WO2024084987A1 - Substrate processing apparatus and substrate processing method - Google Patents

Substrate processing apparatus and substrate processing method Download PDF

Info

Publication number
WO2024084987A1
WO2024084987A1 PCT/JP2023/036392 JP2023036392W WO2024084987A1 WO 2024084987 A1 WO2024084987 A1 WO 2024084987A1 JP 2023036392 W JP2023036392 W JP 2023036392W WO 2024084987 A1 WO2024084987 A1 WO 2024084987A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
port
unloading
processing vessel
flow path
Prior art date
Application number
PCT/JP2023/036392
Other languages
French (fr)
Japanese (ja)
Inventor
幹雄 中島
翔太 梅▲崎▼
貴大 林田
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2024084987A1 publication Critical patent/WO2024084987A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • This disclosure relates to a substrate processing apparatus and a substrate processing method.
  • the substrate processing apparatus described in Patent Document 1 dries a substrate by replacing a puddle of drying liquid on the substrate with a supercritical fluid.
  • the substrate processing apparatus has a processing vessel that houses the substrate, and a supply line that supplies a supercritical fluid and a purge gas to the processing vessel.
  • the processing vessel is provided with an inlet/outlet for the substrate.
  • the inlet/outlet is opened and closed by a lid.
  • the supply line is provided with an on-off valve that opens and closes the flow path of the supercritical fluid or the purge gas.
  • One aspect of the present disclosure provides a technology that reduces the number of opening and closing operations of a substrate processing apparatus and improves the life of mechanical components of the substrate processing apparatus.
  • a substrate processing apparatus includes a processing vessel having a substrate loading/unloading port and accommodating the substrate, a lid for opening and closing the loading/unloading port, a gate opening/closing unit for moving the lid, a substrate transport unit for passing the substrate through the loading/unloading port while holding the substrate, a first opening/closing valve for opening and closing a first flow path for supplying a purge gas to the processing vessel, and a control unit.
  • the control unit determines whether the substrate is loaded following the substrate unloading, and if the substrate is loaded following the substrate unloading, the control unit loads the substrate after the substrate is unloaded without switching the loading/unloading port from an open state to a closed state and without switching the first flow path from a closed state to an open state.
  • FIG. 1 is a perspective view showing a processing container of a substrate processing apparatus according to an embodiment.
  • FIG. 2 is a cross-sectional view showing an example of an open state of the loading/unloading port.
  • FIG. 3 is a cross-sectional view showing an example of a loading/unloading port in a closed state.
  • FIG. 4 is a diagram illustrating an example of a supply unit and a discharge unit.
  • FIG. 5 is a functional block diagram illustrating an example of components of the control unit.
  • FIG. 6 is a flowchart illustrating a substrate processing method according to an embodiment.
  • FIG. 7 is a diagram showing an example of a state of the substrate processing apparatus immediately before step S101, and in steps S104 and S107.
  • FIG. 8 is a diagram showing an example of a state of the substrate processing apparatus in steps S101 to S102 and S105.
  • FIG. 9 is a diagram showing an example of a state of the substrate processing apparatus during the pressure increase in step S103.
  • FIG. 10 is a diagram showing an example of a state of the substrate processing apparatus during distribution in step S103.
  • FIG. 11 is a diagram showing an example of a state of the substrate processing apparatus during depressurization in step S103.
  • FIG. 12A is a cross-sectional view showing an example of the valve body in an open position
  • FIG. 12B is a cross-sectional view showing an example of the valve body in a closed position.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction are perpendicular to each other.
  • the X-axis direction and the Y-axis direction are horizontal directions, and the Z-axis direction is vertical.
  • the substrate processing apparatus 1 dries the substrate W by replacing a puddle of a drying liquid L on the substrate W with a supercritical fluid.
  • the substrate W includes a semiconductor substrate such as a silicon wafer, or a glass substrate.
  • a supercritical fluid is a fluid that is at a temperature equal to or higher than a critical temperature and at a pressure equal to or higher than a critical pressure, and is a fluid in a state in which liquid and gas cannot be distinguished from each other.
  • the drying liquid L is, for example, an organic solvent such as IPA (isopropyl alcohol), and the supercritical fluid is, for example, CO 2.
  • IPA isopropyl alcohol
  • the contents of the present disclosure are also applicable to processes other than supercritical drying.
  • the substrate processing apparatus 1 comprises a processing vessel 20, a tray 22, a lid 24, and a gate opening/closing unit 26.
  • the processing vessel 20 is a pressure-resistant vessel that can withstand pressures above the supercritical level.
  • the processing vessel 20 has an inlet/outlet 21 on its side.
  • the substrate W is loaded into the processing vessel 20 through the inlet/outlet 21 with a puddle of drying liquid L therein. After being dried inside the processing vessel 20, the substrate W is loaded out of the processing vessel 20 through the inlet/outlet 21.
  • the tray 22 holds the substrate W, which has a puddle of drying liquid, horizontally from below.
  • the tray 22 has, for example, a horizontal plate 221 and multiple pins 222 provided on the upper surface of the plate 221, and holds the substrate W horizontally with the multiple pins 222.
  • the tray 22 passes the substrate W through the load/unload port 21 while holding it.
  • the tray 22 is an example of a substrate transport unit.
  • the tray 22 may be fixed inside the processing vessel 20, or the substrate transport unit may be provided separately from the tray 22.
  • the substrate transport unit may have a transport arm that holds the substrate W, and a drive unit that drives the transport arm.
  • the lid 24 opens and closes the loading/unloading opening 21 of the processing vessel 20.
  • a sealant 25 is provided on the surface of the lid 24 facing the loading/unloading opening 21 to prevent leakage of fluid.
  • the lid 24 is integrated with the tray 22, and the tray 22 is moved together with the lid 24. As described above, the tray 22 may be fixed inside the processing vessel 20, or only the lid 24 may be moved.
  • the gate opening/closing unit 26 opens and closes the loading/unloading opening 21 by moving the lid body 24.
  • the gate opening/closing unit 26 moves the tray 22 together with the lid body 24.
  • the gate opening/closing unit 26 moves the lid body 24 to close the loading/unloading opening 21, it transports the tray 22 into the inside of the processing vessel 20.
  • the gate opening/closing unit 26 moves the lid body 24 to open the loading/unloading opening 21, it transports the tray 22 out of the processing vessel 20.
  • the processing vessel 20 is provided with a supply port 27 and a discharge port 28.
  • the supply port 27 is provided on the side of the processing vessel 20 opposite the loading/unloading port 21, and is connected to a supply line 41.
  • the discharge port 28 is provided below the loading/unloading port 21, and is connected to a discharge line 51. Note that the number and positions of the supply ports 27 and the number and positions of the discharge ports 28 are not particularly limited.
  • a supply header 31 and a discharge header 33 are provided inside the processing vessel 20.
  • the supply header 31 is connected to the supply port 27 and has multiple supply ports that open toward the loading/unloading port 21 of the processing vessel 20.
  • the discharge header 33 is connected to the discharge port 28 and has multiple discharge ports that open toward the supply header 31.
  • the substrate processing apparatus 1 includes a control unit 90.
  • the control unit 90 is, for example, a computer, and includes an arithmetic unit 91 such as a CPU (Central Processing Unit), and a storage unit 92 such as a memory.
  • the storage unit 92 stores programs that control the various processes executed in the substrate processing apparatus 1.
  • the control unit 90 controls the operation of the substrate processing apparatus 1 by having the arithmetic unit 91 execute the programs stored in the storage unit 92.
  • TS represents a temperature sensor
  • PS represents a pressure sensor.
  • the supply unit 40 supplies various fluids from the outside to the inside of the processing vessel 20.
  • the supply unit 40 has a supply line 41.
  • the supply line 41 connects the fluid supply source and the processing vessel 20, and supplies a supercritical fluid from the fluid supply source to the processing vessel 20.
  • the supply line 41 has, for example, individual lines 41A and 41B and a common line 41C.
  • the upstream ends of the individual lines 41A and 41B are connected to a fluid supply source, and the downstream ends of the individual lines 41A and 41B are connected to the upstream end of the common line 41C.
  • the downstream end of the common line 41C is connected to the supply port 27 of the processing vessel 20.
  • the individual line 41A is used to supply a raw material of supercritical fluid (e.g., liquid CO 2 ).
  • An on-off valve 42 and a throttle 43 are provided in the individual line 41A.
  • the on-off valve 42 opens and closes the flow path of the individual line 41A.
  • the flow path of the individual line 41A corresponds to the second flow path, and the on-off valve 42 corresponds to the second on-off valve.
  • the on-off valve 42 opens the flow path, the raw material of supercritical fluid is supplied to the common line 41C, heated in the common line 41C, and supplied to the inside of the processing vessel 20 as a gas or supercritical fluid.
  • the on-off valve 42 closes the flow path, the supply of the raw material of supercritical fluid to the common line 41C is stopped.
  • the individual line 41B is used to supply a purge gas (e.g., N2 gas).
  • An on-off valve 44 is provided in the individual line 41B.
  • the on-off valve 44 opens and closes the flow path of the individual line 41B.
  • the flow path of the individual line 41B corresponds to the first flow path, and the on-off valve 44 corresponds to the first on-off valve.
  • the first flow path may be referred to as a purge gas flow path.
  • the on-off valve 44 opens the purge gas flow path, the purge gas is supplied to the inside of the processing vessel 20 via the common line 41C.
  • the on-off valve 44 closes the purge gas flow path, the supply of the purge gas to the common line 41C is stopped.
  • the common line 41C supplies various fluids to the processing vessel 20.
  • a heater 45, an on-off valve 46, and a filter 47 are provided in this order along the common line 41C from the upstream side to the downstream side.
  • a branch line 48 branches off from the common line 41C between the heater 45 and the on-off valve 46.
  • An on-off valve 49 is provided along the branch line 48.
  • the on-off valve 46 closes the flow path of the common line 41C, and the on-off valve 49 opens the flow path of the branch line 48. This allows the pressure of the heater 45 to be released independently of the pressure of the processing vessel 20. Gas cooled by the reduced pressure of the heater 45 can be prevented from flowing into the processing vessel 20 through the filter 47, and particles can be prevented from flowing into the processing vessel 20.
  • the reason why the pressure of the heater 45 is released after processing the nth substrate W (n is an integer equal to or greater than 1) is to process the (n+1)th substrate W under the same conditions as the first substrate W, thereby reducing variation in the processing quality of the substrates W.
  • the discharge section 50 discharges fluid from inside the processing vessel 20.
  • the discharge section 50 has a discharge line 51.
  • the upstream end of the discharge line 51 is connected to the discharge port 28 of the processing vessel 20.
  • a flow meter 52, a back pressure valve 53, and an on-off valve 54 are provided in this order in the middle of the discharge line 51 from the upstream side to the downstream side.
  • the back pressure valve 53 maintains the pressure in the processing vessel 20 at a set pressure.
  • the set pressure of the back pressure valve 53 can be changed as appropriate.
  • the on-off valve 54 opens and closes the flow path of the discharge line 51. When the on-off valve 54 opens the flow path, the back pressure valve 53 maintains the pressure in the processing vessel 20 constant while the fluid is discharged from the processing vessel 20.
  • a bypass line 55 is provided in the middle of the discharge line 51, bypassing the back pressure valve 53 and the on-off valve 54.
  • An on-off valve 56 is provided in the middle of the bypass line 55. The on-off valve 56 opens and closes the flow path of the bypass line 55. When the on-off valve 56 opens the flow path, the fluid is discharged from the treatment vessel 20, and the pressure in the treatment vessel 20 returns to atmospheric pressure.
  • each functional block shown in FIG. 5 is conceptual, and does not necessarily have to be physically configured as shown. It is possible to configure all or part of each functional block by distributing or integrating it functionally or physically in any unit. All or any part of each processing function performed by each functional block can be realized by a program executed by a CPU, or can be realized as hardware using wired logic.
  • the control unit 90 has, for example, a management unit 93, a judgment unit 94, a gate opening/closing control unit 95, and an opening/closing valve control unit 96.
  • the management unit 93 acquires information relating to the processing plan for substrates W and the processing recipe for substrates W from, for example, a host computer, and manages the information.
  • the processing plan includes the number of substrates to be processed and the processing timing.
  • the processing recipe includes processing conditions (for example, the order of processes, the time for each process, the temperature, pressure or flow rate in each process, etc.).
  • the determination unit 94 determines whether or not a substrate W is to be loaded following the unloading of the substrate W based on the information acquired by the management unit 93.
  • the gate opening/closing control unit 95 controls the gate opening/closing unit 26 to control the opening/closing of the loading/unloading port 21 of the processing vessel 20.
  • the on-off valve control unit 96 controls the opening/closing of the on-off valves 42, 44, 46, 49, 54, and 56.
  • the control unit 90 which will be described in detail later, when a substrate W is loaded following its unloading, loads the substrate W after the substrate W is unloaded without switching the load/unload port 21 from an open state to a closed state and without switching the purge gas flow path from a closed state to an open state.
  • the control unit 90 loads the substrate W after the substrate W is unloaded while prohibiting the desired switching operation.
  • Steps S101 to S107 shown in FIG. 6 are performed under the control of the control unit 90.
  • the processing from step S101 onwards is started when the power to the substrate processing apparatus 1 is turned on, the start-up of the substrate processing apparatus 1 is completed, and the management unit 93 acquires a processing plan for the substrates W.
  • FIG. 7 An example of the state of the substrate processing apparatus 1 immediately before step S101 is shown in FIG. 7.
  • the bold lines represent the flow of fluid.
  • the on-off valves 44, 46, 54, and 56 on the bold lines open their respective flow paths, and the other on-off valves 42 and 49 close their respective flow paths.
  • the supply unit 40 supplies purge gas to the processing vessel 20, and the exhaust unit 50 exhausts the purge gas that accumulates in the processing vessel 20.
  • the purge gas keeps the inside of the processing vessel 20 clean before processing of the substrate W begins (or while processing of the substrate W is interrupted).
  • the purge gas is supplied to the processing vessel 20 when the processing vessel 20 does not contain a substrate W, and is exhausted from the processing vessel 20.
  • the purge gas may also be supplied to the processing vessel 20 when the substrate W is being unloaded from the processing vessel 20 (e.g., step S104).
  • step S101 the on-off valve 44 closes the purge gas flow path.
  • the control unit 90 switches not only the on-off valve 44 but also the on-off valves 46, 54, and 56 from an open state to a closed state.
  • the open state opens the flow path, and the closed state closes the flow path.
  • All on-off valves 42, 44, 46, 49, 54, and 56 close their respective flow paths.
  • the supply unit 40 stops supplying the purge gas
  • the exhaust unit 50 stops exhausting the purge gas. It is preferable that the control unit 90 then confirms with the pressure sensor PS that the pressure in the processing vessel 20 is below the threshold value.
  • step S101 the gate opening/closing unit 26 moves the lid 24 to open the loading/unloading port 21. Because the supply unit 40 has stopped the supply of purge gas, it is possible to prevent the sealant 25 from being blown away by the pressure of the processing vessel 20 when the gate opening/closing unit 26 opens the loading/unloading port 21. In addition, because the supply unit 40 has stopped the supply of purge gas, it is possible to prevent high-temperature purge gas from flowing out through the loading/unloading port 21 even if the gate opening/closing unit 26 opens the loading/unloading port 21. Therefore, it is possible to prevent the substrate W waiting near the loading/unloading port 21 from being exposed to high-temperature purge gas, and to prevent the substrate W from drying out.
  • step S102 a transport robot (not shown) places the substrate W on the tray 22, and the gate opening/closing unit 26 moves the lid 24 to load the substrate W into the processing vessel 20 and close the loading/unloading port 21. At this time, all of the opening/closing valves 42, 44, 46, 49, 54, and 56 close their respective flow paths to prevent backflow of fluids.
  • the tray 22 holds the substrate W horizontally inside the processing vessel 20 with the film of drying liquid L facing upwards.
  • step S103 pressurization, circulation, and depressurization are performed in this order.
  • Pressurization is a process in which the supply unit 40 supplies supercritical fluid to the processing vessel 20 to increase the pressure of the processing vessel 20 to a set pressure equal to or higher than the critical pressure.
  • Circulation is a process in which the supply unit 40 and the exhaust unit 50 exhaust the fluid accumulated in the processing vessel 20 while maintaining the pressure of the processing vessel 20 constant.
  • the fluid to be exhausted includes not only the supercritical fluid but also the drying liquid L dissolved in the supercritical fluid. The drying liquid L disappears from above the substrate W, and the substrate W dries.
  • Depressurization is a process in which the exhaust unit 50 lowers the pressure of the processing vessel 20 by exhausting the fluid accumulated in the processing vessel 20.
  • FIG. 9 An example of the state of the substrate processing apparatus 1 during the pressure increase in step S103 is shown in FIG. 9.
  • the bold lines represent the flow of fluid.
  • the on-off valves 42, 46 above the bold lines have their respective flow paths open, and the other on-off valves 44, 49, 54, 56 have their respective flow paths closed.
  • the supply unit 40 supplies supercritical fluid to the processing vessel 20, and increases the pressure in the processing vessel 20 to a set pressure equal to or higher than the critical pressure. During this time, the discharge unit 50 does not discharge the fluid that has accumulated in the processing vessel 20.
  • FIG. 10 An example of the state of the substrate processing apparatus 1 during the flow in step S103 is shown in FIG. 10.
  • the thick lines represent the flow of fluid.
  • the on-off valves 42, 46, and 54 on the thick lines open their respective flow paths, and the other on-off valves 44, 49, and 56 close their respective flow paths.
  • the supply unit 40 and the discharge unit 50 discharge the fluid accumulated in the processing vessel 20 while maintaining the pressure in the processing vessel 20 constant.
  • the discharged fluid includes not only the supercritical fluid, but also the drying liquid L dissolved in the supercritical fluid.
  • the drying liquid L disappears from above the substrate W, and the substrate W dries.
  • FIG. 11 An example of the state of the substrate processing apparatus 1 during depressurization in step S103 is shown in FIG. 11.
  • the bold lines represent the flow of fluid.
  • the on-off valves 49, 54, and 56 above the bold lines have their respective flow paths open, while the other on-off valves 42, 44, and 46 have their respective flow paths closed.
  • the exhaust unit 50 exhausts the fluid accumulated in the processing vessel 20, thereby lowering the pressure in the processing vessel 20. Thereafter, it is preferable for the control unit 90 to confirm with the pressure sensor PS that the pressure in the processing vessel 20 is below the threshold value.
  • the on-off valve 46 closes the flow path of the common line 41C, and the on-off valve 49 opens the flow path of the branch line 48. This allows the pressure in the heater 45 to be released independently of the pressure in the processing vessel 20. Gas cooled by the reduced pressure in the heater 45 can be prevented from flowing into the processing vessel 20 through the filter 47, and particles can be prevented from flowing into the processing vessel 20.
  • step S104 the gate opening/closing unit 26 moves the lid 24 to open the loading/unloading port 21 and unload the substrate W from the processing vessel 20. Unloading the substrate W creates a space inside the processing vessel 20 with the same volume as the substrate W. To prevent air from entering this space from outside the processing vessel 20, while the substrate W is being unloaded, the opening/closing valve 44 opens the purge gas flow path as shown in FIG. 7, in the same manner as immediately before step S101.
  • the control unit 90 unloads the substrate W while supplying purge gas to the processing vessel 20 by opening the on-off valve 44 to the purge gas flow path. Even if a space of the same volume as the substrate W is generated inside the processing vessel 20 due to the unloading of the substrate W, the space can be filled with purge gas, and air can be prevented from entering the processing vessel 20 from the outside.
  • step S105 since the substrate W has been removed, as shown in FIG. 8, the on-off valve 44 closes the purge gas flow path. This prevents high-temperature purge gas from flowing out through the inlet/outlet 21.
  • the control unit 90 switches not only the on-off valve 44 but also the on-off valves 46, 54, and 56 from the open state to the closed state. All on-off valves 42, 44, 46, 49, 54, and 56 close their respective flow paths to prevent backflow of fluid.
  • step S106 the judgment unit 94 judges whether or not a substrate W is to be loaded following the unloading of the substrate W. Specifically, the judgment unit 94 judges whether or not the number of substrates W to be processed has reached the number of substrates W to be processed in the processing plan, that is, whether or not there are any substrates W remaining to be processed.
  • the number of substrates W to be processed in the processing plan may be referred to as the planned number.
  • step S106 If substrates W remain to be processed (step S106, NO), the control unit 90 performs the processes from step S102 onwards again, and performs operations such as loading substrates W. On the other hand, if the number of substrates W to be processed has reached the planned number and no substrates W remain to be processed (step S106, YES), the control unit 90 performs step S107.
  • step S107 the gate opening/closing unit 26 moves the lid body 24 to close the loading/unloading port 21, and the opening/closing valve 44 opens the purge gas flow path as shown in FIG. 7.
  • the control unit 90 switches not only the opening/closing valve 44 but also the opening/closing valves 46, 54, and 56 from the closed state to the open state. This causes the state of the substrate processing apparatus 1 to become the same as the state immediately before step S101.
  • the purge gas keeps the inside of the processing vessel 20 clean until the management unit 93 acquires the next processing plan.
  • the purge gas is supplied to and exhausted from the processing vessel 20 when the processing vessel 20 does not contain a substrate W.
  • processing from step S101 onwards is performed.
  • the control unit 90 when the (n+1)th substrate W is loaded following the unloading of the nth substrate W (step S106, NO), the control unit 90 skips steps S107 and S101 and performs the processes from step S102 onwards. In other words, when the (n+1)th substrate W is loaded following the unloading of the nth substrate W (step S106, NO), the control unit 90 loads the (n+1)th substrate W without switching the loading/unloading port 21 from an open state to a closed state and without switching the purge gas flow path from a closed state to an open state.
  • skipping steps S107 and S101 the closing and opening of the loading/unloading port 21 can be skipped once each, the number of opening and closing operations of the gate opening/closing unit 26 can be reduced, and the life of the gate opening/closing unit 26 and the seal material 25 can be improved. Furthermore, according to this embodiment, by skipping steps S107 and S101, the switching of the opening/closing valves 44, 46, 54, 56 from a closed state to an open state and from an open state to a closed state can be skipped once each, the number of opening and closing operations of the opening/closing valves 44, 46, 54, 56 can be reduced, and the life of the opening/closing valves 44, 46, 54, 56 can be improved. Furthermore, by skipping steps S107 and S101, throughput can be improved.
  • step S107 the loading/unloading port 21 is closed and the purge gas flow path is opened. This keeps the inside of the processing vessel 20 clean until the management unit 93 obtains the next processing plan.
  • control unit 90 of this embodiment unloads the nth substrate W while supplying purge gas to the processing vessel 20 by opening the purge gas flow path. Even if a space of the same volume as the substrate W is generated inside the processing vessel 20 due to the unloading of the nth substrate W, the space can be filled with purge gas, and air can be prevented from entering the processing vessel 20 from the outside.
  • the control unit 90 closes the purge gas flow path after the nth substrate W is unloaded and before the (n+1)th substrate W is loaded. This can prevent high-temperature purge gas from flowing out through the loading/unloading port 21. This can prevent the (n+1)th substrate W waiting near the loading/unloading port 21 from being exposed to high-temperature purge gas, and can prevent the (n+1)th substrate W from drying.
  • control unit 90 of this embodiment determines whether or not the (n+1)th substrate W will be loaded following the unloading of the nth substrate W after blocking the purge gas flow path (step S105) and before loading the next substrate W (step S102). By making the determination immediately before loading the (n+1)th substrate W, it is easy to respond to changes in the processing plan. Note that the timing of the determination is not particularly limited.
  • the on-off valve 44 has a first port 441, a second port 442, and a valve body 443.
  • One of the first port 441 and the second port 442 e.g., the first port 441 is an inlet for a fluid (e.g., a purge gas), and the other (e.g., the second port 442) is an outlet for the fluid.
  • a fluid e.g., a purge gas
  • the valve body 443 moves between an open position (see FIG. 12(A)) and a closed position (see FIG. 12(B)).
  • the open position is a position where the first port 441 and the second port 442 are in communication.
  • the closed position is a position where the first port 441 and the second port 442 are blocked from communication.
  • the valve body 443 is, for example, a diaphragm.
  • the surface 443b of the valve body 443 that receives the pressure of the second port 442 is larger than the surface 443a of the valve body 443 that receives the pressure of the first port 441.
  • the first port 441 and the second port 442 are arranged concentrically, the first port 441 is arranged in a circular shape, and the second port 442 is arranged in an annular shape surrounding the first port 441.
  • the second port 442 is closer to the processing vessel 20 than the first port 441.
  • the second port 442 applies a pressure equivalent to the pressure of the processing vessel 20 (e.g., a pressure equal to or greater than the critical pressure) to the valve body 443.
  • the first port 441 applies a pressure of approximately atmospheric pressure (e.g., a pressure of 1 MPa or less) to the valve body 443.
  • the second port 442 is closer to the processing vessel 20 than the first port 441. Since the pressure in the processing vessel 20 is high, the valve body 443 receives the high pressure over a large area, thereby reducing the closing force that stops the valve body 443 in the closed position. As a result, damage to the valve body 443 can be suppressed, and the life of the valve body 443 can be extended.
  • the contents of this disclosure can also be applied to the on-off valves 42, 46, 49, 54, and 56 other than the on-off valve 44.
  • the on-off valve 44 has an elastic body 444 that urges the valve body 443 from the open position toward the closed position.
  • the elastic body 444 urges the valve body 443 from the open position toward the closed position with its elastic restoring force.
  • the elastic body 444 is, for example, a spring.
  • the substrate processing apparatus 1 has a drive unit 60 that pushes the valve body 443 against the urging force F of the elastic body 444.
  • the drive unit 60 pushes the valve body 443 from the closed position to the open position, for example, by air pressure.
  • the drive unit 60 includes one or more solenoid valves, and is capable of switching the air pressure supplied to the on-off valve 44 between a first set pressure P1 that is higher than atmospheric pressure and a second set pressure P2 (P2>P1) that is higher than the first set pressure P1.
  • the drive unit 60 may also be capable of switching the air pressure supplied to the on-off valve 44 to atmospheric pressure.
  • the valve body 443 moves from the closed position to the open position due to the air pressure and stops at the open position.
  • the valve body 443 moves from the open position to the closed position and stops at the closed position.
  • the control unit 90 controls the drive unit 60 to push the valve body 443 with a first set pressure P1 against the biasing force F of the elastic body 444 while moving the valve body 443 from the open position to the closed position. This can reduce the impact when the valve body 443 reaches the closed position, or can reduce the closing force that stops the valve body 443 in the closed position. As a result, damage to the valve body 443 can be suppressed, and the life of the valve body 443 can be extended.
  • the contents of this disclosure can also be applied to the on-off valves 42, 46, 49, 54, and 56 other than the on-off valve 44.
  • Substrate processing apparatus 20 Processing container 21 Loading/unloading port 22 Tray (substrate transport section) 24 Lid 26 Gate opening/closing section 44 Opening/closing valve (first opening/closing valve) 90 Control part W substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

This substrate processing apparatus comprises: a processing vessel that has a carry in/out opening for substrates, and that accommodates the substrates; a lid that opens/closes the carry in/out opening; a gate opening/closing part that moves the lid; a substrate transfer part that holds and passes the substrate through the carry in/out opening; a first open/close valve that opens/closes a first flow path for supplying a purge gas to the processing vessel; and a control unit. The control unit determines whether carrying out of one of the substrates is followed by carrying in of another substrate. If carrying out of said one substrate is followed by carrying in of said another substrate, the control unit performs the carrying in of said another substrate after the carrying out of said one substrate, without switching the carry in/out opening from open state to closed state, and without switching the first flow path from closed state to open state.

Description

基板処理装置、及び基板処理方法Substrate processing apparatus and substrate processing method
 本開示は、基板処理装置、及び基板処理方法に関する。 This disclosure relates to a substrate processing apparatus and a substrate processing method.
 特許文献1に記載の基板処理装置は、基板の上に液盛りされた乾燥液を超臨界流体に置換することで、基板を乾燥させる。基板処理装置は、基板を収容する処理容器と、処理容器に対して超臨界流体とパージガスを供給する供給ラインと、を有する。処理容器には、基板の搬入出口が設けられる。搬入出口は蓋体で開閉される。供給ラインには、超臨界流体又はパージガスの流路を開閉する開閉弁が設けられる。 The substrate processing apparatus described in Patent Document 1 dries a substrate by replacing a puddle of drying liquid on the substrate with a supercritical fluid. The substrate processing apparatus has a processing vessel that houses the substrate, and a supply line that supplies a supercritical fluid and a purge gas to the processing vessel. The processing vessel is provided with an inlet/outlet for the substrate. The inlet/outlet is opened and closed by a lid. The supply line is provided with an on-off valve that opens and closes the flow path of the supercritical fluid or the purge gas.
日本国特開2018-81966号公報Japanese Patent Publication No. 2018-81966
 本開示の一態様は、基板処理装置の開閉動作の回数を低減し、基板処理装置の機械部品の寿命を向上する、技術を提供する。 One aspect of the present disclosure provides a technology that reduces the number of opening and closing operations of a substrate processing apparatus and improves the life of mechanical components of the substrate processing apparatus.
 本開示の一態様に係る基板処理装置は、基板の搬入出口が設けられ、前記基板を収容する処理容器と、前記搬入出口を開閉する蓋体と、前記蓋体を移動させるゲート開閉部と、前記基板を保持しながら前記搬入出口を通過させる基板搬送部と、前記処理容器に対してパージガスを供給する第1流路を開閉する第1開閉弁と、制御部と、を備える。前記制御部は、前記基板の搬出に続いて前記基板の搬入が行われるか否かを判断し、前記基板の搬出に続いて前記基板の搬入が行われる場合、前記基板の搬出後に、前記搬入出口を開状態から閉状態に切り替えることなく且つ前記第1流路を閉状態から開状態に切り替えることなく、前記基板の搬入を行う。 A substrate processing apparatus according to one aspect of the present disclosure includes a processing vessel having a substrate loading/unloading port and accommodating the substrate, a lid for opening and closing the loading/unloading port, a gate opening/closing unit for moving the lid, a substrate transport unit for passing the substrate through the loading/unloading port while holding the substrate, a first opening/closing valve for opening and closing a first flow path for supplying a purge gas to the processing vessel, and a control unit. The control unit determines whether the substrate is loaded following the substrate unloading, and if the substrate is loaded following the substrate unloading, the control unit loads the substrate after the substrate is unloaded without switching the loading/unloading port from an open state to a closed state and without switching the first flow path from a closed state to an open state.
 本開示の一態様によれば、基板処理装置の開閉動作の回数を低減し、基板処理装置の機械部品の寿命を向上することができる。 According to one aspect of the present disclosure, it is possible to reduce the number of opening and closing operations of a substrate processing apparatus and improve the lifespan of mechanical components of the substrate processing apparatus.
図1は、一実施形態に係る基板処理装置の処理容器を示す斜視図である。FIG. 1 is a perspective view showing a processing container of a substrate processing apparatus according to an embodiment. 図2は、搬入出口の開状態の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of an open state of the loading/unloading port. 図3は、搬入出口の閉状態の一例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of a loading/unloading port in a closed state. 図4は、供給部と排出部の一例を示す図である。FIG. 4 is a diagram illustrating an example of a supply unit and a discharge unit. 図5は、制御部の構成要素の一例を機能ブロックで示す図である。FIG. 5 is a functional block diagram illustrating an example of components of the control unit. 図6は、一実施形態に係る基板処理方法を示すフローチャートである。FIG. 6 is a flowchart illustrating a substrate processing method according to an embodiment. 図7は、ステップS101の直前、ステップS104及びS107における基板処理装置の状態の一例を示す図である。FIG. 7 is a diagram showing an example of a state of the substrate processing apparatus immediately before step S101, and in steps S104 and S107. 図8は、ステップS101~S102及びS105における基板処理装置の状態の一例を示す図である。FIG. 8 is a diagram showing an example of a state of the substrate processing apparatus in steps S101 to S102 and S105. 図9は、ステップS103の昇圧における基板処理装置の状態の一例を示す図である。FIG. 9 is a diagram showing an example of a state of the substrate processing apparatus during the pressure increase in step S103. 図10は、ステップS103の流通における基板処理装置の状態の一例を示す図である。FIG. 10 is a diagram showing an example of a state of the substrate processing apparatus during distribution in step S103. 図11は、ステップS103の脱圧における基板処理装置の状態の一例を示す図である。FIG. 11 is a diagram showing an example of a state of the substrate processing apparatus during depressurization in step S103. 図12(A)は弁体の開位置の一例を示す断面図であり、図12(B)は弁体の閉位置の一例を示す断面図である。FIG. 12A is a cross-sectional view showing an example of the valve body in an open position, and FIG. 12B is a cross-sectional view showing an example of the valve body in a closed position.
 以下、本開示の実施形態について図面を参照して説明する。なお、各図面において同一の又は対応する構成には同一の符号を付し、説明を省略することがある。本明細書において、X軸方向、Y軸方向、Z軸方向は互いに垂直な方向である。X軸方向およびY軸方向は水平方向、Z軸方向は鉛直方向である。 Below, an embodiment of the present disclosure will be described with reference to the drawings. Note that the same or corresponding configurations in each drawing are given the same reference numerals, and descriptions thereof may be omitted. In this specification, the X-axis direction, the Y-axis direction, and the Z-axis direction are perpendicular to each other. The X-axis direction and the Y-axis direction are horizontal directions, and the Z-axis direction is vertical.
 図1~図3を参照して、一実施形態に係る基板処理装置1について説明する。基板処理装置1は、基板Wの上に液盛りされた乾燥液Lを超臨界流体に置換することで、基板Wを乾燥する。基板Wは、シリコンウェハなどの半導体基板、またはガラス基板を含む。超臨界流体は、臨界温度以上の温度と、臨界圧力以上の圧力下におかれた流体であり、液体と気体の区別がつかない状態の流体である。乾燥液Lを超臨界流体に置換すれば、基板Wの凹凸パターンに液体と気体の界面が現れるのを抑制できる。その結果、表面張力の発生を抑制でき、凹凸パターンの倒壊を抑制できる。乾燥液Lは例えばIPA(イソプロピルアルコール)等の有機溶剤であり、超臨界流体は例えばCOである。なお、本開示の内容は、超臨界乾燥以外の処理にも適用可能である。 A substrate processing apparatus 1 according to an embodiment will be described with reference to FIGS. 1 to 3. The substrate processing apparatus 1 dries the substrate W by replacing a puddle of a drying liquid L on the substrate W with a supercritical fluid. The substrate W includes a semiconductor substrate such as a silicon wafer, or a glass substrate. A supercritical fluid is a fluid that is at a temperature equal to or higher than a critical temperature and at a pressure equal to or higher than a critical pressure, and is a fluid in a state in which liquid and gas cannot be distinguished from each other. By replacing the drying liquid L with a supercritical fluid, it is possible to prevent an interface between liquid and gas from appearing in the uneven pattern of the substrate W. As a result, it is possible to prevent the occurrence of surface tension and the collapse of the uneven pattern. The drying liquid L is, for example, an organic solvent such as IPA (isopropyl alcohol), and the supercritical fluid is, for example, CO 2. The contents of the present disclosure are also applicable to processes other than supercritical drying.
 図2~図3に示すように、基板処理装置1は、処理容器20と、トレイ22と、蓋体24と、ゲート開閉部26と、を備える。処理容器20は、超臨界以上の圧力に耐える耐圧容器である。処理容器20は、その側面に搬入出口21を有する。基板Wは、乾燥液Lが液盛りされた状態で、搬入出口21を介して処理容器20の内部に搬入される。基板Wは、処理容器20の内部で乾燥された後、搬入出口21を介して処理容器20の外部に搬出される。 As shown in Figures 2 and 3, the substrate processing apparatus 1 comprises a processing vessel 20, a tray 22, a lid 24, and a gate opening/closing unit 26. The processing vessel 20 is a pressure-resistant vessel that can withstand pressures above the supercritical level. The processing vessel 20 has an inlet/outlet 21 on its side. The substrate W is loaded into the processing vessel 20 through the inlet/outlet 21 with a puddle of drying liquid L therein. After being dried inside the processing vessel 20, the substrate W is loaded out of the processing vessel 20 through the inlet/outlet 21.
 トレイ22は、乾燥液が液盛りされている基板Wを下方から水平に保持する。トレイ22は、例えば、水平な板221と板221の上面に設けた複数本のピン222とを有し、複数本のピン222で基板Wを水平に保持する。トレイ22は、基板Wを保持しながら搬入出口21を通過させる。トレイ22は、基板搬送部の一例である。なお、トレイ22は処理容器20の内部に固定されてもよく、基板搬送部はトレイ22とは別に設けられてもよい。基板搬送部は、基板Wを保持する搬送アームと、搬送アームを駆動する駆動部と、を有してもよい。 The tray 22 holds the substrate W, which has a puddle of drying liquid, horizontally from below. The tray 22 has, for example, a horizontal plate 221 and multiple pins 222 provided on the upper surface of the plate 221, and holds the substrate W horizontally with the multiple pins 222. The tray 22 passes the substrate W through the load/unload port 21 while holding it. The tray 22 is an example of a substrate transport unit. The tray 22 may be fixed inside the processing vessel 20, or the substrate transport unit may be provided separately from the tray 22. The substrate transport unit may have a transport arm that holds the substrate W, and a drive unit that drives the transport arm.
 蓋体24は、処理容器20の搬入出口21を開閉する。蓋体24における搬入出口21との対向面には、流体の漏出を防止するシール材25が設けられている。蓋体24はトレイ22と一体化されており、トレイ22は蓋体24と共に移動させられる。なお、上記の通り、トレイ22は処理容器20の内部に固定されていてもよく、蓋体24のみが移動させられてもよい。 The lid 24 opens and closes the loading/unloading opening 21 of the processing vessel 20. A sealant 25 is provided on the surface of the lid 24 facing the loading/unloading opening 21 to prevent leakage of fluid. The lid 24 is integrated with the tray 22, and the tray 22 is moved together with the lid 24. As described above, the tray 22 may be fixed inside the processing vessel 20, or only the lid 24 may be moved.
 ゲート開閉部26は、蓋体24を移動させることで、搬入出口21を開閉する。ゲート開閉部26は、蓋体24と共にトレイ22を移動させる。ゲート開閉部26は、蓋体24を移動させることで搬入出口21を閉塞するときに、トレイ22を処理容器20の内部に搬入する。ゲート開閉部26は、蓋体24を移動させることで搬入出口21を開放するときに、トレイ22を処理容器20の外部に搬出する。 The gate opening/closing unit 26 opens and closes the loading/unloading opening 21 by moving the lid body 24. The gate opening/closing unit 26 moves the tray 22 together with the lid body 24. When the gate opening/closing unit 26 moves the lid body 24 to close the loading/unloading opening 21, it transports the tray 22 into the inside of the processing vessel 20. When the gate opening/closing unit 26 moves the lid body 24 to open the loading/unloading opening 21, it transports the tray 22 out of the processing vessel 20.
 図1に示すように、処理容器20には、供給ポート27と排出ポート28とが設けられる。供給ポート27は、処理容器20の搬入出口21とは反対側の側面に設けられ、供給ライン41に接続される。排出ポート28は、搬入出口21の下方に設けられ、排出ライン51に接続される。なお、供給ポート27の数と位置、排出ポート28の数と位置は特に限定されない。 As shown in FIG. 1, the processing vessel 20 is provided with a supply port 27 and a discharge port 28. The supply port 27 is provided on the side of the processing vessel 20 opposite the loading/unloading port 21, and is connected to a supply line 41. The discharge port 28 is provided below the loading/unloading port 21, and is connected to a discharge line 51. Note that the number and positions of the supply ports 27 and the number and positions of the discharge ports 28 are not particularly limited.
 処理容器20の内部には、供給ヘッダー31と、排出ヘッダー33と、が設けられる。供給ヘッダー31は、供給ポート27に接続され、処理容器20の搬入出口21に向けて開口する供給口を複数有する。排出ヘッダー33は、排出ポート28に接続され、供給ヘッダー31に向けて開口する排出口を複数有する。 A supply header 31 and a discharge header 33 are provided inside the processing vessel 20. The supply header 31 is connected to the supply port 27 and has multiple supply ports that open toward the loading/unloading port 21 of the processing vessel 20. The discharge header 33 is connected to the discharge port 28 and has multiple discharge ports that open toward the supply header 31.
 基板処理装置1は、制御部90を備える。制御部90は、例えばコンピュータであり、CPU(Central Processing Unit)等の演算部91と、メモリ等の記憶部92と、を備える。記憶部92には、基板処理装置1において実行される各種の処理を制御するプログラムが格納される。制御部90は、記憶部92に記憶されたプログラムを演算部91に実行させることにより、基板処理装置1の動作を制御する。 The substrate processing apparatus 1 includes a control unit 90. The control unit 90 is, for example, a computer, and includes an arithmetic unit 91 such as a CPU (Central Processing Unit), and a storage unit 92 such as a memory. The storage unit 92 stores programs that control the various processes executed in the substrate processing apparatus 1. The control unit 90 controls the operation of the substrate processing apparatus 1 by having the arithmetic unit 91 execute the programs stored in the storage unit 92.
 次に、図4を参照して、供給部40と排出部50の一例について説明する。図4において、TSは温度センサを表し、PSは圧力センサを表す。供給部40は、処理容器20の外部から内部に各種の流体を供給する。供給部40は、供給ライン41を有する。供給ライン41は、流体供給源と処理容器20とを接続し、流体供給源から処理容器20に超臨界流体を供給する。 Next, an example of the supply unit 40 and the discharge unit 50 will be described with reference to FIG. 4. In FIG. 4, TS represents a temperature sensor, and PS represents a pressure sensor. The supply unit 40 supplies various fluids from the outside to the inside of the processing vessel 20. The supply unit 40 has a supply line 41. The supply line 41 connects the fluid supply source and the processing vessel 20, and supplies a supercritical fluid from the fluid supply source to the processing vessel 20.
 供給ライン41は、例えば、個別ライン41A、41Bと、共通ライン41Cと、を有する。個別ライン41A、41Bの上流端は流体供給源に接続され、個別ライン41A、41Bの下流端は共通ライン41Cの上流端に接続される。共通ライン41Cの下流端は処理容器20の供給ポート27に接続される。 The supply line 41 has, for example, individual lines 41A and 41B and a common line 41C. The upstream ends of the individual lines 41A and 41B are connected to a fluid supply source, and the downstream ends of the individual lines 41A and 41B are connected to the upstream end of the common line 41C. The downstream end of the common line 41C is connected to the supply port 27 of the processing vessel 20.
 個別ライン41Aは、超臨界流体の原料(例えば液体のCO)の供給に用いる。個別ライン41Aには、開閉弁42と絞り43が設けられる。開閉弁42は、個別ライン41Aの流路を開閉する。個別ライン41Aの流路が第2流路に相当し、開閉弁42が第2開閉弁に相当する。開閉弁42が流路を開放すると、超臨界流体の原料が共通ライン41Cに供給され、共通ライン41Cにおいて加熱され、気体または超臨界流体として処理容器20の内部に供給される。一方、開閉弁42が流路を閉塞すると、共通ライン41Cへの超臨界流体の原料の供給が停止される。 The individual line 41A is used to supply a raw material of supercritical fluid (e.g., liquid CO 2 ). An on-off valve 42 and a throttle 43 are provided in the individual line 41A. The on-off valve 42 opens and closes the flow path of the individual line 41A. The flow path of the individual line 41A corresponds to the second flow path, and the on-off valve 42 corresponds to the second on-off valve. When the on-off valve 42 opens the flow path, the raw material of supercritical fluid is supplied to the common line 41C, heated in the common line 41C, and supplied to the inside of the processing vessel 20 as a gas or supercritical fluid. On the other hand, when the on-off valve 42 closes the flow path, the supply of the raw material of supercritical fluid to the common line 41C is stopped.
 個別ライン41Bは、パージガス(例えばNガス)の供給に用いる。個別ライン41Bには、開閉弁44が設けられる。開閉弁44は、個別ライン41Bの流路を開閉する。個別ライン41Bの流路が第1流路に相当し、開閉弁44が第1開閉弁に相当する。第1流路を、パージガス流路と記載することがある。開閉弁44がパージガス流路を開放すると、パージガスが共通ライン41Cを介して処理容器20の内部に供給される。一方、開閉弁44がパージガス流路を閉塞すると、共通ライン41Cへのパージガスの供給が停止される。 The individual line 41B is used to supply a purge gas (e.g., N2 gas). An on-off valve 44 is provided in the individual line 41B. The on-off valve 44 opens and closes the flow path of the individual line 41B. The flow path of the individual line 41B corresponds to the first flow path, and the on-off valve 44 corresponds to the first on-off valve. The first flow path may be referred to as a purge gas flow path. When the on-off valve 44 opens the purge gas flow path, the purge gas is supplied to the inside of the processing vessel 20 via the common line 41C. On the other hand, when the on-off valve 44 closes the purge gas flow path, the supply of the purge gas to the common line 41C is stopped.
 共通ライン41Cは、各種の流体を処理容器20に供給する。共通ライン41Cの途中には、上流側から下流側に向けて、ヒータ45と開閉弁46とフィルター47とがこの順番で設けられる。ヒータ45と開閉弁46との間において、共通ライン41Cから分岐ライン48が分岐している。分岐ライン48の途中には、開閉弁49が設けられる。 The common line 41C supplies various fluids to the processing vessel 20. A heater 45, an on-off valve 46, and a filter 47 are provided in this order along the common line 41C from the upstream side to the downstream side. A branch line 48 branches off from the common line 41C between the heater 45 and the on-off valve 46. An on-off valve 49 is provided along the branch line 48.
 処理容器20の圧力を抜くときに、開閉弁46が共通ライン41Cの流路を閉塞し、開閉弁49が分岐ライン48の流路を開放する。これにより、処理容器20の圧力とは独立して、ヒータ45の圧力を抜くことができる。ヒータ45の減圧によって冷えたガスがフィルター47を介して処理容器20に流入するのを抑制でき、パーティクルが処理容器20に流入するのを抑制できる。 When depressurizing the processing vessel 20, the on-off valve 46 closes the flow path of the common line 41C, and the on-off valve 49 opens the flow path of the branch line 48. This allows the pressure of the heater 45 to be released independently of the pressure of the processing vessel 20. Gas cooled by the reduced pressure of the heater 45 can be prevented from flowing into the processing vessel 20 through the filter 47, and particles can be prevented from flowing into the processing vessel 20.
 なお、n(nは1以上の整数)枚目の基板Wの処理後に、ヒータ45の圧力を抜くのは、(n+1)枚目の基板Wを1枚目の基板Wと同じ条件で処理し、基板Wの処理品質のばらつきを低減するためである。 The reason why the pressure of the heater 45 is released after processing the nth substrate W (n is an integer equal to or greater than 1) is to process the (n+1)th substrate W under the same conditions as the first substrate W, thereby reducing variation in the processing quality of the substrates W.
 排出部50は、処理容器20の内部から流体を排出する。排出部50は、排出ライン51を有する。排出ライン51の上流端は、処理容器20の排出ポート28に接続される。排出ライン51の途中には、上流側から下流側に向けて、流量計52と背圧弁53と開閉弁54とがこの順番で設けられる。 The discharge section 50 discharges fluid from inside the processing vessel 20. The discharge section 50 has a discharge line 51. The upstream end of the discharge line 51 is connected to the discharge port 28 of the processing vessel 20. A flow meter 52, a back pressure valve 53, and an on-off valve 54 are provided in this order in the middle of the discharge line 51 from the upstream side to the downstream side.
 背圧弁53は、処理容器20の圧力を設定圧力に保つ。背圧弁53の設定圧力は、適宜変更可能である。開閉弁54は、排出ライン51の流路を開閉する。開閉弁54が流路を開放すると、背圧弁53が処理容器20の圧力を一定に保ちながら、流体が処理容器20から排出される。 The back pressure valve 53 maintains the pressure in the processing vessel 20 at a set pressure. The set pressure of the back pressure valve 53 can be changed as appropriate. The on-off valve 54 opens and closes the flow path of the discharge line 51. When the on-off valve 54 opens the flow path, the back pressure valve 53 maintains the pressure in the processing vessel 20 constant while the fluid is discharged from the processing vessel 20.
 排出ライン51の途中には、背圧弁53と開閉弁54を迂回するバイパスライン55が設けられる。バイパスライン55の途中には、開閉弁56が設けられる。開閉弁56は、バイパスライン55の流路を開閉する。開閉弁56が流路を開放すると、流体が処理容器20から排出され、処理容器20の圧力が大気圧に戻る。 A bypass line 55 is provided in the middle of the discharge line 51, bypassing the back pressure valve 53 and the on-off valve 54. An on-off valve 56 is provided in the middle of the bypass line 55. The on-off valve 56 opens and closes the flow path of the bypass line 55. When the on-off valve 56 opens the flow path, the fluid is discharged from the treatment vessel 20, and the pressure in the treatment vessel 20 returns to atmospheric pressure.
 次に、図5を参照して、制御部90の構成要素の一例について説明する。なお、図5に図示される各機能ブロックは概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。各機能ブロックの全部又は一部を、任意の単位で機能的又は物理的に分散・統合して構成することが可能である。各機能ブロックにて行われる各処理機能は、その全部又は任意の一部が、CPUにて実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現されうる。 Next, an example of the components of the control unit 90 will be described with reference to FIG. 5. Note that each functional block shown in FIG. 5 is conceptual, and does not necessarily have to be physically configured as shown. It is possible to configure all or part of each functional block by distributing or integrating it functionally or physically in any unit. All or any part of each processing function performed by each functional block can be realized by a program executed by a CPU, or can be realized as hardware using wired logic.
 制御部90は、例えば、管理部93と、判断部94と、ゲート開閉制御部95と、開閉弁制御部96と、を有する。管理部93は、例えばホストコンピュータなどから基板Wの処理計画と基板Wの処理レシピに関する情報を取得し、その情報を管理する。処理計画は、処理枚数と処理時期を含む。処理レシピは、処理条件(例えば工程の順序、各工程の時間、各工程における温度、圧力または流量など)を含む。 The control unit 90 has, for example, a management unit 93, a judgment unit 94, a gate opening/closing control unit 95, and an opening/closing valve control unit 96. The management unit 93 acquires information relating to the processing plan for substrates W and the processing recipe for substrates W from, for example, a host computer, and manages the information. The processing plan includes the number of substrates to be processed and the processing timing. The processing recipe includes processing conditions (for example, the order of processes, the time for each process, the temperature, pressure or flow rate in each process, etc.).
 判断部94は、管理部93が取得した情報に基づき、基板Wの搬出に続いて基板Wの搬入が行われるか否かを判断する。ゲート開閉制御部95は、ゲート開閉部26を制御することで、処理容器20の搬入出口21の開閉を制御する。開閉弁制御部96は、開閉弁42、44、46、49、54、56の開閉を制御する。 The determination unit 94 determines whether or not a substrate W is to be loaded following the unloading of the substrate W based on the information acquired by the management unit 93. The gate opening/closing control unit 95 controls the gate opening/closing unit 26 to control the opening/closing of the loading/unloading port 21 of the processing vessel 20. The on-off valve control unit 96 controls the opening/closing of the on-off valves 42, 44, 46, 49, 54, and 56.
 制御部90は、詳しくは後述するが、基板Wの搬出に続いて基板Wの搬入が行われる場合、基板Wの搬出後に、搬入出口21を開状態から閉状態に切り替えることなく且つパージガス流路を閉状態から開状態に切り替えることなく、基板Wの搬入を行う。制御部90は、基板Wの搬出に続いて基板Wの搬入が行われる場合、基板Wの搬出後に、所望の切替動作を禁止した状態で、基板Wの搬入を行う。 The control unit 90, which will be described in detail later, when a substrate W is loaded following its unloading, loads the substrate W after the substrate W is unloaded without switching the load/unload port 21 from an open state to a closed state and without switching the purge gas flow path from a closed state to an open state. When a substrate W is loaded following its unloading, the control unit 90 loads the substrate W after the substrate W is unloaded while prohibiting the desired switching operation.
 次に、図6を参照して、一実施形態に係る基板処理方法について説明する。図6に示すステップS101~S107は、制御部90による制御下で実施される。ステップS101以降の処理は、基板処理装置1の電源が投入され、基板処理装置1の立ち上げが終了し、管理部93が基板Wの処理計画を取得すると、開始される。 Next, a substrate processing method according to one embodiment will be described with reference to FIG. 6. Steps S101 to S107 shown in FIG. 6 are performed under the control of the control unit 90. The processing from step S101 onwards is started when the power to the substrate processing apparatus 1 is turned on, the start-up of the substrate processing apparatus 1 is completed, and the management unit 93 acquires a processing plan for the substrates W.
 ステップS101の直前の基板処理装置1の状態の一例を図7に示す。図7において、太線は流体の流れを表す。太線上の開閉弁44、46、54、56はそれぞれの流路を開放しており、それ以外の開閉弁42、49はそれぞれの流路を閉塞している。供給部40がパージガスを処理容器20に供給すると共に、排出部50が処理容器20に溜まるパージガスを排出する。 An example of the state of the substrate processing apparatus 1 immediately before step S101 is shown in FIG. 7. In FIG. 7, the bold lines represent the flow of fluid. The on-off valves 44, 46, 54, and 56 on the bold lines open their respective flow paths, and the other on-off valves 42 and 49 close their respective flow paths. The supply unit 40 supplies purge gas to the processing vessel 20, and the exhaust unit 50 exhausts the purge gas that accumulates in the processing vessel 20.
 パージガスは、基板Wの処理開始前(または基板Wの処理中断中)に、処理容器20の内部を清浄な状態に保つ。パージガスは、処理容器20が基板Wを収容していない状態で、処理容器20に供給され、処理容器20から排出される。なお、パージガスは、基板Wが処理容器20から搬出される過程で、処理容器20に供給されてもよい(例えばステップS104)。 The purge gas keeps the inside of the processing vessel 20 clean before processing of the substrate W begins (or while processing of the substrate W is interrupted). The purge gas is supplied to the processing vessel 20 when the processing vessel 20 does not contain a substrate W, and is exhausted from the processing vessel 20. The purge gas may also be supplied to the processing vessel 20 when the substrate W is being unloaded from the processing vessel 20 (e.g., step S104).
 ステップS101では、図8に示すように、開閉弁44がパージガス流路を閉塞する。制御部90は、開閉弁44だけではなく、開閉弁46、54、56も開状態から閉状態に切り替える。開状態は流路を開放する状態であり、閉状態は流路を閉塞する状態である。全ての開閉弁42、44、46、49、54、56がそれぞれの流路を閉塞する。供給部40がパージガスの供給を停止すると共に、排出部50がパージガスの排出を停止する。その後、制御部90は、圧力センサPSで処理容器20の圧力が閾値以下であることを確認することが好ましい。 In step S101, as shown in FIG. 8, the on-off valve 44 closes the purge gas flow path. The control unit 90 switches not only the on-off valve 44 but also the on-off valves 46, 54, and 56 from an open state to a closed state. The open state opens the flow path, and the closed state closes the flow path. All on-off valves 42, 44, 46, 49, 54, and 56 close their respective flow paths. The supply unit 40 stops supplying the purge gas, and the exhaust unit 50 stops exhausting the purge gas. It is preferable that the control unit 90 then confirms with the pressure sensor PS that the pressure in the processing vessel 20 is below the threshold value.
 また、ステップS101では、ゲート開閉部26が蓋体24を移動させることで搬入出口21を開放する。供給部40がパージガスの供給を停止しているので、ゲート開閉部26が搬入出口21を開放する際に処理容器20の圧力でシール材25が吹き飛ぶことを抑制できる。また、供給部40がパージガスの供給を停止しているので、ゲート開閉部26が搬入出口21を開放しても、搬入出口21を介して高温のパージガスが流出することを抑制できる。よって、搬入出口21の近傍で待機している基板Wが高温のパージガスに曝されるのを抑制でき、基板Wの乾燥を抑制できる。 In addition, in step S101, the gate opening/closing unit 26 moves the lid 24 to open the loading/unloading port 21. Because the supply unit 40 has stopped the supply of purge gas, it is possible to prevent the sealant 25 from being blown away by the pressure of the processing vessel 20 when the gate opening/closing unit 26 opens the loading/unloading port 21. In addition, because the supply unit 40 has stopped the supply of purge gas, it is possible to prevent high-temperature purge gas from flowing out through the loading/unloading port 21 even if the gate opening/closing unit 26 opens the loading/unloading port 21. Therefore, it is possible to prevent the substrate W waiting near the loading/unloading port 21 from being exposed to high-temperature purge gas, and to prevent the substrate W from drying out.
 ステップS102では、不図示の搬送ロボットが基板Wをトレイ22の上に載せ、ゲート開閉部26が蓋体24を移動させることで、基板Wを処理容器20に搬入すると共に、搬入出口21を閉塞する。このとき、全ての開閉弁42、44、46、49、54、56は、それぞれの流路を閉塞し、流体の逆流を防止する。トレイ22は、処理容器20の内部において、乾燥液Lの液膜を上に向けて基板Wを水平に保持する。 In step S102, a transport robot (not shown) places the substrate W on the tray 22, and the gate opening/closing unit 26 moves the lid 24 to load the substrate W into the processing vessel 20 and close the loading/unloading port 21. At this time, all of the opening/ closing valves 42, 44, 46, 49, 54, and 56 close their respective flow paths to prevent backflow of fluids. The tray 22 holds the substrate W horizontally inside the processing vessel 20 with the film of drying liquid L facing upwards.
 ステップS103では、昇圧と、流通と、脱圧と、がこの順番で行われる。昇圧は、供給部40が超臨界流体を処理容器20に供給することで処理容器20の圧力を臨界圧力以上の設定圧力まで上げる工程である。流通は、供給部40と排出部50が処理容器20の圧力を一定に維持しながら処理容器20に溜まった流体を排出する工程である。排出する流体は、超臨界流体だけではなく、超臨界流体に溶解した乾燥液Lを含む。乾燥液Lが基板Wの上から消失し、基板Wが乾燥する。脱圧は、排出部50が処理容器20に溜まった流体を排出することで処理容器20の圧力を下げる工程である。 In step S103, pressurization, circulation, and depressurization are performed in this order. Pressurization is a process in which the supply unit 40 supplies supercritical fluid to the processing vessel 20 to increase the pressure of the processing vessel 20 to a set pressure equal to or higher than the critical pressure. Circulation is a process in which the supply unit 40 and the exhaust unit 50 exhaust the fluid accumulated in the processing vessel 20 while maintaining the pressure of the processing vessel 20 constant. The fluid to be exhausted includes not only the supercritical fluid but also the drying liquid L dissolved in the supercritical fluid. The drying liquid L disappears from above the substrate W, and the substrate W dries. Depressurization is a process in which the exhaust unit 50 lowers the pressure of the processing vessel 20 by exhausting the fluid accumulated in the processing vessel 20.
 ステップS103の昇圧における基板処理装置1の状態の一例を図9に示す。図9において、太線は流体の流れを表す。太線上の開閉弁42、46はそれぞれの流路を開放しており、それ以外の開閉弁44、49、54、56はそれぞれの流路を閉塞している。供給部40は、超臨界流体を処理容器20に供給し、処理容器20の圧力を臨界圧力以上の設定圧力まで上げる。この間、排出部50は、処理容器20に溜まる流体を排出しない。 An example of the state of the substrate processing apparatus 1 during the pressure increase in step S103 is shown in FIG. 9. In FIG. 9, the bold lines represent the flow of fluid. The on-off valves 42, 46 above the bold lines have their respective flow paths open, and the other on-off valves 44, 49, 54, 56 have their respective flow paths closed. The supply unit 40 supplies supercritical fluid to the processing vessel 20, and increases the pressure in the processing vessel 20 to a set pressure equal to or higher than the critical pressure. During this time, the discharge unit 50 does not discharge the fluid that has accumulated in the processing vessel 20.
 ステップS103の流通における基板処理装置1の状態の一例を図10に示す。図10において、太線は流体の流れを表す。太線上の開閉弁42、46、54はそれぞれの流路を開放しており、それ以外の開閉弁44、49、56はそれぞれの流路を閉塞している。供給部40と排出部50が処理容器20の圧力を一定に維持しながら処理容器20に溜まった流体を排出する。排出する流体は、超臨界流体だけではなく、超臨界流体に溶解した乾燥液Lを含む。乾燥液Lが基板Wの上から消失し、基板Wが乾燥する。 An example of the state of the substrate processing apparatus 1 during the flow in step S103 is shown in FIG. 10. In FIG. 10, the thick lines represent the flow of fluid. The on-off valves 42, 46, and 54 on the thick lines open their respective flow paths, and the other on-off valves 44, 49, and 56 close their respective flow paths. The supply unit 40 and the discharge unit 50 discharge the fluid accumulated in the processing vessel 20 while maintaining the pressure in the processing vessel 20 constant. The discharged fluid includes not only the supercritical fluid, but also the drying liquid L dissolved in the supercritical fluid. The drying liquid L disappears from above the substrate W, and the substrate W dries.
 ステップS103の脱圧における基板処理装置1の状態の一例を図11に示す。図11において、太線は流体の流れを表す。太線上の開閉弁49、54、56はそれぞれの流路を開放しており、それ以外の開閉弁42、44、46はそれぞれの流路を閉塞している。排出部50が処理容器20に溜まった流体を排出することで処理容器20の圧力を下げる。その後、制御部90は、圧力センサPSで処理容器20の圧力が閾値以下であることを確認することが好ましい。 An example of the state of the substrate processing apparatus 1 during depressurization in step S103 is shown in FIG. 11. In FIG. 11, the bold lines represent the flow of fluid. The on-off valves 49, 54, and 56 above the bold lines have their respective flow paths open, while the other on-off valves 42, 44, and 46 have their respective flow paths closed. The exhaust unit 50 exhausts the fluid accumulated in the processing vessel 20, thereby lowering the pressure in the processing vessel 20. Thereafter, it is preferable for the control unit 90 to confirm with the pressure sensor PS that the pressure in the processing vessel 20 is below the threshold value.
 排出部50が処理容器20の圧力を抜くときに、開閉弁46が共通ライン41Cの流路を閉塞し、開閉弁49が分岐ライン48の流路を開放する。これにより、処理容器20の圧力とは独立して、ヒータ45の圧力を抜くことができる。ヒータ45の減圧によって冷えたガスがフィルター47を介して処理容器20に流入するのを抑制でき、パーティクルが処理容器20に流入するのを抑制できる。 When the exhaust unit 50 releases the pressure in the processing vessel 20, the on-off valve 46 closes the flow path of the common line 41C, and the on-off valve 49 opens the flow path of the branch line 48. This allows the pressure in the heater 45 to be released independently of the pressure in the processing vessel 20. Gas cooled by the reduced pressure in the heater 45 can be prevented from flowing into the processing vessel 20 through the filter 47, and particles can be prevented from flowing into the processing vessel 20.
 ステップS104では、ゲート開閉部26が蓋体24を移動させることで搬入出口21を開放すると共に、基板Wを処理容器20から搬出する。基板Wの搬出によって、基板Wと同じ体積の空間が処理容器20の内部に生じる。この空間に処理容器20の外部から空気が入り込まないように、基板Wの搬出中は、ステップS101の直前と同様に、図7に示すように、開閉弁44がパージガス流路を開放する。 In step S104, the gate opening/closing unit 26 moves the lid 24 to open the loading/unloading port 21 and unload the substrate W from the processing vessel 20. Unloading the substrate W creates a space inside the processing vessel 20 with the same volume as the substrate W. To prevent air from entering this space from outside the processing vessel 20, while the substrate W is being unloaded, the opening/closing valve 44 opens the purge gas flow path as shown in FIG. 7, in the same manner as immediately before step S101.
 制御部90は、開閉弁44がパージガス流路を開放することでパージガスを処理容器20に供給しながら、基板Wの搬出を行う。基板Wの搬出によって基板Wと同じ体積の空間が処理容器20の内部に生じても、その空間をパージガスで埋めることができ、処理容器20の外部から内部に空気が入り込むのを抑制できる。 The control unit 90 unloads the substrate W while supplying purge gas to the processing vessel 20 by opening the on-off valve 44 to the purge gas flow path. Even if a space of the same volume as the substrate W is generated inside the processing vessel 20 due to the unloading of the substrate W, the space can be filled with purge gas, and air can be prevented from entering the processing vessel 20 from the outside.
 ステップS105では、基板Wの搬出が終わっているので、図8に示すように、開閉弁44がパージガス流路を閉塞する。高温のパージガスが搬入出口21を介して流出することを抑制できる。制御部90は、開閉弁44だけではなく、開閉弁46、54、56も開状態から閉状態に切り替える。全ての開閉弁42、44、46、49、54、56は、それぞれの流路を閉塞し、流体の逆流を防止する。 In step S105, since the substrate W has been removed, as shown in FIG. 8, the on-off valve 44 closes the purge gas flow path. This prevents high-temperature purge gas from flowing out through the inlet/outlet 21. The control unit 90 switches not only the on-off valve 44 but also the on-off valves 46, 54, and 56 from the open state to the closed state. All on-off valves 42, 44, 46, 49, 54, and 56 close their respective flow paths to prevent backflow of fluid.
 ステップS106では、基板Wの搬出に続いて基板Wの搬入が行われるか否かを判断部94が判断する。具体的には、判断部94は、基板Wの処理枚数が処理計画の処理枚数に到達しているか否か、つまり、処理すべき基板Wが残っているか否かを判断する。以下、処理計画の処理枚数を、計画枚数と記載することがある。 In step S106, the judgment unit 94 judges whether or not a substrate W is to be loaded following the unloading of the substrate W. Specifically, the judgment unit 94 judges whether or not the number of substrates W to be processed has reached the number of substrates W to be processed in the processing plan, that is, whether or not there are any substrates W remaining to be processed. Hereinafter, the number of substrates W to be processed in the processing plan may be referred to as the planned number.
 処理すべき基板Wが残っている場合(ステップS106、NO)、制御部90はステップS102以降の処理を再度実施し、基板Wの搬入などを行う。一方、基板Wの処理枚数が計画枚数に到達し、処理すべき基板Wが残っていない場合(ステップS106、YES)、制御部90はステップS107を実施する。 If substrates W remain to be processed (step S106, NO), the control unit 90 performs the processes from step S102 onwards again, and performs operations such as loading substrates W. On the other hand, if the number of substrates W to be processed has reached the planned number and no substrates W remain to be processed (step S106, YES), the control unit 90 performs step S107.
 ステップS107では、ゲート開閉部26が蓋体24を移動させることで搬入出口21を閉塞すると共に、図7に示すように開閉弁44がパージガス流路を開放する。制御部90は、開閉弁44だけではなく、開閉弁46、54、56も閉状態から開状態に切り替える。これにより、基板処理装置1の状態がステップS101の直前の状態と同じになる。 In step S107, the gate opening/closing unit 26 moves the lid body 24 to close the loading/unloading port 21, and the opening/closing valve 44 opens the purge gas flow path as shown in FIG. 7. The control unit 90 switches not only the opening/closing valve 44 but also the opening/ closing valves 46, 54, and 56 from the closed state to the open state. This causes the state of the substrate processing apparatus 1 to become the same as the state immediately before step S101.
 パージガスは、管理部93が次の処理計画を取得するまで、処理容器20の内部を清浄な状態に保つ。パージガスは、処理容器20が基板Wを収容していない状態で、処理容器20に供給され、処理容器20から排出される。管理部93が次の処理計画を取得すると、ステップS101以降の処理が行われる。 The purge gas keeps the inside of the processing vessel 20 clean until the management unit 93 acquires the next processing plan. The purge gas is supplied to and exhausted from the processing vessel 20 when the processing vessel 20 does not contain a substrate W. When the management unit 93 acquires the next processing plan, processing from step S101 onwards is performed.
 上記の通り、本実施形態の制御部90は、n枚目の基板Wの搬出に続いて(n+1)枚目の基板Wの搬入が行われる場合(ステップS106、NO)、ステップS107及びS101をスキップしてステップS102以降の処理を行う。つまり、制御部90は、n枚目の基板Wの搬出に続いて(n+1)枚目の基板Wの搬入が行われる場合(ステップS106、NO)、搬入出口21を開状態から閉状態に切り替えることなく且つパージガス流路を閉状態から開状態に切り替えることなく、(n+1)枚目の基板Wの搬入を行う。 As described above, in the present embodiment, when the (n+1)th substrate W is loaded following the unloading of the nth substrate W (step S106, NO), the control unit 90 skips steps S107 and S101 and performs the processes from step S102 onwards. In other words, when the (n+1)th substrate W is loaded following the unloading of the nth substrate W (step S106, NO), the control unit 90 loads the (n+1)th substrate W without switching the loading/unloading port 21 from an open state to a closed state and without switching the purge gas flow path from a closed state to an open state.
 ステップS107及びS101をスキップすることで、搬入出口21の閉塞と開放を1回ずつスキップでき、ゲート開閉部26の開閉動作の回数を低減でき、ゲート開閉部26及びシール材25の寿命を向上できる。また、本実施形態によれば、ステップS107及びS101をスキップすることで、開閉弁44、46、54、56の閉状態から開状態への切替と、開状態から閉状態への切替とを1回ずつスキップでき、開閉弁44、46、54、56の開閉動作の回数を低減でき、開閉弁44、46、54、56の寿命を向上できる。更に、ステップS107及びS101をスキップすることで、スループットを向上できる。 By skipping steps S107 and S101, the closing and opening of the loading/unloading port 21 can be skipped once each, the number of opening and closing operations of the gate opening/closing unit 26 can be reduced, and the life of the gate opening/closing unit 26 and the seal material 25 can be improved. Furthermore, according to this embodiment, by skipping steps S107 and S101, the switching of the opening/ closing valves 44, 46, 54, 56 from a closed state to an open state and from an open state to a closed state can be skipped once each, the number of opening and closing operations of the opening/ closing valves 44, 46, 54, 56 can be reduced, and the life of the opening/ closing valves 44, 46, 54, 56 can be improved. Furthermore, by skipping steps S107 and S101, throughput can be improved.
 また、本実施形態の制御部90は、n枚目の基板Wの搬出に続いて(n+1)枚目の基板Wの搬入が行われない場合(ステップS106、YES)、ステップS107を行う。ステップS107では、搬入出口21の閉塞と、パージガス流路の開放とを行う。これにより、管理部93が次の処理計画を取得するまで、処理容器20の内部を清浄な状態に保つことができる。 In addition, in this embodiment, if the (n+1)th substrate W is not loaded following the unloading of the nth substrate W (step S106, YES), the control unit 90 performs step S107. In step S107, the loading/unloading port 21 is closed and the purge gas flow path is opened. This keeps the inside of the processing vessel 20 clean until the management unit 93 obtains the next processing plan.
 更に、本実施形態の制御部90は、パージガス流路を開放することで処理容器20にパージガスを供給しながらn枚目の基板Wの搬出を行う。n枚目の基板Wの搬出によって基板Wと同じ体積の空間が処理容器20の内部に生じても、その空間をパージガスで埋めることができ、処理容器20の外部から内部に空気が入り込むのを抑制できる。この場合、制御部90は、n枚目の基板Wの搬出後であって(n+1)枚目の基板Wの搬入前に、パージガス流路を閉塞する。搬入出口21を介して高温のパージガスが流出することを抑制できる。よって、搬入出口21の近傍で待機している(n+1)枚目の基板Wが高温のパージガスに曝されるのを抑制でき、(n+1)枚目の基板Wの乾燥を抑制できる。 Furthermore, the control unit 90 of this embodiment unloads the nth substrate W while supplying purge gas to the processing vessel 20 by opening the purge gas flow path. Even if a space of the same volume as the substrate W is generated inside the processing vessel 20 due to the unloading of the nth substrate W, the space can be filled with purge gas, and air can be prevented from entering the processing vessel 20 from the outside. In this case, the control unit 90 closes the purge gas flow path after the nth substrate W is unloaded and before the (n+1)th substrate W is loaded. This can prevent high-temperature purge gas from flowing out through the loading/unloading port 21. This can prevent the (n+1)th substrate W waiting near the loading/unloading port 21 from being exposed to high-temperature purge gas, and can prevent the (n+1)th substrate W from drying.
 更にまた、本実施形態の制御部90は、パージガス流路の閉塞(ステップS105)の後、次の基板Wの搬入(ステップS102)の前に、n枚目の基板Wの搬出に続いて(n+1)枚目の基板Wの搬入が行われるか否かを判断する。(n+1)枚目の基板Wの搬入の直前に判断を行うことで、処理計画の変更に対応しやすい。なお、判断のタイミングは、特に限定されない。 Furthermore, the control unit 90 of this embodiment determines whether or not the (n+1)th substrate W will be loaded following the unloading of the nth substrate W after blocking the purge gas flow path (step S105) and before loading the next substrate W (step S102). By making the determination immediately before loading the (n+1)th substrate W, it is easy to respond to changes in the processing plan. Note that the timing of the determination is not particularly limited.
 次に、図12を参照して、開閉弁44の構造の一例について説明する。開閉弁44は、第1ポート441と、第2ポート442と、弁体443と、を有する。第1ポート441と第2ポート442は、一方(例えば第1ポート441)が流体(例えばパージガス)の入口であり、他方(例えば第2ポート442)が流体の出口である。 Next, an example of the structure of the on-off valve 44 will be described with reference to FIG. 12. The on-off valve 44 has a first port 441, a second port 442, and a valve body 443. One of the first port 441 and the second port 442 (e.g., the first port 441) is an inlet for a fluid (e.g., a purge gas), and the other (e.g., the second port 442) is an outlet for the fluid.
 弁体443は、開位置(図12(A)参照)と、閉位置(図12(B)参照)の間で移動する。開位置は、第1ポート441と第2ポート442を連通する位置である。閉位置は、第1ポート441と第2ポート442を遮断する位置である。弁体443は、例えばダイヤフラムである。 The valve body 443 moves between an open position (see FIG. 12(A)) and a closed position (see FIG. 12(B)). The open position is a position where the first port 441 and the second port 442 are in communication. The closed position is a position where the first port 441 and the second port 442 are blocked from communication. The valve body 443 is, for example, a diaphragm.
 弁体443が閉位置に停止する時に、弁体443における第2ポート442の圧力を受ける面443bが、弁体443における第1ポート441の圧力を受ける面443aよりも大きい。例えば、第1ポート441と第2ポート442は同心円状に設けられ、第1ポート441は円状に設けられ、第2ポート442は第1ポート441を囲むように円環状に設けられる。 When the valve body 443 stops in the closed position, the surface 443b of the valve body 443 that receives the pressure of the second port 442 is larger than the surface 443a of the valve body 443 that receives the pressure of the first port 441. For example, the first port 441 and the second port 442 are arranged concentrically, the first port 441 is arranged in a circular shape, and the second port 442 is arranged in an annular shape surrounding the first port 441.
 第2ポート442は、第1ポート441よりも、処理容器20に近いポートである。第2ポート442は、処理容器20の圧力と同等の圧力(例えば臨界圧力以上の圧力)を弁体443に加える。一方、第1ポート441は、大気圧程度の圧力(例えば1MPa以下の圧力)を弁体443に加える。 The second port 442 is closer to the processing vessel 20 than the first port 441. The second port 442 applies a pressure equivalent to the pressure of the processing vessel 20 (e.g., a pressure equal to or greater than the critical pressure) to the valve body 443. On the other hand, the first port 441 applies a pressure of approximately atmospheric pressure (e.g., a pressure of 1 MPa or less) to the valve body 443.
 上記の通り、第2ポート442は、第1ポート441よりも、処理容器20に近いポートである。処理容器20の圧力は高圧になるので、弁体443が高い圧力を大面積で受けることで、弁体443を閉位置に停止する閉止力を低減できる。その結果、弁体443に傷が付くのを抑制でき、弁体443の寿命を伸ばすことができる。なお、本開示の内容は、開閉弁44以外の開閉弁42、46、49、54、56にも適用可能である。 As described above, the second port 442 is closer to the processing vessel 20 than the first port 441. Since the pressure in the processing vessel 20 is high, the valve body 443 receives the high pressure over a large area, thereby reducing the closing force that stops the valve body 443 in the closed position. As a result, damage to the valve body 443 can be suppressed, and the life of the valve body 443 can be extended. The contents of this disclosure can also be applied to the on-off valves 42, 46, 49, 54, and 56 other than the on-off valve 44.
 開閉弁44は、弁体443を開位置から閉位置に向けて付勢する弾性体444を有する。弾性体444は、その弾性復元力で、弁体443を開位置から閉位置に向けて付勢する。弾性体444は、例えばバネである。基板処理装置1は、弾性体444の付勢力Fに逆らって弁体443を押す駆動部60を有する。 The on-off valve 44 has an elastic body 444 that urges the valve body 443 from the open position toward the closed position. The elastic body 444 urges the valve body 443 from the open position toward the closed position with its elastic restoring force. The elastic body 444 is, for example, a spring. The substrate processing apparatus 1 has a drive unit 60 that pushes the valve body 443 against the urging force F of the elastic body 444.
 駆動部60は、例えば空気圧で弁体443を閉位置から開位置に向けて押す。駆動部60は、1つ以上のソレノイドバルブなどを含み、開閉弁44に供給する空気圧を、大気圧よりも高い第1設定圧P1と、第1設定圧P1よりも高い第2設定圧P2(P2>P1)とに切り替え可能である。駆動部60は、メンテナンス性を向上すべく、更に、開閉弁44に供給する空気圧を大気圧に切り替え可能であってもよい。 The drive unit 60 pushes the valve body 443 from the closed position to the open position, for example, by air pressure. The drive unit 60 includes one or more solenoid valves, and is capable of switching the air pressure supplied to the on-off valve 44 between a first set pressure P1 that is higher than atmospheric pressure and a second set pressure P2 (P2>P1) that is higher than the first set pressure P1. To improve maintainability, the drive unit 60 may also be capable of switching the air pressure supplied to the on-off valve 44 to atmospheric pressure.
 駆動部60が開閉弁44に第2設定圧P2の空気圧を供給すると、その空気圧によって弁体443が閉位置から開位置に移動し、開位置で停止する。一方、駆動部60が開閉弁44に第1設定圧P1の空気圧を供給すると、弁体443は開位置から閉位置に移動し、閉位置で停止する。 When the drive unit 60 supplies air pressure of the second set pressure P2 to the on-off valve 44, the valve body 443 moves from the closed position to the open position due to the air pressure and stops at the open position. On the other hand, when the drive unit 60 supplies air pressure of the first set pressure P1 to the on-off valve 44, the valve body 443 moves from the open position to the closed position and stops at the closed position.
 制御部90は、駆動部60を制御することで、弁体443を開位置から閉位置に移動させる間に、弾性体444の付勢力Fに逆らって弁体443を第1設定圧P1で押す。これにより、弁体443が閉位置に達した時の衝撃を緩和でき、あるいは、弁体443を閉位置に停止する閉止力を低減できる。その結果、弁体443に傷が付くのを抑制でき、弁体443の寿命を伸ばすことができる。なお、本開示の内容は、開閉弁44以外の開閉弁42、46、49、54、56にも適用可能である。 The control unit 90 controls the drive unit 60 to push the valve body 443 with a first set pressure P1 against the biasing force F of the elastic body 444 while moving the valve body 443 from the open position to the closed position. This can reduce the impact when the valve body 443 reaches the closed position, or can reduce the closing force that stops the valve body 443 in the closed position. As a result, damage to the valve body 443 can be suppressed, and the life of the valve body 443 can be extended. The contents of this disclosure can also be applied to the on-off valves 42, 46, 49, 54, and 56 other than the on-off valve 44.
 以上、本開示に係る基板処理装置、及び基板処理方法の実施形態等について説明したが、本開示は上記実施形態等に限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、及び組み合わせが可能である。それらについても当然に本開示の技術的範囲に属する。 The above describes embodiments of the substrate processing apparatus and substrate processing method according to the present disclosure, but the present disclosure is not limited to the above embodiments. Various changes, modifications, substitutions, additions, deletions, and combinations are possible within the scope of the claims. Naturally, these also fall within the technical scope of the present disclosure.
 本出願は、2022年10月19日に日本国特許庁に出願した特願2022-167483号に基づく優先権を主張するものであり、特願2022-167483号の全内容を本出願に援用する。 This application claims priority based on Patent Application No. 2022-167483, filed with the Japan Patent Office on October 19, 2022, and the entire contents of Patent Application No. 2022-167483 are incorporated herein by reference.
1  基板処理装置
20 処理容器
21 搬入出口
22 トレイ(基板搬送部)
24 蓋体
26 ゲート開閉部
44 開閉弁(第1開閉弁)
90 制御部
W  基板
1 Substrate processing apparatus 20 Processing container 21 Loading/unloading port 22 Tray (substrate transport section)
24 Lid 26 Gate opening/closing section 44 Opening/closing valve (first opening/closing valve)
90 Control part W substrate

Claims (12)

  1.  基板の搬入出口が設けられ、前記基板を収容する処理容器と、
     前記搬入出口を開閉する蓋体と、
     前記蓋体を移動させるゲート開閉部と、
     前記基板を保持しながら前記搬入出口を通過させる基板搬送部と、
     前記処理容器に対してパージガスを供給する第1流路を開閉する第1開閉弁と、
     制御部と、
    を備え、
     前記制御部は、前記基板の搬出に続いて前記基板の搬入が行われるか否かを判断し、前記基板の搬出に続いて前記基板の搬入が行われる場合、前記基板の搬出後に、前記搬入出口を開状態から閉状態に切り替えることなく且つ前記第1流路を閉状態から開状態に切り替えることなく、前記基板の搬入を行う、基板処理装置。
    a processing vessel having a substrate loading/unloading port and configured to accommodate the substrate;
    A cover for opening and closing the loading/unloading port;
    A gate opening/closing unit that moves the lid body;
    a substrate transport unit that passes the substrate through the loading/unloading opening while holding the substrate;
    a first on-off valve configured to open and close a first flow passage through which a purge gas is supplied to the processing vessel;
    A control unit;
    Equipped with
    The control unit determines whether the substrate is to be loaded following the substrate being unloaded, and if the substrate is to be loaded following the substrate being unloaded, the control unit loads the substrate after the substrate is unloaded without switching the loading/unloading port from an open state to a closed state and without switching the first flow path from a closed state to an open state.
  2.  前記制御部は、前記基板の搬出に続いて前記基板の搬入が行われない場合、前記基板の搬出後に、前記搬入出口の閉塞と前記第1流路の開放とを行う、請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the control unit closes the loading/unloading port and opens the first flow path after the substrate is unloaded if the substrate is not loaded following the unloading of the substrate.
  3.  前記制御部は、前記第1流路を開放することで前記処理容器に前記パージガスを供給しながら前記基板の搬出を行い、前記基板の搬出後であって前記基板の搬入前に前記第1流路の閉塞を行う、請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the control unit unloads the substrate while supplying the purge gas to the processing vessel by opening the first flow path, and closes the first flow path after unloading the substrate and before loading the substrate.
  4.  前記制御部は、前記第1流路の閉塞後、前記基板の搬入前に、前記基板の搬出に続いて前記基板の搬入が行われるか否かを判断する、請求項3に記載の基板処理装置。 The substrate processing apparatus of claim 3, wherein the control unit determines whether or not the substrate is to be loaded following the unloading of the substrate after the first flow path is blocked and before the substrate is loaded.
  5.  前記処理容器に対して超臨界流体を供給する第2流路を開閉する第2開閉弁を備え、
     前記超臨界流体は、前記処理容器の内部において、前記基板の上に液盛りされている乾燥液と置換される、請求項1~4のいずれか1項に記載の基板処理装置。
    a second on-off valve configured to open and close a second flow path through which a supercritical fluid is supplied to the processing vessel;
    5. The substrate processing apparatus according to claim 1, wherein the supercritical fluid replaces a puddle of drying liquid on the substrate inside the processing vessel.
  6.  前記第1開閉弁は、第1ポートと第2ポートを連通する開位置と前記第1ポートと前記第2ポートを遮断する閉位置との間で移動する弁体を有し、
     前記弁体が前記閉位置で停止する時に、前記弁体における前記第2ポートの圧力を受ける面が前記弁体における前記第1ポートの圧力を受ける面よりも大きく、
     前記第2ポートは、前記第1ポートよりも、前記処理容器に近いポートである、請求項1~4のいずれか1項に記載の基板処理装置。
    the first on-off valve has a valve element that moves between an open position at which a first port and a second port communicate with each other and a closed position at which the first port and the second port are blocked from communicating with each other,
    When the valve body is stopped at the closed position, a surface area of the valve body that receives the pressure of the second port is larger than a surface area of the valve body that receives the pressure of the first port,
    5. The substrate processing apparatus according to claim 1, wherein the second port is closer to the processing vessel than the first port.
  7.  前記第1開閉弁は、第1ポートと第2ポートを連通する開位置と前記第1ポートと前記第2ポートを遮断する閉位置との間で移動する弁体と、前記弁体を前記開位置から前記閉位置に向けて付勢する弾性体を有し、
     前記基板処理装置は、前記弾性体の付勢力に逆らって前記弁体を押す駆動部を有し、
     前記制御部は、前記駆動部を制御することで、前記弁体を前記開位置から前記閉位置に移動させる間に、前記弾性体の復元力に逆らって前記弁体を押す、請求項1~4のいずれか1項に記載の基板処理装置。
    the first on-off valve has a valve body that moves between an open position at which a first port and a second port communicate with each other and a closed position at which the first port and the second port are blocked from each other, and an elastic body that urges the valve body from the open position toward the closed position,
    the substrate processing apparatus has a drive unit that pushes the valve body against the biasing force of the elastic body,
    The substrate processing apparatus of any one of claims 1 to 4, wherein the control unit controls the drive unit to push the valve body against the restoring force of the elastic body while moving the valve body from the open position to the closed position.
  8.  処理容器の搬入出口を開放することと、前記処理容器の内部に基板を搬入することと、前記搬入出口を閉塞することと、前記処理容器の内部に流体を供給することと、前記搬入出口を開放することと、前記処理容器の内部から前記基板を搬出することと、前記処理容器に対してパージガスを供給する第1流路を開閉することと、を有する、基板処理方法であって、
     前記基板の搬出に続いて前記基板の搬入が行われるか否かを判断し、前記基板の搬出に続いて前記基板の搬入が行われる場合、前記基板の搬出後に、前記搬入出口を開状態から閉状態に切り替えることなく且つ前記第1流路を閉状態から開状態に切り替えることなく、前記基板の搬入を行うことを有する、基板処理方法。
    1. A substrate processing method comprising: opening an inlet/outlet of a processing vessel; loading a substrate into the processing vessel; closing the inlet/outlet; supplying a fluid into the processing vessel; opening the inlet/outlet; unloading the substrate from the processing vessel; and opening/closing a first flow path that supplies a purge gas to the processing vessel,
    a substrate processing method including: determining whether the substrate will be loaded following the substrate unloading; and, if the substrate will be loaded following the substrate unloading, loading the substrate after the substrate is unloaded without switching the loading/unloading port from an open state to a closed state and without switching the first flow path from a closed state to an open state.
  9.  前記基板の搬出に続いて前記基板の搬入が行われない場合、前記基板の搬出後に、前記搬入出口の閉塞と前記第1流路の開放とを行うことを有する、請求項8に記載の基板処理方法。 The substrate processing method according to claim 8, further comprising closing the loading/unloading port and opening the first flow path after unloading the substrate if the loading of the substrate is not performed following unloading of the substrate.
  10.  前記第1流路を開放することで前記処理容器に前記パージガスを供給しながら前記基板の搬出を行い、前記基板の搬出後であって前記基板の搬入前に前記第1流路の閉塞を行うことを有する、請求項8に記載の基板処理方法。 The substrate processing method according to claim 8, further comprising unloading the substrate while supplying the purge gas to the processing vessel by opening the first flow path, and closing the first flow path after unloading the substrate and before loading the substrate.
  11.  前記第1流路の閉塞後、前記基板の搬入前に、前記基板の搬出に続いて前記基板の搬入が行われるか否かを判断することを有する、請求項10に記載の基板処理方法。 The substrate processing method according to claim 10, further comprising determining, after blocking of the first flow path and before loading of the substrate, whether or not the loading of the substrate will be performed following the unloading of the substrate.
  12.  前記処理容器の内部に超臨界流体を供給することで、前記基板の上に液盛りされている乾燥液を前記超臨界流体に置換することを有する、請求項8~11のいずれか1項に記載の基板処理方法。 The substrate processing method according to any one of claims 8 to 11, further comprising supplying a supercritical fluid into the processing vessel to replace the drying liquid piled on the substrate with the supercritical fluid.
PCT/JP2023/036392 2022-10-19 2023-10-05 Substrate processing apparatus and substrate processing method WO2024084987A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022167483 2022-10-19
JP2022-167483 2022-10-19

Publications (1)

Publication Number Publication Date
WO2024084987A1 true WO2024084987A1 (en) 2024-04-25

Family

ID=90737395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036392 WO2024084987A1 (en) 2022-10-19 2023-10-05 Substrate processing apparatus and substrate processing method

Country Status (1)

Country Link
WO (1) WO2024084987A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336675A (en) * 2001-05-17 2002-11-26 Dainippon Screen Mfg Co Ltd Apparatus and method for treating under high pressure
JP2016139665A (en) * 2015-01-26 2016-08-04 東京エレクトロン株式会社 Process liquid supply device, process liquid supply method and memory medium
JP2019195789A (en) * 2018-05-11 2019-11-14 株式会社Screenホールディングス Process liquid discharge method and process liquid discharge device
JP2020198389A (en) * 2019-06-04 2020-12-10 東京エレクトロン株式会社 Substrate processing apparatus and control method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336675A (en) * 2001-05-17 2002-11-26 Dainippon Screen Mfg Co Ltd Apparatus and method for treating under high pressure
JP2016139665A (en) * 2015-01-26 2016-08-04 東京エレクトロン株式会社 Process liquid supply device, process liquid supply method and memory medium
JP2019195789A (en) * 2018-05-11 2019-11-14 株式会社Screenホールディングス Process liquid discharge method and process liquid discharge device
JP2020198389A (en) * 2019-06-04 2020-12-10 東京エレクトロン株式会社 Substrate processing apparatus and control method thereof

Similar Documents

Publication Publication Date Title
CN108074840B (en) Substrate processing apparatus, substrate processing method, and storage medium
CN101359590B (en) Substrate processing apparatus, method for processing substrate, and storage medium
JP4985031B2 (en) Vacuum processing apparatus, operating method of vacuum processing apparatus, and storage medium
KR100799415B1 (en) Purge system for a product container and table for use in the purge system
KR20230159354A (en) Substrate processing apparatus, substrate processing method, and storage medium
WO2005098918A1 (en) Substrate processing equipment, substrate processing method, recording medium and software
JP7480249B2 (en) Substrate Processing Equipment
JP7362300B2 (en) Substrate processing equipment and its control method
JP2018082043A (en) Substrate processing device
KR102656997B1 (en) Method of removing particles of substrate processing apparatus, and substrate processing apparatus
KR102254186B1 (en) Substrate drying apparatus
JP5383979B2 (en) Processing system
KR102482206B1 (en) Substrate processing apparatus and substrate processing method
WO2024084987A1 (en) Substrate processing apparatus and substrate processing method
CN115176335A (en) Substrate processing apparatus and substrate processing method
JP6922048B2 (en) Substrate processing equipment, substrate processing method and recording medium
US8136538B2 (en) Processing system, processing method, and storage medium
KR102254187B1 (en) Substrate drying apparatus
JP7104190B2 (en) Board processing equipment
KR20200121605A (en) Substrate drying chamber
WO2023013435A1 (en) Substrate processing method and substrate processing device
KR102678991B1 (en) Substrate processing apparatus, substrate processing method, and storage medium
JP7143251B2 (en) Damper control system and damper control method
KR102277545B1 (en) Apparatus and Method for treating a substrate
JPH11186355A (en) Load locking mechanism, substrata processing device and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879634

Country of ref document: EP

Kind code of ref document: A1