WO2024084757A1 - Fluid supply system, substrate processing apparatus, and substrate processing method - Google Patents

Fluid supply system, substrate processing apparatus, and substrate processing method Download PDF

Info

Publication number
WO2024084757A1
WO2024084757A1 PCT/JP2023/026064 JP2023026064W WO2024084757A1 WO 2024084757 A1 WO2024084757 A1 WO 2024084757A1 JP 2023026064 W JP2023026064 W JP 2023026064W WO 2024084757 A1 WO2024084757 A1 WO 2024084757A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
flow path
processing
valve
temperature
Prior art date
Application number
PCT/JP2023/026064
Other languages
French (fr)
Japanese (ja)
Inventor
貴大 林田
翔太 梅▲崎▼
幹雄 中島
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2024084757A1 publication Critical patent/WO2024084757A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present disclosure relates to a fluid supply system, a substrate processing apparatus, and a substrate processing method.
  • Patent Document 1 discloses a configuration for switching the temperature of the supercritical fluid supplied to the substrate.
  • the present disclosure provides technology that can provide a process fluid at a controlled flow rate and temperature.
  • a fluid supply system is a fluid supply system that supplies a fluid into a processing vessel in which a substrate is processed, and includes a processing fluid supply unit that supplies a processing fluid, a fluid supply path that is connected to the processing fluid supply unit and the processing vessel and that flows a temperature-adjusted processing fluid into the processing vessel, a first heating mechanism that is provided in the fluid supply path and that heats the processing fluid to a first temperature, and a second heating mechanism that is provided in the fluid supply path and that heats the processing fluid to a second temperature that is lower than the first temperature, the processing fluid supply unit has a flow rate adjustment mechanism that adjusts the flow rate of the processing fluid, and the fluid supply path has a first branch flow path that flows the processing fluid into the processing vessel through the first heating mechanism, and a second branch flow path that flows the processing fluid into the processing vessel through the second heating mechanism.
  • the present disclosure allows for the supply of treatment fluid at a controlled flow rate and temperature.
  • FIG. 1 is a diagram showing a substrate processing apparatus according to a first embodiment.
  • FIG. 2 is a timing chart showing the substrate processing method according to the first embodiment.
  • FIG. 3 is a diagram (1) showing the substrate processing method according to the first embodiment.
  • FIG. 4 is a diagram (2) showing the substrate processing method according to the first embodiment.
  • FIG. 5 is a view (3) showing the substrate processing method according to the first embodiment.
  • FIG. 6 is a diagram (4) showing the substrate processing method according to the first embodiment.
  • FIG. 7 is a diagram (5) showing the substrate processing method according to the first embodiment.
  • FIG. 8 is a diagram (6) showing the substrate processing method according to the first embodiment.
  • FIG. 9 is a diagram (7) showing the substrate processing method according to the first embodiment.
  • FIG. 1 is a diagram showing a substrate processing apparatus according to a first embodiment.
  • FIG. 2 is a timing chart showing the substrate processing method according to the first embodiment.
  • FIG. 3 is a diagram (1) showing the substrate processing method according to the first
  • FIG. 10 is a diagram showing a substrate processing apparatus according to the second embodiment.
  • FIG. 11 is a timing chart showing the substrate processing method according to the second embodiment.
  • FIG. 12 is a diagram (1) showing a substrate processing method according to the second embodiment.
  • FIG. 13 is a diagram showing a substrate processing method according to the second embodiment.
  • FIG. 14 is a view (3) showing the substrate processing method according to the second embodiment.
  • FIG. 15 is a diagram (4) showing the substrate processing method according to the second embodiment.
  • FIG. 16 is a diagram (5) showing the substrate processing method according to the second embodiment.
  • FIG. 17 is a diagram (6) showing the substrate processing method according to the second embodiment.
  • FIG. 18 is a diagram (7) showing the substrate processing method according to the second embodiment.
  • FIG. 12 is a diagram (1) showing a substrate processing method according to the second embodiment.
  • FIG. 13 is a diagram showing a substrate processing method according to the second embodiment.
  • FIG. 14 is a view (3) showing the substrate processing method according to the second
  • FIG. 19 is a diagram showing a substrate processing apparatus according to a first modified example of the second embodiment.
  • FIG. 20 is a diagram showing a substrate processing apparatus according to a second modified example of the second embodiment.
  • FIG. 21 is a diagram showing a substrate processing apparatus according to the third embodiment.
  • FIG. 22 is a view showing a substrate processing apparatus according to the fourth embodiment.
  • FIG. 23 is a view showing a substrate processing apparatus according to the fifth embodiment.
  • FIG. 24 is a diagram showing a substrate processing apparatus according to the sixth embodiment.
  • FIG. 1 is a diagram showing the substrate processing apparatus 10 according to the first embodiment.
  • the substrate processing apparatus 10 has a processing section 11, a fluid supply system 12, a discharge section 13, and a control section 14.
  • the processing section 11 has a processing vessel 111 and a holding plate 112.
  • the processing vessel 111 is a vessel in which a processing space capable of accommodating a substrate W having a diameter of, for example, 300 mm is formed.
  • the substrate W may be, for example, a semiconductor wafer.
  • the holding plate 112 is provided inside the processing vessel 111.
  • the holding plate 112 holds the substrate W horizontally.
  • the processing section 11 may have a pressure sensor that detects the pressure inside the processing vessel 111 and a temperature sensor that detects the temperature inside the processing vessel 111.
  • the fluid supply system 12 has a treatment fluid supply section 121 and a temperature adjustment section 122.
  • the treatment fluid supply unit 121 has a treatment fluid supply source S11, a first supply flow path L11, an on-off valve V11, an orifice OR11, a second supply flow path L12, an on-off valve V12, an orifice OR12, an inert gas supply source S12, a third supply flow path L13, and an on-off valve V13.
  • the process fluid supply source S11 is a supply source of a process fluid, which may be, for example, carbon dioxide (CO 2 ) in a liquid state.
  • a process fluid which may be, for example, carbon dioxide (CO 2 ) in a liquid state.
  • the first supply flow path L11 is connected to the treatment fluid supply source S11 at its upstream side and to the temperature adjustment unit 122 at its downstream side.
  • An on-off valve V11 and an orifice OR11 are provided in the first supply flow path L11 in this order from upstream.
  • the on-off valve V11 is a valve that switches the flow of the processing fluid on and off. When the on-off valve V11 is open, it allows the processing fluid to flow to the downstream temperature adjustment unit 122, and when it is closed, it does not allow the processing fluid to flow to the downstream temperature adjustment unit 122.
  • the orifice OR11 has the function of reducing the flow rate of the liquid processing fluid and adjusting the pressure.
  • the orifice OR11 passes the pressure-adjusted processing fluid through the downstream temperature adjustment section 122.
  • the second supply flow path L12 is provided in parallel with the first supply flow path L11.
  • the second supply flow path L12 branches off from the first supply flow path L11 upstream of the on-off valve V11 and merges with the first supply flow path L11 downstream of the orifice OR11.
  • the on-off valve V12 and the orifice OR12 are provided in the second supply flow path L12 in this order from upstream.
  • the on-off valve V12 is a valve that switches the flow of the processing fluid on and off. When the on-off valve V12 is open, it allows the processing fluid to flow to the downstream temperature adjustment unit 122, and when it is closed, it does not allow the processing fluid to flow to the downstream temperature adjustment unit 122.
  • the orifice OR12 has the function of reducing the flow rate of the liquid processing fluid and adjusting the pressure.
  • the orifice OR12 passes the pressure-adjusted processing fluid through the downstream temperature adjustment section 122.
  • the inert gas supply source S12 is a supply source of an inert gas, which may be, for example, nitrogen (N 2 ) gas.
  • the third supply flow path L13 is connected to the inert gas supply source S12 at its upstream end, and merges with the first supply flow path L11 downstream of the orifice OR11 at its downstream end.
  • An on-off valve V13 is provided in the third supply flow path L13.
  • a check valve, a filter, etc. may also be provided in the third supply flow path L13.
  • the on-off valve V13 is a valve that switches the flow of inert gas on and off. When open, the on-off valve V13 allows inert gas to flow to the downstream temperature adjustment unit 122, and when closed, the on-off valve V13 does not allow inert gas to flow to the downstream temperature adjustment unit 122.
  • the temperature adjustment unit 122 is connected to the processing fluid supply unit 121 and the processing vessel 111.
  • the temperature adjustment unit 122 passes a temperature-adjusted fluid through the inside of the processing vessel 111.
  • the fluid includes a processing fluid and an inert gas.
  • the temperature adjustment unit 122 has a first branch flow path L14, a second branch flow path L15, a bypass flow path L16, and a first discharge flow path L17.
  • a heating mechanism HE11 In the first branch flow path L14, a heating mechanism HE11, an on-off valve V15, a filter F11, and a temperature sensor T11 are provided in this order from upstream to downstream.
  • a line heater LH11 is provided downstream of the heating mechanism HE11 in the first branch flow path L14.
  • Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the first branch flow path L14.
  • a heating mechanism HE12 In the second branch flow path L15, a heating mechanism HE12, an on-off valve V16, and a filter F12 are provided in this order from upstream to downstream.
  • a line heater LH12 is provided downstream of the heating mechanism HE12 in the second branch flow path L15.
  • Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the second branch flow path L15.
  • the first branch flow path L14 branches off from the second branch flow path L15 between the heating mechanism HE12 and the on-off valve V16.
  • the second branch flow path L15 merges with the first branch flow path L14 immediately before the processing vessel 111.
  • the heating mechanism HE11 is provided in series with the heating mechanism HE12.
  • the heating mechanism HE11 heats the fluid supplied from the treatment fluid supply unit 121 to a first temperature and supplies the fluid at the first temperature downstream.
  • the first temperature may be, for example, 100°C or higher and 120°C or lower.
  • the on-off valve V15 is a valve that switches the flow of fluid on and off. When open, the on-off valve V15 allows fluid to flow to the downstream processing vessel 111, and when closed, it does not allow fluid to flow to the downstream processing vessel 111.
  • the filter F11 filters the fluid flowing through the first branch flow path L14 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during substrate processing using the fluid.
  • the temperature sensor T11 is provided downstream of the junction of the first branch flow path L14 with the second branch flow path L15.
  • the temperature sensor T11 is provided, for example, immediately before the processing vessel 111.
  • the temperature sensor T11 detects the temperature of the fluid flowing in the first branch flow path L14.
  • the line heater LH11 heats the first branch flow path L14 downstream of the heating mechanism HE11.
  • the line heater LH11 prevents the temperature of the fluid heated to the first temperature by the heating mechanism HE11 from decreasing as it flows through the first branch flow path L14.
  • the heating mechanism HE12 heats the fluid supplied from the treatment fluid supply unit 121 to a second temperature and supplies the fluid at the second temperature downstream.
  • the second temperature is lower than the first temperature.
  • the second temperature may be, for example, 80°C or higher and 90°C or lower.
  • the on-off valve V16 is a valve that switches the flow of fluid on and off. When open, the on-off valve V16 allows fluid to flow to the downstream processing vessel 111, and when closed, the on-off valve V16 does not allow fluid to flow to the downstream processing vessel 111.
  • the filter F12 filters the fluid flowing through the second branch flow path L15 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during substrate processing using the fluid.
  • the line heater LH12 heats the second branch flow path L15 downstream of the heating mechanism HE12.
  • the line heater LH12 prevents the temperature of the fluid heated to the second temperature by the heating mechanism HE12 from decreasing as it flows through the second branch flow path L15.
  • the on-off valve V15 and the on-off valve V16 are exclusively opened and closed to change the temperature of the fluid flowing through the processing vessel 111.
  • both the on-off valve V15 and the on-off valve V16 are opened, the fluid heated to the first temperature by the heating mechanism HE11 and the fluid heated to the second temperature by the heating mechanism HE12 are mixed and supplied into the processing vessel 111.
  • a fluid at an intermediate temperature between the first temperature and the second temperature can be supplied into the processing vessel 111.
  • the temperature of the fluid flowing through the processing vessel 111 can be changed in three stages.
  • the bypass flow path L16 connects a position between the on-off valve V15 and the filter F11 in the first branch flow path L14 and a position between the on-off valve V16 and the filter F12 in the second branch flow path L15.
  • An orifice OR13 is provided in the bypass flow path L16.
  • a line heater LH13 is provided in the bypass flow path L16. The bypass flow path L16, the orifice OR13, and the line heater LH13 do not necessarily have to be provided.
  • the orifice OR13 has the function of reducing the flow rate of the fluid passing through the bypass flow path L16 and adjusting the pressure.
  • the line heater LH13 heats the bypass flow path L16.
  • the first discharge flow path L17 discharges the fluid in the first branch flow path L14.
  • the first discharge flow path L17 branches off from the first branch flow path L14 between the heating mechanism HE11 and the on-off valve V15.
  • the first discharge flow path L17 is provided with an on-off valve V14.
  • the first discharge flow path L17 is provided with a line heater LH14.
  • An orifice may be provided in the first discharge flow path L17.
  • the on-off valve V14 is a valve that switches the flow of fluid on and off. When open, the on-off valve V14 allows fluid to flow to the downstream first discharge flow path L17, and when closed, the on-off valve V14 does not allow fluid to flow to the downstream first discharge flow path L17.
  • the line heater LH14 heats the first exhaust flow path L17.
  • the discharge section 13 has a discharge flow path L18.
  • the discharge flow path L18 is connected to the processing vessel 111.
  • a pressure sensor P11, a back pressure valve BV11, and an on-off valve V17 are provided in the discharge flow path L18, in that order from upstream.
  • a line heater LH15 is provided in the discharge flow path L18. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the discharge flow path L18.
  • the pressure sensor P11 detects the pressure of the fluid flowing through the discharge flow path L18 immediately after the processing vessel 111. This allows the pressure inside the processing vessel 111 to be detected.
  • the back pressure valve BV11 adjusts the valve opening to allow fluid to flow to the secondary side, thereby maintaining the primary pressure at the set pressure.
  • the set pressure of the back pressure valve BV11 is adjusted by the control unit 14.
  • the on-off valve V17 is a valve that switches the flow of fluid on and off. When open, the on-off valve V17 allows fluid to flow to the downstream discharge flow path L18, and when closed, it does not allow fluid to flow to the downstream discharge flow path L18.
  • the line heater LH15 heats the exhaust flow path L18.
  • the control unit 14 receives measurement signals from various sensors (such as temperature sensor T11 and pressure sensor P11) and transmits control signals to various functional elements.
  • the control signals include, for example, opening and closing signals of the on-off valves V11 to V17, a set pressure signal of the back pressure valve BV11, and temperature signals of the line heaters LH11 to LH15.
  • the control unit 14 is configured to change the flow rate of the fluid flowing through the processing vessel 111 by controlling the opening and closing of the on-off valves V11 and V12 in accordance with the processing state of the substrate W in the processing vessel 111.
  • the control unit 14 is configured to change the temperature of the fluid flowing through the processing vessel 111 by controlling the opening and closing of the on-off valves V15 and V16 in accordance with the processing state of the substrate W in the processing vessel 111.
  • the control unit 14 is, for example, a computer, and includes an arithmetic unit 141 and a memory unit 142.
  • the memory unit 142 stores programs that control various processes executed in the substrate processing apparatus 10.
  • the arithmetic unit 141 controls the operation of the substrate processing apparatus 10 by reading and executing the programs stored in the memory unit 142.
  • the programs may be recorded in a computer-readable storage medium and installed from the storage medium into the storage unit 142 of the control unit 14. Examples of computer-readable storage media include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
  • HD hard disk
  • FD flexible disk
  • CD compact disk
  • MO magnetic optical disk
  • Substrate Processing Method 2 to 9 a substrate processing method executed by the substrate processing apparatus 10 will be described.
  • the substrate processing method described below is automatically executed under the control of the controller 14 based on a processing recipe and a control program stored in the storage unit 142.
  • FIG. 2 is a timing chart showing the substrate processing method according to the first embodiment.
  • the lower diagram shows the opening and closing timing of on-off valves V11, V12, V13, V14, V15, V16, and V17
  • the upper diagram shows the change in the detection value (pressure) of pressure sensor P11 corresponding to the opening and closing timing.
  • FIGS. 3 to 9 are diagrams illustrating the substrate processing method according to the first embodiment.
  • open valves are shown in black, and closed valves are shown in white.
  • the flow paths through which the fluid flows are shown by thick solid lines.
  • an inert gas is supplied to the processing section 11, the fluid supply system 12, and the exhaust section 13.
  • the inert gas may be, for example, N2 gas.
  • the on-off valves V13, V15, V16, and V17 are opened, and the on-off valves V11, V12, and V14 are closed.
  • the inert gas guided from the inert gas supply source S12 to the first branch flow path L14 is heated to a first temperature by the heating mechanism HE11 and supplied into the processing vessel 111.
  • the inert gas guided from the inert gas supply source S12 to the second branch flow path L15 is heated to a second temperature by the heating mechanism HE12 and supplied into the processing vessel 111. Therefore, the first branch flow path L14 and the second branch flow path L15 are purged and heated by the inert gas, so that the processing temperature of the first substrate W after the standby step becomes almost the same as the processing temperature of the second and subsequent substrates W. As a result, the variation in processing temperature between the substrates W is suppressed. In the standby process, the inert gas is discharged from the processing vessel 111 through the discharge flow path L18.
  • the substrate W is loaded into the processing vessel 111.
  • the on-off valve V16 is opened, and the on-off valves V11, V12, V13, V14, V15, and V17 are closed, and then the substrate W is loaded into the processing vessel 111. That is, the substrate W is loaded into the processing vessel 111 without inert gas being supplied into the processing vessel 111.
  • the substrate W may be loaded into the processing vessel 111 while inert gas is being supplied into the processing vessel 111.
  • the substrate W is subjected to a cleaning process, and is placed on the holding plate 112 with the recesses of the pattern on the surface filled with isopropyl alcohol (IPA).
  • IPA isopropyl alcohol
  • the first pressurization step is performed after the standby step.
  • the pressure in the processing vessel 111 is first increased by supplying a processing fluid at a first flow rate and a second temperature, and then the pressure in the processing vessel 111 is increased by supplying a processing fluid at a second flow rate and a second temperature. That is, in the first pressurization step, the pressure is increased in two stages.
  • the second flow rate may be greater than the first flow rate.
  • the on-off valves V11 and V16 are opened, and the on-off valves V12, V13, V14, V15, and V17 are closed.
  • the processing fluid from the processing fluid supply source S11 flows into the temperature adjustment section 122 via the first supply flow path L11, and is supplied into the processing vessel 111 via the second branch flow path L15.
  • the processing fluid at the first flow rate and the second temperature is supplied into the processing vessel 111.
  • the temperature of the substrate W changes to the second temperature.
  • the on-off valve V17 is closed, so the processing fluid does not flow out of the processing vessel 111.
  • the pressure in the processing vessel 111 gradually increases.
  • the processing fluid When pressurizing at the first flow rate, the processing fluid, whose flow rate has been reduced by the orifice OR13, flows from the second branch flow path L15 through the bypass flow path L16 into the first branch flow path L14. This prevents the processing fluid from flowing back from the junction of the first branch flow path L14 and the second branch flow path L15 immediately before the processing vessel 111 toward the upstream of the first branch flow path L14. This makes it possible to suppress contamination downstream of the filter F11 due to IPA residue, etc.
  • the pressure inside the processing vessel 111 is detected by the pressure sensor P11, and the pressurization at the first flow rate continues until the pressure inside the processing vessel 111 reaches the first pressure Y1.
  • the pressurization at the first flow rate ends and transitions to the pressurization at the second flow rate.
  • the on-off valve V12 When the pressure is increased at the second flow rate, as shown in FIG. 6, the on-off valve V12 is opened.
  • the states of the other on-off valves are the same as those shown in FIG. 5.
  • the processing fluid from the processing fluid supply source S11 flows into the temperature adjustment section 122 via the second supply flow path L12 in addition to the first supply flow path L11, and is supplied into the processing vessel 111 via the second branch flow path L15.
  • the flow rate of the processing fluid supplied into the processing vessel 111 increases to the second flow rate.
  • the on-off valve V17 When the pressure is increased at the second flow rate, the on-off valve V17 is closed, so the processing fluid does not flow out of the processing vessel 111. As a result, the pressure inside the processing vessel 111 gradually increases.
  • the pressure of the processing fluid supplied into the processing vessel 111 is lower than the critical pressure. Therefore, the processing fluid is supplied into the processing vessel 111 in a gaseous state. Thereafter, as the processing vessel 111 is filled with the processing fluid, the pressure inside the processing vessel 111 increases, and when the pressure inside the processing vessel 111 exceeds the critical pressure, the processing fluid present in the processing vessel 111 becomes supercritical.
  • the processing fluid When pressurizing at the second flow rate, the processing fluid, whose flow rate has been reduced by the orifice OR13, flows from the second branch flow path L15 through the bypass flow path L16 into the first branch flow path L14. This prevents the processing fluid from flowing back from the junction of the first branch flow path L14 and the second branch flow path L15 immediately before the processing vessel 111 toward the upstream of the first branch flow path L14. This makes it possible to suppress contamination downstream of the filter F11 due to IPA residue, etc.
  • the pressure inside the processing vessel 111 is detected by the pressure sensor P11, and the pressurization at the second flow rate continues until the pressure inside the processing vessel 111 reaches the second pressure Y2.
  • the first pressurization process ends and the process moves to the second pressurization process.
  • the second pressurization step is performed after the first pressurization step.
  • the pressure in the processing vessel 111 is increased by supplying the processing fluid at the second flow rate and the first temperature.
  • the on-off valves V11, V12, and V15 are opened, and the on-off valves V13, V14, V16, and V17 are closed.
  • the processing fluid from the processing fluid supply source S11 flows into the temperature adjustment unit 122 via the first supply flow path L11 and the second supply flow path L12, and is supplied into the processing vessel 111 via the first branch flow path L14. Therefore, the processing fluid at the second flow rate and the first temperature is supplied into the processing vessel 111.
  • the temperature of the substrate W is quickly changed to the first temperature.
  • the processing fluid In the second pressurization step, the processing fluid, whose flow rate has been reduced by the orifice OR13, flows from the first branch flow path L14 through the bypass flow path L16 into the second branch flow path L15. This prevents the processing fluid from flowing back from the junction of the first branch flow path L14 and the second branch flow path L15 immediately before the processing vessel 111 toward the upstream of the second branch flow path L15. This makes it possible to suppress contamination downstream of the filter F12 due to IPA residue, etc.
  • the pressure inside the processing vessel 111 is detected by the pressure sensor P11, and the second pressurization process continues until the pressure inside the processing vessel 111 reaches the third pressure Y3.
  • the second pressurization process ends and the process moves to the circulation process.
  • the circulation process is performed after the second pressure increase process.
  • the processing fluid at the second flow rate and the first temperature is supplied from the processing fluid supply source S11 into the processing vessel 111, and the IPA is replaced with the processing fluid in the recess of the pattern on the substrate W in the processing vessel 111.
  • the on-off valves V11, V12, V15, and V17 are opened, and the on-off valves V13, V14, and V16 are closed.
  • the processing fluid of the processing fluid supply source S11 flows into the temperature adjustment unit 122 via the first supply flow path L11 and the second supply flow path L12, and is supplied into the processing vessel 111 via the first branch flow path L14.
  • the processing fluid supplied into the processing vessel 111 is discharged from the processing vessel 111 via the discharge flow path L18.
  • the processing fluid In the circulation process, the processing fluid, whose flow rate has been reduced by the orifice OR13, flows from the first branch flow path L14 through the bypass flow path L16 into the second branch flow path L15. This prevents the processing fluid from flowing back from the junction of the first branch flow path L14 and the second branch flow path L15 immediately before the processing vessel 111 toward the upstream of the second branch flow path L15. This makes it possible to suppress contamination downstream of the filter F12 due to IPA residue, etc.
  • ⁇ Decompression step> The depressurization process is performed after the circulation process.
  • the processing fluid is discharged from the processing vessel 111.
  • the on-off valves V14 and V17 are opened, and the on-off valves V11, V12, V13, V15, and V16 are closed.
  • the pressure in the processing vessel 111 becomes lower than the critical pressure of the processing fluid by the depressurization process, the processing fluid in the supercritical state is vaporized and leaves the recesses of the pattern. This completes the drying process for one substrate W.
  • the process proceeds to a standby step.
  • the processed substrate W is removed from the processing vessel 111 after the process proceeds to the standby step, for example.
  • the supply of inert gas into the processing vessel 111 is started via the first branch flow path L14 and the second branch flow path L15.
  • the substrate W is removed from the processing vessel 111 while the inert gas is being supplied into the processing vessel 111.
  • the supply of inert gas into the processing vessel 111 continues even after the substrate W is removed from the processing vessel 111.
  • the inside of the processing vessel 111 becomes positive pressure, so that when the inside of the processing vessel 111 is opened, a gas flow is formed from the inside to the outside of the processing vessel 111. Therefore, the residue in the processing vessel 111 can be discharged to the outside of the processing vessel 111 and removed. However, when the substrate W is removed from the processing vessel 111, the supply of inert gas into the processing vessel 111 may be stopped.
  • the fluid supply system 12 has a processing fluid supply unit 121 and a temperature adjustment unit 122.
  • the processing fluid supply unit 121 has a flow rate adjustment mechanism (on-off valves V11, V12, orifices OR11, OR12) that adjusts the flow rate of the processing fluid.
  • the temperature adjustment unit 122 has a first branch flow path L14 that passes a processing fluid at a first temperature through the processing vessel 111, and a second branch flow path L15 that passes a processing fluid at a second temperature through the processing vessel 111. This makes it possible to individually control the flow rate and temperature of the processing fluid supplied into the processing vessel 111, and to supply the processing fluid at a controlled flow rate and temperature into the processing vessel 111. As a result, the process margin in the substrate processing method performed using the substrate processing apparatus 10 can be expanded.
  • the temperature adjustment unit 122 (heating mechanisms HE11, HE12) is provided downstream of the junction of the first supply flow path L11, the second supply flow path L12, and the third supply flow path L13.
  • the inert gas of the inert gas supply source S12 is heated to a first temperature by the heating mechanism HE11 and flows through the first branch flow path L14. Therefore, in the first branch flow path L14 downstream of the heating mechanism HE11, the temperature uniformity along the fluid flow direction is improved.
  • inert gas at room temperature flows through the first branch flow path L14, even if the first branch flow path L14 is heated by the line heater LH11, a temperature distribution along the fluid flow direction is likely to occur in the first branch flow path L14.
  • the inert gas from the inert gas supply source S12 is heated to a second temperature by the heating mechanism HE12 and flows through the second branch flow path L15.
  • This improves the temperature uniformity along the fluid flow direction in the second branch flow path L15 downstream of the heating mechanism HE12.
  • inert gas at room temperature flows through the second branch flow path L15, even if the second branch flow path L15 is heated by the line heater LH12, a temperature distribution along the fluid flow direction is likely to occur in the second branch flow path L15.
  • a large flow rate of heated inert gas is supplied into the processing vessel 111 via the first branch flow path L14 and the second branch flow path L15, accelerating the drying of the IPA remaining in the first branch flow path L14, the second branch flow path L15, and the processing vessel 111.
  • the first branch flow path L14 and the second branch flow path L15 are heated by the inert gas, so that the processing temperature of the first substrate W performed after the standby step becomes substantially the same as the processing temperature of the second and subsequent substrates W. As a result, variation in processing temperature between substrates W is suppressed.
  • FIG. 10 is a diagram showing the substrate processing apparatus 20 according to the second embodiment.
  • the substrate processing apparatus 20 has a processing section 21, a fluid supply system 22, a discharge section 23, and a control section 24.
  • the processing section 21 may be the same as the processing section 11.
  • the processing section 21 has a processing vessel 211 and a holding plate 212.
  • the fluid supply system 22 has a treatment fluid supply section 221 and a temperature adjustment section 222.
  • the treatment fluid supply unit 221 may be the same as the treatment fluid supply unit 121.
  • the treatment fluid supply unit 221 has a treatment fluid supply source S21, a first supply flow path L21, an on-off valve V21, an orifice OR21, a second supply flow path L22, an on-off valve V22, an orifice OR22, an inert gas supply source S22, a third supply flow path L23, and an on-off valve V23.
  • the temperature adjustment unit 222 is connected to the treatment fluid supply unit 221 and the treatment vessel 211.
  • the temperature adjustment unit 222 passes a temperature-adjusted fluid through the inside of the treatment vessel 211.
  • the fluid includes a treatment fluid and an inert gas.
  • the temperature adjustment unit 222 has a first branch flow path L24, a second branch flow path L25, a bypass flow path L26, a first discharge flow path L27, and a second discharge flow path L28.
  • a heating mechanism HE21 In the first branch flow path L24, a heating mechanism HE21, an on-off valve V25, a filter F21, and a temperature sensor T21 are provided in this order from upstream.
  • a line heater LH21 is provided downstream of the heating mechanism HE21 in the first branch flow path L24.
  • Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the first branch flow path L24.
  • an on-off valve V24 In the second branch flow path L25, an on-off valve V24, a heating mechanism HE22, an on-off valve V26, and a filter F22 are provided in this order from upstream.
  • a line heater LH22 is provided downstream of the heating mechanism HE22 in the second branch flow path L25.
  • Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the second branch flow path L25.
  • the second branch flow path L25 branches off from the first branch flow path L24 between the processing fluid supply unit 221 and the heating mechanism HE21.
  • the second branch flow path L25 merges with the first branch flow path L24 immediately before the processing vessel 211.
  • the heating mechanism HE21 is provided in parallel with the heating mechanism HE22.
  • the heating mechanism HE21 heats the fluid supplied from the treatment fluid supply unit 221 to a first temperature and supplies the fluid at the first temperature downstream.
  • the first temperature may be, for example, 100°C or higher and 120°C or lower.
  • the on-off valve V25 is a valve that switches the flow of fluid on and off. When open, the on-off valve V25 allows fluid to flow to the downstream processing vessel 211, and when closed, it does not allow fluid to flow to the downstream processing vessel 211.
  • the filter F21 filters the fluid flowing through the first branch flow path L24 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during the drying process of the substrate W using the fluid.
  • the temperature sensor T21 is provided downstream of the junction of the first branch flow path L24 with the second branch flow path L25.
  • the temperature sensor T21 is provided, for example, immediately before the processing vessel 211.
  • the temperature sensor T21 detects the temperature of the fluid flowing in the first branch flow path L24.
  • the line heater LH21 heats the first branch flow path L24 downstream of the heating mechanism HE21.
  • the line heater LH21 prevents the temperature of the fluid heated to the first temperature by the heating mechanism HE21 from decreasing as it flows through the first branch flow path L24.
  • the on-off valve V24 is a valve that switches the flow of fluid on and off. When open, the on-off valve V24 allows fluid to flow to the downstream heating mechanism HE22, and when closed, it does not allow fluid to flow to the downstream heating mechanism HE22.
  • the heating mechanism HE22 heats the fluid supplied from the treatment fluid supply unit 221 to a second temperature and supplies the fluid at the second temperature downstream.
  • the second temperature is lower than the first temperature.
  • the second temperature may be, for example, 80°C or higher and 90°C or lower.
  • the on-off valve V26 is a valve that switches the flow of fluid on and off. When the on-off valve V26 is open, it allows fluid to flow to the downstream processing vessel 211, and when it is closed, it does not allow fluid to flow to the downstream processing vessel 211.
  • the filter F22 filters the fluid flowing through the second branch flow path L25 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during the drying process of the substrate W using the fluid.
  • the line heater LH22 heats the second branch flow path L25 downstream of the heating mechanism HE22.
  • the line heater LH22 prevents the temperature of the fluid heated to the second temperature by the heating mechanism HE22 from decreasing as it flows through the second branch flow path L25.
  • the temperature adjustment unit 222 when the on-off valve V25 is closed and the on-off valve V26 is opened, the fluid heated to the second temperature by the heating mechanism HE22 is supplied into the processing vessel 211 through the second branch flow path L25.
  • the on-off valve V26 is closed and the on-off valve V25 is opened, the fluid heated to the first temperature by the heating mechanism HE21 is supplied into the processing vessel 211 through the first branch flow path L24. In this way, the temperature of the fluid flowing through the processing vessel 211 can be changed by exclusively opening and closing the on-off valve V25 and the on-off valve V26.
  • both the on-off valve V25 and the on-off valve V26 are opened, the fluid heated to the first temperature by the heating mechanism HE21 and the fluid heated to the second temperature by the heating mechanism HE22 are mixed and supplied into the processing vessel 211.
  • a fluid at an intermediate temperature between the first temperature and the second temperature can be supplied into the processing vessel 211.
  • the temperature of the fluid flowing through the processing vessel 211 can be changed in three stages.
  • the bypass flow path L26 connects a position between the on-off valve V25 and the filter F21 in the first branch flow path L24 and a position between the on-off valve V26 and the filter F22 in the second branch flow path L25.
  • An orifice OR23 is provided in the bypass flow path L26.
  • a line heater LH23 is provided in the bypass flow path L26. The bypass flow path L26, the orifice OR23, and the line heater LH23 do not necessarily have to be provided.
  • the orifice OR23 has the function of reducing the flow rate of the fluid passing through the bypass flow path L26 and adjusting the pressure.
  • the line heater LH23 heats the bypass flow path L26.
  • the first discharge flow path L27 discharges the fluid in the first branch flow path L24.
  • the first discharge flow path L27 branches off from the first branch flow path L24 between the heating mechanism HE21 and the on-off valve V25.
  • the first discharge flow path L27 is provided with an on-off valve V27.
  • the first discharge flow path L27 is provided with a line heater LH24.
  • An orifice may be provided in the first discharge flow path L27.
  • the on-off valve V27 is a valve that switches the flow of fluid on and off. When open, the on-off valve V27 allows fluid to flow to the downstream first discharge flow path L27, and when closed, it does not allow fluid to flow to the downstream first discharge flow path L27.
  • the line heater LH24 heats the first exhaust flow path L27.
  • the second discharge flow path L28 discharges the fluid in the second branch flow path L25.
  • the second discharge flow path L28 branches off from the second branch flow path L25 between the heating mechanism HE22 and the on-off valve V26.
  • the second discharge flow path L28 is provided with an on-off valve V28.
  • the second discharge flow path L28 is provided with a line heater LH25.
  • An orifice may be provided in the second discharge flow path L28.
  • the on-off valve V28 is a valve that switches the flow of fluid on and off. When open, the on-off valve V28 allows fluid to flow to the downstream second discharge flow path L28, and when closed, the on-off valve V28 does not allow fluid to flow to the downstream second discharge flow path L28.
  • the line heater LH25 heats the second exhaust flow path L28.
  • the discharge section 23 has a discharge flow path L29.
  • the discharge flow path L29 is connected to the processing vessel 211.
  • a pressure sensor P21, a back pressure valve BV21, and an on-off valve V29 are provided in the discharge flow path L29, in that order from upstream.
  • a line heater LH26 is provided in the discharge flow path L29. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the discharge flow path L29.
  • the pressure sensor P21 detects the pressure of the fluid flowing through the discharge flow path L29 immediately after the processing vessel 211. This allows the pressure inside the processing vessel 211 to be detected.
  • the back pressure valve BV21 adjusts the valve opening to allow fluid to flow to the secondary side, thereby maintaining the primary pressure at the set pressure.
  • the set pressure of the back pressure valve BV21 is adjusted by the control unit 24.
  • the on-off valve V29 is a valve that switches the flow of fluid on and off. When open, the on-off valve V29 allows fluid to flow to the downstream discharge flow path L29, and when closed, the on-off valve V29 does not allow fluid to flow to the downstream discharge flow path L29.
  • the line heater LH26 heats the exhaust flow path L29.
  • the control unit 24 receives measurement signals from various sensors (such as temperature sensor T21 and pressure sensor P21) and transmits control signals to various functional elements.
  • the control signals include, for example, opening and closing signals of the on-off valves V21 to V29, a set pressure signal of the back pressure valve BV21, and a temperature signal of the line heater LH21 to LH26.
  • the control unit 24 is configured to change the flow rate of the fluid flowing through the processing vessel 211 by controlling the opening and closing of the on-off valves V21 and V22 in accordance with the processing state of the substrate W in the processing vessel 211.
  • the control unit 24 is configured to change the temperature of the fluid flowing through the processing vessel 211 by controlling the opening and closing of the on-off valves V25 and V26 in accordance with the processing state of the substrate W in the processing vessel 211.
  • the control unit 24 is, for example, a computer, and includes an arithmetic unit 241 and a memory unit 242.
  • the memory unit 242 stores programs that control various processes executed in the substrate processing apparatus 20.
  • the arithmetic unit 241 controls the operation of the substrate processing apparatus 20 by reading and executing the programs stored in the memory unit 242.
  • the programs may be recorded in a computer-readable storage medium and installed from the storage medium into the storage unit 242 of the control unit 24. Examples of computer-readable storage media include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
  • HD hard disk
  • FD flexible disk
  • CD compact disk
  • MO magnetic optical disk
  • Substrate Processing Method 11 to 18 a substrate processing method executed by the substrate processing apparatus 20 will be described.
  • the substrate processing method described below is automatically executed under the control of the controller 24 based on the processing recipe and the control program stored in the storage unit 242.
  • FIG. 11 is a timing chart showing the substrate processing method according to the second embodiment.
  • the lower diagram shows the opening and closing timing of on-off valves V21, V22, V23, V24, V25, V26, V27, V28, and V29
  • the upper diagram shows the change in the detection value (pressure) of pressure sensor P21 corresponding to the opening and closing timing.
  • FIGS. 12 to 18 are diagrams illustrating a substrate processing method according to the second embodiment.
  • an open valve is shown filled in black, and a closed valve is shown filled in white.
  • a flow path through which a fluid flows is shown by a thick solid line.
  • an inert gas is supplied to the processing section 21, the fluid supply system 22, and the exhaust section 23.
  • the inert gas may be, for example, N2 gas.
  • the on-off valves V23, V24, V25, V26, and V29 are opened, and the on-off valves V21, V22, V27, and V28 are closed.
  • the inert gas guided from the inert gas supply source S22 to the first branch flow path L24 is heated to a first temperature by the heating mechanism HE21 and supplied into the processing vessel 211.
  • the inert gas guided from the inert gas supply source S22 to the second branch flow path L25 is heated to a second temperature by the heating mechanism HE22 and supplied into the processing vessel 211. Therefore, the first branch flow path L24 and the second branch flow path L25 are purged and heated by the inert gas, so that the processing temperature of the first substrate W after the standby step becomes substantially the same as the processing temperature of the second and subsequent substrates W. This results in suppression of variation in processing temperature among the substrates W.
  • the inert gas is exhausted from the processing vessel 211 through the exhaust passage L29.
  • the substrate W is loaded into the processing vessel 211.
  • the on-off valves V24 and V26 are opened, and the on-off valves V21, V22, V23, V25, V27, V28, and V29 are closed, and then the substrate W is loaded into the processing vessel 211. That is, the substrate W is loaded into the processing vessel 211 without inert gas being supplied into the processing vessel 211.
  • the substrate W may be loaded into the processing vessel 211 while inert gas is being supplied into the processing vessel 211.
  • the substrate W is subjected to a cleaning process, and is placed on the holding plate 212 with the recesses of the pattern on the surface filled with IPA.
  • the first pressurization step is performed after the standby step.
  • the pressure in the processing vessel 211 is first increased by supplying the processing fluid at a first flow rate and a second temperature, and then the pressure in the processing vessel 211 is increased by supplying the processing fluid at a second flow rate and a second temperature. That is, in the first pressurization step, the pressure is increased in two stages.
  • the second flow rate may be larger than the first flow rate.
  • the on-off valves V21, V24, and V26 are opened, and the on-off valves V22, V23, V25, V27, V28, and V29 are closed.
  • the processing fluid from the processing fluid supply source S21 flows into the temperature adjustment section 222 via the first supply flow path L21, and is supplied into the processing vessel 211 via the second branch flow path L25. Therefore, the processing fluid at the first flow rate and the second temperature is supplied into the processing vessel 211.
  • the temperature of the substrate W changes to the second temperature.
  • the on-off valve V29 is closed, so the processing fluid does not flow out of the processing vessel 211. Therefore, the pressure in the processing vessel 211 gradually increases.
  • the processing fluid When pressurizing at the first flow rate, the processing fluid, whose flow rate has been reduced by the orifice OR23, flows from the second branch flow path L25 through the bypass flow path L26 into the first branch flow path L24. This prevents the processing fluid from flowing back from the junction of the first branch flow path L24 and the second branch flow path L25 immediately before the processing vessel 211 toward the upstream of the first branch flow path L24. This makes it possible to suppress contamination downstream of the filter F21 due to IPA residue, etc.
  • the pressure inside the processing vessel 211 is detected by the pressure sensor P21, and the pressurization at the first flow rate continues until the pressure inside the processing vessel 211 reaches the first pressure Y1.
  • the pressurization at the first flow rate ends and transitions to the pressurization at the second flow rate.
  • the on-off valve V22 When the pressure is increased at the second flow rate, as shown in FIG. 15, the on-off valve V22 is opened.
  • the states of the other on-off valves are the same as those shown in FIG. 14.
  • the processing fluid from the processing fluid supply source S21 flows into the temperature adjustment section 222 via the second supply flow path L22 in addition to the first supply flow path L21, and is supplied into the processing vessel 211 via the second branch flow path L25.
  • the flow rate of the processing fluid supplied into the processing vessel 211 increases to the second flow rate.
  • the on-off valve V29 When the pressure is increased at the second flow rate, the on-off valve V29 is closed, so the processing fluid does not flow out of the processing vessel 211. As a result, the pressure inside the processing vessel 211 gradually increases.
  • the pressure of the processing fluid supplied into the processing vessel 211 is lower than the critical pressure. Therefore, the processing fluid is supplied into the processing vessel 211 in a gaseous state. Thereafter, as the processing vessel 211 is filled with the processing fluid, the pressure inside the processing vessel 211 increases, and when the pressure inside the processing vessel 211 exceeds the critical pressure, the processing fluid present in the processing vessel 211 becomes supercritical.
  • the processing fluid When pressurizing at the second flow rate, the processing fluid, whose flow rate has been reduced by the orifice OR23, flows from the second branch flow path L25 through the bypass flow path L26 into the first branch flow path L24. This prevents the processing fluid from flowing back from the junction of the first branch flow path L24 and the second branch flow path L25 immediately before the processing vessel 211 toward the upstream of the first branch flow path L24. This makes it possible to suppress contamination downstream of the filter F21 due to IPA residue, etc.
  • the pressure inside the processing vessel 211 is detected by the pressure sensor P21, and the pressurization at the second flow rate continues until the pressure inside the processing vessel 211 reaches the second pressure Y2.
  • the first pressurization process ends and the process moves to the second pressurization process.
  • the second pressurization step is performed after the first pressurization step.
  • the pressure in the processing vessel 211 is increased by supplying the processing fluid at the second flow rate and the first temperature.
  • the on-off valves V21, V22, V25, and V28 are opened, and the on-off valves V23, V24, V26, V27, and V29 are closed.
  • the processing fluid from the processing fluid supply source S21 flows into the temperature adjustment unit 222 via the first supply flow path L21 and the second supply flow path L22, and is supplied into the processing vessel 211 via the first branch flow path L24. Therefore, the processing fluid at the second flow rate and the first temperature is supplied into the processing vessel 211.
  • the temperature of the substrate W is quickly changed to the first temperature.
  • the processing fluid In the second pressurization step, the processing fluid, whose flow rate has been reduced by the orifice OR23, flows from the first branch flow path L24 through the bypass flow path L26 into the second branch flow path L25. This prevents the processing fluid from flowing back from the junction of the first branch flow path L24 and the second branch flow path L25 immediately before the processing vessel 211 toward the upstream of the second branch flow path L25. This makes it possible to suppress contamination downstream of the filter F22 due to IPA residue, etc.
  • the processing fluid in the second branch flow path L25 is discharged and the pressure in the second branch flow path L25 is reduced. Since the heat storage amount of the heating mechanism HE22 set to the second temperature lower than the first temperature is small, when the pressure in the second branch flow path L25 is reduced, the temperature of the heating mechanism HE22 drops significantly due to the pressure drop, and it takes time for the temperature of the heating mechanism HE22 to return to the second temperature. Therefore, while the processing fluid is flowing through the first branch flow path L24 in the second pressure increase step, the on-off valves V24 and V26 are closed and the on-off valve V28 is opened, thereby reducing the pressure in the second branch flow path L25 and returning the temperature of the heating mechanism HE22 to the second temperature. In this way, since the second exhaust flow path L28 and the on-off valve V28 are provided, the heating mechanism HE2 can be prepared for the next substrate W in parallel with the processing of the substrate W in the processing vessel 211.
  • the pressure inside the processing vessel 211 is detected by the pressure sensor P21, and the second pressurization process continues until the pressure inside the processing vessel 211 reaches the third pressure Y3.
  • the second pressurization process ends and the process moves to the circulation process.
  • the circulation process is performed after the second pressure increase process.
  • the processing fluid at the second flow rate and the first temperature is supplied from the processing fluid supply source S21 into the processing vessel 211, and the IPA is replaced with the processing fluid in the recess of the pattern on the substrate W in the processing vessel 211.
  • the on-off valves V21, V22, V25, V28, and V29 are opened, and the on-off valves V23, V24, V26, and V27 are closed.
  • the processing fluid of the processing fluid supply source S21 flows into the temperature adjustment unit 222 via the first supply flow path L21 and the second supply flow path L22, and is supplied into the processing vessel 211 via the first branch flow path L24.
  • the processing fluid supplied into the processing vessel 211 is discharged from the processing vessel 211 via the discharge flow path L29.
  • the processing fluid In the circulation process, the processing fluid, whose flow rate has been reduced by the orifice OR23, flows from the first branch flow path L24 through the bypass flow path L26 into the second branch flow path L25. This prevents the processing fluid from flowing back from the junction of the first branch flow path L24 and the second branch flow path L25 immediately before the processing vessel 211 toward the upstream of the second branch flow path L25. This makes it possible to suppress contamination downstream of the filter F22 due to IPA residue, etc.
  • the pressure reduction in the second branch flow path L25 continues even in the circulation process.
  • ⁇ Decompression step> The depressurization process is performed after the circulation process.
  • the processing fluid is discharged from the processing vessel 211.
  • the on-off valves V27, V28, and V29 are opened, and the on-off valves V21, V22, V23, V24, V25, and V26 are closed.
  • the pressure in the processing vessel 211 becomes lower than the critical pressure of the processing fluid by the depressurization process, the processing fluid in the supercritical state is vaporized and leaves the recesses of the pattern. This completes the drying process for one substrate W.
  • the processing fluid in the first branch flow path L24 is discharged via the first discharge flow path L27, and the processing fluid in the second branch flow path L25 is discharged via the second discharge flow path L28. That is, the processing fluid in the first branch flow path L24 and the processing fluid in the second branch flow path L25 are discharged from different discharge flow paths. This prevents mixing of the processing fluid at the first temperature and the processing fluid at the second temperature.
  • the process proceeds to a standby step.
  • the processed substrate W is removed from the processing vessel 211 after the process proceeds to the standby step, for example.
  • the supply of inert gas into the processing vessel 211 is started via the first branch flow path L24 and the second branch flow path L25.
  • the substrate W is removed from the processing vessel 211 while the inert gas is being supplied into the processing vessel 211.
  • the supply of inert gas into the processing vessel 211 continues even after the substrate W is removed from the processing vessel 211.
  • the inside of the processing vessel 211 becomes positive pressure, so that when the inside of the processing vessel 211 is opened, a gas flow is formed from the inside to the outside of the processing vessel 211. Therefore, the residue in the processing vessel 211 can be discharged to the outside of the processing vessel 211 and removed.
  • the supply of inert gas into the processing vessel 211 may be stopped.
  • the fluid supply system 22 has a processing fluid supply unit 221 and a temperature adjustment unit 222.
  • the processing fluid supply unit 221 has a flow rate adjustment mechanism (on-off valves V21, V22, orifices OR21, OR22) that adjusts the flow rate of the processing fluid.
  • the temperature adjustment unit 222 has a first branch flow path L24 that passes a processing fluid at a first temperature into the processing vessel 211, and a second branch flow path L25 that passes a processing fluid at a second temperature into the processing vessel 211. This makes it possible to individually control the flow rate and temperature of the processing fluid supplied into the processing vessel 211, and to supply the processing fluid at a controlled flow rate and temperature into the processing vessel 211. As a result, the process margin in the substrate processing method performed using the substrate processing apparatus 10 can be expanded.
  • the temperature adjustment unit 222 (heating mechanisms HE21, HE22) is provided downstream of the junction of the first supply flow path L21, the second supply flow path L22, and the third supply flow path L23.
  • the inert gas of the inert gas supply source S22 is heated to a first temperature by the heating mechanism HE21 and flows through the first branch flow path L24. Therefore, in the first branch flow path L24 downstream of the heating mechanism HE21, the temperature uniformity along the fluid flow direction is improved.
  • inert gas at room temperature flows through the first branch flow path L24, even if the first branch flow path L24 is heated by the line heater LH21, a temperature distribution along the fluid flow direction is likely to occur in the first branch flow path L24.
  • the inert gas from the inert gas supply source S22 is heated to a second temperature by the heating mechanism HE22 and flows through the second branch flow path L25.
  • This improves the temperature uniformity along the fluid flow direction in the second branch flow path L25 downstream of the heating mechanism HE22.
  • inert gas at room temperature flows through the second branch flow path L25, even if the second branch flow path L25 is heated by the line heater LH22, a temperature distribution along the fluid flow direction is likely to occur in the second branch flow path L25.
  • a large flow rate of heated inert gas is supplied into the processing vessel 211 via the first branch flow path L24 and the second branch flow path L25, accelerating the drying of the IPA remaining in the first branch flow path L24, the second branch flow path L25, and the processing vessel 211.
  • a heated inert gas flows through the first branch flow path L24 and the second branch flow path L25.
  • the first branch flow path L24 and the second branch flow path L25 are heated by the inert gas, so that the processing temperature of the first substrate W performed after the standby step becomes substantially the same as the processing temperature of the second and subsequent substrates W. As a result, variation in processing temperature between substrates W is suppressed.
  • FIG. 19 is a diagram showing a substrate processing apparatus 20A according to a first modified example of the second embodiment.
  • Substrate processing apparatus 20A differs from substrate processing apparatus 20 in that heating mechanism HE21 and heating mechanism HE22 are each connected to a processing fluid supply unit, and in that there is no bypass flow path L26.
  • the rest of the configuration of substrate processing apparatus 20A may be the same as that of substrate processing apparatus 20. The following will focus on the differences from substrate processing apparatus 20.
  • the substrate processing apparatus 20A has a processing section 21, a fluid supply system 22A, a discharge section 23, and a control section 24.
  • the fluid supply system 22A has a treatment fluid supply unit 221A, a treatment fluid supply unit 221B, and a temperature adjustment unit 222A.
  • the treatment fluid supply unit 221A has a treatment fluid supply source S21A, a first supply flow path L21A, an on-off valve V21A, an orifice OR21A, an inert gas supply source S22A, a third supply flow path L23A, and an on-off valve V23A.
  • the treatment fluid supply source S21A, the first supply flow path L21A, the on-off valve V21A, the orifice OR21A, the inert gas supply source S22A, the third supply flow path L23A, and the on-off valve V23A may be the same as the treatment fluid supply source S21, the first supply flow path L21, the on-off valve V21, the orifice OR21, the inert gas supply source S22, the third supply flow path L23, and the on-off valve V23, respectively.
  • the treatment fluid supply section 221B has a treatment fluid supply source S21B, a first supply flow path L21B, an on-off valve V21B, an orifice OR21B, a second supply flow path L22B, an on-off valve V22B, an orifice OR22B, an inert gas supply source S22B, a third supply flow path L23B, and an on-off valve V23B.
  • the processing fluid supply source S21B, the first supply flow path L21B, the on-off valve V21B, the orifice OR21B, the second supply flow path L22B, the on-off valve V22B, the orifice OR22B, the inert gas supply source S22B, the third supply flow path L23B, and the on-off valve V23B may be the same as the processing fluid supply source S21, the first supply flow path L21, the on-off valve V21, the orifice OR21, the second supply flow path L22, the on-off valve V22, the orifice OR22, the inert gas supply source S22, the third supply flow path L23, and the on-off valve V23, respectively.
  • the temperature adjustment unit 222A differs from the temperature adjustment unit 222 in that the heating mechanism HE21 is connected to the treatment fluid supply unit 221A, and the heating mechanism HE22 is connected to the treatment fluid supply unit 221B.
  • the process fluid supply units 221A and 221B that supply fluid to the temperature adjustment unit 222A are switched by controlling the opening and closing of the on-off valves V21A, V23A, V21B, V22B, and V23B.
  • the on-off valve V21A is opened, a process fluid is supplied from the process fluid supply unit 221A to the first branch flow path L24.
  • an inert gas is supplied from the process fluid supply unit 221A to the first branch flow path L24.
  • a process fluid is supplied from the process fluid supply unit 221B to the second branch flow path L25.
  • an inert gas is supplied from the process fluid supply unit 221B to the second branch flow path L25.
  • the processing fluid supply units 221A and 221B that supply fluid to the temperature adjustment unit 222A are switched depending on the process being performed, for example.
  • FIG. 20 is a diagram showing a substrate processing apparatus 20B according to a second modified example of the second embodiment.
  • Substrate processing apparatus 20B differs from substrate processing apparatus 20 in that it is provided with orifices OR24 and OR25.
  • the orifice OR24 is provided in the first branch flow path L24 downstream of the filter F21 and upstream of the junction of the first branch flow path L24 and the second branch flow path L25.
  • the orifice OR24 has a larger pressure loss than the orifice OR23. In other words, the orifice OR24 has a smaller flow path area than the orifice OR23.
  • the orifice OR25 is provided in the second branch flow passage L25 downstream of the filter F22 and upstream of the junction of the first branch flow passage L24 and the second branch flow passage L25.
  • the orifice OR25 has a larger pressure loss than the orifice OR23. In other words, the orifice OR25 has a smaller flow passage area than the orifice OR23.
  • the fluid heated to the second temperature by the heating mechanism HE22 is supplied into the processing vessel 211 through the second branch flow path L25.
  • the fluid whose flow rate has been reduced by the orifice OR23 flows from the second branch flow path L25 through the bypass flow path L26 into the first branch flow path L24.
  • an orifice OR24 having a larger pressure loss than the orifice OR23 is provided in the first branch flow path L24 downstream of the filter F21.
  • the pressure in the second branch flow path L25 between the on-off valve V26 and the filter F22, the pressure in the first branch flow path L24 upstream of the orifice OR24, and the pressure in the first branch flow path L24 downstream of the orifice OR24 decrease in that order. This further prevents backflow of the fluid from the processing vessel 211 toward the first branch flow path L24.
  • the on-off valve V26 is closed and the on-off valve V25 is opened, the fluid heated to the first temperature by the heating mechanism HE21 is supplied into the processing vessel 211 through the first branch flow path L24.
  • the fluid whose flow rate has been reduced by the orifice OR23 flows from the first branch flow path L24 through the bypass flow path L26 into the second branch flow path L25.
  • the second branch flow path L25 downstream of the filter F22 is provided with an orifice OR25 with a larger pressure loss than the orifice OR23.
  • the pressure of the first branch flow path L24 between the on-off valve V25 and the filter F21, the pressure of the second branch flow path L25 upstream of the orifice OR25, and the pressure of the second branch flow path L25 downstream of the orifice OR25 decrease in this order. This further prevents backflow of fluid from the processing vessel 211 toward the second branch flow path L25.
  • FIG. 21 is a diagram showing the substrate processing apparatus 30 according to the third embodiment.
  • the substrate processing apparatus 30 has a processing section 31, a fluid supply system 32, a discharge section 33, and a control section 34.
  • the processing section 31 may be the same as the processing section 11.
  • the processing section 31 has a processing vessel 311 and a holding plate 312.
  • the fluid supply system 32 has a treatment fluid supply section 321 and a temperature adjustment section 322.
  • the treatment fluid supply unit 321 may be the same as the treatment fluid supply unit 121.
  • the treatment fluid supply unit 321 has a treatment fluid supply source S31, a first supply flow path L31, an on-off valve V31, an orifice OR31, a second supply flow path L32, an on-off valve V32, an orifice OR32, an inert gas supply source S32, a third supply flow path L33, and an on-off valve V33.
  • the temperature adjustment unit 322 is connected to the treatment fluid supply unit 321 and the treatment vessel 311.
  • the temperature adjustment unit 322 passes a temperature-adjusted fluid through the inside of the treatment vessel 311.
  • the fluid includes a treatment fluid and an inert gas.
  • the temperature adjustment unit 322 has a first flow path L34, a second flow path L35, a bypass flow path L36, and a first discharge flow path L37.
  • the first flow path L34 is connected to the side of the processing vessel 311.
  • the first flow path L34 supplies fluid from the side of the processing vessel 311 toward the substrate W.
  • a heating mechanism HE31, an orifice OR33, a filter F31, and an on-off valve V34 are provided in the first flow path L34, in that order from upstream.
  • a line heater LH31 is provided downstream of the heating mechanism HE31 in the first flow path L34.
  • Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the first flow path L34.
  • the heating mechanism HE31 heats the fluid supplied from the treatment fluid supply unit 321 to a predetermined temperature and supplies the fluid at the predetermined temperature downstream.
  • the orifice OR33 has the function of reducing the flow rate of the fluid passing through the first flow path L34 and adjusting the pressure.
  • the filter F31 filters the fluid flowing through the first flow path L34 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during the drying process of the substrate W using the fluid.
  • the on-off valve V34 is a valve that switches the flow of fluid on and off. When open, the on-off valve V34 allows fluid to flow to the downstream processing vessel 311, and when closed, it does not allow fluid to flow to the downstream processing vessel 311.
  • the line heater LH31 heats the first flow path L34 downstream of the heating mechanism HE31.
  • the line heater LH31 prevents the temperature of the fluid heated to a predetermined temperature by the heating mechanism HE31 from decreasing as it flows through the first flow path L34.
  • the second flow path L35 branches off from the first flow path L34 between the filter F31 and the on-off valve V34.
  • the second flow path L35 is connected to the bottom of the processing vessel 311.
  • the second flow path L35 supplies fluid from below the processing vessel 311 toward the substrate W.
  • An on-off valve V35 is provided in the second flow path L35.
  • a line heater LH32 is provided in the second flow path L35.
  • Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the second flow path L35.
  • the on-off valve V35 is a valve that switches the flow of fluid on and off. When open, the on-off valve V35 allows fluid to flow to the downstream processing vessel 311, and when closed, it does not allow fluid to flow to the downstream processing vessel 311.
  • the line heater LH32 heats the second flow path L35.
  • the line heater LH32 prevents the temperature of the fluid heated to a predetermined temperature by the heating mechanism HE31 from decreasing as it flows through the second flow path L35.
  • the bypass flow path L36 connects a position downstream of the on-off valve V34 in the first flow path L34 to a position downstream of the on-off valve V35 in the second flow path L35.
  • An orifice OR34 is provided in the bypass flow path L36.
  • a line heater LH33 is provided in the bypass flow path L36.
  • the orifice OR34 has the function of reducing the flow rate of the fluid passing through the bypass flow path L36 and adjusting the pressure.
  • the line heater LH33 heats the bypass flow path L36.
  • the fluid heated to a predetermined temperature by the heating mechanism HE31 is supplied into the processing vessel 311 from below the processing vessel 311 through the second flow path L35.
  • the fluid whose flow rate has been reduced by the orifice OR34, flows from the second flow path L35 through the bypass flow path L36 into the first flow path L34. This prevents the backflow of the fluid from the processing vessel 311 toward the first flow path L34. This makes it possible to suppress contamination of the first flow path L34 by IPA residue, etc.
  • on-off valve V35 when on-off valve V35 is closed and on-off valve V34 is opened, fluid heated to a predetermined temperature by heating mechanism HE31 is supplied into processing vessel 311 from the side of processing vessel 311 through first flow path L34. At this time, the fluid, whose flow rate has been reduced by orifice OR34, flows from first flow path L34 through bypass flow path L36 into second flow path L35. This prevents backflow of fluid from processing vessel 311 toward second flow path L35. This makes it possible to suppress contamination of second flow path L35 by IPA residue, etc.
  • the first discharge flow path L37 discharges the fluid in the first flow path L34.
  • the first discharge flow path L37 branches off from the first flow path L34 between the filter F31 and the on-off valve V34.
  • the first discharge flow path L37 is provided with an on-off valve V36 and an orifice OR35, in that order from upstream.
  • the first discharge flow path L37 is provided with a line heater LH34.
  • the orifice OR35 does not necessarily have to be provided.
  • the on-off valve V36 is a valve that switches the flow of fluid on and off. When open, the on-off valve V36 allows fluid to flow to the downstream first discharge flow path L37, and when closed, does not allow fluid to flow to the downstream first discharge flow path L37.
  • the orifice OR35 has the function of reducing the flow rate of the fluid passing through the first discharge flow path L37 and adjusting the pressure.
  • the line heater LH34 heats the first exhaust flow path L37.
  • the discharge section 33 has a discharge flow path L38.
  • the discharge flow path L38 is connected to the processing vessel 311.
  • a back pressure valve BV31 and an on-off valve V37 are provided in the discharge flow path L38, in that order from upstream.
  • a line heater LH35 is provided in the discharge flow path L38.
  • Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the discharge flow path L38.
  • the back pressure valve BV31, the on-off valve V37, and the line heater LH35 may be the same as the back pressure valve BV11, the on-off valve V17, and the line heater LH15, respectively.
  • control unit 34 receives measurement signals from various sensors and transmits control signals to various functional elements.
  • the control unit 34 is, for example, a computer, and includes a calculation unit 341 and a memory unit 342.
  • the calculation unit 341 and the memory unit 342 may be the same as the calculation unit 141 and the memory unit 142, respectively.
  • FIG. 22 is a view showing the substrate processing apparatus 40 according to the fourth embodiment.
  • the substrate processing apparatus 40 has a processing section 41, a fluid supply system 42, a discharge section 43, and a control section 44.
  • the processing section 41 may be the same as the processing section 11.
  • the processing section 41 has a processing vessel 411 and a holding plate 412.
  • the fluid supply system 42 has a treatment fluid supply section 421 and a temperature adjustment section 422.
  • the treatment fluid supply unit 421 may be the same as the treatment fluid supply unit 121.
  • the treatment fluid supply unit 421 has a treatment fluid supply source S41, a first supply flow path L41, an on-off valve V41, an orifice OR41, a second supply flow path L42, an on-off valve V42, an orifice OR42, an inert gas supply source S42, a third supply flow path L43, and an on-off valve V43.
  • the temperature adjustment unit 422 is connected to the treatment fluid supply unit 421 and the treatment vessel 411.
  • the temperature adjustment unit 422 passes a temperature-adjusted fluid through the inside of the treatment vessel 411.
  • the fluid includes a treatment fluid and an inert gas.
  • the temperature adjustment unit 422 has a first branch flow path L44, a second branch flow path L45, a first bypass flow path L46, a first exhaust flow path L47, a second exhaust flow path L48, a third branch flow path L421, and a second bypass flow path L422.
  • the first branch flow path L44 is connected to the side of the processing vessel 411.
  • the first branch flow path L44 supplies fluid from the side of the processing vessel 411 toward the substrate W.
  • a heating mechanism HE41, an on-off valve V45, a filter F41, and an on-off valve V50 are provided in the first branch flow path L44, in that order from upstream.
  • a line heater LH41 is provided downstream of the heating mechanism HE41 in the first branch flow path L44.
  • Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the first branch flow path L44.
  • the heating mechanism HE41 is provided in parallel with the heating mechanism HE42.
  • the heating mechanism HE41 heats the fluid supplied from the treatment fluid supply unit 421 to a first temperature and supplies the fluid at the first temperature downstream.
  • the first temperature may be, for example, 100°C or higher and 120°C or lower.
  • the on-off valve V45 is a valve that switches the flow of fluid on and off. When the on-off valve V45 is open, it allows fluid to flow to the downstream filter F41, and when it is closed, it does not allow fluid to flow to the downstream filter F41.
  • the filter F41 filters the fluid flowing through the first branch flow path L44 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during the drying process of the substrate W using the fluid.
  • the on-off valve V50 is a valve that switches the flow of fluid on and off. When open, the on-off valve V50 allows fluid to flow to the downstream processing vessel 411, and when closed, it does not allow fluid to flow to the downstream processing vessel 411.
  • the line heater LH41 heats the first branch flow path L44 downstream of the heating mechanism HE41.
  • the line heater LH41 prevents the temperature of the fluid heated to the first temperature by the heating mechanism HE41 from decreasing as it flows through the first branch flow path L44.
  • the second branch flow path L45 branches off from the first branch flow path L44 between the treatment fluid supply unit 421 and the heating mechanism HE41.
  • the second branch flow path L45 merges with the first branch flow path L44 between the filter F41 and the on-off valve V50.
  • an on-off valve V44 In the second branch flow path L45, an on-off valve V44, a heating mechanism HE42, an on-off valve V46, and a filter F42 are provided in this order from upstream. Downstream of the heating mechanism HE42 in the second branch flow path L45, a line heater LH42 is provided. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the second branch flow path L45.
  • the on-off valve V44 is a valve that switches the flow of fluid on and off. When open, the on-off valve V44 allows fluid to flow to the downstream heating mechanism HE42, and when closed, it does not allow fluid to flow to the downstream heating mechanism HE42.
  • the heating mechanism HE42 heats the fluid supplied from the treatment fluid supply unit 421 to a second temperature and supplies the fluid at the second temperature downstream.
  • the second temperature is lower than the first temperature.
  • the second temperature may be, for example, 80°C or higher and 90°C or lower.
  • the on-off valve V46 is a valve that switches the flow of fluid on and off. When the on-off valve V46 is open, it allows fluid to flow to the downstream filter F42, and when it is closed, it does not allow fluid to flow to the downstream filter F42.
  • the filter F42 filters the fluid flowing through the second branch flow path L45 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during the drying process of the substrate W using the fluid.
  • the line heater LH42 heats the second branch flow path L45 downstream of the heating mechanism HE42.
  • the line heater LH42 prevents the temperature of the fluid heated to the second temperature by the heating mechanism HE42 from decreasing when it flows through the second branch flow path L45.
  • the first bypass flow path L46 connects a position between the on-off valve V45 and the filter F41 in the first branch flow path L44 and a position between the on-off valve V46 and the filter F42 in the second branch flow path L45.
  • An orifice OR43 is provided in the first bypass flow path L46.
  • a line heater LH43 is provided in the first bypass flow path L46. The first bypass flow path L46, the orifice OR43, and the line heater LH43 do not necessarily have to be provided.
  • the orifice OR43 has the function of reducing the flow rate of the fluid passing through the first bypass flow path L46 and adjusting the pressure.
  • the line heater LH43 heats the first bypass flow path L46.
  • the fluid heated to the second temperature by the heating mechanism HE42 is supplied into the processing vessel 411 through the second branch flow path L45.
  • the fluid whose flow rate has been reduced by the orifice OR43 flows from the second branch flow path L45 through the first bypass flow path L46 into the first branch flow path L44. This prevents backflow of the fluid from the junction of the first branch flow path L44 and the second branch flow path L45 toward the upstream of the first branch flow path L44. This makes it possible to suppress contamination of the first branch flow path L44, the filter F41, etc.
  • the on-off valve V46 is closed and the on-off valve V45 is opened, the fluid heated to the first temperature by the heating mechanism HE41 is supplied into the processing vessel 411 through the first branch flow path L44.
  • the fluid whose flow rate has been reduced by the orifice OR43, flows from the first branch flow path L44 through the first bypass flow path L46 into the second branch flow path L45. This prevents backflow of the fluid from the junction of the first branch flow path L44 and the second branch flow path L45 toward the upstream of the second branch flow path L45. This makes it possible to suppress contamination of the second branch flow path L45, the filter F42, etc.
  • the temperature of the fluid flowing through the processing vessel 411 can be changed. Furthermore, when both the on-off valves V45 and V46 are opened, the fluid heated to the first temperature by the heating mechanism HE41 and the fluid heated to the second temperature by the heating mechanism HE42 are mixed and supplied into the processing vessel 411. In this case, a fluid at an intermediate temperature between the first and second temperatures can be supplied into the processing vessel 411. In this way, by controlling the opening and closing of the on-off valves V45 and V46, the temperature of the fluid flowing through the processing vessel 411 can be changed in three stages.
  • the first discharge flow path L47 discharges the fluid in the first branch flow path L44.
  • the first discharge flow path L47 branches off from the first branch flow path L44 between the heating mechanism HE41 and the on-off valve V45.
  • the first discharge flow path L47 is provided with an on-off valve V47.
  • the first discharge flow path L47 is provided with a line heater LH44.
  • An orifice may be provided in the first discharge flow path L47.
  • the on-off valve V47 is a valve that switches the flow of fluid on and off. When open, the on-off valve V47 allows fluid to flow to the downstream first discharge flow path L47, and when closed, does not allow fluid to flow to the downstream first discharge flow path L47.
  • the line heater LH44 heats the first exhaust flow path L47.
  • the second discharge flow path L48 discharges the fluid in the second branch flow path L45.
  • the second discharge flow path L48 branches off from the second branch flow path L45 between the heating mechanism HE42 and the on-off valve V46.
  • the second discharge flow path L48 is provided with an on-off valve V48.
  • the second discharge flow path L48 is provided with a line heater LH45.
  • An orifice may be provided in the second discharge flow path L48.
  • the on-off valve V48 is a valve that switches the flow of fluid on and off. When open, the on-off valve V48 allows fluid to flow to the downstream second discharge flow path L48, and when closed, the on-off valve V48 does not allow fluid to flow to the downstream second discharge flow path L48.
  • the line heater LH45 heats the second exhaust flow path L48.
  • the third branch flow path L421 branches off from the first branch flow path L44 between the filter F41 and the on-off valve V50.
  • the third branch flow path L421 is connected to the bottom of the processing vessel 411.
  • the third branch flow path L421 supplies fluid from the bottom of the processing vessel 411 toward the substrate W.
  • An on-off valve V421 is provided in the third branch flow path L421.
  • a line heater LH421 is provided in the third branch flow path L421.
  • Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the third branch flow path L421.
  • the on-off valve V421 is a valve that switches the flow of fluid on and off. When open, the on-off valve V421 allows fluid to flow to the downstream processing vessel 411, and when closed, it does not allow fluid to flow to the downstream processing vessel 411.
  • the line heater LH421 heats the third branch flow path L421.
  • the line heater LH421 prevents the temperature of the fluid heated to the first temperature by the heating mechanism HE41 and the fluid heated to the second temperature by the heating mechanism HE42 from decreasing when they flow through the third branch flow path L421.
  • the second bypass flow path L422 connects a position downstream of the on-off valve V50 in the first branch flow path L44 to a position downstream of the on-off valve V421 in the third branch flow path L421.
  • An orifice OR422 is provided in the second bypass flow path L422.
  • a line heater LH422 is provided in the second bypass flow path L422.
  • the orifice OR422 has the function of reducing the flow rate of the fluid passing through the second bypass flow path L422 and adjusting the pressure.
  • the line heater LH422 heats the second bypass flow path L422.
  • the fluid is supplied into the processing vessel 411 through the third branch flow path L421.
  • the fluid whose flow rate has been reduced by the orifice OR422, flows from the third branch flow path L421 through the second bypass flow path L422 into the first branch flow path L44. This prevents backflow of the fluid from the processing vessel 411 toward the upstream of the first branch flow path L44. This makes it possible to suppress contamination of the first branch flow path L44 by IPA residue, etc.
  • the fluid is supplied into the processing vessel 411 through the first branch flow path L44.
  • the fluid whose flow rate has been reduced by the orifice OR422, flows from the first branch flow path L44 through the second bypass flow path L422 into the third branch flow path L421. This prevents backflow of the fluid from the processing vessel 411 toward the upstream of the third branch flow path L421. This makes it possible to suppress contamination of the third branch flow path L421 by IPA residue, etc.
  • the discharge section 43 has a discharge flow path L49.
  • the discharge flow path L49 is connected to the processing vessel 411.
  • a back pressure valve BV41 and an on-off valve V49 are provided in the discharge flow path L49, in that order from upstream.
  • a line heater LH46 is provided in the discharge flow path L49.
  • Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the discharge flow path L49.
  • the back pressure valve BV41, the on-off valve V49, and the line heater LH46 may be the same as the back pressure valve BV11, the on-off valve V17, and the line heater LH15, respectively.
  • control unit 44 receives measurement signals from various sensors and transmits control signals to various functional elements.
  • the control unit 44 is, for example, a computer, and includes a calculation unit 441 and a memory unit 442.
  • the calculation unit 441 and the memory unit 442 may be the same as the calculation unit 141 and the memory unit 142, respectively.
  • Fig. 23 is a view showing the substrate processing apparatus 50 according to the fifth embodiment.
  • the substrate processing apparatus 50 has a processing section 51, a fluid supply system 52, a discharge section 53, and a control section 54.
  • the processing section 51 may be the same as the processing section 11.
  • the processing section 51 has a processing vessel 511 and a holding plate 512.
  • the fluid supply system 52 has a processing fluid supply section 521 and a temperature adjustment section 522.
  • the treatment fluid supply unit 521 may be the same as the treatment fluid supply unit 121.
  • the treatment fluid supply unit 521 has a treatment fluid supply source S51, a first supply flow path L51, an on-off valve V51, an orifice OR51, a second supply flow path L52, an on-off valve V52, an orifice OR52, an inert gas supply source S52, a third supply flow path L53, and an on-off valve V53.
  • the temperature adjustment unit 522 is connected to the processing fluid supply unit 521 and the processing vessel 511.
  • the temperature adjustment unit 522 passes a temperature-adjusted fluid through the inside of the processing vessel 511.
  • the fluid includes a processing fluid and an inert gas.
  • the temperature adjustment unit 522 has a first branch flow path L54, a second branch flow path L55, a first bypass flow path L56, a first discharge flow path L57, a third branch flow path L521, and a second bypass flow path L522.
  • the first branch flow path L54 is connected to the side of the processing vessel 511.
  • the first branch flow path L54 supplies fluid from the side of the processing vessel 511 toward the substrate W.
  • a heating mechanism HE51, an on-off valve V55, a filter F51, and an on-off valve V60 are provided in the first branch flow path L54, in that order from upstream.
  • a line heater LH51 is provided downstream of the heating mechanism HE51 in the first branch flow path L54.
  • Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the first branch flow path L54.
  • a heating mechanism HE52 In the second branch flow path L55, a heating mechanism HE52, an on-off valve V56, and a filter F52 are provided in this order from upstream to downstream.
  • a line heater LH52 is provided downstream of the heating mechanism HE52 in the second branch flow path L55.
  • Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the second branch flow path L55.
  • the first branch flow path L54 branches off from the second branch flow path L55 between the heating mechanism HE52 and the on-off valve V56.
  • the second branch flow path L55 merges with the first branch flow path L54 between the filter F51 and the on-off valve V60.
  • the heating mechanism HE51 is provided in series with the heating mechanism HE52.
  • the heating mechanism HE51 heats the fluid supplied from the treatment fluid supply unit 521 to a first temperature and supplies the fluid at the first temperature downstream.
  • the first temperature may be, for example, 100°C or higher and 120°C or lower.
  • the on-off valve V55 is a valve that switches the flow of fluid on and off. When the on-off valve V55 is open, it allows fluid to flow to the downstream filter F51, and when it is closed, it does not allow fluid to flow to the downstream filter F51.
  • the filter F51 filters the fluid flowing through the first branch flow path L54 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during the drying process of the substrate W using the fluid.
  • the on-off valve V60 is a valve that switches the flow of fluid on and off. When open, the on-off valve V60 allows fluid to flow to the downstream processing vessel 511, and when closed, it does not allow fluid to flow to the downstream processing vessel 511.
  • the line heater LH51 heats the first branch flow path L54 downstream of the heating mechanism HE51.
  • the line heater LH51 prevents the temperature of the fluid heated to the first temperature by the heating mechanism HE51 from decreasing as it flows through the first branch flow path L54.
  • the heating mechanism HE52 heats the fluid supplied from the treatment fluid supply unit 521 to a second temperature and supplies the fluid at the second temperature downstream.
  • the second temperature is lower than the first temperature.
  • the second temperature may be, for example, 80°C or higher and 90°C or lower.
  • the on-off valve V56 is a valve that switches the flow of fluid on and off. When the on-off valve V56 is open, it allows fluid to flow to the downstream filter F52, and when it is closed, it does not allow fluid to flow to the downstream filter F52.
  • the filter F52 filters the fluid flowing through the second branch flow path L55 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during the drying process of the substrate W using the fluid.
  • the line heater LH52 heats the second branch flow path L55 downstream of the heating mechanism HE52.
  • the line heater LH52 prevents the temperature of the fluid heated to the second temperature by the heating mechanism HE52 from decreasing as it flows through the second branch flow path L55.
  • the first bypass flow path L56 connects a position between the on-off valve V55 and the filter F51 in the first branch flow path L54 and a position between the on-off valve V56 and the filter F52 in the second branch flow path L55.
  • An orifice OR53 is provided in the first bypass flow path L56.
  • a line heater LH53 is provided in the first bypass flow path L56.
  • the orifice OR53 has the function of reducing the flow rate of the fluid passing through the first bypass flow path L56 and adjusting the pressure.
  • the line heater LH53 heats the first bypass flow path L56.
  • the fluid heated to the second temperature by the heating mechanism HE52 is supplied into the processing vessel 511 through the second branch flow path L55.
  • the fluid whose flow rate has been reduced by the orifice OR53 flows from the second branch flow path L55 through the first bypass flow path L56 into the first branch flow path L54. This prevents backflow of the fluid from the junction of the first branch flow path L54 and the second branch flow path L55 toward the upstream of the first branch flow path L54. This makes it possible to suppress contamination of the first branch flow path L54, the filter F51, etc.
  • the on-off valve V56 is closed and the on-off valve V55 is opened, the fluid heated to the first temperature by the heating mechanism HE51 is supplied into the processing vessel 511 through the first branch flow path L54.
  • the fluid whose flow rate has been reduced by the orifice OR53, flows from the first branch flow path L54 through the first bypass flow path L56 into the second branch flow path L55. This prevents backflow of the fluid from the junction of the first branch flow path L54 and the second branch flow path L55 toward the upstream of the second branch flow path L55. This makes it possible to suppress contamination of the second branch flow path L55, the filter F52, etc.
  • the temperature of the fluid flowing through the processing vessel 511 can be changed. Furthermore, when both the on-off valves V55 and V56 are opened, the fluid heated to the first temperature by the heating mechanism HE51 and the fluid heated to the second temperature by the heating mechanism HE52 are mixed and supplied into the processing vessel 511. In this case, a fluid at an intermediate temperature between the first and second temperatures can be supplied into the processing vessel 511. In this way, by controlling the opening and closing of the on-off valves V55 and V56, the temperature of the fluid flowing through the processing vessel 511 can be changed in three stages.
  • the first discharge flow path L57 discharges the fluid in the first branch flow path L54.
  • the first discharge flow path L57 branches off from the first branch flow path L54 between the heating mechanism HE51 and the on-off valve V55.
  • the first discharge flow path L57 is provided with an on-off valve V54.
  • the first discharge flow path L57 is provided with a line heater LH54.
  • An orifice may be provided in the first discharge flow path L57.
  • the on-off valve V54 is a valve that switches the flow of fluid on and off. When open, the on-off valve V54 allows fluid to flow to the downstream first discharge flow path L57, and when closed, the on-off valve V54 does not allow fluid to flow to the downstream first discharge flow path L57.
  • the line heater LH54 heats the first exhaust flow path L57.
  • the third branch flow path L521 branches off from the first branch flow path L54 between the filter F51 and the on-off valve V60.
  • the third branch flow path L521 is connected to the bottom of the processing vessel 511.
  • the third branch flow path L521 supplies fluid from the bottom of the processing vessel 511 toward the substrate W.
  • An on-off valve V521 is provided in the third branch flow path L521.
  • a line heater LH521 is provided in the third branch flow path L521.
  • Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the third branch flow path L521.
  • the on-off valve V521 is a valve that switches the flow of fluid on and off. When open, the on-off valve V521 allows fluid to flow to the downstream processing vessel 511, and when closed, it does not allow fluid to flow to the downstream processing vessel 511.
  • the line heater LH521 heats the third branch flow path L521.
  • the line heater LH521 prevents the temperature of the fluid heated to the first temperature by the heating mechanism HE51 and the fluid heated to the second temperature by the heating mechanism HE52 from decreasing when they flow through the third branch flow path L521.
  • the second bypass flow path L522 connects a position downstream of the on-off valve V60 in the first branch flow path L54 to a position downstream of the on-off valve V521 in the third branch flow path L521.
  • An orifice OR522 is provided in the second bypass flow path L522.
  • a line heater LH522 is provided in the second bypass flow path L522.
  • the orifice OR522 has the function of reducing the flow rate of the fluid passing through the second bypass flow path L522 and adjusting the pressure.
  • the line heater LH522 heats the second bypass flow path L522.
  • the fluid is supplied into the processing vessel 511 through the third branch flow path L521.
  • the fluid whose flow rate has been reduced by the orifice OR522, flows from the third branch flow path L521 through the second bypass flow path L522 into the first branch flow path L54. This prevents backflow of the fluid from the processing vessel 511 toward the upstream of the first branch flow path L54. This makes it possible to suppress contamination of the first branch flow path L54 by IPA residue, etc.
  • the fluid is supplied into the processing vessel 511 through the first branch flow path L54.
  • the fluid whose flow rate has been reduced by the orifice OR522, flows from the first branch flow path L54 through the second bypass flow path L522 into the third branch flow path L521. This prevents backflow of the fluid from the processing vessel 511 toward the upstream of the third branch flow path L521. This makes it possible to suppress contamination of the third branch flow path L521 by IPA residue, etc.
  • the discharge section 53 has a discharge flow path L58.
  • the discharge flow path L58 is connected to the processing vessel 511.
  • a back pressure valve BV51 and an on-off valve V57 are provided in the discharge flow path L58, in that order from upstream.
  • a line heater LH55 is provided in the discharge flow path L58.
  • Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the discharge flow path L58.
  • the back pressure valve BV51, the on-off valve V57, and the line heater LH55 may be the same as the back pressure valve BV11, the on-off valve V17, and the line heater LH15, respectively.
  • control unit 54 receives measurement signals from various sensors and transmits control signals to various functional elements.
  • the control unit 54 is, for example, a computer, and includes a calculation unit 541 and a memory unit 542.
  • the calculation unit 541 and the memory unit 542 may be the same as the calculation unit 141 and the memory unit 142, respectively.
  • FIG. 24 is a view showing the substrate processing apparatus 60 according to the sixth embodiment.
  • the substrate processing apparatus 60 has a processing section 61, a fluid supply system 62, a discharge section 63, and a control section 64.
  • the processing section 61 may be the same as the processing section 11.
  • the processing section 61 has a processing vessel 611 and a holding plate 612.
  • the fluid supply system 62 has a treatment fluid supply unit 621A, a treatment fluid supply unit 621B, and a temperature adjustment unit 622.
  • the treatment fluid supply unit 621A and the treatment fluid supply unit 621B may be the same as the treatment fluid supply unit 221A and the treatment fluid supply unit 221B, respectively.
  • the treatment fluid supply unit 621A has a treatment fluid supply source S61A, a first supply flow path L61A, an on-off valve V61A, an orifice OR61A, an inert gas supply source S62A, a third supply flow path L63A, and an on-off valve V63A.
  • the treatment fluid supply unit 621B has a treatment fluid supply source S61B, a first supply flow path L61B, an on-off valve V61B, an orifice OR61B, a second supply flow path L62B, an on-off valve V62B, an orifice OR62B, an inert gas supply source S62B, a third supply flow path L63B, and an on-off valve V63B.
  • the temperature adjustment unit 622 is connected to the treatment fluid supply unit 621A, the treatment fluid supply unit 621B, and the treatment vessel 611.
  • the temperature adjustment unit 622 passes a temperature-adjusted fluid through the inside of the treatment vessel 611.
  • the fluid includes a treatment fluid and an inert gas.
  • the temperature adjustment unit 622 has a first branch flow path L64, a second branch flow path L65, a bypass flow path L66, a first exhaust flow path L67, a second exhaust flow path L68, and a third branch flow path L621.
  • the first branch flow path L64 is connected to the processing fluid supply unit 621A. Fluid is supplied to the first branch flow path L64 from the processing fluid supply unit 621A.
  • the first branch flow path L64 is connected to the side of the processing vessel 611.
  • the first branch flow path L64 supplies fluid from the side of the processing vessel 611 toward the substrate W.
  • the first branch flow path L64 is provided with a heating mechanism HE61, an on-off valve V65, a filter F61, and an on-off valve V70, in that order from upstream.
  • a line heater LH61 is provided downstream of the heating mechanism HE61 in the first branch flow path L64. Sensors such as temperature sensors and pressure sensors may be provided at various positions in the first branch flow path L64.
  • the heating mechanism HE61 is provided in parallel with the heating mechanism HE62.
  • the heating mechanism HE61 heats the fluid supplied from the treatment fluid supply unit 621A to a first temperature and supplies the fluid at the first temperature downstream.
  • the first temperature may be, for example, 100°C or higher and 120°C or lower.
  • the on-off valve V65 is a valve that switches the flow of fluid on and off. When the on-off valve V65 is open, it allows fluid to flow to the downstream filter F61, and when it is closed, it does not allow fluid to flow to the downstream filter F61.
  • the filter F61 filters the fluid flowing through the first branch flow path L64 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during the drying process of the substrate W using the fluid.
  • the on-off valve V70 is a valve that switches the flow of fluid on and off. When open, the on-off valve V70 allows fluid to flow to the downstream processing vessel 611, and when closed, it does not allow fluid to flow to the downstream processing vessel 611.
  • the line heater LH61 heats the first branch flow path L64 downstream of the heating mechanism HE61.
  • the line heater LH61 prevents the temperature of the fluid heated to the first temperature by the heating mechanism HE61 from decreasing as it flows through the first branch flow path L64.
  • the second branch flow path L65 is connected to the treatment fluid supply unit 621B. Fluid is supplied to the second branch flow path L65 from the treatment fluid supply unit 621B.
  • the second branch flow path L65 merges with the first branch flow path L64 between the filter F61 and the on-off valve V70.
  • the second branch flow path L65 is provided with a heating mechanism HE62, an on-off valve V66, and a filter F62, in that order from upstream.
  • a line heater LH62 is provided downstream of the heating mechanism HE62 in the second branch flow path L65. Sensors such as temperature sensors and pressure sensors may be provided at various positions in the second branch flow path L65.
  • the heating mechanism HE62 heats the fluid supplied from the treatment fluid supply unit 621B to a second temperature and supplies the fluid at the second temperature downstream.
  • the second temperature is lower than the first temperature.
  • the second temperature may be, for example, 80°C or higher and 90°C or lower.
  • the on-off valve V66 is a valve that switches the flow of fluid on and off. When the on-off valve V66 is open, it allows fluid to flow to the downstream filter F62, and when it is closed, it does not allow fluid to flow to the downstream filter F62.
  • the filter F62 filters the fluid flowing through the second branch flow path L65 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during the drying process of the substrate W using the fluid.
  • the line heater LH62 heats the second branch flow path L65 downstream of the heating mechanism HE62.
  • the line heater LH62 prevents the temperature of the fluid heated to the second temperature by the heating mechanism HE62 from decreasing when it flows through the second branch flow path L65.
  • the bypass flow path L66 connects a position between the on-off valve V65 and the filter F61 in the first branch flow path L64 and a position between the on-off valve V66 and the filter F62 in the second branch flow path L65.
  • An orifice OR63 is provided in the bypass flow path L66.
  • a line heater LH63 is provided in the bypass flow path L66.
  • the orifice OR63 has the function of reducing the flow rate of the fluid passing through the bypass flow path L66 and adjusting the pressure.
  • the line heater LH63 heats the bypass flow path L66.
  • the fluid heated to the second temperature by the heating mechanism HE62 is supplied into the processing vessel 611 through the second branch flow path L65.
  • the fluid whose flow rate has been reduced by the orifice OR63 flows from the second branch flow path L65 through the bypass flow path L66 into the first branch flow path L64. This prevents backflow of the fluid from the junction of the first branch flow path L64 and the second branch flow path L65 toward the upstream of the first branch flow path L64. This makes it possible to suppress contamination of the first branch flow path L64, the filter F61, etc.
  • the on-off valve V66 is closed and the on-off valve V65 is opened, the fluid heated to the first temperature by the heating mechanism HE61 is supplied into the processing vessel 611 through the first branch flow path L64.
  • the fluid whose flow rate has been reduced by the orifice OR63, flows from the first branch flow path L64 through the bypass flow path L66 into the second branch flow path L65. This prevents backflow of the fluid from the junction of the first branch flow path L64 and the second branch flow path L65 toward the upstream of the second branch flow path L65. This makes it possible to suppress contamination of the second branch flow path L65, the filter F62, etc.
  • the temperature of the fluid flowing through the processing vessel 611 can be changed. Furthermore, when both the on-off valves V65 and V66 are opened, the fluid heated to a first temperature by the heating mechanism HE61 and the fluid heated to a second temperature by the heating mechanism HE62 are mixed and supplied into the processing vessel 611. In this case, a fluid at an intermediate temperature between the first and second temperatures can be supplied into the processing vessel 611. In this way, by controlling the opening and closing of the on-off valves V65 and V66, the temperature of the fluid flowing through the processing vessel 611 can be changed in three stages.
  • the first discharge flow path L67 discharges the fluid in the first branch flow path L64.
  • the first discharge flow path L67 branches off from the first branch flow path L64 between the heating mechanism HE61 and the on-off valve V65.
  • the first discharge flow path L67 is provided with an on-off valve V67.
  • the first discharge flow path L67 is provided with a line heater LH64.
  • An orifice may be provided in the first discharge flow path L67.
  • the on-off valve V67 is a valve that switches the flow of fluid on and off. When open, the on-off valve V67 allows fluid to flow to the downstream first discharge flow path L67, and when closed, does not allow fluid to flow to the downstream first discharge flow path L67.
  • the line heater LH64 heats the first exhaust flow path L67.
  • the second discharge flow path L68 discharges the fluid in the second branch flow path L65.
  • the second discharge flow path L68 branches off from the second branch flow path L65 between the heating mechanism HE62 and the on-off valve V66.
  • the second discharge flow path L68 is provided with an on-off valve V68.
  • the second discharge flow path L68 is provided with a line heater LH65.
  • An orifice may be provided in the second discharge flow path L68.
  • the on-off valve V68 is a valve that switches the flow of fluid on and off. When open, the on-off valve V68 allows fluid to flow to the downstream second discharge flow path L68, and when closed, the on-off valve V68 does not allow fluid to flow to the downstream second discharge flow path L68.
  • the line heater LH65 heats the second exhaust flow path L68.
  • the third branch flow path L621 branches off from the first branch flow path L64 between the filter F61 and the on-off valve V70.
  • the third branch flow path L621 is connected to the bottom of the processing vessel 611.
  • the third branch flow path L621 supplies fluid from the bottom of the processing vessel 611 toward the substrate W.
  • An on-off valve V621 is provided in the third branch flow path L621.
  • a line heater LH621 is provided in the third branch flow path L621.
  • Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the third branch flow path L621.
  • the on-off valve V621 is a valve that switches the flow of fluid on and off. When open, the on-off valve V621 allows fluid to flow to the downstream processing vessel 611, and when closed, it does not allow fluid to flow to the downstream processing vessel 611.
  • the line heater LH621 heats the third branch flow path L621.
  • the line heater LH621 prevents the temperature of the fluid heated to the first temperature by the heating mechanism HE61 and the fluid heated to the second temperature by the heating mechanism HE62 from decreasing when they flow through the third branch flow path L621.
  • the fluid is supplied into the processing vessel 611 through the third branch flow path L621.
  • the on-off valve V621 is closed and the on-off valve V70 is opened, the fluid is supplied into the processing vessel 611 through the first branch flow path L64.
  • the discharge section 63 has a discharge flow path L69.
  • the discharge flow path L69 is connected to the processing vessel 611.
  • a back pressure valve BV61 and an on-off valve V69 are provided in the discharge flow path L69, in that order from upstream.
  • a line heater LH66 is provided in the discharge flow path L69.
  • Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the discharge flow path L69.
  • the back pressure valve BV61, the on-off valve V69, and the line heater LH66 may be the same as the back pressure valve BV11, the on-off valve V17, and the line heater LH15, respectively.
  • control unit 64 receives measurement signals from various sensors and transmits control signals to various functional elements.
  • the control unit 64 is, for example, a computer, and includes a calculation unit 641 and a memory unit 642.
  • the calculation unit 641 and the memory unit 642 may be the same as the calculation unit 141 and the memory unit 142, respectively.
  • the on-off valves V11 and V21 are an example of a first supply valve
  • the on-off valves V12 and V22 are an example of a second supply valve
  • the on-off valves V15 and V25 are an example of a first on-off valve
  • the on-off valves V16 and V26 are an example of a second on-off valve
  • the on-off valve V24 is an example of a third on-off valve.
  • the on-off valve V27 is an example of a first exhaust valve
  • the on-off valve V28 is an example of a second exhaust valve
  • the on-off valve V29 is an example of a third exhaust valve.
  • the heating mechanisms HE11 and HE21 are an example of a first heating mechanism, and the heating mechanisms HE12 and HE22 are an example of a second heating mechanism.
  • the orifices OR13 and OR23 are an example of a first throttle.
  • the first branch flow paths L14 and L24 and the second branch flow paths L15 and L25 are an example of a fluid supply path.
  • REFERENCE SIGNS LIST 10 20 Substrate processing apparatus 11, 21 Processing section 111, 211 Processing vessel 12, 22 Fluid supply system 121, 221 Processing fluid supply section 122, 222 Temperature adjustment section HE11, HE21 Heating mechanism HE12, HE22 Heating mechanism L14, L24 First branch flow path L15, L25 Second branch flow path V11, V21 Opening/closing valve V12, V22 Opening/closing valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

A fluid supply system according to one aspect of the present disclosure supplies a fluid into a processing container in which a substrate is to be processed, said fluid supply system comprising: a processing fluid supply unit that supplies a processing fluid; a fluid supply path that is connected to the processing fluid supply unit and the processing container and that causes the processing fluid the temperature of which has been adjusted to flow into the processing container; a first heating mechanism that is provided to the fluid supply path and that heats the processing fluid to a first temperature; and a second heating mechanism that is provided to the fluid supply path and that heats the processing fluid to a second temperature which is lower than the first temperature, wherein the processing fluid supply unit has a flow rate adjustment mechanism that adjusts the flow rate of the processing fluid, and the fluid supply path has a first branch flow path that causes the processing fluid to pass through the first heating mechanism and flow into the processing container, and a second branch flow path that causes the processing fluid to pass through the second heating mechanism and flow into the processing container.

Description

流体供給システム、基板処理装置及び基板処理方法FLUID SUPPLY SYSTEM, SUBSTRATE PROCESSING APPARATUS, AND SUBSTRATE PROCESSING METHOD
 本開示は、流体供給システム、基板処理装置及び基板処理方法に関する。 The present disclosure relates to a fluid supply system, a substrate processing apparatus, and a substrate processing method.
 超臨界流体を利用して基板を乾燥させる技術が知られている。特許文献1には、基板に供給される超臨界流体の温度を切り替える構成が開示されている。 Technology is known for drying substrates using supercritical fluids. Patent Document 1 discloses a configuration for switching the temperature of the supercritical fluid supplied to the substrate.
特開2021-086857号公報JP 2021-086857 A
 本開示は、制御された流量及び温度の処理流体を供給できる技術を提供する。 The present disclosure provides technology that can provide a process fluid at a controlled flow rate and temperature.
 本開示の一態様による流体供給システムは、内部で基板が処理される処理容器内に流体を供給する流体供給システムであって、処理流体を供給する処理流体供給部と、前記処理流体供給部と前記処理容器とに接続され、温度が調整された処理流体を前記処理容器内に通流させる流体供給路と、前記流体供給路に設けられ、前記処理流体を第1温度に加熱する第1加熱機構と、前記流体供給路に設けられ、前記処理流体を前記第1温度よりも低い第2温度に加熱する第2加熱機構と、を有し、前記処理流体供給部は、前記処理流体の流量を調整する流量調整機構を有し、前記流体供給路は、前記第1加熱機構を通って前記処理容器内に前記処理流体を通流させる第1分岐流路と、前記第2加熱機構を通って前記処理容器内に前記処理流体を通流させる第2分岐流路と、を有する。 A fluid supply system according to one aspect of the present disclosure is a fluid supply system that supplies a fluid into a processing vessel in which a substrate is processed, and includes a processing fluid supply unit that supplies a processing fluid, a fluid supply path that is connected to the processing fluid supply unit and the processing vessel and that flows a temperature-adjusted processing fluid into the processing vessel, a first heating mechanism that is provided in the fluid supply path and that heats the processing fluid to a first temperature, and a second heating mechanism that is provided in the fluid supply path and that heats the processing fluid to a second temperature that is lower than the first temperature, the processing fluid supply unit has a flow rate adjustment mechanism that adjusts the flow rate of the processing fluid, and the fluid supply path has a first branch flow path that flows the processing fluid into the processing vessel through the first heating mechanism, and a second branch flow path that flows the processing fluid into the processing vessel through the second heating mechanism.
 本開示によれば、制御された流量及び温度の処理流体を供給できる。 The present disclosure allows for the supply of treatment fluid at a controlled flow rate and temperature.
図1は、第1実施形態に係る基板処理装置を示す図である。FIG. 1 is a diagram showing a substrate processing apparatus according to a first embodiment. 図2は、第1実施形態に係る基板処理方法を示すタイミングチャートである。FIG. 2 is a timing chart showing the substrate processing method according to the first embodiment. 図3は、第1実施形態に係る基板処理方法を示す図(1)である。FIG. 3 is a diagram (1) showing the substrate processing method according to the first embodiment. 図4は、第1実施形態に係る基板処理方法を示す図(2)である。FIG. 4 is a diagram (2) showing the substrate processing method according to the first embodiment. 図5は、第1実施形態に係る基板処理方法を示す図(3)である。FIG. 5 is a view (3) showing the substrate processing method according to the first embodiment. 図6は、第1実施形態に係る基板処理方法を示す図(4)である。FIG. 6 is a diagram (4) showing the substrate processing method according to the first embodiment. 図7は、第1実施形態に係る基板処理方法を示す図(5)である。FIG. 7 is a diagram (5) showing the substrate processing method according to the first embodiment. 図8は、第1実施形態に係る基板処理方法を示す図(6)である。FIG. 8 is a diagram (6) showing the substrate processing method according to the first embodiment. 図9は、第1実施形態に係る基板処理方法を示す図(7)である。FIG. 9 is a diagram (7) showing the substrate processing method according to the first embodiment. 図10は、第2実施形態に係る基板処理装置を示す図である。FIG. 10 is a diagram showing a substrate processing apparatus according to the second embodiment. 図11は、第2実施形態に係る基板処理方法を示すタイミングチャートである。FIG. 11 is a timing chart showing the substrate processing method according to the second embodiment. 図12は、第2実施形態に係る基板処理方法を示す図(1)である。FIG. 12 is a diagram (1) showing a substrate processing method according to the second embodiment. 図13は、第2実施形態に係る基板処理方法を示す図(2)である。FIG. 13 is a diagram showing a substrate processing method according to the second embodiment. 図14は、第2実施形態に係る基板処理方法を示す図(3)である。FIG. 14 is a view (3) showing the substrate processing method according to the second embodiment. 図15は、第2実施形態に係る基板処理方法を示す図(4)である。FIG. 15 is a diagram (4) showing the substrate processing method according to the second embodiment. 図16は、第2実施形態に係る基板処理方法を示す図(5)である。FIG. 16 is a diagram (5) showing the substrate processing method according to the second embodiment. 図17は、第2実施形態に係る基板処理方法を示す図(6)である。FIG. 17 is a diagram (6) showing the substrate processing method according to the second embodiment. 図18は、第2実施形態に係る基板処理方法を示す図(7)である。FIG. 18 is a diagram (7) showing the substrate processing method according to the second embodiment. 図19は、第2実施形態の第1変形例に係る基板処理装置を示す図である。FIG. 19 is a diagram showing a substrate processing apparatus according to a first modified example of the second embodiment. 図20は、第2実施形態の第2変形例に係る基板処理装置を示す図である。FIG. 20 is a diagram showing a substrate processing apparatus according to a second modified example of the second embodiment. 図21は、第3実施形態に係る基板処理装置を示す図である。FIG. 21 is a diagram showing a substrate processing apparatus according to the third embodiment. 図22は、第4実施形態に係る基板処理装置を示す図である。FIG. 22 is a view showing a substrate processing apparatus according to the fourth embodiment. 図23は、第5実施形態に係る基板処理装置を示す図である。FIG. 23 is a view showing a substrate processing apparatus according to the fifth embodiment. 図24は、第6実施形態に係る基板処理装置を示す図である。FIG. 24 is a diagram showing a substrate processing apparatus according to the sixth embodiment.
 以下、添付の図面を参照しながら、本開示の限定的でない例示の実施形態について説明する。添付の全図面中、同一又は対応する部材又は部品については、同一又は対応する参照符号を付し、重複する説明を省略する。 Below, non-limiting exemplary embodiments of the present disclosure will be described with reference to the attached drawings. In all of the attached drawings, the same or corresponding members or parts are designated by the same or corresponding reference symbols, and duplicate descriptions will be omitted.
 〔第1実施形態〕
 (基板処理装置)
 図1を参照し、第1実施形態に係る基板処理装置10について説明する。図1は、第1実施形態に係る基板処理装置10を示す図である。
First Embodiment
(Substrate Processing Apparatus)
A substrate processing apparatus 10 according to a first embodiment will be described with reference to Fig. 1. Fig. 1 is a diagram showing the substrate processing apparatus 10 according to the first embodiment.
 基板処理装置10は、処理部11と、流体供給システム12と、排出部13と、制御部14とを有する。 The substrate processing apparatus 10 has a processing section 11, a fluid supply system 12, a discharge section 13, and a control section 14.
 処理部11は、処理容器111と、保持板112とを有する。処理容器111は、例えば直径300mmの基板Wを収容可能な処理空間が内部に形成された容器である。基板Wは、例えば半導体ウエハであってよい。保持板112は、処理容器111の内部に設けられる。保持板112は、基板Wを水平に保持する。処理部11は、処理容器111の内部の圧力を検出する圧力センサと、処理容器111の内部の温度を検出する温度センサとを有してもよい。 The processing section 11 has a processing vessel 111 and a holding plate 112. The processing vessel 111 is a vessel in which a processing space capable of accommodating a substrate W having a diameter of, for example, 300 mm is formed. The substrate W may be, for example, a semiconductor wafer. The holding plate 112 is provided inside the processing vessel 111. The holding plate 112 holds the substrate W horizontally. The processing section 11 may have a pressure sensor that detects the pressure inside the processing vessel 111 and a temperature sensor that detects the temperature inside the processing vessel 111.
 流体供給システム12は、処理流体供給部121と、温度調整部122とを有する。 The fluid supply system 12 has a treatment fluid supply section 121 and a temperature adjustment section 122.
 処理流体供給部121は、処理流体供給源S11と、第1供給流路L11と、開閉弁V11と、オリフィスOR11と、第2供給流路L12と、開閉弁V12と、オリフィスOR12と、不活性ガス供給源S12と、第3供給流路L13と、開閉弁V13とを有する。 The treatment fluid supply unit 121 has a treatment fluid supply source S11, a first supply flow path L11, an on-off valve V11, an orifice OR11, a second supply flow path L12, an on-off valve V12, an orifice OR12, an inert gas supply source S12, a third supply flow path L13, and an on-off valve V13.
 処理流体供給源S11は、処理流体の供給源である。処理流体は、例えば液体状態の二酸化炭素(CO)であってよい。 The process fluid supply source S11 is a supply source of a process fluid, which may be, for example, carbon dioxide (CO 2 ) in a liquid state.
 第1供給流路L11は、上流が処理流体供給源S11に接続され、下流が温度調整部122に接続される。第1供給流路L11には、開閉弁V11及びオリフィスOR11が、上流から順に設けられる。 The first supply flow path L11 is connected to the treatment fluid supply source S11 at its upstream side and to the temperature adjustment unit 122 at its downstream side. An on-off valve V11 and an orifice OR11 are provided in the first supply flow path L11 in this order from upstream.
 開閉弁V11は、処理流体の流れのオン及びオフを切り換えるバルブである。開閉弁V11は、開状態では下流の温度調整部122に処理流体を流し、閉状態では下流の温度調整部122に処理流体を流さない。 The on-off valve V11 is a valve that switches the flow of the processing fluid on and off. When the on-off valve V11 is open, it allows the processing fluid to flow to the downstream temperature adjustment unit 122, and when it is closed, it does not allow the processing fluid to flow to the downstream temperature adjustment unit 122.
 オリフィスOR11は、液体状態の処理流体の流速を低下させ、圧力を調整する機能を有する。オリフィスOR11は、圧力が調整された処理流体を下流の温度調整部122に通流させる。 The orifice OR11 has the function of reducing the flow rate of the liquid processing fluid and adjusting the pressure. The orifice OR11 passes the pressure-adjusted processing fluid through the downstream temperature adjustment section 122.
 第2供給流路L12は、第1供給流路L11と並列に設けられる。第2供給流路L12は、開閉弁V11の上流において第1供給流路L11から分岐し、オリフィスOR11の下流において第1供給流路L11と合流する。第2供給流路L12には、開閉弁V12及びオリフィスOR12が、上流から順に設けられる。 The second supply flow path L12 is provided in parallel with the first supply flow path L11. The second supply flow path L12 branches off from the first supply flow path L11 upstream of the on-off valve V11 and merges with the first supply flow path L11 downstream of the orifice OR11. The on-off valve V12 and the orifice OR12 are provided in the second supply flow path L12 in this order from upstream.
 開閉弁V12は、処理流体の流れのオン及びオフを切り換えるバルブである。開閉弁V12は、開状態では下流の温度調整部122に処理流体を流し、閉状態では下流の温度調整部122に処理流体を流さない。 The on-off valve V12 is a valve that switches the flow of the processing fluid on and off. When the on-off valve V12 is open, it allows the processing fluid to flow to the downstream temperature adjustment unit 122, and when it is closed, it does not allow the processing fluid to flow to the downstream temperature adjustment unit 122.
 オリフィスOR12は、液体状態の処理流体の流速を低下させ、圧力を調整する機能を有する。オリフィスOR12は、圧力が調整された処理流体を下流の温度調整部122に通流させる。 The orifice OR12 has the function of reducing the flow rate of the liquid processing fluid and adjusting the pressure. The orifice OR12 passes the pressure-adjusted processing fluid through the downstream temperature adjustment section 122.
 不活性ガス供給源S12は、不活性ガスの供給源である。不活性ガスは、例えば窒素(N)ガスであってよい。 The inert gas supply source S12 is a supply source of an inert gas, which may be, for example, nitrogen (N 2 ) gas.
 第3供給流路L13は、上流が不活性ガス供給源S12に接続され、下流がオリフィスOR11の下流において第1供給流路L11と合流する。第3供給流路L13には、開閉弁V13が設けられる。第3供給流路L13には、チェック弁、フィルタなどが設けられてもよい。 The third supply flow path L13 is connected to the inert gas supply source S12 at its upstream end, and merges with the first supply flow path L11 downstream of the orifice OR11 at its downstream end. An on-off valve V13 is provided in the third supply flow path L13. A check valve, a filter, etc. may also be provided in the third supply flow path L13.
 開閉弁V13は、不活性ガスの流れのオン及びオフを切り換えるバルブである。開閉弁V13は、開状態では下流の温度調整部122に不活性ガスを流し、閉状態では下流の温度調整部122に不活性ガスを流さない。 The on-off valve V13 is a valve that switches the flow of inert gas on and off. When open, the on-off valve V13 allows inert gas to flow to the downstream temperature adjustment unit 122, and when closed, the on-off valve V13 does not allow inert gas to flow to the downstream temperature adjustment unit 122.
 温度調整部122は、処理流体供給部121と処理容器111とに接続される。温度調整部122は、温度が調整された流体を処理容器111の内部に通流させる。流体は、処理流体と不活性ガスとを含む。温度調整部122は、第1分岐流路L14と、第2分岐流路L15、バイパス流路L16と、第1排出流路L17とを有する。 The temperature adjustment unit 122 is connected to the processing fluid supply unit 121 and the processing vessel 111. The temperature adjustment unit 122 passes a temperature-adjusted fluid through the inside of the processing vessel 111. The fluid includes a processing fluid and an inert gas. The temperature adjustment unit 122 has a first branch flow path L14, a second branch flow path L15, a bypass flow path L16, and a first discharge flow path L17.
 第1分岐流路L14には、加熱機構HE11、開閉弁V15、フィルタF11及び温度センサT11が、上流から順に設けられる。第1分岐流路L14における加熱機構HE11の下流には、ラインヒータLH11が設けられる。第1分岐流路L14の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 In the first branch flow path L14, a heating mechanism HE11, an on-off valve V15, a filter F11, and a temperature sensor T11 are provided in this order from upstream to downstream. A line heater LH11 is provided downstream of the heating mechanism HE11 in the first branch flow path L14. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the first branch flow path L14.
 第2分岐流路L15には、加熱機構HE12、開閉弁V16及びフィルタF12が、上流から順に設けられる。第2分岐流路L15における加熱機構HE12の下流には、ラインヒータLH12が設けられる。第2分岐流路L15の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 In the second branch flow path L15, a heating mechanism HE12, an on-off valve V16, and a filter F12 are provided in this order from upstream to downstream. A line heater LH12 is provided downstream of the heating mechanism HE12 in the second branch flow path L15. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the second branch flow path L15.
 第1分岐流路L14は、加熱機構HE12と開閉弁V16との間において第2分岐流路L15から分岐する。第2分岐流路L15は、処理容器111の直前で第1分岐流路L14と合流する。 The first branch flow path L14 branches off from the second branch flow path L15 between the heating mechanism HE12 and the on-off valve V16. The second branch flow path L15 merges with the first branch flow path L14 immediately before the processing vessel 111.
 加熱機構HE11は、加熱機構HE12と直列に設けられる。加熱機構HE11は、処理流体供給部121から供給される流体を第1温度に加熱し、第1温度の流体を下流に供給する。第1温度は、例えば100℃以上120℃以下であってよい。 The heating mechanism HE11 is provided in series with the heating mechanism HE12. The heating mechanism HE11 heats the fluid supplied from the treatment fluid supply unit 121 to a first temperature and supplies the fluid at the first temperature downstream. The first temperature may be, for example, 100°C or higher and 120°C or lower.
 開閉弁V15は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V15は、開状態では下流の処理容器111に流体を流し、閉状態では下流の処理容器111に流体を流さない。 The on-off valve V15 is a valve that switches the flow of fluid on and off. When open, the on-off valve V15 allows fluid to flow to the downstream processing vessel 111, and when closed, it does not allow fluid to flow to the downstream processing vessel 111.
 フィルタF11は、第1分岐流路L14内を流れる流体を濾過し、流体に含まれる異物を取り除く。これにより、流体を用いた基板処理の際に、基板Wの表面にパーティクルが発生することを抑制できる。 The filter F11 filters the fluid flowing through the first branch flow path L14 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during substrate processing using the fluid.
 温度センサT11は、第1分岐流路L14における第2分岐流路L15との合流部の下流に設けられる。温度センサT11は、例えば処理容器111の直前に設けられる。温度センサT11は、第1分岐流路L14内を流れる流体の温度を検出する。 The temperature sensor T11 is provided downstream of the junction of the first branch flow path L14 with the second branch flow path L15. The temperature sensor T11 is provided, for example, immediately before the processing vessel 111. The temperature sensor T11 detects the temperature of the fluid flowing in the first branch flow path L14.
 ラインヒータLH11は、加熱機構HE11の下流の第1分岐流路L14を加熱する。ラインヒータLH11は、加熱機構HE11により第1温度に加熱された流体が第1分岐流路L14を流れる際に温度低下することを抑制する。 The line heater LH11 heats the first branch flow path L14 downstream of the heating mechanism HE11. The line heater LH11 prevents the temperature of the fluid heated to the first temperature by the heating mechanism HE11 from decreasing as it flows through the first branch flow path L14.
 加熱機構HE12は、処理流体供給部121から供給される流体を第2温度に加熱し、第2温度の流体を下流に供給する。第2温度は、第1温度よりも低い温度である。第2温度は、例えば80℃以上90℃以下であってよい。 The heating mechanism HE12 heats the fluid supplied from the treatment fluid supply unit 121 to a second temperature and supplies the fluid at the second temperature downstream. The second temperature is lower than the first temperature. The second temperature may be, for example, 80°C or higher and 90°C or lower.
 開閉弁V16は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V16は、開状態では下流の処理容器111に流体を流し、閉状態では下流の処理容器111に流体を流さない。 The on-off valve V16 is a valve that switches the flow of fluid on and off. When open, the on-off valve V16 allows fluid to flow to the downstream processing vessel 111, and when closed, the on-off valve V16 does not allow fluid to flow to the downstream processing vessel 111.
 フィルタF12は、第2分岐流路L15内を流れる流体を濾過し、流体に含まれる異物を取り除く。これにより、流体を用いた基板処理の際に、基板Wの表面にパーティクルが発生することを抑制できる。 The filter F12 filters the fluid flowing through the second branch flow path L15 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during substrate processing using the fluid.
 ラインヒータLH12は、加熱機構HE12の下流の第2分岐流路L15を加熱する。ラインヒータLH12は、加熱機構HE12により第2温度に加熱された流体が第2分岐流路L15を流れる際に温度低下することを抑制する。 The line heater LH12 heats the second branch flow path L15 downstream of the heating mechanism HE12. The line heater LH12 prevents the temperature of the fluid heated to the second temperature by the heating mechanism HE12 from decreasing as it flows through the second branch flow path L15.
 係る温度調整部122において、開閉弁V15を閉じると共に開閉弁V16を開くと、加熱機構HE12で第2温度に加熱された流体が第2分岐流路L15を通って処理容器111内に供給される。また、開閉弁V16を閉じると共に開閉弁V15を開くと、加熱機構HE12で第2温度に加熱された後に加熱機構HE11で第1温度に加熱された流体が第1分岐流路L14を通って処理容器111内に供給される。このように、開閉弁V15と開閉弁V16とを排他的に開閉することにより、処理容器111内に通流させる流体の温度を変更できる。また、開閉弁V15と開閉弁V16の両方を開くと、加熱機構HE11で第1温度に加熱された流体と加熱機構HE12で第2温度に加熱された流体とが混合されて処理容器111内に供給される。この場合、第1温度と第2温度との中間温度の流体を処理容器111内に供給できる。このように、開閉弁V15及び開閉弁V16の開閉を制御することにより、処理容器111内に通流させる流体の温度を3段階に変更できる。 In the temperature adjustment unit 122, when the on-off valve V15 is closed and the on-off valve V16 is opened, the fluid heated to the second temperature by the heating mechanism HE12 is supplied into the processing vessel 111 through the second branch flow path L15. When the on-off valve V16 is closed and the on-off valve V15 is opened, the fluid heated to the second temperature by the heating mechanism HE12 and then heated to the first temperature by the heating mechanism HE11 is supplied into the processing vessel 111 through the first branch flow path L14. In this way, the on-off valve V15 and the on-off valve V16 are exclusively opened and closed to change the temperature of the fluid flowing through the processing vessel 111. When both the on-off valve V15 and the on-off valve V16 are opened, the fluid heated to the first temperature by the heating mechanism HE11 and the fluid heated to the second temperature by the heating mechanism HE12 are mixed and supplied into the processing vessel 111. In this case, a fluid at an intermediate temperature between the first temperature and the second temperature can be supplied into the processing vessel 111. In this way, by controlling the opening and closing of on-off valves V15 and V16, the temperature of the fluid flowing through the processing vessel 111 can be changed in three stages.
 バイパス流路L16は、第1分岐流路L14における開閉弁V15とフィルタF11との間の位置と、第2分岐流路L15における開閉弁V16とフィルタF12との間の位置とを連通させる。バイパス流路L16には、オリフィスOR13が設けられる。バイパス流路L16には、ラインヒータLH13が設けられる。バイパス流路L16、オリフィスOR13及びラインヒータLH13は、設けられなくてもよい。 The bypass flow path L16 connects a position between the on-off valve V15 and the filter F11 in the first branch flow path L14 and a position between the on-off valve V16 and the filter F12 in the second branch flow path L15. An orifice OR13 is provided in the bypass flow path L16. A line heater LH13 is provided in the bypass flow path L16. The bypass flow path L16, the orifice OR13, and the line heater LH13 do not necessarily have to be provided.
 オリフィスOR13は、バイパス流路L16を通流する流体の流速を低下させ、圧力を調整する機能を有する。 The orifice OR13 has the function of reducing the flow rate of the fluid passing through the bypass flow path L16 and adjusting the pressure.
 ラインヒータLH13は、バイパス流路L16を加熱する。 The line heater LH13 heats the bypass flow path L16.
 第1排出流路L17は、第1分岐流路L14内の流体を排出する。第1排出流路L17は、加熱機構HE11と開閉弁V15との間において第1分岐流路L14から分岐する。第1排出流路L17には、開閉弁V14が設けられる。第1排出流路L17には、ラインヒータLH14が設けられる。第1排出流路L17には、オリフィスが設けられてもよい。 The first discharge flow path L17 discharges the fluid in the first branch flow path L14. The first discharge flow path L17 branches off from the first branch flow path L14 between the heating mechanism HE11 and the on-off valve V15. The first discharge flow path L17 is provided with an on-off valve V14. The first discharge flow path L17 is provided with a line heater LH14. An orifice may be provided in the first discharge flow path L17.
 開閉弁V14は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V14は、開状態では下流の第1排出流路L17に流体を流し、閉状態では下流の第1排出流路L17に流体を流さない。 The on-off valve V14 is a valve that switches the flow of fluid on and off. When open, the on-off valve V14 allows fluid to flow to the downstream first discharge flow path L17, and when closed, the on-off valve V14 does not allow fluid to flow to the downstream first discharge flow path L17.
 ラインヒータLH14は、第1排出流路L17を加熱する。 The line heater LH14 heats the first exhaust flow path L17.
 排出部13は、排出流路L18を有する。排出流路L18は、処理容器111に接続される。排出流路L18には、圧力センサP11、背圧弁BV11及び開閉弁V17が、上流から順に設けられる。排出流路L18には、ラインヒータLH15が設けられる。排出流路L18の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 The discharge section 13 has a discharge flow path L18. The discharge flow path L18 is connected to the processing vessel 111. A pressure sensor P11, a back pressure valve BV11, and an on-off valve V17 are provided in the discharge flow path L18, in that order from upstream. A line heater LH15 is provided in the discharge flow path L18. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the discharge flow path L18.
 圧力センサP11は、処理容器111の直後で排出流路L18を流れる流体の圧力を検出する。これにより、処理容器111の内部の圧力を検出できる。 The pressure sensor P11 detects the pressure of the fluid flowing through the discharge flow path L18 immediately after the processing vessel 111. This allows the pressure inside the processing vessel 111 to be detected.
 背圧弁BV11は、排出流路L18の一次側圧力が設定圧力を超えた場合には弁開度を調整して二次側に流体を流すことにより、一次側圧力を設定圧力に維持する。例えば、背圧弁BV11の設定圧力は、制御部14により調整される。 When the primary pressure of the exhaust flow path L18 exceeds the set pressure, the back pressure valve BV11 adjusts the valve opening to allow fluid to flow to the secondary side, thereby maintaining the primary pressure at the set pressure. For example, the set pressure of the back pressure valve BV11 is adjusted by the control unit 14.
 開閉弁V17は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V17は、開状態では下流の排出流路L18に流体を流し、閉状態では下流の排出流路L18に流体を流さない。 The on-off valve V17 is a valve that switches the flow of fluid on and off. When open, the on-off valve V17 allows fluid to flow to the downstream discharge flow path L18, and when closed, it does not allow fluid to flow to the downstream discharge flow path L18.
 ラインヒータLH15は、排出流路L18を加熱する。 The line heater LH15 heats the exhaust flow path L18.
 制御部14は、各種のセンサ(温度センサT11、圧力センサP11など)から計測信号を受信し、各種機能要素に制御信号を送信する。制御信号は、例えば開閉弁V11から開閉弁V17の開閉信号、背圧弁BV11の設定圧力信号、ラインヒータLH11からラインヒータLH15の温度信号を含む。例えば、制御部14は、処理容器111内の基板Wの処理状態に応じて、開閉弁V11及び開閉弁V12の開閉を制御することにより、処理容器111内に通流させる流体の流量を変更するように構成される。例えば、制御部14は、処理容器111内の基板Wの処理状態に応じて、開閉弁V15及び開閉弁V16の開閉を制御することにより、処理容器111内に通流させる流体の温度を変更するように構成される。 The control unit 14 receives measurement signals from various sensors (such as temperature sensor T11 and pressure sensor P11) and transmits control signals to various functional elements. The control signals include, for example, opening and closing signals of the on-off valves V11 to V17, a set pressure signal of the back pressure valve BV11, and temperature signals of the line heaters LH11 to LH15. For example, the control unit 14 is configured to change the flow rate of the fluid flowing through the processing vessel 111 by controlling the opening and closing of the on-off valves V11 and V12 in accordance with the processing state of the substrate W in the processing vessel 111. For example, the control unit 14 is configured to change the temperature of the fluid flowing through the processing vessel 111 by controlling the opening and closing of the on-off valves V15 and V16 in accordance with the processing state of the substrate W in the processing vessel 111.
 制御部14は、例えばコンピュータであり、演算部141と記憶部142とを備える。記憶部142には、基板処理装置10において実行される各種の処理を制御するプログラムが格納される。演算部141は、記憶部142に記憶されたプログラムを読み出して実行することによって基板処理装置10の動作を制御する。プログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御部14の記憶部142にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。 The control unit 14 is, for example, a computer, and includes an arithmetic unit 141 and a memory unit 142. The memory unit 142 stores programs that control various processes executed in the substrate processing apparatus 10. The arithmetic unit 141 controls the operation of the substrate processing apparatus 10 by reading and executing the programs stored in the memory unit 142. The programs may be recorded in a computer-readable storage medium and installed from the storage medium into the storage unit 142 of the control unit 14. Examples of computer-readable storage media include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
 (基板処理方法)
 図2から図9を参照し、基板処理装置10を用いて実行される基板処理方法について説明する。以下に示される基板処理方法は、記憶部142に記憶された処理レシピ及び制御プログラムに基づいて、制御部14の制御の下で、自動的に実行される。
(Substrate Processing Method)
2 to 9, a substrate processing method executed by the substrate processing apparatus 10 will be described. The substrate processing method described below is automatically executed under the control of the controller 14 based on a processing recipe and a control program stored in the storage unit 142.
 図2は、第1実施形態に係る基板処理方法を示すタイミングチャートである。図2において、下図は開閉弁V11、V12、V13、V14、V15、V16、V17の開閉タイミングを示し、上図は該開閉タイミングと対応する圧力センサP11の検出値(圧力)の変化を示す。 FIG. 2 is a timing chart showing the substrate processing method according to the first embodiment. In FIG. 2, the lower diagram shows the opening and closing timing of on-off valves V11, V12, V13, V14, V15, V16, and V17, and the upper diagram shows the change in the detection value (pressure) of pressure sensor P11 corresponding to the opening and closing timing.
 図3から図9は、第1実施形態に係る基板処理方法を示す図である。図3から図9において、開状態の開閉弁を黒塗りで示し、閉状態の開閉弁を白抜きで示す。図3から図9において、流体が通流する流路を太い実線で示す。 FIGS. 3 to 9 are diagrams illustrating the substrate processing method according to the first embodiment. In FIG. 3 to FIG. 9, open valves are shown in black, and closed valves are shown in white. In FIG. 3 to FIG. 9, the flow paths through which the fluid flows are shown by thick solid lines.
 <待機工程>
 待機工程では、処理部11、流体供給システム12及び排出部13に不活性ガスが供給される。不活性ガスは、例えばNガスであってよい。具体的には、図3に示されるように、開閉弁V13、V15、V16、V17が開状態とされ、開閉弁V11、V12、V14が閉状態とされる。これにより、不活性ガス供給源S12から第1分岐流路L14に導かれた不活性ガスは、加熱機構HE11で第1温度に加熱されて処理容器111内に供給される。また、不活性ガス供給源S12から第2分岐流路L15に導かれた不活性ガスは、加熱機構HE12で第2温度に加熱されて処理容器111内に供給される。このため、第1分岐流路L14及び第2分岐流路L15が不活性ガスによりパージされると共に加熱されるので、待機工程の後に行われる1枚目の基板Wの処理温度が、2枚目以降の基板Wの処理温度とほぼ同じになる。その結果、基板W間での処理温度のばらつきが抑制される。待機工程では、処理容器111内から排出流路L18を介して不活性ガスが排出される。
<Waiting process>
In the standby step, an inert gas is supplied to the processing section 11, the fluid supply system 12, and the exhaust section 13. The inert gas may be, for example, N2 gas. Specifically, as shown in FIG. 3, the on-off valves V13, V15, V16, and V17 are opened, and the on-off valves V11, V12, and V14 are closed. As a result, the inert gas guided from the inert gas supply source S12 to the first branch flow path L14 is heated to a first temperature by the heating mechanism HE11 and supplied into the processing vessel 111. Also, the inert gas guided from the inert gas supply source S12 to the second branch flow path L15 is heated to a second temperature by the heating mechanism HE12 and supplied into the processing vessel 111. Therefore, the first branch flow path L14 and the second branch flow path L15 are purged and heated by the inert gas, so that the processing temperature of the first substrate W after the standby step becomes almost the same as the processing temperature of the second and subsequent substrates W. As a result, the variation in processing temperature between the substrates W is suppressed. In the standby process, the inert gas is discharged from the processing vessel 111 through the discharge flow path L18.
 待機工程では、処理容器111内に基板Wが搬入される。具体的には、図4に示されるように、開閉弁V16が開状態とされ、開閉弁V11、V12、V13、V14、V15、V17が閉状態とされた後、処理容器111内に基板Wが搬入される。すなわち、処理容器111内に不活性ガスが供給されていない状態で、処理容器111内に基板Wが搬入される。ただし、処理容器111内に不活性ガスが供給されている状態で、処理容器111内に基板Wが搬入されてもよい。基板Wは、洗浄処理が施され、表面のパターンの凹部内がイソプロピルアルコール(IPA)に充填された状態で、保持板112の上に載置される。 In the standby step, the substrate W is loaded into the processing vessel 111. Specifically, as shown in FIG. 4, the on-off valve V16 is opened, and the on-off valves V11, V12, V13, V14, V15, and V17 are closed, and then the substrate W is loaded into the processing vessel 111. That is, the substrate W is loaded into the processing vessel 111 without inert gas being supplied into the processing vessel 111. However, the substrate W may be loaded into the processing vessel 111 while inert gas is being supplied into the processing vessel 111. The substrate W is subjected to a cleaning process, and is placed on the holding plate 112 with the recesses of the pattern on the surface filled with isopropyl alcohol (IPA).
 <第1昇圧工程>
 第1昇圧工程は、待機工程の後に行われる。第1昇圧工程では、まず第1流量かつ第2温度の処理流体の供給による処理容器111内の昇圧が行われ、次いで第2流量かつ第2温度の処理流体の供給による処理容器111内の昇圧が行われる。すなわち、第1昇圧工程では、2段階の昇圧が行われる。第2流量は、第1流量よりも大きい流量であってよい。
<First pressure increase step>
The first pressurization step is performed after the standby step. In the first pressurization step, the pressure in the processing vessel 111 is first increased by supplying a processing fluid at a first flow rate and a second temperature, and then the pressure in the processing vessel 111 is increased by supplying a processing fluid at a second flow rate and a second temperature. That is, in the first pressurization step, the pressure is increased in two stages. The second flow rate may be greater than the first flow rate.
 第1流量での昇圧では、図5に示されるように、開閉弁V11、V16が開状態とされ、開閉弁V12、V13、V14、V15、V17が閉状態とされる。これにより、処理流体供給源S11の処理流体は、第1供給流路L11を経由して温度調整部122に流入し、第2分岐流路L15を経由して処理容器111内に供給される。このため、第1流量かつ第2温度の処理流体が、処理容器111内に供給される。これにより、基板Wの温度は第2温度に変化する。第1流量での昇圧では、開閉弁V17が閉状態であるため、処理容器111内から処理流体は流出しない。このため、処理容器111内の圧力は徐々に上昇する。 When the pressure is increased at the first flow rate, as shown in FIG. 5, the on-off valves V11 and V16 are opened, and the on-off valves V12, V13, V14, V15, and V17 are closed. As a result, the processing fluid from the processing fluid supply source S11 flows into the temperature adjustment section 122 via the first supply flow path L11, and is supplied into the processing vessel 111 via the second branch flow path L15. As a result, the processing fluid at the first flow rate and the second temperature is supplied into the processing vessel 111. As a result, the temperature of the substrate W changes to the second temperature. When the pressure is increased at the first flow rate, the on-off valve V17 is closed, so the processing fluid does not flow out of the processing vessel 111. As a result, the pressure in the processing vessel 111 gradually increases.
 第1流量での昇圧では、オリフィスOR13により流速が低下した処理流体が、第2分岐流路L15からバイパス流路L16を経由して第1分岐流路L14に流入する。これにより、処理容器111の直前の第1分岐流路L14と第2分岐流路L15との合流部から第1分岐流路L14の上流に向かう処理流体の逆流が防止される。このため、IPAの残渣などによるフィルタF11の下流の汚染を抑制できる。 When pressurizing at the first flow rate, the processing fluid, whose flow rate has been reduced by the orifice OR13, flows from the second branch flow path L15 through the bypass flow path L16 into the first branch flow path L14. This prevents the processing fluid from flowing back from the junction of the first branch flow path L14 and the second branch flow path L15 immediately before the processing vessel 111 toward the upstream of the first branch flow path L14. This makes it possible to suppress contamination downstream of the filter F11 due to IPA residue, etc.
 第1流量での昇圧の間、処理容器111内の圧力は圧力センサP11により検出されており、処理容器111内の圧力が第1圧力Y1に達するまで第1流量での昇圧が継続される。処理容器111内の圧力が第1圧力Y1に達すると、第1流量での昇圧を終了し、第2流量での昇圧に移行する。 During the pressurization at the first flow rate, the pressure inside the processing vessel 111 is detected by the pressure sensor P11, and the pressurization at the first flow rate continues until the pressure inside the processing vessel 111 reaches the first pressure Y1. When the pressure inside the processing vessel 111 reaches the first pressure Y1, the pressurization at the first flow rate ends and transitions to the pressurization at the second flow rate.
 第2流量での昇圧では、図6に示されるように、開閉弁V12が開状態とされる。他の開閉弁の状態は、図5に示される状態と同じである。これにより、処理流体供給源S11の処理流体は、第1供給流路L11に加えて第2供給流路L12も経由して温度調整部122に流入し、第2分岐流路L15を経由して処理容器111内に供給される。このため、処理容器111内に供給される処理流体の流量が第2流量に上昇する。第2流量での昇圧では、開閉弁V17が閉状態であるため、処理容器111内から処理流体は流出しない。このため、処理容器111内の圧力は徐々に上昇する。 When the pressure is increased at the second flow rate, as shown in FIG. 6, the on-off valve V12 is opened. The states of the other on-off valves are the same as those shown in FIG. 5. As a result, the processing fluid from the processing fluid supply source S11 flows into the temperature adjustment section 122 via the second supply flow path L12 in addition to the first supply flow path L11, and is supplied into the processing vessel 111 via the second branch flow path L15. As a result, the flow rate of the processing fluid supplied into the processing vessel 111 increases to the second flow rate. When the pressure is increased at the second flow rate, the on-off valve V17 is closed, so the processing fluid does not flow out of the processing vessel 111. As a result, the pressure inside the processing vessel 111 gradually increases.
 第2流量での昇圧では、処理容器111内に供給される処理流体の圧力が臨界圧力よりも低い。このため、処理流体は気体(ガス)の状態で処理容器111内に供給される。その後、処理容器111内への処理流体の充填の進行と共に処理容器111内の圧力は増加してゆき、処理容器111内の圧力が臨界圧力を超えると、処理容器111内に存在する処理流体は超臨界状態となる。 When pressurizing at the second flow rate, the pressure of the processing fluid supplied into the processing vessel 111 is lower than the critical pressure. Therefore, the processing fluid is supplied into the processing vessel 111 in a gaseous state. Thereafter, as the processing vessel 111 is filled with the processing fluid, the pressure inside the processing vessel 111 increases, and when the pressure inside the processing vessel 111 exceeds the critical pressure, the processing fluid present in the processing vessel 111 becomes supercritical.
 第2流量での昇圧では、オリフィスOR13により流速が低下した処理流体が、第2分岐流路L15からバイパス流路L16を経由して第1分岐流路L14に流入する。これにより、処理容器111の直前の第1分岐流路L14と第2分岐流路L15との合流部から第1分岐流路L14の上流に向かう処理流体の逆流が防止される。このため、IPAの残渣などによるフィルタF11の下流の汚染を抑制できる。 When pressurizing at the second flow rate, the processing fluid, whose flow rate has been reduced by the orifice OR13, flows from the second branch flow path L15 through the bypass flow path L16 into the first branch flow path L14. This prevents the processing fluid from flowing back from the junction of the first branch flow path L14 and the second branch flow path L15 immediately before the processing vessel 111 toward the upstream of the first branch flow path L14. This makes it possible to suppress contamination downstream of the filter F11 due to IPA residue, etc.
 第2流量での昇圧の間、処理容器111内の圧力は圧力センサP11により検出されており、処理容器111内の圧力が第2圧力Y2に達するまで第2流量での昇圧が継続される。処理容器111内の圧力が第2圧力Y2に達すると、第1昇圧工程を終了し、第2昇圧工程に移行する。 During the pressurization at the second flow rate, the pressure inside the processing vessel 111 is detected by the pressure sensor P11, and the pressurization at the second flow rate continues until the pressure inside the processing vessel 111 reaches the second pressure Y2. When the pressure inside the processing vessel 111 reaches the second pressure Y2, the first pressurization process ends and the process moves to the second pressurization process.
 <第2昇圧工程>
 第2昇圧工程は、第1昇圧工程の後に行われる。第2昇圧工程では、第2流量かつ第1温度の処理流体の供給による処理容器111内の昇圧が行われる。具体的には、図7に示されるように、開閉弁V11、V12、V15が開状態とされ、開閉弁V13、V14、V16、V17が閉状態とされる。これにより、処理流体供給源S11の処理流体は、第1供給流路L11及び第2供給流路L12を経由して温度調整部122に流入し、第1分岐流路L14を経由して処理容器111内に供給される。このため、第2流量かつ第1温度の処理流体が、処理容器111内に供給される。これにより、基板Wの温度は第1温度に速やかに変化する。
<Second pressure increase step>
The second pressurization step is performed after the first pressurization step. In the second pressurization step, the pressure in the processing vessel 111 is increased by supplying the processing fluid at the second flow rate and the first temperature. Specifically, as shown in FIG. 7, the on-off valves V11, V12, and V15 are opened, and the on-off valves V13, V14, V16, and V17 are closed. As a result, the processing fluid from the processing fluid supply source S11 flows into the temperature adjustment unit 122 via the first supply flow path L11 and the second supply flow path L12, and is supplied into the processing vessel 111 via the first branch flow path L14. Therefore, the processing fluid at the second flow rate and the first temperature is supplied into the processing vessel 111. As a result, the temperature of the substrate W is quickly changed to the first temperature.
 第2昇圧工程では、オリフィスOR13により流速が低下した処理流体が、第1分岐流路L14からバイパス流路L16を経由して第2分岐流路L15に流入する。これにより、処理容器111の直前の第1分岐流路L14と第2分岐流路L15との合流部から第2分岐流路L15の上流に向かう処理流体の逆流が防止される。このため、IPAの残渣などによるフィルタF12の下流の汚染を抑制できる。 In the second pressurization step, the processing fluid, whose flow rate has been reduced by the orifice OR13, flows from the first branch flow path L14 through the bypass flow path L16 into the second branch flow path L15. This prevents the processing fluid from flowing back from the junction of the first branch flow path L14 and the second branch flow path L15 immediately before the processing vessel 111 toward the upstream of the second branch flow path L15. This makes it possible to suppress contamination downstream of the filter F12 due to IPA residue, etc.
 第2昇圧工程の間、処理容器111内の圧力は圧力センサP11により検出されており、処理容器111内の圧力が第3圧力Y3に達するまで第2昇圧工程が継続される。処理容器111内の圧力が第3圧力Y3に達すると、第2昇圧工程を終了し、流通工程に移行する。 During the second pressurization process, the pressure inside the processing vessel 111 is detected by the pressure sensor P11, and the second pressurization process continues until the pressure inside the processing vessel 111 reaches the third pressure Y3. When the pressure inside the processing vessel 111 reaches the third pressure Y3, the second pressurization process ends and the process moves to the circulation process.
 <流通工程>
 流通工程は、第2昇圧工程の後に行われる。流通工程では、処理流体供給源S11から第2流量かつ第1温度の処理流体が処理容器111内に供給され、処理容器111内の基板W上のパターンの凹部内においてIPAから処理流体への置換が行われる。具体的には、図8に示されるように、開閉弁V11、V12、V15、V17が開状態とされ、開閉弁V13、V14、V16が閉状態とされる。これにより、処理流体供給源S11の処理流体は、第1供給流路L11及び第2供給流路L12を経由して温度調整部122に流入し、第1分岐流路L14を経由して処理容器111内に供給される。処理容器111内に供給された処理流体は、排出流路L18を経由して処理容器111内から排出される。流通工程を行うことにより、基板Wのパターンの凹部内においてIPAから処理流体への置換が促進される。
<Distribution process>
The circulation process is performed after the second pressure increase process. In the circulation process, the processing fluid at the second flow rate and the first temperature is supplied from the processing fluid supply source S11 into the processing vessel 111, and the IPA is replaced with the processing fluid in the recess of the pattern on the substrate W in the processing vessel 111. Specifically, as shown in FIG. 8, the on-off valves V11, V12, V15, and V17 are opened, and the on-off valves V13, V14, and V16 are closed. As a result, the processing fluid of the processing fluid supply source S11 flows into the temperature adjustment unit 122 via the first supply flow path L11 and the second supply flow path L12, and is supplied into the processing vessel 111 via the first branch flow path L14. The processing fluid supplied into the processing vessel 111 is discharged from the processing vessel 111 via the discharge flow path L18. By performing the circulation process, the replacement of the IPA with the processing fluid in the recess of the pattern on the substrate W is promoted.
 流通工程では、オリフィスOR13により流速が低下した処理流体が、第1分岐流路L14からバイパス流路L16を経由して第2分岐流路L15に流入する。これにより、処理容器111の直前の第1分岐流路L14と第2分岐流路L15との合流部から第2分岐流路L15の上流に向かう処理流体の逆流が防止される。このため、IPAの残渣などによるフィルタF12の下流の汚染を抑制できる。 In the circulation process, the processing fluid, whose flow rate has been reduced by the orifice OR13, flows from the first branch flow path L14 through the bypass flow path L16 into the second branch flow path L15. This prevents the processing fluid from flowing back from the junction of the first branch flow path L14 and the second branch flow path L15 immediately before the processing vessel 111 toward the upstream of the second branch flow path L15. This makes it possible to suppress contamination downstream of the filter F12 due to IPA residue, etc.
 パターンの凹部内においてIPAから処理流体への置換が完了すると、流通工程を終了し、減圧工程に移行する。 Once the replacement of IPA with processing fluid is complete within the recesses of the pattern, the circulation process ends and the pressure reduction process begins.
 <減圧工程>
 減圧工程は、流通工程の後に行われる。減圧工程では、処理容器111内から処理流体が排出される。具体的には、図9に示されるように、開閉弁V14、V17が開状態とされ、開閉弁V11、V12、V13、V15、V16が閉状態とされる。減圧工程により処理容器111内の圧力が処理流体の臨界圧力よりも低くなると、超臨界状態の処理流体は気化し、パターンの凹部内から離脱する。これにより、1枚の基板Wに対する乾燥処理が終了する。
<Decompression step>
The depressurization process is performed after the circulation process. In the depressurization process, the processing fluid is discharged from the processing vessel 111. Specifically, as shown in Fig. 9, the on-off valves V14 and V17 are opened, and the on-off valves V11, V12, V13, V15, and V16 are closed. When the pressure in the processing vessel 111 becomes lower than the critical pressure of the processing fluid by the depressurization process, the processing fluid in the supercritical state is vaporized and leaves the recesses of the pattern. This completes the drying process for one substrate W.
 減圧工程の後、待機工程に移行する。処理された基板Wの処理容器111内からの搬出は、例えば待機工程に移行した後に行われる。具体的には、減圧工程の後、第1分岐流路L14及び第2分岐流路L15を経由して処理容器111内への不活性ガスの供給が開始される。次いで、処理容器111内に不活性ガスが供給されている状態で、処理容器111内から基板Wが搬出される。処理容器111内から基板Wが搬出された後も、処理容器111内への不活性ガスの供給が継続される。このように、処理容器111内に不活性ガスが供給されている状態で処理容器111内から基板Wが搬出される場合、処理容器111内が陽圧となるため、処理容器111内を開放したときに処理容器111の内部から外部に向けてガス流が形成される。このため、処理容器111内の残渣を処理容器111の外部に排出して除去できる。ただし、処理容器111内から基板Wが搬出される際に、処理容器111内への不活性ガスの供給を停止してもよい。 After the depressurization step, the process proceeds to a standby step. The processed substrate W is removed from the processing vessel 111 after the process proceeds to the standby step, for example. Specifically, after the depressurization step, the supply of inert gas into the processing vessel 111 is started via the first branch flow path L14 and the second branch flow path L15. Next, the substrate W is removed from the processing vessel 111 while the inert gas is being supplied into the processing vessel 111. The supply of inert gas into the processing vessel 111 continues even after the substrate W is removed from the processing vessel 111. In this way, when the substrate W is removed from the processing vessel 111 while the inert gas is being supplied into the processing vessel 111, the inside of the processing vessel 111 becomes positive pressure, so that when the inside of the processing vessel 111 is opened, a gas flow is formed from the inside to the outside of the processing vessel 111. Therefore, the residue in the processing vessel 111 can be discharged to the outside of the processing vessel 111 and removed. However, when the substrate W is removed from the processing vessel 111, the supply of inert gas into the processing vessel 111 may be stopped.
 以上に説明した第1実施形態によれば、流体供給システム12が、処理流体供給部121と、温度調整部122とを有する。処理流体供給部121は、処理流体の流量を調整する流量調整機構(開閉弁V11、V12、オリフィスOR11、OR12)を有する。温度調整部122は、処理容器111内に第1温度の処理流体を通流させる第1分岐流路L14と、処理容器111内に第2温度の処理流体を通流させる第2分岐流路L15とを有する。これにより、処理容器111内に供給される処理流体の流量と温度とを個別に制御でき、制御された流量及び温度の処理流体を処理容器111内に供給できる。その結果、基板処理装置10を用いて実行される基板処理方法におけるプロセスマージンを拡大できる。 According to the first embodiment described above, the fluid supply system 12 has a processing fluid supply unit 121 and a temperature adjustment unit 122. The processing fluid supply unit 121 has a flow rate adjustment mechanism (on-off valves V11, V12, orifices OR11, OR12) that adjusts the flow rate of the processing fluid. The temperature adjustment unit 122 has a first branch flow path L14 that passes a processing fluid at a first temperature through the processing vessel 111, and a second branch flow path L15 that passes a processing fluid at a second temperature through the processing vessel 111. This makes it possible to individually control the flow rate and temperature of the processing fluid supplied into the processing vessel 111, and to supply the processing fluid at a controlled flow rate and temperature into the processing vessel 111. As a result, the process margin in the substrate processing method performed using the substrate processing apparatus 10 can be expanded.
 また、第1実施形態によれば、第1供給流路L11及び第2供給流路L12と第3供給流路L13との合流部よりも下流に温度調整部122(加熱機構HE11、HE12)が設けられる。この場合、不活性ガス供給源S12の不活性ガスは、加熱機構HE11により第1温度に加熱され、第1分岐流路L14を通流する。このため、加熱機構HE11の下流の第1分岐流路L14において、流体の流れ方向に沿った温度均一性が向上する。これに対し、第1分岐流路L14に常温の不活性ガスが通流する場合、ラインヒータLH11により第1分岐流路L14が加熱されても、第1分岐流路L14において、流体の流れ方向に沿った温度分布が生じやすい。 Furthermore, according to the first embodiment, the temperature adjustment unit 122 (heating mechanisms HE11, HE12) is provided downstream of the junction of the first supply flow path L11, the second supply flow path L12, and the third supply flow path L13. In this case, the inert gas of the inert gas supply source S12 is heated to a first temperature by the heating mechanism HE11 and flows through the first branch flow path L14. Therefore, in the first branch flow path L14 downstream of the heating mechanism HE11, the temperature uniformity along the fluid flow direction is improved. In contrast, when inert gas at room temperature flows through the first branch flow path L14, even if the first branch flow path L14 is heated by the line heater LH11, a temperature distribution along the fluid flow direction is likely to occur in the first branch flow path L14.
 また、不活性ガス供給源S12の不活性ガスは、加熱機構HE12により第2温度に加熱され、第2分岐流路L15を通流する。このため、加熱機構HE12の下流の第2分岐流路L15において、流体の流れ方向に沿った温度均一性が向上する。これに対し、第2分岐流路L15に常温の不活性ガスが通流する場合、ラインヒータLH12により第2分岐流路L15が加熱されても、第2分岐流路L15において、流体の流れ方向に沿った温度分布が生じやすい。 In addition, the inert gas from the inert gas supply source S12 is heated to a second temperature by the heating mechanism HE12 and flows through the second branch flow path L15. This improves the temperature uniformity along the fluid flow direction in the second branch flow path L15 downstream of the heating mechanism HE12. In contrast, when inert gas at room temperature flows through the second branch flow path L15, even if the second branch flow path L15 is heated by the line heater LH12, a temperature distribution along the fluid flow direction is likely to occur in the second branch flow path L15.
 また、第1実施形態によれば、大流量かつ加熱された不活性ガスが、第1分岐流路L14及び第2分岐流路L15を経由して処理容器111内に供給されるので、第1分岐流路L14、第2分岐流路L15及び処理容器111内に残留するIPAの乾燥が促進される。 Furthermore, according to the first embodiment, a large flow rate of heated inert gas is supplied into the processing vessel 111 via the first branch flow path L14 and the second branch flow path L15, accelerating the drying of the IPA remaining in the first branch flow path L14, the second branch flow path L15, and the processing vessel 111.
 また、第1実施形態によれば、処理流体供給源S11の処理流体が第1分岐流路L14及び第2分岐流路L15を経由して処理容器111内に供給される前の待機工程において、加熱された不活性ガスが第1分岐流路L14及び第2分岐流路L15を通流する。この場合、不活性ガスにより第1分岐流路L14及び第2分岐流路L15が加熱されるので、待機工程の後に行われる1枚目の基板Wの処理温度が、2枚目以降の基板Wの処理温度とほぼ同じになる。その結果、基板W間での処理温度のばらつきが抑制される。 Furthermore, according to the first embodiment, in the standby step before the processing fluid from the processing fluid supply source S11 is supplied into the processing vessel 111 via the first branch flow path L14 and the second branch flow path L15, heated inert gas flows through the first branch flow path L14 and the second branch flow path L15. In this case, the first branch flow path L14 and the second branch flow path L15 are heated by the inert gas, so that the processing temperature of the first substrate W performed after the standby step becomes substantially the same as the processing temperature of the second and subsequent substrates W. As a result, variation in processing temperature between substrates W is suppressed.
 〔第2実施形態〕
 (基板処理装置)
 図10を参照し、第2実施形態に係る基板処理装置20について説明する。図10は、第2実施形態に係る基板処理装置20を示す図である。
Second Embodiment
(Substrate Processing Apparatus)
A substrate processing apparatus 20 according to a second embodiment will be described with reference to Fig. 10. Fig. 10 is a diagram showing the substrate processing apparatus 20 according to the second embodiment.
 基板処理装置20は、処理部21と、流体供給システム22と、排出部23と、制御部24とを有する。 The substrate processing apparatus 20 has a processing section 21, a fluid supply system 22, a discharge section 23, and a control section 24.
 処理部21は、処理部11と同じであってよい。処理部21は、処理容器211と、保持板212とを有する。 The processing section 21 may be the same as the processing section 11. The processing section 21 has a processing vessel 211 and a holding plate 212.
 流体供給システム22は、処理流体供給部221と、温度調整部222とを有する。 The fluid supply system 22 has a treatment fluid supply section 221 and a temperature adjustment section 222.
 処理流体供給部221は、処理流体供給部121と同じであってよい。処理流体供給部221は、処理流体供給源S21と、第1供給流路L21と、開閉弁V21と、オリフィスOR21と、第2供給流路L22と、開閉弁V22と、オリフィスOR22と、不活性ガス供給源S22と、第3供給流路L23と、開閉弁V23とを有する。 The treatment fluid supply unit 221 may be the same as the treatment fluid supply unit 121. The treatment fluid supply unit 221 has a treatment fluid supply source S21, a first supply flow path L21, an on-off valve V21, an orifice OR21, a second supply flow path L22, an on-off valve V22, an orifice OR22, an inert gas supply source S22, a third supply flow path L23, and an on-off valve V23.
 温度調整部222は、処理流体供給部221と処理容器211とに接続される。温度調整部222は、温度が調整された流体を処理容器211の内部に通流させる。流体は、処理流体と不活性ガスとを含む。温度調整部222は、第1分岐流路L24と、第2分岐流路L25と、バイパス流路L26と、第1排出流路L27と、第2排出流路L28とを有する。 The temperature adjustment unit 222 is connected to the treatment fluid supply unit 221 and the treatment vessel 211. The temperature adjustment unit 222 passes a temperature-adjusted fluid through the inside of the treatment vessel 211. The fluid includes a treatment fluid and an inert gas. The temperature adjustment unit 222 has a first branch flow path L24, a second branch flow path L25, a bypass flow path L26, a first discharge flow path L27, and a second discharge flow path L28.
 第1分岐流路L24には、加熱機構HE21、開閉弁V25、フィルタF21及び温度センサT21が、上流から順に設けられる。第1分岐流路L24における加熱機構HE21の下流には、ラインヒータLH21が設けられる。第1分岐流路L24の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 In the first branch flow path L24, a heating mechanism HE21, an on-off valve V25, a filter F21, and a temperature sensor T21 are provided in this order from upstream. A line heater LH21 is provided downstream of the heating mechanism HE21 in the first branch flow path L24. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the first branch flow path L24.
 第2分岐流路L25には、開閉弁V24、加熱機構HE22、開閉弁V26及びフィルタF22が、上流から順に設けられる。第2分岐流路L25における加熱機構HE22の下流には、ラインヒータLH22が設けられる。第2分岐流路L25の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 In the second branch flow path L25, an on-off valve V24, a heating mechanism HE22, an on-off valve V26, and a filter F22 are provided in this order from upstream. A line heater LH22 is provided downstream of the heating mechanism HE22 in the second branch flow path L25. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the second branch flow path L25.
 第2分岐流路L25は、処理流体供給部221と加熱機構HE21との間において第1分岐流路L24から分岐する。第2分岐流路L25は、処理容器211の直前で第1分岐流路L24と合流する。 The second branch flow path L25 branches off from the first branch flow path L24 between the processing fluid supply unit 221 and the heating mechanism HE21. The second branch flow path L25 merges with the first branch flow path L24 immediately before the processing vessel 211.
 加熱機構HE21は、加熱機構HE22と並列に設けられる。加熱機構HE21は、処理流体供給部221から供給される流体を第1温度に加熱し、第1温度の流体を下流に供給する。第1温度は、例えば100℃以上120℃以下であってよい。 The heating mechanism HE21 is provided in parallel with the heating mechanism HE22. The heating mechanism HE21 heats the fluid supplied from the treatment fluid supply unit 221 to a first temperature and supplies the fluid at the first temperature downstream. The first temperature may be, for example, 100°C or higher and 120°C or lower.
 開閉弁V25は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V25は、開状態では下流の処理容器211に流体を流し、閉状態では下流の処理容器211に流体を流さない。 The on-off valve V25 is a valve that switches the flow of fluid on and off. When open, the on-off valve V25 allows fluid to flow to the downstream processing vessel 211, and when closed, it does not allow fluid to flow to the downstream processing vessel 211.
 フィルタF21は、第1分岐流路L24内を流れる流体を濾過し、流体に含まれる異物を取り除く。これにより、流体を用いた基板Wの乾燥処理の際に、基板Wの表面にパーティクルが発生することを抑制できる。 The filter F21 filters the fluid flowing through the first branch flow path L24 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during the drying process of the substrate W using the fluid.
 温度センサT21は、第1分岐流路L24における第2分岐流路L25との合流部の下流に設けられる。温度センサT21は、例えば処理容器211の直前に設けられる。温度センサT21は、第1分岐流路L24内を流れる流体の温度を検出する。 The temperature sensor T21 is provided downstream of the junction of the first branch flow path L24 with the second branch flow path L25. The temperature sensor T21 is provided, for example, immediately before the processing vessel 211. The temperature sensor T21 detects the temperature of the fluid flowing in the first branch flow path L24.
 ラインヒータLH21は、加熱機構HE21の下流の第1分岐流路L24を加熱する。ラインヒータLH21は、加熱機構HE21により第1温度に加熱された流体が第1分岐流路L24を流れる際に温度低下することを抑制する。 The line heater LH21 heats the first branch flow path L24 downstream of the heating mechanism HE21. The line heater LH21 prevents the temperature of the fluid heated to the first temperature by the heating mechanism HE21 from decreasing as it flows through the first branch flow path L24.
 開閉弁V24は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V24は、開状態では下流の加熱機構HE22に流体を流し、閉状態では下流の加熱機構HE22に流体を流さない。 The on-off valve V24 is a valve that switches the flow of fluid on and off. When open, the on-off valve V24 allows fluid to flow to the downstream heating mechanism HE22, and when closed, it does not allow fluid to flow to the downstream heating mechanism HE22.
 加熱機構HE22は、処理流体供給部221から供給される流体を第2温度に加熱し、第2温度の流体を下流に供給する。第2温度は、第1温度よりも低い温度である。第2温度は、例えば80℃以上90℃以下であってよい。 The heating mechanism HE22 heats the fluid supplied from the treatment fluid supply unit 221 to a second temperature and supplies the fluid at the second temperature downstream. The second temperature is lower than the first temperature. The second temperature may be, for example, 80°C or higher and 90°C or lower.
 開閉弁V26は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V26は、開状態では下流の処理容器211に流体を流し、閉状態では下流の処理容器211に流体を流さない。 The on-off valve V26 is a valve that switches the flow of fluid on and off. When the on-off valve V26 is open, it allows fluid to flow to the downstream processing vessel 211, and when it is closed, it does not allow fluid to flow to the downstream processing vessel 211.
 フィルタF22は、第2分岐流路L25内を流れる流体を濾過し、流体に含まれる異物を取り除く。これにより、流体を用いた基板Wの乾燥処理の際に、基板Wの表面にパーティクルが発生することを抑制できる。 The filter F22 filters the fluid flowing through the second branch flow path L25 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during the drying process of the substrate W using the fluid.
 ラインヒータLH22は、加熱機構HE22の下流の第2分岐流路L25を加熱する。ラインヒータLH22は、加熱機構HE22により第2温度に加熱された流体が第2分岐流路L25を流れる際に温度低下することを抑制する。 The line heater LH22 heats the second branch flow path L25 downstream of the heating mechanism HE22. The line heater LH22 prevents the temperature of the fluid heated to the second temperature by the heating mechanism HE22 from decreasing as it flows through the second branch flow path L25.
 係る温度調整部222において、開閉弁V25を閉じると共に開閉弁V26を開くと、加熱機構HE22で第2温度に加熱された流体が第2分岐流路L25を通って処理容器211内に供給される。また、開閉弁V26を閉じると共に開閉弁V25を開くと、加熱機構HE21で第1温度に加熱された流体が第1分岐流路L24を通って処理容器211内に供給される。このように、開閉弁V25と開閉弁V26とを排他的に開閉することにより、処理容器211内に通流させる流体の温度を変更できる。また、開閉弁V25と開閉弁V26の両方を開くと、加熱機構HE21で第1温度に加熱された流体と加熱機構HE22で第2温度に加熱された流体とが混合されて処理容器211内に供給される。この場合、第1温度と第2温度との中間温度の流体を処理容器211内に供給できる。このように、開閉弁V25及び開閉弁V26の開閉を制御することにより、処理容器211内に通流させる流体の温度を3段階に変更できる。 In the temperature adjustment unit 222, when the on-off valve V25 is closed and the on-off valve V26 is opened, the fluid heated to the second temperature by the heating mechanism HE22 is supplied into the processing vessel 211 through the second branch flow path L25. When the on-off valve V26 is closed and the on-off valve V25 is opened, the fluid heated to the first temperature by the heating mechanism HE21 is supplied into the processing vessel 211 through the first branch flow path L24. In this way, the temperature of the fluid flowing through the processing vessel 211 can be changed by exclusively opening and closing the on-off valve V25 and the on-off valve V26. When both the on-off valve V25 and the on-off valve V26 are opened, the fluid heated to the first temperature by the heating mechanism HE21 and the fluid heated to the second temperature by the heating mechanism HE22 are mixed and supplied into the processing vessel 211. In this case, a fluid at an intermediate temperature between the first temperature and the second temperature can be supplied into the processing vessel 211. In this way, by controlling the opening and closing of on-off valves V25 and V26, the temperature of the fluid flowing through the processing vessel 211 can be changed in three stages.
 バイパス流路L26は、第1分岐流路L24における開閉弁V25とフィルタF21との間の位置と、第2分岐流路L25における開閉弁V26とフィルタF22との間の位置とを連通させる。バイパス流路L26には、オリフィスOR23が設けられる。バイパス流路L26には、ラインヒータLH23が設けられる。バイパス流路L26、オリフィスOR23及びラインヒータLH23は、設けられなくてもよい。 The bypass flow path L26 connects a position between the on-off valve V25 and the filter F21 in the first branch flow path L24 and a position between the on-off valve V26 and the filter F22 in the second branch flow path L25. An orifice OR23 is provided in the bypass flow path L26. A line heater LH23 is provided in the bypass flow path L26. The bypass flow path L26, the orifice OR23, and the line heater LH23 do not necessarily have to be provided.
 オリフィスOR23は、バイパス流路L26を通流する流体の流速を低下させ、圧力を調整する機能を有する。 The orifice OR23 has the function of reducing the flow rate of the fluid passing through the bypass flow path L26 and adjusting the pressure.
 ラインヒータLH23は、バイパス流路L26を加熱する。 The line heater LH23 heats the bypass flow path L26.
 第1排出流路L27は、第1分岐流路L24内の流体を排出する。第1排出流路L27は、加熱機構HE21と開閉弁V25との間において第1分岐流路L24から分岐する。第1排出流路L27には、開閉弁V27が設けられる。第1排出流路L27には、ラインヒータLH24が設けられる。第1排出流路L27には、オリフィスが設けられてもよい。 The first discharge flow path L27 discharges the fluid in the first branch flow path L24. The first discharge flow path L27 branches off from the first branch flow path L24 between the heating mechanism HE21 and the on-off valve V25. The first discharge flow path L27 is provided with an on-off valve V27. The first discharge flow path L27 is provided with a line heater LH24. An orifice may be provided in the first discharge flow path L27.
 開閉弁V27は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V27は、開状態では下流の第1排出流路L27に流体を流し、閉状態では下流の第1排出流路L27に流体を流さない。 The on-off valve V27 is a valve that switches the flow of fluid on and off. When open, the on-off valve V27 allows fluid to flow to the downstream first discharge flow path L27, and when closed, it does not allow fluid to flow to the downstream first discharge flow path L27.
 ラインヒータLH24は、第1排出流路L27を加熱する。 The line heater LH24 heats the first exhaust flow path L27.
 第2排出流路L28は、第2分岐流路L25内の流体を排出する。第2排出流路L28は、加熱機構HE22と開閉弁V26との間において第2分岐流路L25から分岐する。第2排出流路L28には、開閉弁V28が設けられる。第2排出流路L28には、ラインヒータLH25が設けられる。第2排出流路L28には、オリフィスが設けられてもよい。 The second discharge flow path L28 discharges the fluid in the second branch flow path L25. The second discharge flow path L28 branches off from the second branch flow path L25 between the heating mechanism HE22 and the on-off valve V26. The second discharge flow path L28 is provided with an on-off valve V28. The second discharge flow path L28 is provided with a line heater LH25. An orifice may be provided in the second discharge flow path L28.
 開閉弁V28は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V28は、開状態では下流の第2排出流路L28に流体を流し、閉状態では下流の第2排出流路L28に流体を流さない。 The on-off valve V28 is a valve that switches the flow of fluid on and off. When open, the on-off valve V28 allows fluid to flow to the downstream second discharge flow path L28, and when closed, the on-off valve V28 does not allow fluid to flow to the downstream second discharge flow path L28.
 ラインヒータLH25は、第2排出流路L28を加熱する。 The line heater LH25 heats the second exhaust flow path L28.
 排出部23は、排出流路L29を有する。排出流路L29は、処理容器211に接続される。排出流路L29には、圧力センサP21、背圧弁BV21及び開閉弁V29が、上流から順に設けられる。排出流路L29には、ラインヒータLH26が設けられる。排出流路L29の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 The discharge section 23 has a discharge flow path L29. The discharge flow path L29 is connected to the processing vessel 211. A pressure sensor P21, a back pressure valve BV21, and an on-off valve V29 are provided in the discharge flow path L29, in that order from upstream. A line heater LH26 is provided in the discharge flow path L29. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the discharge flow path L29.
 圧力センサP21は、処理容器211の直後で排出流路L29を流れる流体の圧力を検出する。これにより、処理容器211の内部の圧力を検出できる。 The pressure sensor P21 detects the pressure of the fluid flowing through the discharge flow path L29 immediately after the processing vessel 211. This allows the pressure inside the processing vessel 211 to be detected.
 背圧弁BV21は、排出流路L29の一次側圧力が設定圧力を超えた場合には弁開度を調整して二次側に流体を流すことにより、一次側圧力を設定圧力に維持する。例えば、背圧弁BV21の設定圧力は、制御部24により調整される。 When the primary pressure of the exhaust flow path L29 exceeds the set pressure, the back pressure valve BV21 adjusts the valve opening to allow fluid to flow to the secondary side, thereby maintaining the primary pressure at the set pressure. For example, the set pressure of the back pressure valve BV21 is adjusted by the control unit 24.
 開閉弁V29は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V29は、開状態では下流の排出流路L29に流体を流し、閉状態では下流の排出流路L29に流体を流さない。 The on-off valve V29 is a valve that switches the flow of fluid on and off. When open, the on-off valve V29 allows fluid to flow to the downstream discharge flow path L29, and when closed, the on-off valve V29 does not allow fluid to flow to the downstream discharge flow path L29.
 ラインヒータLH26は、排出流路L29を加熱する。 The line heater LH26 heats the exhaust flow path L29.
 制御部24は、各種のセンサ(温度センサT21、圧力センサP21など)から計測信号を受信し、各種機能要素に制御信号を送信する。制御信号は、例えば開閉弁V21から開閉弁V29の開閉信号、背圧弁BV21の設定圧力信号、ラインヒータLH21からラインヒータLH26の温度信号を含む。例えば、制御部24は、処理容器211内の基板Wの処理状態に応じて、開閉弁V21及び開閉弁V22の開閉を制御することにより、処理容器211内に通流させる流体の流量を変更するように構成される。例えば、制御部24は、処理容器211内の基板Wの処理状態に応じて、開閉弁V25及び開閉弁V26の開閉を制御することにより、処理容器211内に通流させる流体の温度を変更するように構成される。 The control unit 24 receives measurement signals from various sensors (such as temperature sensor T21 and pressure sensor P21) and transmits control signals to various functional elements. The control signals include, for example, opening and closing signals of the on-off valves V21 to V29, a set pressure signal of the back pressure valve BV21, and a temperature signal of the line heater LH21 to LH26. For example, the control unit 24 is configured to change the flow rate of the fluid flowing through the processing vessel 211 by controlling the opening and closing of the on-off valves V21 and V22 in accordance with the processing state of the substrate W in the processing vessel 211. For example, the control unit 24 is configured to change the temperature of the fluid flowing through the processing vessel 211 by controlling the opening and closing of the on-off valves V25 and V26 in accordance with the processing state of the substrate W in the processing vessel 211.
 制御部24は、例えばコンピュータであり、演算部241と記憶部242とを備える。記憶部242には、基板処理装置20において実行される各種の処理を制御するプログラムが格納される。演算部241は、記憶部242に記憶されたプログラムを読み出して実行することによって基板処理装置20の動作を制御する。プログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御部24の記憶部242にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。 The control unit 24 is, for example, a computer, and includes an arithmetic unit 241 and a memory unit 242. The memory unit 242 stores programs that control various processes executed in the substrate processing apparatus 20. The arithmetic unit 241 controls the operation of the substrate processing apparatus 20 by reading and executing the programs stored in the memory unit 242. The programs may be recorded in a computer-readable storage medium and installed from the storage medium into the storage unit 242 of the control unit 24. Examples of computer-readable storage media include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
 (基板処理方法)
 図11から図18を参照し、基板処理装置20を用いて実行される基板処理方法について説明する。以下に示される基板処理方法は、記憶部242に記憶された処理レシピ及び制御プログラムに基づいて、制御部24の制御の下で、自動的に実行される。
(Substrate Processing Method)
11 to 18, a substrate processing method executed by the substrate processing apparatus 20 will be described. The substrate processing method described below is automatically executed under the control of the controller 24 based on the processing recipe and the control program stored in the storage unit 242.
 図11は、第2実施形態に係る基板処理方法を示すタイミングチャートである。図11において、下図は開閉弁V21、V22、V23、V24、V25、V26、V27、V28、V29の開閉タイミングを示し、上図は該開閉タイミングと対応する圧力センサP21の検出値(圧力)の変化を示す。 FIG. 11 is a timing chart showing the substrate processing method according to the second embodiment. In FIG. 11, the lower diagram shows the opening and closing timing of on-off valves V21, V22, V23, V24, V25, V26, V27, V28, and V29, and the upper diagram shows the change in the detection value (pressure) of pressure sensor P21 corresponding to the opening and closing timing.
 図12から図18は、第2実施形態に係る基板処理方法を示す図である。図12から図18において、開状態の開閉弁を黒塗りで示し、閉状態の開閉弁を白抜きで示す。図12から図18において、流体が通流する流路を太い実線で示す。 FIGS. 12 to 18 are diagrams illustrating a substrate processing method according to the second embodiment. In FIG. 12 to FIG. 18, an open valve is shown filled in black, and a closed valve is shown filled in white. In FIG. 12 to FIG. 18, a flow path through which a fluid flows is shown by a thick solid line.
 <待機工程>
 待機工程では、処理部21、流体供給システム22及び排出部23に不活性ガスが供給される。不活性ガスは、例えばNガスであってよい。具体的には、図12に示されるように、開閉弁V23、V24、V25、V26、V29が開状態とされ、開閉弁V21、V22、V27、V28が閉状態とされる。これにより、不活性ガス供給源S22から第1分岐流路L24に導かれた不活性ガスは、加熱機構HE21で第1温度に加熱されて処理容器211内に供給される。また、不活性ガス供給源S22から第2分岐流路L25に導かれた不活性ガスは、加熱機構HE22で第2温度に加熱されて処理容器211内に供給される。このため、第1分岐流路L24及び第2分岐流路L25が不活性ガスによりパージされると共に加熱されるので、待機工程の後に行われる1枚目の基板Wの処理温度が、2枚目以降の基板Wの処理温度とほぼ同じになる。その結果、基板W間での処理温度のばらつきが抑制される。待機工程では、処理容器211内から排出流路L29を介して不活性ガスが排出される。
<Waiting process>
In the standby step, an inert gas is supplied to the processing section 21, the fluid supply system 22, and the exhaust section 23. The inert gas may be, for example, N2 gas. Specifically, as shown in FIG. 12, the on-off valves V23, V24, V25, V26, and V29 are opened, and the on-off valves V21, V22, V27, and V28 are closed. As a result, the inert gas guided from the inert gas supply source S22 to the first branch flow path L24 is heated to a first temperature by the heating mechanism HE21 and supplied into the processing vessel 211. Also, the inert gas guided from the inert gas supply source S22 to the second branch flow path L25 is heated to a second temperature by the heating mechanism HE22 and supplied into the processing vessel 211. Therefore, the first branch flow path L24 and the second branch flow path L25 are purged and heated by the inert gas, so that the processing temperature of the first substrate W after the standby step becomes substantially the same as the processing temperature of the second and subsequent substrates W. This results in suppression of variation in processing temperature among the substrates W. In the standby step, the inert gas is exhausted from the processing vessel 211 through the exhaust passage L29.
 待機工程では、処理容器211内に基板Wが搬入される。具体的には、図13に示されるように、開閉弁V24、V26が開状態とされ、開閉弁V21、V22、V23、V25、V27、V28、V29が閉状態とされた後、処理容器211内に基板Wが搬入される。すなわち、処理容器211内に不活性ガスが供給されていない状態で、処理容器211内に基板Wが搬入される。ただし、処理容器211内に不活性ガスが供給されている状態で、処理容器211内に基板Wが搬入されてもよい。基板Wは、洗浄処理が施され、表面のパターンの凹部内がIPAに充填された状態で、保持板212の上に載置される。 In the standby step, the substrate W is loaded into the processing vessel 211. Specifically, as shown in FIG. 13, the on-off valves V24 and V26 are opened, and the on-off valves V21, V22, V23, V25, V27, V28, and V29 are closed, and then the substrate W is loaded into the processing vessel 211. That is, the substrate W is loaded into the processing vessel 211 without inert gas being supplied into the processing vessel 211. However, the substrate W may be loaded into the processing vessel 211 while inert gas is being supplied into the processing vessel 211. The substrate W is subjected to a cleaning process, and is placed on the holding plate 212 with the recesses of the pattern on the surface filled with IPA.
 <第1昇圧工程>
 第1昇圧工程は、待機工程の後に行われる。第1昇圧工程では、まず第1流量かつ第2温度の処理流体の供給による処理容器211内の昇圧が行われ、次いで第2流量かつ第2温度の処理流体の供給による処理容器211内の昇圧が行われる。すなわち、第1昇圧工程では、2段階の昇圧が行われる。第2流量は、第1流量よりも大きい流量であってよい。
<First pressure increase step>
The first pressurization step is performed after the standby step. In the first pressurization step, the pressure in the processing vessel 211 is first increased by supplying the processing fluid at a first flow rate and a second temperature, and then the pressure in the processing vessel 211 is increased by supplying the processing fluid at a second flow rate and a second temperature. That is, in the first pressurization step, the pressure is increased in two stages. The second flow rate may be larger than the first flow rate.
 第1流量での昇圧では、図14に示されるように、開閉弁V21、V24、V26が開状態とされ、開閉弁V22、V23、V25、V27、V28、V29が閉状態とされる。これにより、処理流体供給源S21の処理流体は、第1供給流路L21を経由して温度調整部222に流入し、第2分岐流路L25を経由して処理容器211内に供給される。このため、第1流量かつ第2温度の処理流体が、処理容器211内に供給される。これにより、基板Wの温度は第2温度に変化する。第1流量での昇圧では、開閉弁V29が閉状態であるため、処理容器211内から処理流体は流出しない。このため、処理容器211内の圧力は徐々に上昇する。 When the pressure is increased at the first flow rate, as shown in FIG. 14, the on-off valves V21, V24, and V26 are opened, and the on-off valves V22, V23, V25, V27, V28, and V29 are closed. As a result, the processing fluid from the processing fluid supply source S21 flows into the temperature adjustment section 222 via the first supply flow path L21, and is supplied into the processing vessel 211 via the second branch flow path L25. Therefore, the processing fluid at the first flow rate and the second temperature is supplied into the processing vessel 211. As a result, the temperature of the substrate W changes to the second temperature. When the pressure is increased at the first flow rate, the on-off valve V29 is closed, so the processing fluid does not flow out of the processing vessel 211. Therefore, the pressure in the processing vessel 211 gradually increases.
 第1流量での昇圧では、オリフィスOR23により流速が低下した処理流体が、第2分岐流路L25からバイパス流路L26を経由して第1分岐流路L24に流入する。これにより、処理容器211の直前の第1分岐流路L24と第2分岐流路L25との合流部から第1分岐流路L24の上流に向かう処理流体の逆流が防止される。このため、IPAの残渣などによるフィルタF21の下流の汚染を抑制できる。 When pressurizing at the first flow rate, the processing fluid, whose flow rate has been reduced by the orifice OR23, flows from the second branch flow path L25 through the bypass flow path L26 into the first branch flow path L24. This prevents the processing fluid from flowing back from the junction of the first branch flow path L24 and the second branch flow path L25 immediately before the processing vessel 211 toward the upstream of the first branch flow path L24. This makes it possible to suppress contamination downstream of the filter F21 due to IPA residue, etc.
 第1流量での昇圧の間、処理容器211内の圧力は圧力センサP21により検出されており、処理容器211内の圧力が第1圧力Y1に達するまで第1流量での昇圧が継続される。処理容器211内の圧力が第1圧力Y1に達すると、第1流量での昇圧を終了し、第2流量での昇圧に移行する。 During the pressurization at the first flow rate, the pressure inside the processing vessel 211 is detected by the pressure sensor P21, and the pressurization at the first flow rate continues until the pressure inside the processing vessel 211 reaches the first pressure Y1. When the pressure inside the processing vessel 211 reaches the first pressure Y1, the pressurization at the first flow rate ends and transitions to the pressurization at the second flow rate.
 第2流量での昇圧では、図15に示されるように、開閉弁V22が開状態とされる。他の開閉弁の状態は、図14に示される状態と同じである。これにより、処理流体供給源S21の処理流体は、第1供給流路L21に加えて第2供給流路L22も経由して温度調整部222に流入し、第2分岐流路L25を経由して処理容器211内に供給される。このため、処理容器211内に供給される処理流体の流量が第2流量に上昇する。第2流量での昇圧では、開閉弁V29が閉状態であるため、処理容器211内から処理流体は流出しない。このため、処理容器211内の圧力は徐々に上昇する。 When the pressure is increased at the second flow rate, as shown in FIG. 15, the on-off valve V22 is opened. The states of the other on-off valves are the same as those shown in FIG. 14. As a result, the processing fluid from the processing fluid supply source S21 flows into the temperature adjustment section 222 via the second supply flow path L22 in addition to the first supply flow path L21, and is supplied into the processing vessel 211 via the second branch flow path L25. As a result, the flow rate of the processing fluid supplied into the processing vessel 211 increases to the second flow rate. When the pressure is increased at the second flow rate, the on-off valve V29 is closed, so the processing fluid does not flow out of the processing vessel 211. As a result, the pressure inside the processing vessel 211 gradually increases.
 第2流量での昇圧では、処理容器211内に供給される処理流体の圧力が臨界圧力よりも低い。このため、処理流体は気体(ガス)の状態で処理容器211内に供給される。その後、処理容器211内への処理流体の充填の進行と共に処理容器211内の圧力は増加してゆき、処理容器211内の圧力が臨界圧力を超えると、処理容器211内に存在する処理流体は超臨界状態となる。 When pressurizing at the second flow rate, the pressure of the processing fluid supplied into the processing vessel 211 is lower than the critical pressure. Therefore, the processing fluid is supplied into the processing vessel 211 in a gaseous state. Thereafter, as the processing vessel 211 is filled with the processing fluid, the pressure inside the processing vessel 211 increases, and when the pressure inside the processing vessel 211 exceeds the critical pressure, the processing fluid present in the processing vessel 211 becomes supercritical.
 第2流量での昇圧では、オリフィスOR23により流速が低下した処理流体が、第2分岐流路L25からバイパス流路L26を経由して第1分岐流路L24に流入する。これにより、処理容器211の直前の第1分岐流路L24と第2分岐流路L25との合流部から第1分岐流路L24の上流に向かう処理流体の逆流が防止される。このため、IPAの残渣などによるフィルタF21の下流の汚染を抑制できる。 When pressurizing at the second flow rate, the processing fluid, whose flow rate has been reduced by the orifice OR23, flows from the second branch flow path L25 through the bypass flow path L26 into the first branch flow path L24. This prevents the processing fluid from flowing back from the junction of the first branch flow path L24 and the second branch flow path L25 immediately before the processing vessel 211 toward the upstream of the first branch flow path L24. This makes it possible to suppress contamination downstream of the filter F21 due to IPA residue, etc.
 第2流量での昇圧の間、処理容器211内の圧力は圧力センサP21により検出されており、処理容器211内の圧力が第2圧力Y2に達するまで第2流量での昇圧が継続される。処理容器211内の圧力が第2圧力Y2に達すると、第1昇圧工程を終了し、第2昇圧工程に移行する。 During the pressurization at the second flow rate, the pressure inside the processing vessel 211 is detected by the pressure sensor P21, and the pressurization at the second flow rate continues until the pressure inside the processing vessel 211 reaches the second pressure Y2. When the pressure inside the processing vessel 211 reaches the second pressure Y2, the first pressurization process ends and the process moves to the second pressurization process.
 <第2昇圧工程>
 第2昇圧工程は、第1昇圧工程の後に行われる。第2昇圧工程では、第2流量かつ第1温度の処理流体の供給による処理容器211内の昇圧が行われる。具体的には、図16に示されるように、開閉弁V21、V22、V25、V28が開状態とされ、開閉弁V23、V24、V26、V27、V29が閉状態とされる。これにより、処理流体供給源S21の処理流体は、第1供給流路L21及び第2供給流路L22を経由して温度調整部222に流入し、第1分岐流路L24を経由して処理容器211内に供給される。このため、第2流量かつ第1温度の処理流体が、処理容器211内に供給される。これにより、基板Wの温度は第1温度に速やかに変化する。
<Second pressure increase step>
The second pressurization step is performed after the first pressurization step. In the second pressurization step, the pressure in the processing vessel 211 is increased by supplying the processing fluid at the second flow rate and the first temperature. Specifically, as shown in FIG. 16, the on-off valves V21, V22, V25, and V28 are opened, and the on-off valves V23, V24, V26, V27, and V29 are closed. As a result, the processing fluid from the processing fluid supply source S21 flows into the temperature adjustment unit 222 via the first supply flow path L21 and the second supply flow path L22, and is supplied into the processing vessel 211 via the first branch flow path L24. Therefore, the processing fluid at the second flow rate and the first temperature is supplied into the processing vessel 211. As a result, the temperature of the substrate W is quickly changed to the first temperature.
 第2昇圧工程では、オリフィスOR23により流速が低下した処理流体が、第1分岐流路L24からバイパス流路L26を経由して第2分岐流路L25に流入する。これにより、処理容器211の直前の第1分岐流路L24と第2分岐流路L25との合流部から第2分岐流路L25の上流に向かう処理流体の逆流が防止される。このため、IPAの残渣などによるフィルタF22の下流の汚染を抑制できる。 In the second pressurization step, the processing fluid, whose flow rate has been reduced by the orifice OR23, flows from the first branch flow path L24 through the bypass flow path L26 into the second branch flow path L25. This prevents the processing fluid from flowing back from the junction of the first branch flow path L24 and the second branch flow path L25 immediately before the processing vessel 211 toward the upstream of the second branch flow path L25. This makes it possible to suppress contamination downstream of the filter F22 due to IPA residue, etc.
 第2昇圧工程では、第2分岐流路L25内の処理流体が排出され、第2分岐流路L25内が減圧される。第1温度よりも低い第2温度に設定された加熱機構HE22の蓄熱量が小さいので、第2分岐流路L25内が減圧されると、圧力低下により加熱機構HE22の温度が大きく低下し、加熱機構HE22の温度が第2温度に復帰するまでに時間を要する。そこで、第2昇圧工程において第1分岐流路L24に処理流体を通流させている間に、開閉弁V24、V26を閉状態とし、開閉弁V28を開状態とすることにより、第2分岐流路L25内を減圧すると共に、加熱機構HE22の温度を第2温度に復帰させる。このように、第2排出流路L28及び開閉弁V28が設けられるので、処理容器211内における基板Wの処理と並行して、次の基板Wのために加熱機構HE2の準備を実施できる。 In the second pressure increase step, the processing fluid in the second branch flow path L25 is discharged and the pressure in the second branch flow path L25 is reduced. Since the heat storage amount of the heating mechanism HE22 set to the second temperature lower than the first temperature is small, when the pressure in the second branch flow path L25 is reduced, the temperature of the heating mechanism HE22 drops significantly due to the pressure drop, and it takes time for the temperature of the heating mechanism HE22 to return to the second temperature. Therefore, while the processing fluid is flowing through the first branch flow path L24 in the second pressure increase step, the on-off valves V24 and V26 are closed and the on-off valve V28 is opened, thereby reducing the pressure in the second branch flow path L25 and returning the temperature of the heating mechanism HE22 to the second temperature. In this way, since the second exhaust flow path L28 and the on-off valve V28 are provided, the heating mechanism HE2 can be prepared for the next substrate W in parallel with the processing of the substrate W in the processing vessel 211.
 第2昇圧工程の間、処理容器211内の圧力は圧力センサP21により検出されており、処理容器211内の圧力が第3圧力Y3に達するまで第2昇圧工程が継続される。処理容器211内の圧力が第3圧力Y3に達すると、第2昇圧工程を終了し、流通工程に移行する。 During the second pressurization process, the pressure inside the processing vessel 211 is detected by the pressure sensor P21, and the second pressurization process continues until the pressure inside the processing vessel 211 reaches the third pressure Y3. When the pressure inside the processing vessel 211 reaches the third pressure Y3, the second pressurization process ends and the process moves to the circulation process.
 <流通工程>
 流通工程は、第2昇圧工程の後に行われる。流通工程では、処理流体供給源S21から第2流量かつ第1温度の処理流体が処理容器211内に供給され、処理容器211内の基板W上のパターンの凹部内においてIPAから処理流体への置換が行われる。具体的には、図17に示されるように、開閉弁V21、V22、V25、V28、V29が開状態とされ、開閉弁V23、V24、V26、V27が閉状態とされる。これにより、処理流体供給源S21の処理流体は、第1供給流路L21及び第2供給流路L22を経由して温度調整部222に流入し、第1分岐流路L24を経由して処理容器211内に供給される。処理容器211内に供給された処理流体は、排出流路L29を経由して処理容器211内から排出される。流通工程を行うことにより、基板Wのパターンの凹部内においてIPAから処理流体への置換が促進される。
<Distribution process>
The circulation process is performed after the second pressure increase process. In the circulation process, the processing fluid at the second flow rate and the first temperature is supplied from the processing fluid supply source S21 into the processing vessel 211, and the IPA is replaced with the processing fluid in the recess of the pattern on the substrate W in the processing vessel 211. Specifically, as shown in FIG. 17, the on-off valves V21, V22, V25, V28, and V29 are opened, and the on-off valves V23, V24, V26, and V27 are closed. As a result, the processing fluid of the processing fluid supply source S21 flows into the temperature adjustment unit 222 via the first supply flow path L21 and the second supply flow path L22, and is supplied into the processing vessel 211 via the first branch flow path L24. The processing fluid supplied into the processing vessel 211 is discharged from the processing vessel 211 via the discharge flow path L29. By performing the circulation process, the replacement of the IPA with the processing fluid in the recess of the pattern on the substrate W is promoted.
 流通工程では、オリフィスOR23により流速が低下した処理流体が、第1分岐流路L24からバイパス流路L26を経由して第2分岐流路L25に流入する。これにより、処理容器211の直前の第1分岐流路L24と第2分岐流路L25との合流部から第2分岐流路L25の上流に向かう処理流体の逆流が防止される。このため、IPAの残渣などによるフィルタF22の下流の汚染を抑制できる。流通工程においても、第2分岐流路L25内の減圧が継続される。 In the circulation process, the processing fluid, whose flow rate has been reduced by the orifice OR23, flows from the first branch flow path L24 through the bypass flow path L26 into the second branch flow path L25. This prevents the processing fluid from flowing back from the junction of the first branch flow path L24 and the second branch flow path L25 immediately before the processing vessel 211 toward the upstream of the second branch flow path L25. This makes it possible to suppress contamination downstream of the filter F22 due to IPA residue, etc. The pressure reduction in the second branch flow path L25 continues even in the circulation process.
 パターンの凹部内においてIPAから処理流体への置換が完了すると、流通工程を終了し、減圧工程に移行する。 Once the replacement of IPA with processing fluid is complete within the recesses of the pattern, the circulation process ends and the pressure reduction process begins.
 <減圧工程>
 減圧工程は、流通工程の後に行われる。減圧工程では、処理容器211内から処理流体が排出される。具体的には、図18に示されるように、開閉弁V27、V28、V29が開状態とされ、開閉弁V21、V22、V23、V24、V25、V26が閉状態とされる。減圧工程により処理容器211内の圧力が処理流体の臨界圧力よりも低くなると、超臨界状態の処理流体は気化し、パターンの凹部内から離脱する。これにより、1枚の基板Wに対する乾燥処理が終了する。
<Decompression step>
The depressurization process is performed after the circulation process. In the depressurization process, the processing fluid is discharged from the processing vessel 211. Specifically, as shown in Fig. 18, the on-off valves V27, V28, and V29 are opened, and the on-off valves V21, V22, V23, V24, V25, and V26 are closed. When the pressure in the processing vessel 211 becomes lower than the critical pressure of the processing fluid by the depressurization process, the processing fluid in the supercritical state is vaporized and leaves the recesses of the pattern. This completes the drying process for one substrate W.
 減圧工程では、第1分岐流路L24内の処理流体が第1排出流路L27を経由して排出され、第2分岐流路L25内の処理流体が第2排出流路L28を経由して排出される。すなわち、第1分岐流路L24内の処理流体と、第2分岐流路L25内の処理流体とが異なる排出流路から排出される。これにより、第1温度の処理流体と第2温度の処理流体との混合が防止される。 In the depressurization process, the processing fluid in the first branch flow path L24 is discharged via the first discharge flow path L27, and the processing fluid in the second branch flow path L25 is discharged via the second discharge flow path L28. That is, the processing fluid in the first branch flow path L24 and the processing fluid in the second branch flow path L25 are discharged from different discharge flow paths. This prevents mixing of the processing fluid at the first temperature and the processing fluid at the second temperature.
 減圧工程の後、待機工程に移行する。処理された基板Wの処理容器211内からの搬出は、例えば待機工程に移行した後に行われる。具体的には、減圧工程の後、第1分岐流路L24及び第2分岐流路L25を経由して処理容器211内への不活性ガスの供給が開始される。次いで、処理容器211内に不活性ガスが供給されている状態で、処理容器211内から基板Wが搬出される。処理容器211内から基板Wが搬出された後も、処理容器211内への不活性ガスの供給が継続される。このように、処理容器211内に不活性ガスが供給されている状態で処理容器211内から基板Wが搬出される場合、処理容器211内が陽圧となるため、処理容器211内を開放したときに処理容器211の内部から外部に向けてガス流が形成される。このため、処理容器211内の残渣を処理容器211の外部に排出して除去できる。ただし、処理容器211内から基板Wが搬出される際に、処理容器211内への不活性ガスの供給を停止してもよい。 After the depressurization step, the process proceeds to a standby step. The processed substrate W is removed from the processing vessel 211 after the process proceeds to the standby step, for example. Specifically, after the depressurization step, the supply of inert gas into the processing vessel 211 is started via the first branch flow path L24 and the second branch flow path L25. Next, the substrate W is removed from the processing vessel 211 while the inert gas is being supplied into the processing vessel 211. The supply of inert gas into the processing vessel 211 continues even after the substrate W is removed from the processing vessel 211. In this way, when the substrate W is removed from the processing vessel 211 while the inert gas is being supplied into the processing vessel 211, the inside of the processing vessel 211 becomes positive pressure, so that when the inside of the processing vessel 211 is opened, a gas flow is formed from the inside to the outside of the processing vessel 211. Therefore, the residue in the processing vessel 211 can be discharged to the outside of the processing vessel 211 and removed. However, when the substrate W is removed from the processing vessel 211, the supply of inert gas into the processing vessel 211 may be stopped.
 以上に説明した第2実施形態によれば、流体供給システム22が、処理流体供給部221と、温度調整部222とを有する。処理流体供給部221は、処理流体の流量を調整する流量調整機構(開閉弁V21、V22、オリフィスOR21、OR22)を有する。温度調整部222は、処理容器211内に第1温度の処理流体を通流させる第1分岐流路L24と、処理容器211内に第2温度の処理流体を通流させる第2分岐流路L25とを有する。これにより、処理容器211内に供給される処理流体の流量と温度とを個別に制御でき、制御された流量及び温度の処理流体を処理容器211内に供給できる。その結果、基板処理装置10を用いて実行される基板処理方法におけるプロセスマージンを拡大できる。 According to the second embodiment described above, the fluid supply system 22 has a processing fluid supply unit 221 and a temperature adjustment unit 222. The processing fluid supply unit 221 has a flow rate adjustment mechanism (on-off valves V21, V22, orifices OR21, OR22) that adjusts the flow rate of the processing fluid. The temperature adjustment unit 222 has a first branch flow path L24 that passes a processing fluid at a first temperature into the processing vessel 211, and a second branch flow path L25 that passes a processing fluid at a second temperature into the processing vessel 211. This makes it possible to individually control the flow rate and temperature of the processing fluid supplied into the processing vessel 211, and to supply the processing fluid at a controlled flow rate and temperature into the processing vessel 211. As a result, the process margin in the substrate processing method performed using the substrate processing apparatus 10 can be expanded.
 また、第2実施形態によれば、第1供給流路L21及び第2供給流路L22と第3供給流路L23との合流部よりも下流に温度調整部222(加熱機構HE21、HE22)が設けられる。この場合、不活性ガス供給源S22の不活性ガスは、加熱機構HE21により第1温度に加熱され、第1分岐流路L24を通流する。このため、加熱機構HE21の下流の第1分岐流路L24において、流体の流れ方向に沿った温度均一性が向上する。これに対し、第1分岐流路L24に常温の不活性ガスが通流する場合、ラインヒータLH21により第1分岐流路L24が加熱されても、第1分岐流路L24において、流体の流れ方向に沿った温度分布が生じやすい。 Furthermore, according to the second embodiment, the temperature adjustment unit 222 (heating mechanisms HE21, HE22) is provided downstream of the junction of the first supply flow path L21, the second supply flow path L22, and the third supply flow path L23. In this case, the inert gas of the inert gas supply source S22 is heated to a first temperature by the heating mechanism HE21 and flows through the first branch flow path L24. Therefore, in the first branch flow path L24 downstream of the heating mechanism HE21, the temperature uniformity along the fluid flow direction is improved. In contrast, when inert gas at room temperature flows through the first branch flow path L24, even if the first branch flow path L24 is heated by the line heater LH21, a temperature distribution along the fluid flow direction is likely to occur in the first branch flow path L24.
 また、不活性ガス供給源S22の不活性ガスは、加熱機構HE22により第2温度に加熱され、第2分岐流路L25を通流する。このため、加熱機構HE22の下流の第2分岐流路L25において、流体の流れ方向に沿った温度均一性が向上する。これに対し、第2分岐流路L25に常温の不活性ガスが通流する場合、ラインヒータLH22により第2分岐流路L25が加熱されても、第2分岐流路L25において、流体の流れ方向に沿った温度分布が生じやすい。 In addition, the inert gas from the inert gas supply source S22 is heated to a second temperature by the heating mechanism HE22 and flows through the second branch flow path L25. This improves the temperature uniformity along the fluid flow direction in the second branch flow path L25 downstream of the heating mechanism HE22. In contrast, when inert gas at room temperature flows through the second branch flow path L25, even if the second branch flow path L25 is heated by the line heater LH22, a temperature distribution along the fluid flow direction is likely to occur in the second branch flow path L25.
 また、第2実施形態によれば、大流量かつ加熱された不活性ガスが、第1分岐流路L24及び第2分岐流路L25を経由して処理容器211内に供給されるので、第1分岐流路L24、第2分岐流路L25及び処理容器211内に残留するIPAの乾燥が促進される。 Furthermore, according to the second embodiment, a large flow rate of heated inert gas is supplied into the processing vessel 211 via the first branch flow path L24 and the second branch flow path L25, accelerating the drying of the IPA remaining in the first branch flow path L24, the second branch flow path L25, and the processing vessel 211.
 また、第2実施形態によれば、処理流体供給源S21の処理流体が第1分岐流路L24及び第2分岐流路L25を経由して処理容器211内に供給される前の待機工程において、加熱された不活性ガスが第1分岐流路L24及び第2分岐流路L25を通流する。この場合、不活性ガスにより第1分岐流路L24及び第2分岐流路L25が加熱されるので、待機工程の後に行われる1枚目の基板Wの処理温度が、2枚目以降の基板Wの処理温度とほぼ同じになる。その結果、基板W間での処理温度のばらつきが抑制される。 Furthermore, according to the second embodiment, in a standby step before the processing fluid from the processing fluid supply source S21 is supplied into the processing vessel 211 via the first branch flow path L24 and the second branch flow path L25, a heated inert gas flows through the first branch flow path L24 and the second branch flow path L25. In this case, the first branch flow path L24 and the second branch flow path L25 are heated by the inert gas, so that the processing temperature of the first substrate W performed after the standby step becomes substantially the same as the processing temperature of the second and subsequent substrates W. As a result, variation in processing temperature between substrates W is suppressed.
 〔第2実施形態の第1変形例〕
 図19を参照し、第2実施形態の第1変形例に係る基板処理装置20Aについて説明する。図19は、第2実施形態の第1変形例に係る基板処理装置20Aを示す図である。
[First Modification of the Second Embodiment]
A substrate processing apparatus 20A according to a first modified example of the second embodiment will be described with reference to Fig. 19. Fig. 19 is a diagram showing a substrate processing apparatus 20A according to a first modified example of the second embodiment.
 基板処理装置20Aは、加熱機構HE21と加熱機構HE22とがそれぞれ処理流体供給部に接続される点、及びバイパス流路L26がない点で、基板処理装置20と異なる。基板処理装置20Aの他の構成については、基板処理装置20と同様であってよい。以下、基板処理装置20と異なる点を中心に説明する。 Substrate processing apparatus 20A differs from substrate processing apparatus 20 in that heating mechanism HE21 and heating mechanism HE22 are each connected to a processing fluid supply unit, and in that there is no bypass flow path L26. The rest of the configuration of substrate processing apparatus 20A may be the same as that of substrate processing apparatus 20. The following will focus on the differences from substrate processing apparatus 20.
 基板処理装置20Aは、処理部21と、流体供給システム22Aと、排出部23と、制御部24とを有する。 The substrate processing apparatus 20A has a processing section 21, a fluid supply system 22A, a discharge section 23, and a control section 24.
 流体供給システム22Aは、処理流体供給部221Aと、処理流体供給部221Bと、温度調整部222Aとを有する。 The fluid supply system 22A has a treatment fluid supply unit 221A, a treatment fluid supply unit 221B, and a temperature adjustment unit 222A.
 処理流体供給部221Aは、処理流体供給源S21Aと、第1供給流路L21Aと、開閉弁V21Aと、オリフィスOR21Aと、不活性ガス供給源S22Aと、第3供給流路L23Aと、開閉弁V23Aとを有する。処理流体供給源S21A、第1供給流路L21A、開閉弁V21A、オリフィスOR21A、不活性ガス供給源S22A、第3供給流路L23A及び開閉弁V23Aは、それぞれ処理流体供給源S21、第1供給流路L21、開閉弁V21、オリフィスOR21、不活性ガス供給源S22、第3供給流路L23及び開閉弁V23と同じであってよい。 The treatment fluid supply unit 221A has a treatment fluid supply source S21A, a first supply flow path L21A, an on-off valve V21A, an orifice OR21A, an inert gas supply source S22A, a third supply flow path L23A, and an on-off valve V23A. The treatment fluid supply source S21A, the first supply flow path L21A, the on-off valve V21A, the orifice OR21A, the inert gas supply source S22A, the third supply flow path L23A, and the on-off valve V23A may be the same as the treatment fluid supply source S21, the first supply flow path L21, the on-off valve V21, the orifice OR21, the inert gas supply source S22, the third supply flow path L23, and the on-off valve V23, respectively.
 処理流体供給部221Bは、処理流体供給源S21Bと、第1供給流路L21Bと、開閉弁V21Bと、オリフィスOR21Bと、第2供給流路L22Bと、開閉弁V22Bと、オリフィスOR22Bと、不活性ガス供給源S22Bと、第3供給流路L23Bと、開閉弁V23Bとを有する。処理流体供給源S21B、第1供給流路L21B、開閉弁V21B、オリフィスOR21B、第2供給流路L22B、開閉弁V22B、オリフィスOR22B、不活性ガス供給源S22B、第3供給流路L23B及び開閉弁V23Bは、それぞれ処理流体供給源S21、第1供給流路L21、開閉弁V21、オリフィスOR21、第2供給流路L22、開閉弁V22、オリフィスOR22、不活性ガス供給源S22、第3供給流路L23及び開閉弁V23と同じであってよい。 The treatment fluid supply section 221B has a treatment fluid supply source S21B, a first supply flow path L21B, an on-off valve V21B, an orifice OR21B, a second supply flow path L22B, an on-off valve V22B, an orifice OR22B, an inert gas supply source S22B, a third supply flow path L23B, and an on-off valve V23B. The processing fluid supply source S21B, the first supply flow path L21B, the on-off valve V21B, the orifice OR21B, the second supply flow path L22B, the on-off valve V22B, the orifice OR22B, the inert gas supply source S22B, the third supply flow path L23B, and the on-off valve V23B may be the same as the processing fluid supply source S21, the first supply flow path L21, the on-off valve V21, the orifice OR21, the second supply flow path L22, the on-off valve V22, the orifice OR22, the inert gas supply source S22, the third supply flow path L23, and the on-off valve V23, respectively.
 温度調整部222Aは、加熱機構HE21が処理流体供給部221Aに接続され、加熱機構HE22が処理流体供給部221Bに接続される点で、温度調整部222と異なる。 The temperature adjustment unit 222A differs from the temperature adjustment unit 222 in that the heating mechanism HE21 is connected to the treatment fluid supply unit 221A, and the heating mechanism HE22 is connected to the treatment fluid supply unit 221B.
 基板処理装置20Aでは、開閉弁V21A、V23A、V21B、V22B、V23Bの開閉を制御することにより、温度調整部222Aに流体を供給する処理流体供給部221A、221Bが切り換えられる。例えば、開閉弁V21Aを開くと、処理流体供給部221Aから第1分岐流路L24に処理流体が供給される。例えば、開閉弁V23Aを開くと、処理流体供給部221Aから第1分岐流路L24に不活性ガスが供給される。例えば、開閉弁V21B及び開閉弁V22Bの少なくとも一方を開くと、処理流体供給部221Bから第2分岐流路L25に処理流体が供給される。例えば、開閉弁V23Bを開くと、処理流体供給部221Bから第2分岐流路L25に不活性ガスが供給される。基板処理装置20Aでは、例えば実施される工程に応じて温度調整部222Aに流体を供給する処理流体供給部221A、221Bが切り換えられる。 In the substrate processing apparatus 20A, the process fluid supply units 221A and 221B that supply fluid to the temperature adjustment unit 222A are switched by controlling the opening and closing of the on-off valves V21A, V23A, V21B, V22B, and V23B. For example, when the on-off valve V21A is opened, a process fluid is supplied from the process fluid supply unit 221A to the first branch flow path L24. For example, when the on-off valve V23A is opened, an inert gas is supplied from the process fluid supply unit 221A to the first branch flow path L24. For example, when at least one of the on-off valves V21B and V22B is opened, a process fluid is supplied from the process fluid supply unit 221B to the second branch flow path L25. For example, when the on-off valve V23B is opened, an inert gas is supplied from the process fluid supply unit 221B to the second branch flow path L25. In the substrate processing apparatus 20A, the processing fluid supply units 221A and 221B that supply fluid to the temperature adjustment unit 222A are switched depending on the process being performed, for example.
 〔第2実施形態の第2変形例〕
 図20を参照し、第2実施形態の第2変形例に係る基板処理装置20Bについて説明する。図20は、第2実施形態の第2変形例に係る基板処理装置20Bを示す図である。
[Second Modification of Second Embodiment]
A substrate processing apparatus 20B according to a second modified example of the second embodiment will be described with reference to Fig. 20. Fig. 20 is a diagram showing a substrate processing apparatus 20B according to a second modified example of the second embodiment.
 基板処理装置20Bは、オリフィスOR24及びオリフィスOR25が設けられる点で、基板処理装置20と異なる。 Substrate processing apparatus 20B differs from substrate processing apparatus 20 in that it is provided with orifices OR24 and OR25.
 オリフィスOR24は、フィルタF21の下流かつ第1分岐流路L24と第2分岐流路L25との合流点の上流の第1分岐流路L24に設けられる。オリフィスOR24は、オリフィスOR23よりも圧力損失が大きい。言い換えると、オリフィスOR24は、オリフィスOR23よりも流路面積が小さい。 The orifice OR24 is provided in the first branch flow path L24 downstream of the filter F21 and upstream of the junction of the first branch flow path L24 and the second branch flow path L25. The orifice OR24 has a larger pressure loss than the orifice OR23. In other words, the orifice OR24 has a smaller flow path area than the orifice OR23.
 オリフィスOR25は、フィルタF22の下流かつ第1分岐流路L24と第2分岐流路L25との合流点の上流の第2分岐流路L25に設けられる。オリフィスOR25は、オリフィスOR23よりも圧力損失が大きい。言い換えると、オリフィスOR25は、オリフィスOR23よりも流路面積が小さい。 The orifice OR25 is provided in the second branch flow passage L25 downstream of the filter F22 and upstream of the junction of the first branch flow passage L24 and the second branch flow passage L25. The orifice OR25 has a larger pressure loss than the orifice OR23. In other words, the orifice OR25 has a smaller flow passage area than the orifice OR23.
 基板処理装置20Bでは、開閉弁V25を閉じると共に開閉弁V26を開くと、加熱機構HE22で第2温度に加熱された流体が第2分岐流路L25を通って処理容器211内に供給される。このとき、オリフィスOR23により流速が低下した流体が、第2分岐流路L25からバイパス流路L26を経由して第1分岐流路L24に流入する。これにより、処理容器211から第1分岐流路L24に向かう流体の逆流が防止される。このため、IPAの残渣などによる第1分岐流路L24の汚染を抑制できる。さらに、フィルタF21の下流の第1分岐流路L24に、オリフィスOR23よりも圧力損失が大きいオリフィスOR24が設けられる。この場合、開閉弁V26とフィルタF22との間の第2分岐流路L25の圧力、オリフィスOR24の上流の第1分岐流路L24の圧力、及びオリフィスOR24の下流の第1分岐流路L24の圧力が、この順に低くなる。このため、処理容器211から第1分岐流路L24に向かう流体の逆流をさらに防止できる。 In the substrate processing apparatus 20B, when the on-off valve V25 is closed and the on-off valve V26 is opened, the fluid heated to the second temperature by the heating mechanism HE22 is supplied into the processing vessel 211 through the second branch flow path L25. At this time, the fluid whose flow rate has been reduced by the orifice OR23 flows from the second branch flow path L25 through the bypass flow path L26 into the first branch flow path L24. This prevents backflow of the fluid from the processing vessel 211 toward the first branch flow path L24. This makes it possible to suppress contamination of the first branch flow path L24 by IPA residues and the like. Furthermore, an orifice OR24 having a larger pressure loss than the orifice OR23 is provided in the first branch flow path L24 downstream of the filter F21. In this case, the pressure in the second branch flow path L25 between the on-off valve V26 and the filter F22, the pressure in the first branch flow path L24 upstream of the orifice OR24, and the pressure in the first branch flow path L24 downstream of the orifice OR24 decrease in that order. This further prevents backflow of the fluid from the processing vessel 211 toward the first branch flow path L24.
 また、開閉弁V26を閉じると共に開閉弁V25を開くと、加熱機構HE21で第1温度に加熱された流体が第1分岐流路L24を通って処理容器211内に供給される。このとき、オリフィスOR23により流速が低下した流体が、第1分岐流路L24からバイパス流路L26を経由して第2分岐流路L25に流入する。これにより、処理容器211から第2分岐流路L25に向かう流体の逆流が防止される。このため、IPAの残渣などによる第2分岐流路L25の汚染を抑制できる。さらに、フィルタF22の下流の第2分岐流路L25に、オリフィスOR23よりも圧力損失が大きいオリフィスOR25が設けられる。この場合、開閉弁V25とフィルタF21との間の第1分岐流路L24の圧力、オリフィスOR25の上流の第2分岐流路L25の圧力、及びオリフィスOR25の下流の第2分岐流路L25の圧力が、この順に低くなる。このため、処理容器211から第2分岐流路L25に向かう流体の逆流をさらに防止できる。 Also, when the on-off valve V26 is closed and the on-off valve V25 is opened, the fluid heated to the first temperature by the heating mechanism HE21 is supplied into the processing vessel 211 through the first branch flow path L24. At this time, the fluid whose flow rate has been reduced by the orifice OR23 flows from the first branch flow path L24 through the bypass flow path L26 into the second branch flow path L25. This prevents the backflow of the fluid from the processing vessel 211 toward the second branch flow path L25. Therefore, contamination of the second branch flow path L25 by IPA residue or the like can be suppressed. Furthermore, the second branch flow path L25 downstream of the filter F22 is provided with an orifice OR25 with a larger pressure loss than the orifice OR23. In this case, the pressure of the first branch flow path L24 between the on-off valve V25 and the filter F21, the pressure of the second branch flow path L25 upstream of the orifice OR25, and the pressure of the second branch flow path L25 downstream of the orifice OR25 decrease in this order. This further prevents backflow of fluid from the processing vessel 211 toward the second branch flow path L25.
 〔第3実施形態〕
 図21を参照し、第3実施形態に係る基板処理装置30について説明する。図21は、第3実施形態に係る基板処理装置30を示す図である。
Third Embodiment
A substrate processing apparatus 30 according to a third embodiment will be described with reference to Fig. 21. Fig. 21 is a diagram showing the substrate processing apparatus 30 according to the third embodiment.
 基板処理装置30は、処理部31と、流体供給システム32と、排出部33と、制御部34とを有する。 The substrate processing apparatus 30 has a processing section 31, a fluid supply system 32, a discharge section 33, and a control section 34.
 処理部31は、処理部11と同じであってよい。処理部31は、処理容器311と、保持板312とを有する。 The processing section 31 may be the same as the processing section 11. The processing section 31 has a processing vessel 311 and a holding plate 312.
 流体供給システム32は、処理流体供給部321と、温度調整部322とを有する。 The fluid supply system 32 has a treatment fluid supply section 321 and a temperature adjustment section 322.
 処理流体供給部321は、処理流体供給部121と同じであってよい。処理流体供給部321は、処理流体供給源S31と、第1供給流路L31と、開閉弁V31と、オリフィスOR31と、第2供給流路L32と、開閉弁V32と、オリフィスOR32と、不活性ガス供給源S32と、第3供給流路L33と、開閉弁V33とを有する。 The treatment fluid supply unit 321 may be the same as the treatment fluid supply unit 121. The treatment fluid supply unit 321 has a treatment fluid supply source S31, a first supply flow path L31, an on-off valve V31, an orifice OR31, a second supply flow path L32, an on-off valve V32, an orifice OR32, an inert gas supply source S32, a third supply flow path L33, and an on-off valve V33.
 温度調整部322は、処理流体供給部321と処理容器311とに接続される。温度調整部322は、温度が調整された流体を処理容器311の内部に通流させる。流体は、処理流体と不活性ガスとを含む。温度調整部322は、第1流路L34と、第2流路L35と、バイパス流路L36と、第1排出流路L37とを有する。 The temperature adjustment unit 322 is connected to the treatment fluid supply unit 321 and the treatment vessel 311. The temperature adjustment unit 322 passes a temperature-adjusted fluid through the inside of the treatment vessel 311. The fluid includes a treatment fluid and an inert gas. The temperature adjustment unit 322 has a first flow path L34, a second flow path L35, a bypass flow path L36, and a first discharge flow path L37.
 第1流路L34は、処理容器311の側部に接続される。第1流路L34は、処理容器311の側方から基板Wに向けて流体を供給する。第1流路L34には、加熱機構HE31、オリフィスOR33、フィルタF31及び開閉弁V34が、上流から順に設けられる。第1流路L34における加熱機構HE31の下流には、ラインヒータLH31が設けられる。第1流路L34の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 The first flow path L34 is connected to the side of the processing vessel 311. The first flow path L34 supplies fluid from the side of the processing vessel 311 toward the substrate W. A heating mechanism HE31, an orifice OR33, a filter F31, and an on-off valve V34 are provided in the first flow path L34, in that order from upstream. A line heater LH31 is provided downstream of the heating mechanism HE31 in the first flow path L34. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the first flow path L34.
 加熱機構HE31は、処理流体供給部321から供給される流体を所定の温度に加熱し、所定の温度の流体を下流に供給する。 The heating mechanism HE31 heats the fluid supplied from the treatment fluid supply unit 321 to a predetermined temperature and supplies the fluid at the predetermined temperature downstream.
 オリフィスOR33は、第1流路L34を通流する流体の流速を低下させ、圧力を調整する機能を有する。 The orifice OR33 has the function of reducing the flow rate of the fluid passing through the first flow path L34 and adjusting the pressure.
 フィルタF31は、第1流路L34内を流れる流体を濾過し、流体に含まれる異物を取り除く。これにより、流体を用いた基板Wの乾燥処理の際に、基板Wの表面にパーティクルが発生することを抑制できる。 The filter F31 filters the fluid flowing through the first flow path L34 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during the drying process of the substrate W using the fluid.
 開閉弁V34は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V34は、開状態では下流の処理容器311に流体を流し、閉状態では下流の処理容器311に流体を流さない。 The on-off valve V34 is a valve that switches the flow of fluid on and off. When open, the on-off valve V34 allows fluid to flow to the downstream processing vessel 311, and when closed, it does not allow fluid to flow to the downstream processing vessel 311.
 ラインヒータLH31は、加熱機構HE31の下流の第1流路L34を加熱する。ラインヒータLH31は、加熱機構HE31により所定の温度に加熱された流体が第1流路L34を流れる際に温度低下することを抑制する。 The line heater LH31 heats the first flow path L34 downstream of the heating mechanism HE31. The line heater LH31 prevents the temperature of the fluid heated to a predetermined temperature by the heating mechanism HE31 from decreasing as it flows through the first flow path L34.
 第2流路L35は、フィルタF31と開閉弁V34との間において第1流路L34から分岐する。第2流路L35は、処理容器311の底部に接続される。第2流路L35は、処理容器311の下方から基板Wに向けて流体を供給する。第2流路L35には、開閉弁V35が設けられる。第2流路L35には、ラインヒータLH32が設けられる。第2流路L35の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 The second flow path L35 branches off from the first flow path L34 between the filter F31 and the on-off valve V34. The second flow path L35 is connected to the bottom of the processing vessel 311. The second flow path L35 supplies fluid from below the processing vessel 311 toward the substrate W. An on-off valve V35 is provided in the second flow path L35. A line heater LH32 is provided in the second flow path L35. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the second flow path L35.
 開閉弁V35は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V35は、開状態では下流の処理容器311に流体を流し、閉状態では下流の処理容器311に流体を流さない。 The on-off valve V35 is a valve that switches the flow of fluid on and off. When open, the on-off valve V35 allows fluid to flow to the downstream processing vessel 311, and when closed, it does not allow fluid to flow to the downstream processing vessel 311.
 ラインヒータLH32は、第2流路L35を加熱する。ラインヒータLH32は、加熱機構HE31により所定の温度に加熱された流体が第2流路L35を流れる際に温度低下することを抑制する。 The line heater LH32 heats the second flow path L35. The line heater LH32 prevents the temperature of the fluid heated to a predetermined temperature by the heating mechanism HE31 from decreasing as it flows through the second flow path L35.
 バイパス流路L36は、第1流路L34における開閉弁V34の下流の位置と、第2流路L35における開閉弁V35の下流の位置とを連通させる。バイパス流路L36には、オリフィスOR34が設けられる。バイパス流路L36には、ラインヒータLH33が設けられる。 The bypass flow path L36 connects a position downstream of the on-off valve V34 in the first flow path L34 to a position downstream of the on-off valve V35 in the second flow path L35. An orifice OR34 is provided in the bypass flow path L36. A line heater LH33 is provided in the bypass flow path L36.
 オリフィスOR34は、バイパス流路L36を通流する流体の流速を低下させ、圧力を調整する機能を有する。 The orifice OR34 has the function of reducing the flow rate of the fluid passing through the bypass flow path L36 and adjusting the pressure.
 ラインヒータLH33は、バイパス流路L36を加熱する。 The line heater LH33 heats the bypass flow path L36.
 係る温度調整部322において、開閉弁V34を閉じると共に開閉弁V35を開くと、加熱機構HE31で所定の温度に加熱された流体が、第2流路L35を通って処理容器311の下方から処理容器311内に供給される。このとき、オリフィスOR34により流速が低下した流体が、第2流路L35からバイパス流路L36を経由して第1流路L34に流入する。これにより、処理容器311から第1流路L34に向かう流体の逆流が防止される。このため、IPAの残渣などによる第1流路L34の汚染を抑制できる。 In the temperature adjustment unit 322, when the on-off valve V34 is closed and the on-off valve V35 is opened, the fluid heated to a predetermined temperature by the heating mechanism HE31 is supplied into the processing vessel 311 from below the processing vessel 311 through the second flow path L35. At this time, the fluid, whose flow rate has been reduced by the orifice OR34, flows from the second flow path L35 through the bypass flow path L36 into the first flow path L34. This prevents the backflow of the fluid from the processing vessel 311 toward the first flow path L34. This makes it possible to suppress contamination of the first flow path L34 by IPA residue, etc.
 また、開閉弁V35を閉じると共に開閉弁V34を開くと、加熱機構HE31で所定の温度に加熱された流体が、第1流路L34を通って処理容器311の側方から処理容器311内に供給される。このとき、オリフィスOR34により流速が低下した流体が、第1流路L34からバイパス流路L36を経由して第2流路L35に流入する。これにより、処理容器311から第2流路L35に向かう流体の逆流が防止される。このため、IPAの残渣などによる第2流路L35の汚染を抑制できる。 Furthermore, when on-off valve V35 is closed and on-off valve V34 is opened, fluid heated to a predetermined temperature by heating mechanism HE31 is supplied into processing vessel 311 from the side of processing vessel 311 through first flow path L34. At this time, the fluid, whose flow rate has been reduced by orifice OR34, flows from first flow path L34 through bypass flow path L36 into second flow path L35. This prevents backflow of fluid from processing vessel 311 toward second flow path L35. This makes it possible to suppress contamination of second flow path L35 by IPA residue, etc.
 第1排出流路L37は、第1流路L34内の流体を排出する。第1排出流路L37は、フィルタF31と開閉弁V34との間において第1流路L34から分岐する。第1排出流路L37には、開閉弁V36及びオリフィスOR35が、上流から順に設けられる。第1排出流路L37には、ラインヒータLH34が設けられる。オリフィスOR35は、設けられなくてもよい。 The first discharge flow path L37 discharges the fluid in the first flow path L34. The first discharge flow path L37 branches off from the first flow path L34 between the filter F31 and the on-off valve V34. The first discharge flow path L37 is provided with an on-off valve V36 and an orifice OR35, in that order from upstream. The first discharge flow path L37 is provided with a line heater LH34. The orifice OR35 does not necessarily have to be provided.
 開閉弁V36は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V36は、開状態では下流の第1排出流路L37に流体を流し、閉状態では下流の第1排出流路L37に流体を流さない。 The on-off valve V36 is a valve that switches the flow of fluid on and off. When open, the on-off valve V36 allows fluid to flow to the downstream first discharge flow path L37, and when closed, does not allow fluid to flow to the downstream first discharge flow path L37.
 オリフィスOR35は、第1排出流路L37を通流する流体の流速を低下させ、圧力を調整する機能を有する。 The orifice OR35 has the function of reducing the flow rate of the fluid passing through the first discharge flow path L37 and adjusting the pressure.
 ラインヒータLH34は、第1排出流路L37を加熱する。 The line heater LH34 heats the first exhaust flow path L37.
 排出部33は、排出流路L38を有する。排出流路L38は、処理容器311に接続される。排出流路L38には、背圧弁BV31及び開閉弁V37が、上流から順に設けられる。排出流路L38には、ラインヒータLH35が設けられる。排出流路L38の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 The discharge section 33 has a discharge flow path L38. The discharge flow path L38 is connected to the processing vessel 311. A back pressure valve BV31 and an on-off valve V37 are provided in the discharge flow path L38, in that order from upstream. A line heater LH35 is provided in the discharge flow path L38. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the discharge flow path L38.
 背圧弁BV31、開閉弁V37及びラインヒータLH35は、それぞれ背圧弁BV11、開閉弁V17及びラインヒータLH15と同じであってよい。 The back pressure valve BV31, the on-off valve V37, and the line heater LH35 may be the same as the back pressure valve BV11, the on-off valve V17, and the line heater LH15, respectively.
 制御部34は、制御部14と同様に、各種のセンサから計測信号を受信し、各種機能要素に制御信号を送信する。制御部34は、例えばコンピュータであり、演算部341と記憶部342とを備える。演算部341及び記憶部342は、それぞれ演算部141及び記憶部142と同じであってよい。 Similar to the control unit 14, the control unit 34 receives measurement signals from various sensors and transmits control signals to various functional elements. The control unit 34 is, for example, a computer, and includes a calculation unit 341 and a memory unit 342. The calculation unit 341 and the memory unit 342 may be the same as the calculation unit 141 and the memory unit 142, respectively.
 〔第4実施形態〕
 図22を参照し、第4実施形態に係る基板処理装置40について説明する。図22は、第4実施形態に係る基板処理装置40を示す図である。
Fourth Embodiment
A substrate processing apparatus 40 according to a fourth embodiment will be described with reference to Fig. 22. Fig. 22 is a view showing the substrate processing apparatus 40 according to the fourth embodiment.
 基板処理装置40は、処理部41と、流体供給システム42と、排出部43と、制御部44とを有する。 The substrate processing apparatus 40 has a processing section 41, a fluid supply system 42, a discharge section 43, and a control section 44.
 処理部41は、処理部11と同じであってよい。処理部41は、処理容器411と、保持板412とを有する。 The processing section 41 may be the same as the processing section 11. The processing section 41 has a processing vessel 411 and a holding plate 412.
 流体供給システム42は、処理流体供給部421と、温度調整部422とを有する。 The fluid supply system 42 has a treatment fluid supply section 421 and a temperature adjustment section 422.
 処理流体供給部421は、処理流体供給部121と同じであってよい。処理流体供給部421は、処理流体供給源S41と、第1供給流路L41と、開閉弁V41と、オリフィスOR41と、第2供給流路L42と、開閉弁V42と、オリフィスOR42と、不活性ガス供給源S42と、第3供給流路L43と、開閉弁V43とを有する。 The treatment fluid supply unit 421 may be the same as the treatment fluid supply unit 121. The treatment fluid supply unit 421 has a treatment fluid supply source S41, a first supply flow path L41, an on-off valve V41, an orifice OR41, a second supply flow path L42, an on-off valve V42, an orifice OR42, an inert gas supply source S42, a third supply flow path L43, and an on-off valve V43.
 温度調整部422は、処理流体供給部421と処理容器411とに接続される。温度調整部422は、温度が調整された流体を処理容器411の内部に通流させる。流体は、処理流体と不活性ガスとを含む。温度調整部422は、第1分岐流路L44と、第2分岐流路L45と、第1バイパス流路L46と、第1排出流路L47と、第2排出流路L48と、第3分岐流路L421と、第2バイパス流路L422とを有する。 The temperature adjustment unit 422 is connected to the treatment fluid supply unit 421 and the treatment vessel 411. The temperature adjustment unit 422 passes a temperature-adjusted fluid through the inside of the treatment vessel 411. The fluid includes a treatment fluid and an inert gas. The temperature adjustment unit 422 has a first branch flow path L44, a second branch flow path L45, a first bypass flow path L46, a first exhaust flow path L47, a second exhaust flow path L48, a third branch flow path L421, and a second bypass flow path L422.
 第1分岐流路L44は、処理容器411の側部に接続される。第1分岐流路L44は、処理容器411の側方から基板Wに向けて流体を供給する。第1分岐流路L44には、加熱機構HE41、開閉弁V45、フィルタF41及び開閉弁V50が、上流から順に設けられる。第1分岐流路L44における加熱機構HE41の下流には、ラインヒータLH41が設けられる。第1分岐流路L44の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 The first branch flow path L44 is connected to the side of the processing vessel 411. The first branch flow path L44 supplies fluid from the side of the processing vessel 411 toward the substrate W. A heating mechanism HE41, an on-off valve V45, a filter F41, and an on-off valve V50 are provided in the first branch flow path L44, in that order from upstream. A line heater LH41 is provided downstream of the heating mechanism HE41 in the first branch flow path L44. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the first branch flow path L44.
 加熱機構HE41は、加熱機構HE42と並列に設けられる。加熱機構HE41は、処理流体供給部421から供給される流体を第1温度に加熱し、第1温度の流体を下流に供給する。第1温度は、例えば100℃以上120℃以下であってよい。 The heating mechanism HE41 is provided in parallel with the heating mechanism HE42. The heating mechanism HE41 heats the fluid supplied from the treatment fluid supply unit 421 to a first temperature and supplies the fluid at the first temperature downstream. The first temperature may be, for example, 100°C or higher and 120°C or lower.
 開閉弁V45は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V45は、開状態では下流のフィルタF41に流体を流し、閉状態では下流のフィルタF41に流体を流さない。 The on-off valve V45 is a valve that switches the flow of fluid on and off. When the on-off valve V45 is open, it allows fluid to flow to the downstream filter F41, and when it is closed, it does not allow fluid to flow to the downstream filter F41.
 フィルタF41は、第1分岐流路L44内を流れる流体を濾過し、流体に含まれる異物を取り除く。これにより、流体を用いた基板Wの乾燥処理の際に、基板Wの表面にパーティクルが発生することを抑制できる。 The filter F41 filters the fluid flowing through the first branch flow path L44 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during the drying process of the substrate W using the fluid.
 開閉弁V50は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V50は、開状態では下流の処理容器411に流体を流し、閉状態では下流の処理容器411に流体を流さない。 The on-off valve V50 is a valve that switches the flow of fluid on and off. When open, the on-off valve V50 allows fluid to flow to the downstream processing vessel 411, and when closed, it does not allow fluid to flow to the downstream processing vessel 411.
 ラインヒータLH41は、加熱機構HE41の下流の第1分岐流路L44を加熱する。ラインヒータLH41は、加熱機構HE41により第1温度に加熱された流体が第1分岐流路L44を流れる際に温度低下することを抑制する。 The line heater LH41 heats the first branch flow path L44 downstream of the heating mechanism HE41. The line heater LH41 prevents the temperature of the fluid heated to the first temperature by the heating mechanism HE41 from decreasing as it flows through the first branch flow path L44.
 第2分岐流路L45は、処理流体供給部421と加熱機構HE41との間において第1分岐流路L44から分岐する。第2分岐流路L45は、フィルタF41と開閉弁V50との間において第1分岐流路L44と合流する。 The second branch flow path L45 branches off from the first branch flow path L44 between the treatment fluid supply unit 421 and the heating mechanism HE41. The second branch flow path L45 merges with the first branch flow path L44 between the filter F41 and the on-off valve V50.
 第2分岐流路L45には、開閉弁V44、加熱機構HE42、開閉弁V46及びフィルタF42が、上流から順に設けられる。第2分岐流路L45における加熱機構HE42の下流には、ラインヒータLH42が設けられる。第2分岐流路L45の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 In the second branch flow path L45, an on-off valve V44, a heating mechanism HE42, an on-off valve V46, and a filter F42 are provided in this order from upstream. Downstream of the heating mechanism HE42 in the second branch flow path L45, a line heater LH42 is provided. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the second branch flow path L45.
 開閉弁V44は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V44は、開状態では下流の加熱機構HE42に流体を流し、閉状態では下流の加熱機構HE42に流体を流さない。 The on-off valve V44 is a valve that switches the flow of fluid on and off. When open, the on-off valve V44 allows fluid to flow to the downstream heating mechanism HE42, and when closed, it does not allow fluid to flow to the downstream heating mechanism HE42.
 加熱機構HE42は、処理流体供給部421から供給される流体を第2温度に加熱し、第2温度の流体を下流に供給する。第2温度は、第1温度よりも低い温度である。第2温度は、例えば80℃以上90℃以下であってよい。 The heating mechanism HE42 heats the fluid supplied from the treatment fluid supply unit 421 to a second temperature and supplies the fluid at the second temperature downstream. The second temperature is lower than the first temperature. The second temperature may be, for example, 80°C or higher and 90°C or lower.
 開閉弁V46は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V46は、開状態では下流のフィルタF42に流体を流し、閉状態では下流のフィルタF42に流体を流さない。 The on-off valve V46 is a valve that switches the flow of fluid on and off. When the on-off valve V46 is open, it allows fluid to flow to the downstream filter F42, and when it is closed, it does not allow fluid to flow to the downstream filter F42.
 フィルタF42は、第2分岐流路L45内を流れる流体を濾過し、流体に含まれる異物を取り除く。これにより、流体を用いた基板Wの乾燥処理の際に、基板Wの表面にパーティクルが発生することを抑制できる。 The filter F42 filters the fluid flowing through the second branch flow path L45 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during the drying process of the substrate W using the fluid.
 ラインヒータLH42は、加熱機構HE42の下流の第2分岐流路L45を加熱する。ラインヒータLH42は、加熱機構HE42により第2温度に加熱された流体が第2分岐流路L45を流れる際に温度低下することを抑制する。 The line heater LH42 heats the second branch flow path L45 downstream of the heating mechanism HE42. The line heater LH42 prevents the temperature of the fluid heated to the second temperature by the heating mechanism HE42 from decreasing when it flows through the second branch flow path L45.
 第1バイパス流路L46は、第1分岐流路L44における開閉弁V45とフィルタF41との間の位置と、第2分岐流路L45における開閉弁V46とフィルタF42との間の位置とを連通させる。第1バイパス流路L46には、オリフィスOR43が設けられる。第1バイパス流路L46には、ラインヒータLH43が設けられる。第1バイパス流路L46、オリフィスOR43及びラインヒータLH43は、設けられなくてもよい。 The first bypass flow path L46 connects a position between the on-off valve V45 and the filter F41 in the first branch flow path L44 and a position between the on-off valve V46 and the filter F42 in the second branch flow path L45. An orifice OR43 is provided in the first bypass flow path L46. A line heater LH43 is provided in the first bypass flow path L46. The first bypass flow path L46, the orifice OR43, and the line heater LH43 do not necessarily have to be provided.
 オリフィスOR43は、第1バイパス流路L46を通流する流体の流速を低下させ、圧力を調整する機能を有する。 The orifice OR43 has the function of reducing the flow rate of the fluid passing through the first bypass flow path L46 and adjusting the pressure.
 ラインヒータLH43は、第1バイパス流路L46を加熱する。 The line heater LH43 heats the first bypass flow path L46.
 係る温度調整部422において、開閉弁V45を閉じると共に開閉弁V46を開くと、加熱機構HE42で第2温度に加熱された流体が第2分岐流路L45を通って処理容器411内に供給される。このとき、オリフィスOR43により流速が低下した流体が、第2分岐流路L45から第1バイパス流路L46を経由して第1分岐流路L44に流入する。これにより、第1分岐流路L44と第2分岐流路L45との合流部から第1分岐流路L44の上流に向かう流体の逆流が防止される。このため、第1分岐流路L44、フィルタF41などの汚染を抑制できる。 In the temperature adjustment unit 422, when the on-off valve V45 is closed and the on-off valve V46 is opened, the fluid heated to the second temperature by the heating mechanism HE42 is supplied into the processing vessel 411 through the second branch flow path L45. At this time, the fluid whose flow rate has been reduced by the orifice OR43 flows from the second branch flow path L45 through the first bypass flow path L46 into the first branch flow path L44. This prevents backflow of the fluid from the junction of the first branch flow path L44 and the second branch flow path L45 toward the upstream of the first branch flow path L44. This makes it possible to suppress contamination of the first branch flow path L44, the filter F41, etc.
 また、開閉弁V46を閉じると共に開閉弁V45を開くと、加熱機構HE41で第1温度に加熱された流体が第1分岐流路L44を通って処理容器411内に供給される。このとき、オリフィスOR43により流速が低下した流体が、第1分岐流路L44から第1バイパス流路L46を経由して第2分岐流路L45に流入する。これにより、第1分岐流路L44と第2分岐流路L45との合流部から第2分岐流路L45の上流に向かう流体の逆流が防止される。このため、第2分岐流路L45、フィルタF42などの汚染を抑制できる。 Further, when the on-off valve V46 is closed and the on-off valve V45 is opened, the fluid heated to the first temperature by the heating mechanism HE41 is supplied into the processing vessel 411 through the first branch flow path L44. At this time, the fluid, whose flow rate has been reduced by the orifice OR43, flows from the first branch flow path L44 through the first bypass flow path L46 into the second branch flow path L45. This prevents backflow of the fluid from the junction of the first branch flow path L44 and the second branch flow path L45 toward the upstream of the second branch flow path L45. This makes it possible to suppress contamination of the second branch flow path L45, the filter F42, etc.
 このように、開閉弁V45と開閉弁V46とを排他的に開閉することにより、処理容器411内に通流させる流体の温度を変更できる。また、開閉弁V45と開閉弁V46の両方を開くと、加熱機構HE41で第1温度に加熱された流体と加熱機構HE42で第2温度に加熱された流体とが混合されて処理容器411内に供給される。この場合、第1温度と第2温度との中間温度の流体を処理容器411内に供給できる。このように、開閉弁V45及び開閉弁V46の開閉を制御することにより、処理容器411内に通流させる流体の温度を3段階に変更できる。 In this way, by exclusively opening and closing the on-off valves V45 and V46, the temperature of the fluid flowing through the processing vessel 411 can be changed. Furthermore, when both the on-off valves V45 and V46 are opened, the fluid heated to the first temperature by the heating mechanism HE41 and the fluid heated to the second temperature by the heating mechanism HE42 are mixed and supplied into the processing vessel 411. In this case, a fluid at an intermediate temperature between the first and second temperatures can be supplied into the processing vessel 411. In this way, by controlling the opening and closing of the on-off valves V45 and V46, the temperature of the fluid flowing through the processing vessel 411 can be changed in three stages.
 第1排出流路L47は、第1分岐流路L44内の流体を排出する。第1排出流路L47は、加熱機構HE41と開閉弁V45との間において第1分岐流路L44から分岐する。第1排出流路L47には、開閉弁V47が設けられる。第1排出流路L47には、ラインヒータLH44が設けられる。第1排出流路L47には、オリフィスが設けられてもよい。 The first discharge flow path L47 discharges the fluid in the first branch flow path L44. The first discharge flow path L47 branches off from the first branch flow path L44 between the heating mechanism HE41 and the on-off valve V45. The first discharge flow path L47 is provided with an on-off valve V47. The first discharge flow path L47 is provided with a line heater LH44. An orifice may be provided in the first discharge flow path L47.
 開閉弁V47は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V47は、開状態では下流の第1排出流路L47に流体を流し、閉状態では下流の第1排出流路L47に流体を流さない。 The on-off valve V47 is a valve that switches the flow of fluid on and off. When open, the on-off valve V47 allows fluid to flow to the downstream first discharge flow path L47, and when closed, does not allow fluid to flow to the downstream first discharge flow path L47.
 ラインヒータLH44は、第1排出流路L47を加熱する。 The line heater LH44 heats the first exhaust flow path L47.
 第2排出流路L48は、第2分岐流路L45内の流体を排出する。第2排出流路L48は、加熱機構HE42と開閉弁V46との間において第2分岐流路L45から分岐する。第2排出流路L48には、開閉弁V48が設けられる。第2排出流路L48には、ラインヒータLH45が設けられる。第2排出流路L48には、オリフィスが設けられてもよい。 The second discharge flow path L48 discharges the fluid in the second branch flow path L45. The second discharge flow path L48 branches off from the second branch flow path L45 between the heating mechanism HE42 and the on-off valve V46. The second discharge flow path L48 is provided with an on-off valve V48. The second discharge flow path L48 is provided with a line heater LH45. An orifice may be provided in the second discharge flow path L48.
 開閉弁V48は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V48は、開状態では下流の第2排出流路L48に流体を流し、閉状態では下流の第2排出流路L48に流体を流さない。 The on-off valve V48 is a valve that switches the flow of fluid on and off. When open, the on-off valve V48 allows fluid to flow to the downstream second discharge flow path L48, and when closed, the on-off valve V48 does not allow fluid to flow to the downstream second discharge flow path L48.
 ラインヒータLH45は、第2排出流路L48を加熱する。 The line heater LH45 heats the second exhaust flow path L48.
 第3分岐流路L421は、フィルタF41と開閉弁V50との間において第1分岐流路L44から分岐する。第3分岐流路L421は、処理容器411の底部に接続される。第3分岐流路L421は、処理容器411の下方から基板Wに向けて流体を供給する。 The third branch flow path L421 branches off from the first branch flow path L44 between the filter F41 and the on-off valve V50. The third branch flow path L421 is connected to the bottom of the processing vessel 411. The third branch flow path L421 supplies fluid from the bottom of the processing vessel 411 toward the substrate W.
 第3分岐流路L421には、開閉弁V421が設けられる。第3分岐流路L421には、ラインヒータLH421が設けられる。第3分岐流路L421の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 An on-off valve V421 is provided in the third branch flow path L421. A line heater LH421 is provided in the third branch flow path L421. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the third branch flow path L421.
 開閉弁V421は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V421は、開状態では下流の処理容器411に流体を流し、閉状態では下流の処理容器411に流体を流さない。 The on-off valve V421 is a valve that switches the flow of fluid on and off. When open, the on-off valve V421 allows fluid to flow to the downstream processing vessel 411, and when closed, it does not allow fluid to flow to the downstream processing vessel 411.
 ラインヒータLH421は、第3分岐流路L421を加熱する。ラインヒータLH421は、加熱機構HE41に第1温度に加熱された流体及び加熱機構HE42により第2温度に加熱された流体が第3分岐流路L421を流れる際に温度低下することを抑制する。 The line heater LH421 heats the third branch flow path L421. The line heater LH421 prevents the temperature of the fluid heated to the first temperature by the heating mechanism HE41 and the fluid heated to the second temperature by the heating mechanism HE42 from decreasing when they flow through the third branch flow path L421.
 第2バイパス流路L422は、第1分岐流路L44における開閉弁V50の下流の位置と、第3分岐流路L421における開閉弁V421の下流の位置とを連通させる。第2バイパス流路L422には、オリフィスOR422が設けられる。第2バイパス流路L422には、ラインヒータLH422が設けられる。 The second bypass flow path L422 connects a position downstream of the on-off valve V50 in the first branch flow path L44 to a position downstream of the on-off valve V421 in the third branch flow path L421. An orifice OR422 is provided in the second bypass flow path L422. A line heater LH422 is provided in the second bypass flow path L422.
 オリフィスOR422は、第2バイパス流路L422を通流する流体の流速を低下させ、圧力を調整する機能を有する。 The orifice OR422 has the function of reducing the flow rate of the fluid passing through the second bypass flow path L422 and adjusting the pressure.
 ラインヒータLH422は、第2バイパス流路L422を加熱する。 The line heater LH422 heats the second bypass flow path L422.
 係る温度調整部422において、開閉弁V50を閉じると共に開閉弁V421を開くと、流体が第3分岐流路L421を通って処理容器411内に供給される。このとき、オリフィスOR422により流速が低下した流体が、第3分岐流路L421から第2バイパス流路L422を経由して第1分岐流路L44に流入する。これにより、処理容器411から第1分岐流路L44の上流に向かう流体の逆流が防止される。このため、IPAの残渣などによる第1分岐流路L44の汚染を抑制できる。 In the temperature adjustment unit 422, when the on-off valve V50 is closed and the on-off valve V421 is opened, the fluid is supplied into the processing vessel 411 through the third branch flow path L421. At this time, the fluid, whose flow rate has been reduced by the orifice OR422, flows from the third branch flow path L421 through the second bypass flow path L422 into the first branch flow path L44. This prevents backflow of the fluid from the processing vessel 411 toward the upstream of the first branch flow path L44. This makes it possible to suppress contamination of the first branch flow path L44 by IPA residue, etc.
 また、開閉弁V421を閉じると共に開閉弁V50を開くと、流体が第1分岐流路L44を通って処理容器411内に供給される。このとき、オリフィスOR422により流速が低下した流体が、第1分岐流路L44から第2バイパス流路L422を経由して第3分岐流路L421に流入する。これにより、処理容器411から第3分岐流路L421の上流に向かう流体の逆流が防止される。このため、IPAの残渣などによる第3分岐流路L421の汚染を抑制できる。 Furthermore, when the on-off valve V421 is closed and the on-off valve V50 is opened, the fluid is supplied into the processing vessel 411 through the first branch flow path L44. At this time, the fluid, whose flow rate has been reduced by the orifice OR422, flows from the first branch flow path L44 through the second bypass flow path L422 into the third branch flow path L421. This prevents backflow of the fluid from the processing vessel 411 toward the upstream of the third branch flow path L421. This makes it possible to suppress contamination of the third branch flow path L421 by IPA residue, etc.
 排出部43は、排出流路L49を有する。排出流路L49は、処理容器411に接続される。排出流路L49には、背圧弁BV41及び開閉弁V49が、上流から順に設けられる。排出流路L49には、ラインヒータLH46が設けられる。排出流路L49の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 The discharge section 43 has a discharge flow path L49. The discharge flow path L49 is connected to the processing vessel 411. A back pressure valve BV41 and an on-off valve V49 are provided in the discharge flow path L49, in that order from upstream. A line heater LH46 is provided in the discharge flow path L49. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the discharge flow path L49.
 背圧弁BV41、開閉弁V49及びラインヒータLH46は、それぞれ背圧弁BV11、開閉弁V17及びラインヒータLH15と同じであってよい。 The back pressure valve BV41, the on-off valve V49, and the line heater LH46 may be the same as the back pressure valve BV11, the on-off valve V17, and the line heater LH15, respectively.
 制御部44は、制御部14と同様に、各種のセンサから計測信号を受信し、各種機能要素に制御信号を送信する。制御部44は、例えばコンピュータであり、演算部441と記憶部442とを備える。演算部441及び記憶部442は、それぞれ演算部141及び記憶部142と同じであってよい。 Similar to the control unit 14, the control unit 44 receives measurement signals from various sensors and transmits control signals to various functional elements. The control unit 44 is, for example, a computer, and includes a calculation unit 441 and a memory unit 442. The calculation unit 441 and the memory unit 442 may be the same as the calculation unit 141 and the memory unit 142, respectively.
 〔第5実施形態〕
 図23を参照し、第5実施形態に係る基板処理装置50について説明する。図23は、第5実施形態に係る基板処理装置50を示す図である。
Fifth Embodiment
A substrate processing apparatus 50 according to a fifth embodiment will be described with reference to Fig. 23. Fig. 23 is a view showing the substrate processing apparatus 50 according to the fifth embodiment.
 基板処理装置50は、処理部51と、流体供給システム52と、排出部53と、制御部54とを有する。 The substrate processing apparatus 50 has a processing section 51, a fluid supply system 52, a discharge section 53, and a control section 54.
 処理部51は、処理部11と同じであってよい。処理部51は、処理容器511と、保持板512とを有する。 The processing section 51 may be the same as the processing section 11. The processing section 51 has a processing vessel 511 and a holding plate 512.
 流体供給システム52は、処理流体供給部521と、温度調整部522とを有する。 The fluid supply system 52 has a processing fluid supply section 521 and a temperature adjustment section 522.
 処理流体供給部521は、処理流体供給部121と同じであってよい。処理流体供給部521は、処理流体供給源S51と、第1供給流路L51と、開閉弁V51と、オリフィスOR51と、第2供給流路L52と、開閉弁V52と、オリフィスOR52と、不活性ガス供給源S52と、第3供給流路L53と、開閉弁V53とを有する。 The treatment fluid supply unit 521 may be the same as the treatment fluid supply unit 121. The treatment fluid supply unit 521 has a treatment fluid supply source S51, a first supply flow path L51, an on-off valve V51, an orifice OR51, a second supply flow path L52, an on-off valve V52, an orifice OR52, an inert gas supply source S52, a third supply flow path L53, and an on-off valve V53.
 温度調整部522は、処理流体供給部521と処理容器511とに接続される。温度調整部522は、温度が調整された流体を処理容器511の内部に通流させる。流体は、処理流体と不活性ガスとを含む。温度調整部522は、第1分岐流路L54と、第2分岐流路L55と、第1バイパス流路L56と、第1排出流路L57と、第3分岐流路L521と、第2バイパス流路L522とを有する。 The temperature adjustment unit 522 is connected to the processing fluid supply unit 521 and the processing vessel 511. The temperature adjustment unit 522 passes a temperature-adjusted fluid through the inside of the processing vessel 511. The fluid includes a processing fluid and an inert gas. The temperature adjustment unit 522 has a first branch flow path L54, a second branch flow path L55, a first bypass flow path L56, a first discharge flow path L57, a third branch flow path L521, and a second bypass flow path L522.
 第1分岐流路L54は、処理容器511の側部に接続される。第1分岐流路L54は、処理容器511の側方から基板Wに向けて流体を供給する。第1分岐流路L54には、加熱機構HE51、開閉弁V55、フィルタF51及び開閉弁V60が、上流から順に設けられる。第1分岐流路L54における加熱機構HE51の下流には、ラインヒータLH51が設けられる。第1分岐流路L54の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 The first branch flow path L54 is connected to the side of the processing vessel 511. The first branch flow path L54 supplies fluid from the side of the processing vessel 511 toward the substrate W. A heating mechanism HE51, an on-off valve V55, a filter F51, and an on-off valve V60 are provided in the first branch flow path L54, in that order from upstream. A line heater LH51 is provided downstream of the heating mechanism HE51 in the first branch flow path L54. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the first branch flow path L54.
 第2分岐流路L55には、加熱機構HE52、開閉弁V56及びフィルタF52が、上流から順に設けられる。第2分岐流路L55における加熱機構HE52の下流には、ラインヒータLH52が設けられる。第2分岐流路L55の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 In the second branch flow path L55, a heating mechanism HE52, an on-off valve V56, and a filter F52 are provided in this order from upstream to downstream. A line heater LH52 is provided downstream of the heating mechanism HE52 in the second branch flow path L55. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the second branch flow path L55.
 第1分岐流路L54は、加熱機構HE52と開閉弁V56との間において第2分岐流路L55から分岐する。第2分岐流路L55は、フィルタF51と開閉弁V60との間において第1分岐流路L54と合流する。 The first branch flow path L54 branches off from the second branch flow path L55 between the heating mechanism HE52 and the on-off valve V56. The second branch flow path L55 merges with the first branch flow path L54 between the filter F51 and the on-off valve V60.
 加熱機構HE51は、加熱機構HE52と直列に設けられる。加熱機構HE51は、処理流体供給部521から供給される流体を第1温度に加熱し、第1温度の流体を下流に供給する。第1温度は、例えば100℃以上120℃以下であってよい。 The heating mechanism HE51 is provided in series with the heating mechanism HE52. The heating mechanism HE51 heats the fluid supplied from the treatment fluid supply unit 521 to a first temperature and supplies the fluid at the first temperature downstream. The first temperature may be, for example, 100°C or higher and 120°C or lower.
 開閉弁V55は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V55は、開状態では下流のフィルタF51に流体を流し、閉状態では下流のフィルタF51に流体を流さない。 The on-off valve V55 is a valve that switches the flow of fluid on and off. When the on-off valve V55 is open, it allows fluid to flow to the downstream filter F51, and when it is closed, it does not allow fluid to flow to the downstream filter F51.
 フィルタF51は、第1分岐流路L54内を流れる流体を濾過し、流体に含まれる異物を取り除く。これにより、流体を用いた基板Wの乾燥処理の際に、基板Wの表面にパーティクルが発生することを抑制できる。 The filter F51 filters the fluid flowing through the first branch flow path L54 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during the drying process of the substrate W using the fluid.
 開閉弁V60は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V60は、開状態では下流の処理容器511に流体を流し、閉状態では下流の処理容器511に流体を流さない。 The on-off valve V60 is a valve that switches the flow of fluid on and off. When open, the on-off valve V60 allows fluid to flow to the downstream processing vessel 511, and when closed, it does not allow fluid to flow to the downstream processing vessel 511.
 ラインヒータLH51は、加熱機構HE51の下流の第1分岐流路L54を加熱する。ラインヒータLH51は、加熱機構HE51により第1温度に加熱された流体が第1分岐流路L54を流れる際に温度低下することを抑制する。 The line heater LH51 heats the first branch flow path L54 downstream of the heating mechanism HE51. The line heater LH51 prevents the temperature of the fluid heated to the first temperature by the heating mechanism HE51 from decreasing as it flows through the first branch flow path L54.
 加熱機構HE52は、処理流体供給部521から供給される流体を第2温度に加熱し、第2温度の流体を下流に供給する。第2温度は、第1温度よりも低い温度である。第2温度は、例えば80℃以上90℃以下であってよい。 The heating mechanism HE52 heats the fluid supplied from the treatment fluid supply unit 521 to a second temperature and supplies the fluid at the second temperature downstream. The second temperature is lower than the first temperature. The second temperature may be, for example, 80°C or higher and 90°C or lower.
 開閉弁V56は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V56は、開状態では下流のフィルタF52に流体を流し、閉状態では下流のフィルタF52に流体を流さない。 The on-off valve V56 is a valve that switches the flow of fluid on and off. When the on-off valve V56 is open, it allows fluid to flow to the downstream filter F52, and when it is closed, it does not allow fluid to flow to the downstream filter F52.
 フィルタF52は、第2分岐流路L55内を流れる流体を濾過し、流体に含まれる異物を取り除く。これにより、流体を用いた基板Wの乾燥処理の際に、基板Wの表面にパーティクルが発生することを抑制できる。 The filter F52 filters the fluid flowing through the second branch flow path L55 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during the drying process of the substrate W using the fluid.
 ラインヒータLH52は、加熱機構HE52の下流の第2分岐流路L55を加熱する。ラインヒータLH52は、加熱機構HE52により第2温度に加熱された流体が第2分岐流路L55を流れる際に温度低下することを抑制する。 The line heater LH52 heats the second branch flow path L55 downstream of the heating mechanism HE52. The line heater LH52 prevents the temperature of the fluid heated to the second temperature by the heating mechanism HE52 from decreasing as it flows through the second branch flow path L55.
 第1バイパス流路L56は、第1分岐流路L54における開閉弁V55とフィルタF51との間の位置と、第2分岐流路L55における開閉弁V56とフィルタF52との間の位置とを連通させる。第1バイパス流路L56には、オリフィスOR53が設けられる。第1バイパス流路L56には、ラインヒータLH53が設けられる。 The first bypass flow path L56 connects a position between the on-off valve V55 and the filter F51 in the first branch flow path L54 and a position between the on-off valve V56 and the filter F52 in the second branch flow path L55. An orifice OR53 is provided in the first bypass flow path L56. A line heater LH53 is provided in the first bypass flow path L56.
 オリフィスOR53は、第1バイパス流路L56を通流する流体の流速を低下させ、圧力を調整する機能を有する。 The orifice OR53 has the function of reducing the flow rate of the fluid passing through the first bypass flow path L56 and adjusting the pressure.
 ラインヒータLH53は、第1バイパス流路L56を加熱する。 The line heater LH53 heats the first bypass flow path L56.
 係る温度調整部522において、開閉弁V55を閉じると共に開閉弁V56を開くと、加熱機構HE52で第2温度に加熱された流体が第2分岐流路L55を通って処理容器511内に供給される。このとき、オリフィスOR53により流速が低下した流体が、第2分岐流路L55から第1バイパス流路L56を経由して第1分岐流路L54に流入する。これにより、第1分岐流路L54と第2分岐流路L55との合流部から第1分岐流路L54の上流に向かう流体の逆流が防止される。このため、第1分岐流路L54、フィルタF51などの汚染を抑制できる。 In the temperature adjustment unit 522, when the on-off valve V55 is closed and the on-off valve V56 is opened, the fluid heated to the second temperature by the heating mechanism HE52 is supplied into the processing vessel 511 through the second branch flow path L55. At this time, the fluid whose flow rate has been reduced by the orifice OR53 flows from the second branch flow path L55 through the first bypass flow path L56 into the first branch flow path L54. This prevents backflow of the fluid from the junction of the first branch flow path L54 and the second branch flow path L55 toward the upstream of the first branch flow path L54. This makes it possible to suppress contamination of the first branch flow path L54, the filter F51, etc.
 また、開閉弁V56を閉じると共に開閉弁V55を開くと、加熱機構HE51で第1温度に加熱された流体が第1分岐流路L54を通って処理容器511内に供給される。このとき、オリフィスOR53により流速が低下した流体が、第1分岐流路L54から第1バイパス流路L56を経由して第2分岐流路L55に流入する。これにより、第1分岐流路L54と第2分岐流路L55との合流部から第2分岐流路L55の上流に向かう流体の逆流が防止される。このため、第2分岐流路L55、フィルタF52などの汚染を抑制できる。 Furthermore, when the on-off valve V56 is closed and the on-off valve V55 is opened, the fluid heated to the first temperature by the heating mechanism HE51 is supplied into the processing vessel 511 through the first branch flow path L54. At this time, the fluid, whose flow rate has been reduced by the orifice OR53, flows from the first branch flow path L54 through the first bypass flow path L56 into the second branch flow path L55. This prevents backflow of the fluid from the junction of the first branch flow path L54 and the second branch flow path L55 toward the upstream of the second branch flow path L55. This makes it possible to suppress contamination of the second branch flow path L55, the filter F52, etc.
 このように、開閉弁V55と開閉弁V56とを排他的に開閉することにより、処理容器511内に通流させる流体の温度を変更できる。また、開閉弁V55と開閉弁V56の両方を開くと、加熱機構HE51で第1温度に加熱された流体と加熱機構HE52で第2温度に加熱された流体とが混合されて処理容器511内に供給される。この場合、第1温度と第2温度との中間温度の流体を処理容器511内に供給できる。このように、開閉弁V55及び開閉弁V56の開閉を制御することにより、処理容器511内に通流させる流体の温度を3段階に変更できる。 In this way, by exclusively opening and closing the on-off valves V55 and V56, the temperature of the fluid flowing through the processing vessel 511 can be changed. Furthermore, when both the on-off valves V55 and V56 are opened, the fluid heated to the first temperature by the heating mechanism HE51 and the fluid heated to the second temperature by the heating mechanism HE52 are mixed and supplied into the processing vessel 511. In this case, a fluid at an intermediate temperature between the first and second temperatures can be supplied into the processing vessel 511. In this way, by controlling the opening and closing of the on-off valves V55 and V56, the temperature of the fluid flowing through the processing vessel 511 can be changed in three stages.
 第1排出流路L57は、第1分岐流路L54内の流体を排出する。第1排出流路L57は、加熱機構HE51と開閉弁V55との間において第1分岐流路L54から分岐する。第1排出流路L57には、開閉弁V54が設けられる。第1排出流路L57には、ラインヒータLH54が設けられる。第1排出流路L57には、オリフィスが設けられてもよい。 The first discharge flow path L57 discharges the fluid in the first branch flow path L54. The first discharge flow path L57 branches off from the first branch flow path L54 between the heating mechanism HE51 and the on-off valve V55. The first discharge flow path L57 is provided with an on-off valve V54. The first discharge flow path L57 is provided with a line heater LH54. An orifice may be provided in the first discharge flow path L57.
 開閉弁V54は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V54は、開状態では下流の第1排出流路L57に流体を流し、閉状態では下流の第1排出流路L57に流体を流さない。 The on-off valve V54 is a valve that switches the flow of fluid on and off. When open, the on-off valve V54 allows fluid to flow to the downstream first discharge flow path L57, and when closed, the on-off valve V54 does not allow fluid to flow to the downstream first discharge flow path L57.
 ラインヒータLH54は、第1排出流路L57を加熱する。 The line heater LH54 heats the first exhaust flow path L57.
 第3分岐流路L521は、フィルタF51と開閉弁V60との間において第1分岐流路L54から分岐する。第3分岐流路L521は、処理容器511の底部に接続される。第3分岐流路L521は、処理容器511の下方から基板Wに向けて流体を供給する。 The third branch flow path L521 branches off from the first branch flow path L54 between the filter F51 and the on-off valve V60. The third branch flow path L521 is connected to the bottom of the processing vessel 511. The third branch flow path L521 supplies fluid from the bottom of the processing vessel 511 toward the substrate W.
 第3分岐流路L521には、開閉弁V521が設けられる。第3分岐流路L521には、ラインヒータLH521が設けられる。第3分岐流路L521の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 An on-off valve V521 is provided in the third branch flow path L521. A line heater LH521 is provided in the third branch flow path L521. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the third branch flow path L521.
 開閉弁V521は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V521は、開状態では下流の処理容器511に流体を流し、閉状態では下流の処理容器511に流体を流さない。 The on-off valve V521 is a valve that switches the flow of fluid on and off. When open, the on-off valve V521 allows fluid to flow to the downstream processing vessel 511, and when closed, it does not allow fluid to flow to the downstream processing vessel 511.
 ラインヒータLH521は、第3分岐流路L521を加熱する。ラインヒータLH521は、加熱機構HE51に第1温度に加熱された流体及び加熱機構HE52により第2温度に加熱された流体が第3分岐流路L521を流れる際に温度低下することを抑制する。 The line heater LH521 heats the third branch flow path L521. The line heater LH521 prevents the temperature of the fluid heated to the first temperature by the heating mechanism HE51 and the fluid heated to the second temperature by the heating mechanism HE52 from decreasing when they flow through the third branch flow path L521.
 第2バイパス流路L522は、第1分岐流路L54における開閉弁V60の下流の位置と、第3分岐流路L521における開閉弁V521の下流の位置とを連通させる。第2バイパス流路L522には、オリフィスOR522が設けられる。第2バイパス流路L522には、ラインヒータLH522が設けられる。 The second bypass flow path L522 connects a position downstream of the on-off valve V60 in the first branch flow path L54 to a position downstream of the on-off valve V521 in the third branch flow path L521. An orifice OR522 is provided in the second bypass flow path L522. A line heater LH522 is provided in the second bypass flow path L522.
 オリフィスOR522は、第2バイパス流路L522を通流する流体の流速を低下させ、圧力を調整する機能を有する。 The orifice OR522 has the function of reducing the flow rate of the fluid passing through the second bypass flow path L522 and adjusting the pressure.
 ラインヒータLH522は、第2バイパス流路L522を加熱する。 The line heater LH522 heats the second bypass flow path L522.
 係る温度調整部522において、開閉弁V60を閉じると共に開閉弁V521を開くと、流体が第3分岐流路L521を通って処理容器511内に供給される。このとき、オリフィスOR522により流速が低下した流体が、第3分岐流路L521から第2バイパス流路L522を経由して第1分岐流路L54に流入する。これにより、処理容器511から第1分岐流路L54の上流に向かう流体の逆流が防止される。このため、IPAの残渣などによる第1分岐流路L54の汚染を抑制できる。 In the temperature adjustment unit 522, when the on-off valve V60 is closed and the on-off valve V521 is opened, the fluid is supplied into the processing vessel 511 through the third branch flow path L521. At this time, the fluid, whose flow rate has been reduced by the orifice OR522, flows from the third branch flow path L521 through the second bypass flow path L522 into the first branch flow path L54. This prevents backflow of the fluid from the processing vessel 511 toward the upstream of the first branch flow path L54. This makes it possible to suppress contamination of the first branch flow path L54 by IPA residue, etc.
 また、開閉弁V521を閉じると共に開閉弁V60を開くと、流体が第1分岐流路L54を通って処理容器511内に供給される。このとき、オリフィスOR522により流速が低下した流体が、第1分岐流路L54から第2バイパス流路L522を経由して第3分岐流路L521に流入する。これにより、処理容器511から第3分岐流路L521の上流に向かう流体の逆流が防止される。このため、IPAの残渣などによる第3分岐流路L521の汚染を抑制できる。 Furthermore, when the on-off valve V521 is closed and the on-off valve V60 is opened, the fluid is supplied into the processing vessel 511 through the first branch flow path L54. At this time, the fluid, whose flow rate has been reduced by the orifice OR522, flows from the first branch flow path L54 through the second bypass flow path L522 into the third branch flow path L521. This prevents backflow of the fluid from the processing vessel 511 toward the upstream of the third branch flow path L521. This makes it possible to suppress contamination of the third branch flow path L521 by IPA residue, etc.
 排出部53は、排出流路L58を有する。排出流路L58は、処理容器511に接続される。排出流路L58には、背圧弁BV51及び開閉弁V57が、上流から順に設けられる。排出流路L58には、ラインヒータLH55が設けられる。排出流路L58の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 The discharge section 53 has a discharge flow path L58. The discharge flow path L58 is connected to the processing vessel 511. A back pressure valve BV51 and an on-off valve V57 are provided in the discharge flow path L58, in that order from upstream. A line heater LH55 is provided in the discharge flow path L58. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the discharge flow path L58.
 背圧弁BV51、開閉弁V57及びラインヒータLH55は、それぞれ背圧弁BV11、開閉弁V17及びラインヒータLH15と同じであってよい。 The back pressure valve BV51, the on-off valve V57, and the line heater LH55 may be the same as the back pressure valve BV11, the on-off valve V17, and the line heater LH15, respectively.
 制御部54は、制御部14と同様に、各種のセンサから計測信号を受信し、各種機能要素に制御信号を送信する。制御部54は、例えばコンピュータであり、演算部541と記憶部542とを備える。演算部541及び記憶部542は、それぞれ演算部141及び記憶部142と同じであってよい。 Similar to the control unit 14, the control unit 54 receives measurement signals from various sensors and transmits control signals to various functional elements. The control unit 54 is, for example, a computer, and includes a calculation unit 541 and a memory unit 542. The calculation unit 541 and the memory unit 542 may be the same as the calculation unit 141 and the memory unit 142, respectively.
 〔第6実施形態〕
 図24を参照し、第6実施形態に係る基板処理装置60について説明する。図24は、第6実施形態に係る基板処理装置60を示す図である。
Sixth Embodiment
A substrate processing apparatus 60 according to a sixth embodiment will be described with reference to Fig. 24. Fig. 24 is a view showing the substrate processing apparatus 60 according to the sixth embodiment.
 基板処理装置60は、処理部61と、流体供給システム62と、排出部63と、制御部64とを有する。 The substrate processing apparatus 60 has a processing section 61, a fluid supply system 62, a discharge section 63, and a control section 64.
 処理部61は、処理部11と同じであってよい。処理部61は、処理容器611と、保持板612とを有する。 The processing section 61 may be the same as the processing section 11. The processing section 61 has a processing vessel 611 and a holding plate 612.
 流体供給システム62は、処理流体供給部621Aと、処理流体供給部621Bと、温度調整部622とを有する。 The fluid supply system 62 has a treatment fluid supply unit 621A, a treatment fluid supply unit 621B, and a temperature adjustment unit 622.
 処理流体供給部621A及び処理流体供給部621Bは、それぞれ処理流体供給部221A及び処理流体供給部221Bと同じであってよい。処理流体供給部621Aは、処理流体供給源S61Aと、第1供給流路L61Aと、開閉弁V61Aと、オリフィスOR61Aと、不活性ガス供給源S62Aと、第3供給流路L63Aと、開閉弁V63Aとを有する。処理流体供給部621Bは、処理流体供給源S61Bと、第1供給流路L61Bと、開閉弁V61Bと、オリフィスOR61Bと、第2供給流路L62Bと、開閉弁V62Bと、オリフィスOR62Bと、不活性ガス供給源S62Bと、第3供給流路L63Bと、開閉弁V63Bとを有する。 The treatment fluid supply unit 621A and the treatment fluid supply unit 621B may be the same as the treatment fluid supply unit 221A and the treatment fluid supply unit 221B, respectively. The treatment fluid supply unit 621A has a treatment fluid supply source S61A, a first supply flow path L61A, an on-off valve V61A, an orifice OR61A, an inert gas supply source S62A, a third supply flow path L63A, and an on-off valve V63A. The treatment fluid supply unit 621B has a treatment fluid supply source S61B, a first supply flow path L61B, an on-off valve V61B, an orifice OR61B, a second supply flow path L62B, an on-off valve V62B, an orifice OR62B, an inert gas supply source S62B, a third supply flow path L63B, and an on-off valve V63B.
 温度調整部622は、処理流体供給部621A及び処理流体供給部621Bと、処理容器611とに接続される。温度調整部622は、温度が調整された流体を処理容器611の内部に通流させる。流体は、処理流体と不活性ガスとを含む。温度調整部622は、第1分岐流路L64と、第2分岐流路L65と、バイパス流路L66と、第1排出流路L67と、第2排出流路L68と、第3分岐流路L621とを有する。 The temperature adjustment unit 622 is connected to the treatment fluid supply unit 621A, the treatment fluid supply unit 621B, and the treatment vessel 611. The temperature adjustment unit 622 passes a temperature-adjusted fluid through the inside of the treatment vessel 611. The fluid includes a treatment fluid and an inert gas. The temperature adjustment unit 622 has a first branch flow path L64, a second branch flow path L65, a bypass flow path L66, a first exhaust flow path L67, a second exhaust flow path L68, and a third branch flow path L621.
 第1分岐流路L64は、処理流体供給部621Aに接続される。第1分岐流路L64には、処理流体供給部621Aから流体が供給される。第1分岐流路L64は、処理容器611の側部に接続される。第1分岐流路L64は、処理容器611の側方から基板Wに向けて流体を供給する。第1分岐流路L64には、加熱機構HE61、開閉弁V65、フィルタF61及び開閉弁V70が、上流から順に設けられる。第1分岐流路L64における加熱機構HE61の下流には、ラインヒータLH61が設けられる。第1分岐流路L64の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 The first branch flow path L64 is connected to the processing fluid supply unit 621A. Fluid is supplied to the first branch flow path L64 from the processing fluid supply unit 621A. The first branch flow path L64 is connected to the side of the processing vessel 611. The first branch flow path L64 supplies fluid from the side of the processing vessel 611 toward the substrate W. The first branch flow path L64 is provided with a heating mechanism HE61, an on-off valve V65, a filter F61, and an on-off valve V70, in that order from upstream. A line heater LH61 is provided downstream of the heating mechanism HE61 in the first branch flow path L64. Sensors such as temperature sensors and pressure sensors may be provided at various positions in the first branch flow path L64.
 加熱機構HE61は、加熱機構HE62と並列に設けられる。加熱機構HE61は、処理流体供給部621Aから供給される流体を第1温度に加熱し、第1温度の流体を下流に供給する。第1温度は、例えば100℃以上120℃以下であってよい。 The heating mechanism HE61 is provided in parallel with the heating mechanism HE62. The heating mechanism HE61 heats the fluid supplied from the treatment fluid supply unit 621A to a first temperature and supplies the fluid at the first temperature downstream. The first temperature may be, for example, 100°C or higher and 120°C or lower.
 開閉弁V65は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V65は、開状態では下流のフィルタF61に流体を流し、閉状態では下流のフィルタF61に流体を流さない。 The on-off valve V65 is a valve that switches the flow of fluid on and off. When the on-off valve V65 is open, it allows fluid to flow to the downstream filter F61, and when it is closed, it does not allow fluid to flow to the downstream filter F61.
 フィルタF61は、第1分岐流路L64内を流れる流体を濾過し、流体に含まれる異物を取り除く。これにより、流体を用いた基板Wの乾燥処理の際に、基板Wの表面にパーティクルが発生することを抑制できる。 The filter F61 filters the fluid flowing through the first branch flow path L64 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during the drying process of the substrate W using the fluid.
 開閉弁V70は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V70は、開状態では下流の処理容器611に流体を流し、閉状態では下流の処理容器611に流体を流さない。 The on-off valve V70 is a valve that switches the flow of fluid on and off. When open, the on-off valve V70 allows fluid to flow to the downstream processing vessel 611, and when closed, it does not allow fluid to flow to the downstream processing vessel 611.
 ラインヒータLH61は、加熱機構HE61の下流の第1分岐流路L64を加熱する。ラインヒータLH61は、加熱機構HE61により第1温度に加熱された流体が第1分岐流路L64を流れる際に温度低下することを抑制する。 The line heater LH61 heats the first branch flow path L64 downstream of the heating mechanism HE61. The line heater LH61 prevents the temperature of the fluid heated to the first temperature by the heating mechanism HE61 from decreasing as it flows through the first branch flow path L64.
 第2分岐流路L65は、処理流体供給部621Bに接続される。第2分岐流路L65には、処理流体供給部621Bから流体が供給される。第2分岐流路L65は、フィルタF61と開閉弁V70との間において第1分岐流路L64と合流する。第2分岐流路L65には、加熱機構HE62、開閉弁V66及びフィルタF62が、上流から順に設けられる。第2分岐流路L65における加熱機構HE62の下流には、ラインヒータLH62が設けられる。第2分岐流路L65の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 The second branch flow path L65 is connected to the treatment fluid supply unit 621B. Fluid is supplied to the second branch flow path L65 from the treatment fluid supply unit 621B. The second branch flow path L65 merges with the first branch flow path L64 between the filter F61 and the on-off valve V70. The second branch flow path L65 is provided with a heating mechanism HE62, an on-off valve V66, and a filter F62, in that order from upstream. A line heater LH62 is provided downstream of the heating mechanism HE62 in the second branch flow path L65. Sensors such as temperature sensors and pressure sensors may be provided at various positions in the second branch flow path L65.
 加熱機構HE62は、処理流体供給部621Bから供給される流体を第2温度に加熱し、第2温度の流体を下流に供給する。第2温度は、第1温度よりも低い温度である。第2温度は、例えば80℃以上90℃以下であってよい。 The heating mechanism HE62 heats the fluid supplied from the treatment fluid supply unit 621B to a second temperature and supplies the fluid at the second temperature downstream. The second temperature is lower than the first temperature. The second temperature may be, for example, 80°C or higher and 90°C or lower.
 開閉弁V66は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V66は、開状態では下流のフィルタF62に流体を流し、閉状態では下流のフィルタF62に流体を流さない。 The on-off valve V66 is a valve that switches the flow of fluid on and off. When the on-off valve V66 is open, it allows fluid to flow to the downstream filter F62, and when it is closed, it does not allow fluid to flow to the downstream filter F62.
 フィルタF62は、第2分岐流路L65内を流れる流体を濾過し、流体に含まれる異物を取り除く。これにより、流体を用いた基板Wの乾燥処理の際に、基板Wの表面にパーティクルが発生することを抑制できる。 The filter F62 filters the fluid flowing through the second branch flow path L65 and removes foreign matter contained in the fluid. This makes it possible to prevent particles from being generated on the surface of the substrate W during the drying process of the substrate W using the fluid.
 ラインヒータLH62は、加熱機構HE62の下流の第2分岐流路L65を加熱する。ラインヒータLH62は、加熱機構HE62により第2温度に加熱された流体が第2分岐流路L65を流れる際に温度低下することを抑制する。 The line heater LH62 heats the second branch flow path L65 downstream of the heating mechanism HE62. The line heater LH62 prevents the temperature of the fluid heated to the second temperature by the heating mechanism HE62 from decreasing when it flows through the second branch flow path L65.
 バイパス流路L66は、第1分岐流路L64における開閉弁V65とフィルタF61との間の位置と、第2分岐流路L65における開閉弁V66とフィルタF62との間の位置とを連通させる。バイパス流路L66には、オリフィスOR63が設けられる。バイパス流路L66には、ラインヒータLH63が設けられる。 The bypass flow path L66 connects a position between the on-off valve V65 and the filter F61 in the first branch flow path L64 and a position between the on-off valve V66 and the filter F62 in the second branch flow path L65. An orifice OR63 is provided in the bypass flow path L66. A line heater LH63 is provided in the bypass flow path L66.
 オリフィスOR63は、バイパス流路L66を通流する流体の流速を低下させ、圧力を調整する機能を有する。 The orifice OR63 has the function of reducing the flow rate of the fluid passing through the bypass flow path L66 and adjusting the pressure.
 ラインヒータLH63は、バイパス流路L66を加熱する。 The line heater LH63 heats the bypass flow path L66.
 係る温度調整部622において、開閉弁V65を閉じると共に開閉弁V66を開くと、加熱機構HE62で第2温度に加熱された流体が第2分岐流路L65を通って処理容器611内に供給される。このとき、オリフィスOR63により流速が低下した流体が、第2分岐流路L65からバイパス流路L66を経由して第1分岐流路L64に流入する。これにより、第1分岐流路L64と第2分岐流路L65との合流部から第1分岐流路L64の上流に向かう流体の逆流が防止される。このため、第1分岐流路L64、フィルタF61などの汚染を抑制できる。 In the temperature adjustment unit 622, when the on-off valve V65 is closed and the on-off valve V66 is opened, the fluid heated to the second temperature by the heating mechanism HE62 is supplied into the processing vessel 611 through the second branch flow path L65. At this time, the fluid whose flow rate has been reduced by the orifice OR63 flows from the second branch flow path L65 through the bypass flow path L66 into the first branch flow path L64. This prevents backflow of the fluid from the junction of the first branch flow path L64 and the second branch flow path L65 toward the upstream of the first branch flow path L64. This makes it possible to suppress contamination of the first branch flow path L64, the filter F61, etc.
 また、開閉弁V66を閉じると共に開閉弁V65を開くと、加熱機構HE61で第1温度に加熱された流体が第1分岐流路L64を通って処理容器611内に供給される。このとき、オリフィスOR63により流速が低下した流体が、第1分岐流路L64からバイパス流路L66を経由して第2分岐流路L65に流入する。これにより、第1分岐流路L64と第2分岐流路L65との合流部から第2分岐流路L65の上流に向かう流体の逆流が防止される。このため、第2分岐流路L65、フィルタF62などの汚染を抑制できる。 Furthermore, when the on-off valve V66 is closed and the on-off valve V65 is opened, the fluid heated to the first temperature by the heating mechanism HE61 is supplied into the processing vessel 611 through the first branch flow path L64. At this time, the fluid, whose flow rate has been reduced by the orifice OR63, flows from the first branch flow path L64 through the bypass flow path L66 into the second branch flow path L65. This prevents backflow of the fluid from the junction of the first branch flow path L64 and the second branch flow path L65 toward the upstream of the second branch flow path L65. This makes it possible to suppress contamination of the second branch flow path L65, the filter F62, etc.
 このように、開閉弁V65と開閉弁V66とを排他的に開閉することにより、処理容器611内に通流させる流体の温度を変更できる。また、開閉弁V65と開閉弁V66の両方を開くと、加熱機構HE61で第1温度に加熱された流体と加熱機構HE62で第2温度に加熱された流体とが混合されて処理容器611内に供給される。この場合、第1温度と第2温度との中間温度の流体を処理容器611内に供給できる。このように、開閉弁V65及び開閉弁V66の開閉を制御することにより、処理容器611内に通流させる流体の温度を3段階に変更できる。 In this way, by exclusively opening and closing the on-off valves V65 and V66, the temperature of the fluid flowing through the processing vessel 611 can be changed. Furthermore, when both the on-off valves V65 and V66 are opened, the fluid heated to a first temperature by the heating mechanism HE61 and the fluid heated to a second temperature by the heating mechanism HE62 are mixed and supplied into the processing vessel 611. In this case, a fluid at an intermediate temperature between the first and second temperatures can be supplied into the processing vessel 611. In this way, by controlling the opening and closing of the on-off valves V65 and V66, the temperature of the fluid flowing through the processing vessel 611 can be changed in three stages.
 第1排出流路L67は、第1分岐流路L64内の流体を排出する。第1排出流路L67は、加熱機構HE61と開閉弁V65との間において第1分岐流路L64から分岐する。第1排出流路L67には、開閉弁V67が設けられる。第1排出流路L67には、ラインヒータLH64が設けられる。第1排出流路L67には、オリフィスが設けられてもよい。 The first discharge flow path L67 discharges the fluid in the first branch flow path L64. The first discharge flow path L67 branches off from the first branch flow path L64 between the heating mechanism HE61 and the on-off valve V65. The first discharge flow path L67 is provided with an on-off valve V67. The first discharge flow path L67 is provided with a line heater LH64. An orifice may be provided in the first discharge flow path L67.
 開閉弁V67は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V67は、開状態では下流の第1排出流路L67に流体を流し、閉状態では下流の第1排出流路L67に流体を流さない。 The on-off valve V67 is a valve that switches the flow of fluid on and off. When open, the on-off valve V67 allows fluid to flow to the downstream first discharge flow path L67, and when closed, does not allow fluid to flow to the downstream first discharge flow path L67.
 ラインヒータLH64は、第1排出流路L67を加熱する。 The line heater LH64 heats the first exhaust flow path L67.
 第2排出流路L68は、第2分岐流路L65内の流体を排出する。第2排出流路L68は、加熱機構HE62と開閉弁V66との間において第2分岐流路L65から分岐する。第2排出流路L68には、開閉弁V68が設けられる。第2排出流路L68には、ラインヒータLH65が設けられる。第2排出流路L68には、オリフィスが設けられてもよい。 The second discharge flow path L68 discharges the fluid in the second branch flow path L65. The second discharge flow path L68 branches off from the second branch flow path L65 between the heating mechanism HE62 and the on-off valve V66. The second discharge flow path L68 is provided with an on-off valve V68. The second discharge flow path L68 is provided with a line heater LH65. An orifice may be provided in the second discharge flow path L68.
 開閉弁V68は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V68は、開状態では下流の第2排出流路L68に流体を流し、閉状態では下流の第2排出流路L68に流体を流さない。 The on-off valve V68 is a valve that switches the flow of fluid on and off. When open, the on-off valve V68 allows fluid to flow to the downstream second discharge flow path L68, and when closed, the on-off valve V68 does not allow fluid to flow to the downstream second discharge flow path L68.
 ラインヒータLH65は、第2排出流路L68を加熱する。 The line heater LH65 heats the second exhaust flow path L68.
 第3分岐流路L621は、フィルタF61と開閉弁V70との間において第1分岐流路L64から分岐する。第3分岐流路L621は、処理容器611の底部に接続される。第3分岐流路L621は、処理容器611の下方から基板Wに向けて流体を供給する。 The third branch flow path L621 branches off from the first branch flow path L64 between the filter F61 and the on-off valve V70. The third branch flow path L621 is connected to the bottom of the processing vessel 611. The third branch flow path L621 supplies fluid from the bottom of the processing vessel 611 toward the substrate W.
 第3分岐流路L621には、開閉弁V621が設けられる。第3分岐流路L621には、ラインヒータLH621が設けられる。第3分岐流路L621の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 An on-off valve V621 is provided in the third branch flow path L621. A line heater LH621 is provided in the third branch flow path L621. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the third branch flow path L621.
 開閉弁V621は、流体の流れのオン及びオフを切り換えるバルブである。開閉弁V621は、開状態では下流の処理容器611に流体を流し、閉状態では下流の処理容器611に流体を流さない。 The on-off valve V621 is a valve that switches the flow of fluid on and off. When open, the on-off valve V621 allows fluid to flow to the downstream processing vessel 611, and when closed, it does not allow fluid to flow to the downstream processing vessel 611.
 ラインヒータLH621は、第3分岐流路L621を加熱する。ラインヒータLH621は、加熱機構HE61に第1温度に加熱された流体及び加熱機構HE62により第2温度に加熱された流体が第3分岐流路L621を流れる際に温度低下することを抑制する。 The line heater LH621 heats the third branch flow path L621. The line heater LH621 prevents the temperature of the fluid heated to the first temperature by the heating mechanism HE61 and the fluid heated to the second temperature by the heating mechanism HE62 from decreasing when they flow through the third branch flow path L621.
 係る温度調整部622において、開閉弁V70を閉じると共に開閉弁V621を開くと、流体が第3分岐流路L621を通って処理容器611内に供給される。また、開閉弁V621を閉じると共に開閉弁V70を開くと、流体が第1分岐流路L64を通って処理容器611内に供給される。 In the temperature adjustment unit 622, when the on-off valve V70 is closed and the on-off valve V621 is opened, the fluid is supplied into the processing vessel 611 through the third branch flow path L621. When the on-off valve V621 is closed and the on-off valve V70 is opened, the fluid is supplied into the processing vessel 611 through the first branch flow path L64.
 排出部63は、排出流路L69を有する。排出流路L69は、処理容器611に接続される。排出流路L69には、背圧弁BV61及び開閉弁V69が、上流から順に設けられる。排出流路L69には、ラインヒータLH66が設けられる。排出流路L69の様々な位置に、温度センサ、圧力センサなどのセンサが設けられてもよい。 The discharge section 63 has a discharge flow path L69. The discharge flow path L69 is connected to the processing vessel 611. A back pressure valve BV61 and an on-off valve V69 are provided in the discharge flow path L69, in that order from upstream. A line heater LH66 is provided in the discharge flow path L69. Sensors such as a temperature sensor and a pressure sensor may be provided at various positions in the discharge flow path L69.
 背圧弁BV61、開閉弁V69及びラインヒータLH66は、それぞれ背圧弁BV11、開閉弁V17及びラインヒータLH15と同じであってよい。 The back pressure valve BV61, the on-off valve V69, and the line heater LH66 may be the same as the back pressure valve BV11, the on-off valve V17, and the line heater LH15, respectively.
 制御部64は、制御部14と同様に、各種のセンサから計測信号を受信し、各種機能要素に制御信号を送信する。制御部64は、例えばコンピュータであり、演算部641と記憶部642とを備える。演算部641及び記憶部642は、それぞれ演算部141及び記憶部142と同じであってよい。 Similar to the control unit 14, the control unit 64 receives measurement signals from various sensors and transmits control signals to various functional elements. The control unit 64 is, for example, a computer, and includes a calculation unit 641 and a memory unit 642. The calculation unit 641 and the memory unit 642 may be the same as the calculation unit 141 and the memory unit 142, respectively.
 なお、上記の実施形態において、開閉弁V11、V21は第1供給弁の一例であり、開閉弁V12、V22は第2供給弁の一例である。開閉弁V15、V25は第1開閉弁の一例であり、開閉弁V16、V26は第2開閉弁の一例であり、開閉弁V24は第3開閉弁の一例である。開閉弁V27は第1排出弁の一例であり、開閉弁V28は第2排出弁の一例であり、開閉弁V29は第3排出弁の一例である。加熱機構HE11、HE21は第1加熱機構の一例であり、加熱機構HE12、HE22は第2加熱機構の一例である。オリフィスOR13、OR23は、第1絞りの一例である。第1分岐流路L14、L24及び第2分岐流路L15、L25は流体供給路の一例である。 In the above embodiment, the on-off valves V11 and V21 are an example of a first supply valve, and the on-off valves V12 and V22 are an example of a second supply valve. The on-off valves V15 and V25 are an example of a first on-off valve, the on-off valves V16 and V26 are an example of a second on-off valve, and the on-off valve V24 is an example of a third on-off valve. The on-off valve V27 is an example of a first exhaust valve, the on-off valve V28 is an example of a second exhaust valve, and the on-off valve V29 is an example of a third exhaust valve. The heating mechanisms HE11 and HE21 are an example of a first heating mechanism, and the heating mechanisms HE12 and HE22 are an example of a second heating mechanism. The orifices OR13 and OR23 are an example of a first throttle. The first branch flow paths L14 and L24 and the second branch flow paths L15 and L25 are an example of a fluid supply path.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed herein should be considered in all respects as illustrative and not restrictive. The above-described embodiments may be omitted, substituted, or modified in various ways without departing from the scope and spirit of the appended claims.
 本国際出願は、2022年10月20日に出願した日本国特許出願第2022-168324号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。 This international application claims priority to Japanese Patent Application No. 2022-168324, filed on October 20, 2022, the entire contents of which are incorporated herein by reference.
 10、20     基板処理装置
 11、21     処理部
 111、211   処理容器
 12、22     流体供給システム
 121、221   処理流体供給部
 122、222   温度調整部
 HE11、HE21 加熱機構
 HE12、HE22 加熱機構
 L14、L24   第1分岐流路
 L15、L25   第2分岐流路
 V11、V21   開閉弁
 V12、V22   開閉弁
REFERENCE SIGNS LIST 10, 20 Substrate processing apparatus 11, 21 Processing section 111, 211 Processing vessel 12, 22 Fluid supply system 121, 221 Processing fluid supply section 122, 222 Temperature adjustment section HE11, HE21 Heating mechanism HE12, HE22 Heating mechanism L14, L24 First branch flow path L15, L25 Second branch flow path V11, V21 Opening/closing valve V12, V22 Opening/closing valve

Claims (20)

  1.  内部で基板が処理される処理容器内に流体を供給する流体供給システムであって、
     処理流体を供給する処理流体供給部と、
     前記処理流体供給部と前記処理容器とに接続され、温度が調整された処理流体を前記処理容器内に通流させる流体供給路と、
     前記流体供給路に設けられ、前記処理流体を第1温度に加熱する第1加熱機構と、
     前記流体供給路に設けられ、前記処理流体を前記第1温度よりも低い第2温度に加熱する第2加熱機構と、
     を有し、
     前記処理流体供給部は、前記処理流体の流量を調整する流量調整機構を有し、
     前記流体供給路は、
     前記第1加熱機構を通って前記処理容器内に前記処理流体を通流させる第1分岐流路と、
     前記第2加熱機構を通って前記処理容器内に前記処理流体を通流させる第2分岐流路と、
     を有する、
     流体供給システム。
    1. A fluid delivery system for delivering a fluid into a process vessel in which a substrate is processed, comprising:
    a processing fluid supply unit that supplies a processing fluid;
    a fluid supply line connected to the processing fluid supply unit and the processing vessel, for allowing a temperature-adjusted processing fluid to flow through the processing vessel;
    a first heating mechanism provided in the fluid supply path and configured to heat the treatment fluid to a first temperature;
    a second heating mechanism provided in the fluid supply path and configured to heat the treatment fluid to a second temperature lower than the first temperature;
    having
    the processing fluid supply unit has a flow rate adjustment mechanism that adjusts a flow rate of the processing fluid,
    The fluid supply path includes:
    a first branch flow path for causing the processing fluid to flow through the first heating mechanism into the processing vessel;
    a second branch flow path for causing the processing fluid to flow through the second heating mechanism into the processing vessel;
    having
    Fluid supply system.
  2.  前記第1分岐流路には、前記第1加熱機構の下流に第1開閉弁が設けられ、
     前記第2分岐流路には、前記第2加熱機構の下流に第2開閉弁が設けられ、
     前記流体供給路は、前記第1開閉弁及び前記第2開閉弁の下流に、前記第1分岐流路と前記第2分岐流路とを連通させるバイパス流路を有し、
     前記バイパス流路には、第1絞りが設けられる、
     請求項1に記載の流体供給システム。
    a first opening/closing valve is provided in the first branch flow path downstream of the first heating mechanism;
    a second opening/closing valve is provided in the second branch passage downstream of the second heating mechanism,
    the fluid supply passage has a bypass passage downstream of the first on-off valve and the second on-off valve, the bypass passage connecting the first branch passage and the second branch passage;
    The bypass flow path is provided with a first throttle.
    The fluid delivery system of claim 1 .
  3.  当該流体供給システムの各部を制御する制御部を有し、
     前記第1分岐流路には、前記第1加熱機構の下流に第1開閉弁が設けられ、
     前記第2分岐流路には、前記第2加熱機構の下流に第2開閉弁が設けられ、
     前記制御部は、前記第1開閉弁と前記第2開閉弁とを排他的に開閉することにより、前記処理容器内に通流させる前記処理流体の温度を変更するよう構成される、
     請求項1に記載の流体供給システム。
    A control unit that controls each part of the fluid supply system,
    a first opening/closing valve is provided in the first branch flow path downstream of the first heating mechanism;
    a second opening/closing valve is provided in the second branch passage downstream of the second heating mechanism,
    the control unit is configured to change a temperature of the processing fluid flowing through the processing vessel by exclusively opening and closing the first on-off valve and the second on-off valve.
    The fluid delivery system of claim 1 .
  4.  前記第1加熱機構は、前記第2加熱機構と直列に設けられ、
     前記第1分岐流路には、前記第1分岐流路内の前記処理流体を排出する第1排出流路が接続される、
     請求項1から請求項3のいずれか1項に記載の流体供給システム。
    the first heating mechanism is provided in series with the second heating mechanism;
    a first discharge flow path that discharges the treatment fluid in the first branch flow path is connected to the first branch flow path;
    A fluid supply system according to any one of claims 1 to 3.
  5.  前記第1加熱機構は、前記第2加熱機構と並列に設けられ、
     前記第1分岐流路には、第1排出弁を有し、前記第1分岐流路内の前記処理流体を排出する第1排出流路が接続され、
     前記第2分岐流路には、第2排出弁を有し、前記第2分岐流路内の前記処理流体を排出する第2排出流路が接続され、
     前記第2分岐流路には、前記第2加熱機構の上流に第3開閉弁が設けられる、
     請求項2又は請求項3に記載の流体供給システム。
    the first heating mechanism is provided in parallel with the second heating mechanism,
    a first discharge flow path having a first discharge valve and configured to discharge the treatment fluid in the first branch flow path is connected to the first branch flow path;
    a second discharge flow path having a second discharge valve and configured to discharge the treatment fluid in the second branch flow path is connected to the second branch flow path;
    A third on-off valve is provided in the second branch flow path upstream of the second heating mechanism.
    A fluid supply system according to claim 2 or 3.
  6.  当該流体供給システムの各部を制御する制御部を有し、
     前記制御部は、
     前記処理容器内に前記基板を搬入する工程と、
     前記搬入する工程の後に、前記第2開閉弁及び前記第3開閉弁を開いて前記第2温度の前記処理流体を前記処理容器内に供給する工程と、
     前記第2温度の前記処理流体を供給する工程の後に、前記第2開閉弁及び前記第3開閉弁を閉じると共に、前記第1開閉弁を開いて前記第1温度の前記処理流体を前記処理容器内に供給する工程と、
     前記第2排出弁を開いて前記第2分岐流路内を減圧する工程と、
     を実行し、
     前記第2分岐流路内を減圧する工程は、前記第1温度の前記処理流体を前記処理容器内に供給する工程と並行して行われる、
     請求項5に記載の流体供給システム。
    A control unit that controls each part of the fluid supply system,
    The control unit is
    loading the substrate into the processing chamber;
    a step of opening the second on-off valve and the third on-off valve after the step of carrying in the processing fluid, and supplying the processing fluid at the second temperature into the processing vessel;
    after the step of supplying the processing fluid at the second temperature, closing the second on-off valve and the third on-off valve and opening the first on-off valve to supply the processing fluid at the first temperature into the processing vessel;
    opening the second discharge valve to reduce pressure in the second branch flow path;
    Run
    The step of reducing the pressure in the second branch flow path is performed in parallel with the step of supplying the processing fluid at the first temperature into the processing vessel.
    The fluid delivery system of claim 5 .
  7.  当該流体供給システムの各部を制御する制御部を有し、
     前記制御部は、前記処理容器内の前記基板の処理状態に応じて、前記第1開閉弁及び前記第2開閉弁の開閉を制御することにより、前記処理容器内に通流させる前記処理流体の温度を変更する、
     請求項2又は請求項3に記載の流体供給システム。
    A control unit that controls each part of the fluid supply system,
    the control unit changes a temperature of the processing fluid flowing through the processing vessel by controlling opening and closing of the first on-off valve and the second on-off valve in accordance with a processing state of the substrate in the processing vessel.
    A fluid supply system according to claim 2 or 3.
  8.  当該流体供給システムの各部を制御する制御部を有し、
     前記処理流体供給部は、並列に設けられる第1供給流路及び第2供給流路を有し、
     前記流量調整機構は、前記第1供給流路に設けられる第1供給弁と、前記第2供給流路に設けられる第2供給弁とを有し、
     前記制御部は、前記処理容器内の前記基板の処理状態に応じて、前記第1供給弁及び前記第2供給弁の開閉を制御することにより、前記処理容器内に通流させる前記処理流体の流量を変更する、
     請求項1から請求項3のいずれか1項に記載の流体供給システム。
    A control unit that controls each part of the fluid supply system,
    the processing fluid supply unit includes a first supply flow path and a second supply flow path that are provided in parallel,
    the flow rate adjustment mechanism includes a first supply valve provided in the first supply flow path and a second supply valve provided in the second supply flow path,
    the control unit changes a flow rate of the processing fluid flowing through the processing vessel by controlling opening and closing of the first supply valve and the second supply valve in accordance with a processing state of the substrate in the processing vessel.
    A fluid supply system according to any one of claims 1 to 3.
  9.  当該流体供給システムの各部を制御する制御部を有し、
     前記制御部は、
     前記処理容器内に前記基板を搬入する工程と、
     前記流量調整機構を制御して前記処理流体を第1流量で前記流体供給路に供給し、前記第2開閉弁を開いて前記第2温度かつ前記第1流量の前記処理流体を前記処理容器内に供給する工程と、
     前記第1流量かつ前記第2温度の前記処理流体を前記処理容器内に供給する工程の後に、前記流量調整機構を制御して前記処理流体を第2流量で前記流体供給路に供給し、前記第1開閉弁を開いて前記第1温度かつ前記第2流量の前記処理流体を前記処理容器内に供給する工程と、
     を実行する、
     請求項2又は請求項3に記載の流体供給システム。
    A control unit that controls each part of the fluid supply system,
    The control unit is
    loading the substrate into the processing chamber;
    controlling the flow rate adjustment mechanism to supply the processing fluid to the fluid supply path at a first flow rate, and opening the second on-off valve to supply the processing fluid at the second temperature and the first flow rate into the processing vessel;
    after the step of supplying the processing fluid at the first flow rate and the second temperature into the processing vessel, controlling the flow rate adjustment mechanism to supply the processing fluid at the second flow rate to the fluid supply path, and opening the first on-off valve to supply the processing fluid at the first temperature and the second flow rate into the processing vessel;
    Execute
    A fluid supply system according to claim 2 or 3.
  10.  請求項7に記載の流体供給システムと、
     第3排出弁を有し、前記処理容器内の前記処理流体を排出する排出部と、
     を有し、
     前記制御部は、
     前記処理容器内に前記基板を搬入する工程と、
     前記流量調整機構を制御して前記処理流体を第1流量で前記流体供給路に供給し、前記第2開閉弁を開くと共に前記第3排出弁を閉じて前記第2温度かつ前記第1流量の前記処理流体を前記処理容器内に供給することにより、前記処理容器内を昇圧する工程と、
     前記処理容器内を昇圧する工程の後、前記流量調整機構を制御して前記処理流体を第2流量で前記流体供給路に供給し、前記第2開閉弁を閉じると共に前記第1開閉弁を開いて前記第1温度かつ前記第2流量の前記処理流体を前記処理容器内に供給することにより、前記処理容器内を昇圧する工程と、
     を実行する、
     基板処理装置。
    A fluid supply system according to claim 7;
    a discharge part having a third discharge valve and discharging the processing fluid in the processing container;
    having
    The control unit is
    loading the substrate into the processing chamber;
    controlling the flow rate adjustment mechanism to supply the processing fluid to the fluid supply path at a first flow rate, and opening the second on-off valve and closing the third exhaust valve to supply the processing fluid at the second temperature and the first flow rate into the processing vessel, thereby increasing a pressure in the processing vessel;
    after the step of increasing the pressure in the processing vessel, controlling the flow rate control mechanism to supply the processing fluid to the fluid supply path at a second flow rate, and closing the second on-off valve and opening the first on-off valve to supply the processing fluid at the first temperature and the second flow rate into the processing vessel, thereby increasing the pressure in the processing vessel;
    Execute
    Substrate processing equipment.
  11.  内部で基板が処理される処理容器内に流体を供給する流体供給システムを用いた基板処理方法であって、
     前記流体供給システムは、
     処理流体を供給する処理流体供給部と、
     前記処理流体供給部と前記処理容器とに接続され、温度が調整された処理流体を前記処理容器内に通流させる流体供給路と、
     前記流体供給路に設けられ、前記処理流体を第1温度に加熱する第1加熱機構と、
     前記流体供給路に設けられ、前記処理流体を前記第1温度よりも低い第2温度に加熱する第2加熱機構と、
     を有し、
     前記処理流体供給部は、前記処理流体の流量を調整する流量調整機構を有し、
     前記流体供給路は、
     前記第1加熱機構を通って前記処理容器内に前記処理流体を通流させる第1分岐流路と、
     前記第2加熱機構を通って前記処理容器内に前記処理流体を通流させる第2分岐流路と、
     を有し、
     内部で基板が処理される処理容器内に流体を供給して前記基板を処理する、
     基板処理方法。
    1. A method for processing a substrate using a fluid supply system for supplying a fluid into a processing vessel in which a substrate is processed, comprising:
    The fluid supply system comprises:
    a processing fluid supply unit that supplies a processing fluid;
    a fluid supply line connected to the processing fluid supply unit and the processing vessel, for allowing a temperature-adjusted processing fluid to flow through the processing vessel;
    a first heating mechanism provided in the fluid supply path and configured to heat the treatment fluid to a first temperature;
    a second heating mechanism provided in the fluid supply path and configured to heat the treatment fluid to a second temperature lower than the first temperature;
    having
    the processing fluid supply unit has a flow rate adjustment mechanism that adjusts a flow rate of the processing fluid,
    The fluid supply path is
    a first branch flow path for causing the processing fluid to flow through the first heating mechanism into the processing vessel;
    a second branch flow path for causing the processing fluid to flow through the second heating mechanism into the processing vessel;
    having
    providing a fluid into a processing vessel in which the substrate is processed to process the substrate;
    A method for processing a substrate.
  12.  前記第1分岐流路には、前記第1加熱機構の下流に第1開閉弁が設けられ、
     前記第2分岐流路には、前記第2加熱機構の下流に第2開閉弁が設けられ、
     前記流体供給路は、前記第1開閉弁及び前記第2開閉弁の下流に、前記第1分岐流路と前記第2分岐流路とを連通させるバイパス流路を有し、
     前記バイパス流路には、第1絞りが設けられる、
     請求項11に記載の基板処理方法。
    a first opening/closing valve is provided in the first branch flow path downstream of the first heating mechanism;
    a second opening/closing valve is provided in the second branch passage downstream of the second heating mechanism,
    the fluid supply passage has a bypass passage downstream of the first on-off valve and the second on-off valve, the bypass passage connecting the first branch passage and the second branch passage;
    The bypass flow path is provided with a first throttle.
    The method of claim 11.
  13.  前記第1分岐流路には、前記第1加熱機構の下流に第1開閉弁が設けられ、
     前記第2分岐流路には、前記第2加熱機構の下流に第2開閉弁が設けられ、
     前記第1開閉弁と前記第2開閉弁とを排他的に開閉することにより、前記処理容器内に通流させる前記処理流体の温度を変更することを有する、
     請求項11に記載の基板処理方法。
    a first opening/closing valve is provided in the first branch flow path downstream of the first heating mechanism;
    a second opening/closing valve is provided in the second branch passage downstream of the second heating mechanism,
    and changing a temperature of the processing fluid caused to flow through the processing vessel by exclusively opening and closing the first on-off valve and the second on-off valve.
    The method of claim 11.
  14.  前記第1加熱機構は、前記第2加熱機構と直列に設けられ、
     前記第1分岐流路には、前記第1分岐流路内の前記処理流体を排出する第1排出流路が接続される、
     請求項11から請求項13のいずれか1項に記載の基板処理方法。
    the first heating mechanism is provided in series with the second heating mechanism;
    a first discharge flow path that discharges the treatment fluid in the first branch flow path is connected to the first branch flow path;
    The substrate processing method according to any one of claims 11 to 13.
  15.  前記第1加熱機構は、前記第2加熱機構と並列に設けられ、
     前記第1分岐流路には、第1排出弁を有し、前記第1分岐流路内の前記処理流体を排出する第1排出流路が接続され、
     前記第2分岐流路には、第2排出弁を有し、前記第2分岐流路内の前記処理流体を排出する第2排出流路が接続され、
     前記第2分岐流路には、前記第2加熱機構の上流に第3開閉弁が設けられる、
     請求項12又は請求項13に記載の基板処理方法。
    the first heating mechanism is provided in parallel with the second heating mechanism,
    a first discharge flow path having a first discharge valve and configured to discharge the treatment fluid in the first branch flow path is connected to the first branch flow path;
    a second discharge flow path having a second discharge valve and configured to discharge the processing fluid in the second branch flow path is connected to the second branch flow path;
    A third on-off valve is provided in the second branch flow path upstream of the second heating mechanism.
    The substrate processing method according to claim 12 or 13.
  16.  前記処理容器内に前記基板を搬入する工程と、
     前記搬入する工程の後に、前記第2開閉弁及び前記第3開閉弁を開いて前記第2温度の前記処理流体を前記処理容器内に供給する工程と、
     前記第2温度の前記処理流体を供給する工程の後に、前記第2開閉弁及び前記第3開閉弁を閉じると共に、前記第1開閉弁を開いて前記第1温度の前記処理流体を前記処理容器内に供給する工程と、
     前記第2排出弁を開いて前記第2分岐流路内を減圧する工程と、
     を有し、
     前記第2分岐流路内を減圧する工程は、前記第1温度の前記処理流体を前記処理容器内に供給する工程と並行して行われる、
     請求項15に記載の基板処理方法。
    loading the substrate into the processing chamber;
    a step of opening the second on-off valve and the third on-off valve after the step of carrying in the processing fluid, and supplying the processing fluid at the second temperature into the processing vessel;
    after the step of supplying the processing fluid at the second temperature, closing the second on-off valve and the third on-off valve and opening the first on-off valve to supply the processing fluid at the first temperature into the processing vessel;
    opening the second discharge valve to reduce pressure in the second branch flow path;
    having
    The step of reducing the pressure in the second branch flow path is performed in parallel with the step of supplying the processing fluid at the first temperature into the processing vessel.
    The method of claim 15.
  17.  前記処理容器内の前記基板の処理状態に応じて、前記第1開閉弁及び前記第2開閉弁の開閉を制御することにより、前記処理容器内に通流させる前記処理流体の温度を変更する工程を有する、
     請求項12又は請求項13に記載の基板処理方法。
    a step of controlling opening and closing of the first on-off valve and the second on-off valve in response to a processing state of the substrate in the processing vessel, thereby changing a temperature of the processing fluid caused to flow through the processing vessel.
    The substrate processing method according to claim 12 or 13.
  18.  前記処理流体供給部は、並列に設けられる第1供給流路及び第2供給流路を有し、
     前記流量調整機構は、前記第1供給流路に設けられる第1供給弁と、前記第2供給流路に設けられる第2供給弁とを有し、
     前記処理容器内の前記基板の処理状態に応じて、前記第1供給弁及び前記第2供給弁の開閉を制御することにより、前記処理容器内に通流させる前記処理流体の流量を変更する工程を有する、
     請求項11から請求項13のいずれか1項に記載の基板処理方法。
    the processing fluid supply unit includes a first supply flow path and a second supply flow path provided in parallel,
    the flow rate adjustment mechanism includes a first supply valve provided in the first supply flow path and a second supply valve provided in the second supply flow path,
    changing a flow rate of the processing fluid flowing through the processing vessel by controlling opening and closing of the first supply valve and the second supply valve in accordance with a processing state of the substrate in the processing vessel;
    The substrate processing method according to any one of claims 11 to 13.
  19.  前記処理容器内に前記基板を搬入する工程と、
     前記流量調整機構を制御して前記処理流体を第1流量で前記流体供給路に供給し、前記第2開閉弁を開いて前記第2温度かつ前記第1流量の前記処理流体を前記処理容器内に供給する工程と、
     前記第1流量かつ前記第2温度の前記処理流体を前記処理容器内に供給する工程の後に、前記流量調整機構を制御して前記処理流体を第2流量で前記流体供給路に供給し、前記第1開閉弁を開いて前記第1温度かつ前記第2流量の前記処理流体を前記処理容器内に供給する工程と、
     を有する、
     請求項12又は請求項13に記載の基板処理方法。
    loading the substrate into the processing chamber;
    controlling the flow rate adjustment mechanism to supply the processing fluid to the fluid supply path at a first flow rate, and opening the second on-off valve to supply the processing fluid at the second temperature and the first flow rate into the processing vessel;
    after the step of supplying the processing fluid at the first flow rate and the second temperature into the processing vessel, controlling the flow rate adjustment mechanism to supply the processing fluid at the second flow rate to the fluid supply path, and opening the first on-off valve to supply the processing fluid at the first temperature and the second flow rate into the processing vessel;
    having
    The substrate processing method according to claim 12 or 13.
  20.  第3排出弁を有し、前記処理容器内の前記処理流体を排出する排出部を有し、
     前記処理容器内に前記基板を搬入する工程と、
     前記流量調整機構を制御して前記処理流体を第1流量で前記流体供給路に供給し、前記第2開閉弁を開くと共に前記第3排出弁を閉じて前記第2温度かつ前記第1流量の前記処理流体を前記処理容器内に供給することにより、前記処理容器内を昇圧する工程と、
     前記処理容器内の圧力を昇圧する工程の後、前記流量調整機構を制御して前記処理流体を第2流量で前記流体供給路に供給し、前記第2開閉弁を閉じると共に前記第1開閉弁を開いて前記第1温度かつ前記第2流量の前記処理流体を前記処理容器内に供給することにより、前記処理容器内を昇圧する工程と、
     を有する、
     請求項17に記載の基板処理方法。
    a third discharge valve and a discharge part for discharging the processing fluid in the processing vessel;
    loading the substrate into the processing chamber;
    controlling the flow rate adjustment mechanism to supply the processing fluid to the fluid supply path at a first flow rate, and opening the second on-off valve and closing the third exhaust valve to supply the processing fluid at the second temperature and the first flow rate into the processing vessel, thereby increasing a pressure in the processing vessel;
    after the step of increasing the pressure in the processing vessel, controlling the flow rate control mechanism to supply the processing fluid to the fluid supply path at a second flow rate, and closing the second on-off valve and opening the first on-off valve to supply the processing fluid at the first temperature and the second flow rate into the processing vessel, thereby increasing the pressure in the processing vessel;
    having
    The method of claim 17.
PCT/JP2023/026064 2022-10-20 2023-07-14 Fluid supply system, substrate processing apparatus, and substrate processing method WO2024084757A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022168324 2022-10-20
JP2022-168324 2022-10-20

Publications (1)

Publication Number Publication Date
WO2024084757A1 true WO2024084757A1 (en) 2024-04-25

Family

ID=90737365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026064 WO2024084757A1 (en) 2022-10-20 2023-07-14 Fluid supply system, substrate processing apparatus, and substrate processing method

Country Status (1)

Country Link
WO (1) WO2024084757A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160334162A1 (en) * 2015-05-15 2016-11-17 Semes Co., Ltd. Method and apparatus for drying substrate
US20210020430A1 (en) * 2019-07-15 2021-01-21 Semes Co., Ltd. Method for treating substrate
JP2021136373A (en) * 2020-02-28 2021-09-13 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP2022016342A (en) * 2020-07-08 2022-01-21 セメス カンパニー,リミテッド Apparatus and method for treating substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160334162A1 (en) * 2015-05-15 2016-11-17 Semes Co., Ltd. Method and apparatus for drying substrate
US20210020430A1 (en) * 2019-07-15 2021-01-21 Semes Co., Ltd. Method for treating substrate
JP2021136373A (en) * 2020-02-28 2021-09-13 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP2022016342A (en) * 2020-07-08 2022-01-21 セメス カンパニー,リミテッド Apparatus and method for treating substrate

Similar Documents

Publication Publication Date Title
KR101371107B1 (en) Liquid processing apparatus, liquid processing method and recording medium
KR101584843B1 (en) Liquid processing apparatus, liquid processing method, and storage medim
WO2024084757A1 (en) Fluid supply system, substrate processing apparatus, and substrate processing method
TWI373792B (en)
CN107264039B (en) Printing equipment and cleaning control method of spray head
TW201405689A (en) Apparatus and method for liquid treatment of wafer-shaped articles
JP2006013507A (en) Device for drying substrate and method therefor
KR20200042393A (en) Temperature controlling system and temperature controlling method
JP5383979B2 (en) Processing system
WO2024085000A1 (en) Fluid supply system, substrate processing apparatus and substrate processing method
JP2005277268A (en) Substrate treatment apparatus and substrate treatment method
JP2022102372A (en) Substrate drying method and substrate drying device
JP7390837B2 (en) Substrate processing method and substrate processing apparatus
US20210023582A1 (en) Apparatus for treating substrate
KR101058818B1 (en) Processing apparatus and processing method and recording medium
JP2022051531A (en) Apparatus and method for treating substrate
JP2021020178A (en) Gas separation device and gas separation method
KR20240040026A (en) Substrate processing apparatus and substrate processing method
US20240069451A1 (en) Supercritical fluid supply apparatus, substrate processing apparatus including the same, and substrate processing method using the same
JP7460983B2 (en) Processing liquid supply system and processing liquid supply method
TWI834176B (en) Substrate processing method and substrate processing apparatus
JP2004063902A (en) Substrate processing apparatus
WO2022014329A1 (en) Liquid treatment device, liquid supply mechanism, liquid treatment method, and computer storage medium
KR100476715B1 (en) Exhaust gas treatment system
JP7187303B2 (en) temperature controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879410

Country of ref document: EP

Kind code of ref document: A1