WO2024085073A1 - 光電変換素子 - Google Patents

光電変換素子 Download PDF

Info

Publication number
WO2024085073A1
WO2024085073A1 PCT/JP2023/037138 JP2023037138W WO2024085073A1 WO 2024085073 A1 WO2024085073 A1 WO 2024085073A1 JP 2023037138 W JP2023037138 W JP 2023037138W WO 2024085073 A1 WO2024085073 A1 WO 2024085073A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
conversion element
compound
aromatic ring
electrode
Prior art date
Application number
PCT/JP2023/037138
Other languages
English (en)
French (fr)
Inventor
達矢 大澤
晃洋 丸山
修平 岩崎
孟 西田
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023158475A external-priority patent/JP2024060579A/ja
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2024085073A1 publication Critical patent/WO2024085073A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/86Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight

Definitions

  • the present invention relates to a photoelectric conversion element.
  • a solar cell refers to a cell that generates a current-voltage by utilizing the photovoltaic effect in which light energy is absorbed from sunlight and electrons and holes are generated.
  • Si n-p diode type silicon
  • organic solar cells do not require high-temperature processing, and can be produced by a so-called roll-to-roll method using a sheet-like substrate, which allows for cost reduction. Further improvement in power generation efficiency and durability is desired for practical use of organic solar cells.
  • crystals with a perovskite structure including perovskite crystals
  • Patent Document 1 describes an increase in open-circuit voltage by having fullerene C60 as an intermediate layer on the upper layer of the perovskite.
  • Patent Document 2 describes an improvement in durability by having an intermediate layer containing thiocyanic acid on the perovskite layer.
  • Patent Document 3 describes an improvement in photoelectric conversion efficiency by having an intermediate layer containing 2-phenylethylammonium bromide on the perovskite layer.
  • an object of the present invention is to provide a photoelectric conversion element which has high initial conversion efficiency and which is less prone to deterioration (reduction) in conversion efficiency when used continuously for a long period of time.
  • a first aspect of the present invention is a photoelectric conversion element having a first electrode, a second electrode, and a photoelectric conversion layer including a crystal having a perovskite structure and disposed between the first electrode and the second electrode,
  • the present invention is characterized in that a charge transport layer (including a hole transport layer and an electron transport layer) is provided between the photoelectric conversion layer and the first electrode, the charge transport layer including a phthalocyanine compound (including a metal-free phthalocyanine or a metal phthalocyanine, or a phthalocyanine derivative derived from the metal-free or metal phthalocyanine) and an aromatic ring compound having a hydroxy group that is different from the phthalocyanine compound.
  • a second aspect of the present invention is a photoelectric conversion element having a first electrode, a second electrode, and a photoelectric conversion layer including a crystal having a perovskite structure disposed between the first electrode and the second electrode,
  • the electroluminescent device is characterized in that a charge transport layer containing a hole transporting compound and an aromatic ring compound represented by the following general formula [1] is provided between the photoelectric conversion layer and the first electrode.
  • R 1 to R 4 are each independently within each repeating unit and each independently for every n repeating units, and are each a hydrogen atom, a halogen atom, a hydroxyl group, a substituted or unsubstituted aromatic hydrocarbon group, or a substituted or unsubstituted organic group, n is an integer of 3 to 20, and one molecule has at least one hydroxyl group.
  • the present invention provides a photoelectric conversion element that suppresses the decrease in conversion efficiency even when used continuously for a long period of time.
  • FIG. 1 is a schematic cross-sectional view in a thickness direction of a first embodiment of a photoelectric conversion element of the present invention.
  • FIG. 2 is a schematic cross-sectional view in the thickness direction of a second embodiment of a photoelectric conversion element of the present invention.
  • FIG. 1 is a perspective view showing a typical example of an application of a photoelectric conversion element of the present invention as a moving object.
  • FIG. 11 is a perspective view that illustrates a schematic diagram of another example of an application of the photoelectric conversion element of the present invention as a building material.
  • the photoelectric conversion element of the present invention is a photoelectric conversion element having a first electrode, a second electrode, and a photoelectric conversion layer containing a crystal of a perovskite structure disposed between the first electrode and the second electrode, and a charge transport layer is provided between the photoelectric conversion layer and the first electrode.
  • the charge transport layer according to the present invention has either of the following characteristics (1) or (2).
  • the phthalocyanine compound includes phthalocyanine and phthalocyanine derivatives (compounds derived from phthalocyanine).
  • the electroluminescent device contains a hole transporting compound and an aromatic ring compound having a calixarene structure.
  • the photoelectric conversion layer contains a perovskite compound, submicron-scale unevenness occurs on the surface, and it is presumed that by filling the concaves of such unevenness with phthalocyanine compound particles, the interfacial bonding is improved and high photoelectric conversion efficiency can be obtained.
  • the lamination of phthalocyanine compound particles cannot suppress the change in the crystal surface of the perovskite structure when electricity is applied.
  • the charge transport layer having the phthalocyanine compound particles contains an aromatic ring compound having a hydroxyl group different from the phthalocyanine compound, so that the deterioration of the crystal of the perovskite structure can be suppressed. It is presumed that the aromatic ring compound having a hydroxyl group enters between the phthalocyanine compound particles and the crystal of the perovskite structure. Since the crystal of the perovskite structure is a hydrogen-bonding crystal, it is thought that the aromatic ring compound having a hydroxyl group interacts with the crystal surface of the perovskite structure through hydrogen bonds.
  • the aromatic ring compound having a hydroxyl group can interact with the crystal surface of the perovskite structure by combining it with a phthalocyanine compound. It is presumed that the aromatic ring of the aromatic ring compound having a hydroxyl group interacts with the surface of the phthalocyanine compound because the condensed rings of the phthalocyanine compound strongly interact with each other. As a result, it is believed that the hydroxyl group of the aromatic ring compound having a hydroxyl group interacts more strongly with the crystal direction of the perovskite structure.
  • the content of the phthalocyanine compound contained in the charge transport layer is taken as 100 parts by mass, it is preferable that the content (parts by mass) of the aromatic ring compound having a hydroxyl group in the charge transport layer is in the range of 0.5 parts by mass to 50 parts by mass.
  • the aromatic ring compound having a hydroxyl group preferably has a molecular weight of 10,000 or less in order to facilitate interaction with the crystal surface of the perovskite structure.
  • the number of hydroxyl groups in the aromatic ring compound is greater than the number of hydroxyl groups in the phthalocyanine compound, the aromatic ring compound and the crystal surface of the perovskite structure are more likely to interact with each other, and changes in the crystal surface are more likely to be suppressed.
  • the number of hydroxyl groups in the aromatic ring compound is greater than the number of hydroxyl groups in the phthalocyanine compound.
  • the number of hydroxyl groups in the aromatic ring compound having hydroxyl groups is more preferably 3 or more, and particularly preferably 4 or more.
  • the aromatic ring compound having hydroxyl groups is more preferably a cyclic structure, and preferably has a calixarene structure such as calix-4 arene or calix-8 arene, in order to increase the hydrogen bond density with the crystal surface of the perovskite structure. It was found that a combination of multiple calix-4 arenes is particularly excellent.
  • the charge transport layer may contain one type of aromatic ring compound, but preferably contains multiple types of aromatic ring compounds.
  • the aromatic ring compound having a calixarene structure preferably used in the present invention is preferably a compound represented by the following general formula [1].
  • R 1 to R 4 are each independently in each repeating unit and each independently for every n repeating units, and are each hydrogen, a halogen atom, a hydroxyl group, a substituted or unsubstituted aromatic hydrocarbon group, or a substituted or unsubstituted organic group, where n is an integer of 3 to 20, and has at least one hydroxyl group in one molecule.
  • the present invention also relates to a photoelectric conversion element having a first electrode, a second electrode, and a photoelectric conversion layer containing a crystal of a perovskite structure disposed between the first electrode and the second electrode, characterized in that the photoelectric conversion element has a charge transport layer containing a hole transport compound and an aromatic ring compound represented by the above general formula [1] between the photoelectric conversion layer and the first electrode.
  • the compound can be analyzed based on data measured by a nuclear magnetic resonance (NMR) spectrometer to determine the structure.
  • NMR nuclear magnetic resonance
  • Examples of the aromatic hydrocarbons exemplified as R 1 to R 4 and the aromatic hydrocarbons exemplified as Ar include benzene, naphthalene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, etc.
  • Examples of the heterocycles exemplified as Ar include furan, thiophene, pyridine, indole, benzothiazole, carbazole, benzocarbazole, acridone, dibenzothiophene, benzoxazole, benzotriazole, oxathiazole, thiazole, phenazine, cinnoline, benzocinnoline, etc.
  • examples of the substituents which the aromatic hydrocarbon groups enumerated as R 1 to R 4 may have and the substituents which Ar may have include alkyl groups such as a methyl group, an ethyl group, a propyl group, and a butyl group; alkoxy groups such as a methoxy group and an ethoxy group; dialkylamino groups such as a dimethylamino group and a diethylamino group; alkoxycarbonyl groups such as a methoxycarbonyl group and an ethoxycarbonyl group; halogen atoms such as a fluorine atom, a chlorine atom, and a bromine atom; a hydroxy group, a nitro group, a cyano group, and a halomethyl group.
  • alkyl groups such as a methyl group, an ethyl group, a propyl group, and a butyl group
  • alkoxy groups such as a methoxy group
  • n is preferably 4 or 8. It is also preferred that R 1 is independently a halogen atom or a hydroxyl group for every n repeating units, and at least one R 1 is a hydroxyl group. It is also preferred that R 3 is independently a nitrophenylazo group or a dinitrophenylazo group for every n repeating units.
  • the charge transport layer contains, as an aromatic ring compound, at least one selected from the group consisting of a compound represented by the following formula [C-1], a compound represented by the following formula [C-2], a compound represented by the following formula [C-3], and a compound represented by the following formula [C-4], and it is more preferable that the charge transport layer contains, as an aromatic ring compound, a compound represented by the following formula [C-1], a compound represented by the following formula [C-2], a compound represented by the following formula [C-3], and a compound represented by the following formula [C-4].
  • aromatic ring compounds having a hydroxyl group that are different from phthalocyanine compounds aromatic ring compounds having a non-cyclic structure can be used in addition to aromatic ring compounds having a calixarene structure.
  • Specific examples include phenol, 1-naphthol, benzyl alcohol, cresol, benzenetriol, carboxylic acid, hydroquinone, benzoic acid, phthalic acid, terephthalic acid, and catecholamine.
  • the phthalocyanine compound is preferably a metal phthalocyanine compound.
  • the phthalocyanine compound used in the present invention may have a metal ligand, and examples of the coordinated metal include Ga, Cu, Ti, and Zn, and among them, Ga is preferred from the viewpoint of crystallinity.
  • the phthalocyanine compound is more preferably a gallium phthalocyanine compound, and is particularly preferably a hydroxygallium phthalocyanine compound.
  • a combination of a hole transporting compound and an aromatic ring compound having a calixarene structure represented by the above general formula [1] allows the aromatic ring compound to interact with the crystal surface of the perovskite structure, chemically stabilizing the surface. That is, the charge transport layer of (2) above.
  • the aromatic ring compound having a calixarene structure calix-4-arene in which n in the general formula [1] is 4 is preferable.
  • R 1 in the general formula [1] is independently a halogen atom or a hydroxyl group for each of n repeating units, at least one R 1 is a hydroxyl group, and R 3 is independently a nitrophenylazo group or a dinitrophenylazo group for each of n repeating units is preferable.
  • a mixture of multiple types of calix-4-arenes is preferable from the viewpoint of affinity with the hole transporting compound.
  • the hole transport compound to be combined with the aromatic ring compound having a calixarene structure is not particularly limited, but spiro-OMeTAD (2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene) and PTAA (poly(triarylamine)) are preferred.
  • the term "layer” does not only refer to a layer with clear boundaries or a flat thin-film layer, but also to a layer with a gradually changing concentration gradient of contained elements, or a layer that can combine with other layers to form a complex and intricate structure.
  • elemental analysis of a layer can be performed, for example, by performing TOF-SIMS/FE-TEM/EDS line analysis measurement of a cross section of a photoelectric conversion element to confirm the elemental distribution of a specific element.
  • FIG. 1 is a schematic cross-sectional view in the thickness direction of a first embodiment of a photoelectric conversion element of the present invention.
  • a second electrode 3, an electron transport layer 4, a photoelectric conversion layer 5, a charge transport layer 8, a hole transport layer 6, and a first electrode 7 are provided on a substrate 2.
  • the first electrode 7 is an anode
  • the second electrode 3 is a cathode.
  • a current can be extracted by connecting the first electrode 7 and the second electrode 3 to an external circuit.
  • FIG. 2 is a schematic cross-sectional view in the thickness direction of a second embodiment of a photoelectric conversion element of the present invention.
  • the photoelectric conversion layer 5 is excited by light incident through the substrate 2, the second electrode 3, and the electron transport layer 4, or through the first electrode 7, the hole transport layer 6, and the charge transport layer 8, and generates electrons or holes. That is, the photoelectric conversion layer 5 generates a voltage between the first electrode 7 and the second electrode 3.
  • the electron transport layer 4 is a layer disposed between the photoelectric conversion layer 5 and the two electrodes 3 and 7, and may not be formed in some cases.
  • the photoelectric conversion element of the present invention may have a structure in which a plurality of electron transport layers 4, photoelectric conversion layers 5, and hole transport layers 6 are stacked, and electrodes may be provided as necessary.
  • the stacked photoelectric conversion elements may be photoelectric conversion elements having silicon, CIGS, or the like. Such a structure is sometimes called a tandem structure. Each member is explained below.
  • the photoelectric conversion element 1 of the present invention may include a substrate 2, examples of which include a transparent glass substrate such as soda-lime glass or alkali-free glass, a ceramic substrate, a transparent plastic substrate, etc.
  • a transparent glass substrate such as soda-lime glass or alkali-free glass
  • a ceramic substrate such as soda-lime glass or alkali-free glass
  • a transparent plastic substrate such as soda-lime glass or alkali-free glass
  • an opaque material can be used for the substrate 2
  • the substrate 2 is made of a transparent material.
  • both the first electrode 7 and the second electrode 3 may be made of a transparent material.
  • the materials of the first electrode 7 and the second electrode 3 are not particularly limited, and conventionally known materials can be used.
  • metals such as gold, silver, titanium, and copper, sodium, sodium-potassium alloy, lithium, magnesium, aluminum, magnesium-silver mixture, magnesium-indium mixture, aluminum-lithium alloy, Al/Al 2 O 3 mixture, and Al/LiF mixture can be mentioned.
  • transparent electrode materials include conductive transparent materials such as CuI, ITO (indium tin oxide), SnO 2 , AZO (aluminum zinc oxide), IZO (indium zinc oxide), GZO (gallium zinc oxide), FTO (fluorine-doped tin oxide), and ATO (antimony-doped tin oxide), and conductive transparent polymers. These materials may be used alone, or two or more of them may be used in combination.
  • At least one of the electrodes on the light incident side of the first electrode 7 and the second electrode 3 is a transparent electrode, and the other may be a transparent electrode or a reflective layer formed of a light-reflective material.
  • the second electrode 3 may be a transparent electrode and the substrate 2 may be a reflective layer.
  • the transparent electrode may be a patterned electrode.
  • the photoelectric conversion layer 5 has a crystal having a perovskite structure.
  • the crystal having a perovskite structure used in the present invention is preferably a crystal of a compound represented by the following general formula [2], which is easily hydrogen-bonded on the surface.
  • R is either an organic molecule or an inorganic atom, or both, M is a metal atom, and X is a halogen atom or a chalcogen atom.
  • R is preferably represented by C p N m H n (p, m, and n are all positive integers).
  • methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, aniline, pyridine, propylcarboxyamine, butylcarboxyamine, pentylcarboxyamine, formamidinium, guanidine ion, and phenethylammonium are preferred, and methylamine, ethylamine, propylamine, pentylcarboxyamine, formamidinium, and guanidine ion are more preferred.
  • Inorganic atoms are not particularly limited, but lithium, cesium, sodium, potassium, and rubidium are preferred. These organic molecules or inorganic atoms may be used alone or in combination of two or more.
  • the above M is a metal atom, such as lead, tin, bismuth, zinc, titanium, antimony, nickel, iron, cobalt, silver, copper, gallium, germanium, magnesium, calcium, indium, aluminum, manganese, chromium, molybdenum, and europium.
  • a metal atom such as lead, tin, bismuth, zinc, titanium, antimony, nickel, iron, cobalt, silver, copper, gallium, germanium, magnesium, calcium, indium, aluminum, manganese, chromium, molybdenum, and europium.
  • lead, tin, and bismuth are preferred from the viewpoint of electron orbital overlap.
  • These metal atoms may be used alone or in combination of two or more.
  • the X is a halogen atom or a chalcogen atom, such as chlorine, bromine, iodine, sulfur, and selenium.
  • halogen atoms or chalcogen atoms may be used alone or in combination of two or more.
  • halogen atoms are preferred because the organic-inorganic perovskite compound is easily soluble in an organic solvent by containing a halogen in the structure, and can be applied to inexpensive printing methods and the like.
  • iodine is more preferred because the energy band gap of the organic-inorganic perovskite compound is narrowed.
  • MAPbI3 MAPbI3
  • Cs5 MA0.17FA0.83
  • 95Pb I0.83Br0.17
  • CsPbI3 CsPbI3
  • MA methylammonium
  • FA formamidinium
  • the organic-inorganic perovskite compound preferably has a cubic crystal structure in which a metal atom M is located at the body center, an organic molecule R at each vertex, and a halogen atom or chalcogen atom X at the face center.
  • the organic-inorganic perovskite compound used in the present invention is preferably a crystalline semiconductor.
  • a crystalline semiconductor means a semiconductor in which a scattering peak can be detected by measuring the X-ray scattering intensity distribution.
  • the organic-inorganic perovskite compound is a crystalline semiconductor, the mobility of electrons in the organic-inorganic perovskite compound is increased, improving the photoelectric conversion efficiency of the photoelectric conversion element.
  • the thickness of the photoelectric conversion layer according to the present invention is preferably 5 nm or more and 1000 nm or less. If the thickness is 5 nm or more, light can be sufficiently absorbed, and if the thickness is 1000 nm or less, the generated electric charge can be transported to each electrode.
  • a more preferable lower limit is 10 nm or more, a more preferable upper limit is 700 nm, an even more preferable lower limit is 15 nm, and an even more preferable upper limit is 500 nm.
  • the photoelectric conversion element 1 of the present invention has a charge transport layer 8 between the photoelectric conversion layer 5 and the first electrode 7. In the present invention, it is preferable that the charge transport layer is in contact with the photoelectric conversion layer.
  • the charge transport layer 8 contains either a phthalocyanine compound and an aromatic ring compound having a hydroxyl group different from the phthalocyanine compound, or a hole transport compound and an aromatic ring compound having a calixarene structure.
  • the thickness of the charge transport layer 8 is preferably 20 nm or more and 800 nm or less. If the thickness is 20 nm or more, it is easy to sufficiently cover the photoelectric conversion layer 5 and charge transport can be performed smoothly, and if the thickness is 800 nm or less, it is easy to transport charges well to each electrode. More preferably, it is 50 nm or more and 600 nm or less, and even more preferably, it is 50 nm or more and 400 nm or less.
  • hole transport layer 6 it is preferable to have a hole transport layer 6 between the charge transport layer 8 and the first electrode 7 from the viewpoint of film compatibility of the charge transport layer.
  • the material of the hole transport layer 6 is not particularly limited, and examples thereof include spirofluorene compounds, triphenylamine compounds, chrysene compounds, pyrene compounds, phthalocyanine compounds, carbazole compounds, fluorene compounds, phenylcyclohexane compounds, benzidine compounds, phenoxazine compounds, phenylenediamine compounds, thiocyanate compounds, etc.
  • the compound has an aromatic ring, and as the hole transport compound, Spiro-OMeTAD, PTAA, and phthalocyanine compounds are preferable.
  • an electron transport layer 4 may be disposed between the second electrode 3 and the photoelectric conversion layer 5 .
  • the material of the electron transport layer 4 is not particularly limited, and examples thereof include N-type conductive polymers, N-type low molecular weight organic semiconductors, N-type metal oxides, N-type metal sulfides, alkali metal halides, alkali metals, surfactants, etc., and specific examples thereof include cyano group-containing polyphenylene vinylene, boron-containing polymers, bathocuproine, bathophenanthrene, hydroxyquinolinatoaluminum, oxadiazole compounds, benzimidazole compounds, naphthalene tetracarboxylic acid compounds, perylene derivatives, phosphine oxide compounds, phosphine sulfide compounds, fluoro group-containing phthalocyanines, titanium oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium sulfide, zinc sulfide, etc.
  • the thickness of the electron transport layer 4 has a preferred lower limit of 1 nm and a preferred upper limit of 2000 nm. If the thickness is 1 nm or more, holes can be blocked sufficiently, and if the thickness is 2000 nm or less, it is unlikely to become a resistance during electron transport, and the photoelectric conversion efficiency is high.
  • a more preferred lower limit of the thickness is 3 nm, a more preferred upper limit is 1000 nm, an even more preferred lower limit is 5 nm, and an even more preferred upper limit is 500 nm.
  • a photoelectric conversion device can be constructed by using a plurality of photoelectric conversion elements of the present invention. When a plurality of photoelectric conversion elements are connected, the photoelectric conversion device can also be called a photoelectric conversion module. The photoelectric conversion elements may be stacked to increase the output voltage.
  • the photoelectric conversion device has the photoelectric conversion element of the present invention and an inverter.
  • the inverter may be a converter that converts direct current to alternating current.
  • the photoelectric conversion device may have a storage unit connected to the photoelectric conversion element.
  • the storage unit is not limited as long as it can store electricity. For example, a secondary battery using lithium ions or the like, an all-solid-state battery, an electric double layer capacitor, etc. can be mentioned.
  • FIG. 3 is a perspective view showing a typical example of an application of a moving body equipped with the photoelectric conversion element of the present invention.
  • the moving body 30 has the photoelectric conversion element 31 of the present invention and a vehicle 32 equipped with the photoelectric conversion element 31.
  • the photoelectric conversion element 31 is disposed at a position on the vehicle 32 where it can receive external light. If the moving body 30 is an automobile, it may be disposed on the roof.
  • the electric energy obtained by the photoelectric conversion element 31 may be used as the power of the moving body 30 or as the power of other electric devices.
  • the electric energy generated from the power of the moving body 30 may be used to power the photoelectric conversion element 31. If the moving body 30 is an automobile, frictional energy generated by braking may be converted into electric energy and used to control the photoelectric conversion element 31.
  • the moving body 30 may be, for example, an automobile, a ship, an aircraft, or a drone.
  • the configuration of the body 32 of the moving body 30 is not particularly limited, but it is preferably made of a high-strength material.
  • the building material of the present invention preferably includes the above-mentioned photoelectric conversion element.
  • Fig. 4 is a perspective view showing a schematic diagram of another example of an application of a building material including the photoelectric conversion element of the present invention.
  • the building material 40 may be the roof of a building.
  • the building material 40 of the application example includes the photoelectric conversion element 41 of the present invention, a protective member 42 for protecting the photoelectric conversion element 41, a heat dissipation member 43, and exteriors 44a and 44b.
  • the building material 40 of the present invention may have a heat dissipation member 43 that has a higher thermal conductivity than the photoelectric conversion element 41.
  • the temperature of the photoelectric conversion element 41 may rise due to sunlight, which may result in a decrease in photoelectric conversion efficiency.
  • the heat dissipation member 43 By using the heat dissipation member 43, the decrease in photoelectric conversion efficiency can be reduced.
  • the heat dissipation member 43 include metals, alloys, liquid metals, and liquid resins.
  • the building material 40 of the present invention may also have exteriors 44a and 44b.
  • the exteriors 44a and 44b may emit different colors or may be the same.
  • 44a and 44b may be made of the same material or different materials. Paint or a transparent substrate may be used as the exterior. A material with low light absorption and high heat insulation is preferable.
  • the obtained filtrate was dispersed and washed using N,N-dimethylformamide at a temperature of 140° C. for 2 hours, and then filtered.
  • the obtained filtrate was washed with methanol and then dried to obtain chlorogallium phthalocyanine particles with a yield of 71%.
  • Step (2) 4.65 parts of the chlorogallium phthalocyanine particles were dissolved in 139.5 parts of concentrated sulfuric acid at a temperature of 10° C., dropped into 620 parts of ice water under stirring to reprecipitate, and filtered under reduced pressure using a filter press.
  • No. 5C manufactured by Advantec Co., Ltd.
  • the obtained wet cake (filtrate) was dispersed and washed with 2% ammonia water for 30 minutes, and then filtered using a filter press.
  • the obtained wet cake (filtrate) was dispersed and washed with ion-exchanged water, and then filtration using a filter press was repeated three times.
  • hydroxygallium phthalocyanine particles (hydrated hydroxygallium phthalocyanine particles) with a solid content of 23% by mass at a yield of 71%.
  • the hydroxygallium phthalocyanine particles were dried using a hyper-dry dryer (trade name: HD-06R, frequency (oscillation frequency): 2455 MHz ⁇ 15 MHz, manufactured by Japan Biocon Co., Ltd.) to obtain hydroxygallium phthalocyanine particles (crystals) with a moisture content of 1.0% by mass or less.
  • Step (3) Five parts of the hydroxygallium phthalocyanine (HOGaPc) particles were dispersed for six hours using a sand mill (K-800, manufactured by Igarashi Machinery Mfg. Co., Ltd. (now Imex Co., Ltd.), disk diameter 70 mm, number of disks 5) containing 5 parts of DMF (N,N-dimethylformamide) as a solvent and 5 parts of glass beads sealed therein, followed by filtration and drying to obtain Particle 1.
  • K-800 manufactured by Igarashi Machinery Mfg. Co., Ltd. (now Imex Co., Ltd.), disk diameter 70 mm, number of disks 5) containing 5 parts of DMF (N,N-dimethylformamide) as a solvent and 5 parts of glass beads sealed therein, followed by filtration and drying to obtain Particle 1.
  • DMF N,N-dimethylformamide
  • Example 1 [Formation of Electron Transport Layer] A glass substrate with ITO (indium tin oxide) was cleaned, and tin (II) oxide adjusted to 3 mass % was applied thereon by spin coating, followed by heating at 150° C. for 30 minutes to form a thin-film electron transport layer having a thickness of 100 nm.
  • ITO indium tin oxide
  • a photoelectric conversion layer coating solution was prepared by dissolving 4 g of lead iodide and 1.4 g of methylammonium iodide in 4.5 g of dimethylformamide as a solvent and stirring and dissolving for 24 hours at 60° C. This coating solution was spin-coated on the electron transport layer to form a photoelectric conversion layer of MAPbI3 having a thickness of 500 nm.
  • a gold electrode having a thickness of 80 nm and an area of 0.09 cm 2 was formed on the hole transport layer by vacuum deposition to obtain a photoelectric conversion element.
  • Example 5 Photoelectric conversion elements were obtained in the same manner as in Example 1, except that 0.00025 g of an aromatic ring compound having a hydroxyl group was used in Example 2, 0.005 g in Example 3, 0.025 g in Example 4, and 0.04 g in Example 5.
  • Example 6 Photoelectric conversion elements were obtained in the same manner as in Example 1, except that the aromatic ring compound having a hydroxy group was changed to 1-naphthol and 0.0001 g was used in Example 6, 0.00025 g in Example 7, and 0.025 g in Example 8.
  • Example 9 to 12 Photoelectric conversion elements were obtained in the same manner as in Example 1, except that the aromatic ring compound having a hydroxy group was changed to the aromatic ring compound represented by the formula [C-1], and 0.0001 g was used in Example 9, 0.00025 g in Example 10, 0.0025 g in Example 11, and 0.005 g in Example 12.
  • Example 13 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the aromatic ring compound having a hydroxy group was changed to the aromatic ring compound represented by the formula [C-1] and 0.005 g was used, and further, the hole transporting compound in the hole transport layer was changed to PTAA (CAS: 1333317-99-9, manufactured by Luminescence Technology Co., Ltd.).
  • Example 14 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the aromatic ring compound having a hydroxy group was changed to the aromatic ring compound represented by the formula [C-1], 0.005 g of which was used, and the perovskite structure crystal was changed to Cs5 ( MA0.17FA0.83 ) 95Pb ( I0.83Br0.17 ) 3 .
  • Example 15 to 17 Photoelectric conversion elements were obtained in the same manner as in Example 1, except that the aromatic ring compound having a hydroxy group was changed to the aromatic ring compound represented by the formula [C-1] and 0.015 g was used in Example 15, 0.025 g in Example 16, and 0.04 g in Example 17.
  • Example 18 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the aromatic ring compound having a hydroxy group was changed to the aromatic ring compound represented by the formula [C-9] above and 0.005 g was used.
  • Example 19 A photoelectric conversion element was obtained in the same manner as in Example 1, except that 0.005 g of an aromatic ring compound having a hydroxyl group, which was a mixture of an aromatic ring compound represented by the formula [C-1] and an aromatic ring compound represented by the formula [C-2] in a mass ratio of 1:1, was used.
  • Example 20 to 22 Photoelectric conversion elements were obtained in the same manner as in Example 1, except that the aromatic ring compound having a hydroxy group was changed to a mixture of the aromatic ring compounds represented by the formulas [C-1] to [C-4], and 0.0001 g was used in Example 20, 0.00025 g in Example 21, and 0.005 g in Example 22.
  • Example 25 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the aromatic ring compound having a hydroxyl group was changed to a mixture of the aromatic ring compounds represented by the formulas [C-1] to [C-4], and 0.005 g was used, and the order of film formation of the hole transport layer and the charge transport layer was reversed so that the hole transport layer was in contact with the photoelectric conversion layer.
  • Example 26 and 27 Photoelectric conversion elements were obtained in the same manner as in Example 1, except that the aromatic ring compound having a hydroxy group was changed to a mixture of the aromatic ring compounds represented by the formulas [C-1] to [C-4], and 0.025 g was used in Example 26 and 0.04 g was used in Example 27.
  • Example 28 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the aromatic ring compound having a hydroxy group was changed to an aromatic ring compound represented by the following formula [A-1] (CAS: 490-46-0, manufactured by Fuji Film Corporation) and an aromatic ring compound represented by the following formula [A-2] (CAS: 970-73-0, manufactured by Fuji Film Corporation), and 0.005 g of each was used.
  • Example 29 A photoelectric conversion element was obtained in the same manner as in Example 1, except that 0.005 g of a mixture of an aromatic ring compound represented by the formula [C-5] and an aromatic ring compound represented by the formula [C-6] in a mass ratio of 1:1 was used as the aromatic ring compound having a hydroxy group.
  • Example 30 A photoelectric conversion element was obtained in the same manner as in Example 1, except that 0.005 g of a mixture of an aromatic ring compound represented by the formula [C-7] and an aromatic ring compound represented by the formula [C-8] in a mass ratio of 1:1 was used as the aromatic ring compound having a hydroxy group.
  • Example 31 to 33 Photoelectric conversion elements were obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to copper phthalocyanine (CuPc) and 0.0001 g of an aromatic ring compound having a hydroxyl group was used in Example 31, 0.005 g in Example 32, and 0.04 g in Example 33.
  • CuPc copper phthalocyanine
  • Example 34 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to copper phthalocyanine, the aromatic ring compound having a hydroxyl group was changed to 1-naphthol, and 0.00025 g was used in Example 34 and 0.025 g was used in Example 35.
  • Example 36 Photoelectric conversion elements were obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to copper phthalocyanine, the aromatic ring compound having a hydroxyl group was changed to the aromatic ring compound represented by the formula [C-1], and 0.0001 g was used in Example 36, 0.0025 g in Example 37, and 0.005 g in Example 38.
  • Example 39 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to copper phthalocyanine, the aromatic ring compound having a hydroxy group was changed to the aromatic ring compound represented by the formula [C-1] in an amount of 0.005 g, and the hole transport compound was changed to PTAA.
  • Example 40 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to copper phthalocyanine, the aromatic ring compound having a hydroxyl group was changed to the aromatic ring compound represented by the above formula [C-1] ( 0.005 g was used), and the perovskite structure crystal was changed to Cs5 ( MA0.17FA0.83 ) 95Pb ( I0.83Br0.17 ) 3 .
  • Example 41 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to copper phthalocyanine, the aromatic ring compound having a hydroxyl group was changed to the aromatic ring compound represented by the formula [C-1], and 0.015 g was used in Example 41 and 0.04 g was used in Example 42.
  • Example 43 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to copper phthalocyanine, and the aromatic ring compound having a hydroxyl group was changed to the aromatic ring compound represented by the formula [C-9] and 0.005 g was used.
  • Example 44 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to copper phthalocyanine, the aromatic ring compound having a hydroxyl group was changed to a mixture of the aromatic ring compounds represented by the formulas [C-1] to [C-4], and 0.00025 g was used in Example 44 and 0.025 g was used in Example 45.
  • Example 46 Photoelectric conversion elements were obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to zinc phthalocyanine (ZnPc), and 0.0001 g of an aromatic ring compound having a hydroxyl group was used in Example 46, 0.005 g in Example 47, and 0.04 g in Example 48.
  • ZnPc zinc phthalocyanine
  • Example 49 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to zinc phthalocyanine, the aromatic ring compound having a hydroxyl group was changed to 1-naphthol, and 0.00025 g was used in Example 49 and 0.025 g was used in Example 50.
  • Example 51 to 53 Photoelectric conversion elements were obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to zinc phthalocyanine, the aromatic ring compound having a hydroxyl group was changed to the aromatic ring compound represented by the formula [C-1], and 0.0001 g was used in Example 51, 0.0025 g in Example 52, and 0.005 g in Example 53.
  • Example 54 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to zinc phthalocyanine, the aromatic ring compound having a hydroxyl group was changed to the aromatic ring compound represented by the formula [C-1] (0.005 g was used), and the hole transporting compound in the hole transport layer was changed to PTAA.
  • Example 55 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to zinc phthalocyanine, the aromatic ring compound having a hydroxyl group was changed to the aromatic ring compound represented by the above formula [C-1] ( 0.005 g was used), and the perovskite structure crystal was changed to Cs5 ( MA0.17FA0.83 ) 95Pb ( I0.83Br0.17 ) 3 .
  • Example 56 Photoelectric conversion elements were obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to zinc phthalocyanine, the aromatic ring compound having a hydroxyl group was changed to the aromatic ring compound represented by the formula [C-1], and 0.015 g was used in Example 56 and 0.04 g was used in Example 57.
  • Example 58 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to zinc phthalocyanine, and the aromatic ring compound having a hydroxyl group was changed to the aromatic ring compound represented by the formula [C-9] and 0.005 g was used.
  • Example 59 and 60 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to zinc phthalocyanine, the aromatic ring compound having a hydroxyl group was changed to a mixture of the aromatic ring compounds represented by the formulas [C-1] to [C-4], and 0.00025 g was used in Example 59 and 0.025 g was used in Example 60.
  • Example 61 to 63 Photoelectric conversion elements were obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to titanyl phthalocyanine (TiPc) and 0.0001 g of an aromatic ring compound having a hydroxyl group was used in Example 61, 0.005 g in Example 62, and 0.04 g in Example 63.
  • TiPc titanyl phthalocyanine
  • Example 64 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to titanyl phthalocyanine, the aromatic ring compound having a hydroxyl group was changed to 1-naphthol, and 0.00025 g was used in Example 64 and 0.025 g was used in Example 65.
  • Example 66 to 68 Photoelectric conversion elements were obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to titanyl phthalocyanine, the aromatic ring compound having a hydroxyl group was changed to the aromatic ring compound represented by the formula [C-1], and 0.0001 g was used in Example 66, 0.0025 g in Example 67, and 0.005 g in Example 68.
  • Example 69 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to titanyl phthalocyanine, the aromatic ring compound having a hydroxyl group was changed to the aromatic ring compound represented by the formula [C-1] (0.005 g was used), and the hole transporting compound in the hole transport layer was changed to PTAA.
  • Example 70 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to titanyl phthalocyanine, the aromatic ring compound having a hydroxyl group was changed to the aromatic ring compound represented by the above formula [C-1] ( 0.005 g was used), and the perovskite structure crystal was changed to Cs5 ( MA0.17FA0.83 ) 95Pb ( I0.83Br0.17 ) 3 .
  • Example 71 and 72 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to titanyl phthalocyanine, the aromatic ring compound having a hydroxyl group was changed to the aromatic ring compound represented by the formula [C-1], and 0.015 g was used in Example 71 and 0.04 g was used in Example 72.
  • Example 73 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to titanyl phthalocyanine, and the aromatic ring compound having a hydroxyl group was changed to the aromatic ring compound represented by the formula [C-9] and 0.005 g was used.
  • Example 74 and 75 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to titanyl phthalocyanine, the aromatic ring compound having a hydroxyl group was changed to a mixture of the aromatic ring compounds represented by the formulas [C-1] to [C-4], and 0.00025 g was used in Example 74 and 0.025 g was used in Example 75.
  • Example 76 to 78 Photoelectric conversion elements were obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to chlorogallium phthalocyanine (ClGaPc), and 0.0001 g of an aromatic ring compound having a hydroxyl group was used in Example 76, 0.005 g in Example 77, and 0.04 g in Example 78.
  • ClGaPc chlorogallium phthalocyanine
  • Example 79 and 80 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to chlorogallium phthalocyanine, the aromatic ring compound having a hydroxyl group was changed to 1-naphthol, and 0.00025 g was used in Example 79 and 0.025 g was used in Example 80.
  • Example 81 and 82 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to chlorogallium phthalocyanine, the aromatic ring compound having a hydroxyl group was changed to the aromatic ring compound represented by the formula [C-1], and 0.0001 g was used in Example 81 and 0.005 g was used in Example 82.
  • Example 83 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to chlorogallium phthalocyanine, the aromatic ring compound having a hydroxyl group was changed to the aromatic ring compound represented by the formula [C-1], and 0.005 g of the compound was used, and further the hole transport compound in the hole transport layer was changed to PTAA.
  • Example 84 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to chlorogallium phthalocyanine, the aromatic ring compound having a hydroxyl group was changed to the aromatic ring compound represented by the above formula [C-1] ( 0.005 g ) was used, and the perovskite structure crystal was changed to Cs5 ( MA0.17FA0.83 ) 95Pb ( I0.83Br0.17 ) 3 .
  • Example 85 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to chlorogallium phthalocyanine, and the aromatic ring compound having a hydroxyl group was changed to the aromatic ring compound represented by the formula [C-1] and 0.04 g was used.
  • Example 86 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to chlorogallium phthalocyanine, and the aromatic ring compound having a hydroxyl group was changed to the aromatic ring compound represented by the formula [C-9] and 0.005 g was used.
  • Example 87 and 88 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to chlorogallium phthalocyanine, the aromatic ring compound having a hydroxyl group was changed to a mixture of the aromatic ring compounds represented by the formulas [C-1] to [C-4], and 0.00025 g was used in Example 87 and 0.025 g in Example 88.
  • Example 89 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to metal-free phthalocyanine (Pc), and the aromatic ring compound having a hydroxyl group was changed to a mixture of the aromatic ring compounds represented by the formulas [C-1] to [C-4], respectively, and 0.005 g was used.
  • Example 90 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to gallium phthalocyanine represented by the following formula [F-1], and the aromatic ring compound having a hydroxyl group was changed to a mixture of the aromatic ring compounds represented by the formulas [C-1] to [C-4], respectively, and 0.005 g was used.
  • Example 2 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to titanyl phthalocyanine and no aromatic ring compound having a hydroxy group was used.
  • Example 91 to 93 Photoelectric conversion elements were obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to Spiro-OMeTAD, which is a hole transporting compound, and the aromatic ring compound having a hydroxyl group was changed to the aromatic ring compound represented by the formula [C-1], and 0.00025 g was used in Example 91, 0.005 g in Example 92, and 0.025 g in Example 93.
  • Example 94 A photoelectric conversion element was obtained in the same manner as in Example 1, except that the phthalocyanine compound was changed to a hole transporting compound, Spiro-OMeTAD, and the aromatic ring compound having a hydroxyl group was changed to a mixture of the aromatic ring compounds represented by the formulas [C-1] to [C-4], respectively, and 0.005 g was used.
  • a power source (KEITHLEY, Model 236) was connected between the electrodes of the photoelectric conversion element, and a constant amount of light was irradiated using a solar simulator (Yamashita Denso) with an intensity of 100 mW/ cm2 , and the generated current and voltage were measured to evaluate the photoelectric conversion efficiency. Degradation was evaluated by continuously irradiating light of 2000 Lx and measuring the photoelectric conversion efficiency after 30 days. The stability of the element was evaluated by the attenuation rate of the conversion efficiency after 30 days (degradation rate after 30 days) relative to the initial conversion efficiency. The results are shown in Tables 1 to 4. In the tables, the "amount used" of the "aromatic ring compound having a hydroxyl group” indicates the amount (parts by mass) of the aromatic ring compound used when the amount of the phthalocyanine compound used is taken as 100 parts by mass.
  • Photoelectric conversion element 2 Substrate 3 Second electrode 4 Electron transport layer 5 Photoelectric conversion layer 6 Hole transport layer 7 First electrode 8 Charge transport layer

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

初期の変換効率が高く、長時間にわたり連続して使用したときに変換効率の劣化(低下)がより少ない光電変換素子を提供することを課題とする。これを解決するために、以下の光電変換素子を提供する。すなわち、第一電極と、第二電極と、前記第一電極と前記第二電極との間に配置されているペロブスカイト構造の結晶を含む光電変換層と、を有する光電変換素子であって、前記光電変換層と前記第一電極との間に、フタロシアニン化合物、及び前記フタロシアニン化合物とは異なる、ヒドロキシ基を有する芳香環化合物を含む電荷輸送層を有する、ことを特徴とする光電変換素子である。

Description

光電変換素子
 本発明は光電変換素子に関する。
 化石エネルギーの枯渇問題及び化石エネルギーの使用による地球の環境問題を解決するために、太陽エネルギー、風力、水力等のように、再生可能であって清浄な代替エネルギー源に関する研究が活発に行われている。その中でも、太陽光を直接電気的エネルギーに変化させる太陽電池に関する関心が大きく増大している。ここで、太陽電池とは、太陽光から光エネルギーを吸収し、電子及び正孔が発生する光起電力効果を利用して電流-電圧を生成する電池を意味する。
 現在、20%を超える光エネルギー変換効率を有するn-pダイオード型シリコン(Si)単結晶ベースの太陽電池が広く知られ、実際に太陽光発電に用いられている。しかしながら、これらは、高温処理工程を必要とし、また材料自体の価格も高いため、単位電力あたりのコストが高いという問題を有している。また、シリコン資源の面から、供給性にも問題を有している。
 一方、有機材料を用いた太陽電池(以下、「有機太陽電池」という)は、高温処理工程を必要とせず、シート状基板で所謂roll to roll方式での生産が可能で低コスト化が可能である。有機太陽電池の実用化のため発電効率と耐久性の更なる向上が望まれている。特に光電変換層として、ペロブスカイト構造の結晶(ペロブスカイト結晶を含む)は、光電変換性に優れるため太陽電池の実用化に向けた材料として開発が進んでいる。例えば特許文献1には、ペロブスカイトの上層に中間層として、フラーレンC60を有することで開放端電圧の上昇が記載されている。特許文献2には、ペロブスカイト層の上にチオシアン酸を含む中間層を有することで、耐久性の向上が記載されている。特許文献3には、ペロブスカイト層上に、2-フェニルエチルアンモニウムブロミドを有する中間層を有することで、光電変換効率の向上が記載されている。
特開2020-13982号公報 特開2019-71500号公報 特開2022-27575号公報
 本発明者等の検討によると、特許文献1~3に記載の光電変換素子では、ペロブスカイト構造の結晶の通電時の表面変化を抑制することができず、長時間にわたり連続して使用すると変換効率が劣化(低化)する課題があった。
 したがって、本発明の目的は、初期の変換効率が高く、長時間にわたり連続して使用したときに変換効率の劣化(低化)がより少ない光電変換素子を提供することにある。
 本発明の第一は、第一電極と、第二電極と、前記第一電極と前記第二電極との間に配置されているペロブスカイト構造の結晶を含む光電変換層と、を有する光電変換素子であって、
 前記光電変換層と前記第一電極との間に、フタロシアニン化合物(無金属フタロシアニンや金属フタロシアニン、又は該無金属もしくは該金属フタロシアニンから誘導されるフタロシアニン誘導体を含む)、及び前記フタロシアニン化合物とは異なる、ヒドロキシ基を有する芳香環化合物を含む電荷輸送層(正孔輸送層、電子輸送層を含む)を有することを特徴とする。
 本発明の第二は、第一電極と、第二電極と、前記第一電極と前記第二電極との間に配置されているペロブスカイト構造の結晶を含む光電変換層と、を有する光電変換素子であって、
 前記光電変換層と前記第一電極との間に、正孔輸送性化合物、及び下記一般式[1]で表される芳香環化合物を含む電荷輸送層を有することを特徴とする。
Figure JPOXMLDOC01-appb-C000007
 (上記一般式[1]中、R~Rは、各繰り返し単位内でそれぞれ独立に、且つ、n個の繰り返し単位毎にそれぞれ独立に、水素、ハロゲン原子、ヒドロキシ基、置換又は無置換の芳香族炭化水素基、置換又は無置換の有機基であり、nは3~20の整数であり、1分子内に少なくとも一つのヒドロキシ基を有する。)
 本発明によれば、長時間連続使用しても変換効率の低下が抑制された光電変換素子を提供することができる。
本発明の光電変換素子の第一の実施形態の厚さ方向の断面模式図である。 本発明の光電変換素子の第二の実施形態の厚さ方向の断面模式図である。 本発明の光電変換素子を備えた移動体としての応用例の一例を模式的に示す斜視図である。 本発明の光電変換素子を備えた建材としての応用例の別の一例を模式的に示す斜視図である。
 <第一の実施形態及び第二の実施形態>
 本発明の光電変換素子は、第一電極と、第二電極と、前記第一電極と前記第二電極との間に配置されているペロブスカイト構造の結晶を含む光電変換層を有する光電変換素子であり、該光電変換層と第一電極との間に電荷輸送層を有する。そして、本発明に係る電荷輸送層としては、以下の(1)、(2)のいずれかの特徴を有する。
 (1)フタロシアニン化合物と、該フタロシアニン化合物とは異なる、ヒドロキシ基を有する芳香環化合物と、を含有する。本発明において、フタロシアニン化合物には、フタロシアニン及びフタロシアニン誘導体(フタロシアニンから誘導される化合物)が含まれる。
 (2)正孔輸送性化合物と、カリックスアレーン構造を有する芳香環化合物と、を含有する。
 先ず、上記(1)について説明する。
 本発明者等は検討の結果、上記(1)の電荷輸送層を有することで、ペロブスカイト構造の結晶の表面安定性に優れた光電変換素子となることを見出した。本発明において高い安定性を得られる理由について、詳細は明らかではないが、次のように考えられる。
 フタロシアニン化合物を粒子状態で成膜することで、高い結晶性が維持され、フタロシアニン本来の電荷輸送能が発現できる。さらに本発明者等の従来の検討では、光電変換層がペロブスカイト化合物を含む場合には表面にサブミクロンスケールの凹凸が生じるため、係る凹凸の凹部にフタロシアニン化合物粒子を充填することで、界面接合が良化し、高い光電変換効率が獲得できるものと推定される。しかしフタロシアニン化合物粒子の積層では、通電時にペロブスカイト構造の結晶表面の変化を抑制できないことが分かった。本発明では、このフタロシアニン化合物粒子を有する電荷輸送層に、該フタロシアニン化合物とは異なる、ヒドロキシ基を有する芳香環化合物を含有することで、ペロブスカイト構造の結晶の劣化の抑制が可能になる。ヒドロキシ基を有する芳香環化合物は、フタロシアニン化合物粒子とペロブスカイト構造の結晶の間に入り込むことが推察される。ペロブスカイト構造の結晶は水素結合性結晶であるため、ヒドロキシ基を有する芳香環化合物はペロブスカイト構造の結晶表面と水素結合相互作用すると考えられる。このペロブスカイト構造の結晶表面に相互作用することで、通電時にペロブスカイト構造の結晶が安定状態に変化する際に、結晶表面が上記相互作用により化学的に固定化されるため、結晶表面の変化が抑制されると考えられる。
 本発明者等は、ヒドロキシ基を有する芳香環化合物がフタロシアニン化合物と組み合わされることで、ペロブスカイト構造の結晶表面に対して相互作用することができると考える。これはフタロシアニン化合物の縮合環同士が強く相互作用しているため、このフタロシアニン化合物の面に対し、ヒドロキシ基を持つ芳香環化合物の芳香環が相互作用していると推察される。その結果、ヒドロキシ基を持つ芳香環化合物の芳香環のヒドロキシ基が、ペロブスカイト構造の結晶方向への相互作用が大きくなるためだと考えられる。ペロブスカイト構造の結晶表面への相互作用の強度の観点から、電荷輸送層に含まれるフタロシアニン化合物の含有量を100質量部としたとき、電荷輸送層におけるヒドロキシ基を持つ芳香環化合物の含有量(質量部)が0.5質量部以上50質量部以下の範囲で添加されることが好ましい。またヒドロキシ基を有する芳香環化合物は、分子サイズの観点から、ペロブスカイト構造の結晶表面との相互作用をし易くするために、分子量が10000以下であることが好ましい。
 また、フタロシアニン化合物が有するヒドロキシ基の数よりも芳香環化合物の有するヒドロキシ基の数が多い方が、芳香環化合物とペロブスカイト構造の結晶表面とが相互作用し易くなり、結晶表面の変化が抑制され易いことが分かった。本発明において、芳香環化合物が有するヒドロキシ基の数が、フタロシアニン化合物の有するヒドロキシ基の数よりも多いことが好ましい。特に水素結合の強さの観点から、ヒドロキシ基を有する芳香環化合物のヒドロキシ基の数は、3以上であることがより好ましく、4以上であることが特に好ましい。ヒドロキシ基を有する芳香環化合物は、ペロブスカイト構造の結晶表面との水素結合密度が大きくなるため、環状構造を有していることがより好ましく、例えばカリックス-4アレーンやカリックス-8アレーンのようなカリックスアレーン構造を有することが好ましい。特にカリックス-4アレーンが複数混合した組み合わせが優れていることが分かった。
 本発明において、電荷輸送層が、一種の芳香環化合物を含んでもよいが、複数種の芳香環化合物を含むことが好ましい。本発明において好ましく用いられるカリックスアレーン構造を有する芳香環化合物は、具体的には、下記一般式[1]で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 上記一般式[1]中、R1~R4は、各繰り返し単位内でそれぞれ独立に、且つ、n個の繰り返し単位毎にそれぞれ独立に、水素、ハロゲン原子、ヒドロキシ基、置換又は無置換の芳香族炭化水素基、置換又は無置換の有機基であり、nは3~20の整数であり、1分子内に少なくとも一つのヒドロキシ基を有する。本発明は、また、第一電極と、第二電極と、第一電極と第二電極との間に配置されているペロブスカイト構造の結晶を含む光電変換層と、を有する光電変換素子であって、光電変換層と第一電極との間に、正孔輸送性化合物、及び上記一般式[1]で表される芳香環化合物を含む電荷輸送層を有する、ことを特徴とする光電変換素子である。本発明において、化合物は例えば、核磁気共鳴装置(NMR)により測定したデータを基に解析して、構造を求めることができる。
 上記有機基としては、一般式が-Y-Arで表される基が挙げられ、係る-Y-は-CH=N-、-CH=CH-又は-N=N-を示し、Arは置換又は無置換の芳香族炭化水素基、又は置換又は無置換の複素環基である。
 上記R1~R4として挙げられた芳香族炭化水素、及び、上記Arとして挙げられた芳香族炭化水素としては、ベンゼン、ナフタレン、フルオレン、フェナンスレン、アンスラセン、フルオランテン及びピレン等が挙げられる。また、上記Arとして挙げられた複素環としては、フラン、チオフェン、ピリジン、インドール、ベンゾチアゾール、カルバゾール、ベンゾカルバゾール、アクリドン、ジベンゾチオフェン、ベンゾオキサゾール、ベンゾトリアゾール、オキサチアゾール、チアゾール、フェナジン、シンノリン及びベンゾシンノリン等が挙げられる。
 また、R1~R4として挙げられた芳香族炭化水素基が有してもよい置換基、及びArが有してもよい置換基としては、メチル基、エチル基、プロピル基及びブチル基等のアルキル基、メトキシ基及びエトキシ基等のアルコキシ基、ジメチルアミノ基及びジエチルアミノ基等のジアルキルアミノ基、メトキシカルボニル基及びエトキシカルボニル基等のアルコキシカルボニル基、フッ素原子、塩素原子及び臭素原子等のハロゲン原子、ヒドロキシ基、ニトロ基、シアノ基及びハロメチル基等が挙げられる。
 上記一般式[1]で表されるカリックスアレーン構造を有する芳香環化合物において、好ましくはnが4又は8である。また、R1が、n個の繰り返し単位毎にそれぞれ独立に、ハロゲン原子又はヒドロキシ基であり、少なくとも一つのR1がヒドロキシ基であることが好ましい。また、R3が、n個の繰り返し単位毎にそれぞれ独立に、ニトロフェニルアゾ基又はジニトロフェニルアゾ基であることが好ましい。
 本発明において好ましく用いられるカリックスアレーン構造を有する芳香環化合物の具体例を以下に挙げる。本発明において、電荷輸送層が、芳香環化合物として、下記式[C-1]で表される化合物、下記式[C-2]で表される化合物、下記式[C-3]で表される化合物及び下記[C-4]で表される化合物からなる群より選択される少なくとも一つを含むことが好ましく、電荷輸送層が、芳香環化合物として、下記式[C-1]で表される化合物、下記式[C-2]で表される化合物、下記式[C-3]で表される化合物及び下記式[C-4]で表される化合物を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 フタロシアニン化合物とは異なる、ヒドロキシ基を有する芳香環化合物としては、カリックスアレーン構造を有する芳香環化合物以外にも、非環状構造の芳香環化合物を用いることができる。具体的には、フェノール、1-ナフトール、ベンジルアルコール、クレゾール、ベンゼントリオール、カルボン酸、ヒドロキノン、安息香酸、フタル酸、テレフタル酸、カテコラミンが挙げられる。
 本発明において、フタロシアニン化合物が、金属フタロシアニン化合物であることが好ましい。本発明において用いられるフタロシアニン化合物は金属配位子を有していてもよく、配位金属としては例えば、Ga、Cu、Ti、Zn等が挙げられ、中でもGaは結晶性の観点で好ましい。ヒドロキシ基を有する芳香環化合物との相互作用の観点から、フタロシアニン化合物はガリウムフタロシアニン化合物であることがより好ましく、ヒドロキシガリウムフタロシアニン化合物であることが特に好ましい。
 また本発明者等は、フタロシアニン化合物以外にも、正孔輸送性化合物と、上記一般式[1]で表されるカリックスアレーン構造を有する芳香環化合物とを組み合わせることで、該芳香環化合物がペロブスカイト構造の結晶表面と相互作用し、表面が化学的に安定化する効果を発見した。即ち、前記(2)の電荷輸送層である。カリックスアレーン構造を有する芳香環化合物としては、中でも、一般式[1]のnが4であるカリックス-4-アレーンが好ましい。また、一般式[1]のR1が、n個の繰り返し単位毎にそれぞれ独立に、ハロゲン原子又はヒドロキシ基であり、少なくとも一つのR1がヒドロキシ基であり、R3が、n個の繰り返し単位でそれぞれ独立に、ニトロフェニルアゾ基又はジニトロフェニルアゾ基である化合物が好ましい。特に、複数種類のカリックス-4-アレーンを混合して用いることで、正孔輸送性化合物の親和性の観点から好ましい。
 カリックスアレーン構造を有する芳香環化合物と組み合わせる正孔輸送性化合物としては、特に限定されないが、spiro-OMeTAD(2,2’,7,7’-テトラキス-(N,N-ジ-4-メトキシフェニルアミノ)-9,9’-スピロビフルオレン)やPTAA(ポリ(トリアリールアミン))が好ましい。
 以上のメカニズムのように、各構成が相乗的に効果を及ぼし合うことによって、本発明の効果を達成することが可能となる。
 以下、本発明の実施の形態について、詳細に説明する。本発明は、以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対して適宜変更、改良等が加えられたものも本発明の範囲に含まれる。
 尚、本明細書中、「層」とは、明確な境界を有する層や平坦な薄膜状の層だけではなく、含有元素が徐々に変化する濃度勾配のある層や、他の層と一緒になって複雑に入り組んだ構造を形成しうる層をも意味する。また、層の元素分析は、例えば、光電変換素子の断面のTOF-SIMS/FE-TEM/EDS線分析測定を行い、特定元素の元素分布を確認する等によって行うことができる。
 図1は、本発明の光電変換素子の第一の実施形態の厚さ方向の断面模式図である。基板2上に、第二電極3、電子輸送層4、光電変換層5、電荷輸送層8、正孔輸送層6、第一電極7を有する。第一電極7が陽極、第二電極3が陰極であり、第一電極7と第二電極3とを外部回路でつなぐことで電流を取り出すことができる。
 図2は、本発明の光電変換素子の第二の実施形態の厚さ方向の断面模式図である。
 光電変換層5は基板2と第二電極3と電子輸送層4、又は第一電極7、正孔輸送層6と電荷輸送層8を通して入射した光によって励起され、電子又は正孔を生じる。即ち、光電変換層5は、第一電極7と第二電極3との間に電圧を生じる。電子輸送層4は、光電変換層5と二つの電極3,7との間に配置される層であり、場合によっては形成しなくてもよい。本発明の光電変換素子は電子輸送層4、光電変換層5及び正孔輸送層6が複数積層された形態であってよく、必要に応じて電極を設けてもよい。積層する光電変換素子はシリコン、又はCIGS等を有する光電変換素子であってもよい。このような形態はタンデム構造と呼ばれることもある。以下に各部材について説明する。
 〔基板〕
 本発明の光電変換素子1は、基板2を備えていても良く、例えば、ソーダライムガラス、無アルカリガラス等の透明ガラス基板、セラミック基板、透明プラスチック基板等が挙げられる。第一電極7側から光を取り込む場合、基板2は不透明な材料を用いることができ、第二電極3側から光を取り込む場合は、基板2は透明な材料で構成する。また第一電極7及び第二電極3の両方を透明な材料で構成してもよい。
 〔電極〕
 第一電極7、第二電極3の材料は特に限定されず、従来公知の材を用いることができる。例えば、金、銀、チタン、銅等の金属、ナトリウム、ナトリウム-カリウム合金、リチウム、マグネシウム、アルミニウム、マグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金、Al/Al23混合物、Al/LiF混合物等が挙げられる。透明電極材として、例えば、CuI、ITO(インジウムスズ酸化物)、SnO2、AZO(アルミニウム亜鉛酸化物)、IZO(インジウム亜鉛酸化物)、GZO(ガリウム亜鉛酸化物)、FTO(フッ素ドープ酸化スズ)、ATO(アンチモンドープ酸化スズ)等の導電性透明材、導電性透明ポリマー等が挙げられる。これらの材料は単独で用いられてもよく、2種以上が併用されてもよい。第一電極7、第二電極3は、少なくとも光入射側の一方の電極が透明電極であり、他方は透明電極であっても光反射性材料で形成された反射層を兼ねるものであってもよい。第一電極7が光入射側の場合には、第二電極3を透明電極として、基板2を反射層としても良い。尚、前記透明電極は、パターニングされた電極でも良い。
 〔光電変換層〕
 光電変換層5は、ペロブスカイト構造の結晶を有する。本発明で用いられるペロブスカイト構造の結晶は、表面で水素結合しやすい下記一般式[2]で表される化合物の結晶であることが好ましい。
 R-M-X3 [2]
 上記一般式[2]において、Rは、有機分子若しくは無機原子のいずれか、又は両方であり、Mは、金属原子であり、Xは、ハロゲン原子又はカルコゲン原子である。
 上記一般式[2]中のRとして、例えば有機分子では、Cpmn(p、m、nはいずれも正の整数)で示されることが好ましい。具体的には例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、エチルメチルアミン、メチルプロピルアミン、ブチルメチルアミン、メチルペンチルアミン、ヘキシルメチルアミン、エチルプロピルアミン、エチルブチルアミン、イミダゾール、アゾール、ピロール、アジリジン、アジリン、アゼチジン、アゼト、イミダゾリン、カルバゾール、アニリン、ピリジン、メチルカルボキシアミン、エチルカルボキシアミン、プロピルカルボキシアミン、ブチルカルボキシアミン、ペンチルカルボキシアミン、ヘキシルカルボキシアミン、ホルムアミジニウム、グアニジンのイオン(例えば、メチルアンモニウム(CH3NH3)等)やフェネチルアンモニウム等が挙げられる。中でも、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、アニリン、ピリジン、プロピルカルボキシアミン、ブチルカルボキシアミン、ペンチルカルボキシアミン、ホルムアミジニウム、グアニジンのイオンやフェネチルアンモニウムが好ましく、メチルアミン、エチルアミン、プロピルアミン、ペンチルカルボキシアミン、ホルムアミジニウム、グアニジンのイオンがより好ましい。また無機原子は特に限定されないが、リチウム、セシウム、ナトリウム、カリウム、ルビジウムが好ましい。これらの有機分子もしくは無機原子は単独で用いられてもよく、2種以上が併用されてもよい。
 上記Mは金属原子であり、例えば、鉛、スズ、ビスマス、亜鉛、チタン、アンチモン、ニッケル、鉄、コバルト、銀、銅、ガリウム、ゲルマニウム、マグネシウム、カルシウム、インジウム、アルミニウム、マンガン、クロム、モリブデン、ユーロピウム等が挙げられる。中でも、電子軌道の重なりの観点から鉛、スズ、ビスマスが好ましい。これらの金属原子は単独で用いられてもよく、2種以上が併用されてもよい。
 上記Xはハロゲン原子又はカルコゲン原子であり、例えば、塩素、臭素、ヨウ素、硫黄、セレン等が挙げられる。これらのハロゲン原子又はカルコゲン原子は単独で用いられてもよく、2種以上が併用されてもよい。中でも、構造中にハロゲンを含有することで、上記有機無機ペロブスカイト化合物が有機溶媒に可溶になり易く、安価な印刷法等への適用が可能になることから、ハロゲン原子が好ましい。更に、前記有機無機ペロブスカイト化合物のエネルギーバンドギャップが狭くなることから、ヨウ素がより好ましい。
 具体的には、MAPbI3やCs5(MA0.17FA0.8395Pb(I0.83Br0.173、CsPbI3が好ましい。尚、「MA」はメチルアンモニウムを、「FA」はホルムアミジニウムを示す。
 上記有機無機ペロブスカイト化合物は、体心に金属原子M、各頂点に有機分子R、面心にハロゲン原子又はカルコゲン原子Xが配置された立方晶系の構造を有することが好ましい。詳細は明らかではないが、係る構造を有することにより、結晶格子内の八面体の向きが容易に変わることができるため、有機無機ペロブスカイト化合物中の電子の移動度が高くなり、光電変換素子の光電変換効率が向上すると推定される。
 本発明に用いる有機無機ペロブスカイト化合物は、結晶性半導体であることが好ましい。結晶性半導体とは、X線散乱強度分布を測定し、散乱ピークが検出できる半導体を意味している。有機無機ペロブスカイト化合物が結晶性半導体であることにより、有機無機ペロブスカイト化合物中の電子の移動度が高くなり、光電変換素子の光電変換効率が向上する。
 本発明に係る光電変換層の厚みは、好ましくは5nm以上1000nm以下である。厚みが5nm以上であれば、光を充分に吸収することができ、1000nm以下であれば、生成した電荷を各電極に輸送させることができる。より好ましい下限は10nm以上、より好ましい上限は700nmであり、更に好ましい下限は15nm、更に好ましい上限は500nmである。
 〔電荷輸送層〕
 本発明の光電変換素子1は、光電変換層5と第一電極7との間に、電荷輸送層8を有する。本発明において、電荷輸送層が、前記光電変換層に接していることが好ましい。該電荷輸送層8は、前記のように、フタロシアニン化合物と、前記フタロシアニン化合物とは異なる、ヒドロキシ基を有する芳香環化合物、或いは、正孔輸送性化合物とカリックスアレーン構造を有する芳香環化合物、のいずれかを含む。
 電荷輸送層8の厚みは、好ましくは、20nm以上800nm以下である。厚みが20nm以上であれば、光電変換層5を十分被覆し易く、電荷輸送をスムーズに行え、厚みが800nm以下であれば、電荷を各電極に良好に輸送させ易い。より好ましくは、50nm以上600nm以下であり、更に好ましくは50nm以上400nm以下である。
 〔正孔輸送層〕
 本発明において、電荷輸送層の膜の相性の観点から、電荷輸送層8と第一電極7との間に正孔輸送層6を有することが好ましい。
 正孔輸送層6の材料は特に限定されず、例えばスピロフルオレン化合物、トリフェニルアミン化合物、クリセン化合物、ピレン化合物、フタロシアニン化合物、カルバゾール化合物、フルオレン化合物、フェニルシクロヘキサン化合物、ベンジジン化合物、フェノキサジン化合物、フェニレンジアミン化合物、チオシアネート化合物等が挙げられる。特に、膜界面の相性の観点から芳香環を持っていることが好ましく、正孔輸送性化合物としてSpiro-OMeTAD、PTAA、フタロシアニン化合物が好ましい。
 〔電子輸送層〕
 本発明の光電変換素子においては、図1に示したように、第二電極3と光電変換層5との間に電子輸送層4を配置してもよい。
 電子輸送層4の材料は特に限定されず、例えば、N型導電性高分子、N型低分子有機半導体、N型金属酸化物、N型金属硫化物、ハロゲン化アルカリ金属、アルカリ金属、界面活性剤等が挙げられ、具体的には例えば、シアノ基含有ポリフェニレンビニレン、ホウ素含有ポリマー、バソキュプロイン、バソフェナントレン、ヒドロキシキノリナトアルミニウム、オキサジアゾール化合物、ベンゾイミダゾール化合物、ナフタレンテトラカルボン酸化合物、ペリレン誘導体、ホスフィンオキサイド化合物、ホスフィンスルフィド化合物、フルオロ基含有フタロシアニン、酸化チタン、酸化亜鉛、酸化インジウム、酸化スズ、酸化ガリウム、硫化スズ、硫化インジウム、硫化亜鉛等が挙げられる。
 電子輸送層4の厚みは、好ましい下限が1nm、好ましい上限が2000nmである。係る厚みが1nm以上であれば、充分に正孔をブロックできるようになり、2000nm以下であれば、電子輸送の際の抵抗になり難く、光電変換効率が高くなる。厚みのより好ましい下限は3nm、より好ましい上限は1000nmであり、更に好ましい下限は5nm、更に好ましい上限は500nmである。
 〔光電変換装置〕
 本発明の光電変換素子を複数用いることで、光電変換装置を構成することができる。光電変換素子を複数つなげている場合、係る光電変換装置は光電変換モジュールということもできる。光電変換素子は、出力の電圧を高めるために積層されていてもよい。また、光電変換装置は、本発明の光電変換素子と、インバーターを有する。インバーターは、直流を交流に変換する変換器であってよい。光電変換装置は、光電変換素子に接続されている蓄電部を有してよい。蓄電部は、電気を蓄えられるものであれば、限定されるものではない。例えば、リチウムイオン等を用いた二次電池、全固体電池、電気二重層キャパシタ等が挙げられる。
 <応用例>
 〔移動体〕
 本発明の移動体は、上記の光電変換素子を備えていることが好ましい。図3は、本発明の光電変換素子を備えた移動体としての応用例の一例を模式的に示す斜視図である。移動体30は、本発明の光電変換素子31と、この光電変換素子31を備えた機体32と、を有する。光電変換素子31は、機体32の外光を受けられる位置に配置される。移動体30が自動車であれば、屋根に配置されてもよい。光電変換素子31により得られた電気エネルギーは、移動体30の動力となっても、他の電気機器の動力となってもよい。移動体30の動力から発生する電気エネルギーを光電変換素子31の動力に用いてもよい。移動体30が自動車であれば、ブレーキにより発生する摩擦エネルギーを電気エネルギーに変換し、光電変換素子31の制御に用いてもよい。
 移動体30は、例えば、自動車、船舶、航空機、ドローンであってもよい。移動体30の機体32の構成は特に限定されないが、強度が高い材料で構成されていることが好ましい。
 〔建材〕
 本発明の建材は、上記の光電変換素子を備えていることが好ましい。図4は、本発明の光電変換素子を備えた建材としての応用例の別の一例を模式的に示す斜視図である。建材40は建物の屋根であってもよい。応用例の建材40は、本発明の光電変換素子41と、この光電変換素子41を保護する保護部材42と、放熱部材43と、外装44a,44bと、を有する。
 本発明の建材40は、光電変換素子41よりも熱伝導率が高い放熱部材43を有していてもよい。屋根等に用いられた場合、太陽光により光電変換素子41の温度が上昇する場合があり、光電変換効率が低下する可能性がある。放熱部材43を用いることで光電変換効率の低下を低減することができる。放熱部材43は、金属、合金、液体金属、液体樹脂等が挙げられる。
 また、本発明の建材40は、外装44a,44bを有していてもよい。外装44aと、外装44bは異なる色を発してもよいし、同じであってもよい。44aと44bは同じ部材で構成されても、異なる部材で構成されてもよい。外装としては、塗料、透明基板が用いられてもよい。光吸収が小さく、遮熱性が高いものが好ましい。
 以下に実施例を挙げて本発明を更に詳しく説明するが、本発明はこれら実施例に限定されるものではない。また、以下の説明における「部」は、特に記載がない限り、「質量部」である。
 〔フタロシアニン化合物粒子の作製〕
 〈粒子1の作製〉
 工程(1)
 窒素フローの雰囲気下、オルトフタロニトリル5.46部及びα-クロロナフタレン45部を反応釜に投入した後、加熱し、温度30℃まで昇温させ、この温度を維持した。次に、この温度(30℃)で三塩化ガリウム3.75部を投入した。投入時の混合液の水分濃度は150ppmであった。その後、温度200℃まで昇温させた。次に、窒素フローの雰囲気下、温度200℃で4.5時間反応させた後、冷却し、温度150℃に達した時に生成物を濾過した。得られた濾過物をN,N-ジメチルホルムアミドを用いて温度140℃で2時間分散洗浄した後、濾過した。得られた濾過物をメタノールで洗浄した後、乾燥させ、クロロガリウムフタロシアニン粒子を収率71%で得た。
 工程(2)
 前記クロロガリウムフタロシアニン粒子4.65部を、温度10℃で濃硫酸139.5部に溶解させ、攪拌下、氷水620部中に滴下して再析出させて、フィルタープレスを用いて減圧濾過した。この時にフィルターとして、No.5C(アドバンテック社製)を用いた。得られたウエットケーキ(濾過物)を2%アンモニア水で30分間分散洗浄した後、フィルタープレスを用いて濾過した。次いで、得られたウエットケーキ(濾過物)をイオン交換水で分散洗浄した後、フィルタープレスを用いた濾過を3回繰り返した。最後にフリーズドライ(凍結乾燥)を行い、固形分23質量%のヒドロキシガリウムフタロシアニン粒子(含水ヒドロキシガリウムフタロシアニン粒子)を収率71%で得た。前記ヒドロキシガリウムフタロシアニン粒子をハイパー・ドライ乾燥機(商品名:HD-06R、周波数(発振周波数):2455MHz±15MHz、日本バイオコン製)を乾燥させ、含水率1.0質量%以下のヒドロキシガリウムフタロシアニン粒子(結晶)を得た。
 工程(3)
 前記ヒドロキシガリウムフタロシアニン(HOGaPc)粒子5部を溶媒としてDMF(N,N-ジメチルホルムアミド)5部とガラスビーズ5部を封入したサンドミル(K-800、五十嵐機械製造(現アイメックス)製、ディスク径70mm、ディスク枚数5枚)を用いて6時間分散処理し、濾過、乾燥させることで粒子1を得た。
 (実施例1)
 〔電子輸送層の形成〕
 ITO(Indium Tin Oxide)付ガラス基板を洗浄し、その上に、3質量%に調整した酸化スズ(II)をスピンコートにて塗布した後、150℃で30分加熱し、厚み100nmの薄膜上の電子輸送層を形成した。
 〔光電変換層の形成〕
 ヨウ化鉛4gとヨウ化メチルアンモニウム1.4gを溶媒としてのジメチルホルムアミド4.5gに溶解させ、60℃で24時間攪拌し、溶解させることで、光電変換層塗布液を調製した。この塗布液を前記電子輸送層上にスピンコートすることで、MAPbI3からなる厚み500nmの光電変換層を形成した。
 〔電荷輸送層の形成〕
 0.05gの前記粒子1を、溶媒として2-プロパノール4.95gと、ヒドロキシ基を有する芳香環化合物としてフェノールを0.0001gとガラスビーズ11gを封入したサンドミル(K-800、五十嵐機械製造(現アイメックス)製、ディスク径70mm、ディスク枚数5枚)を用いて6時間分散処理し、電荷輸送層溶液を調製した。前記電荷輸送層溶液を、前記光電変換層上にスピンコートすることで、厚み100nmの電荷輸送層を形成した。
 〔正孔輸送層の導入〕
 正孔輸送性化合物としての180mgのSpiro-OMeTADを1mLのクロロベンゼンに溶解させた。このクロロベンゼン溶液に、170mgのリチウム-ビス(トリフルオロメタンスルホニル)イミドを1mLのアセトニトリルに溶解させて得られたアセトニトリル溶液の37.5μLと、17.5μLのt-ブチルピリジン(TBP)とを加えて混合し、正孔輸送性化合物の溶液を調製した。これを上記電荷輸送層上にスピンコート法により塗布することで、厚み200nmの正孔輸送層を形成した。
 〔第一電極の形成〕
 前記正孔輸送層上に厚さ80nm、面積0.09cm2の金電極を真空蒸着法によって形成し、光電変換素子を得た。
 (実施例2~5)
 ヒドロキシ基を有する芳香環化合物を、実施例2で0.00025g、実施例3で0.005g、実施例4で0.025g、実施例5で0.04gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例6~8)
 ヒドロキシ基を有する芳香環化合物を1-ナフトールに変更して、実施例6で0.0001g、実施例7で0.00025g、実施例8で0.025gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例9~12)
 ヒドロキシ基を有する芳香環化合物を前記式[C-1]で表される芳香環化合物に変更して、実施例9で0.0001g、実施例10で0.00025g、実施例11で0.0025g、実施例12で0.005gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例13)
 ヒドロキシ基を有する芳香環化合物を前記式[C-1]に表される芳香環化合物に変更して、0.005g使用し、さらに正孔輸送層の正孔輸送性化合物をPTAA(CAS:1333317-99-9、Luminescence Technology社製)に変更したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例14)
 ヒドロキシ基を有する芳香環化合物を前記式[C-1]で表される芳香環化合物に変更して、0.005g使用し、さらにペロブスカイト構造の結晶をCs5(MA0.17FA0.8395Pb(I0.83Br0.173に変更したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例15~17)
 ヒドロキシ基を有する芳香環化合物を前記式[C-1]で表される芳香環化合物に変更して、実施例15で0.015g、実施例16で0.025g、実施例17で0.04gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例18)
 ヒドロキシ基を有する芳香環化合物を前記式[C-9]で表される芳香環化合物に変更して、0.005gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例19)
 ヒドロキシ基を有する芳香環化合物を、前記式[C-1]で表される芳香環化合物と前記式[C-2]で表される芳香環化合物とを質量比率で1:1に混合したもの0.005gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例20~22)
 ヒドロキシ基を有する芳香環化合物を前記式[C-1]~[C-4]でそれぞれ表される芳香環化合物を混合したものに変更して、実施例20で0.0001g、実施例21で0.00025g、実施例22で0.005gを使用したこと以外は実施例1と同様にして光電変換素子を得た。尚、質量比率は[C-1]:[C-2]:[C-3]:[C-4]=1:1:1:1とした。
 (実施例23)
 ヒドロキシ基を有する芳香環化合物を前記式[C-1]~[C-4]でそれぞれ表される芳香環化合物を混合したものに変更して0.005gを使用し、ペロブスカイト構造の結晶をSr2Nb27に変更したこと以外は実施例1と同様にして光電変換素子を得た。尚、質量比率は[C-1]:[C-2]:[C-3]:[C-4]=1:1:1:1とした。
 (実施例24)
 ヒドロキシ基を有する芳香環化合物を前記式[C-1]~[C-4]でそれぞれ表される芳香環化合物を混合したものに変更して0.005gを使用し、正孔輸送層を形成しなかったこと以外は実施例1と同様にして光電変換素子を得た。尚、質量比率は[C-1]:[C-2]:[C-3]:[C-4]=1:1:1:1とした。
 (実施例25)
 ヒドロキシ基を有する芳香環化合物を前記式[C-1]~[C-4]でそれぞれ表される芳香環化合物を混合したものに変更して0.005g使用し、正孔輸送層が光電変換層に接するように、正孔輸送層と電荷輸送層の成膜順序を逆に変更したこと以外は実施例1と同様にして光電変換素子を得た。尚、質量比率は[C-1]:[C-2]:[C-3]:[C-4]=1:1:1:1とした。
 (実施例26、27)
 ヒドロキシ基を有する芳香環化合物を前記式[C-1]~[C-4]でそれぞれ表される芳香環化合物を混合したものに変更して、実施例26で0.025g、実施例27で0.04gを使用したこと以外は実施例1と同様にして光電変換素子を得た。尚、質量比率は[C-1]:[C-2]:[C-3]:[C-4]=1:1:1:1とした。
 (実施例28)
 ヒドロキシ基を有する芳香環化合物を下記式[A-1]で表される芳香環化合物(CAS:490-46-0、富士フィルム社製)と下記式[A-2]で表される芳香環化合物(CAS:970-73-0、富士フィルム社製)に変更して0.005gを使用したこと以外は実施例1と同様にして光電変換素子を得た。尚、質量比率は[A-1]:[A-2]=1:1とした。
Figure JPOXMLDOC01-appb-C000018
 (実施例29)
 ヒドロキシ基を有する芳香環化合物として、前記式[C-5]で表される芳香環化合物と前記式[C-6]で表される芳香環化合物とを質量比率で1:1に混合したもの0.005gを使用した以外は実施例1と同様にして光電変換素子を得た。
 (実施例30)
 ヒドロキシ基を有する芳香環化合物として、前記式[C-7]で表される芳香環化合物と前記式[C-8]で表される芳香環化合物とを質量比率で1:1に混合したもの0.005gを使用した以外は実施例1と同様にして光電変換素子を得た。
 (実施例31~33)
 フタロシアニン化合物を銅フタロシアニン(CuPc)に変更し、ヒドロキシ基を有する芳香環化合物を実施例31で0.0001g、実施例32で0.005g、実施例33で0.04gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例34、35)
 フタロシアニン化合物を銅フタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を1-ナフトールに変更して、実施例34で0.00025g、実施例35で0.025gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例36~38)
 フタロシアニン化合物を銅フタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]で表される芳香環化合物に変更して、実施例36で0.0001g、実施例37で0.0025g、実施例38で0.005gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例39)
 フタロシアニン化合物を銅フタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]で表される芳香環化合物に変更して0.005g使用し、さらに正孔輸送性化合物をPTAAに変更したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例40)
 フタロシアニン化合物を銅フタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]で表される芳香環化合物に変更して0.005g使用し、さらにペロブスカイト構造の結晶をCs5(MA0.17FA0.8395Pb(I0.83Br0.173に変更したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例41、42)
 フタロシアニン化合物を銅フタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]で表される芳香環化合物に変更して、実施例41で0.015g、実施例42で0.04gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例43)
 フタロシアニン化合物を銅フタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-9]で表される芳香環化合物に変更して0.005gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例44、45)
 フタロシアニン化合物を銅フタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]~[C-4]でそれぞれ表される芳香環化合物を混合したものに変更して、実施例44で0.00025g、実施例45で0.025gを使用したこと以外は実施例1と同様にして光電変換素子を得た。尚、質量比率は[C-1]:[C-2]:[C-3]:[C-4]=1:1:1:1とした。
 (実施例46~48)
 フタロシアニン化合物を亜鉛フタロシアニン(ZnPc)に変更し、ヒドロキシ基を有する芳香環化合物を実施例46で0.0001g、実施例47で0.005g、実施例48で0.04gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例49、50)
 フタロシアニン化合物を亜鉛フタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を1-ナフトールに変更して、実施例49で0.00025g、実施例50で0.025gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例51~53)
 フタロシアニン化合物を亜鉛フタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]で表される芳香環化合物に変更して、実施例51で0.0001g、実施例52で0.0025g、実施例53で0.005gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例54)
 フタロシアニン化合物を亜鉛フタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]で表される芳香環化合物に変更して0.005g使用し、さらに正孔輸送層の正孔輸送性化合物をPTAAに変更したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例55)
 フタロシアニン化合物を亜鉛フタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]で表される芳香環化合物に変更して0.005g使用し、さらにペロブスカイト構造の結晶をCs5(MA0.17FA0.8395Pb(I0.83Br0.173に変更したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例56、57)
 フタロシアニン化合物を亜鉛フタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]で表される芳香環化合物に変更して、実施例56で0.015g、実施例57で0.04gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例58)
 フタロシアニン化合物を亜鉛フタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-9]で表される芳香環化合物に変更して0.005gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例59、60)
 フタロシアニン化合物を亜鉛フタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]~[C-4]でそれぞれ表される芳香環化合物を混合したものに変更して、実施例59で0.00025g、実施例60で0.025gを使用したこと以外は実施例1と同様にして光電変換素子を得た。尚、質量比率は[C-1]:[C-2]:[C-3]:[C-4]=1:1:1:1とした。
 (実施例61~63)
 フタロシアニン化合物をチタニルフタロシアニン(TiPc)に変更し、ヒドロキシ基を有する芳香環化合物を実施例61で0.0001g、実施例62で0.005g、実施例63で0.04gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例64、65)
 フタロシアニン化合物をチタニルフタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を1-ナフトールに変更して、実施例64で0.00025g、実施例65で0.025gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例66~68)
 フタロシアニン化合物をチタニルフタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]で表される芳香環化合物に変更して、実施例66で0.0001g、実施例67で0.0025g、実施例68で0.005gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例69)
 フタロシアニン化合物をチタニルフタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]で表される芳香環化合物に変更して0.005g使用し、さらに正孔輸送層の正孔輸送性化合物をPTAAに変更したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例70)
 フタロシアニン化合物をチタニルフタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]で表される芳香環化合物に変更して0.005g使用し、さらにペロブスカイト構造の結晶をCs5(MA0.17FA0.8395Pb(I0.83Br0.173に変更したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例71、72)
 フタロシアニン化合物をチタニルフタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]で表される芳香環化合物に変更して、実施例71で0.015g、実施例72で0.04gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例73)
 フタロシアニン化合物をチタニルフタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-9]で表される芳香環化合物に変更して0.005gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例74、75)
 フタロシアニン化合物をチタニルフタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]~[C-4]でそれぞれ表される芳香環化合物を混合したものに変更して、実施例74で0.00025g、実施例75で0.025gを使用したこと以外は実施例1と同様にして光電変換素子を得た。尚、質量比率は[C-1]:[C-2]:[C-3]:[C-4]=1:1:1:1とした。
 (実施例76~78)
 フタロシアニン化合物をクロロガリウムフタロシアニン(ClGaPc)に変更し、ヒドロキシ基を有する芳香環化合物を実施例76で0.0001g、実施例77で0.005g、実施例78で0.04gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例79、80)
 フタロシアニン化合物をクロロガリウムフタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を1-ナフトールに変更して、実施例79で0.00025g、実施例80で0.025gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例81、82)
 フタロシアニン化合物をクロロガリウムフタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]で表される芳香環化合物に変更して、実施例81で0.0001g、実施例82で0.005gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例83)
 フタロシアニン化合物をクロロガリウムフタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]で表される芳香環化合物に変更して0.005gを使用し、さらに正孔輸送層の正孔輸送性化合物をPTAAに変更した以外は実施例1と同様にして光電変換素子を得た。
 (実施例84)
 フタロシアニン化合物をクロロガリウムフタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]で表される芳香環化合物に変更して0.005gを使用し、さらにペロブスカイト構造の結晶をCs5(MA0.17FA0.8395Pb(I0.83Br0.173に変更したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例85)
 フタロシアニン化合物をクロロガリウムフタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]で表される芳香環化合物に変更して0.04gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例86)
 フタロシアニン化合物をクロロガリウムフタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-9]で表される芳香環化合物に変更して0.005gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例87、88)
 フタロシアニン化合物をクロロガリウムフタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]~[C-4]でそれぞれ表される芳香環化合物を混合したものに変更して、実施例87で0.00025g、実施例88で0.025gを使用したこと以外は実施例1と同様にして光電変換素子を得た。尚、質量比率は[C-1]:[C-2]:[C-3]:[C-4]=1:1:1:1とした。
 (実施例89)
 フタロシアニン化合物を無金属フタロシアニン(Pc)に変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]~[C-4]でそれぞれ表される芳香環化合物を混合したものに変更して0.005gを使用したこと以外は実施例1と同様にして光電変換素子を得た。尚、質量比率は[C-1]:[C-2]:[C-3]:[C-4]=1:1:1:1とした。
 (実施例90)
 フタロシアニン化合物を下記式[F-1]で表されるガリウムフタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]~[C-4]でそれぞれ表される芳香環化合物を混合したものに変更して0.005gを使用したこと以外は実施例1と同様にして光電変換素子を得た。尚、質量比率は[C-1]:[C-2]:[C-3]:[C-4]=1:1:1:1とした。
Figure JPOXMLDOC01-appb-C000019
 (比較例1)
 フタロシアニン化合物を亜鉛フタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を使用しなかったこと以外は実施例1と同様にして光電変換素子を得た。
 (比較例2)
 フタロシアニン化合物をチタニルフタロシアニンに変更し、ヒドロキシ基を有する芳香環化合物を使用しなかったこと以外は実施例1と同様にして光電変換素子を得た。
 (比較例3)
 フタロシアニン化合物を使用しなかったこと以外は実施例1と同様にして光電変換素子を得た。
 (比較例4)
 フタロシアニン化合物を使用せず、さらにヒドロキシ基を有する芳香環化合物を前記式[C-1]で表される芳香環化合物に変更したこと以外は実施例1と同様にして光電変換素子を得た。
 (比較例5)
 フタロシアニン化合物を使用せず、さらにヒドロキシ基を有する芳香環化合物を前記式[C-1]~[C-4]でそれぞれ表される芳香環化合物を混合したものに変更したこと以外は実施例1と同様にして光電変換素子を得た。尚、質量比率は[C-1]:[C-2]:[C-3]:[C-4]=1:1:1:1とした。
 (実施例91~93)
 フタロシアニン化合物を、正孔輸送性化合物であるSpiro-OMeTADに変更し、ヒドロキシ基を有する芳香環化合物を前記式[C-1]で表される芳香環化合物に変更して、実施例91で0.00025g、実施例92で0.005g、実施例93で0.025gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (実施例94)
 フタロシアニン化合物を、正孔輸送性化合物であるSpiro-OMeTADに変更し、さらにヒドロキシ基を有する芳香環化合物を前記式[C-1]~[C-4]でそれぞれ表される芳香環化合物を混合したものに変更して0.005gを使用したこと以外は実施例1と同様にして光電変換素子を得た。尚、質量比率は[C-1]:[C-2]:[C-3]:[C-4]=1:1:1:1とした。
 (比較例6)
 フタロシアニン化合物を、正孔輸送性化合物であるSpiro-OMeTADに変更して0.0001gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 (比較例7)
 フタロシアニン化合物を、正孔輸送性化合物であるSpiro-OMeTADに変更して0.04gを使用したこと以外は実施例1と同様にして光電変換素子を得た。
 [評価]
 各実施例、比較例で得られた光電変換素子について、以下の評価を行った。
 (発電効率評価)
 光電変換素子の電極間に、電源(KEITHLEY社製、236モデル)を接続し、強度100mW/cm2のソーラーシミュレーター(山下電装社製)を用いて一定の光を照射し、発生する電流と電圧とを測定することにより、光電変換効率を評価した。劣化評価は、2000Lxの光を照射し続け、30日後の光電変換効率の測定により評価した。素子の安定性は、初期の変換効率に対する30日後の変換効率の減衰率(30日後劣化率)で評価した。その結果を表1~表4に示す。尚、表中の「ヒドロキシ基を有する芳香環化合物」の「使用量」は、フタロシアニン化合物の使用量を100質量部としたときの、該芳香環化合物の使用量(質量部)を示す。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 本願は、2022年10月19日提出の日本国特許出願特願2022-167637及び2023年9月22日提出の日本国特許出願特願2023-158475を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。
1 光電変換素子
2 基板
3 第二電極
4 電子輸送層
5 光電変換層
6 正孔輸送層
7 第一電極
8 電荷輸送層

Claims (20)

  1.  第一電極と、第二電極と、前記第一電極と前記第二電極との間に配置されているペロブスカイト構造の結晶を含む光電変換層と、を有する光電変換素子であって、
     前記光電変換層と前記第一電極との間に、フタロシアニン化合物、及び前記フタロシアニン化合物とは異なる、ヒドロキシ基を有する芳香環化合物を含む電荷輸送層を有する、
     ことを特徴とする光電変換素子。
  2.  前記芳香環化合物が有するヒドロキシ基の数が、前記フタロシアニン化合物の有するヒドロキシ基の数よりも多い、請求項1に記載の光電変換素子。
  3.  前記芳香環化合物が有するヒドロキシ基の数が、3以上である、請求項1又は2に記載の光電変換素子。
  4.  前記芳香環化合物が有するヒドロキシ基の数が、4以上である、請求項1又は2に記載の光電変換素子。
  5.  前記電荷輸送層が、複数種の前記芳香環化合物を含む、請求項1~4のいずれか1項に記載の光電変換素子。
  6.  前記芳香環化合物が、下記一般式[1]で表される化合物である、請求項1~5のいずれか1項に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000001
     (上記一般式[1]中、R1~R4は、各繰り返し単位内でそれぞれ独立に、且つ、n個の繰り返し単位毎にそれぞれ独立に、水素、ハロゲン原子、ヒドロキシ基、置換又は無置換の芳香族炭化水素基、置換又は無置換の有機基であり、nは3~20の整数であり、1分子内に少なくとも一つのヒドロキシ基を有する。)
  7.  前記一般式[1]のnが、4又は8である、請求項6に記載の光電変換素子。
  8.  前記一般式[1]のR1が、n個の繰り返し単位毎にそれぞれ独立に、ハロゲン原子又はヒドロキシ基であり、少なくとも一つのR1が、ヒドロキシ基であり、R3が、n個の繰り返し単位毎にそれぞれ独立に、ニトロフェニルアゾ基又はジニトロフェニルアゾ基である、請求項6又は7に記載の光電変換素子。
  9.  前記電荷輸送層が、前記芳香環化合物として、下記式[C-1]で表される化合物、下記式[C-2]で表される化合物、下記式[C-3]で表される化合物及び下記[C-4]で表される化合物からなる群より選択される少なくとも一つを含む、請求項1~8のいずれか1項に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
  10.  前記電荷輸送層が、前記芳香環化合物として、前記式[C-1]で表される化合物、前記式[C-2]で表される化合物、前記式[C-3]で表される化合物及び前記式[C-4]で表される化合物を含む、請求項9に記載の光電変換素子。
  11.  前記芳香環化合物の分子量が、10000以下である、請求項1~10のいずれか1項に記載の光電変換素子。
  12.  前記電荷輸送層が、前記光電変換層に接している、請求項1~11のいずれか1項に記載の光電変換素子。
  13.  前記フタロシアニン化合物が、金属フタロシアニン化合物である、請求項1~12のいずれか1項に記載の光電変換素子。
  14.  前記フタロシアニン化合物が、ガリウムフタロシアニン化合物である、請求項1~13のいずれか1項に記載の光電変換素子。
  15.  前記フタロシアニン化合物が、ヒドロキシガリウムフタロシアニン化合物である、請求項1~13のいずれか1項に記載の光電変換素子。
  16.  前記ペロブスカイト構造の結晶が下記一般式[2]で表される化合物の結晶である、請求項1~15のいずれか1項に記載の光電変換素子。
     R-M-X3 [2]
     (上記一般式[2]において、Rは、有機分子若しくは無機原子のいずれか、又は両方であり、Mは、金属原子であり、Xは、ハロゲン原子又はカルコゲン原子である。)
  17.  前記フタロシアニン化合物の含有量を100質量部としたとき、前記電荷輸送層における芳香環化合物の含有量(質量部)が、0.5質量部以上50質量部以下である、請求項1~16のいずれか1項に記載の光電変換素子。
  18.  前記電荷輸送層と前記第一電極との間に、正孔輸送層を有する、請求項1~17のいずれか1項に記載の光電変換素子。
  19.  前記正孔輸送層が、正孔輸送性化合物として、Spiro-OMeTADを有する、請求項18に記載の光電変換素子。
  20.  第一電極と、第二電極と、前記第一電極と前記第二電極との間に配置されているペロブスカイト構造の結晶を含む光電変換層と、を有する光電変換素子であって、
     前記光電変換層と前記第一電極との間に、正孔輸送性化合物、及び下記一般式[1]で表される芳香環化合物を含む電荷輸送層を有する、ことを特徴とする光電変換素子。
    Figure JPOXMLDOC01-appb-C000006
     (上記一般式[1]中、R1~R4は、各繰り返し単位内でそれぞれ独立に、且つ、n個の繰り返し単位毎にそれぞれ独立に、水素、ハロゲン原子、ヒドロキシ基、置換又は無置換の芳香族炭化水素基、置換又は無置換の有機基であり、nは3~20の整数であり、1分子内に少なくとも一つのヒドロキシ基を有する。)
PCT/JP2023/037138 2022-10-19 2023-10-13 光電変換素子 WO2024085073A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022167637 2022-10-19
JP2022-167637 2022-10-19
JP2023158475A JP2024060579A (ja) 2022-10-19 2023-09-22 光電変換素子
JP2023-158475 2023-09-22

Publications (1)

Publication Number Publication Date
WO2024085073A1 true WO2024085073A1 (ja) 2024-04-25

Family

ID=90737586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037138 WO2024085073A1 (ja) 2022-10-19 2023-10-13 光電変換素子

Country Status (1)

Country Link
WO (1) WO2024085073A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244014A (ja) * 2011-05-20 2012-12-10 Osaka Gas Chem Kk 光電変換材料および太陽電池
JP2015119023A (ja) * 2013-12-18 2015-06-25 コニカミノルタ株式会社 光電変換素子およびその製造方法、ならびにそれを用いた太陽電池
JP2016139805A (ja) * 2015-01-27 2016-08-04 積水化学工業株式会社 太陽電池及び有機半導体材料
US20170287649A1 (en) * 2016-04-05 2017-10-05 Korea Research Institute Of Chemical Technology Perovskite solar cell having high heat resistance
JP2020077775A (ja) * 2018-11-08 2020-05-21 富士フイルム株式会社 正孔輸送剤、正孔輸送層形成用組成物、正孔輸送膜の製膜方法、並びに、光電変換素子及び太陽電池
JP2021174940A (ja) * 2020-04-28 2021-11-01 三菱ケミカル株式会社 光電変換素子及び発電デバイス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244014A (ja) * 2011-05-20 2012-12-10 Osaka Gas Chem Kk 光電変換材料および太陽電池
JP2015119023A (ja) * 2013-12-18 2015-06-25 コニカミノルタ株式会社 光電変換素子およびその製造方法、ならびにそれを用いた太陽電池
JP2016139805A (ja) * 2015-01-27 2016-08-04 積水化学工業株式会社 太陽電池及び有機半導体材料
US20170287649A1 (en) * 2016-04-05 2017-10-05 Korea Research Institute Of Chemical Technology Perovskite solar cell having high heat resistance
JP2020077775A (ja) * 2018-11-08 2020-05-21 富士フイルム株式会社 正孔輸送剤、正孔輸送層形成用組成物、正孔輸送膜の製膜方法、並びに、光電変換素子及び太陽電池
JP2021174940A (ja) * 2020-04-28 2021-11-01 三菱ケミカル株式会社 光電変換素子及び発電デバイス

Similar Documents

Publication Publication Date Title
Kapil et al. Tin‐lead perovskite fabricated via ethylenediamine interlayer guides to the solar cell efficiency of 21.74%
Liu et al. Efficient carbon-based CsPbBr 3 inorganic perovskite solar cells by using Cu-phthalocyanine as hole transport material
JP6327488B2 (ja) 電子/正孔励起阻止層を用いた有機太陽電池の開路電圧の向上
US8816332B2 (en) Organic photovoltaic cell incorporating electron conducting exciton blocking layers
US7893352B2 (en) Organic photosensitive optoelectronic device having a phenanthroline exciton blocking layer
JP6342905B2 (ja) 有機光起電力におけるアクセプタおよびドナーのエネルギー感光化
JP5296674B2 (ja) サブフタロシアニン化合物を用いた有機光起電力デバイス
EP3410506B1 (en) Photoelectric conversion element
JP2014510804A (ja) アリールスクアラインからなる有機感光デバイスとその製造方法
JP2007531283A (ja) 有機光電性デバイスのための重金属錯体
EP2596509B1 (en) Dye solar cell with improved stability
Ashebir et al. Solution-processed Cu2ZnSnS4 nanoparticle film as efficient hole transporting layer for stable perovskite solar cells
KR20150038353A (ko) 전극 버퍼층을 갖는 유기 광전자 소자
Belous et al. Preparation and properties of films of organic-inorganic perovskites MAPbX3 (MA= CH3NH3; X= Cl, Br, I) for solar cells: a review
CN116367686B (zh) 钙钛矿光伏电池、钙钛矿光伏电池组件和用电装置
JP2010225838A (ja) 光起電力素子
WO2024085073A1 (ja) 光電変換素子
JP2024060579A (ja) 光電変換素子
Thakur et al. Stable and high-efficiency P3CT-Na based MAPbI3 solar cells with a graphene quantum-dots down-converter
JP2017098372A (ja) 光電変換素子及び太陽電池
WO2022230628A1 (ja) 光電変換素子、及びこれを有する光電変換モジュール、光電変換装置、移動体、建材
Wang et al. De Novo Design of Spiro-Type Hole-Transporting Material: Anisotropic Regulation Toward Efficient and Stable Perovskite Solar Cells
CN104284943B (zh) 用于电子器件中的含有方形酸或克酮酸部分的有机化合物
JP2022168820A (ja) 光電変換素子、及びこれを有する光電変換モジュール、光電変換装置、移動体、建材
Yamamoto Doctoral Dissertation (Shinshu University)