WO2024085000A1 - Fluid supply system, substrate processing apparatus and substrate processing method - Google Patents

Fluid supply system, substrate processing apparatus and substrate processing method Download PDF

Info

Publication number
WO2024085000A1
WO2024085000A1 PCT/JP2023/036501 JP2023036501W WO2024085000A1 WO 2024085000 A1 WO2024085000 A1 WO 2024085000A1 JP 2023036501 W JP2023036501 W JP 2023036501W WO 2024085000 A1 WO2024085000 A1 WO 2024085000A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
supply
processing
flow path
processing vessel
Prior art date
Application number
PCT/JP2023/036501
Other languages
French (fr)
Japanese (ja)
Inventor
貴大 林田
幹雄 中島
翔太 梅▲崎▼
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2024085000A1 publication Critical patent/WO2024085000A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present disclosure relates to a fluid supply system, a substrate processing apparatus, and a substrate processing method.
  • Patent Document 1 discloses that a heating mechanism is used to heat the supercritical fluid flowing inside a fluid supply path connected to a processing vessel.
  • This disclosure provides technology that can reduce variation in processing temperature between substrates.
  • a fluid supply system is a fluid supply system that supplies a fluid into a processing vessel in which a substrate is processed, and includes a first fluid supply unit having a first supply valve and supplying the first fluid, a second fluid supply unit having a second supply valve and supplying the second fluid, a fluid supply path connected to the first fluid supply unit, the second fluid supply unit, and the processing vessel and supplying the first fluid and the second fluid into the processing vessel, and a heating mechanism provided in the fluid supply path downstream of a position where the first fluid supply unit and the second fluid supply unit are connected and heating the first fluid and the second fluid.
  • control unit that controls each part of the fluid supply system, and the control unit executes the steps of opening the second supply valve to supply the second fluid heated by the heating mechanism into the processing vessel when the first fluid is not being supplied into the processing vessel, and closing the second supply valve to stop the supply of the second fluid into the processing vessel before the substrate is loaded into the processing vessel, and the step of supplying the second fluid includes setting the set temperature of the heating mechanism to the same temperature as the set temperature of the heating mechanism when the first fluid is supplied into the processing vessel.
  • This disclosure makes it possible to reduce variation in processing temperature between substrates.
  • FIG. 1 is a diagram showing a substrate processing apparatus according to a first embodiment.
  • FIG. 2 is a timing chart showing the substrate processing method according to the first embodiment.
  • FIG. 3 is a diagram (1) showing the substrate processing method according to the first embodiment.
  • FIG. 4 is a diagram (2) showing the substrate processing method according to the first embodiment.
  • FIG. 5 is a view (3) showing the substrate processing method according to the first embodiment.
  • FIG. 6 is a diagram (4) showing the substrate processing method according to the first embodiment.
  • FIG. 7 is a diagram (5) showing the substrate processing method according to the first embodiment.
  • FIG. 8 is a diagram (6) showing the substrate processing method according to the first embodiment.
  • FIG. 9 is a diagram (7) showing the substrate processing method according to the first embodiment.
  • FIG. 1 is a diagram showing a substrate processing apparatus according to a first embodiment.
  • FIG. 2 is a timing chart showing the substrate processing method according to the first embodiment.
  • FIG. 3 is a diagram (1) showing the substrate processing method according to the first
  • FIG. 10 is a diagram showing a substrate processing apparatus according to the second embodiment.
  • FIG. 11 is a timing chart showing the substrate processing method according to the second embodiment.
  • FIG. 12 is a diagram (1) showing a substrate processing method according to the second embodiment.
  • FIG. 13 is a diagram showing a substrate processing method according to the second embodiment.
  • FIG. 14 is a view (3) showing the substrate processing method according to the second embodiment.
  • FIG. 15 is a diagram (4) showing the substrate processing method according to the second embodiment.
  • FIG. 16 is a diagram (5) showing the substrate processing method according to the second embodiment.
  • FIG. 17 is a diagram (6) showing the substrate processing method according to the second embodiment.
  • FIG. 18 is a diagram (7) showing the substrate processing method according to the second embodiment.
  • FIG. 19 is a diagram showing a substrate processing apparatus according to a modified example of the second embodiment.
  • FIG. 20 is a diagram showing the change in processing temperature between substrates.
  • FIG. 21 is a diagram showing the change in processing temperature between substrate
  • FIG. 1 is a diagram showing the substrate processing apparatus 10 according to the first embodiment.
  • the substrate processing apparatus 10 has a processing section 11, a fluid supply system 12, a discharge section 13, and a control section 14.
  • the processing section 11 has a processing vessel 111 and a holding plate 112.
  • the processing vessel 111 is a vessel in which a processing space capable of accommodating a substrate W having a diameter of, for example, 300 mm is formed.
  • the substrate W may be, for example, a semiconductor wafer.
  • the holding plate 112 is provided inside the processing vessel 111.
  • the holding plate 112 holds the substrate W horizontally.
  • the processing section 11 may have a pressure sensor that detects the pressure inside the processing vessel 111 and a temperature sensor that detects the temperature inside the processing vessel 111.
  • the fluid supply system 12 has a treatment fluid supply section 121 and a temperature adjustment section 122.
  • the treatment fluid supply unit 121 has a treatment fluid supply source S11, a first supply flow path L11, an on-off valve V11, an orifice OR11, a second supply flow path L12, an on-off valve V12, an orifice OR12, an inert gas supply source S12, a third supply flow path L13, and an on-off valve V13.
  • the process fluid supply source S11 is a supply source of a process fluid, which may be, for example, carbon dioxide (CO 2 ) in a liquid state.
  • a process fluid which may be, for example, carbon dioxide (CO 2 ) in a liquid state.
  • the first supply flow path L11 is connected to the treatment fluid supply source S11 at its upstream side and to the temperature adjustment unit 122 at its downstream side.
  • An on-off valve V11 and an orifice OR11 are provided in the first supply flow path L11 in this order from upstream.
  • the on-off valve V11 is a valve that switches the flow of the processing fluid on and off. When the on-off valve V11 is open, it allows the processing fluid to flow to the downstream temperature adjustment unit 122, and when it is closed, it does not allow the processing fluid to flow to the downstream temperature adjustment unit 122.
  • the orifice OR11 has the function of reducing the flow rate of the liquid processing fluid and adjusting the pressure.
  • the orifice OR11 passes the pressure-adjusted processing fluid through the downstream temperature adjustment section 122.
  • the second supply flow path L12 is provided in parallel with the first supply flow path L11.
  • the second supply flow path L12 branches off from the first supply flow path L11 upstream of the on-off valve V11 and merges with the first supply flow path L11 downstream of the orifice OR11.
  • the on-off valve V12 and the orifice OR12 are provided in the second supply flow path L12 in this order from upstream.
  • the on-off valve V12 is a valve that switches the flow of the processing fluid on and off. When the on-off valve V12 is open, it allows the processing fluid to flow to the downstream temperature adjustment unit 122, and when it is closed, it does not allow the processing fluid to flow to the downstream temperature adjustment unit 122.
  • the orifice OR12 has the function of reducing the flow rate of the liquid processing fluid and adjusting the pressure.
  • the orifice OR12 passes the pressure-adjusted processing fluid through the downstream temperature adjustment section 122.
  • the inert gas supply source S12 is a supply source of an inert gas, which may be, for example, nitrogen (N 2 ) gas.
  • the third supply flow path L13 is connected to the inert gas supply source S12 at its upstream end, and merges with the first supply flow path L11 downstream of the orifice OR11 at its downstream end.
  • An on-off valve V13 is provided in the third supply flow path L13.
  • a check valve, a filter, etc. may also be provided in the third supply flow path L13.
  • the on-off valve V13 is a valve that switches the flow of inert gas on and off. When open, the on-off valve V13 allows inert gas to flow to the downstream temperature adjustment unit 122, and when closed, the on-off valve V13 does not allow inert gas to flow to the downstream temperature adjustment unit 122.
  • the temperature adjustment unit 122 is connected to the processing fluid supply unit 121 and the processing vessel 111.
  • the temperature adjustment unit 122 passes a temperature-adjusted fluid through the inside of the processing vessel 111.
  • the fluid includes a processing fluid and an inert gas.
  • the temperature adjustment unit 122 has a first branch flow path L14, a second branch flow path L15, a bypass flow path L16, and a first discharge flow path L17.
  • a heating mechanism HE11 In the first branch flow path L14, a heating mechanism HE11, an on-off valve V15, a filter F11, and a temperature sensor T11 are provided in this order from upstream to downstream.
  • a line heater LH11 is provided downstream of the heating mechanism HE11 in the first branch flow path L14.
  • Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the first branch flow path L14.
  • a heating mechanism HE12 In the second branch flow path L15, a heating mechanism HE12, an on-off valve V16, and a filter F12 are provided in this order from upstream to downstream.
  • a line heater LH12 is provided downstream of the heating mechanism HE12 in the second branch flow path L15.
  • Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the second branch flow path L15.
  • the first branch flow path L14 branches off from the second branch flow path L15 between the heating mechanism HE12 and the on-off valve V16.
  • the second branch flow path L15 merges with the first branch flow path L14 immediately before the processing vessel 111.
  • the heating mechanism HE11 is provided in series with the heating mechanism HE12.
  • the heating mechanism HE11 heats the fluid supplied from the treatment fluid supply unit 121 to a first temperature and supplies the fluid at the first temperature downstream.
  • the first temperature may be, for example, 100°C or higher and 120°C or lower.
  • the on-off valve V15 is a valve that switches the flow of fluid on and off. When open, the on-off valve V15 allows fluid to flow to the downstream processing vessel 111, and when closed, it does not allow fluid to flow to the downstream processing vessel 111.
  • the filter F11 filters the fluid flowing through the first branch flow path L14 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during substrate processing using the fluid.
  • the temperature sensor T11 is provided downstream of the junction of the first branch flow path L14 with the second branch flow path L15.
  • the temperature sensor T11 is provided, for example, immediately before the processing vessel 111.
  • the temperature sensor T11 detects the temperature of the fluid flowing in the first branch flow path L14.
  • the line heater LH11 heats the first branch flow path L14 downstream of the heating mechanism HE11.
  • the line heater LH11 prevents the temperature of the fluid heated to the first temperature by the heating mechanism HE11 from decreasing as it flows through the first branch flow path L14.
  • the heating mechanism HE12 heats the fluid supplied from the treatment fluid supply unit 121 to a second temperature and supplies the fluid at the second temperature downstream.
  • the second temperature is lower than the first temperature.
  • the second temperature may be, for example, 80°C or higher and 90°C or lower.
  • the on-off valve V16 is a valve that switches the flow of fluid on and off. When open, the on-off valve V16 allows fluid to flow to the downstream processing vessel 111, and when closed, the on-off valve V16 does not allow fluid to flow to the downstream processing vessel 111.
  • the filter F12 filters the fluid flowing through the second branch flow path L15 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during substrate processing using the fluid.
  • the line heater LH12 heats the second branch flow path L15 downstream of the heating mechanism HE12.
  • the line heater LH12 prevents the temperature of the fluid heated to the second temperature by the heating mechanism HE12 from decreasing as it flows through the second branch flow path L15.
  • the on-off valve V15 and the on-off valve V16 are exclusively opened and closed to change the temperature of the fluid flowing through the processing vessel 111.
  • both the on-off valve V15 and the on-off valve V16 are opened, the fluid heated to the first temperature by the heating mechanism HE11 and the fluid heated to the second temperature by the heating mechanism HE12 are mixed and supplied into the processing vessel 111.
  • a fluid at an intermediate temperature between the first temperature and the second temperature can be supplied into the processing vessel 111.
  • the temperature of the fluid flowing through the processing vessel 111 can be changed in three stages.
  • the bypass flow path L16 connects a position between the on-off valve V15 and the filter F11 in the first branch flow path L14 and a position between the on-off valve V16 and the filter F12 in the second branch flow path L15.
  • An orifice OR13 is provided in the bypass flow path L16.
  • a line heater LH13 is provided in the bypass flow path L16. The bypass flow path L16, the orifice OR13, and the line heater LH13 do not necessarily have to be provided.
  • the orifice OR13 has the function of reducing the flow rate of the fluid passing through the bypass flow path L16 and adjusting the pressure.
  • the line heater LH13 heats the bypass flow path L16.
  • the first discharge flow path L17 discharges the fluid in the first branch flow path L14.
  • the first discharge flow path L17 branches off from the first branch flow path L14 between the heating mechanism HE11 and the on-off valve V15.
  • the first discharge flow path L17 is provided with an on-off valve V14.
  • the first discharge flow path L17 is provided with a line heater LH14.
  • An orifice may be provided in the first discharge flow path L17.
  • the on-off valve V14 is a valve that switches the flow of fluid on and off. When open, the on-off valve V14 allows fluid to flow to the downstream first discharge flow path L17, and when closed, the on-off valve V14 does not allow fluid to flow to the downstream first discharge flow path L17.
  • the line heater LH14 heats the first exhaust flow path L17.
  • the discharge section 13 has a discharge flow path L18.
  • the discharge flow path L18 is connected to the processing vessel 111.
  • a pressure sensor P11, a back pressure valve BV11, and an on-off valve V17 are provided in the discharge flow path L18, in that order from upstream.
  • a line heater LH15 is provided in the discharge flow path L18. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the discharge flow path L18.
  • the pressure sensor P11 detects the pressure of the fluid flowing through the discharge flow path L18 immediately after the processing vessel 111. This allows the pressure inside the processing vessel 111 to be detected.
  • the back pressure valve BV11 adjusts the valve opening to allow fluid to flow to the secondary side, thereby maintaining the primary pressure at the set pressure.
  • the set pressure of the back pressure valve BV11 is adjusted by the control unit 14.
  • the on-off valve V17 is a valve that switches the flow of fluid on and off. When open, the on-off valve V17 allows fluid to flow to the downstream discharge flow path L18, and when closed, it does not allow fluid to flow to the downstream discharge flow path L18.
  • the line heater LH15 heats the exhaust flow path L18.
  • the control unit 14 receives measurement signals from various sensors (such as temperature sensor T11 and pressure sensor P11) and transmits control signals to various functional elements.
  • the control signals include, for example, opening and closing signals of the on-off valves V11 to V17, a set pressure signal of the back pressure valve BV11, and temperature signals of the line heaters LH11 to LH15.
  • the control unit 14 is configured to change the flow rate of the fluid flowing through the processing vessel 111 by controlling the opening and closing of the on-off valves V11 and V12 in accordance with the processing state of the substrate W in the processing vessel 111.
  • the control unit 14 is configured to change the temperature of the fluid flowing through the processing vessel 111 by controlling the opening and closing of the on-off valves V15 and V16 in accordance with the processing state of the substrate W in the processing vessel 111.
  • the control unit 14 is, for example, a computer, and includes an arithmetic unit 141 and a memory unit 142.
  • the memory unit 142 stores programs that control various processes executed in the substrate processing apparatus 10.
  • the arithmetic unit 141 controls the operation of the substrate processing apparatus 10 by reading and executing the programs stored in the memory unit 142.
  • the programs may be recorded in a computer-readable storage medium and installed from the storage medium into the storage unit 142 of the control unit 14. Examples of computer-readable storage media include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
  • HD hard disk
  • FD flexible disk
  • CD compact disk
  • MO magnetic optical disk
  • Substrate Processing Method 2 to 9 a substrate processing method executed by the substrate processing apparatus 10 will be described.
  • the substrate processing method described below is automatically executed under the control of the controller 14 based on a processing recipe and a control program stored in the storage unit 142.
  • FIG. 2 is a timing chart showing the substrate processing method according to the first embodiment.
  • the lower diagram shows the opening and closing timing of on-off valves V11, V12, V13, V14, V15, V16, and V17
  • the upper diagram shows the change in the detection value (pressure) of pressure sensor P11 corresponding to the opening and closing timing.
  • FIGS. 3 to 9 are diagrams illustrating the substrate processing method according to the first embodiment.
  • open valves are shown in black, and closed valves are shown in white.
  • the flow paths through which the fluid flows are shown by thick solid lines.
  • an inert gas is supplied to the processing section 11, the fluid supply system 12, and the exhaust section 13.
  • the inert gas may be, for example, N2 gas.
  • the on-off valves V13, V15, V16, and V17 are opened, and the on-off valves V11, V12, and V14 are closed.
  • the inert gas guided from the inert gas supply source S12 to the first branch flow path L14 is heated to a first temperature by the heating mechanism HE11 and supplied into the processing vessel 111.
  • the inert gas guided from the inert gas supply source S12 to the second branch flow path L15 is heated to a second temperature by the heating mechanism HE12 and supplied into the processing vessel 111. Therefore, the first branch flow path L14 and the second branch flow path L15 are purged and heated by the inert gas, so that the processing temperature of the first substrate W after the standby step becomes almost the same as the processing temperature of the second and subsequent substrates W. As a result, the variation in processing temperature between the substrates W is suppressed. In the standby process, the inert gas is discharged from the processing vessel 111 through the discharge flow path L18.
  • the substrate W is loaded into the processing vessel 111.
  • the on-off valve V16 is opened, and the on-off valves V11, V12, V13, V14, V15, and V17 are closed, and then the substrate W is loaded into the processing vessel 111. That is, the substrate W is loaded into the processing vessel 111 without inert gas being supplied into the processing vessel 111.
  • the substrate W may be loaded into the processing vessel 111 while inert gas is being supplied into the processing vessel 111.
  • the substrate W is subjected to a cleaning process, and is placed on the holding plate 112 with the recesses of the pattern on the surface filled with isopropyl alcohol (IPA).
  • IPA isopropyl alcohol
  • the first pressurization step is performed after the standby step.
  • the pressure in the processing vessel 111 is first increased by supplying a processing fluid at a first flow rate and a second temperature, and then the pressure in the processing vessel 111 is increased by supplying a processing fluid at a second flow rate and a second temperature. That is, in the first pressurization step, the pressure is increased in two stages.
  • the second flow rate may be greater than the first flow rate.
  • the on-off valves V11 and V16 are opened, and the on-off valves V12, V13, V14, V15, and V17 are closed.
  • the processing fluid from the processing fluid supply source S11 flows into the temperature adjustment section 122 via the first supply flow path L11, and is supplied into the processing vessel 111 via the second branch flow path L15.
  • the processing fluid at the first flow rate and the second temperature is supplied into the processing vessel 111.
  • the temperature of the substrate W changes to the second temperature.
  • the on-off valve V17 is closed, so the processing fluid does not flow out of the processing vessel 111.
  • the pressure in the processing vessel 111 gradually increases.
  • the processing fluid When pressurizing at the first flow rate, the processing fluid, whose flow rate has been reduced by the orifice OR13, flows from the second branch flow path L15 through the bypass flow path L16 into the first branch flow path L14. This prevents the processing fluid from flowing back from the junction of the first branch flow path L14 and the second branch flow path L15 immediately before the processing vessel 111 toward the upstream of the first branch flow path L14. This makes it possible to suppress contamination downstream of the filter F11 due to IPA residue, etc.
  • the pressure inside the processing vessel 111 is detected by the pressure sensor P11, and the pressurization at the first flow rate continues until the pressure inside the processing vessel 111 reaches the first pressure Y1.
  • the pressurization at the first flow rate ends and transitions to the pressurization at the second flow rate.
  • the on-off valve V12 When the pressure is increased at the second flow rate, as shown in FIG. 6, the on-off valve V12 is opened.
  • the states of the other on-off valves are the same as those shown in FIG. 5.
  • the processing fluid from the processing fluid supply source S11 flows into the temperature adjustment section 122 via the second supply flow path L12 in addition to the first supply flow path L11, and is supplied into the processing vessel 111 via the second branch flow path L15.
  • the flow rate of the processing fluid supplied into the processing vessel 111 increases to the second flow rate.
  • the on-off valve V17 When the pressure is increased at the second flow rate, the on-off valve V17 is closed, so the processing fluid does not flow out of the processing vessel 111. As a result, the pressure inside the processing vessel 111 gradually increases.
  • the pressure of the processing fluid supplied into the processing vessel 111 is lower than the critical pressure. Therefore, the processing fluid is supplied into the processing vessel 111 in a gaseous state. Thereafter, as the processing vessel 111 is filled with the processing fluid, the pressure inside the processing vessel 111 increases, and when the pressure inside the processing vessel 111 exceeds the critical pressure, the processing fluid present in the processing vessel 111 becomes supercritical.
  • the processing fluid When pressurizing at the second flow rate, the processing fluid, whose flow rate has been reduced by the orifice OR13, flows from the first branch flow path L14 through the bypass flow path L16 into the second branch flow path L15. This prevents the processing fluid from flowing back from the junction of the first branch flow path L14 and the second branch flow path L15 immediately before the processing vessel 111 toward the upstream of the second branch flow path L15. This makes it possible to suppress contamination downstream of the filter F12 due to IPA residue, etc.
  • the pressure inside the processing vessel 111 is detected by the pressure sensor P11, and the pressurization at the second flow rate continues until the pressure inside the processing vessel 111 reaches the second pressure Y2.
  • the first pressurization process ends and the process moves to the second pressurization process.
  • the second pressurization step is performed after the first pressurization step.
  • the pressure in the processing vessel 111 is increased by supplying the processing fluid at the second flow rate and the first temperature.
  • the on-off valves V11, V12, and V15 are opened, and the on-off valves V13, V14, V16, and V17 are closed.
  • the processing fluid from the processing fluid supply source S11 flows into the temperature adjustment unit 122 via the first supply flow path L11 and the second supply flow path L12, and is supplied into the processing vessel 111 via the first branch flow path L14. Therefore, the processing fluid at the second flow rate and the first temperature is supplied into the processing vessel 111.
  • the temperature of the substrate W is quickly changed to the first temperature.
  • the processing fluid In the second pressurization step, the processing fluid, whose flow rate has been reduced by the orifice OR13, flows from the first branch flow path L14 through the bypass flow path L16 into the second branch flow path L15. This prevents the processing fluid from flowing back from the junction of the first branch flow path L14 and the second branch flow path L15 immediately before the processing vessel 111 toward the upstream of the second branch flow path L15. This makes it possible to suppress contamination downstream of the filter F12 due to IPA residue, etc.
  • the pressure inside the processing vessel 111 is detected by the pressure sensor P11, and the second pressurization process continues until the pressure inside the processing vessel 111 reaches the third pressure Y3.
  • the second pressurization process ends and the process moves to the circulation process.
  • the circulation step is performed after the second pressure increase step.
  • the processing fluid at the second flow rate and the first temperature is supplied from the processing fluid supply source S11 into the processing vessel 111, and the IPA is replaced with the processing fluid in the recess of the pattern on the substrate W in the processing vessel 111.
  • the on-off valves V11, V12, V15, and V17 are opened, and the on-off valves V13, V14, and V16 are closed.
  • the processing fluid of the processing fluid supply source S11 flows into the temperature adjustment unit 122 via the first supply flow path L11 and the second supply flow path L12, and is supplied into the processing vessel 111 via the first branch flow path L14.
  • the processing fluid supplied into the processing vessel 111 is discharged from the processing vessel 111 via the discharge flow path L18.
  • the processing fluid In the circulation process, the processing fluid, whose flow rate has been reduced by the orifice OR13, flows from the first branch flow path L14 through the bypass flow path L16 into the second branch flow path L15. This prevents the processing fluid from flowing back from the junction of the first branch flow path L14 and the second branch flow path L15 immediately before the processing vessel 111 toward the upstream of the second branch flow path L15. This makes it possible to suppress contamination downstream of the filter F12 due to IPA residue, etc.
  • ⁇ Decompression step> The depressurization process is performed after the circulation process.
  • the processing fluid is discharged from the processing vessel 111.
  • the on-off valves V14 and V17 are opened, and the on-off valves V11, V12, V13, V15, and V16 are closed.
  • the pressure in the processing vessel 111 becomes lower than the critical pressure of the processing fluid by the depressurization process, the processing fluid in the supercritical state is vaporized and leaves the recesses of the pattern. This completes the drying process for one substrate W.
  • the process proceeds to a standby step.
  • the processed substrate W is removed from the processing vessel 111 after the process proceeds to the standby step, for example.
  • the supply of inert gas into the processing vessel 111 is started via the first branch flow path L14 and the second branch flow path L15.
  • the substrate W is removed from the processing vessel 111 while the inert gas is being supplied into the processing vessel 111.
  • the supply of inert gas into the processing vessel 111 continues even after the substrate W is removed from the processing vessel 111.
  • the inside of the processing vessel 111 becomes positive pressure, so that when the inside of the processing vessel 111 is opened, a gas flow is formed from the inside to the outside of the processing vessel 111. Therefore, the residue in the processing vessel 111 can be discharged to the outside of the processing vessel 111 and removed. However, when the substrate W is removed from the processing vessel 111, the supply of inert gas into the processing vessel 111 may be stopped.
  • the fluid supply system 12 has a processing fluid supply unit 121 and a temperature adjustment unit 122.
  • the processing fluid supply unit 121 has a flow rate adjustment mechanism (on-off valves V11, V12, orifices OR11, OR12) that adjusts the flow rate of the processing fluid.
  • the temperature adjustment unit 122 has a first branch flow path L14 that passes a processing fluid at a first temperature through the processing vessel 111, and a second branch flow path L15 that passes a processing fluid at a second temperature through the processing vessel 111. This makes it possible to individually control the flow rate and temperature of the processing fluid supplied into the processing vessel 111, and to supply the processing fluid at a controlled flow rate and temperature into the processing vessel 111. As a result, the process margin in the substrate processing method performed using the substrate processing apparatus 10 can be expanded.
  • the temperature adjustment unit 122 (heating mechanisms HE11, HE12) is provided downstream of the junction of the first supply flow path L11, the second supply flow path L12, and the third supply flow path L13.
  • the inert gas of the inert gas supply source S12 is heated to a first temperature by the heating mechanism HE11 and flows through the first branch flow path L14. Therefore, in the first branch flow path L14 downstream of the heating mechanism HE11, the temperature uniformity along the fluid flow direction is improved.
  • inert gas at room temperature flows through the first branch flow path L14, even if the first branch flow path L14 is heated by the line heater LH11, a temperature distribution along the fluid flow direction is likely to occur in the first branch flow path L14.
  • the inert gas from the inert gas supply source S12 is heated to a second temperature by the heating mechanism HE12 and flows through the second branch flow path L15.
  • This improves the temperature uniformity along the fluid flow direction in the second branch flow path L15 downstream of the heating mechanism HE12.
  • inert gas at room temperature flows through the second branch flow path L15, even if the second branch flow path L15 is heated by the line heater LH12, a temperature distribution along the fluid flow direction is likely to occur in the second branch flow path L15.
  • a large flow rate of heated inert gas is supplied into the processing vessel 111 via the first branch flow path L14 and the second branch flow path L15, accelerating the drying of the IPA remaining in the first branch flow path L14, the second branch flow path L15, and the processing vessel 111.
  • the first branch flow path L14 and the second branch flow path L15 are heated by the inert gas, so that the processing temperature of the first substrate W performed after the standby step becomes substantially the same as the processing temperature of the second and subsequent substrates W. As a result, variation in processing temperature between substrates W is suppressed.
  • FIG. 10 is a diagram showing the substrate processing apparatus 20 according to the second embodiment.
  • the substrate processing apparatus 20 has a processing section 21, a fluid supply system 22, a discharge section 23, and a control section 24.
  • the processing section 21 may be the same as the processing section 11.
  • the processing section 21 has a processing vessel 211 and a holding plate 212.
  • the fluid supply system 22 has a treatment fluid supply section 221 and a temperature adjustment section 222.
  • the treatment fluid supply unit 221 may be the same as the treatment fluid supply unit 121.
  • the treatment fluid supply unit 221 has a treatment fluid supply source S21, a first supply flow path L21, an on-off valve V21, an orifice OR21, a second supply flow path L22, an on-off valve V22, an orifice OR22, an inert gas supply source S22, a third supply flow path L23, and an on-off valve V23.
  • the temperature adjustment unit 222 is connected to the treatment fluid supply unit 221 and the treatment vessel 211.
  • the temperature adjustment unit 222 passes a temperature-adjusted fluid through the inside of the treatment vessel 211.
  • the fluid includes a treatment fluid and an inert gas.
  • the temperature adjustment unit 222 has a first branch flow path L24, a second branch flow path L25, a bypass flow path L26, a first discharge flow path L27, and a second discharge flow path L28.
  • a heating mechanism HE21 In the first branch flow path L24, a heating mechanism HE21, an on-off valve V25, a filter F21, and a temperature sensor T21 are provided in this order from upstream.
  • a line heater LH21 is provided downstream of the heating mechanism HE21 in the first branch flow path L24.
  • Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the first branch flow path L24.
  • an on-off valve V24 In the second branch flow path L25, an on-off valve V24, a heating mechanism HE22, an on-off valve V26, and a filter F22 are provided in this order from upstream.
  • a line heater LH22 is provided downstream of the heating mechanism HE22 in the second branch flow path L25.
  • Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the second branch flow path L25.
  • the second branch flow path L25 branches off from the first branch flow path L24 between the processing fluid supply unit 221 and the heating mechanism HE21.
  • the second branch flow path L25 merges with the first branch flow path L24 immediately before the processing vessel 211.
  • the heating mechanism HE21 is provided in parallel with the heating mechanism HE22.
  • the heating mechanism HE21 heats the fluid supplied from the treatment fluid supply unit 221 to a first temperature and supplies the fluid at the first temperature downstream.
  • the first temperature may be, for example, 100°C or higher and 120°C or lower.
  • the on-off valve V25 is a valve that switches the flow of fluid on and off. When open, the on-off valve V25 allows fluid to flow to the downstream processing vessel 211, and when closed, it does not allow fluid to flow to the downstream processing vessel 211.
  • the filter F21 filters the fluid flowing through the first branch flow path L24 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during the drying process of the substrate W using the fluid.
  • the temperature sensor T21 is provided downstream of the junction of the first branch flow path L24 with the second branch flow path L25.
  • the temperature sensor T21 is provided, for example, immediately before the processing vessel 211.
  • the temperature sensor T21 detects the temperature of the fluid flowing in the first branch flow path L24.
  • the line heater LH21 heats the first branch flow path L24 downstream of the heating mechanism HE21.
  • the line heater LH21 prevents the temperature of the fluid heated to the first temperature by the heating mechanism HE21 from decreasing as it flows through the first branch flow path L24.
  • the on-off valve V24 is a valve that switches the flow of fluid on and off. When open, the on-off valve V24 allows fluid to flow to the downstream heating mechanism HE22, and when closed, it does not allow fluid to flow to the downstream heating mechanism HE22.
  • the heating mechanism HE22 heats the fluid supplied from the treatment fluid supply unit 221 to a second temperature and supplies the fluid at the second temperature downstream.
  • the second temperature is lower than the first temperature.
  • the second temperature may be, for example, 80°C or higher and 90°C or lower.
  • the on-off valve V26 is a valve that switches the flow of fluid on and off. When the on-off valve V26 is open, it allows fluid to flow to the downstream processing vessel 211, and when it is closed, it does not allow fluid to flow to the downstream processing vessel 211.
  • the filter F22 filters the fluid flowing through the second branch flow path L25 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during the drying process of the substrate W using the fluid.
  • the line heater LH22 heats the second branch flow path L25 downstream of the heating mechanism HE22.
  • the line heater LH22 prevents the temperature of the fluid heated to the second temperature by the heating mechanism HE22 from decreasing as it flows through the second branch flow path L25.
  • the temperature adjustment unit 222 when the on-off valve V25 is closed and the on-off valve V26 is opened, the fluid heated to the second temperature by the heating mechanism HE22 is supplied into the processing vessel 211 through the second branch flow path L25.
  • the on-off valve V26 is closed and the on-off valve V25 is opened, the fluid heated to the first temperature by the heating mechanism HE21 is supplied into the processing vessel 211 through the first branch flow path L24. In this way, the temperature of the fluid flowing through the processing vessel 211 can be changed by exclusively opening and closing the on-off valve V25 and the on-off valve V26.
  • both the on-off valve V25 and the on-off valve V26 are opened, the fluid heated to the first temperature by the heating mechanism HE21 and the fluid heated to the second temperature by the heating mechanism HE22 are mixed and supplied into the processing vessel 211.
  • a fluid at an intermediate temperature between the first temperature and the second temperature can be supplied into the processing vessel 211.
  • the temperature of the fluid flowing through the processing vessel 211 can be changed in three stages.
  • the bypass flow path L26 connects a position between the on-off valve V25 and the filter F21 in the first branch flow path L24 and a position between the on-off valve V26 and the filter F22 in the second branch flow path L25.
  • An orifice OR23 is provided in the bypass flow path L26.
  • a line heater LH23 is provided in the bypass flow path L26. The bypass flow path L26, the orifice OR23, and the line heater LH23 do not necessarily have to be provided.
  • the orifice OR23 has the function of reducing the flow rate of the fluid passing through the bypass flow path L26 and adjusting the pressure.
  • the line heater LH23 heats the bypass flow path L26.
  • the first discharge flow path L27 discharges the fluid in the first branch flow path L24.
  • the first discharge flow path L27 branches off from the first branch flow path L24 between the heating mechanism HE21 and the on-off valve V25.
  • the first discharge flow path L27 is provided with an on-off valve V27.
  • the first discharge flow path L27 is provided with a line heater LH24.
  • An orifice may be provided in the first discharge flow path L27.
  • the on-off valve V27 is a valve that switches the flow of fluid on and off. When open, the on-off valve V27 allows fluid to flow to the downstream first discharge flow path L27, and when closed, it does not allow fluid to flow to the downstream first discharge flow path L27.
  • the line heater LH24 heats the first exhaust flow path L27.
  • the second discharge flow path L28 discharges the fluid in the second branch flow path L25.
  • the second discharge flow path L28 branches off from the second branch flow path L25 between the heating mechanism HE22 and the on-off valve V26.
  • the second discharge flow path L28 is provided with an on-off valve V28.
  • the second discharge flow path L28 is provided with a line heater LH25.
  • An orifice may be provided in the second discharge flow path L28.
  • the on-off valve V28 is a valve that switches the flow of fluid on and off. When open, the on-off valve V28 allows fluid to flow to the downstream second discharge flow path L28, and when closed, the on-off valve V28 does not allow fluid to flow to the downstream second discharge flow path L28.
  • the line heater LH25 heats the second exhaust flow path L28.
  • the discharge section 23 has a discharge flow path L29.
  • the discharge flow path L29 is connected to the processing vessel 211.
  • a pressure sensor P21, a back pressure valve BV21, and an on-off valve V29 are provided in the discharge flow path L29, in that order from upstream.
  • a line heater LH26 is provided in the discharge flow path L29. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the discharge flow path L29.
  • the pressure sensor P21 detects the pressure of the fluid flowing through the discharge flow path L29 immediately after the processing vessel 211. This allows the pressure inside the processing vessel 211 to be detected.
  • the back pressure valve BV21 adjusts the valve opening to allow fluid to flow to the secondary side, thereby maintaining the primary pressure at the set pressure.
  • the set pressure of the back pressure valve BV21 is adjusted by the control unit 24.
  • the on-off valve V29 is a valve that switches the flow of fluid on and off. When open, the on-off valve V29 allows fluid to flow to the downstream discharge flow path L29, and when closed, the on-off valve V29 does not allow fluid to flow to the downstream discharge flow path L29.
  • the line heater LH26 heats the exhaust flow path L29.
  • the control unit 24 receives measurement signals from various sensors (such as temperature sensor T21 and pressure sensor P21) and transmits control signals to various functional elements.
  • the control signals include, for example, opening and closing signals of the on-off valves V21 to V29, a set pressure signal of the back pressure valve BV21, and a temperature signal of the line heater LH21 to LH26.
  • the control unit 24 is configured to change the flow rate of the fluid flowing through the processing vessel 211 by controlling the opening and closing of the on-off valves V21 and V22 in accordance with the processing state of the substrate W in the processing vessel 211.
  • the control unit 24 is configured to change the temperature of the fluid flowing through the processing vessel 211 by controlling the opening and closing of the on-off valves V25 and V26 in accordance with the processing state of the substrate W in the processing vessel 211.
  • the control unit 24 is, for example, a computer, and includes an arithmetic unit 241 and a memory unit 242.
  • the memory unit 242 stores programs that control various processes executed in the substrate processing apparatus 20.
  • the arithmetic unit 241 controls the operation of the substrate processing apparatus 20 by reading and executing the programs stored in the memory unit 242.
  • the programs may be recorded in a computer-readable storage medium and installed from the storage medium into the storage unit 242 of the control unit 24. Examples of computer-readable storage media include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
  • HD hard disk
  • FD flexible disk
  • CD compact disk
  • MO magnetic optical disk
  • Substrate Processing Method 11 to 18 a substrate processing method executed by the substrate processing apparatus 20 will be described.
  • the substrate processing method described below is automatically executed under the control of the controller 24 based on the processing recipe and the control program stored in the storage unit 242.
  • FIG. 11 is a timing chart showing the substrate processing method according to the second embodiment.
  • the lower diagram shows the opening and closing timing of on-off valves V21, V22, V23, V24, V25, V26, V27, V28, and V29
  • the upper diagram shows the change in the detection value (pressure) of pressure sensor P21 corresponding to the opening and closing timing.
  • FIGS. 12 to 18 are diagrams illustrating a substrate processing method according to the second embodiment.
  • an open valve is shown filled in black, and a closed valve is shown filled in white.
  • a flow path through which a fluid flows is shown by a thick solid line.
  • an inert gas is supplied to the processing section 21, the fluid supply system 22, and the exhaust section 23.
  • the inert gas may be, for example, N2 gas.
  • the on-off valves V23, V24, V25, V26, and V29 are opened, and the on-off valves V21, V22, V27, and V28 are closed.
  • the inert gas guided from the inert gas supply source S22 to the first branch flow path L24 is heated to a first temperature by the heating mechanism HE21 and supplied into the processing vessel 211.
  • the inert gas guided from the inert gas supply source S22 to the second branch flow path L25 is heated to a second temperature by the heating mechanism HE22 and supplied into the processing vessel 211. Therefore, the first branch flow path L24 and the second branch flow path L25 are purged and heated by the inert gas, so that the processing temperature of the first substrate W after the standby step becomes substantially the same as the processing temperature of the second and subsequent substrates W. This results in suppressing variation in processing temperature among the substrates W.
  • the inert gas is exhausted from the processing vessel 211 through the exhaust passage L29.
  • the substrate W is loaded into the processing vessel 211.
  • the on-off valves V24 and V26 are opened, and the on-off valves V21, V22, V23, V25, V27, V28, and V29 are closed, and then the substrate W is loaded into the processing vessel 211. That is, the substrate W is loaded into the processing vessel 211 without inert gas being supplied into the processing vessel 211.
  • the substrate W may be loaded into the processing vessel 211 while inert gas is being supplied into the processing vessel 211.
  • the substrate W is subjected to a cleaning process, and is placed on the holding plate 212 with the recesses of the pattern on the surface filled with IPA.
  • the first pressurization step is performed after the standby step.
  • the pressure in the processing vessel 211 is first increased by supplying a processing fluid at a first flow rate and a second temperature, and then the pressure in the processing vessel 211 is increased by supplying a processing fluid at a second flow rate and a second temperature. That is, in the first pressurization step, the pressure is increased in two stages.
  • the second flow rate may be greater than the first flow rate.
  • the on-off valves V21, V24, and V26 are opened, and the on-off valves V22, V23, V25, V27, V28, and V29 are closed.
  • the processing fluid from the processing fluid supply source S21 flows into the temperature adjustment section 222 via the first supply flow path L21 and is supplied into the processing vessel 211 via the second branch flow path L25. Therefore, the processing fluid at the first flow rate and the second temperature is supplied into the processing vessel 211.
  • the temperature of the substrate W changes to the second temperature.
  • the on-off valve V29 is closed, so the processing fluid does not flow out of the processing vessel 211. Therefore, the pressure in the processing vessel 211 gradually increases.
  • the processing fluid When pressurizing at the first flow rate, the processing fluid, whose flow rate has been reduced by the orifice OR23, flows from the second branch flow path L25 through the bypass flow path L26 into the first branch flow path L24. This prevents the processing fluid from flowing back from the junction of the first branch flow path L24 and the second branch flow path L25 immediately before the processing vessel 211 toward the upstream of the first branch flow path L24. This makes it possible to suppress contamination downstream of the filter F21 due to IPA residue, etc.
  • the pressure inside the processing vessel 211 is detected by the pressure sensor P21, and the pressurization at the first flow rate continues until the pressure inside the processing vessel 211 reaches the first pressure Y1.
  • the pressurization at the first flow rate ends and transitions to the pressurization at the second flow rate.
  • the on-off valve V22 When the pressure is increased at the second flow rate, as shown in FIG. 15, the on-off valve V22 is opened.
  • the states of the other on-off valves are the same as those shown in FIG. 14.
  • the processing fluid from the processing fluid supply source S21 flows into the temperature adjustment section 222 via the second supply flow path L22 in addition to the first supply flow path L21, and is supplied into the processing vessel 211 via the second branch flow path L25.
  • the flow rate of the processing fluid supplied into the processing vessel 211 increases to the second flow rate.
  • the on-off valve V29 When the pressure is increased at the second flow rate, the on-off valve V29 is closed, so the processing fluid does not flow out of the processing vessel 211. As a result, the pressure inside the processing vessel 211 gradually increases.
  • the pressure of the processing fluid supplied into the processing vessel 211 is lower than the critical pressure. Therefore, the processing fluid is supplied into the processing vessel 211 in a gaseous state. Thereafter, as the processing vessel 211 is filled with the processing fluid, the pressure inside the processing vessel 211 increases, and when the pressure inside the processing vessel 211 exceeds the critical pressure, the processing fluid present in the processing vessel 211 becomes supercritical.
  • the processing fluid When pressurizing at the second flow rate, the processing fluid, whose flow rate has been reduced by the orifice OR23, flows from the second branch flow path L25 through the bypass flow path L26 into the first branch flow path L24. This prevents the processing fluid from flowing back from the junction of the first branch flow path L24 and the second branch flow path L25 immediately before the processing vessel 211 toward the upstream of the first branch flow path L24. This makes it possible to suppress contamination downstream of the filter F21 due to IPA residue, etc.
  • the pressure inside the processing vessel 211 is detected by the pressure sensor P21, and the pressurization at the second flow rate continues until the pressure inside the processing vessel 211 reaches the second pressure Y2.
  • the first pressurization process ends and the process moves to the second pressurization process.
  • the second pressurization step is performed after the first pressurization step.
  • the pressure in the processing vessel 211 is increased by supplying the processing fluid at the second flow rate and the first temperature.
  • the on-off valves V21, V22, V25, and V28 are opened, and the on-off valves V23, V24, V26, V27, and V29 are closed.
  • the processing fluid from the processing fluid supply source S21 flows into the temperature adjustment unit 222 via the first supply flow path L21 and the second supply flow path L22, and is supplied into the processing vessel 211 via the first branch flow path L24. Therefore, the processing fluid at the second flow rate and the first temperature is supplied into the processing vessel 211.
  • the temperature of the substrate W is quickly changed to the first temperature.
  • the processing fluid In the second pressurization step, the processing fluid, whose flow rate has been reduced by the orifice OR23, flows from the first branch flow path L24 through the bypass flow path L26 into the second branch flow path L25. This prevents the processing fluid from flowing back from the junction of the first branch flow path L24 and the second branch flow path L25 immediately before the processing vessel 211 toward the upstream of the second branch flow path L25. This makes it possible to suppress contamination downstream of the filter F22 due to IPA residue, etc.
  • the processing fluid in the second branch flow path L25 is discharged and the pressure in the second branch flow path L25 is reduced. Since the heat storage amount of the heating mechanism HE22 set to the second temperature lower than the first temperature is small, when the pressure in the second branch flow path L25 is reduced, the temperature of the heating mechanism HE22 drops significantly due to the pressure drop, and it takes time for the temperature of the heating mechanism HE22 to return to the second temperature. Therefore, while the processing fluid is flowing through the first branch flow path L24 in the second pressure increase step, the on-off valves V24 and V26 are closed and the on-off valve V28 is opened, thereby reducing the pressure in the second branch flow path L25 and returning the temperature of the heating mechanism HE22 to the second temperature. In this way, since the second exhaust flow path L28 and the on-off valve V28 are provided, the heating mechanism HE2 can be prepared for the next substrate W in parallel with the processing of the substrate W in the processing vessel 211.
  • the pressure inside the processing vessel 211 is detected by the pressure sensor P21, and the second pressurization process continues until the pressure inside the processing vessel 211 reaches the third pressure Y3.
  • the second pressurization process ends and the process moves to the circulation process.
  • the circulation process is performed after the second pressure increase process.
  • the processing fluid at the second flow rate and the first temperature is supplied from the processing fluid supply source S21 into the processing vessel 211, and the IPA is replaced with the processing fluid in the recess of the pattern on the substrate W in the processing vessel 211.
  • the on-off valves V21, V22, V25, V28, and V29 are opened, and the on-off valves V23, V24, V26, and V27 are closed.
  • the processing fluid of the processing fluid supply source S21 flows into the temperature adjustment unit 222 via the first supply flow path L21 and the second supply flow path L22, and is supplied into the processing vessel 211 via the first branch flow path L24.
  • the processing fluid supplied into the processing vessel 211 is discharged from the processing vessel 211 via the discharge flow path L29.
  • the processing fluid In the circulation process, the processing fluid, whose flow rate has been reduced by the orifice OR23, flows from the first branch flow path L24 through the bypass flow path L26 into the second branch flow path L25. This prevents the processing fluid from flowing back from the junction of the first branch flow path L24 and the second branch flow path L25 immediately before the processing vessel 211 toward the upstream of the second branch flow path L25. This makes it possible to suppress contamination downstream of the filter F22 due to IPA residue, etc.
  • the pressure reduction in the second branch flow path L25 continues even in the circulation process.
  • ⁇ Decompression step> The depressurization process is performed after the circulation process.
  • the processing fluid is discharged from the processing vessel 211.
  • the on-off valves V27, V28, and V29 are opened, and the on-off valves V21, V22, V23, V24, V25, and V26 are closed.
  • the pressure in the processing vessel 211 becomes lower than the critical pressure of the processing fluid by the depressurization process, the processing fluid in the supercritical state is vaporized and leaves the recesses of the pattern. This completes the drying process for one substrate W.
  • the processing fluid in the first branch flow path L24 is discharged via the first discharge flow path L27, and the processing fluid in the second branch flow path L25 is discharged via the second discharge flow path L28. That is, the processing fluid in the first branch flow path L24 and the processing fluid in the second branch flow path L25 are discharged from different discharge flow paths. This prevents mixing of the processing fluid at the first temperature and the processing fluid at the second temperature.
  • the process proceeds to a standby step.
  • the processed substrate W is removed from the processing vessel 211 after the process proceeds to the standby step, for example.
  • the supply of inert gas into the processing vessel 211 is started via the first branch flow path L24 and the second branch flow path L25.
  • the substrate W is removed from the processing vessel 211 while the inert gas is being supplied into the processing vessel 211.
  • the supply of inert gas into the processing vessel 211 continues even after the substrate W is removed from the processing vessel 211.
  • the inside of the processing vessel 211 becomes positive pressure, so that when the inside of the processing vessel 211 is opened, a gas flow is formed from the inside to the outside of the processing vessel 211. Therefore, the residue in the processing vessel 211 can be discharged to the outside of the processing vessel 211 and removed.
  • the supply of inert gas into the processing vessel 211 may be stopped.
  • the fluid supply system 22 has a processing fluid supply unit 221 and a temperature adjustment unit 222.
  • the processing fluid supply unit 221 has a flow rate adjustment mechanism (on-off valves V21, V22, orifices OR21, OR22) that adjusts the flow rate of the processing fluid.
  • the temperature adjustment unit 222 has a first branch flow path L24 that passes a processing fluid at a first temperature into the processing vessel 211, and a second branch flow path L25 that passes a processing fluid at a second temperature into the processing vessel 211. This makes it possible to individually control the flow rate and temperature of the processing fluid supplied into the processing vessel 211, and to supply the processing fluid at a controlled flow rate and temperature into the processing vessel 211. As a result, the process margin in the substrate processing method performed using the substrate processing apparatus 10 can be expanded.
  • the temperature adjustment unit 222 (heating mechanisms HE21, HE22) is provided downstream of the junction of the first supply flow path L21, the second supply flow path L22, and the third supply flow path L23.
  • the inert gas of the inert gas supply source S22 is heated to a first temperature by the heating mechanism HE21 and flows through the first branch flow path L24. Therefore, in the first branch flow path L24 downstream of the heating mechanism HE21, the temperature uniformity along the fluid flow direction is improved.
  • inert gas at room temperature flows through the first branch flow path L24, even if the first branch flow path L24 is heated by the line heater LH21, a temperature distribution along the fluid flow direction is likely to occur in the first branch flow path L24.
  • the inert gas from the inert gas supply source S22 is heated to a second temperature by the heating mechanism HE22 and flows through the second branch flow path L25.
  • This improves the temperature uniformity along the fluid flow direction in the second branch flow path L25 downstream of the heating mechanism HE22.
  • inert gas at room temperature flows through the second branch flow path L25, even if the second branch flow path L25 is heated by the line heater LH22, a temperature distribution along the fluid flow direction is likely to occur in the second branch flow path L25.
  • a large flow rate of heated inert gas is supplied into the processing vessel 211 via the first branch flow path L24 and the second branch flow path L25, accelerating the drying of the IPA remaining in the first branch flow path L24, the second branch flow path L25, and the processing vessel 211.
  • a heated inert gas flows through the first branch flow path L24 and the second branch flow path L25.
  • the first branch flow path L24 and the second branch flow path L25 are heated by the inert gas, so that the processing temperature of the first substrate W performed after the standby step becomes substantially the same as the processing temperature of the second and subsequent substrates W. As a result, variation in processing temperature between substrates W is suppressed.
  • FIG. 19 is a diagram showing a substrate processing apparatus 20A according to a modified example of the second embodiment.
  • Substrate processing apparatus 20A differs from substrate processing apparatus 20 in that heating mechanism HE21 and heating mechanism HE22 are each connected to a processing fluid supply unit, and in that there is no bypass flow path L26.
  • the rest of the configuration of substrate processing apparatus 20A may be the same as that of substrate processing apparatus 20. The following will focus on the differences from substrate processing apparatus 20.
  • the substrate processing apparatus 20A has a processing section 21, a fluid supply system 22A, a discharge section 23, and a control section 24.
  • the fluid supply system 22A has a treatment fluid supply unit 221A, a treatment fluid supply unit 221B, and a temperature adjustment unit 222A.
  • the treatment fluid supply unit 221A has a treatment fluid supply source S21A, a first supply flow path L21A, an on-off valve V21A, an orifice OR21A, an inert gas supply source S22A, a third supply flow path L23A, and an on-off valve V23A.
  • the treatment fluid supply source S21A, the first supply flow path L21A, the on-off valve V21A, the orifice OR21A, the inert gas supply source S22A, the third supply flow path L23A, and the on-off valve V23A may be the same as the treatment fluid supply source S21, the first supply flow path L21, the on-off valve V21, the orifice OR21, the inert gas supply source S22, the third supply flow path L23, and the on-off valve V23, respectively.
  • the treatment fluid supply section 221B has a treatment fluid supply source S21B, a first supply flow path L21B, an on-off valve V21B, an orifice OR21B, a second supply flow path L22B, an on-off valve V22B, an orifice OR22B, an inert gas supply source S22B, a third supply flow path L23B, and an on-off valve V23B.
  • the processing fluid supply source S21B, the first supply flow path L21B, the on-off valve V21B, the orifice OR21B, the second supply flow path L22B, the on-off valve V22B, the orifice OR22B, the inert gas supply source S22B, the third supply flow path L23B, and the on-off valve V23B may be the same as the processing fluid supply source S21, the first supply flow path L21, the on-off valve V21, the orifice OR21, the second supply flow path L22, the on-off valve V22, the orifice OR22, the inert gas supply source S22, the third supply flow path L23, and the on-off valve V23, respectively.
  • the temperature adjustment unit 222A differs from the temperature adjustment unit 222 in that the heating mechanism HE21 is connected to the treatment fluid supply unit 221A, and the heating mechanism HE22 is connected to the treatment fluid supply unit 221B.
  • the process fluid supply units 221A and 221B that supply fluid to the temperature adjustment unit 222A are switched by controlling the opening and closing of the on-off valves V21A, V23A, V21B, V22B, and V23B.
  • the on-off valve V21A is opened, a process fluid is supplied from the process fluid supply unit 221A to the first branch flow path L24.
  • an inert gas is supplied from the process fluid supply unit 221A to the first branch flow path L24.
  • a process fluid is supplied from the process fluid supply unit 221B to the second branch flow path L25.
  • an inert gas is supplied from the process fluid supply unit 221B to the second branch flow path L25.
  • the processing fluid supply units 221A and 221B that supply fluid to the temperature adjustment unit 222A are switched depending on the process being performed, for example.
  • Example 1 A plurality of substrates were successively processed by the substrate processing method according to the first embodiment (Example 1). That is, in Example 1, in a waiting step before processing each substrate, preheating of the first branch flow path L14 and the second branch flow path L15 was performed with an inert gas. In Example 1, the processing pressure and processing temperature were measured during the period in which each substrate was processed. The processing pressure was the detection value of the pressure sensor P11, and the processing temperature was the detection value of the temperature sensor T11.
  • Example 1 For comparison, in the waiting step in the substrate processing method according to the first embodiment, no inert gas was supplied during the waiting step, and other conditions were the same as in Example 1, and multiple substrates were processed consecutively (Comparative Example 1). That is, in Comparative Example 1, preheating of the first branch flow path L14 and the second branch flow path L15 with inert gas was not performed during the waiting step before processing each substrate. In Comparative Example 1, the processing pressure and processing temperature were measured during the period when each substrate was being processed. The processing pressure was the detection value of the pressure sensor P11, and the processing temperature was the detection value of the temperature sensor T11.
  • FIGS. 20 and 21 are diagrams showing the change in processing temperature between substrates.
  • FIG. 20 shows the measurement results of Comparative Example 1
  • FIG. 21 shows the measurement results of Example 1.
  • the horizontal axis indicates time
  • the vertical axis on the left indicates processing temperature
  • the vertical axis on the right indicates processing pressure.
  • the processing temperature during processing of the first substrate is shown by a solid line
  • the processing temperature during processing of the second and subsequent substrates is shown by a dashed line
  • the processing pressure is shown by a dashed line.
  • the processing temperature during processing of the second and subsequent substrates is higher than the processing temperature during processing of the first substrate, and it can be seen that there is variation in the processing temperature between substrates. This is thought to be because, when preheating with an inert gas is not performed, heat is transferred downstream from the line heaters LH11, LH12 through the processing fluid in the first branch flow path L14 and the second branch flow path L15 with each processing run.
  • the processing temperature during processing of the first substrate is approximately the same as the processing temperature during processing of the second and subsequent substrates. This is believed to be because, when preheating with an inert gas is performed, the temperatures of the first branch flow path L14 and the second branch flow path L15 become approximately the same before processing the first substrate and before processing the second and subsequent substrates.
  • the on-off valves V11 and V21 are an example of a first supply valve
  • the on-off valves V13 and V23 are an example of a second supply valve
  • the on-off valves V17 and V29 are an example of a discharge valve.
  • the heating mechanisms HE11, HE12, HE21, and HE22 are an example of a heating mechanism.
  • the first branch flow paths L14 and L24 and the second branch flow paths L15 and L25 are an example of a fluid supply path.
  • the processing fluid supply sources S11 and S21, the first supply flow paths L11 and L21, the on-off valves V11 and V21, the orifices OR11 and OR21, the second supply flow paths L12 and L22, the on-off valves V12 and V22, and the orifices OR12 and OR22 are an example of a first fluid supply unit.
  • the inert gas supply sources S12 and S22, the third supply flow paths L13 and L23, and the on-off valves V13 and V23 are an example of a second fluid supply unit.
  • the process fluid is an example of a first fluid
  • the inert gas is an example of a second fluid.
  • REFERENCE SIGNS LIST 10 20 Substrate processing apparatus 11, 21 Processing section 111, 211 Processing vessel 12, 22 Fluid supply system 121, 221 Processing fluid supply section 122, 222 Temperature adjustment section 14, 24 Control section HE11, HE21 Heating mechanism HE12, HE22 Heating mechanism L11, L21 First supply flow path L12, L22 Second supply flow path L14, L24 First branch flow path L15, L25 Second branch flow path V11, V21 Opening/closing valve V12, V22 Opening/closing valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

A fluid supply system according to one embodiment of the present disclosure supplies a fluid into a process chamber in which a substrate is processed, and this fluid supply system comprises: a first fluid supply unit which has a first supply valve and supplies a first fluid; a second fluid supply unit which has a second supply valve and supplies a second fluid; a fluid supply path which is connected to the first fluid supply unit, the second fluid supply unit and the process chamber, and supplies the first fluid and the second fluid into the process chamber; a heating mechanism which heats the first fluid and the second fluid, while being provided on the fluid supply path at a position that is in the downstream of the positions at which the first fluid supply unit and the second fluid supply unit are connected to the fluid supply path; and a control unit which controls those units of this fluid supply system. The control unit executes: a process in which the second supply valve is opened so as to supply the second fluid, which has been heated by the heating mechanism, into the process chamber when the first fluid is not supplied into the process chamber; and a process in which the second supply valve is closed so as to stop the supply of the second fluid into the process chamber before the substrate is carried into the process chamber. The second fluid supply process comprises a step for setting the set temperature of the heating mechanism to the same temperature as the set temperature of the heating mechanism at the time when the firs fluid is supplied into the process chamber.

Description

流体供給システム、基板処理装置及び基板処理方法FLUID SUPPLY SYSTEM, SUBSTRATE PROCESSING APPARATUS, AND SUBSTRATE PROCESS
 本開示は、流体供給システム、基板処理装置及び基板処理方法に関する。 The present disclosure relates to a fluid supply system, a substrate processing apparatus, and a substrate processing method.
 超臨界流体を利用して基板を乾燥させる技術が知られている。特許文献1には、処理容器内に接続された流体供給路の内部を流れる超臨界流体を加熱機構により加熱することが開示されている。 Technology is known that uses a supercritical fluid to dry a substrate. Patent Document 1 discloses that a heating mechanism is used to heat the supercritical fluid flowing inside a fluid supply path connected to a processing vessel.
特開2014-022520号公報JP 2014-022520 A
 本開示は、基板間での処理温度のばらつきを低減できる技術を提供する。 This disclosure provides technology that can reduce variation in processing temperature between substrates.
 本開示の一態様による流体供給システムは、内部で基板が処理される処理容器内に流体を供給する流体供給システムであって、第1供給弁を有し、第1流体を供給する第1流体供給部と、第2供給弁を有し、第2流体を供給する第2流体供給部と、前記第1流体供給部と前記第2流体供給部と前記処理容器とに接続され、前記第1流体及び前記第2流体を前記処理容器内に供給する流体供給路と、前記第1流体供給部と前記第2流体供給部とが接続される位置よりも下流の前記流体供給路に設けられ、前記第1流体及び前記第2流体を加熱する加熱機構と、当該流体供給システムの各部を制御する制御部と、を有し、前記制御部は、前記処理容器内に前記第1流体が供給されていないときに、前記第2供給弁を開いて前記処理容器内に前記加熱機構で加熱された前記第2流体を供給する工程と、前記基板が前記処理容器内に搬入される前に前記第2供給弁を閉じて前記処理容器内への前記第2流体の供給を停止する工程と、を実行し、前記第2流体を供給する工程は、前記加熱機構の設定温度を、前記処理容器内に前記第1流体が供給されるときの前記加熱機構の設定温度と同じ温度に設定することを含む。 A fluid supply system according to one aspect of the present disclosure is a fluid supply system that supplies a fluid into a processing vessel in which a substrate is processed, and includes a first fluid supply unit having a first supply valve and supplying the first fluid, a second fluid supply unit having a second supply valve and supplying the second fluid, a fluid supply path connected to the first fluid supply unit, the second fluid supply unit, and the processing vessel and supplying the first fluid and the second fluid into the processing vessel, and a heating mechanism provided in the fluid supply path downstream of a position where the first fluid supply unit and the second fluid supply unit are connected and heating the first fluid and the second fluid. and a control unit that controls each part of the fluid supply system, and the control unit executes the steps of opening the second supply valve to supply the second fluid heated by the heating mechanism into the processing vessel when the first fluid is not being supplied into the processing vessel, and closing the second supply valve to stop the supply of the second fluid into the processing vessel before the substrate is loaded into the processing vessel, and the step of supplying the second fluid includes setting the set temperature of the heating mechanism to the same temperature as the set temperature of the heating mechanism when the first fluid is supplied into the processing vessel.
 本開示によれば、基板間での処理温度のばらつきを低減できる。 This disclosure makes it possible to reduce variation in processing temperature between substrates.
図1は、第1実施形態に係る基板処理装置を示す図である。FIG. 1 is a diagram showing a substrate processing apparatus according to a first embodiment. 図2は、第1実施形態に係る基板処理方法を示すタイミングチャートである。FIG. 2 is a timing chart showing the substrate processing method according to the first embodiment. 図3は、第1実施形態に係る基板処理方法を示す図(1)である。FIG. 3 is a diagram (1) showing the substrate processing method according to the first embodiment. 図4は、第1実施形態に係る基板処理方法を示す図(2)である。FIG. 4 is a diagram (2) showing the substrate processing method according to the first embodiment. 図5は、第1実施形態に係る基板処理方法を示す図(3)である。FIG. 5 is a view (3) showing the substrate processing method according to the first embodiment. 図6は、第1実施形態に係る基板処理方法を示す図(4)である。FIG. 6 is a diagram (4) showing the substrate processing method according to the first embodiment. 図7は、第1実施形態に係る基板処理方法を示す図(5)である。FIG. 7 is a diagram (5) showing the substrate processing method according to the first embodiment. 図8は、第1実施形態に係る基板処理方法を示す図(6)である。FIG. 8 is a diagram (6) showing the substrate processing method according to the first embodiment. 図9は、第1実施形態に係る基板処理方法を示す図(7)である。FIG. 9 is a diagram (7) showing the substrate processing method according to the first embodiment. 図10は、第2実施形態に係る基板処理装置を示す図である。FIG. 10 is a diagram showing a substrate processing apparatus according to the second embodiment. 図11は、第2実施形態に係る基板処理方法を示すタイミングチャートである。FIG. 11 is a timing chart showing the substrate processing method according to the second embodiment. 図12は、第2実施形態に係る基板処理方法を示す図(1)である。FIG. 12 is a diagram (1) showing a substrate processing method according to the second embodiment. 図13は、第2実施形態に係る基板処理方法を示す図(2)である。FIG. 13 is a diagram showing a substrate processing method according to the second embodiment. 図14は、第2実施形態に係る基板処理方法を示す図(3)である。FIG. 14 is a view (3) showing the substrate processing method according to the second embodiment. 図15は、第2実施形態に係る基板処理方法を示す図(4)である。FIG. 15 is a diagram (4) showing the substrate processing method according to the second embodiment. 図16は、第2実施形態に係る基板処理方法を示す図(5)である。FIG. 16 is a diagram (5) showing the substrate processing method according to the second embodiment. 図17は、第2実施形態に係る基板処理方法を示す図(6)である。FIG. 17 is a diagram (6) showing the substrate processing method according to the second embodiment. 図18は、第2実施形態に係る基板処理方法を示す図(7)である。FIG. 18 is a diagram (7) showing the substrate processing method according to the second embodiment. 図19は、第2実施形態の変形例に係る基板処理装置を示す図である。FIG. 19 is a diagram showing a substrate processing apparatus according to a modified example of the second embodiment. 図20は、基板間での処理温度の変化を示す図である。FIG. 20 is a diagram showing the change in processing temperature between substrates. 図21は、基板間での処理温度の変化を示す図である。FIG. 21 is a diagram showing the change in processing temperature between substrates.
 以下、添付の図面を参照しながら、本開示の限定的でない例示の実施形態について説明する。添付の全図面中、同一又は対応する部材又は部品については、同一又は対応する参照符号を付し、重複する説明を省略する。 Below, non-limiting exemplary embodiments of the present disclosure will be described with reference to the attached drawings. In all of the attached drawings, the same or corresponding members or parts are designated by the same or corresponding reference symbols, and duplicate descriptions will be omitted.
 〔第1実施形態〕
 (基板処理装置)
 図1を参照し、第1実施形態に係る基板処理装置10について説明する。図1は、第1実施形態に係る基板処理装置10を示す図である。
First Embodiment
(Substrate Processing Apparatus)
A substrate processing apparatus 10 according to a first embodiment will be described with reference to Fig. 1. Fig. 1 is a diagram showing the substrate processing apparatus 10 according to the first embodiment.
 基板処理装置10は、処理部11と、流体供給システム12と、排出部13と、制御部14とを有する。 The substrate processing apparatus 10 has a processing section 11, a fluid supply system 12, a discharge section 13, and a control section 14.
 処理部11は、処理容器111と、保持板112とを有する。処理容器111は、例えば直径300mmの基板Wを収容可能な処理空間が内部に形成された容器である。基板Wは、例えば半導体ウエハであってよい。保持板112は、処理容器111の内部に設けられる。保持板112は、基板Wを水平に保持する。処理部11は、処理容器111の内部の圧力を検出する圧力センサと、処理容器111の内部の温度を検出する温度センサとを有してもよい。 The processing section 11 has a processing vessel 111 and a holding plate 112. The processing vessel 111 is a vessel in which a processing space capable of accommodating a substrate W having a diameter of, for example, 300 mm is formed. The substrate W may be, for example, a semiconductor wafer. The holding plate 112 is provided inside the processing vessel 111. The holding plate 112 holds the substrate W horizontally. The processing section 11 may have a pressure sensor that detects the pressure inside the processing vessel 111 and a temperature sensor that detects the temperature inside the processing vessel 111.
 流体供給システム12は、処理流体供給部121と、温度調整部122とを有する。 The fluid supply system 12 has a treatment fluid supply section 121 and a temperature adjustment section 122.
 処理流体供給部121は、処理流体供給源S11と、第1供給流路L11と、開閉弁V11と、オリフィスOR11と、第2供給流路L12と、開閉弁V12と、オリフィスOR12と、不活性ガス供給源S12と、第3供給流路L13と、開閉弁V13とを有する。 The treatment fluid supply unit 121 has a treatment fluid supply source S11, a first supply flow path L11, an on-off valve V11, an orifice OR11, a second supply flow path L12, an on-off valve V12, an orifice OR12, an inert gas supply source S12, a third supply flow path L13, and an on-off valve V13.
 処理流体供給源S11は、処理流体の供給源である。処理流体は、例えば液体状態の二酸化炭素(CO)であってよい。 The process fluid supply source S11 is a supply source of a process fluid, which may be, for example, carbon dioxide (CO 2 ) in a liquid state.
 第1供給流路L11は、上流が処理流体供給源S11に接続され、下流が温度調整部122に接続される。第1供給流路L11には、開閉弁V11及びオリフィスOR11が、上流から順に設けられる。 The first supply flow path L11 is connected to the treatment fluid supply source S11 at its upstream side and to the temperature adjustment unit 122 at its downstream side. An on-off valve V11 and an orifice OR11 are provided in the first supply flow path L11 in this order from upstream.
 開閉弁V11は、処理流体の流れのオン及びオフを切り換えるバルブである。開閉弁V11は、開状態では下流の温度調整部122に処理流体を流し、閉状態では下流の温度調整部122に処理流体を流さない。 The on-off valve V11 is a valve that switches the flow of the processing fluid on and off. When the on-off valve V11 is open, it allows the processing fluid to flow to the downstream temperature adjustment unit 122, and when it is closed, it does not allow the processing fluid to flow to the downstream temperature adjustment unit 122.
 オリフィスOR11は、液体状態の処理流体の流速を低下させ、圧力を調整する機能を有する。オリフィスOR11は、圧力が調整された処理流体を下流の温度調整部122に通流させる。 The orifice OR11 has the function of reducing the flow rate of the liquid processing fluid and adjusting the pressure. The orifice OR11 passes the pressure-adjusted processing fluid through the downstream temperature adjustment section 122.
 第2供給流路L12は、第1供給流路L11と並列に設けられる。第2供給流路L12は、開閉弁V11の上流において第1供給流路L11から分岐し、オリフィスOR11の下流において第1供給流路L11と合流する。第2供給流路L12には、開閉弁V12及びオリフィスOR12が、上流から順に設けられる。 The second supply flow path L12 is provided in parallel with the first supply flow path L11. The second supply flow path L12 branches off from the first supply flow path L11 upstream of the on-off valve V11 and merges with the first supply flow path L11 downstream of the orifice OR11. The on-off valve V12 and the orifice OR12 are provided in the second supply flow path L12 in this order from upstream.
 開閉弁V12は、処理流体の流れのオン及びオフを切り換えるバルブである。開閉弁V12は、開状態では下流の温度調整部122に処理流体を流し、閉状態では下流の温度調整部122に処理流体を流さない。 The on-off valve V12 is a valve that switches the flow of the processing fluid on and off. When the on-off valve V12 is open, it allows the processing fluid to flow to the downstream temperature adjustment unit 122, and when it is closed, it does not allow the processing fluid to flow to the downstream temperature adjustment unit 122.
 オリフィスOR12は、液体状態の処理流体の流速を低下させ、圧力を調整する機能を有する。オリフィスOR12は、圧力が調整された処理流体を下流の温度調整部122に通流させる。 The orifice OR12 has the function of reducing the flow rate of the liquid processing fluid and adjusting the pressure. The orifice OR12 passes the pressure-adjusted processing fluid through the downstream temperature adjustment section 122.
 不活性ガス供給源S12は、不活性ガスの供給源である。不活性ガスは、例えば窒素(N)ガスであってよい。 The inert gas supply source S12 is a supply source of an inert gas, which may be, for example, nitrogen (N 2 ) gas.
 第3供給流路L13は、上流が不活性ガス供給源S12に接続され、下流がオリフィスOR11の下流において第1供給流路L11と合流する。第3供給流路L13には、開閉弁V13が設けられる。第3供給流路L13には、チェック弁、フィルタなどが設けられてもよい。 The third supply flow path L13 is connected to the inert gas supply source S12 at its upstream end, and merges with the first supply flow path L11 downstream of the orifice OR11 at its downstream end. An on-off valve V13 is provided in the third supply flow path L13. A check valve, a filter, etc. may also be provided in the third supply flow path L13.
 開閉弁V13は、不活性ガスの流れのオン及びオフを切り換えるバルブである。開閉弁V13は、開状態では下流の温度調整部122に不活性ガスを流し、閉状態では下流の温度調整部122に不活性ガスを流さない。 The on-off valve V13 is a valve that switches the flow of inert gas on and off. When open, the on-off valve V13 allows inert gas to flow to the downstream temperature adjustment unit 122, and when closed, the on-off valve V13 does not allow inert gas to flow to the downstream temperature adjustment unit 122.
 温度調整部122は、処理流体供給部121と処理容器111とに接続される。温度調整部122は、温度が調整された流体を処理容器111の内部に通流させる。流体は、処理流体と不活性ガスとを含む。温度調整部122は、第1分岐流路L14と、第2分岐流路L15、バイパス流路L16と、第1排出流路L17とを有する。 The temperature adjustment unit 122 is connected to the processing fluid supply unit 121 and the processing vessel 111. The temperature adjustment unit 122 passes a temperature-adjusted fluid through the inside of the processing vessel 111. The fluid includes a processing fluid and an inert gas. The temperature adjustment unit 122 has a first branch flow path L14, a second branch flow path L15, a bypass flow path L16, and a first discharge flow path L17.
 第1分岐流路L14には、加熱機構HE11、開閉弁V15、フィルタF11及び温度センサT11が、上流から順に設けられる。第1分岐流路L14における加熱機構HE11の下流には、ラインヒータLH11が設けられる。第1分岐流路L14の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 In the first branch flow path L14, a heating mechanism HE11, an on-off valve V15, a filter F11, and a temperature sensor T11 are provided in this order from upstream to downstream. A line heater LH11 is provided downstream of the heating mechanism HE11 in the first branch flow path L14. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the first branch flow path L14.
 第2分岐流路L15には、加熱機構HE12、開閉弁V16及びフィルタF12が、上流から順に設けられる。第2分岐流路L15における加熱機構HE12の下流には、ラインヒータLH12が設けられる。第2分岐流路L15の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 In the second branch flow path L15, a heating mechanism HE12, an on-off valve V16, and a filter F12 are provided in this order from upstream to downstream. A line heater LH12 is provided downstream of the heating mechanism HE12 in the second branch flow path L15. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the second branch flow path L15.
 第1分岐流路L14は、加熱機構HE12と開閉弁V16との間において第2分岐流路L15から分岐する。第2分岐流路L15は、処理容器111の直前で第1分岐流路L14と合流する。 The first branch flow path L14 branches off from the second branch flow path L15 between the heating mechanism HE12 and the on-off valve V16. The second branch flow path L15 merges with the first branch flow path L14 immediately before the processing vessel 111.
 加熱機構HE11は、加熱機構HE12と直列に設けられる。加熱機構HE11は、処理流体供給部121から供給される流体を第1温度に加熱し、第1温度の流体を下流に供給する。第1温度は、例えば100℃以上120℃以下であってよい。 The heating mechanism HE11 is provided in series with the heating mechanism HE12. The heating mechanism HE11 heats the fluid supplied from the treatment fluid supply unit 121 to a first temperature and supplies the fluid at the first temperature downstream. The first temperature may be, for example, 100°C or higher and 120°C or lower.
 開閉弁V15は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V15は、開状態では下流の処理容器111に流体を流し、閉状態では下流の処理容器111に流体を流さない。 The on-off valve V15 is a valve that switches the flow of fluid on and off. When open, the on-off valve V15 allows fluid to flow to the downstream processing vessel 111, and when closed, it does not allow fluid to flow to the downstream processing vessel 111.
 フィルタF11は、第1分岐流路L14内を流れる流体を濾過し、流体に含まれる異物を取り除く。これにより、流体を用いた基板処理の際に、基板Wの表面にパーティクルが発生することを抑制できる。 The filter F11 filters the fluid flowing through the first branch flow path L14 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during substrate processing using the fluid.
 温度センサT11は、第1分岐流路L14における第2分岐流路L15との合流部の下流に設けられる。温度センサT11は、例えば処理容器111の直前に設けられる。温度センサT11は、第1分岐流路L14内を流れる流体の温度を検出する。 The temperature sensor T11 is provided downstream of the junction of the first branch flow path L14 with the second branch flow path L15. The temperature sensor T11 is provided, for example, immediately before the processing vessel 111. The temperature sensor T11 detects the temperature of the fluid flowing in the first branch flow path L14.
 ラインヒータLH11は、加熱機構HE11の下流の第1分岐流路L14を加熱する。ラインヒータLH11は、加熱機構HE11により第1温度に加熱された流体が第1分岐流路L14を流れる際に温度低下することを抑制する。 The line heater LH11 heats the first branch flow path L14 downstream of the heating mechanism HE11. The line heater LH11 prevents the temperature of the fluid heated to the first temperature by the heating mechanism HE11 from decreasing as it flows through the first branch flow path L14.
 加熱機構HE12は、処理流体供給部121から供給される流体を第2温度に加熱し、第2温度の流体を下流に供給する。第2温度は、第1温度よりも低い温度である。第2温度は、例えば80℃以上90℃以下であってよい。 The heating mechanism HE12 heats the fluid supplied from the treatment fluid supply unit 121 to a second temperature and supplies the fluid at the second temperature downstream. The second temperature is lower than the first temperature. The second temperature may be, for example, 80°C or higher and 90°C or lower.
 開閉弁V16は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V16は、開状態では下流の処理容器111に流体を流し、閉状態では下流の処理容器111に流体を流さない。 The on-off valve V16 is a valve that switches the flow of fluid on and off. When open, the on-off valve V16 allows fluid to flow to the downstream processing vessel 111, and when closed, the on-off valve V16 does not allow fluid to flow to the downstream processing vessel 111.
 フィルタF12は、第2分岐流路L15内を流れる流体を濾過し、流体に含まれる異物を取り除く。これにより、流体を用いた基板処理の際に、基板Wの表面にパーティクルが発生することを抑制できる。 The filter F12 filters the fluid flowing through the second branch flow path L15 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during substrate processing using the fluid.
 ラインヒータLH12は、加熱機構HE12の下流の第2分岐流路L15を加熱する。ラインヒータLH12は、加熱機構HE12により第2温度に加熱された流体が第2分岐流路L15を流れる際に温度低下することを抑制する。 The line heater LH12 heats the second branch flow path L15 downstream of the heating mechanism HE12. The line heater LH12 prevents the temperature of the fluid heated to the second temperature by the heating mechanism HE12 from decreasing as it flows through the second branch flow path L15.
 係る温度調整部122において、開閉弁V15を閉じると共に開閉弁V16を開くと、加熱機構HE12で第2温度に加熱された流体が第2分岐流路L15を通って処理容器111内に供給される。また、開閉弁V16を閉じると共に開閉弁V15を開くと、加熱機構HE12で第2温度に加熱された後に加熱機構HE11で第1温度に加熱された流体が第1分岐流路L14を通って処理容器111内に供給される。このように、開閉弁V15と開閉弁V16とを排他的に開閉することにより、処理容器111内に通流させる流体の温度を変更できる。また、開閉弁V15と開閉弁V16の両方を開くと、加熱機構HE11で第1温度に加熱された流体と加熱機構HE12で第2温度に加熱された流体とが混合された処理容器111内に供給される。この場合、第1温度と第2温度との中間温度の流体を処理容器111内に供給できる。このように、開閉弁V15及び開閉弁V16の開閉を制御することにより、処理容器111内に通流させる流体の温度を3段階に変更できる。 In the temperature adjustment unit 122, when the on-off valve V15 is closed and the on-off valve V16 is opened, the fluid heated to the second temperature by the heating mechanism HE12 is supplied into the processing vessel 111 through the second branch flow path L15. When the on-off valve V16 is closed and the on-off valve V15 is opened, the fluid heated to the second temperature by the heating mechanism HE12 and then heated to the first temperature by the heating mechanism HE11 is supplied into the processing vessel 111 through the first branch flow path L14. In this way, the on-off valve V15 and the on-off valve V16 are exclusively opened and closed to change the temperature of the fluid flowing through the processing vessel 111. When both the on-off valve V15 and the on-off valve V16 are opened, the fluid heated to the first temperature by the heating mechanism HE11 and the fluid heated to the second temperature by the heating mechanism HE12 are mixed and supplied into the processing vessel 111. In this case, a fluid at an intermediate temperature between the first temperature and the second temperature can be supplied into the processing vessel 111. In this way, by controlling the opening and closing of on-off valves V15 and V16, the temperature of the fluid flowing through the processing vessel 111 can be changed in three stages.
 バイパス流路L16は、第1分岐流路L14における開閉弁V15とフィルタF11との間の位置と、第2分岐流路L15における開閉弁V16とフィルタF12との間の位置とを連通させる。バイパス流路L16には、オリフィスOR13が設けられる。バイパス流路L16には、ラインヒータLH13が設けられる。バイパス流路L16、オリフィスOR13及びラインヒータLH13は、設けられなくてもよい。 The bypass flow path L16 connects a position between the on-off valve V15 and the filter F11 in the first branch flow path L14 and a position between the on-off valve V16 and the filter F12 in the second branch flow path L15. An orifice OR13 is provided in the bypass flow path L16. A line heater LH13 is provided in the bypass flow path L16. The bypass flow path L16, the orifice OR13, and the line heater LH13 do not necessarily have to be provided.
 オリフィスOR13は、バイパス流路L16を通流する流体の流速を低下させ、圧力を調整する機能を有する。 The orifice OR13 has the function of reducing the flow rate of the fluid passing through the bypass flow path L16 and adjusting the pressure.
 ラインヒータLH13は、バイパス流路L16を加熱する。 The line heater LH13 heats the bypass flow path L16.
 第1排出流路L17は、第1分岐流路L14内の流体を排出する。第1排出流路L17は、加熱機構HE11と開閉弁V15との間において第1分岐流路L14から分岐する。第1排出流路L17には、開閉弁V14が設けられる。第1排出流路L17には、ラインヒータLH14が設けられる。第1排出流路L17には、オリフィスが設けられてもよい。 The first discharge flow path L17 discharges the fluid in the first branch flow path L14. The first discharge flow path L17 branches off from the first branch flow path L14 between the heating mechanism HE11 and the on-off valve V15. The first discharge flow path L17 is provided with an on-off valve V14. The first discharge flow path L17 is provided with a line heater LH14. An orifice may be provided in the first discharge flow path L17.
 開閉弁V14は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V14は、開状態では下流の第1排出流路L17に流体を流し、閉状態では下流の第1排出流路L17に流体を流さない。 The on-off valve V14 is a valve that switches the flow of fluid on and off. When open, the on-off valve V14 allows fluid to flow to the downstream first discharge flow path L17, and when closed, the on-off valve V14 does not allow fluid to flow to the downstream first discharge flow path L17.
 ラインヒータLH14は、第1排出流路L17を加熱する。 The line heater LH14 heats the first exhaust flow path L17.
 排出部13は、排出流路L18を有する。排出流路L18は、処理容器111に接続される。排出流路L18には、圧力センサP11、背圧弁BV11及び開閉弁V17が、上流から順に設けられる。排出流路L18には、ラインヒータLH15が設けられる。排出流路L18の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 The discharge section 13 has a discharge flow path L18. The discharge flow path L18 is connected to the processing vessel 111. A pressure sensor P11, a back pressure valve BV11, and an on-off valve V17 are provided in the discharge flow path L18, in that order from upstream. A line heater LH15 is provided in the discharge flow path L18. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the discharge flow path L18.
 圧力センサP11は、処理容器111の直後で排出流路L18を流れる流体の圧力を検出する。これにより、処理容器111の内部の圧力を検出できる。 The pressure sensor P11 detects the pressure of the fluid flowing through the discharge flow path L18 immediately after the processing vessel 111. This allows the pressure inside the processing vessel 111 to be detected.
 背圧弁BV11は、排出流路L18の一次側圧力が設定圧力を超えた場合には弁開度を調整して二次側に流体を流すことにより、一次側圧力を設定圧力に維持する。例えば、背圧弁BV11の設定圧力は、制御部14により調整される。 When the primary pressure of the exhaust flow path L18 exceeds the set pressure, the back pressure valve BV11 adjusts the valve opening to allow fluid to flow to the secondary side, thereby maintaining the primary pressure at the set pressure. For example, the set pressure of the back pressure valve BV11 is adjusted by the control unit 14.
 開閉弁V17は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V17は、開状態では下流の排出流路L18に流体を流し、閉状態では下流の排出流路L18に流体を流さない。 The on-off valve V17 is a valve that switches the flow of fluid on and off. When open, the on-off valve V17 allows fluid to flow to the downstream discharge flow path L18, and when closed, it does not allow fluid to flow to the downstream discharge flow path L18.
 ラインヒータLH15は、排出流路L18を加熱する。 The line heater LH15 heats the exhaust flow path L18.
 制御部14は、各種のセンサ(温度センサT11、圧力センサP11など)から計測信号を受信し、各種機能要素に制御信号を送信する。制御信号は、例えば開閉弁V11から開閉弁V17の開閉信号、背圧弁BV11の設定圧力信号、ラインヒータLH11からラインヒータLH15の温度信号を含む。例えば、制御部14は、処理容器111内の基板Wの処理状態に応じて、開閉弁V11及び開閉弁V12の開閉を制御することにより、処理容器111内に通流させる流体の流量を変更するように構成される。例えば、制御部14は、処理容器111内の基板Wの処理状態に応じて、開閉弁V15及び開閉弁V16の開閉を制御することにより、処理容器111内に通流させる流体の温度を変更するように構成される。 The control unit 14 receives measurement signals from various sensors (such as temperature sensor T11 and pressure sensor P11) and transmits control signals to various functional elements. The control signals include, for example, opening and closing signals of the on-off valves V11 to V17, a set pressure signal of the back pressure valve BV11, and temperature signals of the line heaters LH11 to LH15. For example, the control unit 14 is configured to change the flow rate of the fluid flowing through the processing vessel 111 by controlling the opening and closing of the on-off valves V11 and V12 in accordance with the processing state of the substrate W in the processing vessel 111. For example, the control unit 14 is configured to change the temperature of the fluid flowing through the processing vessel 111 by controlling the opening and closing of the on-off valves V15 and V16 in accordance with the processing state of the substrate W in the processing vessel 111.
 制御部14は、例えばコンピュータであり、演算部141と記憶部142とを備える。記憶部142には、基板処理装置10において実行される各種の処理を制御するプログラムが格納される。演算部141は、記憶部142に記憶されたプログラムを読み出して実行することによって基板処理装置10の動作を制御する。プログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御部14の記憶部142にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。 The control unit 14 is, for example, a computer, and includes an arithmetic unit 141 and a memory unit 142. The memory unit 142 stores programs that control various processes executed in the substrate processing apparatus 10. The arithmetic unit 141 controls the operation of the substrate processing apparatus 10 by reading and executing the programs stored in the memory unit 142. The programs may be recorded in a computer-readable storage medium and installed from the storage medium into the storage unit 142 of the control unit 14. Examples of computer-readable storage media include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
 (基板処理方法)
 図2から図9を参照し、基板処理装置10を用いて実行される基板処理方法について説明する。以下に示される基板処理方法は、記憶部142に記憶された処理レシピ及び制御プログラムに基づいて、制御部14の制御の下で、自動的に実行される。
(Substrate Processing Method)
2 to 9, a substrate processing method executed by the substrate processing apparatus 10 will be described. The substrate processing method described below is automatically executed under the control of the controller 14 based on a processing recipe and a control program stored in the storage unit 142.
 図2は、第1実施形態に係る基板処理方法を示すタイミングチャートである。図2において、下図は開閉弁V11、V12、V13、V14、V15、V16、V17の開閉タイミングを示し、上図は該開閉タイミングと対応する圧力センサP11の検出値(圧力)の変化を示す。 FIG. 2 is a timing chart showing the substrate processing method according to the first embodiment. In FIG. 2, the lower diagram shows the opening and closing timing of on-off valves V11, V12, V13, V14, V15, V16, and V17, and the upper diagram shows the change in the detection value (pressure) of pressure sensor P11 corresponding to the opening and closing timing.
 図3から図9は、第1実施形態に係る基板処理方法を示す図である。図3から図9において、開状態の開閉弁を黒塗りで示し、閉状態の開閉弁を白抜きで示す。図3から図9において、流体が通流する流路を太い実線で示す。 FIGS. 3 to 9 are diagrams illustrating the substrate processing method according to the first embodiment. In FIG. 3 to FIG. 9, open valves are shown in black, and closed valves are shown in white. In FIG. 3 to FIG. 9, the flow paths through which the fluid flows are shown by thick solid lines.
 <待機工程>
 待機工程では、処理部11、流体供給システム12及び排出部13に不活性ガスが供給される。不活性ガスは、例えばNガスであってよい。具体的には、図3に示されるように、開閉弁V13、V15、V16、V17が開状態とされ、開閉弁V11、V12、V14が閉状態とされる。これにより、不活性ガス供給源S12から第1分岐流路L14に導かれた不活性ガスは、加熱機構HE11で第1温度に加熱されて処理容器111内に供給される。また、不活性ガス供給源S12から第2分岐流路L15に導かれた不活性ガスは、加熱機構HE12で第2温度に加熱されて処理容器111内に供給される。このため、第1分岐流路L14及び第2分岐流路L15が不活性ガスによりパージされると共に加熱されるので、待機工程の後に行われる1枚目の基板Wの処理温度が、2枚目以降の基板Wの処理温度とほぼ同じになる。その結果、基板W間での処理温度のばらつきが抑制される。待機工程では、処理容器111内から排出流路L18を介して不活性ガスが排出される。
<Waiting process>
In the standby step, an inert gas is supplied to the processing section 11, the fluid supply system 12, and the exhaust section 13. The inert gas may be, for example, N2 gas. Specifically, as shown in FIG. 3, the on-off valves V13, V15, V16, and V17 are opened, and the on-off valves V11, V12, and V14 are closed. As a result, the inert gas guided from the inert gas supply source S12 to the first branch flow path L14 is heated to a first temperature by the heating mechanism HE11 and supplied into the processing vessel 111. Also, the inert gas guided from the inert gas supply source S12 to the second branch flow path L15 is heated to a second temperature by the heating mechanism HE12 and supplied into the processing vessel 111. Therefore, the first branch flow path L14 and the second branch flow path L15 are purged and heated by the inert gas, so that the processing temperature of the first substrate W after the standby step becomes almost the same as the processing temperature of the second and subsequent substrates W. As a result, the variation in processing temperature between the substrates W is suppressed. In the standby process, the inert gas is discharged from the processing vessel 111 through the discharge flow path L18.
 待機工程では、処理容器111内に基板Wが搬入される。具体的には、図4に示されるように、開閉弁V16が開状態とされ、開閉弁V11、V12、V13、V14、V15、V17が閉状態とされた後、処理容器111内に基板Wが搬入される。すなわち、処理容器111内に不活性ガスが供給されていない状態で、処理容器111内に基板Wが搬入される。ただし、処理容器111内に不活性ガスが供給されている状態で、処理容器111内に基板Wが搬入されてもよい。基板Wは、洗浄処理が施され、表面のパターンの凹部内がイソプロピルアルコール(IPA)に充填された状態で、保持板112の上に載置される。 In the standby step, the substrate W is loaded into the processing vessel 111. Specifically, as shown in FIG. 4, the on-off valve V16 is opened, and the on-off valves V11, V12, V13, V14, V15, and V17 are closed, and then the substrate W is loaded into the processing vessel 111. That is, the substrate W is loaded into the processing vessel 111 without inert gas being supplied into the processing vessel 111. However, the substrate W may be loaded into the processing vessel 111 while inert gas is being supplied into the processing vessel 111. The substrate W is subjected to a cleaning process, and is placed on the holding plate 112 with the recesses of the pattern on the surface filled with isopropyl alcohol (IPA).
 <第1昇圧工程>
 第1昇圧工程は、待機工程の後に行われる。第1昇圧工程では、まず第1流量かつ第2温度の処理流体の供給による処理容器111内の昇圧が行われ、次いで第2流量かつ第2温度の処理流体の供給による処理容器111内の昇圧が行われる。すなわち、第1昇圧工程では、2段階の昇圧が行われる。第2流量は、第1流量よりも大きい流量であってよい。
<First pressure increase step>
The first pressurization step is performed after the standby step. In the first pressurization step, the pressure in the processing vessel 111 is first increased by supplying a processing fluid at a first flow rate and a second temperature, and then the pressure in the processing vessel 111 is increased by supplying a processing fluid at a second flow rate and a second temperature. That is, in the first pressurization step, the pressure is increased in two stages. The second flow rate may be greater than the first flow rate.
 第1流量での昇圧では、図5に示されるように、開閉弁V11、V16が開状態とされ、開閉弁V12、V13、V14、V15、V17が閉状態とされる。これにより、処理流体供給源S11の処理流体は、第1供給流路L11を経由して温度調整部122に流入し、第2分岐流路L15を経由して処理容器111内に供給される。このため、第1流量かつ第2温度の処理流体が、処理容器111内に供給される。これにより、基板Wの温度は第2温度に変化する。第1流量での昇圧では、開閉弁V17が閉状態であるため、処理容器111内から処理流体は流出しない。このため、処理容器111内の圧力は徐々に上昇する。 When the pressure is increased at the first flow rate, as shown in FIG. 5, the on-off valves V11 and V16 are opened, and the on-off valves V12, V13, V14, V15, and V17 are closed. As a result, the processing fluid from the processing fluid supply source S11 flows into the temperature adjustment section 122 via the first supply flow path L11, and is supplied into the processing vessel 111 via the second branch flow path L15. As a result, the processing fluid at the first flow rate and the second temperature is supplied into the processing vessel 111. As a result, the temperature of the substrate W changes to the second temperature. When the pressure is increased at the first flow rate, the on-off valve V17 is closed, so the processing fluid does not flow out of the processing vessel 111. As a result, the pressure in the processing vessel 111 gradually increases.
 第1流量での昇圧では、オリフィスOR13により流速が低下した処理流体が、第2分岐流路L15からバイパス流路L16を経由して第1分岐流路L14に流入する。これにより、処理容器111の直前の第1分岐流路L14と第2分岐流路L15との合流部から第1分岐流路L14の上流に向かう処理流体の逆流が防止される。このため、IPAの残渣などによるフィルタF11の下流の汚染を抑制できる。 When pressurizing at the first flow rate, the processing fluid, whose flow rate has been reduced by the orifice OR13, flows from the second branch flow path L15 through the bypass flow path L16 into the first branch flow path L14. This prevents the processing fluid from flowing back from the junction of the first branch flow path L14 and the second branch flow path L15 immediately before the processing vessel 111 toward the upstream of the first branch flow path L14. This makes it possible to suppress contamination downstream of the filter F11 due to IPA residue, etc.
 第1流量での昇圧の間、処理容器111内の圧力は圧力センサP11により検出されており、処理容器111内の圧力が第1圧力Y1に達するまで第1流量での昇圧が継続される。処理容器111内の圧力が第1圧力Y1に達すると、第1流量での昇圧を終了し、第2流量での昇圧に移行する。 During the pressurization at the first flow rate, the pressure inside the processing vessel 111 is detected by the pressure sensor P11, and the pressurization at the first flow rate continues until the pressure inside the processing vessel 111 reaches the first pressure Y1. When the pressure inside the processing vessel 111 reaches the first pressure Y1, the pressurization at the first flow rate ends and transitions to the pressurization at the second flow rate.
 第2流量での昇圧では、図6に示されるように、開閉弁V12が開状態とされる。他の開閉弁の状態は、図5に示される状態と同じである。これにより、処理流体供給源S11の処理流体は、第1供給流路L11に加えて第2供給流路L12も経由して温度調整部122に流入し、第2分岐流路L15を経由して処理容器111内に供給される。このため、処理容器111内に供給される処理流体の流量が第2流量に上昇する。第2流量での昇圧では、開閉弁V17が閉状態であるため、処理容器111内から処理流体は流出しない。このため、処理容器111内の圧力は徐々に上昇する。 When the pressure is increased at the second flow rate, as shown in FIG. 6, the on-off valve V12 is opened. The states of the other on-off valves are the same as those shown in FIG. 5. As a result, the processing fluid from the processing fluid supply source S11 flows into the temperature adjustment section 122 via the second supply flow path L12 in addition to the first supply flow path L11, and is supplied into the processing vessel 111 via the second branch flow path L15. As a result, the flow rate of the processing fluid supplied into the processing vessel 111 increases to the second flow rate. When the pressure is increased at the second flow rate, the on-off valve V17 is closed, so the processing fluid does not flow out of the processing vessel 111. As a result, the pressure inside the processing vessel 111 gradually increases.
 第2流量での昇圧では、処理容器111内に供給される処理流体の圧力が臨界圧力よりも低い。このため、処理流体は気体(ガス)の状態で処理容器111内に供給される。その後、処理容器111内への処理流体の充填の進行と共に処理容器111内の圧力は増加してゆき、処理容器111内の圧力が臨界圧力を超えると、処理容器111内に存在する処理流体は超臨界状態となる。 When pressurizing at the second flow rate, the pressure of the processing fluid supplied into the processing vessel 111 is lower than the critical pressure. Therefore, the processing fluid is supplied into the processing vessel 111 in a gaseous state. Thereafter, as the processing vessel 111 is filled with the processing fluid, the pressure inside the processing vessel 111 increases, and when the pressure inside the processing vessel 111 exceeds the critical pressure, the processing fluid present in the processing vessel 111 becomes supercritical.
 第2流量での昇圧では、オリフィスOR13により流速が低下した処理流体が、第1分岐流路L14からバイパス流路L16を経由して第2分岐流路L15に流入する。これにより、処理容器111の直前の第1分岐流路L14と第2分岐流路L15との合流部から第2分岐流路L15の上流に向かう処理流体の逆流が防止される。このため、IPAの残渣などによるフィルタF12の下流の汚染を抑制できる。 When pressurizing at the second flow rate, the processing fluid, whose flow rate has been reduced by the orifice OR13, flows from the first branch flow path L14 through the bypass flow path L16 into the second branch flow path L15. This prevents the processing fluid from flowing back from the junction of the first branch flow path L14 and the second branch flow path L15 immediately before the processing vessel 111 toward the upstream of the second branch flow path L15. This makes it possible to suppress contamination downstream of the filter F12 due to IPA residue, etc.
 第2流量での昇圧の間、処理容器111内の圧力は圧力センサP11により検出されており、処理容器111内の圧力が第2圧力Y2に達するまで第2流量での昇圧が継続される。処理容器111内の圧力が第2圧力Y2に達すると、第1昇圧工程を終了し、第2昇圧工程に移行する。 During the pressurization at the second flow rate, the pressure inside the processing vessel 111 is detected by the pressure sensor P11, and the pressurization at the second flow rate continues until the pressure inside the processing vessel 111 reaches the second pressure Y2. When the pressure inside the processing vessel 111 reaches the second pressure Y2, the first pressurization process ends and the process moves to the second pressurization process.
 <第2昇圧工程>
 第2昇圧工程は、第1昇圧工程の後に行われる。第2昇圧工程では、第2流量かつ第1温度の処理流体の供給による処理容器111内の昇圧が行われる。具体的には、図7に示されるように、開閉弁V11、V12、V15が開状態とされ、開閉弁V13、V14、V16、V17が閉状態とされる。これにより、処理流体供給源S11の処理流体は、第1供給流路L11及び第2供給流路L12を経由して温度調整部122に流入し、第1分岐流路L14を経由して処理容器111内に供給される。このため、第2流量かつ第1温度の処理流体が、処理容器111内に供給される。これにより、基板Wの温度は第1温度に速やかに変化する。
<Second pressure increase step>
The second pressurization step is performed after the first pressurization step. In the second pressurization step, the pressure in the processing vessel 111 is increased by supplying the processing fluid at the second flow rate and the first temperature. Specifically, as shown in FIG. 7, the on-off valves V11, V12, and V15 are opened, and the on-off valves V13, V14, V16, and V17 are closed. As a result, the processing fluid from the processing fluid supply source S11 flows into the temperature adjustment unit 122 via the first supply flow path L11 and the second supply flow path L12, and is supplied into the processing vessel 111 via the first branch flow path L14. Therefore, the processing fluid at the second flow rate and the first temperature is supplied into the processing vessel 111. As a result, the temperature of the substrate W is quickly changed to the first temperature.
 第2昇圧工程では、オリフィスOR13により流速が低下した処理流体が、第1分岐流路L14からバイパス流路L16を経由して第2分岐流路L15に流入する。これにより、処理容器111の直前の第1分岐流路L14と第2分岐流路L15との合流部から第2分岐流路L15の上流に向かう処理流体の逆流が防止される。このため、IPAの残渣などによるフィルタF12の下流の汚染を抑制できる。 In the second pressurization step, the processing fluid, whose flow rate has been reduced by the orifice OR13, flows from the first branch flow path L14 through the bypass flow path L16 into the second branch flow path L15. This prevents the processing fluid from flowing back from the junction of the first branch flow path L14 and the second branch flow path L15 immediately before the processing vessel 111 toward the upstream of the second branch flow path L15. This makes it possible to suppress contamination downstream of the filter F12 due to IPA residue, etc.
 第2昇圧工程の間、処理容器111内の圧力は圧力センサP11により検出されており、処理容器111内の圧力が第3圧力Y3に達するまで第2昇圧工程が継続される。処理容器111内の圧力が第3圧力Y3に達すると、第2昇圧工程を終了し、流通工程に移行する。 During the second pressurization process, the pressure inside the processing vessel 111 is detected by the pressure sensor P11, and the second pressurization process continues until the pressure inside the processing vessel 111 reaches the third pressure Y3. When the pressure inside the processing vessel 111 reaches the third pressure Y3, the second pressurization process ends and the process moves to the circulation process.
 <流通工程>
 流通工程は、第2昇圧工程の後に行われる。流通工程では、処理流体供給源S11から第2流量かつ第1温度の処理流体が処理容器111内に供給され、処理容器111内の基板W上のパターンの凹部内においてIPAから処理流体への置換が行われる。具体的には、図8に示されるように、開閉弁V11、V12、V15、V17が開状態とされ、開閉弁V13、V14、V16が閉状態とされる。これにより、処理流体供給源S11の処理流体は、第1供給流路L11及び第2供給流路L12を経由して温度調整部122に流入し、第1分岐流路L14を経由して処理容器111内に供給される。処理容器111内に供給された処理流体は、排出流路L18を経由して処理容器111内から排出される。流通工程を行うことにより、基板Wのパターンの凹部内においてIPAから処理流体への置換が促進される。
<Distribution process>
The circulation step is performed after the second pressure increase step. In the circulation step, the processing fluid at the second flow rate and the first temperature is supplied from the processing fluid supply source S11 into the processing vessel 111, and the IPA is replaced with the processing fluid in the recess of the pattern on the substrate W in the processing vessel 111. Specifically, as shown in FIG. 8, the on-off valves V11, V12, V15, and V17 are opened, and the on-off valves V13, V14, and V16 are closed. As a result, the processing fluid of the processing fluid supply source S11 flows into the temperature adjustment unit 122 via the first supply flow path L11 and the second supply flow path L12, and is supplied into the processing vessel 111 via the first branch flow path L14. The processing fluid supplied into the processing vessel 111 is discharged from the processing vessel 111 via the discharge flow path L18. By performing the circulation step, the replacement of the IPA with the processing fluid in the recess of the pattern on the substrate W is promoted.
 流通工程では、オリフィスOR13により流速が低下した処理流体が、第1分岐流路L14からバイパス流路L16を経由して第2分岐流路L15に流入する。これにより、処理容器111の直前の第1分岐流路L14と第2分岐流路L15との合流部から第2分岐流路L15の上流に向かう処理流体の逆流が防止される。このため、IPAの残渣などによるフィルタF12の下流の汚染を抑制できる。 In the circulation process, the processing fluid, whose flow rate has been reduced by the orifice OR13, flows from the first branch flow path L14 through the bypass flow path L16 into the second branch flow path L15. This prevents the processing fluid from flowing back from the junction of the first branch flow path L14 and the second branch flow path L15 immediately before the processing vessel 111 toward the upstream of the second branch flow path L15. This makes it possible to suppress contamination downstream of the filter F12 due to IPA residue, etc.
 パターンの凹部内においてIPAから処理流体への置換が完了すると、流通工程を終了し、減圧工程に移行する。 Once the replacement of IPA with processing fluid is complete within the recesses of the pattern, the circulation process ends and the pressure reduction process begins.
 <減圧工程>
 減圧工程は、流通工程の後に行われる。減圧工程では、処理容器111内から処理流体が排出される。具体的には、図9に示されるように、開閉弁V14、V17が開状態とされ、開閉弁V11、V12、V13、V15、V16が閉状態とされる。減圧工程により処理容器111内の圧力が処理流体の臨界圧力よりも低くなると、超臨界状態の処理流体は気化し、パターンの凹部内から離脱する。これにより、1枚の基板Wに対する乾燥処理が終了する。
<Decompression step>
The depressurization process is performed after the circulation process. In the depressurization process, the processing fluid is discharged from the processing vessel 111. Specifically, as shown in Fig. 9, the on-off valves V14 and V17 are opened, and the on-off valves V11, V12, V13, V15, and V16 are closed. When the pressure in the processing vessel 111 becomes lower than the critical pressure of the processing fluid by the depressurization process, the processing fluid in the supercritical state is vaporized and leaves the recesses of the pattern. This completes the drying process for one substrate W.
 減圧工程の後、待機工程に移行する。処理された基板Wの処理容器111内からの搬出は、例えば待機工程に移行した後に行われる。具体的には、減圧工程の後、第1分岐流路L14及び第2分岐流路L15を経由して処理容器111内への不活性ガスの供給が開始される。次いで、処理容器111内に不活性ガスが供給されている状態で、処理容器111内から基板Wが搬出される。処理容器111内から基板Wが搬出された後も、処理容器111内への不活性ガスの供給が継続される。このように、処理容器111内に不活性ガスが供給されている状態で処理容器111内から基板Wが搬出される場合、処理容器111内が陽圧となるため、処理容器111内を開放したときに処理容器111の内部から外部に向けてガス流が形成される。このため、処理容器111内の残渣を処理容器111の外部に排出して除去できる。ただし、処理容器111内から基板Wが搬出される際に、処理容器111内への不活性ガスの供給を停止してもよい。 After the depressurization step, the process proceeds to a standby step. The processed substrate W is removed from the processing vessel 111 after the process proceeds to the standby step, for example. Specifically, after the depressurization step, the supply of inert gas into the processing vessel 111 is started via the first branch flow path L14 and the second branch flow path L15. Next, the substrate W is removed from the processing vessel 111 while the inert gas is being supplied into the processing vessel 111. The supply of inert gas into the processing vessel 111 continues even after the substrate W is removed from the processing vessel 111. In this way, when the substrate W is removed from the processing vessel 111 while the inert gas is being supplied into the processing vessel 111, the inside of the processing vessel 111 becomes positive pressure, so that when the inside of the processing vessel 111 is opened, a gas flow is formed from the inside to the outside of the processing vessel 111. Therefore, the residue in the processing vessel 111 can be discharged to the outside of the processing vessel 111 and removed. However, when the substrate W is removed from the processing vessel 111, the supply of inert gas into the processing vessel 111 may be stopped.
 以上に説明した第1実施形態によれば、流体供給システム12が、処理流体供給部121と、温度調整部122とを有する。処理流体供給部121は、処理流体の流量を調整する流量調整機構(開閉弁V11、V12、オリフィスOR11、OR12)を有する。温度調整部122は、処理容器111内に第1温度の処理流体を通流させる第1分岐流路L14と、処理容器111内に第2温度の処理流体を通流させる第2分岐流路L15とを有する。これにより、処理容器111内に供給される処理流体の流量と温度とを個別に制御でき、制御された流量及び温度の処理流体を処理容器111内に供給できる。その結果、基板処理装置10を用いて実行される基板処理方法におけるプロセスマージンを拡大できる。 According to the first embodiment described above, the fluid supply system 12 has a processing fluid supply unit 121 and a temperature adjustment unit 122. The processing fluid supply unit 121 has a flow rate adjustment mechanism (on-off valves V11, V12, orifices OR11, OR12) that adjusts the flow rate of the processing fluid. The temperature adjustment unit 122 has a first branch flow path L14 that passes a processing fluid at a first temperature through the processing vessel 111, and a second branch flow path L15 that passes a processing fluid at a second temperature through the processing vessel 111. This makes it possible to individually control the flow rate and temperature of the processing fluid supplied into the processing vessel 111, and to supply the processing fluid at a controlled flow rate and temperature into the processing vessel 111. As a result, the process margin in the substrate processing method performed using the substrate processing apparatus 10 can be expanded.
 また、第1実施形態によれば、第1供給流路L11及び第2供給流路L12と第3供給流路L13との合流部よりも下流に温度調整部122(加熱機構HE11、HE12)が設けられる。この場合、不活性ガス供給源S12の不活性ガスは、加熱機構HE11により第1温度に加熱され、第1分岐流路L14を通流する。このため、加熱機構HE11の下流の第1分岐流路L14において、流体の流れ方向に沿った温度均一性が向上する。これに対し、第1分岐流路L14に常温の不活性ガスが通流する場合、ラインヒータLH11により第1分岐流路L14が加熱されても、第1分岐流路L14において、流体の流れ方向に沿った温度分布が生じやすい。 Furthermore, according to the first embodiment, the temperature adjustment unit 122 (heating mechanisms HE11, HE12) is provided downstream of the junction of the first supply flow path L11, the second supply flow path L12, and the third supply flow path L13. In this case, the inert gas of the inert gas supply source S12 is heated to a first temperature by the heating mechanism HE11 and flows through the first branch flow path L14. Therefore, in the first branch flow path L14 downstream of the heating mechanism HE11, the temperature uniformity along the fluid flow direction is improved. In contrast, when inert gas at room temperature flows through the first branch flow path L14, even if the first branch flow path L14 is heated by the line heater LH11, a temperature distribution along the fluid flow direction is likely to occur in the first branch flow path L14.
 また、不活性ガス供給源S12の不活性ガスは、加熱機構HE12により第2温度に加熱され、第2分岐流路L15を通流する。このため、加熱機構HE12の下流の第2分岐流路L15において、流体の流れ方向に沿った温度均一性が向上する。これに対し、第2分岐流路L15に常温の不活性ガスが通流する場合、ラインヒータLH12により第2分岐流路L15が加熱されても、第2分岐流路L15において、流体の流れ方向に沿った温度分布が生じやすい。 In addition, the inert gas from the inert gas supply source S12 is heated to a second temperature by the heating mechanism HE12 and flows through the second branch flow path L15. This improves the temperature uniformity along the fluid flow direction in the second branch flow path L15 downstream of the heating mechanism HE12. In contrast, when inert gas at room temperature flows through the second branch flow path L15, even if the second branch flow path L15 is heated by the line heater LH12, a temperature distribution along the fluid flow direction is likely to occur in the second branch flow path L15.
 また、第1実施形態によれば、大流量かつ加熱された不活性ガスが、第1分岐流路L14及び第2分岐流路L15を経由して処理容器111内に供給されるので、第1分岐流路L14、第2分岐流路L15及び処理容器111内に残留するIPAの乾燥が促進される。 Furthermore, according to the first embodiment, a large flow rate of heated inert gas is supplied into the processing vessel 111 via the first branch flow path L14 and the second branch flow path L15, accelerating the drying of the IPA remaining in the first branch flow path L14, the second branch flow path L15, and the processing vessel 111.
 また、第1実施形態によれば、処理流体供給源S11の処理流体が第1分岐流路L14及び第2分岐流路L15を経由して処理容器111内に供給される前の待機工程において、加熱された不活性ガスが第1分岐流路L14及び第2分岐流路L15を通流する。この場合、不活性ガスにより第1分岐流路L14及び第2分岐流路L15が加熱されるので、待機工程の後に行われる1枚目の基板Wの処理温度が、2枚目以降の基板Wの処理温度とほぼ同じになる。その結果、基板W間での処理温度のばらつきが抑制される。 Furthermore, according to the first embodiment, in the standby step before the processing fluid from the processing fluid supply source S11 is supplied into the processing vessel 111 via the first branch flow path L14 and the second branch flow path L15, heated inert gas flows through the first branch flow path L14 and the second branch flow path L15. In this case, the first branch flow path L14 and the second branch flow path L15 are heated by the inert gas, so that the processing temperature of the first substrate W performed after the standby step becomes substantially the same as the processing temperature of the second and subsequent substrates W. As a result, variation in processing temperature between substrates W is suppressed.
 〔第2実施形態〕
 (基板処理装置)
 図10を参照し、第2実施形態に係る基板処理装置20について説明する。図10は、第2実施形態に係る基板処理装置20を示す図である。
Second Embodiment
(Substrate Processing Apparatus)
A substrate processing apparatus 20 according to a second embodiment will be described with reference to Fig. 10. Fig. 10 is a diagram showing the substrate processing apparatus 20 according to the second embodiment.
 基板処理装置20は、処理部21と、流体供給システム22と、排出部23と、制御部24とを有する。 The substrate processing apparatus 20 has a processing section 21, a fluid supply system 22, a discharge section 23, and a control section 24.
 処理部21は、処理部11と同じであってよい。処理部21は、処理容器211と、保持板212とを有する。 The processing section 21 may be the same as the processing section 11. The processing section 21 has a processing vessel 211 and a holding plate 212.
 流体供給システム22は、処理流体供給部221と、温度調整部222とを有する。 The fluid supply system 22 has a treatment fluid supply section 221 and a temperature adjustment section 222.
 処理流体供給部221は、処理流体供給部121と同じであってよい。処理流体供給部221は、処理流体供給源S21と、第1供給流路L21と、開閉弁V21と、オリフィスOR21と、第2供給流路L22と、開閉弁V22と、オリフィスOR22と、不活性ガス供給源S22と、第3供給流路L23と、開閉弁V23とを有する。 The treatment fluid supply unit 221 may be the same as the treatment fluid supply unit 121. The treatment fluid supply unit 221 has a treatment fluid supply source S21, a first supply flow path L21, an on-off valve V21, an orifice OR21, a second supply flow path L22, an on-off valve V22, an orifice OR22, an inert gas supply source S22, a third supply flow path L23, and an on-off valve V23.
 温度調整部222は、処理流体供給部221と処理容器211とに接続される。温度調整部222は、温度が調整された流体を処理容器211の内部に通流させる。流体は、処理流体と不活性ガスとを含む。温度調整部222は、第1分岐流路L24と、第2分岐流路L25と、バイパス流路L26と、第1排出流路L27と、第2排出流路L28とを有する。 The temperature adjustment unit 222 is connected to the treatment fluid supply unit 221 and the treatment vessel 211. The temperature adjustment unit 222 passes a temperature-adjusted fluid through the inside of the treatment vessel 211. The fluid includes a treatment fluid and an inert gas. The temperature adjustment unit 222 has a first branch flow path L24, a second branch flow path L25, a bypass flow path L26, a first discharge flow path L27, and a second discharge flow path L28.
 第1分岐流路L24には、加熱機構HE21、開閉弁V25、フィルタF21及び温度センサT21が、上流から順に設けられる。第1分岐流路L24における加熱機構HE21の下流には、ラインヒータLH21が設けられる。第1分岐流路L24の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 In the first branch flow path L24, a heating mechanism HE21, an on-off valve V25, a filter F21, and a temperature sensor T21 are provided in this order from upstream. A line heater LH21 is provided downstream of the heating mechanism HE21 in the first branch flow path L24. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the first branch flow path L24.
 第2分岐流路L25には、開閉弁V24、加熱機構HE22、開閉弁V26及びフィルタF22が、上流から順に設けられる。第2分岐流路L25における加熱機構HE22の下流には、ラインヒータLH22が設けられる。第2分岐流路L25の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 In the second branch flow path L25, an on-off valve V24, a heating mechanism HE22, an on-off valve V26, and a filter F22 are provided in this order from upstream. A line heater LH22 is provided downstream of the heating mechanism HE22 in the second branch flow path L25. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the second branch flow path L25.
 第2分岐流路L25は、処理流体供給部221と加熱機構HE21との間において第1分岐流路L24から分岐する。第2分岐流路L25は、処理容器211の直前で第1分岐流路L24と合流する。 The second branch flow path L25 branches off from the first branch flow path L24 between the processing fluid supply unit 221 and the heating mechanism HE21. The second branch flow path L25 merges with the first branch flow path L24 immediately before the processing vessel 211.
 加熱機構HE21は、加熱機構HE22と並列に設けられる。加熱機構HE21は、処理流体供給部221から供給される流体を第1温度に加熱し、第1温度の流体を下流に供給する。第1温度は、例えば100℃以上120℃以下であってよい。 The heating mechanism HE21 is provided in parallel with the heating mechanism HE22. The heating mechanism HE21 heats the fluid supplied from the treatment fluid supply unit 221 to a first temperature and supplies the fluid at the first temperature downstream. The first temperature may be, for example, 100°C or higher and 120°C or lower.
 開閉弁V25は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V25は、開状態では下流の処理容器211に流体を流し、閉状態では下流の処理容器211に流体を流さない。 The on-off valve V25 is a valve that switches the flow of fluid on and off. When open, the on-off valve V25 allows fluid to flow to the downstream processing vessel 211, and when closed, it does not allow fluid to flow to the downstream processing vessel 211.
 フィルタF21は、第1分岐流路L24内を流れる流体を濾過し、流体に含まれる異物を取り除く。これにより、流体を用いた基板Wの乾燥処理の際に、基板Wの表面にパーティクルが発生することを抑制できる。 The filter F21 filters the fluid flowing through the first branch flow path L24 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during the drying process of the substrate W using the fluid.
 温度センサT21は、第1分岐流路L24における第2分岐流路L25との合流部の下流に設けられる。温度センサT21は、例えば処理容器211の直前に設けられる。温度センサT21は、第1分岐流路L24内を流れる流体の温度を検出する。 The temperature sensor T21 is provided downstream of the junction of the first branch flow path L24 with the second branch flow path L25. The temperature sensor T21 is provided, for example, immediately before the processing vessel 211. The temperature sensor T21 detects the temperature of the fluid flowing in the first branch flow path L24.
 ラインヒータLH21は、加熱機構HE21の下流の第1分岐流路L24を加熱する。ラインヒータLH21は、加熱機構HE21により第1温度に加熱された流体が第1分岐流路L24を流れる際に温度低下することを抑制する。 The line heater LH21 heats the first branch flow path L24 downstream of the heating mechanism HE21. The line heater LH21 prevents the temperature of the fluid heated to the first temperature by the heating mechanism HE21 from decreasing as it flows through the first branch flow path L24.
 開閉弁V24は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V24は、開状態では下流の加熱機構HE22に流体を流し、閉状態では下流の加熱機構HE22に流体を流さない。 The on-off valve V24 is a valve that switches the flow of fluid on and off. When open, the on-off valve V24 allows fluid to flow to the downstream heating mechanism HE22, and when closed, it does not allow fluid to flow to the downstream heating mechanism HE22.
 加熱機構HE22は、処理流体供給部221から供給される流体を第2温度に加熱し、第2温度の流体を下流に供給する。第2温度は、第1温度よりも低い温度である。第2温度は、例えば80℃以上90℃以下であってよい。 The heating mechanism HE22 heats the fluid supplied from the treatment fluid supply unit 221 to a second temperature and supplies the fluid at the second temperature downstream. The second temperature is lower than the first temperature. The second temperature may be, for example, 80°C or higher and 90°C or lower.
 開閉弁V26は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V26は、開状態では下流の処理容器211に流体を流し、閉状態では下流の処理容器211に流体を流さない。 The on-off valve V26 is a valve that switches the flow of fluid on and off. When the on-off valve V26 is open, it allows fluid to flow to the downstream processing vessel 211, and when it is closed, it does not allow fluid to flow to the downstream processing vessel 211.
 フィルタF22は、第2分岐流路L25内を流れる流体を濾過し、流体に含まれる異物を取り除く。これにより、流体を用いた基板Wの乾燥処理の際に、基板Wの表面にパーティクルが発生することを抑制できる。 The filter F22 filters the fluid flowing through the second branch flow path L25 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during the drying process of the substrate W using the fluid.
 ラインヒータLH22は、加熱機構HE22の下流の第2分岐流路L25を加熱する。ラインヒータLH22は、加熱機構HE22により第2温度に加熱された流体が第2分岐流路L25を流れる際に温度低下することを抑制する。 The line heater LH22 heats the second branch flow path L25 downstream of the heating mechanism HE22. The line heater LH22 prevents the temperature of the fluid heated to the second temperature by the heating mechanism HE22 from decreasing as it flows through the second branch flow path L25.
 係る温度調整部222において、開閉弁V25を閉じると共に開閉弁V26を開くと、加熱機構HE22で第2温度に加熱された流体が第2分岐流路L25を通って処理容器211内に供給される。また、開閉弁V26を閉じると共に開閉弁V25を開くと、加熱機構HE21で第1温度に加熱された流体が第1分岐流路L24を通って処理容器211内に供給される。このように、開閉弁V25と開閉弁V26とを排他的に開閉することにより、処理容器211内に通流させる流体の温度を変更できる。また、開閉弁V25と開閉弁V26の両方を開くと、加熱機構HE21で第1温度に加熱された流体と加熱機構HE22で第2温度に加熱された流体とが混合された処理容器211内に供給される。この場合、第1温度と第2温度との中間温度の流体を処理容器211内に供給できる。このように、開閉弁V25及び開閉弁V26の開閉を制御することにより、処理容器211内に通流させる流体の温度を3段階に変更できる。 In the temperature adjustment unit 222, when the on-off valve V25 is closed and the on-off valve V26 is opened, the fluid heated to the second temperature by the heating mechanism HE22 is supplied into the processing vessel 211 through the second branch flow path L25. When the on-off valve V26 is closed and the on-off valve V25 is opened, the fluid heated to the first temperature by the heating mechanism HE21 is supplied into the processing vessel 211 through the first branch flow path L24. In this way, the temperature of the fluid flowing through the processing vessel 211 can be changed by exclusively opening and closing the on-off valve V25 and the on-off valve V26. When both the on-off valve V25 and the on-off valve V26 are opened, the fluid heated to the first temperature by the heating mechanism HE21 and the fluid heated to the second temperature by the heating mechanism HE22 are mixed and supplied into the processing vessel 211. In this case, a fluid at an intermediate temperature between the first temperature and the second temperature can be supplied into the processing vessel 211. In this way, by controlling the opening and closing of on-off valves V25 and V26, the temperature of the fluid flowing through the processing vessel 211 can be changed in three stages.
 バイパス流路L26は、第1分岐流路L24における開閉弁V25とフィルタF21との間の位置と、第2分岐流路L25における開閉弁V26とフィルタF22との間の位置とを連通させる。バイパス流路L26には、オリフィスOR23が設けられる。バイパス流路L26には、ラインヒータLH23が設けられる。バイパス流路L26、オリフィスOR23及びラインヒータLH23は、設けられなくてもよい。 The bypass flow path L26 connects a position between the on-off valve V25 and the filter F21 in the first branch flow path L24 and a position between the on-off valve V26 and the filter F22 in the second branch flow path L25. An orifice OR23 is provided in the bypass flow path L26. A line heater LH23 is provided in the bypass flow path L26. The bypass flow path L26, the orifice OR23, and the line heater LH23 do not necessarily have to be provided.
 オリフィスOR23は、バイパス流路L26を通流する流体の流速を低下させ、圧力を調整する機能を有する。 The orifice OR23 has the function of reducing the flow rate of the fluid passing through the bypass flow path L26 and adjusting the pressure.
 ラインヒータLH23は、バイパス流路L26を加熱する。 The line heater LH23 heats the bypass flow path L26.
 第1排出流路L27は、第1分岐流路L24内の流体を排出する。第1排出流路L27は、加熱機構HE21と開閉弁V25との間において第1分岐流路L24から分岐する。第1排出流路L27には、開閉弁V27が設けられる。第1排出流路L27には、ラインヒータLH24が設けられる。第1排出流路L27には、オリフィスが設けられてもよい。 The first discharge flow path L27 discharges the fluid in the first branch flow path L24. The first discharge flow path L27 branches off from the first branch flow path L24 between the heating mechanism HE21 and the on-off valve V25. The first discharge flow path L27 is provided with an on-off valve V27. The first discharge flow path L27 is provided with a line heater LH24. An orifice may be provided in the first discharge flow path L27.
 開閉弁V27は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V27は、開状態では下流の第1排出流路L27に流体を流し、閉状態では下流の第1排出流路L27に流体を流さない。 The on-off valve V27 is a valve that switches the flow of fluid on and off. When open, the on-off valve V27 allows fluid to flow to the downstream first discharge flow path L27, and when closed, it does not allow fluid to flow to the downstream first discharge flow path L27.
 ラインヒータLH24は、第1排出流路L27を加熱する。 The line heater LH24 heats the first exhaust flow path L27.
 第2排出流路L28は、第2分岐流路L25内の流体を排出する。第2排出流路L28は、加熱機構HE22と開閉弁V26との間において第2分岐流路L25から分岐する。第2排出流路L28には、開閉弁V28が設けられる。第2排出流路L28には、ラインヒータLH25が設けられる。第2排出流路L28には、オリフィスが設けられてもよい。 The second discharge flow path L28 discharges the fluid in the second branch flow path L25. The second discharge flow path L28 branches off from the second branch flow path L25 between the heating mechanism HE22 and the on-off valve V26. The second discharge flow path L28 is provided with an on-off valve V28. The second discharge flow path L28 is provided with a line heater LH25. An orifice may be provided in the second discharge flow path L28.
 開閉弁V28は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V28は、開状態では下流の第2排出流路L28に流体を流し、閉状態では下流の第2排出流路L28に流体を流さない。 The on-off valve V28 is a valve that switches the flow of fluid on and off. When open, the on-off valve V28 allows fluid to flow to the downstream second discharge flow path L28, and when closed, the on-off valve V28 does not allow fluid to flow to the downstream second discharge flow path L28.
 ラインヒータLH25は、第2排出流路L28を加熱する。 The line heater LH25 heats the second exhaust flow path L28.
 排出部23は、排出流路L29を有する。排出流路L29は、処理容器211に接続される。排出流路L29には、圧力センサP21、背圧弁BV21及び開閉弁V29が、上流から順に設けられる。排出流路L29には、ラインヒータLH26が設けられる。排出流路L29の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 The discharge section 23 has a discharge flow path L29. The discharge flow path L29 is connected to the processing vessel 211. A pressure sensor P21, a back pressure valve BV21, and an on-off valve V29 are provided in the discharge flow path L29, in that order from upstream. A line heater LH26 is provided in the discharge flow path L29. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the discharge flow path L29.
 圧力センサP21は、処理容器211の直後で排出流路L29を流れる流体の圧力を検出する。これにより、処理容器211の内部の圧力を検出できる。 The pressure sensor P21 detects the pressure of the fluid flowing through the discharge flow path L29 immediately after the processing vessel 211. This allows the pressure inside the processing vessel 211 to be detected.
 背圧弁BV21は、排出流路L29の一次側圧力が設定圧力を超えた場合には弁開度を調整して二次側に流体を流すことにより、一次側圧力を設定圧力に維持する。例えば、背圧弁BV21の設定圧力は、制御部24により調整される。 When the primary pressure of the exhaust flow path L29 exceeds the set pressure, the back pressure valve BV21 adjusts the valve opening to allow fluid to flow to the secondary side, thereby maintaining the primary pressure at the set pressure. For example, the set pressure of the back pressure valve BV21 is adjusted by the control unit 24.
 開閉弁V29は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V29は、開状態では下流の排出流路L29に流体を流し、閉状態では下流の排出流路L29に流体を流さない。 The on-off valve V29 is a valve that switches the flow of fluid on and off. When open, the on-off valve V29 allows fluid to flow to the downstream discharge flow path L29, and when closed, the on-off valve V29 does not allow fluid to flow to the downstream discharge flow path L29.
 ラインヒータLH26は、排出流路L29を加熱する。 The line heater LH26 heats the exhaust flow path L29.
 制御部24は、各種のセンサ(温度センサT21、圧力センサP21など)から計測信号を受信し、各種機能要素に制御信号を送信する。制御信号は、例えば開閉弁V21から開閉弁V29の開閉信号、背圧弁BV21の設定圧力信号、ラインヒータLH21からラインヒータLH26の温度信号を含む。例えば、制御部24は、処理容器211内の基板Wの処理状態に応じて、開閉弁V21及び開閉弁V22の開閉を制御することにより、処理容器211内に通流させる流体の流量を変更するように構成される。例えば、制御部24は、処理容器211内の基板Wの処理状態に応じて、開閉弁V25及び開閉弁V26の開閉を制御することにより、処理容器211内に通流させる流体の温度を変更するように構成される。 The control unit 24 receives measurement signals from various sensors (such as temperature sensor T21 and pressure sensor P21) and transmits control signals to various functional elements. The control signals include, for example, opening and closing signals of the on-off valves V21 to V29, a set pressure signal of the back pressure valve BV21, and a temperature signal of the line heater LH21 to LH26. For example, the control unit 24 is configured to change the flow rate of the fluid flowing through the processing vessel 211 by controlling the opening and closing of the on-off valves V21 and V22 in accordance with the processing state of the substrate W in the processing vessel 211. For example, the control unit 24 is configured to change the temperature of the fluid flowing through the processing vessel 211 by controlling the opening and closing of the on-off valves V25 and V26 in accordance with the processing state of the substrate W in the processing vessel 211.
 制御部24は、例えばコンピュータであり、演算部241と記憶部242とを備える。記憶部242には、基板処理装置20において実行される各種の処理を制御するプログラムが格納される。演算部241は、記憶部242に記憶されたプログラムを読み出して実行することによって基板処理装置20の動作を制御する。プログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御部24の記憶部242にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。 The control unit 24 is, for example, a computer, and includes an arithmetic unit 241 and a memory unit 242. The memory unit 242 stores programs that control various processes executed in the substrate processing apparatus 20. The arithmetic unit 241 controls the operation of the substrate processing apparatus 20 by reading and executing the programs stored in the memory unit 242. The programs may be recorded in a computer-readable storage medium and installed from the storage medium into the storage unit 242 of the control unit 24. Examples of computer-readable storage media include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
 (基板処理方法)
 図11から図18を参照し、基板処理装置20を用いて実行される基板処理方法について説明する。以下に示される基板処理方法は、記憶部242に記憶された処理レシピ及び制御プログラムに基づいて、制御部24の制御の下で、自動的に実行される。
(Substrate Processing Method)
11 to 18, a substrate processing method executed by the substrate processing apparatus 20 will be described. The substrate processing method described below is automatically executed under the control of the controller 24 based on the processing recipe and the control program stored in the storage unit 242.
 図11は、第2実施形態に係る基板処理方法を示すタイミングチャートである。図11において、下図は開閉弁V21、V22、V23、V24、V25、V26、V27、V28、V29の開閉タイミングを示し、上図は該開閉タイミングと対応する圧力センサP21の検出値(圧力)の変化を示す。 FIG. 11 is a timing chart showing the substrate processing method according to the second embodiment. In FIG. 11, the lower diagram shows the opening and closing timing of on-off valves V21, V22, V23, V24, V25, V26, V27, V28, and V29, and the upper diagram shows the change in the detection value (pressure) of pressure sensor P21 corresponding to the opening and closing timing.
 図12から図18は、第2実施形態に係る基板処理方法を示す図である。図12から図18において、開状態の開閉弁を黒塗りで示し、閉状態の開閉弁を白抜きで示す。図12から図18において、流体が通流する流路を太い実線で示す。 FIGS. 12 to 18 are diagrams illustrating a substrate processing method according to the second embodiment. In FIG. 12 to FIG. 18, an open valve is shown filled in black, and a closed valve is shown filled in white. In FIG. 12 to FIG. 18, a flow path through which a fluid flows is shown by a thick solid line.
 <待機工程>
 待機工程では、処理部21、流体供給システム22及び排出部23に不活性ガスが供給される。不活性ガスは、例えばNガスであってよい。具体的には、図12に示されるように、開閉弁V23、V24、V25、V26、V29が開状態とされ、開閉弁V21、V22、V27、V28が閉状態とされる。これにより、不活性ガス供給源S22から第1分岐流路L24に導かれた不活性ガスは、加熱機構HE21で第1温度に加熱されて処理容器211内に供給される。また、不活性ガス供給源S22から第2分岐流路L25に導かれた不活性ガスは、加熱機構HE22で第2温度に加熱されて処理容器211内に供給される。このため、第1分岐流路L24及び第2分岐流路L25が不活性ガスによりパージされると共に加熱されるので、待機工程の後に行われる1枚目の基板Wの処理温度が、2枚目以降の基板Wの処理温度とほぼ同じになる。その結果、基板W間での処理温度のばらつきが抑制される。待機工程では、処理容器211内から排出流路L29を介して不活性ガスが排出される。
<Waiting process>
In the standby step, an inert gas is supplied to the processing section 21, the fluid supply system 22, and the exhaust section 23. The inert gas may be, for example, N2 gas. Specifically, as shown in FIG. 12, the on-off valves V23, V24, V25, V26, and V29 are opened, and the on-off valves V21, V22, V27, and V28 are closed. As a result, the inert gas guided from the inert gas supply source S22 to the first branch flow path L24 is heated to a first temperature by the heating mechanism HE21 and supplied into the processing vessel 211. Also, the inert gas guided from the inert gas supply source S22 to the second branch flow path L25 is heated to a second temperature by the heating mechanism HE22 and supplied into the processing vessel 211. Therefore, the first branch flow path L24 and the second branch flow path L25 are purged and heated by the inert gas, so that the processing temperature of the first substrate W after the standby step becomes substantially the same as the processing temperature of the second and subsequent substrates W. This results in suppressing variation in processing temperature among the substrates W. In the standby step, the inert gas is exhausted from the processing vessel 211 through the exhaust passage L29.
 待機工程では、処理容器211内に基板Wが搬入される。具体的には、図13に示されるように、開閉弁V24、V26が開状態とされ、開閉弁V21、V22、V23、V25、V27、V28、V29が閉状態とされた後、処理容器211内に基板Wが搬入される。すなわち、処理容器211内に不活性ガスが供給されていない状態で、処理容器211内に基板Wが搬入される。ただし、処理容器211内に不活性ガスが供給されている状態で、処理容器211内に基板Wが搬入されてもよい。基板Wは、洗浄処理が施され、表面のパターンの凹部内がIPAに充填された状態で、保持板212の上に載置される。 In the standby step, the substrate W is loaded into the processing vessel 211. Specifically, as shown in FIG. 13, the on-off valves V24 and V26 are opened, and the on-off valves V21, V22, V23, V25, V27, V28, and V29 are closed, and then the substrate W is loaded into the processing vessel 211. That is, the substrate W is loaded into the processing vessel 211 without inert gas being supplied into the processing vessel 211. However, the substrate W may be loaded into the processing vessel 211 while inert gas is being supplied into the processing vessel 211. The substrate W is subjected to a cleaning process, and is placed on the holding plate 212 with the recesses of the pattern on the surface filled with IPA.
 <第1昇圧工程>
 第1昇圧工程は、待機工程の後に行われる。第1昇圧工程では、まず第1流量かつ第2温度の処理流体の供給による処理容器211内の昇圧が行われ、次いで第2流量かつ第2温度の処理流体の供給による処理容器211内の昇圧が行われる。すなわち、第1昇圧工程では、2段階の昇圧が行われる。第2流量は、第1流量よりも大きい流量であってよい。
<First pressure increase step>
The first pressurization step is performed after the standby step. In the first pressurization step, the pressure in the processing vessel 211 is first increased by supplying a processing fluid at a first flow rate and a second temperature, and then the pressure in the processing vessel 211 is increased by supplying a processing fluid at a second flow rate and a second temperature. That is, in the first pressurization step, the pressure is increased in two stages. The second flow rate may be greater than the first flow rate.
 第1流量での昇圧では、図14に示されるように、開閉弁V21、V24、V26が開状態とされ、開閉弁V22、V23、V25、V27、V28、V29が閉状態とされる。これにより、処理流体供給源S21の処理流体は、第1供給流路L21を経由して温度調整部222に流入し、第2分岐流路L25を経由して処理容器211内に供給される。このため、第1流量かつ第2温度の処理流体が、処理容器211内に供給される。これにより、基板Wの温度は第2温度に変化する。第1流量での昇圧では、開閉弁V29が閉状態であるため、処理容器211内から処理流体は流出しない。このため、処理容器211内の圧力は徐々に上昇する。 When the pressure is increased at the first flow rate, as shown in FIG. 14, the on-off valves V21, V24, and V26 are opened, and the on-off valves V22, V23, V25, V27, V28, and V29 are closed. As a result, the processing fluid from the processing fluid supply source S21 flows into the temperature adjustment section 222 via the first supply flow path L21 and is supplied into the processing vessel 211 via the second branch flow path L25. Therefore, the processing fluid at the first flow rate and the second temperature is supplied into the processing vessel 211. As a result, the temperature of the substrate W changes to the second temperature. When the pressure is increased at the first flow rate, the on-off valve V29 is closed, so the processing fluid does not flow out of the processing vessel 211. Therefore, the pressure in the processing vessel 211 gradually increases.
 第1流量での昇圧では、オリフィスOR23により流速が低下した処理流体が、第2分岐流路L25からバイパス流路L26を経由して第1分岐流路L24に流入する。これにより、処理容器211の直前の第1分岐流路L24と第2分岐流路L25との合流部から第1分岐流路L24の上流に向かう処理流体の逆流が防止される。このため、IPAの残渣などによるフィルタF21の下流の汚染を抑制できる。 When pressurizing at the first flow rate, the processing fluid, whose flow rate has been reduced by the orifice OR23, flows from the second branch flow path L25 through the bypass flow path L26 into the first branch flow path L24. This prevents the processing fluid from flowing back from the junction of the first branch flow path L24 and the second branch flow path L25 immediately before the processing vessel 211 toward the upstream of the first branch flow path L24. This makes it possible to suppress contamination downstream of the filter F21 due to IPA residue, etc.
 第1流量での昇圧の間、処理容器211内の圧力は圧力センサP21により検出されており、処理容器211内の圧力が第1圧力Y1に達するまで第1流量での昇圧が継続される。処理容器211内の圧力が第1圧力Y1に達すると、第1流量での昇圧を終了し、第2流量での昇圧に移行する。 During the pressurization at the first flow rate, the pressure inside the processing vessel 211 is detected by the pressure sensor P21, and the pressurization at the first flow rate continues until the pressure inside the processing vessel 211 reaches the first pressure Y1. When the pressure inside the processing vessel 211 reaches the first pressure Y1, the pressurization at the first flow rate ends and transitions to the pressurization at the second flow rate.
 第2流量での昇圧では、図15に示されるように、開閉弁V22が開状態とされる。他の開閉弁の状態は、図14に示される状態と同じである。これにより、処理流体供給源S21の処理流体は、第1供給流路L21に加えて第2供給流路L22も経由して温度調整部222に流入し、第2分岐流路L25を経由して処理容器211内に供給される。このため、処理容器211内に供給される処理流体の流量が第2流量に上昇する。第2流量での昇圧では、開閉弁V29が閉状態であるため、処理容器211内から処理流体は流出しない。このため、処理容器211内の圧力は徐々に上昇する。 When the pressure is increased at the second flow rate, as shown in FIG. 15, the on-off valve V22 is opened. The states of the other on-off valves are the same as those shown in FIG. 14. As a result, the processing fluid from the processing fluid supply source S21 flows into the temperature adjustment section 222 via the second supply flow path L22 in addition to the first supply flow path L21, and is supplied into the processing vessel 211 via the second branch flow path L25. As a result, the flow rate of the processing fluid supplied into the processing vessel 211 increases to the second flow rate. When the pressure is increased at the second flow rate, the on-off valve V29 is closed, so the processing fluid does not flow out of the processing vessel 211. As a result, the pressure inside the processing vessel 211 gradually increases.
 第2流量での昇圧では、処理容器211内に供給される処理流体の圧力が臨界圧力よりも低い。このため、処理流体は気体(ガス)の状態で処理容器211内に供給される。その後、処理容器211内への処理流体の充填の進行と共に処理容器211内の圧力は増加してゆき、処理容器211内の圧力が臨界圧力を超えると、処理容器211内に存在する処理流体は超臨界状態となる。 When pressurizing at the second flow rate, the pressure of the processing fluid supplied into the processing vessel 211 is lower than the critical pressure. Therefore, the processing fluid is supplied into the processing vessel 211 in a gaseous state. Thereafter, as the processing vessel 211 is filled with the processing fluid, the pressure inside the processing vessel 211 increases, and when the pressure inside the processing vessel 211 exceeds the critical pressure, the processing fluid present in the processing vessel 211 becomes supercritical.
 第2流量での昇圧では、オリフィスOR23により流速が低下した処理流体が、第2分岐流路L25からバイパス流路L26を経由して第1分岐流路L24に流入する。これにより、処理容器211の直前の第1分岐流路L24と第2分岐流路L25との合流部から第1分岐流路L24の上流に向かう処理流体の逆流が防止される。このため、IPAの残渣などによるフィルタF21の下流の汚染を抑制できる。 When pressurizing at the second flow rate, the processing fluid, whose flow rate has been reduced by the orifice OR23, flows from the second branch flow path L25 through the bypass flow path L26 into the first branch flow path L24. This prevents the processing fluid from flowing back from the junction of the first branch flow path L24 and the second branch flow path L25 immediately before the processing vessel 211 toward the upstream of the first branch flow path L24. This makes it possible to suppress contamination downstream of the filter F21 due to IPA residue, etc.
 第2流量での昇圧の間、処理容器211内の圧力は圧力センサP21により検出されており、処理容器211内の圧力が第2圧力Y2に達するまで第2流量での昇圧が継続される。処理容器211内の圧力が第2圧力Y2に達すると、第1昇圧工程を終了し、第2昇圧工程に移行する。 During the pressurization at the second flow rate, the pressure inside the processing vessel 211 is detected by the pressure sensor P21, and the pressurization at the second flow rate continues until the pressure inside the processing vessel 211 reaches the second pressure Y2. When the pressure inside the processing vessel 211 reaches the second pressure Y2, the first pressurization process ends and the process moves to the second pressurization process.
 <第2昇圧工程>
 第2昇圧工程は、第1昇圧工程の後に行われる。第2昇圧工程では、第2流量かつ第1温度の処理流体の供給による処理容器211内の昇圧が行われる。具体的には、図16に示されるように、開閉弁V21、V22、V25、V28が開状態とされ、開閉弁V23、V24、V26、V27、V29が閉状態とされる。これにより、処理流体供給源S21の処理流体は、第1供給流路L21及び第2供給流路L22を経由して温度調整部222に流入し、第1分岐流路L24を経由して処理容器211内に供給される。このため、第2流量かつ第1温度の処理流体が、処理容器211内に供給される。これにより、基板Wの温度は第1温度に速やかに変化する。
<Second pressure increase step>
The second pressurization step is performed after the first pressurization step. In the second pressurization step, the pressure in the processing vessel 211 is increased by supplying the processing fluid at the second flow rate and the first temperature. Specifically, as shown in FIG. 16, the on-off valves V21, V22, V25, and V28 are opened, and the on-off valves V23, V24, V26, V27, and V29 are closed. As a result, the processing fluid from the processing fluid supply source S21 flows into the temperature adjustment unit 222 via the first supply flow path L21 and the second supply flow path L22, and is supplied into the processing vessel 211 via the first branch flow path L24. Therefore, the processing fluid at the second flow rate and the first temperature is supplied into the processing vessel 211. As a result, the temperature of the substrate W is quickly changed to the first temperature.
 第2昇圧工程では、オリフィスOR23により流速が低下した処理流体が、第1分岐流路L24からバイパス流路L26を経由して第2分岐流路L25に流入する。これにより、処理容器211の直前の第1分岐流路L24と第2分岐流路L25との合流部から第2分岐流路L25の上流に向かう処理流体の逆流が防止される。このため、IPAの残渣などによるフィルタF22の下流の汚染を抑制できる。 In the second pressurization step, the processing fluid, whose flow rate has been reduced by the orifice OR23, flows from the first branch flow path L24 through the bypass flow path L26 into the second branch flow path L25. This prevents the processing fluid from flowing back from the junction of the first branch flow path L24 and the second branch flow path L25 immediately before the processing vessel 211 toward the upstream of the second branch flow path L25. This makes it possible to suppress contamination downstream of the filter F22 due to IPA residue, etc.
 第2昇圧工程では、第2分岐流路L25内の処理流体が排出され、第2分岐流路L25内が減圧される。第1温度よりも低い第2温度に設定された加熱機構HE22の蓄熱量が小さいので、第2分岐流路L25内が減圧されると、圧力低下により加熱機構HE22の温度が大きく低下し、加熱機構HE22の温度が第2温度に復帰するまでに時間を要する。そこで、第2昇圧工程において第1分岐流路L24に処理流体を通流させている間に、開閉弁V24、V26を閉状態とし、開閉弁V28を開状態とすることにより、第2分岐流路L25内を減圧すると共に、加熱機構HE22の温度を第2温度に復帰させる。このように、第2排出流路L28及び開閉弁V28が設けられるので、処理容器211内における基板Wの処理と並行して、次の基板Wのために加熱機構HE2の準備を実施できる。 In the second pressure increase step, the processing fluid in the second branch flow path L25 is discharged and the pressure in the second branch flow path L25 is reduced. Since the heat storage amount of the heating mechanism HE22 set to the second temperature lower than the first temperature is small, when the pressure in the second branch flow path L25 is reduced, the temperature of the heating mechanism HE22 drops significantly due to the pressure drop, and it takes time for the temperature of the heating mechanism HE22 to return to the second temperature. Therefore, while the processing fluid is flowing through the first branch flow path L24 in the second pressure increase step, the on-off valves V24 and V26 are closed and the on-off valve V28 is opened, thereby reducing the pressure in the second branch flow path L25 and returning the temperature of the heating mechanism HE22 to the second temperature. In this way, since the second exhaust flow path L28 and the on-off valve V28 are provided, the heating mechanism HE2 can be prepared for the next substrate W in parallel with the processing of the substrate W in the processing vessel 211.
 第2昇圧工程の間、処理容器211内の圧力は圧力センサP21により検出されており、処理容器211内の圧力が第3圧力Y3に達するまで第2昇圧工程が継続される。処理容器211内の圧力が第3圧力Y3に達すると、第2昇圧工程を終了し、流通工程に移行する。 During the second pressurization process, the pressure inside the processing vessel 211 is detected by the pressure sensor P21, and the second pressurization process continues until the pressure inside the processing vessel 211 reaches the third pressure Y3. When the pressure inside the processing vessel 211 reaches the third pressure Y3, the second pressurization process ends and the process moves to the circulation process.
 <流通工程>
 流通工程は、第2昇圧工程の後に行われる。流通工程では、処理流体供給源S21から第2流量かつ第1温度の処理流体が処理容器211内に供給され、処理容器211内の基板W上のパターンの凹部内においてIPAから処理流体への置換が行われる。具体的には、図17に示されるように、開閉弁V21、V22、V25、V28、V29が開状態とされ、開閉弁V23、V24、V26、V27が閉状態とされる。これにより、処理流体供給源S21の処理流体は、第1供給流路L21及び第2供給流路L22を経由して温度調整部222に流入し、第1分岐流路L24を経由して処理容器211内に供給される。処理容器211内に供給された処理流体は、排出流路L29を経由して処理容器211内から排出される。流通工程を行うことにより、基板Wのパターンの凹部内においてIPAから処理流体への置換が促進される。
<Distribution process>
The circulation process is performed after the second pressure increase process. In the circulation process, the processing fluid at the second flow rate and the first temperature is supplied from the processing fluid supply source S21 into the processing vessel 211, and the IPA is replaced with the processing fluid in the recess of the pattern on the substrate W in the processing vessel 211. Specifically, as shown in FIG. 17, the on-off valves V21, V22, V25, V28, and V29 are opened, and the on-off valves V23, V24, V26, and V27 are closed. As a result, the processing fluid of the processing fluid supply source S21 flows into the temperature adjustment unit 222 via the first supply flow path L21 and the second supply flow path L22, and is supplied into the processing vessel 211 via the first branch flow path L24. The processing fluid supplied into the processing vessel 211 is discharged from the processing vessel 211 via the discharge flow path L29. By performing the circulation process, the replacement of the IPA with the processing fluid in the recess of the pattern on the substrate W is promoted.
 流通工程では、オリフィスOR23により流速が低下した処理流体が、第1分岐流路L24からバイパス流路L26を経由して第2分岐流路L25に流入する。これにより、処理容器211の直前の第1分岐流路L24と第2分岐流路L25との合流部から第2分岐流路L25の上流に向かう処理流体の逆流が防止される。このため、IPAの残渣などによるフィルタF22の下流の汚染を抑制できる。流通工程においても、第2分岐流路L25内の減圧が継続される。 In the circulation process, the processing fluid, whose flow rate has been reduced by the orifice OR23, flows from the first branch flow path L24 through the bypass flow path L26 into the second branch flow path L25. This prevents the processing fluid from flowing back from the junction of the first branch flow path L24 and the second branch flow path L25 immediately before the processing vessel 211 toward the upstream of the second branch flow path L25. This makes it possible to suppress contamination downstream of the filter F22 due to IPA residue, etc. The pressure reduction in the second branch flow path L25 continues even in the circulation process.
 パターンの凹部内においてIPAから処理流体への置換が完了すると、流通工程を終了し、減圧工程に移行する。 Once the replacement of IPA with processing fluid is complete within the recesses of the pattern, the circulation process ends and the pressure reduction process begins.
 <減圧工程>
 減圧工程は、流通工程の後に行われる。減圧工程では、処理容器211内から処理流体が排出される。具体的には、図18に示されるように、開閉弁V27、V28、V29が開状態とされ、開閉弁V21、V22、V23、V24、V25、V26が閉状態とされる。減圧工程により処理容器211内の圧力が処理流体の臨界圧力よりも低くなると、超臨界状態の処理流体は気化し、パターンの凹部内から離脱する。これにより、1枚の基板Wに対する乾燥処理が終了する。
<Decompression step>
The depressurization process is performed after the circulation process. In the depressurization process, the processing fluid is discharged from the processing vessel 211. Specifically, as shown in Fig. 18, the on-off valves V27, V28, and V29 are opened, and the on-off valves V21, V22, V23, V24, V25, and V26 are closed. When the pressure in the processing vessel 211 becomes lower than the critical pressure of the processing fluid by the depressurization process, the processing fluid in the supercritical state is vaporized and leaves the recesses of the pattern. This completes the drying process for one substrate W.
 減圧工程では、第1分岐流路L24内の処理流体が第1排出流路L27を経由して排出され、第2分岐流路L25内の処理流体が第2排出流路L28を経由して排出される。すなわち、第1分岐流路L24内の処理流体と、第2分岐流路L25内の処理流体とが異なる排出流路から排出される。これにより、第1温度の処理流体と第2温度の処理流体との混合が防止される。 In the depressurization process, the processing fluid in the first branch flow path L24 is discharged via the first discharge flow path L27, and the processing fluid in the second branch flow path L25 is discharged via the second discharge flow path L28. That is, the processing fluid in the first branch flow path L24 and the processing fluid in the second branch flow path L25 are discharged from different discharge flow paths. This prevents mixing of the processing fluid at the first temperature and the processing fluid at the second temperature.
 減圧工程の後、待機工程に移行する。処理された基板Wの処理容器211内からの搬出は、例えば待機工程に移行した後に行われる。具体的には、減圧工程の後、第1分岐流路L24及び第2分岐流路L25を経由して処理容器211内への不活性ガスの供給が開始される。次いで、処理容器211内に不活性ガスが供給されている状態で、処理容器211内から基板Wが搬出される。処理容器211内から基板Wが搬出された後も、処理容器211内への不活性ガスの供給が継続される。このように、処理容器211内に不活性ガスが供給されている状態で処理容器211内から基板Wが搬出される場合、処理容器211内が陽圧となるため、処理容器211内を開放したときに処理容器211の内部から外部に向けてガス流が形成される。このため、処理容器211内の残渣を処理容器211の外部に排出して除去できる。ただし、処理容器211内から基板Wが搬出される際に、処理容器211内への不活性ガスの供給を停止してもよい。 After the depressurization step, the process proceeds to a standby step. The processed substrate W is removed from the processing vessel 211 after the process proceeds to the standby step, for example. Specifically, after the depressurization step, the supply of inert gas into the processing vessel 211 is started via the first branch flow path L24 and the second branch flow path L25. Next, the substrate W is removed from the processing vessel 211 while the inert gas is being supplied into the processing vessel 211. The supply of inert gas into the processing vessel 211 continues even after the substrate W is removed from the processing vessel 211. In this way, when the substrate W is removed from the processing vessel 211 while the inert gas is being supplied into the processing vessel 211, the inside of the processing vessel 211 becomes positive pressure, so that when the inside of the processing vessel 211 is opened, a gas flow is formed from the inside to the outside of the processing vessel 211. Therefore, the residue in the processing vessel 211 can be discharged to the outside of the processing vessel 211 and removed. However, when the substrate W is removed from the processing vessel 211, the supply of inert gas into the processing vessel 211 may be stopped.
 以上に説明した第2実施形態によれば、流体供給システム22が、処理流体供給部221と、温度調整部222とを有する。処理流体供給部221は、処理流体の流量を調整する流量調整機構(開閉弁V21、V22、オリフィスOR21、OR22)を有する。温度調整部222は、処理容器211内に第1温度の処理流体を通流させる第1分岐流路L24と、処理容器211内に第2温度の処理流体を通流させる第2分岐流路L25とを有する。これにより、処理容器211内に供給される処理流体の流量と温度とを個別に制御でき、制御された流量及び温度の処理流体を処理容器211内に供給できる。その結果、基板処理装置10を用いて実行される基板処理方法におけるプロセスマージンを拡大できる。 According to the second embodiment described above, the fluid supply system 22 has a processing fluid supply unit 221 and a temperature adjustment unit 222. The processing fluid supply unit 221 has a flow rate adjustment mechanism (on-off valves V21, V22, orifices OR21, OR22) that adjusts the flow rate of the processing fluid. The temperature adjustment unit 222 has a first branch flow path L24 that passes a processing fluid at a first temperature into the processing vessel 211, and a second branch flow path L25 that passes a processing fluid at a second temperature into the processing vessel 211. This makes it possible to individually control the flow rate and temperature of the processing fluid supplied into the processing vessel 211, and to supply the processing fluid at a controlled flow rate and temperature into the processing vessel 211. As a result, the process margin in the substrate processing method performed using the substrate processing apparatus 10 can be expanded.
 また、第2実施形態によれば、第1供給流路L21及び第2供給流路L22と第3供給流路L23との合流部よりも下流に温度調整部222(加熱機構HE21、HE22)が設けられる。この場合、不活性ガス供給源S22の不活性ガスは、加熱機構HE21により第1温度に加熱され、第1分岐流路L24を通流する。このため、加熱機構HE21の下流の第1分岐流路L24において、流体の流れ方向に沿った温度均一性が向上する。これに対し、第1分岐流路L24に常温の不活性ガスが通流する場合、ラインヒータLH21により第1分岐流路L24が加熱されても、第1分岐流路L24において、流体の流れ方向に沿った温度分布が生じやすい。 Furthermore, according to the second embodiment, the temperature adjustment unit 222 (heating mechanisms HE21, HE22) is provided downstream of the junction of the first supply flow path L21, the second supply flow path L22, and the third supply flow path L23. In this case, the inert gas of the inert gas supply source S22 is heated to a first temperature by the heating mechanism HE21 and flows through the first branch flow path L24. Therefore, in the first branch flow path L24 downstream of the heating mechanism HE21, the temperature uniformity along the fluid flow direction is improved. In contrast, when inert gas at room temperature flows through the first branch flow path L24, even if the first branch flow path L24 is heated by the line heater LH21, a temperature distribution along the fluid flow direction is likely to occur in the first branch flow path L24.
 また、不活性ガス供給源S22の不活性ガスは、加熱機構HE22により第2温度に加熱され、第2分岐流路L25を通流する。このため、加熱機構HE22の下流の第2分岐流路L25において、流体の流れ方向に沿った温度均一性が向上する。これに対し、第2分岐流路L25に常温の不活性ガスが通流する場合、ラインヒータLH22により第2分岐流路L25が加熱されても、第2分岐流路L25において、流体の流れ方向に沿った温度分布が生じやすい。 In addition, the inert gas from the inert gas supply source S22 is heated to a second temperature by the heating mechanism HE22 and flows through the second branch flow path L25. This improves the temperature uniformity along the fluid flow direction in the second branch flow path L25 downstream of the heating mechanism HE22. In contrast, when inert gas at room temperature flows through the second branch flow path L25, even if the second branch flow path L25 is heated by the line heater LH22, a temperature distribution along the fluid flow direction is likely to occur in the second branch flow path L25.
 また、第2実施形態によれば、大流量かつ加熱された不活性ガスが、第1分岐流路L24及び第2分岐流路L25を経由して処理容器211内に供給されるので、第1分岐流路L24、第2分岐流路L25及び処理容器211内に残留するIPAの乾燥が促進される。 Furthermore, according to the second embodiment, a large flow rate of heated inert gas is supplied into the processing vessel 211 via the first branch flow path L24 and the second branch flow path L25, accelerating the drying of the IPA remaining in the first branch flow path L24, the second branch flow path L25, and the processing vessel 211.
 また、第2実施形態によれば、処理流体供給源S21の処理流体が第1分岐流路L24及び第2分岐流路L25を経由して処理容器211内に供給される前の待機工程において、加熱された不活性ガスが第1分岐流路L24及び第2分岐流路L25を通流する。この場合、不活性ガスにより第1分岐流路L24及び第2分岐流路L25が加熱されるので、待機工程の後に行われる1枚目の基板Wの処理温度が、2枚目以降の基板Wの処理温度とほぼ同じになる。その結果、基板W間での処理温度のばらつきが抑制される。 Furthermore, according to the second embodiment, in a standby step before the processing fluid from the processing fluid supply source S21 is supplied into the processing vessel 211 via the first branch flow path L24 and the second branch flow path L25, a heated inert gas flows through the first branch flow path L24 and the second branch flow path L25. In this case, the first branch flow path L24 and the second branch flow path L25 are heated by the inert gas, so that the processing temperature of the first substrate W performed after the standby step becomes substantially the same as the processing temperature of the second and subsequent substrates W. As a result, variation in processing temperature between substrates W is suppressed.
 図19を参照し、第2実施形態の変形例に係る基板処理装置20Aについて説明する。図19は、第2実施形態の変形例に係る基板処理装置20Aを示す図である。 With reference to FIG. 19, a substrate processing apparatus 20A according to a modified example of the second embodiment will be described. FIG. 19 is a diagram showing a substrate processing apparatus 20A according to a modified example of the second embodiment.
 基板処理装置20Aは、加熱機構HE21と加熱機構HE22とがそれぞれ処理流体供給部に接続される点、及びバイパス流路L26がない点で、基板処理装置20と異なる。基板処理装置20Aの他の構成については、基板処理装置20と同様であってよい。以下、基板処理装置20と異なる点を中心に説明する。 Substrate processing apparatus 20A differs from substrate processing apparatus 20 in that heating mechanism HE21 and heating mechanism HE22 are each connected to a processing fluid supply unit, and in that there is no bypass flow path L26. The rest of the configuration of substrate processing apparatus 20A may be the same as that of substrate processing apparatus 20. The following will focus on the differences from substrate processing apparatus 20.
 基板処理装置20Aは、処理部21と、流体供給システム22Aと、排出部23と、制御部24とを有する。 The substrate processing apparatus 20A has a processing section 21, a fluid supply system 22A, a discharge section 23, and a control section 24.
 流体供給システム22Aは、処理流体供給部221Aと、処理流体供給部221Bと、温度調整部222Aとを有する。 The fluid supply system 22A has a treatment fluid supply unit 221A, a treatment fluid supply unit 221B, and a temperature adjustment unit 222A.
 処理流体供給部221Aは、処理流体供給源S21Aと、第1供給流路L21Aと、開閉弁V21Aと、オリフィスOR21Aと、不活性ガス供給源S22Aと、第3供給流路L23Aと、開閉弁V23Aとを有する。処理流体供給源S21A、第1供給流路L21A、開閉弁V21A、オリフィスOR21A、不活性ガス供給源S22A、第3供給流路L23A及び開閉弁V23Aは、それぞれ処理流体供給源S21、第1供給流路L21、開閉弁V21、オリフィスOR21、不活性ガス供給源S22、第3供給流路L23及び開閉弁V23と同じであってよい。 The treatment fluid supply unit 221A has a treatment fluid supply source S21A, a first supply flow path L21A, an on-off valve V21A, an orifice OR21A, an inert gas supply source S22A, a third supply flow path L23A, and an on-off valve V23A. The treatment fluid supply source S21A, the first supply flow path L21A, the on-off valve V21A, the orifice OR21A, the inert gas supply source S22A, the third supply flow path L23A, and the on-off valve V23A may be the same as the treatment fluid supply source S21, the first supply flow path L21, the on-off valve V21, the orifice OR21, the inert gas supply source S22, the third supply flow path L23, and the on-off valve V23, respectively.
 処理流体供給部221Bは、処理流体供給源S21Bと、第1供給流路L21Bと、開閉弁V21Bと、オリフィスOR21Bと、第2供給流路L22Bと、開閉弁V22Bと、オリフィスOR22Bと、不活性ガス供給源S22Bと、第3供給流路L23Bと、開閉弁V23Bとを有する。処理流体供給源S21B、第1供給流路L21B、開閉弁V21B、オリフィスOR21B、第2供給流路L22B、開閉弁V22B、オリフィスOR22B、不活性ガス供給源S22B、第3供給流路L23B及び開閉弁V23Bは、それぞれ処理流体供給源S21、第1供給流路L21、開閉弁V21、オリフィスOR21、第2供給流路L22、開閉弁V22、オリフィスOR22、不活性ガス供給源S22、第3供給流路L23及び開閉弁V23と同じであってよい。 The treatment fluid supply section 221B has a treatment fluid supply source S21B, a first supply flow path L21B, an on-off valve V21B, an orifice OR21B, a second supply flow path L22B, an on-off valve V22B, an orifice OR22B, an inert gas supply source S22B, a third supply flow path L23B, and an on-off valve V23B. The processing fluid supply source S21B, the first supply flow path L21B, the on-off valve V21B, the orifice OR21B, the second supply flow path L22B, the on-off valve V22B, the orifice OR22B, the inert gas supply source S22B, the third supply flow path L23B, and the on-off valve V23B may be the same as the processing fluid supply source S21, the first supply flow path L21, the on-off valve V21, the orifice OR21, the second supply flow path L22, the on-off valve V22, the orifice OR22, the inert gas supply source S22, the third supply flow path L23, and the on-off valve V23, respectively.
 温度調整部222Aは、加熱機構HE21が処理流体供給部221Aに接続され、加熱機構HE22が処理流体供給部221Bに接続される点で、温度調整部222と異なる。 The temperature adjustment unit 222A differs from the temperature adjustment unit 222 in that the heating mechanism HE21 is connected to the treatment fluid supply unit 221A, and the heating mechanism HE22 is connected to the treatment fluid supply unit 221B.
 基板処理装置20Aでは、開閉弁V21A、V23A、V21B、V22B、V23Bの開閉を制御することにより、温度調整部222Aに流体を供給する処理流体供給部221A、221Bが切り換えられる。例えば、開閉弁V21Aを開くと、処理流体供給部221Aから第1分岐流路L24に処理流体が供給される。例えば、開閉弁V23Aを開くと、処理流体供給部221Aから第1分岐流路L24に不活性ガスが供給される。例えば、開閉弁V21B及び開閉弁V22Bの少なくとも一方を開くと、処理流体供給部221Bから第2分岐流路L25に処理流体が供給される。例えば、開閉弁V23Bを開くと、処理流体供給部221Bから第2分岐流路L25に不活性ガスが供給される。基板処理装置20Aでは、例えば実施される工程に応じて温度調整部222Aに流体を供給する処理流体供給部221A、221Bが切り換えられる。 In the substrate processing apparatus 20A, the process fluid supply units 221A and 221B that supply fluid to the temperature adjustment unit 222A are switched by controlling the opening and closing of the on-off valves V21A, V23A, V21B, V22B, and V23B. For example, when the on-off valve V21A is opened, a process fluid is supplied from the process fluid supply unit 221A to the first branch flow path L24. For example, when the on-off valve V23A is opened, an inert gas is supplied from the process fluid supply unit 221A to the first branch flow path L24. For example, when at least one of the on-off valves V21B and V22B is opened, a process fluid is supplied from the process fluid supply unit 221B to the second branch flow path L25. For example, when the on-off valve V23B is opened, an inert gas is supplied from the process fluid supply unit 221B to the second branch flow path L25. In the substrate processing apparatus 20A, the processing fluid supply units 221A and 221B that supply fluid to the temperature adjustment unit 222A are switched depending on the process being performed, for example.
 〔実施例〕
 第1実施形態に係る基板処理方法により、複数の基板に連続して処理を実施した(実施例1)。すなわち、実施例1では、各基板に対して処理を実施する前の待機工程において、不活性ガスによる第1分岐流路L14及び第2分岐流路L15の予備加熱を実施した。実施例1において、各基板に処理を実施している期間における処理圧力及び処理温度を測定した。処理圧力は圧力センサP11の検出値であり、処理温度は温度センサT11の検出値である。
〔Example〕
A plurality of substrates were successively processed by the substrate processing method according to the first embodiment (Example 1). That is, in Example 1, in a waiting step before processing each substrate, preheating of the first branch flow path L14 and the second branch flow path L15 was performed with an inert gas. In Example 1, the processing pressure and processing temperature were measured during the period in which each substrate was processed. The processing pressure was the detection value of the pressure sensor P11, and the processing temperature was the detection value of the temperature sensor T11.
 比較のために、第1実施形態に係る基板処理方法における待機工程において不活性ガスを供給することなく、その他の条件は実施例1と同様に、複数の基板に連続して処理を実施した(比較例1)。すなわち、比較例1では、各基板に対して処理を実施する前の待機工程において、不活性ガスによる第1分岐流路L14及び第2分岐流路L15の予備加熱を実施しなかった。比較例1において、各基板に処理を実施している期間における処理圧力及び処理温度を測定した。処理圧力は圧力センサP11の検出値であり、処理温度は温度センサT11の検出値である。 For comparison, in the waiting step in the substrate processing method according to the first embodiment, no inert gas was supplied during the waiting step, and other conditions were the same as in Example 1, and multiple substrates were processed consecutively (Comparative Example 1). That is, in Comparative Example 1, preheating of the first branch flow path L14 and the second branch flow path L15 with inert gas was not performed during the waiting step before processing each substrate. In Comparative Example 1, the processing pressure and processing temperature were measured during the period when each substrate was being processed. The processing pressure was the detection value of the pressure sensor P11, and the processing temperature was the detection value of the temperature sensor T11.
 図20及び図21は、基板間での処理温度の変化を示す図である。図20は比較例1の測定結果を示し、図21は実施例1の測定結果を示す。図20及び図21において、横軸は時間を示し、左側の縦軸は処理温度を示し、右側の縦軸は処理圧力を示す。図20及び図21において、1枚目の基板の処理中の処理温度を実線で示し、2枚目以降の基板の処理中の処理温度を破線で示し、処理圧力を一点鎖線で示す。 FIGS. 20 and 21 are diagrams showing the change in processing temperature between substrates. FIG. 20 shows the measurement results of Comparative Example 1, and FIG. 21 shows the measurement results of Example 1. In FIG. 20 and FIG. 21, the horizontal axis indicates time, the vertical axis on the left indicates processing temperature, and the vertical axis on the right indicates processing pressure. In FIG. 20 and FIG. 21, the processing temperature during processing of the first substrate is shown by a solid line, the processing temperature during processing of the second and subsequent substrates is shown by a dashed line, and the processing pressure is shown by a dashed line.
 図20に示されるように、比較例1では、2枚目以降の基板の処理中の処理温度が、1枚目の基板の処理中の処理温度よりも高く、基板間での処理温度にばらつきが生じていることが分かる。これは、不活性ガスによる予備加熱を実施しなかった場合、処理を重ねるごとに第1分岐流路L14及び第2分岐流路L15においてラインヒータLH11、LH12から処理流体を介して下流に熱が伝わるためと考えられる。 As shown in Figure 20, in Comparative Example 1, the processing temperature during processing of the second and subsequent substrates is higher than the processing temperature during processing of the first substrate, and it can be seen that there is variation in the processing temperature between substrates. This is thought to be because, when preheating with an inert gas is not performed, heat is transferred downstream from the line heaters LH11, LH12 through the processing fluid in the first branch flow path L14 and the second branch flow path L15 with each processing run.
 図21に示されるように、実施例1では、1枚目の基板の処理中の処理温度が、2枚目以降の基板の処理中の処理温度とほぼ同じであることが分かる。これは、不活性ガスによる予備加熱を実施した場合、第1分岐流路L14及び第2分岐流路L15の温度が1枚目の基板の処理前と2枚目以降の基板の処理前とでほぼ同じになるためと考えられる。 As shown in FIG. 21, in Example 1, the processing temperature during processing of the first substrate is approximately the same as the processing temperature during processing of the second and subsequent substrates. This is believed to be because, when preheating with an inert gas is performed, the temperatures of the first branch flow path L14 and the second branch flow path L15 become approximately the same before processing the first substrate and before processing the second and subsequent substrates.
 以上から、第1分岐流路L14及び第2分岐流路L15に対して不活性ガスによる予備加熱を行うことにより、1枚目の基板の処理中の処理温度が2枚目以降の基板の処理中の処理温度とほぼ同じになり、基板間での処理温度のばらつきが抑制されることが示された。 From the above, it has been shown that by preheating the first branch flow path L14 and the second branch flow path L15 with an inert gas, the processing temperature during processing of the first substrate becomes approximately the same as the processing temperature during processing of the second and subsequent substrates, thereby suppressing the variation in processing temperature between substrates.
 なお、上記の実施形態において、開閉弁V11、V21は第1供給弁の一例であり、開閉弁V13、V23は第2供給弁の一例であり、開閉弁V17、V29は排出弁の一例である。加熱機構HE11、HE12、HE21、HE22は加熱機構の一例である。第1分岐流路L14、L24及び第2分岐流路L15、L25は流体供給路の一例である。処理流体供給源S11、S21、第1供給流路L11、L21、開閉弁V11、V21、オリフィスOR11、OR21、第2供給流路L12、L22、開閉弁V12、V22及びオリフィスOR12、OR22は、第1流体供給部の一例である。不活性ガス供給源S12、S22、第3供給流路L13、L23及び開閉弁V13、V23は、第2流体供給部の一例である。処理流体は第1流体の一例であり、不活性ガスは第2流体の一例である。 In the above embodiment, the on-off valves V11 and V21 are an example of a first supply valve, the on-off valves V13 and V23 are an example of a second supply valve, and the on-off valves V17 and V29 are an example of a discharge valve. The heating mechanisms HE11, HE12, HE21, and HE22 are an example of a heating mechanism. The first branch flow paths L14 and L24 and the second branch flow paths L15 and L25 are an example of a fluid supply path. The processing fluid supply sources S11 and S21, the first supply flow paths L11 and L21, the on-off valves V11 and V21, the orifices OR11 and OR21, the second supply flow paths L12 and L22, the on-off valves V12 and V22, and the orifices OR12 and OR22 are an example of a first fluid supply unit. The inert gas supply sources S12 and S22, the third supply flow paths L13 and L23, and the on-off valves V13 and V23 are an example of a second fluid supply unit. The process fluid is an example of a first fluid, and the inert gas is an example of a second fluid.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed herein should be considered in all respects as illustrative and not restrictive. The above-described embodiments may be omitted, substituted, or modified in various ways without departing from the scope and spirit of the appended claims.
 本国際出願は、2022年10月20日に出願した日本国特許出願第2022-168323号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。 This international application claims priority to Japanese Patent Application No. 2022-168323, filed on October 20, 2022, the entire contents of which are incorporated herein by reference.
 10、20     基板処理装置
 11、21     処理部
 111、211   処理容器
 12、22     流体供給システム
 121、221   処理流体供給部
 122、222   温度調整部
 14、24     制御部
 HE11、HE21 加熱機構
 HE12、HE22 加熱機構
 L11、L21   第1供給流路
 L12、L22   第2供給流路
 L14、L24   第1分岐流路
 L15、L25   第2分岐流路
 V11、V21   開閉弁
 V12、V22   開閉弁
REFERENCE SIGNS LIST 10, 20 Substrate processing apparatus 11, 21 Processing section 111, 211 Processing vessel 12, 22 Fluid supply system 121, 221 Processing fluid supply section 122, 222 Temperature adjustment section 14, 24 Control section HE11, HE21 Heating mechanism HE12, HE22 Heating mechanism L11, L21 First supply flow path L12, L22 Second supply flow path L14, L24 First branch flow path L15, L25 Second branch flow path V11, V21 Opening/closing valve V12, V22 Opening/closing valve

Claims (10)

  1.  内部で基板が処理される処理容器内に流体を供給する流体供給システムであって、
     第1供給弁を有し、第1流体を供給する第1流体供給部と、
     第2供給弁を有し、第2流体を供給する第2流体供給部と、
     前記第1流体供給部と前記第2流体供給部と前記処理容器とに接続され、前記第1流体及び前記第2流体を前記処理容器内に供給する流体供給路と、
     前記第1流体供給部と前記第2流体供給部とが接続される位置よりも下流の前記流体供給路に設けられ、前記第1流体及び前記第2流体を加熱する加熱機構と、
     当該流体供給システムの各部を制御する制御部と、
     を有し、
     前記制御部は、
     前記処理容器内に前記第1流体が供給されていないときに、前記第2供給弁を開いて前記処理容器内に前記加熱機構で加熱された前記第2流体を供給する工程と、
     前記基板が前記処理容器内に搬入される前に前記第2供給弁を閉じて前記処理容器内への前記第2流体の供給を停止する工程と、
     を実行し、
     前記第2流体を供給する工程は、前記加熱機構の設定温度を、前記処理容器内に前記第1流体が供給されるときの前記加熱機構の設定温度と同じ温度に設定することを含む、
     流体供給システム。
    1. A fluid delivery system for delivering a fluid into a process vessel in which a substrate is processed, comprising:
    a first fluid supply unit having a first supply valve and supplying a first fluid;
    a second fluid supply unit having a second supply valve and supplying a second fluid;
    a fluid supply line connected to the first fluid supply unit, the second fluid supply unit, and the processing vessel, and configured to supply the first fluid and the second fluid into the processing vessel;
    a heating mechanism that is provided in the fluid supply path downstream of a position where the first fluid supply unit and the second fluid supply unit are connected, and that heats the first fluid and the second fluid;
    A control unit that controls each unit of the fluid supply system;
    having
    The control unit is
    When the first fluid is not being supplied into the processing vessel, the second supply valve is opened to supply the second fluid heated by the heating mechanism into the processing vessel;
    closing the second supply valve to stop the supply of the second fluid into the processing vessel before the substrate is loaded into the processing vessel;
    Run
    The step of supplying the second fluid includes setting a set temperature of the heating mechanism to the same temperature as a set temperature of the heating mechanism when the first fluid is supplied into the processing vessel.
    Fluid supply system.
  2.  前記制御部は、
     前記処理容器内に前記基板がある状態で、前記第1供給弁を開いて前記処理容器内に第1温度に加熱された前記第1流体を供給する工程と、
     前記第1流体を供給する工程の後に、前記第1供給弁を閉じて前記処理容器内への前記第1流体の供給を停止すると共に、前記第2供給弁を開いて前記処理容器内に前記第1温度に加熱された前記第2流体を供給する工程と、
     を実行する、
     請求項1に記載の流体供給システム。
    The control unit is
    while the substrate is present in the processing vessel, opening the first supply valve to supply the first fluid heated to a first temperature into the processing vessel;
    after the step of supplying the first fluid, closing the first supply valve to stop the supply of the first fluid into the processing vessel, and opening the second supply valve to supply the second fluid heated to the first temperature into the processing vessel;
    Execute
    The fluid delivery system of claim 1 .
  3.  前記制御部は、
     前記処理容器内に前記基板がある状態で、前記第1供給弁を開いて前記処理容器内に第1温度に加熱された前記第1流体を供給する工程と、
     前記第1流体を供給する工程の後に、前記第1供給弁を閉じて前記処理容器内への前記第1流体の供給を停止する工程と、
     前記第1流体の供給を停止する工程の後に、前記処理容器内から前記基板を搬出する工程と、
     前記基板を搬出する工程の後に、前記第2供給弁を開いて前記処理容器内に前記第1温度に加熱された前記第2流体を供給する工程と、
     を実行する、
     請求項1に記載の流体供給システム。
    The control unit is
    while the substrate is present in the processing vessel, opening the first supply valve to supply the first fluid heated to a first temperature into the processing vessel;
    after the step of supplying the first fluid, closing the first supply valve to stop the supply of the first fluid into the processing vessel;
    after stopping the supply of the first fluid, removing the substrate from the processing chamber;
    after the step of unloading the substrate, opening the second supply valve to supply the second fluid heated to the first temperature into the processing vessel;
    Execute
    The fluid delivery system of claim 1 .
  4.  請求項1から請求項3のいずれか1項に記載の流体供給システムと、
     排出弁を有し、前記処理容器内に供給される前記第1流体及び前記第2流体を排出する排出部と、
     を有する、
     基板処理装置。
    A fluid supply system according to any one of claims 1 to 3;
    a discharge unit having a discharge valve and configured to discharge the first fluid and the second fluid supplied into the processing vessel;
    having
    Substrate processing equipment.
  5.  前記制御部は、
     前記排出弁を開いた状態で前記第2供給弁を開く工程と、
     前記排出弁を閉じた状態で前記第1供給弁を開く工程と、
     を実行する、
     請求項4に記載の基板処理装置。
    The control unit is
    opening the second supply valve while the exhaust valve is open;
    opening the first supply valve while closing the exhaust valve;
    Execute
    The substrate processing apparatus according to claim 4 .
  6.  内部で基板が処理される処理容器内に流体を供給する流体供給システムを用いた基板処理方法であって、
     前記流体供給システムは、
     第1供給弁を有し、第1流体を供給する第1流体供給部と、
     第2供給弁を有し、第2流体を供給する第2流体供給部と、
     前記第1流体供給部と前記第2流体供給部と前記処理容器とに接続され、前記第1流体及び前記第2流体を前記処理容器内に供給する流体供給路と、
     前記第1流体供給部と前記第2流体供給部とが接続される位置よりも下流の前記流体供給路に設けられ、前記第1流体及び前記第2流体を加熱する加熱機構と、
     を有し、
     前記処理容器内に前記第1流体が供給されていないときに、前記第2供給弁を開いて前記処理容器内に前記加熱機構で加熱された前記第2流体を供給する工程と、
     前記基板が前記処理容器内に搬入される前に前記第2供給弁を閉じて前記処理容器内への前記第2流体の供給を停止する工程と、
     を有し、
     前記第2流体を供給する工程は、前記加熱機構の設定温度を、前記処理容器内に前記第1流体が供給されるときの前記加熱機構の設定温度と同じ温度に設定することを含む、
     基板処理方法。
    1. A method for processing a substrate using a fluid supply system for supplying a fluid into a processing vessel in which a substrate is processed, comprising:
    The fluid supply system comprises:
    a first fluid supply unit having a first supply valve and supplying a first fluid;
    a second fluid supply unit having a second supply valve and supplying a second fluid;
    a fluid supply line connected to the first fluid supply unit, the second fluid supply unit, and the processing vessel, and configured to supply the first fluid and the second fluid into the processing vessel;
    a heating mechanism that is provided in the fluid supply path downstream of a position where the first fluid supply unit and the second fluid supply unit are connected, and that heats the first fluid and the second fluid;
    having
    When the first fluid is not being supplied into the processing vessel, the second supply valve is opened to supply the second fluid heated by the heating mechanism into the processing vessel;
    closing the second supply valve to stop the supply of the second fluid into the processing vessel before the substrate is loaded into the processing vessel;
    having
    The step of supplying the second fluid includes setting a set temperature of the heating mechanism to the same temperature as a set temperature of the heating mechanism when the first fluid is supplied into the processing vessel.
    A method for processing a substrate.
  7.  前記処理容器内に前記基板がある状態で、前記第1供給弁を開いて前記処理容器内に第1温度に加熱された前記第1流体を供給する工程と、
     前記第1流体を供給する工程の後に、前記第1供給弁を閉じて前記処理容器内への前記第1流体の供給を停止すると共に、前記第2供給弁を開いて前記処理容器内に前記第1温度に加熱された前記第2流体を供給する工程と、
     を有する、
     請求項6に記載の基板処理方法。
    while the substrate is present in the processing vessel, opening the first supply valve to supply the first fluid heated to a first temperature into the processing vessel;
    after the step of supplying the first fluid, closing the first supply valve to stop the supply of the first fluid into the processing vessel, and opening the second supply valve to supply the second fluid heated to the first temperature into the processing vessel;
    having
    The substrate processing method according to claim 6 .
  8.  前記処理容器内に前記基板がある状態で、前記第1供給弁を開いて前記処理容器内に第1温度に加熱された前記第1流体を供給する工程と、
     前記第1流体を供給する工程の後に、前記第1供給弁を閉じて前記処理容器内への前記第1流体の供給を停止する工程と、
     前記第1流体の供給を停止する工程の後に、前記処理容器内から前記基板を搬出する工程と、
     前記基板を搬出する工程の後に、前記第2供給弁を開いて前記処理容器内に前記第1温度に加熱された前記第2流体を供給する工程と、
     を有する、
     請求項6に記載の基板処理方法。
    while the substrate is present in the processing vessel, opening the first supply valve to supply the first fluid heated to a first temperature into the processing vessel;
    after the step of supplying the first fluid, closing the first supply valve to stop the supply of the first fluid into the processing vessel;
    after stopping the supply of the first fluid, removing the substrate from the processing chamber;
    after the step of unloading the substrate, opening the second supply valve to supply the second fluid heated to the first temperature into the processing vessel;
    having
    The substrate processing method according to claim 6 .
  9.  排出弁を有し、前記処理容器内に供給される前記第1流体及び前記第2流体を排出する排出部を有し、
     前記排出弁を開いた状態で前記第2供給弁を開く工程と、
     前記排出弁を閉じた状態で前記第1供給弁を開く工程と、
     を有する、
     請求項8に記載の基板処理方法。
    a discharge part having a discharge valve and discharging the first fluid and the second fluid supplied into the processing vessel;
    opening the second supply valve while the exhaust valve is open;
    opening the first supply valve while closing the exhaust valve;
    having
    The substrate processing method according to claim 8 .
  10.  前記第1流体は、前記基板に処理を行うための処理流体であり、
     前記第2流体は、不活性ガスである、
     請求項6から請求項9のいずれか1項に記載の基板処理方法。
    the first fluid is a processing fluid for performing processing on the substrate,
    The second fluid is an inert gas.
    The substrate processing method according to any one of claims 6 to 9.
PCT/JP2023/036501 2022-10-20 2023-10-06 Fluid supply system, substrate processing apparatus and substrate processing method WO2024085000A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022168323 2022-10-20
JP2022-168323 2022-10-20

Publications (1)

Publication Number Publication Date
WO2024085000A1 true WO2024085000A1 (en) 2024-04-25

Family

ID=90737415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036501 WO2024085000A1 (en) 2022-10-20 2023-10-06 Fluid supply system, substrate processing apparatus and substrate processing method

Country Status (1)

Country Link
WO (1) WO2024085000A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038328A (en) * 2007-08-06 2009-02-19 Ryusyo Industrial Co Ltd Supercritical fluid cleaning apparatus
JP2011187570A (en) * 2010-03-05 2011-09-22 Tokyo Electron Ltd Supercritical processing device and supercritical processing method
WO2012165377A1 (en) * 2011-05-30 2012-12-06 東京エレクトロン株式会社 Method for treating substrate, device for treating substrate and storage medium
JP2017059642A (en) * 2015-09-15 2017-03-23 東京エレクトロン株式会社 Substrate processing method, substrate processing device and storage medium
JP2020025013A (en) * 2018-08-07 2020-02-13 東京エレクトロン株式会社 Particle removal method for substrate processing apparatus and substrate processing apparatus
JP2021503714A (en) * 2017-11-17 2021-02-12 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Capacitor system for high pressure processing system
WO2022196384A1 (en) * 2021-03-18 2022-09-22 東京エレクトロン株式会社 Substrate treatment method and substrate treatment device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038328A (en) * 2007-08-06 2009-02-19 Ryusyo Industrial Co Ltd Supercritical fluid cleaning apparatus
JP2011187570A (en) * 2010-03-05 2011-09-22 Tokyo Electron Ltd Supercritical processing device and supercritical processing method
WO2012165377A1 (en) * 2011-05-30 2012-12-06 東京エレクトロン株式会社 Method for treating substrate, device for treating substrate and storage medium
JP2017059642A (en) * 2015-09-15 2017-03-23 東京エレクトロン株式会社 Substrate processing method, substrate processing device and storage medium
JP2021503714A (en) * 2017-11-17 2021-02-12 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Capacitor system for high pressure processing system
JP2020025013A (en) * 2018-08-07 2020-02-13 東京エレクトロン株式会社 Particle removal method for substrate processing apparatus and substrate processing apparatus
WO2022196384A1 (en) * 2021-03-18 2022-09-22 東京エレクトロン株式会社 Substrate treatment method and substrate treatment device

Similar Documents

Publication Publication Date Title
JP5714449B2 (en) Liquid processing apparatus, liquid processing method, and storage medium
KR101920941B1 (en) Substrate processing apparatus, substrate processing method, fluid supplying method and storage medium
CN108074840B (en) Substrate processing apparatus, substrate processing method, and storage medium
KR101401693B1 (en) Liquid processing apparatus, liquid processing method and recording medium
KR20230159354A (en) Substrate processing apparatus, substrate processing method, and storage medium
KR20180050236A (en) Substrate processing apparatus, substrate processing method, and recording medium
US11735439B2 (en) Substrate processing system and method for supplying processing fluid
US20230264233A1 (en) Liquid processing apparatus and liquid processing method
US11798819B2 (en) Liquid processing apparatus and liquid processing method
JP2014022520A (en) Wafer treatment device, fluid supply method and storage medium
KR20200016805A (en) Method of removing particles of substrate processing apparatus, and substrate processing apparatus
WO2024085000A1 (en) Fluid supply system, substrate processing apparatus and substrate processing method
JP5383979B2 (en) Processing system
WO2024084757A1 (en) Fluid supply system, substrate processing apparatus, and substrate processing method
US20220208566A1 (en) Substrate drying method and substrate drying apparatus
US10816141B2 (en) Chemical solution feeder, substrate treatment apparatus, method for feeding chemical solution, and method for treating substrate
JPH04330961A (en) Development processing equipment
JP6695735B2 (en) Liquid processing apparatus, control method thereof, and storage medium
US20180264504A1 (en) Substrate processing apparatus and substrate processing method
KR101058818B1 (en) Processing apparatus and processing method and recording medium
US20240096650A1 (en) Substrate processing apparatus and substrate processing method
JP7460983B2 (en) Processing liquid supply system and processing liquid supply method
JP2022069237A (en) Substrate processing apparatus and substrate processing method
WO2024084987A1 (en) Substrate processing apparatus and substrate processing method
JP2022021247A (en) Wafer treatment apparatus, fluid supply device, and fluid supply method