refrigerant inside the sealed container 10 and flows out of the sealed container 10.
 冷媒温度センサ71は、密封容器10内における液状の冷媒の温度を検出し、検出した温度を密封容器10内の温度として特定する。ただし、冷媒温度センサ71は、密封容器10における気相部分の温度を検出し、これを密封容器10内の冷媒の温度として特定してもよい。 The refrigerant temperature sensor 71 detects the temperature of the liquid refrigerant in the sealed container 10 and identifies the detected temperature as the temperature inside the sealed container 10. However, the refrigerant temperature sensor 71 may also detect the temperature of the gas phase portion of the sealed container 10 and identify this as the temperature of the refrigerant inside the sealed container 10.
 圧力センサ72は、密封容器10内における気相部分Gfの圧力を検出し、検出した圧力を密封容器10内の圧力として特定する。液面センサ73は、レーザ変位計等の光学式のセンサであり、冷媒の液面に密封容器10の上壁から光を照射するとともに、反射光を受光して、液面の高さを演算する。ただし、液面センサ73はフロート式のセンサでもよい。熱媒体温度センサ74は、熱媒体流路51における熱交換部52の下流側であって密封容器10の外部を通流する熱媒体の温度を検出する。各センサ(71~74)は、コントローラ100に電気的に接続され、各センサの検出結果は、コントローラ100に送られる。 The pressure sensor 72 detects the pressure of the gas phase portion Gf in the sealed container 10, and identifies the detected pressure as the pressure inside the sealed container 10. The liquid level sensor 73 is an optical sensor such as a laser displacement meter, and irradiates the refrigerant liquid level with light from the top wall of the sealed container 10 and receives the reflected light to calculate the height of the liquid level. However, the liquid level sensor 73 may also be a float type sensor. The heat medium temperature sensor 74 detects the temperature of the heat medium flowing outside the sealed container 10, downstream of the heat exchanger 52 in the heat medium flow path 51. Each sensor (71 to 74) is electrically connected to the controller 100, and the detection results of each sensor are sent to the controller 100.
 コントローラ100は、上述の各センサ(71~74)に電気的に接続されるとともに、気体吸引ポンプ22,流量制御弁24、循環ポンプ32、三方弁34、ガス流量調節弁62に電気的に接続されている。コントローラ100は、例えばCPU、ROM等を有するコンピュータで構成されてもよい。この場合、ROMに格納されたプログラムに従い、各種処理を行う。なお、コントローラ100は、その他のプロセッサや電気回路(例えばFPGA(Field Programmable Gate Alley)等)で構成されてもよい。 The controller 100 is electrically connected to each of the above-mentioned sensors (71-74), and is also electrically connected to the gas suction pump 22, the flow control valve 24, the circulation pump 32, the three-way valve 34, and the gas flow adjustment valve 62. The controller 100 may be configured, for example, as a computer having a CPU, ROM, etc. In this case, various processes are performed according to the programs stored in the ROM. The controller 100 may also be configured as other processors or electrical circuits (for example, an FPGA (Field Programmable Gate Alley), etc.).
(コントローラの機能構成)
 図2は、コントローラ100の機能構成を示すブロック図である。図2に示すように、コントローラ100は、センサ情報取得部101と、循環ポンプ調節部102と、バイパス量調節部103と、回転数調節部104と、弁開度調節部105と、ガス供給量調節部106と、を有している。なお、コントローラ100は、例えば一つのコンピュータで構成されてもよいし、複数のコンピュータで構成されてもよい。複数のコンピュータで構成される場合、上記複数の機能部は、複数のコンピュータに振り分けられてもよい。
(Controller functional configuration)
Fig. 2 is a block diagram showing the functional configuration of the controller 100. As shown in Fig. 2, the controller 100 has a sensor information acquisition unit 101, a circulation pump adjustment unit 102, a bypass amount adjustment unit 103, a rotation speed adjustment unit 104, a valve opening adjustment unit 105, and a gas supply amount adjustment unit 106. The controller 100 may be configured, for example, by one computer or by multiple computers. When configured by multiple computers, the multiple functional units may be distributed among the multiple computers.
 センサ情報取得部101は、上述した冷媒温度センサ71、圧力センサ72と、液面センサ73、及び熱媒体温度センサ74からそれぞれの検出結果を取得する部分である。センサ情報取得部101は、取得した検出結果に関する情報の一つ又は複数を、バイパス量調節部103、回転数調節部104、弁開度調節部105及びガス供給量調節部106に提供する。 The sensor information acquisition unit 101 is a part that acquires the detection results from the above-mentioned refrigerant temperature sensor 71, pressure sensor 72, liquid level sensor 73, and heat medium temperature sensor 74. The sensor information acquisition unit 101 provides one or more pieces of information related to the acquired detection results to the bypass amount adjustment unit 103, the rotation speed adjustment unit 104, the valve opening adjustment unit 105, and the gas supply amount adjustment unit 106.
 循環ポンプ調節部102は、循環ポンプ32に電気的に接続され、循環ポンプ32の動作を制御する部分である。詳しくは、循環ポンプ調節部102は、循環ポンプ32におけるモータ32Mにインバータを介して接続する。そして、循環ポンプ調節部102は、インバータからモータ32Mに供給する交流電流の周波数を調節することで、冷媒流路31を通流する冷媒の流量を調節する。 The circulation pump adjustment unit 102 is electrically connected to the circulation pump 32 and controls the operation of the circulation pump 32. More specifically, the circulation pump adjustment unit 102 is connected to the motor 32M of the circulation pump 32 via an inverter. The circulation pump adjustment unit 102 adjusts the frequency of the AC current supplied from the inverter to the motor 32M, thereby adjusting the flow rate of the refrigerant flowing through the refrigerant flow path 31.
 循環ポンプ調節部102には、例えば図示しない入力装置により冷媒の目標流量が入力されて保持され、循環ポンプ調節部102は、冷媒の流量が目標流量に一致するように循環ポンプ32のモータ32Mの回転数を調節する。 The target flow rate of the refrigerant is input and held in the circulation pump adjustment unit 102, for example, by an input device (not shown), and the circulation pump adjustment unit 102 adjusts the rotation speed of the motor 32M of the circulation pump 32 so that the flow rate of the refrigerant matches the target flow rate.
 バイパス量調節部103は、三方弁34に電気的に接続され、三方弁34の動作を制御する部分である。詳しくは、バイパス量調節部103には、例えば図示しない入力装置により、密封容器10内の液状の冷媒の液面の目標高さが入力され、保持されている。そして、バイパス量調節部103は、密封容器10内の液状の冷媒の液面高さが所定の高さとしての上記目標高さに維持されるように、液面センサ73からの検出結果を使って三方弁34を制御する。すなわち、液面センサ73からの検出結果である液面高さと、目標高さとの差分に応じて、三方弁34が制御される。 The bypass amount adjustment unit 103 is electrically connected to the three-way valve 34 and controls the operation of the three-way valve 34. In detail, the target liquid level of the liquid refrigerant in the sealed container 10 is input and held in the bypass amount adjustment unit 103, for example, by an input device (not shown). The bypass amount adjustment unit 103 then controls the three-way valve 34 using the detection result from the liquid level sensor 73 so that the liquid level of the liquid refrigerant in the sealed container 10 is maintained at the above-mentioned target height as a predetermined height. In other words, the three-way valve 34 is controlled according to the difference between the liquid level detected by the liquid level sensor 73 and the target height.
 具体的に本実施の形態では、バイパス量調節部103からの指令に応じて、三方弁34は、密封容器10内の液状の冷媒の液面高さが所定の高さを越えた場合に、第1ポート341に流入し第2ポート342から流出する冷媒の流量を減少させ、第1ポート341に流入し第3ポート343から流出する冷媒の流量を増加させる。また、三方弁34は、密封容器10内の液状の冷媒の液面高さが所定の高さを下回った場合に、第1ポート341に流入し第2ポート342から流出する冷媒の流量を増加させ、第1ポート341に流入し第3ポート343から流出する前記冷媒の流量を減少させる。 Specifically, in this embodiment, in response to a command from the bypass amount adjustment unit 103, when the liquid level of the liquid refrigerant in the sealed container 10 exceeds a predetermined level, the three-way valve 34 reduces the flow rate of the refrigerant flowing into the first port 341 and flowing out from the second port 342, and increases the flow rate of the refrigerant flowing into the first port 341 and flowing out from the third port 343. In addition, when the liquid level of the liquid refrigerant in the sealed container 10 falls below a predetermined level, the three-way valve 34 increases the flow rate of the refrigerant flowing into the first port 341 and flowing out from the second port 342, and decreases the flow rate of the refrigerant flowing into the first port 341 and flowing out from the third port 343.
 なお、三方弁34は、密封容器10内の液状の冷媒の液面高さが所定の高さを越えた場合に、第1ポート341に流入し第2ポート342から流出する冷媒の通流を遮断し、第1ポート341に流入し第3ポート343から流出する冷媒の通流を許容してもよい。一方で、三方弁34は、密封容器10内の液状の冷媒の液面高さが所定の高さを下回った場合に、第1ポート341に流入し第2ポート342から流出する冷媒の通流を許容し、第1ポート341に流入し第3ポート343から流出する冷媒の通流を遮断してもよい。 In addition, when the liquid level of the liquid refrigerant in the sealed container 10 exceeds a predetermined level, the three-way valve 34 may block the flow of the refrigerant that flows into the first port 341 and flows out from the second port 342, and allow the flow of the refrigerant that flows into the first port 341 and flows out from the third port 343. On the other hand, when the liquid level of the liquid refrigerant in the sealed container 10 falls below a predetermined level, the three-way valve 34 may allow the flow of the refrigerant that flows into the first port 341 and flows out from the second port 342, and block the flow of the refrigerant that flows into the first port 341 and flows out from the third port 343.
 回転数調節部104は、気体吸引ポンプ22に電気的に接続され、気体吸引ポンプ22の動作を制御する部分である。詳しくは、回転数調節部104は、気体吸引ポンプ22におけるモータ22Mにインバータを介して接続する。そして、回転数調節部104は、インバータからモータ22Mに供給する交流電流の周波数を調節することで、減圧装置20における気体流路21を通流する気体の流量を調節する。 The rotation speed adjustment unit 104 is electrically connected to the gas suction pump 22 and controls the operation of the gas suction pump 22. More specifically, the rotation speed adjustment unit 104 is connected to the motor 22M in the gas suction pump 22 via an inverter. The rotation speed adjustment unit 104 adjusts the frequency of the alternating current supplied from the inverter to the motor 22M, thereby adjusting the flow rate of gas passing through the gas flow path 21 in the pressure reduction device 20.
 回転数調節部104には、例えば図示しない入力装置により、熱媒体通流装置50が循環させる熱媒体の目標温度が入力されて保持され、回転数調節部104は、例えば熱媒体温度センサ74が検出する温度が目標温度に一致するように気体吸引ポンプ22のモータ22Mの回転数を調節し、密封容器10内を減圧する。すなわち、気体吸引ポンプ22は、熱媒体温度センサ74からの検出結果である熱媒体の温度と、目標温度との差分に応じて制御されてもよい。 The target temperature of the heat medium circulated by the heat medium flow device 50 is input and held in the rotation speed adjustment unit 104, for example, by an input device (not shown), and the rotation speed adjustment unit 104 adjusts the rotation speed of the motor 22M of the gas suction pump 22 so that the temperature detected by the heat medium temperature sensor 74 matches the target temperature, thereby reducing the pressure inside the sealed container 10. In other words, the gas suction pump 22 may be controlled according to the difference between the temperature of the heat medium detected by the heat medium temperature sensor 74 and the target temperature.
 なお、以上に説明した制御例では、熱媒体の温度が目標温度に一致するように減圧装置20の気体吸引ポンプ22が制御されるが、これに代えて、密封容器10内の温度(冷媒温度センサ71の検出結果)、温度制御対象Tの温度(図示しない温度センサの検出結果)、又は密封容器10内の圧力が、それぞれの目標値に一致するように、モータ22Mの回転数が調節されてもよい。 In the control example described above, the gas suction pump 22 of the pressure reducing device 20 is controlled so that the temperature of the heat medium matches the target temperature, but instead, the rotation speed of the motor 22M may be adjusted so that the temperature inside the sealed container 10 (detection result of the refrigerant temperature sensor 71), the temperature of the temperature control target T (detection result of a temperature sensor not shown), or the pressure inside the sealed container 10 matches their respective target values.
 また、弁開度調節部105は、流量制御弁24に電気的に接続され、流量制御弁24の動作を制御する部分である。弁開度調節部105は、流量制御弁24の開度を調節することで、減圧装置20における気体流路21を通流する気体の流量を調節する。 The valve opening adjustment unit 105 is electrically connected to the flow control valve 24 and controls the operation of the flow control valve 24. The valve opening adjustment unit 105 adjusts the opening of the flow control valve 24 to adjust the flow rate of gas passing through the gas flow path 21 in the pressure reducing device 20.
 弁開度調節部105は、密封容器10内の温度(冷媒温度センサ71の検出結果)、密封容器10内の圧力(圧力センサ72の検出結果)、冷媒により冷却された熱媒体の温度(熱媒体温度センサ74の検出結果)、又は温度制御対象Tの温度(図示しない温度センサの検出結果)に応じて、流量制御弁24の開度を調節してもよい。本実施の形態では、このような流量制御弁24の制御は、熱媒体の温度が目標温度に一致するように気体吸引ポンプ22が制御され、気体吸引ポンプ22の運転状態を一定に維持した後に行われてもよい。実際に冷却動作が開始すると、密封容器10内の冷媒の温度又は圧力が変動する場合がある。このような場合に、目標温度又は目標圧力に一致するように、密封容器10内の温度、密封容器10内の圧力、冷媒により冷却された熱媒体の温度、又は温度制御対象Tの温度に応じて流量制御弁24の開度が調節されてもよい。 The valve opening adjustment unit 105 may adjust the opening of the flow control valve 24 according to the temperature inside the sealed container 10 (detection result of the refrigerant temperature sensor 71), the pressure inside the sealed container 10 (detection result of the pressure sensor 72), the temperature of the heat medium cooled by the refrigerant (detection result of the heat medium temperature sensor 74), or the temperature of the temperature control target T (detection result of a temperature sensor not shown). In this embodiment, such control of the flow control valve 24 may be performed after the gas suction pump 22 is controlled so that the temperature of the heat medium coincides with the target temperature and the operating state of the gas suction pump 22 is maintained constant. When the cooling operation actually starts, the temperature or pressure of the refrigerant inside the sealed container 10 may fluctuate. In such a case, the opening of the flow control valve 24 may be adjusted according to the temperature inside the sealed container 10, the pressure inside the sealed container 10, the temperature of the heat medium cooled by the refrigerant, or the temperature of the temperature control target T so that it coincides with the target temperature or target pressure.
 なお、気体吸引ポンプ22及び流量制御弁24は、同時に動作してもよい。また、気体吸引ポンプ22の運転状態が一定に維持され、流量制御弁24の開度が調節されてもよいし、流量制御弁24の開度が一定に維持され、気体吸引ポンプ22の運転状態が制御されてもよい。 The gas suction pump 22 and the flow control valve 24 may operate simultaneously. Alternatively, the operating state of the gas suction pump 22 may be maintained constant and the opening of the flow control valve 24 may be adjusted, or the opening of the flow control valve 24 may be maintained constant and the operating state of the gas suction pump 22 may be controlled.
 また、ガス供給量調節部106は、ガス流量調節弁62に電気的に接続され、ガス流量調節弁62の動作を制御する部分である。ガス供給量調節部106は、ガス流量調節弁62の開度を調節することで、密封容器10内に供給するガスの量を調節する。 The gas supply amount adjustment unit 106 is electrically connected to the gas flow rate adjustment valve 62 and controls the operation of the gas flow rate adjustment valve 62. The gas supply amount adjustment unit 106 adjusts the amount of gas supplied into the sealed container 10 by adjusting the opening degree of the gas flow rate adjustment valve 62.
 ガス供給装置60は、ガス供給量調節部106によりガス流量調節弁62を制御されることで、密封容器10内に供給するガスの量を、密封容器10内の温度(冷媒温度センサ71の検出結果)、密封容器10内の圧力(圧力センサ72の検出結果)、冷媒により冷却された熱媒体の温度(熱媒体温度センサ74の検出結果)、又は温度制御対象Tの温度(図示しない温度センサの検出結果)に応じて、調節してもよい。 The gas supply device 60 may adjust the amount of gas supplied into the sealed container 10 according to the temperature inside the sealed container 10 (detection result of the refrigerant temperature sensor 71), the pressure inside the sealed container 10 (detection result of the pressure sensor 72), the temperature of the heat medium cooled by the refrigerant (detection result of the heat medium temperature sensor 74), or the temperature of the temperature-controlled object T (detection result of a temperature sensor not shown) by controlling the gas flow rate adjustment valve 62 with the gas supply amount adjustment unit 106.
(冷媒の構成)
 次に、冷却システムS1で循環させる冷媒について説明する。上述したように、本実施の形態では、冷媒として、例えば大気圧下で且つ標準的な環境温度(例えば25℃)で液状となる物質であって、この状態から例えば0.1気圧の環境で膨張された場合に-5℃以下になる物質であり、望ましくは0.01気圧の環境で膨張された場合に-30℃以下になる物質である。また、冷媒は、地球温暖化係数(GWP)が10以下の低環境負荷の冷媒であることが望ましい。
(Refrigerant Composition)
Next, the refrigerant circulated in the cooling system S1 will be described. As described above, in this embodiment, the refrigerant is, for example, a substance that becomes liquid under atmospheric pressure and at a standard environmental temperature (for example, 25°C), and when expanded from this state in an environment of, for example, 0.1 atmospheric pressure, the temperature becomes -5°C or lower, and preferably, when expanded in an environment of 0.01 atmospheric pressure, the temperature becomes -30°C or lower. In addition, the refrigerant is preferably a low environmental load refrigerant with a global warming potential (GWP) of 10 or less.
 具体的に本実施の形態では、冷媒として、GWPが2で不燃性の、HFO-1336mzz-Zが好適に用いられ得る。この場合、熱媒体通流装置50が循環させる熱媒体も、HFO-1336mzz-Zでもよい。より具体的には、冷媒は、三井・ケマーズフロロプロダクツ株式会社製のOpteonSF33(TM)でもよい。 Specifically, in this embodiment, HFO-1336mzz-Z, which has a GWP of 2 and is non-flammable, can be suitably used as the refrigerant. In this case, the heat medium circulated by the heat medium flow device 50 may also be HFO-1336mzz-Z. More specifically, the refrigerant may be Opteon SF33 (TM) manufactured by Mitsui-Chemours Fluoroproducts, Inc.
 図3は、HFO-1336mzz-Zのp-h線図である。HFO-1336mzz-Zは、大気圧近傍の約0.100MPaで、温度が常温に近い約33℃である状態(St1)から、0.0149MPaまで減圧されることで、約-10℃まで降温する(St2)。また、0.001MPaまで減圧されることで、約-50℃以下まで降温する。そして、約-10℃まで降温した状態St2から、ある程度吸熱すると、蒸発し(St3)、この状態St3から、大気圧近傍の約0.100Mpaまで膨張されると、気相のまま常温よりも大きい約50℃まで昇温する(St4)。そして、状態St4から常温で冷却されることで、気液混相に凝縮しつつ、約33℃でまで冷却される。 Figure 3 is a pH diagram of HFO-1336mzz-Z. When HFO-1336mzz-Z is depressurized from a state (St1) of approximately 33°C, close to room temperature, at approximately 0.100 MPa, close to atmospheric pressure, to 0.0149 MPa, the temperature drops to approximately -10°C (St2). When it is depressurized to 0.001 MPa, the temperature drops to approximately -50°C or lower. Then, when it absorbs a certain amount of heat from the state St2 where it has been cooled to approximately -10°C, it evaporates (St3), and when it expands from this state St3 to approximately 0.100 MPa, close to atmospheric pressure, it rises in temperature to approximately 50°C, which is higher than room temperature, while remaining in the gas phase (St4). Then, when it is cooled from state St4 to room temperature, it condenses into a gas-liquid mixed phase and is cooled to approximately 33°C.
 このようなHFO-1336mzz-Zは、熱交換器40で冷却されて上記の状態St1に移行し、その後、密封容器10内に流入することで減圧されて、例えば状態St2に移行できる。そして、HFO-1336mzz-Zは、熱媒体と熱交換することで、状態St2から状態St3まで移行でき、その後、密封容器10から減圧装置20の外部に流出することで、状態St3から状態St4に移行できる。したがって、HFO-1336mzz-Zは、冷却システムS1で好適に用いられ得る。 Such HFO-1336mzz-Z is cooled in the heat exchanger 40 and transitions to the above-mentioned state St1, and then flows into the sealed container 10, where it is depressurized and can transition to, for example, state St2. HFO-1336mzz-Z can transition from state St2 to state St3 by exchanging heat with a heat medium, and then flows out of the sealed container 10 to the outside of the depressurizing device 20, whereupon it can transition from state St3 to state St4. Therefore, HFO-1336mzz-Z can be suitably used in the cooling system S1.
 冷却システムS1で使用可能な冷媒は、他にも種々存在し、例えば水、エタノールでもよい。 There are various other refrigerants that can be used in the cooling system S1, such as water or ethanol.
(動作)
 以下、冷却システムS1の動作の一例について説明する。
(motion)
An example of the operation of the cooling system S1 will now be described.
 まず、冷却システムS1では、熱媒体通流装置50が循環させる熱媒体の目標温度が入力され、保持される。そして、密封容器10、リザーバタンク23、及び緩衝容器33に所定の量の液状の冷媒が充填された後、冷媒循環装置30の循環ポンプ32及び熱媒体通流装置50のポンプ53が駆動される。この際、密封容器10内の液状の冷媒の液面高さが所定の高さになるように三方弁34及びベント制御弁29が制御される。そして、密封容器10内の液状の冷媒の液面高さが所定の高さに一致した後、三方弁34は、第1ポート341に流入し第2ポート342から流出する冷媒の通流を遮断し、第1ポート341に流入し第3ポート343から流出する冷媒の通流を許容する。すなわち、冷媒循環装置30から液状の冷媒が密封容器10に流入しない状態を形成する。 First, in the cooling system S1, the target temperature of the heat medium circulated by the heat medium circulating device 50 is input and maintained. Then, after a predetermined amount of liquid refrigerant is filled into the sealed container 10, the reservoir tank 23, and the buffer container 33, the circulation pump 32 of the refrigerant circulating device 30 and the pump 53 of the heat medium circulating device 50 are driven. At this time, the three-way valve 34 and the vent control valve 29 are controlled so that the liquid level of the liquid refrigerant in the sealed container 10 becomes a predetermined level. Then, after the liquid level of the liquid refrigerant in the sealed container 10 matches the predetermined level, the three-way valve 34 blocks the flow of the refrigerant that flows into the first port 341 and flows out of the second port 342, and allows the flow of the refrigerant that flows into the first port 341 and flows out of the third port 343. That is, a state is created in which the liquid refrigerant does not flow from the refrigerant circulating device 30 into the sealed container 10.
 その後、減圧装置20が駆動され、密封容器10内の圧力が減圧装置20によって大気圧よりも小さい圧力に減圧される。減圧装置20は、熱媒体温度センサ74が検出する温度が目標温度に一致するまで、気体吸引ポンプ22のモータ22Mの回転数を調節される。そして、熱媒体温度センサ74が検出する温度が目標温度に一致した後は、気体吸引ポンプ22のモータ22Mの回転数、流量制御弁24の開度及びガス供給装置60のガス流量調節弁62の開度のうちの少なくともいずれかが、目標温度の維持のために制御される。以上により、起動運転が完了する。熱媒体温度センサ74が検出する温度が目標温度に一致するように気体吸引ポンプ22のモータ22Mの回転数が調節された後の状態では、密封容器10内の圧力が減圧装置20によって大気圧よりも小さい圧力に減圧され、密封容器10外である冷媒循環装置30における冷媒通流環境及び熱交換器40の冷媒通流環境は、密封容器10内の圧力よりも大きい圧力であって、例えば大気圧になるように設定される。ただし、冷媒循環装置30における冷媒通流環境及び熱交換器40の冷媒通流環境は、厳密に大気圧でなくてもよく、大気圧よりやや低い圧力でもよい。 Then, the pressure reducing device 20 is driven, and the pressure inside the sealed container 10 is reduced by the pressure reducing device 20 to a pressure lower than atmospheric pressure. The pressure reducing device 20 adjusts the rotation speed of the motor 22M of the gas suction pump 22 until the temperature detected by the heat medium temperature sensor 74 matches the target temperature. Then, after the temperature detected by the heat medium temperature sensor 74 matches the target temperature, at least one of the rotation speed of the motor 22M of the gas suction pump 22, the opening of the flow control valve 24, and the opening of the gas flow rate adjustment valve 62 of the gas supply device 60 is controlled to maintain the target temperature. This completes the startup operation. In the state after the rotation speed of the motor 22M of the gas suction pump 22 is adjusted so that the temperature detected by the heat medium temperature sensor 74 matches the target temperature, the pressure inside the sealed container 10 is reduced to a pressure lower than atmospheric pressure by the pressure reducing device 20, and the refrigerant flow environment in the refrigerant circulation device 30 outside the sealed container 10 and the refrigerant flow environment in the heat exchanger 40 are set to a pressure higher than the pressure inside the sealed container 10, for example, atmospheric pressure. However, the refrigerant flow environment in the refrigerant circulation device 30 and the refrigerant flow environment in the heat exchanger 40 do not have to be strictly atmospheric pressure, and may be a pressure slightly lower than atmospheric pressure.
 その後は、熱媒体通流装置50が通流させる熱媒体が温度制御対象Tを冷却する状態に移行される。冷媒は、密封容器10から流出して、冷却部25及び熱交換器40で冷却された後、密封容器10に再度流入する。これにより、熱媒体が、冷媒によって継続的に冷却される。 After that, the heat medium circulated by the heat medium circulating device 50 is shifted to a state in which it cools the temperature-controlled object T. The refrigerant flows out of the sealed container 10, is cooled by the cooling section 25 and the heat exchanger 40, and then flows back into the sealed container 10. This allows the heat medium to be continuously cooled by the refrigerant.
 すなわち、図3を使って冷却システムS1における運転状態を説明すると、熱媒体の熱を吸収した冷媒は、密封容器10から流出した後、冷却部25及び熱交換器40で冷却されて図3の状態St4から状態St1に移行する。その後、冷媒は、密封容器10内に流入することで減圧されて、状態St2に移行する。そして、冷媒は、密封容器10で熱媒体と熱交換することで、状態St2から状態St3まで移行する。その後、冷媒は、密封容器10から減圧装置20外に流出することで、状態St3から状態St4に移行する。そして、冷媒は、冷却部25及び熱交換器40で冷却され、状態St4から状態St1に移行する。これにより、熱媒体が、冷媒によって継続的に冷却される。 In other words, to explain the operating state of the cooling system S1 using FIG. 3, the refrigerant that has absorbed the heat of the heat medium flows out of the sealed container 10, and is cooled by the cooling section 25 and the heat exchanger 40, and transitions from state St4 to state St1 in FIG. 3. The refrigerant is then depressurized by flowing into the sealed container 10, and transitions to state St2. The refrigerant then transitions from state St2 to state St3 by exchanging heat with the heat medium in the sealed container 10. The refrigerant then transitions from state St3 to state St4 by flowing out of the pressure reducing device 20 from the sealed container 10. The refrigerant is then cooled by the cooling section 25 and the heat exchanger 40, and transitions from state St4 to state St1. As a result, the heat medium is continuously cooled by the refrigerant.
 以上に説明した第1の実施の形態に係る冷却システムS1は、第1流出口11及び流入口13を含み、液状の冷媒を貯留する密封容器10と、第1流出口11に接続し、第1流出口11を通して密封容器10から気体を吸引することで密封容器10内の圧力を大気圧よりも小さい圧力に調節する減圧装置20と、減圧装置20と流入口13とに接続される冷媒流路31を含み、減圧装置20が密封容器10から吸引した気体から液体した液状の冷媒を、流入口13を通して密封容器10に流入させる冷媒循環装置30と、を備え、密封容器10内の冷媒により、温度制御対象Tを冷却する。 The cooling system S1 according to the first embodiment described above includes a sealed container 10 including a first outlet 11 and an inlet 13 for storing a liquid refrigerant, a pressure reducing device 20 connected to the first outlet 11 and for adjusting the pressure inside the sealed container 10 to a pressure lower than atmospheric pressure by sucking gas from the sealed container 10 through the first outlet 11, and a refrigerant circulation device 30 including a refrigerant flow path 31 connected to the pressure reducing device 20 and the inlet 13 for causing the liquid refrigerant liquefied from the gas sucked from the sealed container 10 by the pressure reducing device 20 to flow into the sealed container 10 through the inlet 13, and the temperature control target T is cooled by the refrigerant in the sealed container 10.
 このような冷却システムS1によれば、従来の冷凍方式では使用されることがなかった物質を熱サイクルの冷媒として使用できるようになる、又は、熱サイクルの冷媒として使用できる物質の範囲を拡大させることができる。 With this type of cooling system S1, it becomes possible to use substances that have not been used in conventional refrigeration methods as refrigerants in a heat cycle, or to expand the range of substances that can be used as refrigerants in a heat cycle.
 すなわち、上述したように本実施の形態では、一例であるが、冷媒として、例えば大気圧下で且つ標準的な環境温度(例えば25℃)で液状となる物質であって、この状態から例えば0.1気圧の環境で膨張された場合に-5℃以下になる物質を用いることができる。これに対して、上記の物質を、これまで普及してきた蒸気圧縮式の冷凍サイクルで使用すると、例えば圧縮機が液を圧縮することになるため、圧縮機が適正に機能せず、蒸発器において物質が蒸発しない。したがって、蒸気圧縮式の冷凍サイクルでは、上記の冷媒は適合しない。これに対して、冷却システムS1は、圧縮を利用せず、上記の冷媒を密封容器10内で減圧させることで熱媒体を冷却することが可能となり、熱媒体の熱を冷却部25及び熱交換器40から放出でき、熱サイクルを実現できる。したがって、本実施の形態によれば、従来の冷凍方式では使用されることがなかった物質を熱サイクルの冷媒として使用できるようになる、又は、熱サイクルの冷媒として使用できる物質の範囲を拡大させることができる。なお、本実施の形態では、減圧装置20が冷却部25を備えることで、冷却部25と熱交換器40とで放熱が行われる。一方で、熱交換器40を設けずに冷却部25だけで放熱を行う構成が採用されてもよいし、冷却部25を設けずに熱交換器40だけで放熱を行ってもよい。 In other words, as described above, in this embodiment, as an example, a substance that becomes liquid under atmospheric pressure and at a standard environmental temperature (e.g., 25°C) and that becomes -5°C or lower when expanded from this state in an environment of, for example, 0.1 atmospheric pressure can be used as the refrigerant. In contrast, if the above substance is used in a vapor compression refrigeration cycle that has been widespread up to now, for example, the compressor will compress the liquid, so the compressor will not function properly and the substance will not evaporate in the evaporator. Therefore, the above refrigerant is not suitable for a vapor compression refrigeration cycle. In contrast, the cooling system S1 does not use compression, but rather reduces the pressure of the above refrigerant in the sealed container 10, making it possible to cool the heat medium, and the heat of the heat medium can be released from the cooling unit 25 and the heat exchanger 40, thereby realizing a heat cycle. Therefore, according to this embodiment, it becomes possible to use a substance that has not been used in conventional refrigeration methods as a refrigerant for a heat cycle, or the range of substances that can be used as a refrigerant for a heat cycle can be expanded. In addition, in this embodiment, the decompression device 20 is provided with the cooling unit 25, so that heat is released between the cooling unit 25 and the heat exchanger 40. On the other hand, a configuration may be adopted in which heat is dissipated only by the cooling unit 25 without providing a heat exchanger 40, or heat may be dissipated only by the heat exchanger 40 without providing a cooling unit 25.
 そして、冷却システムS1は、上述したように、例えばGWPが2で不燃性のHFO-1336mzz-Z等を冷媒として使用できるようにする。これにより、蒸気圧縮式の冷凍サイクルでは、現状実現できていない低GWP且つ安全性を確保した冷却動作を実現できる。このような低GWPで、環境負荷が小さく、且つ安全性を確保した冷却システムS1は、他の冷却方式を含めて知られていない。よって、このような冷却システムS1の実現は、地球環境保護に大きく貢献する可能性を有している。また、冷却システムS1では圧縮機が用いられないため、潤滑油が冷媒側へ流出する状況が抑制され、この点でも有益である。 As described above, the cooling system S1 is capable of using, for example, HFO-1336mzz-Z, which has a GWP of 2 and is non-flammable, as a refrigerant. This makes it possible to achieve a cooling operation with a low GWP and ensured safety, which is currently not possible with vapor compression refrigeration cycles. No other cooling method is known that provides such a low GWP, low environmental impact, and ensures safety. Therefore, the realization of such a cooling system S1 has the potential to greatly contribute to protecting the global environment. In addition, because the cooling system S1 does not use a compressor, the situation in which lubricating oil leaks into the refrigerant is suppressed, which is also beneficial in this respect.
 また、本実施の形態では、冷却システムS1を経済的及び安定的に運転させるための種々の工夫を有する。 In addition, this embodiment has various features to operate the cooling system S1 economically and stably.
 例えば、減圧装置20は、第1流出口11に接続される気体流路21と、気体流路21に設けられ、密封容器10から気体流路21に気体を吸引する気体吸引ポンプ22と、気体流路21の下流端21Bに接続され、下流端21Bから流出する気体を貯留するリザーバタンク23と、を含む。これにより、リザーバタンク23で気体を気化させ易くなり、気体の状態の冷媒が冷媒循環装置30により密封容器10に戻る状況が抑制される。 For example, the pressure reducing device 20 includes a gas flow path 21 connected to the first outlet 11, a gas suction pump 22 provided in the gas flow path 21 to draw gas from the sealed container 10 into the gas flow path 21, and a reservoir tank 23 connected to the downstream end 21B of the gas flow path 21 to store the gas flowing out from the downstream end 21B. This makes it easier to vaporize the gas in the reservoir tank 23, and prevents the refrigerant in gaseous state from returning to the sealed container 10 by the refrigerant circulation device 30.
 特に本実施の形態では、リザーバタンク23内の圧力が、密封容器10内の圧力よりも高く、リザーバタンク23は、気体流路21の下流端21Bから流出する気体の少なくとも一部を液状の冷媒に液化し、液状の冷媒を貯留する。これにより、気体の状態の冷媒が冷媒循環装置30により密封容器10に戻る状況が効果的に抑制され得る。 In particular, in this embodiment, the pressure in the reservoir tank 23 is higher than the pressure in the sealed container 10, and the reservoir tank 23 liquefies at least a portion of the gas flowing out from the downstream end 21B of the gas flow path 21 into liquid refrigerant and stores the liquid refrigerant. This effectively prevents the refrigerant in a gaseous state from returning to the sealed container 10 by the refrigerant circulation device 30.
 また、冷媒循環装置30は、冷媒流路31の一部を形成するように冷媒流路31に設けられ、液状の冷媒を貯留する緩衝容器33をさらに含む。そして、リザーバタンク23に貯留される気体又は気体の少なくとも一部が液化した液状の冷媒を緩衝容器33に流入させる。この構成では、リザーバタンク23からの気体又は液状の冷媒が、緩衝容器33に貯留された液状の冷媒に混ぜられた後に、緩衝容器33から流出し得る。これにより、緩衝容器33の下流側を通流する冷媒の温度が不所望に乱れることが抑制され得る。 The refrigerant circulation device 30 further includes a buffer container 33 that is provided in the refrigerant flow path 31 so as to form a part of the refrigerant flow path 31 and stores liquid refrigerant. The gas stored in the reservoir tank 23 or liquid refrigerant that is at least partially liquefied from the gas is caused to flow into the buffer container 33. In this configuration, the gas or liquid refrigerant from the reservoir tank 23 can be mixed with the liquid refrigerant stored in the buffer container 33 and then flow out of the buffer container 33. This can prevent undesirable temperature disturbances of the refrigerant flowing downstream of the buffer container 33.
 また、冷媒循環装置30は、冷媒流路31における熱交換器40が接続する部分よりも下流側の部分に設けられ、第1ポート341、第2ポート342及び第3ポート343を含む三方弁34を含む。そして、三方弁34は、第1ポート341及び第2ポート342の間の流路で冷媒流路31の一部を構成する。また、第3ポート343と、冷媒流路31における熱交換器40が接続する部分よりも上流側の部分(本実施の形態では緩衝容器33)とは、バイパス流路38によって接続されている。 The refrigerant circulation device 30 also includes a three-way valve 34 that is provided in a portion of the refrigerant flow path 31 downstream of the portion where the heat exchanger 40 is connected, and includes a first port 341, a second port 342, and a third port 343. The three-way valve 34 constitutes a part of the refrigerant flow path 31 in the flow path between the first port 341 and the second port 342. The third port 343 is also connected to a portion of the refrigerant flow path 31 upstream of the portion where the heat exchanger 40 is connected (the buffer container 33 in this embodiment) by a bypass flow path 38.
 これにより、冷却システムS1を安定的に運転させることが可能となり、温度制御の精度を向上できる。例えば、密封容器10内に貯留される液状の冷媒の量が過剰に多くなった場合には、減圧装置20が液状の冷媒を吸引するリスクが高まる。この場合、減圧装置20運転が不安定になるか又は減圧装置20が損傷するリスクがある。例えばこのような場合に、三方弁34は、密封容器10側へ通流する冷媒の流量を減少させる又は遮断することにより、密封容器10内の液状の冷媒が過剰に多くなる状況を回避できる。 This allows the cooling system S1 to operate stably, improving the accuracy of temperature control. For example, if the amount of liquid refrigerant stored in the sealed container 10 becomes excessively large, there is an increased risk that the pressure reducing device 20 will suck in the liquid refrigerant. In this case, there is a risk that the operation of the pressure reducing device 20 will become unstable or that the pressure reducing device 20 will be damaged. In such a case, for example, the three-way valve 34 can prevent a situation in which the amount of liquid refrigerant in the sealed container 10 becomes excessive by reducing or blocking the flow rate of the refrigerant flowing to the sealed container 10 side.
<第2の実施の形態>
 次に、第2の実施の形態に係る冷却システムS2について図4を参照しつつ説明する。なお、本実施の形態における構成部分のうちの第1の実施の形態と同一のものには同一の符号を付し、重複する説明は省略する。
Second Embodiment
Next, a cooling system S2 according to a second embodiment will be described with reference to Fig. 4. Note that, among the components in this embodiment, the same components as those in the first embodiment are designated by the same reference numerals, and duplicated descriptions will be omitted.
 本実施の形態は、密封容器10と緩衝容器33とを接続するベント流路28及びベント流路28上のベント制御弁29が設けられていない点で第1の実施の形態と異なる。このような第2の実施の形態に係る冷却システムS2によっても、第1の実施の形態と同様の効果が得られる。そして、本実施の形態によれば、装置構成を簡素化できる。 This embodiment differs from the first embodiment in that the vent passage 28 connecting the sealed container 10 and the buffer container 33 and the vent control valve 29 on the vent passage 28 are not provided. The cooling system S2 according to this second embodiment also provides the same effects as the first embodiment. Furthermore, according to this embodiment, the device configuration can be simplified.
<第3の実施の形態>
 次に、第3の実施の形態に係る冷却システムS3について図5を参照しつつ説明する。なお、本実施の形態における構成部分のうちの第1及び第2の実施の形態と同一のものには同一の符号を付し、重複する説明は省略する。
Third Embodiment
Next, a cooling system S3 according to a third embodiment will be described with reference to Fig. 5. Note that, among the components in this embodiment, the same components as those in the first and second embodiments are denoted by the same reference numerals, and duplicated descriptions will be omitted.
 本実施の形態では、冷媒循環装置30が、循環ポンプ32及び三方弁34を備えていない。そして、緩衝容器33の内部に熱交換器40が配置されている。なお、熱交換器40は緩衝容器33の外壁と接するような構成でもよいし、冷媒流路31における緩衝容器33の上流側又は下流側の部分に接続されてもよい。 In this embodiment, the refrigerant circulation device 30 does not include a circulation pump 32 and a three-way valve 34. A heat exchanger 40 is disposed inside the buffer container 33. The heat exchanger 40 may be configured to contact the outer wall of the buffer container 33, or may be connected to the upstream or downstream part of the buffer container 33 in the refrigerant flow path 31.
 また、本実施の形態では冷媒流路31にリターン量調整弁80が設けられる。リターン量調整弁80は、リザーバタンク23から密封容器10に流入する液状の冷媒の流量を調整する弁である。詳しくは、リターン量調整弁80はコントローラ100により制御され、例えば密封容器10内の液状の冷媒の液面高さが所定の高さに維持されるように密封容器10に流入する液状の冷媒の流量を調整する。リターン量調整弁80は開閉弁でもよいし、比例弁でもよい。 In addition, in this embodiment, a return amount adjustment valve 80 is provided in the refrigerant flow path 31. The return amount adjustment valve 80 is a valve that adjusts the flow rate of liquid refrigerant flowing from the reservoir tank 23 into the sealed container 10. In detail, the return amount adjustment valve 80 is controlled by the controller 100, and adjusts the flow rate of liquid refrigerant flowing into the sealed container 10 so that the liquid level of the liquid refrigerant in the sealed container 10 is maintained at a predetermined height, for example. The return amount adjustment valve 80 may be an opening/closing valve or a proportional valve.
 以下、冷却システムS3の動作の一例について説明する。 Below, an example of the operation of the cooling system S3 is described.
 まず、冷却システムS3では、熱媒体通流装置50が循環させる熱媒体の目標温度が入力され、保持される。そして、密封容器10、リザーバタンク23、及び緩衝容器33に所定の量の液状の冷媒が充填された後、熱媒体通流装置50のポンプ53が駆動される。この際、密封容器10内の液状の冷媒の液面高さが所定の高さになるようにリターン量調整弁80が制御される。本実施の形態では、リターン量調整弁80が開くと、液状の冷媒が自重によって自然に密封容器10に流入するが、循環ポンプ32が設けられてもよい。そして、密封容器10内の液状の冷媒の液面高さが所定の高さに一致した後、リターン量調整弁80は閉じられる。 First, in the cooling system S3, the target temperature of the heat medium circulated by the heat medium circulating device 50 is input and maintained. Then, after a predetermined amount of liquid refrigerant is filled into the sealed container 10, the reservoir tank 23, and the buffer container 33, the pump 53 of the heat medium circulating device 50 is driven. At this time, the return amount adjustment valve 80 is controlled so that the liquid level of the liquid refrigerant in the sealed container 10 becomes a predetermined level. In this embodiment, when the return amount adjustment valve 80 opens, the liquid refrigerant naturally flows into the sealed container 10 due to its own weight, but a circulation pump 32 may also be provided. Then, after the liquid level of the liquid refrigerant in the sealed container 10 matches the predetermined level, the return amount adjustment valve 80 is closed.
 その後、減圧装置20が駆動され、密封容器10内の圧力が減圧装置20によって大気圧よりも小さい圧力に減圧される。減圧装置20は、熱媒体温度センサ74が検出する温度が目標温度に一致するまで、気体吸引ポンプ22のモータ22Mの回転数を調節される。そして、熱媒体温度センサ74が検出する温度が目標温度に一致した後は、気体吸引ポンプ22のモータ22Mの回転数、流量制御弁24の開度及びガス供給装置60のガス流量調節弁62の開度のうちの少なくともいずれかが、目標温度の維持のために制御される。以上により、起動運転が完了する。熱媒体温度センサ74が検出する温度が目標温度に一致するように気体吸引ポンプ22のモータ22Mの回転数が調節された後の状態では、密封容器10内の圧力が減圧装置20によって大気圧よりも小さい圧力に減圧され、密封容器10外である冷媒循環装置30における冷媒通流環境は、密封容器10内の圧力よりも大きい圧力であって、例えば大気圧になるように設定される。ただし、冷媒循環装置30における冷媒通流環境は、厳密に大気圧でなくてもよく、大気圧よりやや低い圧力でもよい。 Then, the pressure reducing device 20 is driven, and the pressure in the sealed container 10 is reduced by the pressure reducing device 20 to a pressure lower than atmospheric pressure. The pressure reducing device 20 adjusts the rotation speed of the motor 22M of the gas suction pump 22 until the temperature detected by the heat medium temperature sensor 74 matches the target temperature. After the temperature detected by the heat medium temperature sensor 74 matches the target temperature, at least one of the rotation speed of the motor 22M of the gas suction pump 22, the opening of the flow control valve 24, and the opening of the gas flow rate adjustment valve 62 of the gas supply device 60 is controlled to maintain the target temperature. This completes the start-up operation. In the state after the rotation speed of the motor 22M of the gas suction pump 22 is adjusted so that the temperature detected by the heat medium temperature sensor 74 matches the target temperature, the pressure in the sealed container 10 is reduced by the pressure reducing device 20 to a pressure lower than atmospheric pressure, and the refrigerant flow environment in the refrigerant circulation device 30 outside the sealed container 10 is set to a pressure higher than the pressure in the sealed container 10, for example, atmospheric pressure. However, the refrigerant flow environment in the refrigerant circulation device 30 does not have to be strictly atmospheric pressure, and may be slightly lower than atmospheric pressure.
 その後は、熱媒体通流装置50が通流させる熱媒体が温度制御対象Tを冷却する状態に移行される。冷媒は、密封容器10から流出して、冷却部25及び熱交換器40で冷却された後、密封容器10に再度流入する。これにより、熱媒体が、冷媒によって継続的に冷却される。 After that, the heat medium circulated by the heat medium circulating device 50 is shifted to a state in which it cools the temperature-controlled object T. The refrigerant flows out of the sealed container 10, is cooled by the cooling section 25 and the heat exchanger 40, and then flows back into the sealed container 10. This allows the heat medium to be continuously cooled by the refrigerant.
 このような第3の実施の形態に係る冷却システムS3によっても、第1の実施の形態と同様の効果が得られるとともに、装置構成を簡素化できる。 The cooling system S3 according to the third embodiment can achieve the same effects as the first embodiment and can simplify the device configuration.
<第4の実施の形態>
 次に、第4の実施の形態に係る冷却システムS4について図6を参照しつつ説明する。なお、本実施の形態における構成部分のうちの第1乃至第3の実施の形態と同一のものには同一の符号を付し、重複する説明は省略する。
<Fourth embodiment>
Next, a cooling system S4 according to a fourth embodiment will be described with reference to Fig. 6. Note that, among the components in this embodiment, the same components as those in the first to third embodiments are denoted by the same reference numerals, and duplicated descriptions will be omitted.
 本実施の形態は、第3の実施の形態における冷媒循環装置30から緩衝容器33を取り除くとともに、熱交換器40も使用しないことで、さらなる簡略化を図っている。冷却システムS4は、第3の実施の形態で説明した動作で運転することができる。このような実施の形態は、装置の簡素化の点で有益である。 This embodiment is further simplified by removing the buffer vessel 33 from the refrigerant circulation device 30 in the third embodiment and not using the heat exchanger 40. The cooling system S4 can be operated in the manner described in the third embodiment. This embodiment is beneficial in terms of simplifying the device.
 以上、本発明の各実施の形態を説明したが、本発明は以上に説明した実施の形態に限られるものではなく、上述の実施の形態にはさらなる種々の変更を加えることができる。 Although the various embodiments of the present invention have been described above, the present invention is not limited to the embodiments described above, and various further modifications can be made to the above-described embodiments.

Claims (18)

  1.  流出口及び流入口を含み、液状の冷媒を貯留する容器と、
     前記流出口に接続し、前記流出口を通して前記容器から気体を吸引することで前記容器内の圧力を大気圧よりも小さい圧力に調節する減圧装置と、
     前記減圧装置と前記流入口とに接続される冷媒流路を含み、前記減圧装置が前記容器から吸引した前記気体から液化した液状の前記冷媒を、前記流入口を通して前記容器に流入させる冷媒循環装置と、を備え、
     前記容器内の前記冷媒により、温度制御対象を冷却する、冷却システム。
    a container including an outlet and an inlet and configured to store a liquid refrigerant;
    a pressure reducing device connected to the outlet and configured to adjust the pressure in the container to a pressure lower than atmospheric pressure by sucking gas from the container through the outlet;
    a refrigerant circulation device including a refrigerant flow path connected to the pressure reducing device and the inlet, the refrigerant being liquefied from the gas sucked from the container by the pressure reducing device and flowing into the container through the inlet,
    A cooling system that cools a temperature-controlled object using the refrigerant in the container.
  2.  前記減圧装置は、
     前記流出口に接続される気体流路と、
     前記気体流路に設けられ、前記容器から前記気体流路に前記気体を吸引する気体吸引ポンプと、
     前記気体流路に接続され、前記気体流路から流出する前記気体及び/又は前記気体から液化した液状の前記冷媒を貯留するリザーバタンクと、を含み、
     前記冷媒流路は、前記リザーバタンクに接続する、請求項1に記載の冷却システム。
    The pressure reducing device is
    A gas flow path connected to the outlet;
    a gas suction pump provided in the gas flow path and configured to suck the gas from the container into the gas flow path;
    a reservoir tank connected to the gas flow path and configured to store the gas flowing out of the gas flow path and/or the refrigerant in a liquid state liquefied from the gas,
    The cooling system of claim 1 , wherein the coolant flow path connects to the reservoir tank.
  3.  前記リザーバタンク内の圧力は、前記容器内の圧力よりも高く、前記リザーバタンクは、前記気体流路から流出する前記気体の少なくとも一部を液状の前記冷媒に液化し、液状の前記冷媒を貯留する、請求項2に記載の冷却システム。 The cooling system of claim 2, wherein the pressure in the reservoir tank is higher than the pressure in the container, and the reservoir tank liquefies at least a portion of the gas flowing out of the gas flow path into the liquid refrigerant and stores the liquid refrigerant.
  4.  前記冷媒循環装置は、前記冷媒流路に設けられ、前記リザーバタンクから液状の前記冷媒を前記冷媒流路に引き込む循環ポンプをさらに含む、請求項3に記載の冷却システム。 The cooling system of claim 3, wherein the refrigerant circulation device further includes a circulation pump provided in the refrigerant flow path and drawing the liquid refrigerant from the reservoir tank into the refrigerant flow path.
  5.  前記減圧装置は、前記気体流路における前記気体吸引ポンプの下流側の部分及び/又は前記リザーバタンクを冷却する冷却部をさらに含む、請求項3に記載の冷却システム。 The cooling system according to claim 3, wherein the pressure reducing device further includes a cooling section that cools a portion of the gas flow path downstream of the gas suction pump and/or the reservoir tank.
  6.  前記冷媒循環装置は、前記冷媒流路の一部を形成するように前記冷媒流路に設けられ、液状の前記冷媒を貯留する緩衝容器をさらに含み、
     前記リザーバタンクから前記冷媒流路に引き込まれる液状の前記冷媒は、前記緩衝容器を通過した後、前記容器に流入する、請求項3に記載の冷却システム。
    The refrigerant circulation device further includes a buffer container that is provided in the refrigerant flow path so as to form a part of the refrigerant flow path and stores the refrigerant in a liquid state.
    The cooling system of claim 3 , wherein the liquid refrigerant drawn from the reservoir into the refrigerant flow path passes through the buffer vessel before entering the vessel.
  7.  前記冷媒流路に接続し、前記冷媒流路を通流する液状の前記冷媒を冷却する熱交換器をさらに備え、
     前記緩衝容器は、前記冷媒流路における前記熱交換器が接続する部分よりも上流側の部分に設けられる、請求項6に記載の冷却システム。
    The cooling system further includes a heat exchanger connected to the refrigerant flow path and configured to cool the liquid refrigerant flowing through the refrigerant flow path.
    The cooling system according to claim 6 , wherein the buffer container is provided in a portion of the refrigerant flow path upstream of a portion to which the heat exchanger is connected.
  8.  前記リザーバタンクは、前記緩衝容器の上方に配置される、請求項6に記載の冷却システム。 The cooling system of claim 6, wherein the reservoir tank is disposed above the buffer container.
  9.  前記気体吸引ポンプは、モータの回転により前記気体を吸引するように構成され、
     前記気体吸引ポンプは、前記モータの回転数を、前記容器内の温度、前記容器内の圧力、前記冷媒により冷却された熱媒体の温度、又は前記温度制御対象の温度に応じて調節する、請求項2に記載の冷却システム。
    The gas suction pump is configured to suck the gas by rotation of a motor,
    3. The cooling system according to claim 2, wherein the gas suction pump adjusts a rotation speed of the motor in accordance with a temperature in the container, a pressure in the container, a temperature of the heat medium cooled by the refrigerant, or a temperature of the temperature-controlled object.
  10.  前記気体流路における前記気体吸引ポンプの上流側又は下流側の部分に、開度の調節により前記気体流路を通流する前記気体の流量を制御する流量制御弁が設けられ、
     前記流量制御弁は、その開度を、前記容器内の温度、前記容器内の圧力、又は前記冷媒により冷却された熱媒体の温度、又は前記温度制御対象の温度に応じて調節する、請求項2に記載の冷却システム。
    a flow control valve for controlling a flow rate of the gas flowing through the gas flow path by adjusting an opening degree of the flow control valve provided in a portion of the gas flow path upstream or downstream of the gas suction pump;
    3. The cooling system according to claim 2, wherein the flow control valve adjusts its opening degree in accordance with a temperature in the container, a pressure in the container, a temperature of the heat medium cooled by the refrigerant, or a temperature of the temperature-controlled object.
  11.  前記容器内にガスを供給するガス供給装置をさらに備え、
     前記ガス供給装置は、前記容器内に供給する前記ガスの量を、前記容器内の温度、前記容器内の圧力、前記冷媒により冷却された熱媒体の温度、又は前記温度制御対象の温度に応じて調節する、請求項10に記載の冷却システム。
    A gas supply device for supplying gas into the container is further provided,
    The cooling system according to claim 10, wherein the gas supply device adjusts the amount of the gas supplied into the container in accordance with a temperature in the container, a pressure in the container, a temperature of the heat medium cooled by the refrigerant, or a temperature of the temperature-controlled object.
  12.  前記冷媒流路に接続し、前記冷媒流路を通流する液状の前記冷媒を冷却する熱交換器をさらに備え、
     前記冷媒循環装置は、前記冷媒流路における前記熱交換器が接続する部分よりも下流側の部分に設けられ、第1ポート、第2ポート及び第3ポートを含む三方弁を含み、
     前記三方弁は、前記第1ポートに流入し前記第2ポートから流出する前記冷媒の流量と、前記第1ポートに流入し前記第3ポートから流出する前記冷媒の流量とを調節可能であり、
     前記三方弁は、前記第1ポート及び前記第2ポートの間の流路で前記冷媒流路の一部を構成し、
     前記第3ポートと、前記冷媒流路における前記熱交換器が接続する部分よりも上流側の部分とは、バイパス流路によって接続されている、請求項1に記載の冷却システム。
    The cooling system further includes a heat exchanger connected to the refrigerant flow path and configured to cool the liquid refrigerant flowing through the refrigerant flow path.
    the refrigerant circulation device is provided in a portion of the refrigerant flow path downstream of a portion to which the heat exchanger is connected, and includes a three-way valve including a first port, a second port, and a third port;
    the three-way valve is capable of adjusting a flow rate of the refrigerant flowing into the first port and flowing out from the second port, and a flow rate of the refrigerant flowing into the first port and flowing out from the third port,
    the three-way valve constitutes a part of the refrigerant flow path with a flow path between the first port and the second port,
    The cooling system according to claim 1 , wherein the third port and a portion of the refrigerant flow path upstream of a portion to which the heat exchanger is connected are connected by a bypass flow path.
  13.  前記三方弁は、前記容器内の液状の前記冷媒の液面高さが所定の高さを越えた場合に、前記第1ポートに流入し前記第2ポートから流出する前記冷媒の流量を減少させ、前記第1ポートに流入し前記第3ポートから流出する前記冷媒の流量を増加させ、
     前記三方弁は、前記容器内の液状の前記冷媒の液面高さが所定の高さを下回った場合に、前記第1ポートに流入し前記第2ポートから流出する前記冷媒の流量を増加させ、前記第1ポートに流入し前記第3ポートから流出する前記冷媒の流量を減少させる、請求項12に記載の冷却システム。
    the three-way valve, when a liquid level of the refrigerant in a liquid state in the container exceeds a predetermined level, reduces a flow rate of the refrigerant flowing into the first port and flowing out of the second port and increases a flow rate of the refrigerant flowing into the first port and flowing out of the third port;
    13. The cooling system of claim 12, wherein the three-way valve increases a flow rate of the refrigerant flowing into the first port and flowing out of the second port and decreases a flow rate of the refrigerant flowing into the first port and flowing out of the third port when a liquid level of the refrigerant in the container falls below a predetermined level.
  14.  前記三方弁は、前記容器内の液状の前記冷媒の液面高さが所定の高さを越えた場合に、前記第1ポートに流入し前記第2ポートから流出する前記冷媒の通流を遮断し、前記第1ポートに流入し前記第3ポートから流出する前記冷媒の通流を許容し、
     前記三方弁は、前記容器内の液状の前記冷媒の液面高さが所定の高さを下回った場合に、前記第1ポートに流入し前記第2ポートから流出する前記冷媒の通流を許容し、前記第1ポートに流入し前記第3ポートから流出する前記冷媒の通流を遮断する、請求項12に記載の冷却システム。
    when a liquid level of the refrigerant in a liquid state in the container exceeds a predetermined level, the three-way valve blocks the flow of the refrigerant flowing into the first port and flowing out of the second port and allows the flow of the refrigerant flowing into the first port and flowing out of the third port;
    13. The cooling system of claim 12, wherein the three-way valve allows the refrigerant to flow into the first port and flow out of the second port and blocks the flow of the refrigerant to flow into the first port and flow out of the third port when a liquid level of the refrigerant in the container falls below a predetermined level.
  15.  熱媒体を通流させる熱媒体流路を含む熱媒体通流装置をさらに備え、
     前記熱媒体流路は、前記容器内に配置され、前記熱媒体と前記冷媒とを熱交換させる熱交換部を含み、
     前記熱媒体流路は、前記容器の外部から前記熱交換部に前記熱媒体を送り、前記熱交換部で熱交換した前記熱媒体を前記容器の外部に送る、請求項1に記載の冷却システム。
    The heat transfer medium supply device further includes a heat transfer medium flow path for allowing the heat transfer medium to flow.
    the heat medium flow path is disposed in the container and includes a heat exchange portion that exchanges heat between the heat medium and the refrigerant,
    The cooling system according to claim 1 , wherein the heat medium flow path feeds the heat medium from the outside of the container to the heat exchange section, and feeds the heat medium that has exchanged heat in the heat exchange section to the outside of the container.
  16.  前記冷媒は、大気圧下での沸点が30℃以上となる物質である、請求項1に記載の冷却システム。 The cooling system according to claim 1, wherein the refrigerant is a substance having a boiling point of 30°C or higher under atmospheric pressure.
  17.  前記冷媒は、GWPが10以下である、請求項16に記載の冷却システム。 The cooling system of claim 16, wherein the refrigerant has a GWP of 10 or less.
  18.  前記冷媒は、HFO-1336mzz-Zである、請求項17に記載の冷却システム。  The cooling system of claim 17, wherein the refrigerant is HFO-1336mzz-Z.
PCT/JP2023/037634 2022-10-18 2023-10-18 Cooling system WO2024085167A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-167099 2022-10-18
JP2022167099 2022-10-18

Publications (1)

Publication Number Publication Date
WO2024085167A1 true WO2024085167A1 (en) 2024-04-25

Family

ID=90737915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037634 WO2024085167A1 (en) 2022-10-18 2023-10-18 Cooling system

Country Status (1)

Country Link
WO (1) WO2024085167A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027780A (en) * 2006-07-21 2008-02-07 Sumitomo Electric Ind Ltd Liquid-coolant circulation cooling system
US20080035312A1 (en) * 2006-07-20 2008-02-14 Claudio Filippone Air-conditioning systems and related methods
JP2016170928A (en) * 2015-03-12 2016-09-23 株式会社前川製作所 Superconductor cooling device
JP2019045077A (en) * 2017-09-04 2019-03-22 三菱重工サーマルシステムズ株式会社 Refrigerant system including direct contact heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080035312A1 (en) * 2006-07-20 2008-02-14 Claudio Filippone Air-conditioning systems and related methods
JP2008027780A (en) * 2006-07-21 2008-02-07 Sumitomo Electric Ind Ltd Liquid-coolant circulation cooling system
JP2016170928A (en) * 2015-03-12 2016-09-23 株式会社前川製作所 Superconductor cooling device
JP2019045077A (en) * 2017-09-04 2019-03-22 三菱重工サーマルシステムズ株式会社 Refrigerant system including direct contact heat exchanger

Similar Documents

Publication Publication Date Title
KR101570235B1 (en) Method and system for rotor cooling
JP3990186B2 (en) High pressure side pressure control method and circuit device in supercritical vapor compression circuit
JP2007071505A (en) Refrigerating plant
JP5367100B2 (en) Dual refrigeration equipment
US9157684B2 (en) Refrigeration apparatus
US20200116396A1 (en) Refrigeration cycle apparatus
JP5323023B2 (en) Refrigeration equipment
JP5412193B2 (en) Turbo refrigerator
JP5627416B2 (en) Dual refrigeration equipment
WO2009135297A1 (en) Multiple mode refrigeration
WO2024085167A1 (en) Cooling system
JP3576040B2 (en) Cooling systems and refrigerators
JP6479203B2 (en) Refrigeration cycle equipment
JP6536061B2 (en) Cooling system
WO2014097484A1 (en) Refrigeration cycle device
JP2004156823A (en) Cooling system
JP2008096072A (en) Refrigerating cycle device
JP2007187358A (en) Refrigerating system and cold insulation device
JP2003065618A (en) Heat carrying equipment
JP5836844B2 (en) Refrigeration equipment
JP2018059655A (en) Refrigeration cycle device
JP2002372397A (en) Cooling system
JP2018146144A (en) Refrigeration cycle device and operating method for the same
US20210033316A1 (en) Oil pump control device, control method, control program, and turbo refrigerator
JP2006163785A (en) Cooling apparatus for vending machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879810

Country of ref document: EP

Kind code of ref document: A1