WO2024084965A1 - Diffraction grating formation method - Google Patents

Diffraction grating formation method Download PDF

Info

Publication number
WO2024084965A1
WO2024084965A1 PCT/JP2023/036136 JP2023036136W WO2024084965A1 WO 2024084965 A1 WO2024084965 A1 WO 2024084965A1 JP 2023036136 W JP2023036136 W JP 2023036136W WO 2024084965 A1 WO2024084965 A1 WO 2024084965A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffraction grating
substrate
forming
refractive index
protrusions
Prior art date
Application number
PCT/JP2023/036136
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 樋口
文昭 田中
大樹 前原
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2024084965A1 publication Critical patent/WO2024084965A1/en

Links

Images

Definitions

  • An exemplary embodiment of the present disclosure relates to a method for forming a diffraction grating.
  • Patent Document 1 A technique for forming a diffraction grating using nanoimprinting is described in Patent Document 1.
  • This disclosure provides a technique for forming a diffraction grating using a high refractive index material.
  • a method for forming a diffraction grating including protrusions on a transparent substrate includes the steps of: (a) forming a first structure on the substrate using a first material, the first structure including recesses corresponding to the protrusions of the diffraction grating; (b) providing a second material to the recesses of the first structure on the substrate to form a second structure including the diffraction grating; and (c) removing the first structure.
  • a technique can be provided for forming a diffraction grating using a high refractive index material.
  • FIG. 1 is a diagram illustrating a configuration example of a glasses-type display device. 1 is a diagram for explaining a configuration example of an optical device included in a display device. 4 is a flowchart illustrating a method of forming a diffraction grating according to a first exemplary embodiment. 1 is a flowchart illustrating an example of a method for forming a first structure using a nanoimprint technique. 5A to 5C are schematic diagrams for explaining examples of steps of a method for forming a first structure using nanoimprint technology. 1 is a flow chart illustrating an example of a method for forming a first structure using photolithography techniques.
  • FIGS. 5A to 5C are schematic diagrams for explaining examples of steps of a method for forming a first structure using a photolithography technique.
  • 10A to 10C are schematic diagrams for explaining examples of steps ST2 and ST3 in the method of forming a diffraction grating.
  • 6 is a flowchart illustrating another example of the method for forming the diffraction grating in the first exemplary embodiment.
  • 13A to 13C are schematic diagrams for explaining a step of forming a third structure.
  • 5 is a flow chart illustrating a method of forming a diffraction grating according to a second exemplary embodiment.
  • 5A to 5C are schematic diagrams for explaining each step of a method for forming a diffraction grating according to a second exemplary embodiment.
  • FIG. 1 is a diagram for explaining a configuration example of a plasma processing system.
  • FIG. 1 is a diagram for explaining a configuration example of a capacitively coupled plasma processing apparatus.
  • a method for forming a diffraction grating including protrusions on a transparent substrate including the steps of: (a) forming a first structure on the substrate using a first material, the first structure including recesses corresponding to the protrusions of the diffraction grating; (b) providing a second material in the recesses of the first structure on the substrate to form a second structure including the diffraction grating; and (c) removing the first structure.
  • the second material has a higher refractive index than the first material.
  • the second material has a refractive index of 2 or greater.
  • the first material includes a polymeric material.
  • the first structure is formed using nanoimprint technology or photolithography technology.
  • step (b) includes depositing a second material on the first structure and removing an upper portion of the second material to expose the first structure.
  • (d) further includes a step of providing a third material having a lower refractive index than the second material in the recesses formed by the protrusions of the diffraction grating of the second structure on the substrate by removing the first structure in step (c).
  • step (d) includes planarizing the top surface of the second structure.
  • the diffraction grating includes protrusions having an inclination angle greater than 0° and less than 90° relative to the surface of the substrate.
  • a method for forming a diffraction grating including protrusions on a transparent substrate including: (a) forming a first structure including protrusions of the diffraction grating on the substrate using a first material; (b) providing a second material in recesses formed by the protrusions of the first structure on the substrate to form a second structure including protrusions; (c) removing the first structure; and (d) providing a third material in recesses formed by the protrusions of the second structure on the substrate as a result of removing the first structure in step (c) to form a third structure including the diffraction grating.
  • the third material has a refractive index higher than the refractive indexes of the first and second materials.
  • the third material has a refractive index of 2 or greater.
  • the first material includes a polymeric material.
  • the first structure is formed using nanoimprint technology or photolithography technology.
  • step (b) includes depositing a second material on the first structure and removing an upper portion of the second material to expose the first structure.
  • step (d) includes planarizing the top surface of the third structure.
  • the diffraction grating includes protrusions having an inclination angle greater than 0° and less than 90° relative to the surface of the substrate.
  • ⁇ Example of a display device> 1 is a diagram for explaining a configuration example of a display device 500.
  • the display device 500 may be a glasses type.
  • the display device 500 may be an augmented reality (AR) glass or a mixed reality (MR) glass.
  • AR augmented reality
  • MR mixed reality
  • the display device 500 has a function of forming image light and outputting the image light to the user's eyes.
  • FIG. 2 is a diagram for explaining an example of the configuration of an optical device included in the display device.
  • the display device 500 includes an image forming device 600 that forms image light from light from a light source, and an optical waveguide device 601 that guides the image light to the user's eyes.
  • the image forming device 600 includes a light emitting element such as an LED, a movable lens that polarizes light, and the like.
  • the image forming device 600 can be disposed on the rim 501, temple 502, endpiece 503, lens 504, or the peripheral parts thereof, of the display device (glasses) 500 shown in FIG. 1.
  • the optical waveguide device 601 may be included in the lens 504 of the display device 500. As shown in FIG. 2, in one embodiment, the optical waveguide device 601 has a substrate 700 and a diffraction grating 701 formed on the substrate 700.
  • the substrate 700 has a transmittance (transparency) that allows light to pass through.
  • An example of the substrate 700 may be a glass substrate.
  • the substrate 700 may be a substrate such as sapphire or SiC.
  • the substrate 700 may be a bare substrate, or a substrate having a structure formed on the upper surface of the bare substrate.
  • the substrate 700 can guide image light inside the substrate 700 along the surface direction of the substrate 700, and can input external light from a first surface of the substrate 700 and output it from a second surface on the opposite side.
  • a user of the display device 500 can simultaneously view an image formed by the image forming device 600 and an external image through the lens 504.
  • the diffraction grating 701 is provided at least in two places on the surface of the substrate 700.
  • the diffraction grating 701 includes a first diffraction grating section 710 that inputs the image light output from the image forming device 600, and a second diffraction grating section 711 that outputs the image light guided through the substrate 700 to the side of the user's eyes.
  • the first diffraction grating section 710 and the second diffraction grating section 711 are so-called oblique diffraction gratings.
  • the first diffraction grating section 710 and the second diffraction grating section 711 have a shape (comb shape) having multiple convex portions 701a on the substrate 700, and the convex portions 701a are configured to protrude obliquely with respect to the substrate 700.
  • the convex portions 701a of the first diffraction grating section 710 and the second diffraction grating section 711 have an inclination angle ⁇ that is greater than 0° and less than 90° with respect to the surface of the substrate 700.
  • the convex portions 701a of the first diffraction grating portion 710 and the second diffraction grating portion 711 may be not oblique diffraction gratings but may have an angle of 90° with respect to the surface of the substrate 700.
  • the first diffraction grating portion 710 and the second diffraction grating portion 711 are provided on one surface of the substrate 700.
  • the first diffraction grating portion 710 and the second diffraction grating portion 711 are provided on the surface of the substrate 700 on the side where the user's eyes are located.
  • the first diffraction grating portion 710 and the second diffraction grating portion 711 may be provided on both surfaces of the substrate 700.
  • a method for forming the diffraction grating 701 including the convex portions 701a on the substrate 700 will be described.
  • First Exemplary Embodiment 3 is a flow chart illustrating a method of forming a diffraction grating according to a first exemplary embodiment.
  • the method of forming a diffraction grating includes forming a first structure from a first material (ST1), forming a second structure from a second material (ST2), and removing the first structure (ST3).
  • a first structure having a shape that is an inversion of the shape of the target diffraction grating 701 is formed. That is, in one embodiment, in step ST1, a first structure including recesses that correspond to the protrusions 701a of the diffraction grating 701 is formed.
  • the first structure is made of a first material. In one embodiment, the first structure is formed using nanoimprint technology or photolithography technology.
  • Fig. 4 is a flow chart showing an example of a method for forming a first structure using nanoimprint technology.
  • Fig. 5 is a schematic diagram for explaining an example of each step of the method for forming a first structure using nanoimprint technology.
  • step ST1 includes a step of preparing a substrate (ST1-1a), a step of forming a film (ST1-2a), a step of molding a first structure (ST1-3a), and a step of removing a residual film (ST1-4a).
  • a substrate 700 is prepared as shown in FIG. 5(a).
  • the substrate 700 is a transparent substrate.
  • the substrate 700 may be a bare substrate or a bare substrate on which a structure is formed.
  • a film 800 including a first material is formed on a substrate 700.
  • the first material includes a polymer material such as a resin.
  • the first material may have a refractive index of less than 2, for example, 1.5 or less.
  • the film 800 may be formed by a spin coating method or an inkjet method.
  • the film 800 may be a resist film.
  • step ST1-3a as shown in FIG. 5(c), the film 800 is pressed against a mold 801 having an uneven shape. With the mold 801 pressed against it, the film 800 is hardened by irradiation with ultraviolet light, heat treatment, or the like. As a result, the film 800 becomes uneven, and the first structure 810 is formed. At this time, excess residual film 802 remains on the substrate 700.
  • step ST1-4a as shown in FIG. 5(d), the residual film 802 remaining on the substrate 700 is removed.
  • the residual film 802 may be removed by etching.
  • a first structure 810 made of a first material is formed on the substrate 700.
  • the first structure 810 has a shape that is an inversion of the shape of the target diffraction grating 701.
  • the first structure 810 has recesses 810a that correspond to the protrusions 701a of the diffraction grating 701.
  • Fig. 6 is a flow chart showing an example of a method for forming a first structure using a photolithography technique.
  • Fig. 7 is a schematic diagram for explaining an example of each step of the method for forming a first structure using a photolithography technique.
  • step ST1 includes a step of preparing a substrate (ST1-1b), a step of forming a film (ST1-2b), a step of forming a mask film (ST1-3b), a step of etching the film (ST1-4b), and a step of removing the mask film (ST1-5b).
  • a substrate 700 is prepared as shown in FIG. 7(a).
  • the substrate 700 is a transparent substrate.
  • the substrate 700 may be a bare substrate or a bare substrate on which a structure is formed.
  • a film 800 including a first material is formed on a substrate 700.
  • the first material includes a polymer material such as a resin.
  • the first material may have a refractive index of less than 2, for example, 1.5 or less.
  • the film 800 may be formed by a spin coating method or an inkjet method.
  • the film 800 may be a resist film.
  • a mask film 820 having a predetermined pattern is formed on the film 800.
  • the mask film 820 may be formed by a photolithography method.
  • step ST1-4b as shown in FIG. 7(d), the film 800 is etched using the mask film 820 as a mask. This removes the exposed portions of the film 800 where the mask film 820 is not present, and a groove is formed in the film 800, forming the first structure 810.
  • the etching may be plasma etching or ion beam etching.
  • step ST1-5b as shown in FIG. 7(e), the mask film 820 is removed.
  • the mask film 820 may be removed by etching.
  • a first structure 810 having a recess 810a is formed on the substrate 700.
  • a second material is provided in the recess 810a (space) of the first structure 810 on the substrate 700, and a second structure having a protrusion 701a of the target diffraction grating 701 is formed.
  • the second material has a refractive index higher than that of the first material constituting the first structure 810.
  • the second material has a high refractive index of 2 or more.
  • the second material may be a material other than a polymer.
  • the second material may be an inorganic material.
  • the second material may be TiOx, ZrOx, HfOx, or SiN, or may be a mixture of two or more selected from them.
  • the second material may be a further mixture of SiO2 and AlO2.
  • FIG. 8 is a schematic diagram for explaining an example of steps ST2 and ST3 of the method for forming a diffraction grating.
  • a film of the second material 830 is formed on the first structure 810.
  • the second material 830 penetrates into the recess 810a of the first structure 810 and is also deposited on the upper surface of the first structure 810.
  • the film of the second material 830 may be formed by a sputtering method, a CVD method, an ALD (Atomic Layer Deposition) method, an evaporation method, or a spin coating method.
  • step ST2 the upper portion of the deposited second material 830 is removed to expose the upper surface of the first structure 810.
  • the upper surface of the second material 830 may be polished and planarized to expose the upper surface of the first structure 810.
  • the second material 830 becomes the second structure 830 having the convex portion 701a of the target diffraction grating 701. In this way, the second structure 830 having the convex portion 701a is formed in the concave portion 810a of the first structure 810 on the substrate 700.
  • step ST3 the first structure 810 is removed as shown in FIG. 8(c).
  • the first structure 810 may be removed by etching, ashing, or liquid cleaning.
  • the second structure 830 remains on the substrate 700, and a diffraction grating 701 having a target shape is formed.
  • a method for forming a diffraction grating 701 including a convex portion 701a on a substrate 700 includes the steps of: (a) forming a first structure 810 including a concave portion 810a corresponding to the convex portion 701a of a target diffraction grating on the substrate 700 using a first material; (b) providing a second material having a higher refractive index than the first material to the concave portion 810a of the first structure 810 on the substrate 700 to form a second structure 830 including the convex portion 701a of the diffraction grating 701; and (c) removing the first structure 810.
  • the first structure 810 is formed using a first material that is easy to mold, and then the second structure 830 is formed using a second material having a high refractive index material, and the first structure 810 is removed to form the diffraction grating 701.
  • a diffraction grating can be formed using a high refractive index material.
  • the degree of freedom of the shape of the diffraction grating is improved.
  • the first material contains a polymer material, so that the first structure 810 can be easily formed using a nanoimprinting method or the like.
  • the second material has a refractive index of 2 or more, so that a diffraction grating with a high refractive index can be realized.
  • the diffraction grating 701 includes a convex portion 701a having an inclination angle ⁇ of more than 0° and less than 90° with respect to the surface of the substrate 700.
  • the diffraction grating 701 has a comb-tooth shape having a plurality of convex portions 701a that protrude obliquely with respect to the substrate 700.
  • the diffraction grating 701 may have an angle of 90° with respect to the surface of the substrate 700. According to the method for forming a diffraction grating in this exemplary embodiment, the convex portions 701 of the diffraction grating 701 can be easily formed even if they are oblique.
  • a diffraction grating when a diffraction grating is formed by performing dry etching or the like on a film on a substrate, the direction of the etching is determined by the pull-in electric field perpendicular to the substrate, so it is difficult to form a structure having convex portions oblique to the substrate.
  • a diffraction grating is formed by performing wet etching on a film on a substrate, there is no anisotropy of the etching, and it is not possible to form a structure having oblique convex portions.
  • the method for forming a diffraction grating may further include a step (ST4) of forming a third structure with a third material.
  • FIG. 10 is a schematic diagram for explaining an example of step ST4.
  • a third material having a lower refractive index than the second material is provided in a recess (space) formed by the protrusion 701a of the second structure 830 on the substrate 700, to form a third structure.
  • the third material may be a material having a lower refractive index than the second material.
  • the third material may have a refractive index of less than 2.
  • the third material may be an inorganic material.
  • the third material may be SiO2, Al2O3, or a mixture thereof.
  • a film of a third material 840 is formed on the second structure 830.
  • the third material 840 penetrates into the recesses 830a formed by the protrusions 701a of the second structure 830, and is also deposited on the upper surface of the second structure 830.
  • the film of the third material 840 may be formed by a sputtering method, a CVD method, an ALD (Atomic Layer Deposition) method, an evaporation method, or a spin coating method.
  • step ST4 the upper portion of the deposited third material 840 is removed to expose the upper surface of the second structure 830.
  • the upper surfaces of the third material 840 and the second structure 830 may be polished and planarized to expose the upper surface of the second structure 830.
  • the third material 840 becomes the third structure. In this way, the third structure 840 is formed in the recess 830a formed by the protrusion 701a of the second structure 830 on the substrate 700.
  • Second Exemplary Embodiment 11 is a flowchart showing a method for forming a diffraction grating according to a second exemplary embodiment.
  • a diffraction grating 701 similar to that of the first exemplary embodiment is formed.
  • FIG. 12 is a schematic diagram for explaining each step of the method for forming a diffraction grating according to the second exemplary embodiment.
  • the method for forming a diffraction grating includes a step (ST1a) of forming a first structure with a first material, a step (ST2a) of forming a second structure with a second material, a step (ST3a) of removing the first structure, and a step (ST4a) of forming a third structure with a third material.
  • a first structure 810 is formed that includes a convex portion 810b having a shape similar to that of the convex portion 701a of the target diffraction grating 701.
  • the first structure 810 is formed using nanoimprint technology or photolithography technology. The method of forming the first structure 810 using nanoimprint technology or photolithography technology may be the same as that of the first exemplary embodiment described above.
  • a second material is provided in a recess (space) formed by a protrusion 810b of a first structure 810 on a substrate 700, and a second structure having a protrusion 830b is formed.
  • the second material has a low refractive index of less than 2.
  • the second material may be a material other than a polymer.
  • the second material may be an inorganic material.
  • the second material may be SiO2, Al2O3, or a mixture thereof.
  • a film of the second material 830 is formed on the first structure 810.
  • the second material 830 penetrates into the recesses formed by the protrusions 810b of the first structure 810, and is also deposited on the upper surface of the first structure 810.
  • the film of the second material 830 may be formed by a sputtering method, a CVD method, an ALD (Atomic Layer Deposition) method, an evaporation method, or a spin coating method.
  • step ST2 the upper portion of the deposited second material 830 is removed to expose the upper surface of the first structure 810.
  • the upper surface of the second material 830 may be polished and planarized to expose the upper surface of the first structure 810.
  • the second material 830 becomes the second structure 830 having the convex portion 830b. In this way, the second structure 830 including the convex portion 830b is formed in the concave portion formed by the convex portion 810b of the first structure 810 on the substrate 700.
  • step ST3 the first structure 810 is removed as shown in FIG. 12(d).
  • the first structure 810 may be removed by etching, ashing, or liquid cleaning.
  • the second structure 830 having the protrusion 830b remains on the substrate 700.
  • a third material is provided in a recess (space) formed by the protrusion 830b of the second structure 830 on the substrate 700 to form a third structure including the protrusion 701a of the target diffraction grating 701.
  • the third material has a refractive index higher than the refractive index of the first material constituting the first structure 810 and the second material constituting the second structure 830.
  • the third material has a high refractive index of 2 or more.
  • the third material may be a material other than a polymer.
  • the third material may be an inorganic material.
  • the third material may be TiOx, ZrOx, HfOx, or SiN, or may be a mixture of two or more selected from them.
  • the third material may be a further mixture of SiO2 and AlO2.
  • a film of a third material 840 is formed on the second structure 830.
  • the third material 840 penetrates into the recesses formed by the protrusions 830b of the second structure 830, and is also deposited on the upper surface of the second structure 830.
  • the film of the third material 840 may be formed by a sputtering method, a CVD method, an ALD (Atomic Layer Deposition) method, an evaporation method, or a spin coating method.
  • the upper portion of the deposited third material 840 is removed to expose the upper surface of the second structure 830.
  • the upper surfaces of the third material 840 and the second structure 830 may be polished and planarized to expose the upper surface of the second structure 830.
  • the third material 840 becomes a third structure having the convex portion 701a of the target diffraction grating 701. In this way, a diffraction grating 701 having a third material with a high refractive index is formed on the substrate 700.
  • a method for forming a diffraction grating 701 includes the steps of (a) forming a first structure 810 including a convex portion 810b (701a) of a target diffraction grating 701 on a substrate 700 using a first material; (b) providing a second material in a recess formed by the convex portion 810b of the first structure 810 on the substrate 700 to form a second structure 830 including a convex portion 830b; (c) removing the first structure 810; and (d) providing a third material having a refractive index higher than the first material and the second material in a recess formed by the convex portion 830b of the second structure 830 on the substrate 700 to form a third structure 840 including a convex portion 701a of the diffraction grating 701.
  • first structure 810 to be formed from a first material that is easy to mold, then the second structure 830 to be formed from a second material, the third structure 840 to be formed from a third material having a high refractive index, and the second structure 830 to be removed, thereby forming a diffraction grating 701 having a third material with a high refractive index.
  • the degree of freedom in the shape of the diffraction grating is improved.
  • the first material contains a polymer material, so that the first structure 810 can be easily formed using a nanoimprinting method or the like.
  • the third material has a refractive index of 2 or more, so that a diffraction grating with a high refractive index can be realized.
  • the method for forming the diffraction grating in this exemplary embodiment makes it easy to form the diffraction grating 701 even if the protrusions 701 are oblique.
  • the diffraction grating forming methods in the first and second exemplary embodiments may be performed using a substrate processing system.
  • the substrate processing system may include a plasma processing system that processes a substrate using plasma.
  • FIG. 13 is a diagram for explaining a configuration example of a plasma processing system.
  • the plasma processing system includes a plasma processing device 1 and a control unit 2.
  • the plasma processing system is an example of a substrate processing system
  • the plasma processing device 1 is an example of a substrate processing device.
  • the plasma processing device 1 includes a plasma processing chamber 10, a substrate support unit 11, and a plasma generation unit 12.
  • the plasma processing chamber 10 has a plasma processing space.
  • the plasma processing chamber 10 also has at least one gas supply port for supplying at least one processing gas to the plasma processing space, and at least one gas exhaust port for exhausting gas from the plasma processing space.
  • the gas supply port is connected to a gas supply unit 20 described later, and the gas exhaust port is connected to an exhaust system 40 described later.
  • the substrate support unit 11 is disposed in the plasma processing space, and has a substrate support surface for supporting a substrate.
  • the plasma generating unit 12 is configured to generate plasma from at least one processing gas supplied into the plasma processing space.
  • the plasma formed in the plasma processing space may be capacitively coupled plasma (CCP), inductively coupled plasma (ICP), ECR plasma (Electron-Cyclotron-resonance plasma), Helicon wave excited plasma (HWP: Helicon Wave Plasma), or surface wave plasma (SWP: Surface Wave Plasma), etc.
  • various types of plasma generating units may be used, including an AC (Alternating Current) plasma generating unit and a DC (Direct Current) plasma generating unit.
  • the AC signal (AC power) used in the AC plasma generation unit has a frequency in the range of 100 kHz to 10 GHz.
  • the AC signal includes an RF (Radio Frequency) signal and a microwave signal.
  • the RF signal has a frequency in the range of 100 kHz to 150 MHz.
  • the control unit 2 processes computer-executable instructions that cause the plasma processing apparatus 1 to perform the various steps described in this disclosure.
  • the control unit 2 may be configured to control each element of the plasma processing apparatus 1 to perform the various steps described herein. In one embodiment, a part or all of the control unit 2 may be included in the plasma processing apparatus 1.
  • the control unit 2 may include, for example, a computer 2a.
  • the computer 2a may include, for example, a processing unit (CPU: Central Processing Unit) 2a1, a storage unit 2a2, and a communication interface 2a3.
  • the processing unit 2a1 may be configured to perform various control operations by reading a program from the storage unit 2a2 and executing the read program. This program may be stored in the storage unit 2a2 in advance, or may be acquired via a medium when necessary.
  • the acquired program is stored in the storage unit 2a2, and is read from the storage unit 2a2 by the processing unit 2a1 and executed.
  • the medium may be various storage media readable by the computer 2a, or may be a communication line connected to the communication interface 2a3.
  • the memory unit 2a2 may include a RAM (Random Access Memory), a ROM (Read Only Memory), a HDD (Hard Disk Drive), a SSD (Solid State Drive), or a combination of these.
  • the communication interface 2a3 may communicate with the plasma processing device 1 via a communication line such as a LAN (Local Area Network).
  • FIG. 14 is a diagram for explaining a configuration example of a capacitively coupled plasma processing device.
  • the capacitively coupled plasma processing apparatus 1 includes a plasma processing chamber 10, a gas supply unit 20, a power supply 30, and an exhaust system 40.
  • the plasma processing apparatus 1 also includes a substrate support unit 11 and a gas inlet unit.
  • the gas inlet unit is configured to introduce at least one processing gas into the plasma processing chamber 10.
  • the gas inlet unit includes a shower head 13.
  • the substrate support unit 11 is disposed in the plasma processing chamber 10.
  • the shower head 13 is disposed above the substrate support unit 11. In one embodiment, the shower head 13 constitutes at least a part of the ceiling of the plasma processing chamber 10.
  • the plasma processing chamber 10 has a plasma processing space 10s defined by the shower head 13, the sidewall 10a of the plasma processing chamber 10, and the substrate support unit 11.
  • the plasma processing chamber 10 is grounded.
  • the shower head 13 and the substrate support unit 11 are electrically insulated from the plasma processing chamber 10 housing.
  • the substrate support 11 includes a main body 111 and a ring assembly 112.
  • the main body 111 has a central region 111a for supporting the substrate W and an annular region 111b for supporting the ring assembly 112.
  • a wafer is an example of a substrate W.
  • the substrate W includes a substrate 700.
  • the annular region 111b of the main body 111 surrounds the central region 111a of the main body 111 in a plan view.
  • the substrate W is disposed on the central region 111a of the main body 111, and the ring assembly 112 is disposed on the annular region 111b of the main body 111 so as to surround the substrate W on the central region 111a of the main body 111. Therefore, the central region 111a is also called a substrate support surface for supporting the substrate W, and the annular region 111b is also called a ring support surface for supporting the edge ring assembly 112.
  • the main body 111 includes a base 1110 and an electrostatic chuck 1111.
  • the base 1110 includes a conductive member.
  • the conductive member of the base 1110 may function as a lower electrode.
  • the electrostatic chuck 1111 is disposed on the base 1110.
  • the electrostatic chuck 1111 includes a ceramic member 1111a and an electrostatic electrode 1111b disposed within the ceramic member 1111a.
  • the ceramic member 1111a has a central region 111a. In one embodiment, the ceramic member 1111a also has an annular region 111b. Note that other members surrounding the electrostatic chuck 1111, such as an annular electrostatic chuck or an annular insulating member, may have the annular region 111b.
  • the ring assembly 112 may be disposed on the annular electrostatic chuck or the annular insulating member, or may be disposed on both the electrostatic chuck 1111 and the annular insulating member.
  • an RF or DC electrode may be disposed within the ceramic member 1111a, in which case the RF or DC electrode functions as the lower electrode.
  • the RF or DC electrode is also called a bias electrode. Note that both the conductive member of the base 1110 and the RF or DC electrode may function as two lower electrodes.
  • the ring assembly 112 includes one or more annular members.
  • the one or more annular members include one or more edge rings and at least one cover ring.
  • the edge rings are formed of a conductive or insulating material, and the cover rings are formed of an insulating material.
  • the substrate support 11 may also include a temperature adjustment module configured to adjust at least one of the electrostatic chuck 1111, the ring assembly 112, and the substrate to a target temperature.
  • the temperature adjustment module may include a heater, a heat transfer medium, a flow passage 1110a, or a combination thereof.
  • a heat transfer fluid such as brine or a gas flows through the flow passage 1110a.
  • the flow passage 1110a is formed in the base 1110, and one or more heaters are disposed in the ceramic member 1111a of the electrostatic chuck 1111.
  • the substrate support 11 may also include a heat transfer gas supply configured to supply a heat transfer gas between the back surface of the substrate W and the central region 111a.
  • the shower head 13 is configured to introduce at least one processing gas from the gas supply unit 20 into the plasma processing space 10s.
  • the shower head 13 has at least one gas supply port 13a, at least one gas diffusion chamber 13b, and multiple gas inlets 13c.
  • the processing gas supplied to the gas supply port 13a passes through the gas diffusion chamber 13b and is introduced into the plasma processing space 10s from the multiple gas inlets 13c.
  • the shower head 13 also includes an upper electrode.
  • the gas introduction unit may include, in addition to the shower head 13, one or more side gas injectors (SGI) attached to one or more openings formed in the side wall 10a.
  • SGI side gas injectors
  • the gas supply unit 20 may include at least one gas source 21 and at least one flow controller 22.
  • the gas supply unit 20 is configured to supply at least one process gas from a respective gas source 21 through a respective flow controller 22 to the showerhead 13.
  • Each flow controller 22 may include, for example, a mass flow controller or a pressure-controlled flow controller.
  • the gas supply unit 20 may include at least one flow modulation device that modulates or pulses the flow rate of the at least one process gas.
  • the power supply 30 includes an RF power supply 31 coupled to the plasma processing chamber 10 via at least one impedance matching circuit.
  • the RF power supply 31 is configured to supply at least one RF signal (RF power), such as a source RF signal and a bias RF signal, to at least one lower electrode and/or at least one upper electrode. This causes a plasma to be formed from at least one processing gas supplied to the plasma processing space 10s.
  • the RF power supply 31 can function as at least a part of the plasma generating unit 12.
  • a bias RF signal to at least one lower electrode, a bias potential is generated on the substrate W, and ion components in the formed plasma can be attracted to the substrate W.
  • the RF power supply 31 includes a first RF generating unit 31a and a second RF generating unit 31b.
  • the first RF generating unit 31a is coupled to at least one lower electrode and/or at least one upper electrode via at least one impedance matching circuit and configured to generate a source RF signal (source RF power) for plasma generation.
  • the source RF signal has a frequency in the range of 10 MHz to 150 MHz.
  • the first RF generating unit 31a may be configured to generate multiple source RF signals having different frequencies. The generated one or more source RF signals are supplied to at least one lower electrode and/or at least one upper electrode.
  • the second RF generator 31b is coupled to at least one lower electrode via at least one impedance matching circuit and configured to generate a bias RF signal (bias RF power).
  • the frequency of the bias RF signal may be the same as or different from the frequency of the source RF signal.
  • the bias RF signal has a frequency lower than the frequency of the source RF signal.
  • the bias RF signal has a frequency in the range of 100 kHz to 60 MHz.
  • the second RF generator 31b may be configured to generate multiple bias RF signals having different frequencies.
  • the generated one or more bias RF signals are provided to at least one lower electrode. Also, in various embodiments, at least one of the source RF signal and the bias RF signal may be pulsed.
  • the power supply 30 may also include a DC power supply 32 coupled to the plasma processing chamber 10.
  • the DC power supply 32 includes a first DC generator 32a and a second DC generator 32b.
  • the first DC generator 32a is connected to at least one lower electrode and configured to generate a first DC signal.
  • the generated first DC signal is applied to the at least one lower electrode.
  • the second DC generator 32b is connected to at least one upper electrode and configured to generate a second DC signal.
  • the generated second DC signal is applied to the at least one upper electrode.
  • the first and second DC signals may be pulsed.
  • a sequence of DC-based voltage pulses is applied to at least one lower electrode and/or at least one upper electrode.
  • the voltage pulses may have a rectangular, trapezoidal, triangular or combination of these pulse waveforms.
  • a waveform generator for generating a sequence of voltage pulses from the DC signal is connected between the first DC generator 32a and at least one lower electrode.
  • the first DC generator 32a and the waveform generator constitute a voltage pulse generator.
  • the second DC generator 32b and the waveform generator constitute a voltage pulse generator
  • the voltage pulse generator is connected to at least one upper electrode.
  • the voltage pulses may have a positive polarity or a negative polarity.
  • the sequence of voltage pulses may include one or more positive polarity voltage pulses and one or more negative polarity voltage pulses within one period.
  • the first and second DC generating units 32a and 32b may be provided in addition to the RF power source 31, or the first DC generating unit 32a may be provided in place of the second RF generating unit 31b.
  • the exhaust system 40 may be connected to, for example, a gas exhaust port 10e provided at the bottom of the plasma processing chamber 10.
  • the exhaust system 40 may include a pressure regulating valve and a vacuum pump. The pressure in the plasma processing space 10s is adjusted by the pressure regulating valve.
  • the vacuum pump may include a turbomolecular pump, a dry pump, or a combination thereof.
  • the plasma processing performed by using the plasma processing apparatus 1 includes an etching process for etching a film on the substrate W using plasma and a film deposition process for forming a film on the substrate W.
  • the plasma processing is executed by a controller 2.
  • the substrate W is carried into the chamber 10 by the transport arm, placed on the substrate support 11 by the lifter, and held by suction on the substrate support 11 as shown in FIG. 14.
  • the processing gas is supplied to the shower head 13 by the gas supply unit 20, and is supplied from the shower head 13 to the plasma processing space 10s.
  • the processing gas supplied at this time includes a gas that generates active species required for etching and film formation processing of the substrate W.
  • One or more RF signals are supplied from the RF power supply 31 to the upper electrode and/or the lower electrode.
  • the atmosphere in the plasma processing space 10s is exhausted from the gas exhaust port 10e, and the inside of the plasma processing space 10s may be depressurized. This generates plasma in the plasma processing space 10s, and the substrate W is plasma processed.
  • the steps of (b) forming the second structure 830, (c) removing the first structure 810, and (d) forming the third structure 840 in the above-mentioned diffraction grating forming method may be performed.
  • the steps of (b) forming the second structure 830 and (d) forming the third structure 840 may be performed by a film forming apparatus that performs CVD (Chemical Vapor Deposition) or ALD (Atomic Layer Deposition) or a spin coating apparatus.
  • the film forming apparatus may be either a single-wafer type or a batch type.
  • the step of (a) forming the first structure 810 may be performed by a photolithography apparatus or a nanoimprint apparatus.
  • the substrate processing system may include the above-mentioned film forming apparatus, a photolithography apparatus, a spin coating apparatus, a nanoimprint apparatus, etc.
  • the shape of the diffraction grating 701 and the position and number on the substrate 700 are not limited to those in the above exemplary embodiment.
  • the display device 500 and optical waveguide device 601 in which the diffraction grating 701 is used are not limited to those in the above exemplary embodiment.
  • the method of forming the diffraction grating may be modified in various ways without departing from the scope and spirit of the present disclosure.
  • some components in one embodiment may be added to another embodiment within the scope of the ordinary creative ability of a person skilled in the art.
  • some components in one embodiment may be replaced with corresponding components in another embodiment.
  • the present disclosure may include, for example, the following configurations.
  • a method for forming a diffraction grating including protrusions on a transparent substrate comprising the steps of: (a) forming a first structure on the substrate using a first material, the first structure including recesses corresponding to the protrusions of the diffraction grating; (b) providing a second material in the recess of the first structure on the substrate to form a second structure including the diffraction grating; (c) removing the first structure;
  • a method for forming a diffraction grating comprising:
  • the step (b) comprises: depositing the second material over the first structure; and removing an upper portion of the second material to expose the first structure.
  • step (d) includes the step of planarizing an upper surface of the second structure.
  • a method for forming a diffraction grating including protrusions on a transparent substrate comprising the steps of: (a) forming a first structure including the protrusions of the diffraction grating on the substrate using a first material; (b) providing a second material in a recess formed by the protrusion of the first structure on the substrate to form a second structure including a protrusion; (c) removing the first structure; (d) providing a third material in a recess formed by the protrusion of the second structure on the substrate as a result of removing the first structure in the (c) step, thereby forming a third structure including the diffraction grating;
  • a method for forming a diffraction grating comprising:
  • the step (b) comprises: depositing the second material over the first structure; and removing an upper portion of the second material to expose the first structure.
  • step (Appendix 16) 16 The method for forming a diffraction grating according to any one of claims 10 to 15, wherein the step (d) includes a step of planarizing an upper surface of the third structure.
  • 500 display device
  • 700 substrate
  • 701 diffraction grating
  • 701a protrusion
  • 810 first structure
  • 830 second structure
  • 840 third structure

Abstract

Provided is a technique for forming a diffraction grating using a high-refractive-index material. This method for forming a diffraction grating on a substrate having permeability includes: (a) a step for forming, on the substrate, a first structure including recessed portions corresponding to protruding portions of the diffraction grating using a first material; (b) a step for providing a second material to the recessed portions of the first structure on the substrate to form a second structure including the diffraction grating; and (3) a step for removing the first structure.

Description

回折格子の形成方法Method for forming a diffraction grating
 本開示の例示的実施形態は、回折格子の形成方法に関する。 An exemplary embodiment of the present disclosure relates to a method for forming a diffraction grating.
 ナノインプリントを用いて回折格子を形成する技術として、特許文献1に記載された技術がある。 A technique for forming a diffraction grating using nanoimprinting is described in Patent Document 1.
米国特許出願公開第2020/0333527号明細書US Patent Application Publication No. 2020/0333527
 本開示は、高屈折率材料を用いて回折格子を形成する技術を提供する。 This disclosure provides a technique for forming a diffraction grating using a high refractive index material.
 本開示の一つの例示的実施形態における回折格子の形成方法は、透過性を有する基板上に、凸部を含む回折格子を形成する方法であって、(a)基板上に、回折格子の凸部に対応する凹部を含む第1の構造を、第1の材料で形成する工程と、(b)基板上の第1の構造が有する凹部に第2の材料を提供して、回折格子を含む第2の構造を形成する工程と、(c)第1の構造を除去する工程と、を含む。 In one exemplary embodiment of the present disclosure, a method for forming a diffraction grating including protrusions on a transparent substrate includes the steps of: (a) forming a first structure on the substrate using a first material, the first structure including recesses corresponding to the protrusions of the diffraction grating; (b) providing a second material to the recesses of the first structure on the substrate to form a second structure including the diffraction grating; and (c) removing the first structure.
 本開示の一つの例示的実施形態によれば、高屈折率材料を用いて回折格子を形成する技術を提供することができる。 According to one exemplary embodiment of the present disclosure, a technique can be provided for forming a diffraction grating using a high refractive index material.
メガネ型の表示装置の構成例を説明するための図である。FIG. 1 is a diagram illustrating a configuration example of a glasses-type display device. 表示装置が有する光学装置の構成例を説明するための図である。1 is a diagram for explaining a configuration example of an optical device included in a display device. 第1の例示的実施形態に係る回折格子の形成方法を示すフローチャートである。4 is a flowchart illustrating a method of forming a diffraction grating according to a first exemplary embodiment. ナノインプリント技術を用いて第1の構造を形成する方法の一例を示すフローチャートである。1 is a flowchart illustrating an example of a method for forming a first structure using a nanoimprint technique. ナノインプリント技術を用いて第1の構造を形成する方法が有する各工程の例を説明するための模式図である。5A to 5C are schematic diagrams for explaining examples of steps of a method for forming a first structure using nanoimprint technology. フォトリソグラフィ技術を用いて第1の構造を形成する方法の一例を示すフローチャートである。1 is a flow chart illustrating an example of a method for forming a first structure using photolithography techniques. フォトリソグラフィ技術を用いて第1の構造を形成する方法が有する各工程の例を説明するための模式図である。5A to 5C are schematic diagrams for explaining examples of steps of a method for forming a first structure using a photolithography technique. 回折格子の形成方法が有する工程ST2、ST3の例を説明するための模式図である。10A to 10C are schematic diagrams for explaining examples of steps ST2 and ST3 in the method of forming a diffraction grating. 第1の例示的実施形態における回折格子の形成方法の他の例を示すフローチャートである。6 is a flowchart illustrating another example of the method for forming the diffraction grating in the first exemplary embodiment. 第3の構造を形成する工程を説明するための模式図である。13A to 13C are schematic diagrams for explaining a step of forming a third structure. 第2の例示的実施形態に係る回折格子の形成方法を示すフローチャートである。5 is a flow chart illustrating a method of forming a diffraction grating according to a second exemplary embodiment. 第2の例示的実施形態に係る回折格子の形成方法が有する各工程を説明するための模式図である。5A to 5C are schematic diagrams for explaining each step of a method for forming a diffraction grating according to a second exemplary embodiment. プラズマ処理システムの構成例を説明するための図である。FIG. 1 is a diagram for explaining a configuration example of a plasma processing system. 容量結合型のプラズマ処理装置の構成例を説明するための図である。FIG. 1 is a diagram for explaining a configuration example of a capacitively coupled plasma processing apparatus.
 以下、本開示の各実施形態について説明する。 Each embodiment of the present disclosure is described below.
 一つの例示的実施形態において、透過性を有する基板上に、凸部を含む回折格子を形成する方法であって、(a)基板上に、回折格子の凸部に対応する凹部を含む第1の構造を、第1の材料で形成する工程と、(b)基板上の第1の構造が有する凹部に第2の材料を提供して、回折格子を含む第2の構造を形成する工程と、(c)第1の構造を除去する工程と、を含む、回折格子の形成方法が提供される。 In one exemplary embodiment, a method for forming a diffraction grating including protrusions on a transparent substrate is provided, the method including the steps of: (a) forming a first structure on the substrate using a first material, the first structure including recesses corresponding to the protrusions of the diffraction grating; (b) providing a second material in the recesses of the first structure on the substrate to form a second structure including the diffraction grating; and (c) removing the first structure.
 一つの例示的実施形態において、第2の材料は、第1の材料が有する屈折率よりも高い屈折率を有する。 In one exemplary embodiment, the second material has a higher refractive index than the first material.
 一つの例示的実施形態において、第2の材料は、2以上の屈折率を有する。 In one exemplary embodiment, the second material has a refractive index of 2 or greater.
 一つの例示的実施形態において、第1の材料は、ポリマー材料を含む。 In one exemplary embodiment, the first material includes a polymeric material.
 一つの例示的実施形態において、(a)工程において、ナノインプリント技術又はフォトリソグラフィ技術を用いて第1の構造を形成する。 In one exemplary embodiment, in step (a), the first structure is formed using nanoimprint technology or photolithography technology.
 一つの例示的実施形態において、(b)工程は、第1の構造上に第2の材料を成膜する工程と、第2の材料の上部を除去して第1の構造を露出させる工程と、を含む。 In one exemplary embodiment, step (b) includes depositing a second material on the first structure and removing an upper portion of the second material to expose the first structure.
 一つの例示的実施形態において、(d)(c)工程において第1の構造を除去することによって、基板上における第2の構造が有する回折格子の凸部によって形成される凹部に、第2の材料よりも屈折率が低い第3の材料を提供する工程を、さらに含む。 In one exemplary embodiment, (d) further includes a step of providing a third material having a lower refractive index than the second material in the recesses formed by the protrusions of the diffraction grating of the second structure on the substrate by removing the first structure in step (c).
 一つの例示的実施形態において、(d)工程は、第2の構造の上面を平坦化する工程を含む。 In one exemplary embodiment, step (d) includes planarizing the top surface of the second structure.
 一つの例示的実施形態において、回折格子は、基板の面に対して0°を超え90°未満の傾斜角を有する凸部を含む。 In one exemplary embodiment, the diffraction grating includes protrusions having an inclination angle greater than 0° and less than 90° relative to the surface of the substrate.
 一つの例示的実施形態において、透過性を有する基板上に、凸部を含む回折格子を形成する方法であって、(a)基板上に、回折格子の凸部を含む第1の構造を、第1の材料で形成する工程と、(b)基板上の第1の構造が有する凸部によって形成される凹部に、第2の材料を提供して、凸部を含む第2の構造を形成する工程と、(c)第1の構造を除去する工程と、(d)(c)工程において第1の構造が除去されたことによって、基板上における第2の構造の凸部によって形成される凹部に第3の材料を提供して、回折格子を含む第3の構造を形成する工程と、を含む、回折格子の形成方法が提供される。 In one exemplary embodiment, a method for forming a diffraction grating including protrusions on a transparent substrate is provided, the method including: (a) forming a first structure including protrusions of the diffraction grating on the substrate using a first material; (b) providing a second material in recesses formed by the protrusions of the first structure on the substrate to form a second structure including protrusions; (c) removing the first structure; and (d) providing a third material in recesses formed by the protrusions of the second structure on the substrate as a result of removing the first structure in step (c) to form a third structure including the diffraction grating.
 第3の材料は、第1の材料及び第2の材料よりも屈折率が高い屈折率を有する。 The third material has a refractive index higher than the refractive indexes of the first and second materials.
 一つの例示的実施形態において、第3の材料は、2以上の屈折率を有する。 In one exemplary embodiment, the third material has a refractive index of 2 or greater.
 一つの例示的実施形態において、第1の材料は、ポリマー材料を含む。 In one exemplary embodiment, the first material includes a polymeric material.
 一つの例示的実施形態において、(a)工程において、ナノインプリント技術又はフォトリソグラフィ技術を用いて第1の構造を形成する。 In one exemplary embodiment, in step (a), the first structure is formed using nanoimprint technology or photolithography technology.
 一つの例示的実施形態において、(b)工程は、第1の構造上に第2の材料を成膜する工程と、第2の材料の上部を除去して第1の構造を露出させる工程と、を含む。 In one exemplary embodiment, step (b) includes depositing a second material on the first structure and removing an upper portion of the second material to expose the first structure.
 一つの例示的実施形態において、(d)工程は、第3の構造の上面を平坦化する工程を含む。 In one exemplary embodiment, step (d) includes planarizing the top surface of the third structure.
 一つの例示的実施形態において、回折格子は、基板の面に対して0°を超え90°未満の傾斜角を有する凸部を含む。 In one exemplary embodiment, the diffraction grating includes protrusions having an inclination angle greater than 0° and less than 90° relative to the surface of the substrate.
 以下、図面を参照して、本開示の各実施形態について詳細に説明する。なお、各図面において同一または同様の要素には同一の符号を付し、重複する説明を省略する。特に断らない限り、図面に示す位置関係に基づいて上下左右等の位置関係を説明する。図面の寸法比率は実際の比率を示すものではなく、また、実際の比率は図示の比率に限られるものではない。 Each embodiment of the present disclosure will be described in detail below with reference to the drawings. Note that identical or similar elements in each drawing will be given the same reference numerals, and duplicate explanations will be omitted. Unless otherwise specified, positional relationships such as up, down, left, right, etc. will be described based on the positional relationships shown in the drawings. The dimensional ratios in the drawings do not indicate actual ratios, and the actual ratios are not limited to the ratios shown in the drawings.
<表示装置の一例>
 図1は、表示装置500の構成例を説明するための図である。一実施形態において、表示装置500はメガネ型であり得る。一実施形態において、表示装置500は、AR(拡張現実)グラス、MR(複合現実)グラスであり得る。
<Example of a display device>
1 is a diagram for explaining a configuration example of a display device 500. In one embodiment, the display device 500 may be a glasses type. In one embodiment, the display device 500 may be an augmented reality (AR) glass or a mixed reality (MR) glass.
 一実施形態において、表示装置500は、映像光を形成し、当該映像光を使用者の目に出力する機能を有する。図2は、表示装置が有する光学装置の構成例を説明するための図である。一実施形態において、表示装置500は、光源の光から映像光を形成する画像形成装置600と、映像光を使用者の目に導く光導波装置601を含む。一実施形態において、画像形成装置600は、LEDなどの発光素子や、光を偏光させる駆動レンズなどを含む。一実施形態において、画像形成装置600は、図1に示す表示装置(メガネ)500が有するリム501、つる502、智503、レンズ504、又はそれらの周辺部分に配置され得る。 In one embodiment, the display device 500 has a function of forming image light and outputting the image light to the user's eyes. FIG. 2 is a diagram for explaining an example of the configuration of an optical device included in the display device. In one embodiment, the display device 500 includes an image forming device 600 that forms image light from light from a light source, and an optical waveguide device 601 that guides the image light to the user's eyes. In one embodiment, the image forming device 600 includes a light emitting element such as an LED, a movable lens that polarizes light, and the like. In one embodiment, the image forming device 600 can be disposed on the rim 501, temple 502, endpiece 503, lens 504, or the peripheral parts thereof, of the display device (glasses) 500 shown in FIG. 1.
 一実施形態において、光導波装置601は、表示装置500のレンズ504に含まれ得る。図2に示すように、一実施形態において、光導波装置601は、基板700と、基板700上に形成された回折格子701とを有する。基板700は、光が透過する透過性(透明性)を有する。基板700の一例は、ガラス基板であり得る。基板700は、サファイア、SiCなどの基板であってよい。基板700は、ベアな基材であってもよいし、ベアな基材の上面に構造が形成されたものであってよい。一実施形態において、基板700は、基板700の面方向に沿って基板700の内部で映像光を導波することができ、なおかつ外界の光を基板700の第1の面から入力し、反対側の第2の面から出力することができる。表示装置500の使用者は、レンズ504を通じて、画像形成装置600で形成された映像と、外界像を同時に見ることができる。 In one embodiment, the optical waveguide device 601 may be included in the lens 504 of the display device 500. As shown in FIG. 2, in one embodiment, the optical waveguide device 601 has a substrate 700 and a diffraction grating 701 formed on the substrate 700. The substrate 700 has a transmittance (transparency) that allows light to pass through. An example of the substrate 700 may be a glass substrate. The substrate 700 may be a substrate such as sapphire or SiC. The substrate 700 may be a bare substrate, or a substrate having a structure formed on the upper surface of the bare substrate. In one embodiment, the substrate 700 can guide image light inside the substrate 700 along the surface direction of the substrate 700, and can input external light from a first surface of the substrate 700 and output it from a second surface on the opposite side. A user of the display device 500 can simultaneously view an image formed by the image forming device 600 and an external image through the lens 504.
 一実施形態において、回折格子701は、基板700の表面の少なくとも2か所に設けられている。回折格子701は、画像形成装置600から出力される映像光を入力する第1の回折格子部710と、基板700を導波した映像光を使用者の目の側に出力する第2の回折格子部711を含む。一実施形態において、第1の回折格子部710及び第2の回折格子部711は、いわゆる斜め回折格子である。すなわち、一実施形態において、第1の回折格子部710及び第2の回折格子部711は、基板700上に複数の凸部701aを有する形状(櫛歯形状)を有し、凸部701aが基板700に対して斜めに突出するように構成されている。第1の回折格子部710及び第2の回折格子部711の凸部701aは、基板700の面に対して0°を超え90°未満の傾斜角θを有している。なお、一実施形態において、第1の回折格子部710及び第2の回折格子部711の凸部701aは、斜め回折格子ではなく、基板700の面に対して90°の角度を有するものであってよい。一実施形態において、第1の回折格子部710及び第2の回折格子部711は、基板700の一方の面に設けられている。一実施形態において、第1の回折格子部710及び第2の回折格子部711は、基板700の使用者の目がある側の面に設けられている。第1の回折格子部710及び第2の回折格子部711は、基板700の両面に設けられてもよい。以下、基板700上に、凸部701aを含む回折格子701を形成する方法について説明する。 In one embodiment, the diffraction grating 701 is provided at least in two places on the surface of the substrate 700. The diffraction grating 701 includes a first diffraction grating section 710 that inputs the image light output from the image forming device 600, and a second diffraction grating section 711 that outputs the image light guided through the substrate 700 to the side of the user's eyes. In one embodiment, the first diffraction grating section 710 and the second diffraction grating section 711 are so-called oblique diffraction gratings. That is, in one embodiment, the first diffraction grating section 710 and the second diffraction grating section 711 have a shape (comb shape) having multiple convex portions 701a on the substrate 700, and the convex portions 701a are configured to protrude obliquely with respect to the substrate 700. The convex portions 701a of the first diffraction grating section 710 and the second diffraction grating section 711 have an inclination angle θ that is greater than 0° and less than 90° with respect to the surface of the substrate 700. In one embodiment, the convex portions 701a of the first diffraction grating portion 710 and the second diffraction grating portion 711 may be not oblique diffraction gratings but may have an angle of 90° with respect to the surface of the substrate 700. In one embodiment, the first diffraction grating portion 710 and the second diffraction grating portion 711 are provided on one surface of the substrate 700. In one embodiment, the first diffraction grating portion 710 and the second diffraction grating portion 711 are provided on the surface of the substrate 700 on the side where the user's eyes are located. The first diffraction grating portion 710 and the second diffraction grating portion 711 may be provided on both surfaces of the substrate 700. Hereinafter, a method for forming the diffraction grating 701 including the convex portions 701a on the substrate 700 will be described.
<回折格子の形成方法の一例>
(第1の例示的実施形態)
 図3は、第1の例示的実施形態に係る回折格子の形成方法を示すフローチャートである。一実施形態において、回折格子の形成方法は、第1の材料で第1の構造を形成する工程(ST1)と、第2の材料で第2の構造を形成する工程(ST2)と、第1の構造を除去する工程(ST3)を含む。
<An example of a method for forming a diffraction grating>
First Exemplary Embodiment
3 is a flow chart illustrating a method of forming a diffraction grating according to a first exemplary embodiment. In one embodiment, the method of forming a diffraction grating includes forming a first structure from a first material (ST1), forming a second structure from a second material (ST2), and removing the first structure (ST3).
 一実施形態において、工程ST1では、目標となる回折格子701の形状を反転させた形状を有する第1の構造が形成される。すなわち、一実施形態において、工程ST1では、回折格子701の凸部701aに対応する凹部を含む第1の構造が形成される。第1の構造は、第1の材料で構成される。一実施形態において、第1の構造は、ナノインプリント技術又はフォトリソグラフィ技術を用いて形成される。 In one embodiment, in step ST1, a first structure having a shape that is an inversion of the shape of the target diffraction grating 701 is formed. That is, in one embodiment, in step ST1, a first structure including recesses that correspond to the protrusions 701a of the diffraction grating 701 is formed. The first structure is made of a first material. In one embodiment, the first structure is formed using nanoimprint technology or photolithography technology.
<ナノインプリント技術>
 図4は、ナノインプリント技術を用いて第1の構造を形成する方法の一例を示すフローチャートである。図5は、ナノインプリント技術を用いて第1の構造を形成する方法が有する各工程の例を説明するための模式図である。
<Nanoimprint Technology>
Fig. 4 is a flow chart showing an example of a method for forming a first structure using nanoimprint technology. Fig. 5 is a schematic diagram for explaining an example of each step of the method for forming a first structure using nanoimprint technology.
 一実施形態において、工程ST1は、基板を準備する工程(ST1-1a)と、膜を形成する工程(ST1-2a)と、第1の構造を成型する工程(ST1-3a)と、残留膜を除去する工程(ST1-4a)を含む。 In one embodiment, step ST1 includes a step of preparing a substrate (ST1-1a), a step of forming a film (ST1-2a), a step of molding a first structure (ST1-3a), and a step of removing a residual film (ST1-4a).
 一実施形態において、工程ST1-1aでは、図5の(a)に示すように、基板700が準備される。一実施形態において、基板700は、透過性を有する基板である。基板700は、ベアの基材であってもよいし、ベアの基材上に構造が形成されたものであってよい。 In one embodiment, in step ST1-1a, a substrate 700 is prepared as shown in FIG. 5(a). In one embodiment, the substrate 700 is a transparent substrate. The substrate 700 may be a bare substrate or a bare substrate on which a structure is formed.
 一実施形態において、工程ST1-2aでは、図5の(b)に示すように、基板700上に、第1の材料を含む膜800が形成される。第1の材料は、樹脂などのポリマー材料を含む。第1の材料は、2未満、例えば1.5以下の屈折率を有していてよい。膜800は、スピンコーティング法やインクジェット法により形成されてよい。膜800は、レジスト膜であってよい。 In one embodiment, in step ST1-2a, as shown in FIG. 5B, a film 800 including a first material is formed on a substrate 700. The first material includes a polymer material such as a resin. The first material may have a refractive index of less than 2, for example, 1.5 or less. The film 800 may be formed by a spin coating method or an inkjet method. The film 800 may be a resist film.
 一実施形態において、工程ST1-3aでは、図5の(c)に示すように、膜800が、凹凸形状を有するモールド801に押し付けられる。モールド801が押し付けられた状態で、紫外線の照射や加熱処理等により、膜800が硬化する。これにより、膜800が凹凸形状になり、第1の構造810が成型される。このとき基板700上には、余分な残留膜802が残留する。 In one embodiment, in step ST1-3a, as shown in FIG. 5(c), the film 800 is pressed against a mold 801 having an uneven shape. With the mold 801 pressed against it, the film 800 is hardened by irradiation with ultraviolet light, heat treatment, or the like. As a result, the film 800 becomes uneven, and the first structure 810 is formed. At this time, excess residual film 802 remains on the substrate 700.
 一実施形態において、工程ST1-4aでは、図5の(d)に示すように、基板700上に残留している残留膜802が除去される。残留膜802は、エッチングにより除去されてよい。こうして、基板700上に、第1の材料で構成された第1の構造810が形成される。第1の構造810は、目標となる回折格子701の形状を反転させた形状を有する。すなわち、第1の構造810は、回折格子701の凸部701aに対応した凹部810aを有する。 In one embodiment, in step ST1-4a, as shown in FIG. 5(d), the residual film 802 remaining on the substrate 700 is removed. The residual film 802 may be removed by etching. In this way, a first structure 810 made of a first material is formed on the substrate 700. The first structure 810 has a shape that is an inversion of the shape of the target diffraction grating 701. In other words, the first structure 810 has recesses 810a that correspond to the protrusions 701a of the diffraction grating 701.
<フォトリソグラフィ技術>
 図6は、フォトリソグラフィ技術を用いて第1の構造を形成する方法の一例を示すフローチャートである。図7は、フォトリソグラフィ技術を用いて第1の構造を形成する方法が有する各工程の例を説明する模式図である。
<Photolithography Technology>
Fig. 6 is a flow chart showing an example of a method for forming a first structure using a photolithography technique. Fig. 7 is a schematic diagram for explaining an example of each step of the method for forming a first structure using a photolithography technique.
 一実施形態において、工程ST1は、基板を準備する工程(ST1-1b)と、膜を形成する工程(ST1-2b)と、マスク膜を形成する工程(ST1-3b)と、膜をエッチングする工程(ST1-4b)と、マスク膜を除去する工程(ST1-5b)を含む。 In one embodiment, step ST1 includes a step of preparing a substrate (ST1-1b), a step of forming a film (ST1-2b), a step of forming a mask film (ST1-3b), a step of etching the film (ST1-4b), and a step of removing the mask film (ST1-5b).
 一実施形態において、工程ST1-1bでは、図7の(a)に示すように、基板700が準備される。一実施形態において、基板700は、透過性を有する基板である。基板700は、ベアの基材であってもよいし、ベアの基材上に構造が形成されたものであってよい。 In one embodiment, in step ST1-1b, a substrate 700 is prepared as shown in FIG. 7(a). In one embodiment, the substrate 700 is a transparent substrate. The substrate 700 may be a bare substrate or a bare substrate on which a structure is formed.
 一実施形態において、工程ST1-2bでは、図7の(b)に示すように、基板700上に、第1の材料を含む膜800が形成される。第1の材料は、樹脂などのポリマー材料を含む。第1の材料は、2未満、例えば1.5以下の屈折率を有していてよい。膜800は、スピンコーティング法やインクジェット法により形成されてよい。膜800は、レジスト膜であってよい。 In one embodiment, in step ST1-2b, as shown in FIG. 7B, a film 800 including a first material is formed on a substrate 700. The first material includes a polymer material such as a resin. The first material may have a refractive index of less than 2, for example, 1.5 or less. The film 800 may be formed by a spin coating method or an inkjet method. The film 800 may be a resist film.
 一実施形態において、工程ST1-3bでは、図7の(c)に示すように、膜800の上に所定パターンのマスク膜820が形成される。マスク膜820は、フォトリソグラフィ法により形成されてよい。 In one embodiment, in step ST1-3b, as shown in FIG. 7C, a mask film 820 having a predetermined pattern is formed on the film 800. The mask film 820 may be formed by a photolithography method.
 一実施形態において、工程ST1-4bでは、図7の(d)に示すように、マスク膜820をマスクとして、膜800がエッチングされる。これにより、膜800におけるマスク膜820がなく露出した部分が除去され、膜800に溝が形成されて、第1の構造810が形成される。エッチングは、プラズマエッチング又はイオンビームエッチングであってよい。 In one embodiment, in step ST1-4b, as shown in FIG. 7(d), the film 800 is etched using the mask film 820 as a mask. This removes the exposed portions of the film 800 where the mask film 820 is not present, and a groove is formed in the film 800, forming the first structure 810. The etching may be plasma etching or ion beam etching.
 一実施形態において、工程ST1-5bでは、図7の(e)に示すように、マスク膜820が除去される。マスク膜820は、エッチングにより除去されてよい。こうして、基板700上に、凹部810aを有する第1の構造810が形成される。 In one embodiment, in step ST1-5b, as shown in FIG. 7(e), the mask film 820 is removed. The mask film 820 may be removed by etching. Thus, a first structure 810 having a recess 810a is formed on the substrate 700.
 一実施形態において、図3に示す工程ST2では、基板700上の第1の構造810が有する凹部810a(空間)に、第2の材料が提供され、目標となる回折格子701の凸部701aを有する第2の構造が形成される。一実施形態において、第2の材料は、第1の構造810を構成する第1の材料が有する屈折率よりも高い屈折率を有する。一実施形態において、第2の材料は、2以上の高屈折率を有する。第2の材料は、ポリマー以外の材料であり得る。第2の材料は、無機材料であり得る。第2の材料は、TiOx、ZrOx、HfOx又はSiNであってよいし、それらの中から選択される2つ以上を混合した混合物であってよい。第2の材料は、SiO2、AlO2をさらに混合したものであってよい。図8は、回折格子の形成方法が有する工程ST2、ST3の例を説明するための模式図である。 In one embodiment, in step ST2 shown in FIG. 3, a second material is provided in the recess 810a (space) of the first structure 810 on the substrate 700, and a second structure having a protrusion 701a of the target diffraction grating 701 is formed. In one embodiment, the second material has a refractive index higher than that of the first material constituting the first structure 810. In one embodiment, the second material has a high refractive index of 2 or more. The second material may be a material other than a polymer. The second material may be an inorganic material. The second material may be TiOx, ZrOx, HfOx, or SiN, or may be a mixture of two or more selected from them. The second material may be a further mixture of SiO2 and AlO2. FIG. 8 is a schematic diagram for explaining an example of steps ST2 and ST3 of the method for forming a diffraction grating.
 一実施形態において、工程ST2では、先ず、図8の(a)に示すように、第1の構造810上に、第2の材料830が成膜される。一実施形態において、第2の材料830は、第1の構造810が有する凹部810aに入り込んだうえで、第1の構造810の上面にも堆積する。第2の材料830の成膜は、スパッタリング法、CVD法、ALD(Atomic Layer Deposition)法、蒸着法、又はスピンコーティング法により行われてよい。 In one embodiment, in step ST2, first, as shown in FIG. 8A, a film of the second material 830 is formed on the first structure 810. In one embodiment, the second material 830 penetrates into the recess 810a of the first structure 810 and is also deposited on the upper surface of the first structure 810. The film of the second material 830 may be formed by a sputtering method, a CVD method, an ALD (Atomic Layer Deposition) method, an evaporation method, or a spin coating method.
 一実施形態において、工程ST2では、次に、図8の(b)に示すように、成膜された第2の材料830の上部を除去して第1の構造810の上面を露出させる。一実施形態において、第2の材料830の上面を研磨し平坦化処理することで、第1の構造810の上面を露出させてよい。このとき、第2の材料830は、目標の回折格子701の凸部701aを有する第2の構造830となる。こうして、基板700上の第1の構造810が有する凹部810aに、凸部701aを有する第2の構造830が形成される。 In one embodiment, next in step ST2, as shown in FIG. 8B, the upper portion of the deposited second material 830 is removed to expose the upper surface of the first structure 810. In one embodiment, the upper surface of the second material 830 may be polished and planarized to expose the upper surface of the first structure 810. At this time, the second material 830 becomes the second structure 830 having the convex portion 701a of the target diffraction grating 701. In this way, the second structure 830 having the convex portion 701a is formed in the concave portion 810a of the first structure 810 on the substrate 700.
 一実施形態において、工程ST3(図3に示す)では、図8の(c)に示すように、第1の構造810が除去される。第1の構造810は、エッチング、アッシング又は液体クリーニングにより除去されてよい。こうして、基板700上に第2の構造830が残り、目標の形状を有する回折格子701が形成される。 In one embodiment, in step ST3 (shown in FIG. 3), the first structure 810 is removed as shown in FIG. 8(c). The first structure 810 may be removed by etching, ashing, or liquid cleaning. Thus, the second structure 830 remains on the substrate 700, and a diffraction grating 701 having a target shape is formed.
 本例示的実施形態によれば、基板700上に、凸部701aを含む回折格子701を形成する方法が、(a)基板700上に、目標となる回折格子の凸部701aに対応する凹部810aを含む第1の構造810を、第1の材料で形成する工程と、(b)基板700上の第1の構造810が有する凹部810aに、第1の材料が有する屈折率よりも高い屈折率を有する第2の材料を提供して、回折格子701の凸部701aを含む第2の構造830を形成する工程と、(c)第1の構造810を除去する工程と、を含む。これにより、成形しやすい第1の材料で第1の構造810を形成し、その後、高屈折率材料を有する第2の材料で第2の構造830を形成し、第1の構造810を除去することで、回折格子701を形成することができる。これにより、高屈折率材料を用いて回折格子を形成することができる。また、回折格子の形状の自由度が向上する。 According to this exemplary embodiment, a method for forming a diffraction grating 701 including a convex portion 701a on a substrate 700 includes the steps of: (a) forming a first structure 810 including a concave portion 810a corresponding to the convex portion 701a of a target diffraction grating on the substrate 700 using a first material; (b) providing a second material having a higher refractive index than the first material to the concave portion 810a of the first structure 810 on the substrate 700 to form a second structure 830 including the convex portion 701a of the diffraction grating 701; and (c) removing the first structure 810. As a result, the first structure 810 is formed using a first material that is easy to mold, and then the second structure 830 is formed using a second material having a high refractive index material, and the first structure 810 is removed to form the diffraction grating 701. As a result, a diffraction grating can be formed using a high refractive index material. In addition, the degree of freedom of the shape of the diffraction grating is improved.
 第1の材料がポリマー材料を含むことで、ナノインプリント法などを用いて第1の構造810を容易に成形することができる。そして、第2の材料が2以上の屈折率を有することで、高い屈折率を有する回折格子を実現することができる。 The first material contains a polymer material, so that the first structure 810 can be easily formed using a nanoimprinting method or the like. And the second material has a refractive index of 2 or more, so that a diffraction grating with a high refractive index can be realized.
 本例示的実施形態において、回折格子701は、基板700の面に対して0°を超え90°未満の傾斜角θを有する凸部701aを含む。一実施形態において、回折格子701は、基板700に対して斜めに突出した複数の凸部701aを有する櫛歯形状を有している。または、回折格子701は、基板700の面に対して90°の角度を有するものであってよい。本例示的実施形態における回折格子の形成方法によれば、回折格子701が有する凸部701が斜めであっても容易に形成することができる。すなわち、基板上の膜に対してドライエッチングなどを施して回折格子を形成しようとすると、基板に垂直な引き込み電場によってエッチングの方向性が決まってしまうため、基板に対し斜めの凸部を有する構造を形成することが難しい。また、基板上の膜に対してウェットエッチングを施して回折格子を形成しようとすると、エッチングの異方性がなく、斜めの凸部を有する構造を形成することができない。さらに、基板上の膜に対してイオンビームエッチングなどを用いて斜めの回折格子を形成する場合には、イオンビームを基板に対しスキャンする必要があり、基板全面を加工するのに時間がかかり生産性が良くない。 In this exemplary embodiment, the diffraction grating 701 includes a convex portion 701a having an inclination angle θ of more than 0° and less than 90° with respect to the surface of the substrate 700. In one embodiment, the diffraction grating 701 has a comb-tooth shape having a plurality of convex portions 701a that protrude obliquely with respect to the substrate 700. Alternatively, the diffraction grating 701 may have an angle of 90° with respect to the surface of the substrate 700. According to the method for forming a diffraction grating in this exemplary embodiment, the convex portions 701 of the diffraction grating 701 can be easily formed even if they are oblique. That is, when a diffraction grating is formed by performing dry etching or the like on a film on a substrate, the direction of the etching is determined by the pull-in electric field perpendicular to the substrate, so it is difficult to form a structure having convex portions oblique to the substrate. In addition, when a diffraction grating is formed by performing wet etching on a film on a substrate, there is no anisotropy of the etching, and it is not possible to form a structure having oblique convex portions. Furthermore, when an oblique diffraction grating is formed on a film on a substrate using ion beam etching or the like, it is necessary to scan the ion beam with respect to the substrate, and it takes time to process the entire surface of the substrate, which results in poor productivity.
 上記第1の例示的実施形態において、図9に示すように、回折格子の形成方法は、第3の材料で第3の構造を形成する工程(ST4)をさらに含んでいてよい。図10は、工程ST4の例を説明するための模式図である。 In the first exemplary embodiment, as shown in FIG. 9, the method for forming a diffraction grating may further include a step (ST4) of forming a third structure with a third material. FIG. 10 is a schematic diagram for explaining an example of step ST4.
 一実施形態において、工程ST4では、基板700上における第2の構造830が有する凸部701aによって形成される凹部(空間)に、第2の材料よりも屈折率が低い第3の材料が提供されて、第3の構造が形成される。第3の材料は、第2の材料よりも屈折率が低い材料であり得る。第3の材料は、2未満の屈折率を有していてよい。第3の材料は、無機材料であり得る。第3の材料は、SiO2、Al2O3、又はそれらの混合物であり得る。 In one embodiment, in step ST4, a third material having a lower refractive index than the second material is provided in a recess (space) formed by the protrusion 701a of the second structure 830 on the substrate 700, to form a third structure. The third material may be a material having a lower refractive index than the second material. The third material may have a refractive index of less than 2. The third material may be an inorganic material. The third material may be SiO2, Al2O3, or a mixture thereof.
 一実施形態において、工程ST4では、先ず、図10の(a)に示すように、第2の構造830上に第3の材料840が成膜される。一実施形態において、第3の材料840は、第2の構造830が有する凸部701aによって形成される凹部830aに入り込んだうえで、第2の構造830の上面にも堆積する。第3の材料840の成膜は、スパッタリング法、CVD法、ALD(Atomic Layer Deposition)法、蒸着法、又はスピンコーティング法により行われてよい。 In one embodiment, in step ST4, first, as shown in FIG. 10A, a film of a third material 840 is formed on the second structure 830. In one embodiment, the third material 840 penetrates into the recesses 830a formed by the protrusions 701a of the second structure 830, and is also deposited on the upper surface of the second structure 830. The film of the third material 840 may be formed by a sputtering method, a CVD method, an ALD (Atomic Layer Deposition) method, an evaporation method, or a spin coating method.
 一実施形態において、工程ST4では、次に、図10の(b)に示すように、成膜された第3の材料840の上部を除去して第2の構造830の上面を露出させる。一実施形態において、第3の材料840及び第2の構造830の上面を研磨し平坦化処理することで、第2の構造830の上面を露出させてよい。このとき、第3の材料840は、第3の構造となる。こうして、基板700上の第2の構造830の凸部701aによって形成された凹部830aに第3の構造840が形成される。 In one embodiment, next in step ST4, as shown in FIG. 10(b), the upper portion of the deposited third material 840 is removed to expose the upper surface of the second structure 830. In one embodiment, the upper surfaces of the third material 840 and the second structure 830 may be polished and planarized to expose the upper surface of the second structure 830. At this time, the third material 840 becomes the third structure. In this way, the third structure 840 is formed in the recess 830a formed by the protrusion 701a of the second structure 830 on the substrate 700.
 本例示的実施形態によれば、光の導波効率が高い回折格子701を実現することができる。 According to this exemplary embodiment, it is possible to realize a diffraction grating 701 with high light guiding efficiency.
(第2の例示的実施形態)
 図11は、第2の例示的実施形態に係る回折格子の形成方法を示すフローチャートである。第2の例示的実施形態では、第1の例示的実施形態と同様の回折格子701を形成する。図12は、第2の例示的実施形態に係る回折格子の形成方法が有する各工程を説明するための模式図である。回折格子の形成方法は、第1の材料で第1の構造を形成する工程(ST1a)と、第2の材料で第2の構造を形成する工程(ST2a)と、第1の構造を除去する工程(ST3a)と、第3の材料で第3の構造を形成する工程(ST4a)を含む。
Second Exemplary Embodiment
11 is a flowchart showing a method for forming a diffraction grating according to a second exemplary embodiment. In the second exemplary embodiment, a diffraction grating 701 similar to that of the first exemplary embodiment is formed. FIG. 12 is a schematic diagram for explaining each step of the method for forming a diffraction grating according to the second exemplary embodiment. The method for forming a diffraction grating includes a step (ST1a) of forming a first structure with a first material, a step (ST2a) of forming a second structure with a second material, a step (ST3a) of removing the first structure, and a step (ST4a) of forming a third structure with a third material.
 一実施形態において、工程ST1aでは、図12の(a)に示すように、目標となる回折格子701の凸部701aと同様の形状を有する凸部810bを含む第1の構造810が形成される。一実施形態において、第1の構造810は、ナノインプリント技術又はフォトリソグラフィ技術を用いて形成される。ナノインプリント技術又はフォトリソグラフィ技術を用いた第1の構造810の形成方法は、上記第1の例示的実施形態と同様であってよい。 In one embodiment, in step ST1a, as shown in FIG. 12(a), a first structure 810 is formed that includes a convex portion 810b having a shape similar to that of the convex portion 701a of the target diffraction grating 701. In one embodiment, the first structure 810 is formed using nanoimprint technology or photolithography technology. The method of forming the first structure 810 using nanoimprint technology or photolithography technology may be the same as that of the first exemplary embodiment described above.
 一実施形態において、工程ST2aでは、基板700上の第1の構造810が有する凸部810bによって形成される凹部(空間)に、第2の材料が提供され、凸部830bを有する第2の構造が形成される。一実施形態において、第2の材料は、2未満の低屈折率を有する。第2の材料は、ポリマー以外の材料であり得る。第2の材料は、無機材料であり得る。第2の材料は、SiO2、Al2O3、又はそれらの混合物であり得る。 In one embodiment, in step ST2a, a second material is provided in a recess (space) formed by a protrusion 810b of a first structure 810 on a substrate 700, and a second structure having a protrusion 830b is formed. In one embodiment, the second material has a low refractive index of less than 2. The second material may be a material other than a polymer. The second material may be an inorganic material. The second material may be SiO2, Al2O3, or a mixture thereof.
 一実施形態において、工程ST2では、先ず、図12の(b)に示すように、、第1の構造810上に、第2の材料830が成膜される。一実施形態において、第2の材料830は、第1の構造810が有する凸部810bによって形成される凹部に入り込んだうえで、第1の構造810の上面にも堆積する。第2の材料830の成膜は、スパッタリング法、CVD法、ALD(Atomic Layer Deposition)法、蒸着法、又はスピンコーティング法により行われてよい。 In one embodiment, in step ST2, first, as shown in FIG. 12(b), a film of the second material 830 is formed on the first structure 810. In one embodiment, the second material 830 penetrates into the recesses formed by the protrusions 810b of the first structure 810, and is also deposited on the upper surface of the first structure 810. The film of the second material 830 may be formed by a sputtering method, a CVD method, an ALD (Atomic Layer Deposition) method, an evaporation method, or a spin coating method.
 一実施形態において、工程ST2では、次に、図12の(c)に示すように、成膜された第2の材料830の上部を除去して第1の構造810の上面を露出させる。一実施形態において、第2の材料830の上面を研磨し平坦化処理することで、第1の構造810の上面を露出させてよい。このとき、第2の材料830は、凸部830bを有する第2の構造830となる。こうして、基板700上の第1の構造810が有する凸部810bによって形成された凹部に、凸部830bを含む第2の構造830が形成される。 In one embodiment, next in step ST2, as shown in FIG. 12(c), the upper portion of the deposited second material 830 is removed to expose the upper surface of the first structure 810. In one embodiment, the upper surface of the second material 830 may be polished and planarized to expose the upper surface of the first structure 810. At this time, the second material 830 becomes the second structure 830 having the convex portion 830b. In this way, the second structure 830 including the convex portion 830b is formed in the concave portion formed by the convex portion 810b of the first structure 810 on the substrate 700.
 一実施形態において、工程ST3では、図12の(d)に示すように、第1の構造810が除去される。第1の構造810は、エッチング、アッシング又は液体クリーニングにより除去されてよい。こうして、基板700上に、凸部830bを有する第2の構造830が残る。 In one embodiment, in step ST3, the first structure 810 is removed as shown in FIG. 12(d). The first structure 810 may be removed by etching, ashing, or liquid cleaning. Thus, the second structure 830 having the protrusion 830b remains on the substrate 700.
 一実施形態において、工程ST4では、基板700上における第2の構造830が有する凸部830bによって形成された凹部(空間)に第3の材料が提供されて、目標となる回折格子701の凸部701aを含む第3の構造が形成される。一実施形態において、第3の材料は、第1の構造810を構成する第1の材料及び、第2の構造830を構成する第2の材料が有する屈折率よりも高い屈折率を有する。一実施形態において、第3の材料は、2以上の高屈折率を有する。第3の材料は、ポリマー以外の材料であり得る。第3の材料は、無機材料であり得る。第3の材料は、TiOx、ZrOx、HfOx又はSiNであってよいし、それらの中から選択される2つ以上を混合した混合物であってよい。第3の材料は、SiO2、AlO2をさらに混合したものであってよい。 In one embodiment, in step ST4, a third material is provided in a recess (space) formed by the protrusion 830b of the second structure 830 on the substrate 700 to form a third structure including the protrusion 701a of the target diffraction grating 701. In one embodiment, the third material has a refractive index higher than the refractive index of the first material constituting the first structure 810 and the second material constituting the second structure 830. In one embodiment, the third material has a high refractive index of 2 or more. The third material may be a material other than a polymer. The third material may be an inorganic material. The third material may be TiOx, ZrOx, HfOx, or SiN, or may be a mixture of two or more selected from them. The third material may be a further mixture of SiO2 and AlO2.
 一実施形態において、工程ST4では、先ず、図12の(e)に示すように、第2の構造830上に第3の材料840が成膜される。一実施形態において、第3の材料840は、第2の構造830が有する凸部830bによって形成された凹部に入り込んだうえで、第2の構造830の上面にも堆積する。第3の材料840の成膜は、スパッタリング法、CVD法、ALD(Atomic Layer Deposition)法、蒸着法、又はスピンコーティング法により行われてよい。 In one embodiment, in step ST4, first, as shown in FIG. 12(e), a film of a third material 840 is formed on the second structure 830. In one embodiment, the third material 840 penetrates into the recesses formed by the protrusions 830b of the second structure 830, and is also deposited on the upper surface of the second structure 830. The film of the third material 840 may be formed by a sputtering method, a CVD method, an ALD (Atomic Layer Deposition) method, an evaporation method, or a spin coating method.
 一実施形態において、工程ST4では、次に、図12の(f)に示すように、成膜された第3の材料840の上部を除去して第2の構造830の上面を露出させる。一実施形態において、第3の材料840及び第2の構造830の上面を研磨し平坦化処理することで、第2の構造830の上面を露出させてよい。このとき、第3の材料840は、目標となる回折格子701の凸部701aを有する第3の構造となる。こうして、基板700上に、高屈折率の第3の材料を有する回折格子701が形成される。 In one embodiment, next in step ST4, as shown in FIG. 12(f), the upper portion of the deposited third material 840 is removed to expose the upper surface of the second structure 830. In one embodiment, the upper surfaces of the third material 840 and the second structure 830 may be polished and planarized to expose the upper surface of the second structure 830. At this time, the third material 840 becomes a third structure having the convex portion 701a of the target diffraction grating 701. In this way, a diffraction grating 701 having a third material with a high refractive index is formed on the substrate 700.
 本例示的実施形態によれば、回折格子701を形成する方法は、(a)基板700上に、目標となる回折格子701の凸部810b(701a)を含む第1の構造810を、第1の材料で形成する工程と、(b)基板700上の第1の構造810が有する凸部810bによって形成される凹部に第2の材料を提供して、凸部830bを含む第2の構造830を形成する工程と、(c)第1の構造810を除去する工程と、(d)基板700上における第2の構造830の凸部830bによって形成される凹部に、第1の材料及び第2の材料よりも屈折率が高い第3の材料を提供して、回折格子701の凸部701aを含む第3の構造840を形成する工程と、を含む。これにより、成形しやすい第1の材料で第1の構造810を形成し、その後、第2の材料で第2の構造830を形成し、高屈折率材料を有する第3の材料で第3の構造840を形成し、第2の構造830を除去することで、高屈折率の第3の材料を有する回折格子701を形成することができる。これにより、高屈折率材料を用いて回折格子を形成することができる。また、回折格子の形状の自由度が向上する。 According to this exemplary embodiment, a method for forming a diffraction grating 701 includes the steps of (a) forming a first structure 810 including a convex portion 810b (701a) of a target diffraction grating 701 on a substrate 700 using a first material; (b) providing a second material in a recess formed by the convex portion 810b of the first structure 810 on the substrate 700 to form a second structure 830 including a convex portion 830b; (c) removing the first structure 810; and (d) providing a third material having a refractive index higher than the first material and the second material in a recess formed by the convex portion 830b of the second structure 830 on the substrate 700 to form a third structure 840 including a convex portion 701a of the diffraction grating 701. This allows the first structure 810 to be formed from a first material that is easy to mold, then the second structure 830 to be formed from a second material, the third structure 840 to be formed from a third material having a high refractive index, and the second structure 830 to be removed, thereby forming a diffraction grating 701 having a third material with a high refractive index. This allows the diffraction grating to be formed using a high refractive index material. In addition, the degree of freedom in the shape of the diffraction grating is improved.
 第1の材料がポリマー材料を含むことで、ナノインプリント法などを用いて第1の構造810を容易に成形することができる。そして、第3の材料が2以上の屈折率を有することで、高い屈折率を有する回折格子を実現することができる。 The first material contains a polymer material, so that the first structure 810 can be easily formed using a nanoimprinting method or the like. And the third material has a refractive index of 2 or more, so that a diffraction grating with a high refractive index can be realized.
 本例示的実施形態における回折格子の形成方法によれば、回折格子701が有する凸部701が斜めであっても容易に形成することができる。 The method for forming the diffraction grating in this exemplary embodiment makes it easy to form the diffraction grating 701 even if the protrusions 701 are oblique.
 上記第1の例示的実施形態及び第2の例示的実施形態における回折格子の形成方法は、基板処理システムを用いて行われてよい。基板処理システムは、プラズマを用いて基板を処理するプラズマ処理システムを含んでもよい。 The diffraction grating forming methods in the first and second exemplary embodiments may be performed using a substrate processing system. The substrate processing system may include a plasma processing system that processes a substrate using plasma.
<プラズマ処理システムの一例>
 図13は、プラズマ処理システムの構成例を説明するための図である。一実施形態において、プラズマ処理システムは、プラズマ処理装置1及び制御部2を含む。プラズマ処理システムは、基板処理システムの一例であり、プラズマ処理装置1は、基板処理装置の一例である。プラズマ処理装置1は、プラズマ処理チャンバ10、基板支持部11及びプラズマ生成部12を含む。プラズマ処理チャンバ10は、プラズマ処理空間を有する。また、プラズマ処理チャンバ10は、少なくとも1つの処理ガスをプラズマ処理空間に供給するための少なくとも1つのガス供給口と、プラズマ処理空間からガスを排出するための少なくとも1つのガス排出口とを有する。ガス供給口は、後述するガス供給部20に接続され、ガス排出口は、後述する排気システム40に接続される。基板支持部11は、プラズマ処理空間内に配置され、基板を支持するための基板支持面を有する。
<An example of a plasma processing system>
FIG. 13 is a diagram for explaining a configuration example of a plasma processing system. In one embodiment, the plasma processing system includes a plasma processing device 1 and a control unit 2. The plasma processing system is an example of a substrate processing system, and the plasma processing device 1 is an example of a substrate processing device. The plasma processing device 1 includes a plasma processing chamber 10, a substrate support unit 11, and a plasma generation unit 12. The plasma processing chamber 10 has a plasma processing space. The plasma processing chamber 10 also has at least one gas supply port for supplying at least one processing gas to the plasma processing space, and at least one gas exhaust port for exhausting gas from the plasma processing space. The gas supply port is connected to a gas supply unit 20 described later, and the gas exhaust port is connected to an exhaust system 40 described later. The substrate support unit 11 is disposed in the plasma processing space, and has a substrate support surface for supporting a substrate.
 プラズマ生成部12は、プラズマ処理空間内に供給された少なくとも1つの処理ガスからプラズマを生成するように構成される。プラズマ処理空間において形成されるプラズマは、容量結合プラズマ(CCP;Capacitively Coupled Plasma)、誘導結合プラズマ(ICP;Inductively Coupled Plasma)、ECRプラズマ(Electron-Cyclotron-resonance plasma)、ヘリコン波励起プラズマ(HWP:Helicon Wave Plasma)、又は、表面波プラズマ(SWP:Surface Wave Plasma)等であってもよい。また、AC(Alternating Current)プラズマ生成部及びDC(Direct Current)プラズマ生成部を含む、種々のタイプのプラズマ生成部が用いられてもよい。一実施形態において、ACプラズマ生成部で用いられるAC信号(AC電力)は、100kHz~10GHzの範囲内の周波数を有する。従って、AC信号は、RF(Radio Frequency)信号及びマイクロ波信号を含む。一実施形態において、RF信号は、 100kHz~150MHzの範囲内の周波数を有する。 The plasma generating unit 12 is configured to generate plasma from at least one processing gas supplied into the plasma processing space. The plasma formed in the plasma processing space may be capacitively coupled plasma (CCP), inductively coupled plasma (ICP), ECR plasma (Electron-Cyclotron-resonance plasma), Helicon wave excited plasma (HWP: Helicon Wave Plasma), or surface wave plasma (SWP: Surface Wave Plasma), etc. In addition, various types of plasma generating units may be used, including an AC (Alternating Current) plasma generating unit and a DC (Direct Current) plasma generating unit. In one embodiment, the AC signal (AC power) used in the AC plasma generation unit has a frequency in the range of 100 kHz to 10 GHz. Thus, the AC signal includes an RF (Radio Frequency) signal and a microwave signal. In one embodiment, the RF signal has a frequency in the range of 100 kHz to 150 MHz.
 制御部2は、本開示において述べられる種々の工程をプラズマ処理装置1に実行させるコンピュータ実行可能な命令を処理する。制御部2は、ここで述べられる種々の工程を実行するようにプラズマ処理装置1の各要素を制御するように構成され得る。一実施形態において、制御部2の一部又は全てがプラズマ処理装置1に含まれてもよい。制御部2は、例えばコンピュータ2aを含んでもよい。コンピュータ2aは、例えば、処理部(CPU:Central Processing Unit)2a1、記憶部2a2、及び通信インターフェース2a3を含んでもよい。処理部2a1は、記憶部2a2からプログラムを読み出し、読み出されたプログラムを実行することにより種々の制御動作を行うように構成され得る。このプログラムは、予め記憶部2a2に格納されていてもよく、必要なときに、媒体を介して取得されてもよい。取得されたプログラムは、記憶部2a2に格納され、処理部2a1によって記憶部2a2から読み出されて実行される。媒体は、コンピュータ2aに読み取り可能な種々の記憶媒体であってもよく、通信インターフェース2a3に接続されている通信回線であってもよい。記憶部2a2は、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)、又はこれらの組み合わせを含んでもよい。通信インターフェース2a3は、LAN(Local Area Network)等の通信回線を介してプラズマ処理装置1との間で通信してもよい。 The control unit 2 processes computer-executable instructions that cause the plasma processing apparatus 1 to perform the various steps described in this disclosure. The control unit 2 may be configured to control each element of the plasma processing apparatus 1 to perform the various steps described herein. In one embodiment, a part or all of the control unit 2 may be included in the plasma processing apparatus 1. The control unit 2 may include, for example, a computer 2a. The computer 2a may include, for example, a processing unit (CPU: Central Processing Unit) 2a1, a storage unit 2a2, and a communication interface 2a3. The processing unit 2a1 may be configured to perform various control operations by reading a program from the storage unit 2a2 and executing the read program. This program may be stored in the storage unit 2a2 in advance, or may be acquired via a medium when necessary. The acquired program is stored in the storage unit 2a2, and is read from the storage unit 2a2 by the processing unit 2a1 and executed. The medium may be various storage media readable by the computer 2a, or may be a communication line connected to the communication interface 2a3. The memory unit 2a2 may include a RAM (Random Access Memory), a ROM (Read Only Memory), a HDD (Hard Disk Drive), a SSD (Solid State Drive), or a combination of these. The communication interface 2a3 may communicate with the plasma processing device 1 via a communication line such as a LAN (Local Area Network).
 以下に、プラズマ処理装置1の一例としての容量結合型のプラズマ処理装置の構成例について説明する。図14は、容量結合型のプラズマ処理装置の構成例を説明するための図である。 Below, we will explain a configuration example of a capacitively coupled plasma processing device as an example of the plasma processing device 1. Figure 14 is a diagram for explaining a configuration example of a capacitively coupled plasma processing device.
 容量結合型のプラズマ処理装置1は、プラズマ処理チャンバ10、ガス供給部20、電源30及び排気システム40を含む。また、プラズマ処理装置1は、基板支持部11及びガス導入部を含む。ガス導入部は、少なくとも1つの処理ガスをプラズマ処理チャンバ10内に導入するように構成される。ガス導入部は、シャワーヘッド13を含む。基板支持部11は、プラズマ処理チャンバ10内に配置される。シャワーヘッド13は、基板支持部11の上方に配置される。一実施形態において、シャワーヘッド13は、プラズマ処理チャンバ10の天部(ceiling)の少なくとも一部を構成する。プラズマ処理チャンバ10は、シャワーヘッド13、プラズマ処理チャンバ10の側壁10a及び基板支持部11により規定されたプラズマ処理空間10sを有する。プラズマ処理チャンバ10は接地される。シャワーヘッド13及び基板支持部11は、プラズマ処理チャンバ10筐体とは電気的に絶縁される。 The capacitively coupled plasma processing apparatus 1 includes a plasma processing chamber 10, a gas supply unit 20, a power supply 30, and an exhaust system 40. The plasma processing apparatus 1 also includes a substrate support unit 11 and a gas inlet unit. The gas inlet unit is configured to introduce at least one processing gas into the plasma processing chamber 10. The gas inlet unit includes a shower head 13. The substrate support unit 11 is disposed in the plasma processing chamber 10. The shower head 13 is disposed above the substrate support unit 11. In one embodiment, the shower head 13 constitutes at least a part of the ceiling of the plasma processing chamber 10. The plasma processing chamber 10 has a plasma processing space 10s defined by the shower head 13, the sidewall 10a of the plasma processing chamber 10, and the substrate support unit 11. The plasma processing chamber 10 is grounded. The shower head 13 and the substrate support unit 11 are electrically insulated from the plasma processing chamber 10 housing.
 基板支持部11は、本体部111及びリングアセンブリ112を含む。本体部111は、基板Wを支持するための中央領域111aと、リングアセンブリ112を支持するための環状領域111bとを有する。ウェハは基板Wの一例である。基板Wは、基板700を含む。本体部111の環状領域111bは、平面視で本体部111の中央領域111aを囲んでいる。基板Wは、本体部111の中央領域111a上に配置され、リングアセンブリ112は、本体部111の中央領域111a上の基板Wを囲むように本体部111の環状領域111b上に配置される。従って、中央領域111aは、基板Wを支持するための基板支持面とも呼ばれ、環状領域111bは、エッジリングアセンブリ112を支持するためのリング支持面とも呼ばれる。 The substrate support 11 includes a main body 111 and a ring assembly 112. The main body 111 has a central region 111a for supporting the substrate W and an annular region 111b for supporting the ring assembly 112. A wafer is an example of a substrate W. The substrate W includes a substrate 700. The annular region 111b of the main body 111 surrounds the central region 111a of the main body 111 in a plan view. The substrate W is disposed on the central region 111a of the main body 111, and the ring assembly 112 is disposed on the annular region 111b of the main body 111 so as to surround the substrate W on the central region 111a of the main body 111. Therefore, the central region 111a is also called a substrate support surface for supporting the substrate W, and the annular region 111b is also called a ring support surface for supporting the edge ring assembly 112.
 一実施形態において、本体部111は、基台1110及び静電チャック1111を含む。基台1110は、導電性部材を含む。基台1110の導電性部材は下部電極として機能し得る。静電チャック1111は、基台1110の上に配置される。静電チャック1111は、セラミック部材1111aとセラミック部材1111a内に配置される静電電極1111bとを含む。セラミック部材1111aは、中央領域111aを有する。一実施形態において、セラミック部材1111aは、環状領域111bも有する。なお、環状静電チャックや環状絶縁部材のような、静電チャック1111を囲む他の部材が環状領域111bを有してもよい。この場合、リングアセンブリ112は、環状静電チャック又は環状絶縁部材の上に配置されてもよく、静電チャック1111と環状絶縁部材の両方の上に配置されてもよい。また、RF又はDC電極がセラミック部材1111a内に配置されてもよく、この場合、RF又はDC電極が下部電極として機能する。後述するバイアスRF信号又はDC信号がRF又はDC電極に接続される場合、RF又はDC電極はバイアス電極とも呼ばれる。なお、基台1110の導電性部材とRF又はDC電極との両方が2つの下部電極として機能してもよい。 In one embodiment, the main body 111 includes a base 1110 and an electrostatic chuck 1111. The base 1110 includes a conductive member. The conductive member of the base 1110 may function as a lower electrode. The electrostatic chuck 1111 is disposed on the base 1110. The electrostatic chuck 1111 includes a ceramic member 1111a and an electrostatic electrode 1111b disposed within the ceramic member 1111a. The ceramic member 1111a has a central region 111a. In one embodiment, the ceramic member 1111a also has an annular region 111b. Note that other members surrounding the electrostatic chuck 1111, such as an annular electrostatic chuck or an annular insulating member, may have the annular region 111b. In this case, the ring assembly 112 may be disposed on the annular electrostatic chuck or the annular insulating member, or may be disposed on both the electrostatic chuck 1111 and the annular insulating member. Also, an RF or DC electrode may be disposed within the ceramic member 1111a, in which case the RF or DC electrode functions as the lower electrode. When a bias RF signal or DC signal, which will be described later, is connected to the RF or DC electrode, the RF or DC electrode is also called a bias electrode. Note that both the conductive member of the base 1110 and the RF or DC electrode may function as two lower electrodes.
 リングアセンブリ112は、1又は複数の環状部材を含む。一実施形態において、1又は複数の環状部材は、1又は複数のエッジリングと少なくとも1つのカバーリングとを含む。エッジリングは、導電性材料又は絶縁材料で形成され、カバーリングは、絶縁材料で形成される。 The ring assembly 112 includes one or more annular members. In one embodiment, the one or more annular members include one or more edge rings and at least one cover ring. The edge rings are formed of a conductive or insulating material, and the cover rings are formed of an insulating material.
 また、基板支持部11は、静電チャック1111、リングアセンブリ112及び基板のうち少なくとも1つをターゲット温度に調節するように構成される温調モジュールを含んでもよい。温調モジュールは、ヒータ、伝熱媒体、流路1110a、又はこれらの組み合わせを含んでもよい。流路1110aには、ブラインやガスのような伝熱流体が流れる。一実施形態において、流路1110aが基台1110 内に形成され、1又は複数のヒータが静電チャック1111のセラミック部材1111a内に配置される。また、基板支持部11は、基板Wの裏面と中央領域111aとの間に伝熱ガスを供給するように構成された伝熱ガス供給部を含んでもよい。 The substrate support 11 may also include a temperature adjustment module configured to adjust at least one of the electrostatic chuck 1111, the ring assembly 112, and the substrate to a target temperature. The temperature adjustment module may include a heater, a heat transfer medium, a flow passage 1110a, or a combination thereof. A heat transfer fluid such as brine or a gas flows through the flow passage 1110a. In one embodiment, the flow passage 1110a is formed in the base 1110, and one or more heaters are disposed in the ceramic member 1111a of the electrostatic chuck 1111. The substrate support 11 may also include a heat transfer gas supply configured to supply a heat transfer gas between the back surface of the substrate W and the central region 111a.
 シャワーヘッド13は、ガス供給部20からの少なくとも1つの処理ガスをプラズマ処理空間10s内に導入するように構成される。シャワーヘッド13は、少なくとも1つのガス供給口13a、少なくとも1つのガス拡散室13b、及び複数のガス導入口13cを有する。ガス供給口13aに供給された処理ガスは、ガス拡散室13bを通過して複数のガス導入口13cからプラズマ処理空間10s内に導入される。また、シャワーヘッド13は、上部電極を含む。なお、ガス導入部は、シャワーヘッド13に加えて、側壁10aに形成された1又は複数の開口部に取り付けられる1又は複数のサイドガス注入部(SGI:Side Gas Injector)を含んでもよい。 The shower head 13 is configured to introduce at least one processing gas from the gas supply unit 20 into the plasma processing space 10s. The shower head 13 has at least one gas supply port 13a, at least one gas diffusion chamber 13b, and multiple gas inlets 13c. The processing gas supplied to the gas supply port 13a passes through the gas diffusion chamber 13b and is introduced into the plasma processing space 10s from the multiple gas inlets 13c. The shower head 13 also includes an upper electrode. Note that the gas introduction unit may include, in addition to the shower head 13, one or more side gas injectors (SGI) attached to one or more openings formed in the side wall 10a.
 ガス供給部20は、少なくとも1つのガスソース21及び少なくとも1つの流量制御器22を含んでもよい。一実施形態において、ガス供給部20は、少なくとも1つの処理ガスを、それぞれに対応のガスソース21からそれぞれに対応の流量制御器22を介してシャワーヘッド13に供給するように構成される。各流量制御器22は、例えばマスフローコントローラ又は圧力制御式の流量制御器を含んでもよい。さらに、ガス供給部20は、少なくとも1つの処理ガスの流量を変調又はパルス化する少なくとも1つの流量変調デバイスを含んでもよい。 The gas supply unit 20 may include at least one gas source 21 and at least one flow controller 22. In one embodiment, the gas supply unit 20 is configured to supply at least one process gas from a respective gas source 21 through a respective flow controller 22 to the showerhead 13. Each flow controller 22 may include, for example, a mass flow controller or a pressure-controlled flow controller. Additionally, the gas supply unit 20 may include at least one flow modulation device that modulates or pulses the flow rate of the at least one process gas.
 電源30は、少なくとも1つのインピーダンス整合回路を介してプラズマ処理チャンバ10に結合されるRF電源31を含む。RF電源31は、ソースRF信号及びバイアスRF信号のような少なくとも1つのRF信号(RF電力)を、少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に供給するように構成される。これにより、プラズマ処理空間10sに供給された少なくとも1つの処理ガスからプラズマが形成される。従って、RF電源31は、プラズマ生成部12の少なくとも一部として機能し得る。また、バイアスRF信号を少なくとも1つの下部電極に供給することにより、基板Wにバイアス電位が発生し、形成されたプラズマ中のイオン成分を基板Wに引き込むことができる。 The power supply 30 includes an RF power supply 31 coupled to the plasma processing chamber 10 via at least one impedance matching circuit. The RF power supply 31 is configured to supply at least one RF signal (RF power), such as a source RF signal and a bias RF signal, to at least one lower electrode and/or at least one upper electrode. This causes a plasma to be formed from at least one processing gas supplied to the plasma processing space 10s. Thus, the RF power supply 31 can function as at least a part of the plasma generating unit 12. In addition, by supplying a bias RF signal to at least one lower electrode, a bias potential is generated on the substrate W, and ion components in the formed plasma can be attracted to the substrate W.
 一実施形態において、RF電源31は、第1のRF生成部31a及び第2のRF生成部31bを含む。第1のRF生成部31aは、少なくとも1つのインピーダンス整合回路を介して少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に結合され、プラズマ生成用のソースRF信号(ソースRF電力)を生成するように構成される。一実施形態において、ソースRF信号は、10MHz~150MHzの範囲内の周波数を有する。一実施形態において、第1のRF生成部31aは、異なる周波数を有する複数のソースRF信号を生成するように構成されてもよい。生成された1又は複数のソースRF信号は、少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に供給される。 In one embodiment, the RF power supply 31 includes a first RF generating unit 31a and a second RF generating unit 31b. The first RF generating unit 31a is coupled to at least one lower electrode and/or at least one upper electrode via at least one impedance matching circuit and configured to generate a source RF signal (source RF power) for plasma generation. In one embodiment, the source RF signal has a frequency in the range of 10 MHz to 150 MHz. In one embodiment, the first RF generating unit 31a may be configured to generate multiple source RF signals having different frequencies. The generated one or more source RF signals are supplied to at least one lower electrode and/or at least one upper electrode.
 第2のRF生成部31bは、少なくとも1つのインピーダンス整合回路を介して少なくとも1つの下部電極に結合され、バイアスRF信号(バイアスRF電力)を生成するように構成される。バイアスRF信号の周波数は、ソースRF信号の周波数と同じであっても異なっていてもよい。一実施形態において、バイアスRF信号は、ソースRF信号の周波数よりも低い周波数を有する。一実施形態において、バイアスRF信号は、100kHz~60MHzの範囲内の周波数を有する。一実施形態において、第2のRF生成部31bは、異なる周波数を有する複数のバイアスRF信号を生成するように構成されてもよい。生成された1又は複数のバイアスRF信号は、少なくとも1つの下部電極に供給される。また、種々の実施形態において、ソースRF信号及びバイアスRF信号のうち少なくとも1つがパルス化されてもよい。 The second RF generator 31b is coupled to at least one lower electrode via at least one impedance matching circuit and configured to generate a bias RF signal (bias RF power). The frequency of the bias RF signal may be the same as or different from the frequency of the source RF signal. In one embodiment, the bias RF signal has a frequency lower than the frequency of the source RF signal. In one embodiment, the bias RF signal has a frequency in the range of 100 kHz to 60 MHz. In one embodiment, the second RF generator 31b may be configured to generate multiple bias RF signals having different frequencies. The generated one or more bias RF signals are provided to at least one lower electrode. Also, in various embodiments, at least one of the source RF signal and the bias RF signal may be pulsed.
 また、電源30は、プラズマ処理チャンバ10に結合されるDC電源32を含んでもよい。DC電源32は、第1のDC生成部32a及び第2のDC生成部32bを含む。一実施形態において、第1のDC生成部32aは、少なくとも1つの下部電極に接続され、第1のDC信号を生成するように構成される。生成された第1のDC信号は、少なくとも1つの下部電極に印加される。一実施形態において、第2のDC生成部32bは、少なくとも1つの上部電極に接続され、第2のDC信号を生成するように構成される。生成された第2のDC信号は、少なくとも1つの上部電極に印加される。 The power supply 30 may also include a DC power supply 32 coupled to the plasma processing chamber 10. The DC power supply 32 includes a first DC generator 32a and a second DC generator 32b. In one embodiment, the first DC generator 32a is connected to at least one lower electrode and configured to generate a first DC signal. The generated first DC signal is applied to the at least one lower electrode. In one embodiment, the second DC generator 32b is connected to at least one upper electrode and configured to generate a second DC signal. The generated second DC signal is applied to the at least one upper electrode.
 種々の実施形態において、第1及び第2のDC信号がパルス化されてもよい。この場合、DCに基づく電圧パルスのシーケンスが少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に印加される。電圧パルスは、矩形、台形、三角形又はこれらの組み合わせのパルス波形を有してもよい。一実施形態において、DC信号から電圧パルスのシーケンスを生成するための波形生成部が第1のDC生成部32aと少なくとも1つの下部電極との間に接続される。従って、第1のDC生成部32a及び波形生成部は、電圧パルス生成部を構成する。第2のDC生成部32b及び波形生成部が電圧パルス生成部を構成する場合、電圧パルス生成部は、少なくとも1つの上部電極に接続される。電圧パルスは、正の極性を有してもよく、負の極性を有してもよい。また、電圧パルスのシーケンスは、1周期内に1又は複数の正極性電圧パルスと1又は複数の負極性電圧パルスとを含んでもよい。なお、第1及び第2のDC生成部32a,32bは、RF電源31に加えて設けられてもよく、第1のDC生成部32aが第2のRF生成部31bに代えて設けられてもよい。 In various embodiments, the first and second DC signals may be pulsed. In this case, a sequence of DC-based voltage pulses is applied to at least one lower electrode and/or at least one upper electrode. The voltage pulses may have a rectangular, trapezoidal, triangular or combination of these pulse waveforms. In one embodiment, a waveform generator for generating a sequence of voltage pulses from the DC signal is connected between the first DC generator 32a and at least one lower electrode. Thus, the first DC generator 32a and the waveform generator constitute a voltage pulse generator. When the second DC generator 32b and the waveform generator constitute a voltage pulse generator, the voltage pulse generator is connected to at least one upper electrode. The voltage pulses may have a positive polarity or a negative polarity. Also, the sequence of voltage pulses may include one or more positive polarity voltage pulses and one or more negative polarity voltage pulses within one period. The first and second DC generating units 32a and 32b may be provided in addition to the RF power source 31, or the first DC generating unit 32a may be provided in place of the second RF generating unit 31b.
 排気システム40は、例えばプラズマ処理チャンバ10の底部に設けられたガス排出口10eに接続され得る。排気システム40は、圧力調整弁及び真空ポンプを含んでもよい。圧力調整弁によって、プラズマ処理空間10s内の圧力が調整される。真空ポンプは、ターボ分子ポンプ、ドライポンプ又はこれらの組み合わせを含んでもよい。 The exhaust system 40 may be connected to, for example, a gas exhaust port 10e provided at the bottom of the plasma processing chamber 10. The exhaust system 40 may include a pressure regulating valve and a vacuum pump. The pressure in the plasma processing space 10s is adjusted by the pressure regulating valve. The vacuum pump may include a turbomolecular pump, a dry pump, or a combination thereof.
<プラズマ処理の一例>
 プラズマ処理装置1を用いて行われるプラズマ処理は、プラズマを用いて基板W上の膜をエッチングするエッチング処理や基板W上に膜を形成する成膜処理を含む。一実施形態において、プラズマ処理は、制御部2により実行される。
<An example of plasma treatment>
The plasma processing performed by using the plasma processing apparatus 1 includes an etching process for etching a film on the substrate W using plasma and a film deposition process for forming a film on the substrate W. In one embodiment, the plasma processing is executed by a controller 2.
 先ず、基板Wが、搬送アームによりチャンバ10内に搬入され、リフターにより基板支持部11に載置され、図14に示すように基板支持部11上に吸着保持される。 First, the substrate W is carried into the chamber 10 by the transport arm, placed on the substrate support 11 by the lifter, and held by suction on the substrate support 11 as shown in FIG. 14.
 次に、処理ガスが、ガス供給部20によりシャワーヘッド13に供給され、シャワーヘッド13からプラズマ処理空間10sに供給される。このとき供給される処理ガスは、基板Wのエッチング処理や成膜処理のために必要な活性種を生成するガスを含む。 Next, the processing gas is supplied to the shower head 13 by the gas supply unit 20, and is supplied from the shower head 13 to the plasma processing space 10s. The processing gas supplied at this time includes a gas that generates active species required for etching and film formation processing of the substrate W.
 1又は複数のRF信号がRF電源31から上部電極及び/又は下部電極に供給される。プラズマ処理空間10s内の雰囲気はガス排出口10eから排気され、プラズマ処理空間10sの内部は減圧されてもよい。これにより、プラズマ処理空間10sにプラズマが生成され、基板Wがプラズマ処理される。 One or more RF signals are supplied from the RF power supply 31 to the upper electrode and/or the lower electrode. The atmosphere in the plasma processing space 10s is exhausted from the gas exhaust port 10e, and the inside of the plasma processing space 10s may be depressurized. This generates plasma in the plasma processing space 10s, and the substrate W is plasma processed.
 プラズマ処理装置1では、上記回折格子の形成方法における(b)第2の構造830を形成する工程や(c)第1の構造810を除去する工程、(d)第3の構造840を形成する工程などが行われてよい。(b)第2の構造830を形成する工程や、(d)第3の構造840を形成する工程は、CVD(Chemical Vapor Deposition)やALD(Atomic Layer Deposition)を行う成膜装置や、スピンコーティング装置で行われてよい。成膜装置は、枚葉式、バッチ式のいずれであってよい。(a)第1の構造810を形成する工程は、フォトリソグラフィを行う装置や、ナノインプリント装置で行われてよい。基板処理システムは、上記成膜装置、フォトリソグラフィを行う装置、スピンコーティングを行う塗布装置、ナノインプリント装置などを備えていてもよい。 In the plasma processing apparatus 1, the steps of (b) forming the second structure 830, (c) removing the first structure 810, and (d) forming the third structure 840 in the above-mentioned diffraction grating forming method may be performed. The steps of (b) forming the second structure 830 and (d) forming the third structure 840 may be performed by a film forming apparatus that performs CVD (Chemical Vapor Deposition) or ALD (Atomic Layer Deposition) or a spin coating apparatus. The film forming apparatus may be either a single-wafer type or a batch type. The step of (a) forming the first structure 810 may be performed by a photolithography apparatus or a nanoimprint apparatus. The substrate processing system may include the above-mentioned film forming apparatus, a photolithography apparatus, a spin coating apparatus, a nanoimprint apparatus, etc.
 回折格子701の形状、基板700上の位置や数は、上記例示的実施形態のものに限られない。回折格子701が用いられる表示装置500や光導波装置601は、上記例示的実施形態のものに限られない。 The shape of the diffraction grating 701 and the position and number on the substrate 700 are not limited to those in the above exemplary embodiment. The display device 500 and optical waveguide device 601 in which the diffraction grating 701 is used are not limited to those in the above exemplary embodiment.
 以上の例示的実施形態において、回折格子の形成方法は、本開示の範囲及び趣旨から逸脱することなく種々の変形をなし得る。例えば、当業者の通常の創作能力の範囲内で、ある実施形態における一部の構成要素を、他の実施形態に追加することができる。また、ある実施形態における一部の構成要素を、他の実施形態の対応する構成要素と置換することができる。本開示は、例えば、以下の構成を含み得る。 In the above exemplary embodiments, the method of forming the diffraction grating may be modified in various ways without departing from the scope and spirit of the present disclosure. For example, some components in one embodiment may be added to another embodiment within the scope of the ordinary creative ability of a person skilled in the art. Also, some components in one embodiment may be replaced with corresponding components in another embodiment. The present disclosure may include, for example, the following configurations.
(付記1)
 透過性を有する基板上に、凸部を含む回折格子を形成する方法であって、
(a)前記基板上に、前記回折格子の前記凸部に対応する凹部を含む第1の構造を、第1の材料で形成する工程と、
(b)前記基板上の前記第1の構造が有する前記凹部に第2の材料を提供して、前記回折格子を含む第2の構造を形成する工程と、
(c)前記第1の構造を除去する工程と、
を含む、回折格子の形成方法。
(Appendix 1)
A method for forming a diffraction grating including protrusions on a transparent substrate, comprising the steps of:
(a) forming a first structure on the substrate using a first material, the first structure including recesses corresponding to the protrusions of the diffraction grating;
(b) providing a second material in the recess of the first structure on the substrate to form a second structure including the diffraction grating;
(c) removing the first structure;
A method for forming a diffraction grating, comprising:
(付記2)
 前記第2の材料は、前記第1の材料が有する屈折率よりも高い屈折率を有する、付記1に記載の回折格子の形成方法。
(Appendix 2)
2. The method of claim 1, wherein the second material has a refractive index higher than a refractive index of the first material.
(付記3)
 前記第2の材料は、2以上の屈折率を有する、付記1又は2に記載の回折格子の形成方法。
(Appendix 3)
3. The method for forming a diffraction grating according to claim 1, wherein the second material has a refractive index of 2 or more.
(付記4)
 前記第1の材料は、ポリマー材料を含む、付記1から3のいずれか一項に記載の回折格子の形成方法。
(Appendix 4)
4. The method of claim 1, wherein the first material comprises a polymer material.
(付記5)
 前記(a)工程において、ナノインプリント技術又はフォトリソグラフィ技術を用いて前記第1の構造を形成する、付記1から4のいずれか一項に記載の回折格子の形成方法。
(Appendix 5)
5. The method for forming a diffraction grating according to claim 1, wherein in the step (a), the first structure is formed using a nanoimprint technique or a photolithography technique.
(付記6)
 前記(b)工程は、
 前記第1の構造上に前記第2の材料を成膜する工程と、
 前記第2の材料の上部を除去して前記第1の構造を露出させる工程と、を含む、付記1から5のいずれか一項に記載の回折格子の形成方法。
(Appendix 6)
The step (b) comprises:
depositing the second material over the first structure;
and removing an upper portion of the second material to expose the first structure.
(付記7)
(d)前記(c)工程において前記第1の構造を除去することによって、前記基板上における前記第2の構造が有する前記回折格子の前記凸部によって形成される凹部に、前記第2の材料よりも屈折率が低い第3の材料を提供する工程を、さらに含む、付記1から6のいずれか一項に記載の回折格子の形成方法。
(Appendix 7)
(d) providing a third material having a lower refractive index than the second material in recesses formed by the protrusions of the diffraction grating of the second structure on the substrate by removing the first structure in step (c).
(付記8)
 前記(d)工程は、前記第2の構造の上面を平坦化する工程を含む、付記7に記載の回折格子の形成方法。
(Appendix 8)
8. The method for forming a diffraction grating of claim 7, wherein step (d) includes the step of planarizing an upper surface of the second structure.
(付記9)
 前記回折格子は、前記基板の面に対して0°を超え90°未満の傾斜角を有する前記凸部を含む、付記1から7のいずれか一項に記載の回折格子の形成方法。
(Appendix 9)
8. The method for forming a diffraction grating according to claim 1, wherein the diffraction grating includes the convex portions having an inclination angle of more than 0° and less than 90° with respect to a surface of the substrate.
(付記10)
 透過性を有する基板上に、凸部を含む回折格子を形成する方法であって、
(a)前記基板上に、前記回折格子の前記凸部を含む第1の構造を、第1の材料で形成する工程と、
(b)前記基板上の前記第1の構造が有する前記凸部によって形成される凹部に、第2の材料を提供して、凸部を含む第2の構造を形成する工程と、
(c)前記第1の構造を除去する工程と、
(d)前記(c)工程おいて前記第1の構造が除去されたことによって、前記基板上における前記第2の構造の前記凸部によって形成される凹部に第3の材料を提供して、前記回折格子を含む第3の構造を形成する工程と、
を含む、回折格子の形成方法。
(Appendix 10)
A method for forming a diffraction grating including protrusions on a transparent substrate, comprising the steps of:
(a) forming a first structure including the protrusions of the diffraction grating on the substrate using a first material;
(b) providing a second material in a recess formed by the protrusion of the first structure on the substrate to form a second structure including a protrusion;
(c) removing the first structure;
(d) providing a third material in a recess formed by the protrusion of the second structure on the substrate as a result of removing the first structure in the (c) step, thereby forming a third structure including the diffraction grating;
A method for forming a diffraction grating, comprising:
(付記11)
 前記第3の材料は、前記第1の材料及び前記第2の材料よりも屈折率が高い屈折率を有する、付記10に記載の回折格子の形成方法。
(Appendix 11)
11. The method of forming a diffraction grating of claim 10, wherein the third material has a refractive index higher than the refractive indexes of the first material and the second material.
(付記12)
 前記第3の材料は、2以上の屈折率を有する、付記10又は11に記載の回折格子の形成方法。
(Appendix 12)
12. The method for forming a diffraction grating according to claim 10 or 11, wherein the third material has a refractive index of 2 or more.
(付記13)
 前記第1の材料は、ポリマー材料を含む、付記10から12のいずれか一項に記載の回折格子の形成方法。
(Appendix 13)
13. The method of forming a diffraction grating of any one of claims 10 to 12, wherein the first material comprises a polymer material.
(付記14)
 前記(a)工程において、ナノインプリント技術又はフォトリソグラフィ技術を用いて前記第1の構造を形成する、付記10から13のいずれか一項に記載の回折格子の形成方法。
(Appendix 14)
14. The method for forming a diffraction grating according to claim 10, wherein in the step (a), the first structure is formed using a nanoimprint technique or a photolithography technique.
(付記15)
 前記(b)工程は、
 前記第1の構造上に前記第2の材料を成膜する工程と、
 前記第2の材料の上部を除去して前記第1の構造を露出させる工程と、を含む、付記10から14のいずれか一項に記載の回折格子の形成方法。
(Appendix 15)
The step (b) comprises:
depositing the second material over the first structure;
and removing an upper portion of the second material to expose the first structure.
(付記16)
 前記(d)工程は、前記第3の構造の上面を平坦化する工程を含む、付記10から15のいずれか一項に記載の回折格子の形成方法。
(Appendix 16)
16. The method for forming a diffraction grating according to any one of claims 10 to 15, wherein the step (d) includes a step of planarizing an upper surface of the third structure.
(付記17)
 前記回折格子は、前記基板の面に対して0°を超え90°未満の傾斜角を有する前記凸部を含む、付記10から16のいずれか一項に記載の回折格子の形成方法。
(Appendix 17)
17. The method for forming a diffraction grating according to claim 10, wherein the diffraction grating includes the convex portions having an inclination angle of more than 0° and less than 90° with respect to a surface of the substrate.
500……表示装置、700……基板、701……回折格子、701a……凸部、810……第1の構造、830……第2の構造、840……第3の構造
 
500: display device, 700: substrate, 701: diffraction grating, 701a: protrusion, 810: first structure, 830: second structure, 840: third structure

Claims (17)

  1.  透過性を有する基板上に、凸部を含む回折格子を形成する方法であって、
    (a)前記基板上に、前記回折格子の前記凸部に対応する凹部を含む第1の構造を、第1の材料で形成する工程と、
    (b)前記基板上の前記第1の構造が有する前記凹部に第2の材料を提供して、前記回折格子を含む第2の構造を形成する工程と、
    (c)前記第1の構造を除去する工程と、
    を含む、回折格子の形成方法。
    A method for forming a diffraction grating including protrusions on a transparent substrate, comprising the steps of:
    (a) forming a first structure on the substrate using a first material, the first structure including recesses corresponding to the protrusions of the diffraction grating;
    (b) providing a second material in the recess of the first structure on the substrate to form a second structure including the diffraction grating;
    (c) removing the first structure;
    A method for forming a diffraction grating, comprising:
  2.  前記第2の材料は、前記第1の材料が有する屈折率よりも高い屈折率を有する、請求項1に記載の回折格子の形成方法。 The method for forming a diffraction grating according to claim 1, wherein the second material has a refractive index higher than the refractive index of the first material.
  3.  前記第2の材料は、2以上の屈折率を有する、請求項1に記載の回折格子の形成方法。 The method for forming a diffraction grating according to claim 1, wherein the second material has a refractive index of 2 or more.
  4.  前記第1の材料は、ポリマー材料を含む、請求項1に記載の回折格子の形成方法。 The method for forming a diffraction grating according to claim 1, wherein the first material includes a polymer material.
  5.  前記(a)工程において、ナノインプリント技術又はフォトリソグラフィ技術を用いて前記第1の構造を形成する、請求項1に記載の回折格子の形成方法。 The method for forming a diffraction grating according to claim 1, wherein in step (a), the first structure is formed using nanoimprint technology or photolithography technology.
  6.  前記(b)工程は、
     前記第1の構造上に前記第2の材料を成膜する工程と、
     前記第2の材料の上部を除去して前記第1の構造を露出させる工程と、を含む、請求項1に記載の回折格子の形成方法。
    The step (b) comprises:
    depositing the second material over the first structure;
    and removing an upper portion of the second material to expose the first structure.
  7. (d)前記(c)工程において前記第1の構造を除去することによって、前記基板上における前記第2の構造が有する前記回折格子の前記凸部によって形成される凹部に、前記第2の材料よりも屈折率が低い第3の材料を提供する工程を、さらに含む、請求項1に記載の回折格子の形成方法。 The method for forming a diffraction grating according to claim 1, further comprising the step of: (d) providing a third material having a lower refractive index than the second material in the recesses formed by the protrusions of the diffraction grating of the second structure on the substrate by removing the first structure in the step (c).
  8.  前記(d)工程は、前記第2の構造の上面を平坦化する工程を含む、請求項7に記載の回折格子の形成方法。 The method for forming a diffraction grating according to claim 7, wherein step (d) includes a step of planarizing the upper surface of the second structure.
  9.  前記回折格子は、前記基板の面に対して0°を超え90°未満の傾斜角を有する前記凸部を含む、請求項1に記載の回折格子の形成方法。 The method for forming a diffraction grating according to claim 1, wherein the diffraction grating includes protrusions having an inclination angle greater than 0° and less than 90° with respect to the surface of the substrate.
  10.  透過性を有する基板上に、凸部を含む回折格子を形成する方法であって、
    (a)前記基板上に、前記回折格子の前記凸部を含む第1の構造を、第1の材料で形成する工程と、
    (b)前記基板上の前記第1の構造が有する前記凸部によって形成される凹部に、第2の材料を提供して、凸部を含む第2の構造を形成する工程と、
    (c)前記第1の構造を除去する工程と、
    (d)前記(c)工程おいて前記第1の構造が除去されたことによって、前記基板上における前記第2の構造の前記凸部によって形成される凹部に第3の材料を提供して、前記回折格子を含む第3の構造を形成する工程と、
    を含む、回折格子の形成方法。
    A method for forming a diffraction grating including protrusions on a transparent substrate, comprising the steps of:
    (a) forming a first structure including the protrusions of the diffraction grating on the substrate using a first material;
    (b) providing a second material in a recess formed by the protrusion of the first structure on the substrate to form a second structure including a protrusion;
    (c) removing the first structure;
    (d) providing a third material in a recess formed by the protrusion of the second structure on the substrate as a result of removing the first structure in the (c) step, thereby forming a third structure including the diffraction grating;
    A method for forming a diffraction grating, comprising:
  11.  前記第3の材料は、前記第1の材料及び前記第2の材料よりも屈折率が高い屈折率を有する、請求項10に記載の回折格子の形成方法。 The method for forming a diffraction grating according to claim 10, wherein the third material has a refractive index higher than the refractive indexes of the first material and the second material.
  12.  前記第3の材料は、2以上の屈折率を有する、請求項10に記載の回折格子の形成方法。 The method for forming a diffraction grating according to claim 10, wherein the third material has a refractive index of 2 or more.
  13.  前記第1の材料は、ポリマー材料を含む、請求項10に記載の回折格子の形成方法。 The method for forming a diffraction grating according to claim 10, wherein the first material includes a polymer material.
  14.  前記(a)工程において、ナノインプリント技術又はフォトリソグラフィ技術を用いて前記第1の構造を形成する、請求項10に記載の回折格子の形成方法。 The method for forming a diffraction grating according to claim 10, wherein in step (a), the first structure is formed using nanoimprint technology or photolithography technology.
  15.  前記(b)工程は、
     前記第1の構造上に前記第2の材料を成膜する工程と、
     前記第2の材料の上部を除去して前記第1の構造を露出させる工程と、を含む、請求項10に記載の回折格子の形成方法。
    The step (b) comprises:
    depositing the second material over the first structure;
    and removing an upper portion of the second material to expose the first structure.
  16.  前記(d)工程は、前記第3の構造の上面を平坦化する工程を含む、請求項10に記載の回折格子の形成方法。 The method for forming a diffraction grating according to claim 10, wherein step (d) includes a step of planarizing an upper surface of the third structure.
  17.  前記回折格子は、前記基板の面に対して0°を超え90°未満の傾斜角を有する前記凸部を含む、請求項10に記載の回折格子の形成方法。
     
    The method for forming a diffraction grating according to claim 10 , wherein the diffraction grating includes the protrusions having an inclination angle greater than 0° and less than 90° with respect to a surface of the substrate.
PCT/JP2023/036136 2022-10-18 2023-10-04 Diffraction grating formation method WO2024084965A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-167161 2022-10-18
JP2022167161 2022-10-18

Publications (1)

Publication Number Publication Date
WO2024084965A1 true WO2024084965A1 (en) 2024-04-25

Family

ID=90737314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036136 WO2024084965A1 (en) 2022-10-18 2023-10-04 Diffraction grating formation method

Country Status (1)

Country Link
WO (1) WO2024084965A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519071A (en) * 2008-04-29 2011-06-30 コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス Grating coupler, system and method
JP2011221518A (en) * 2010-03-23 2011-11-04 Asahi Rubber Inc Reflective material
US20200333527A1 (en) * 2019-04-18 2020-10-22 Facebook Technologies, Llc Reducing demolding stress at edges of gratings in nanoimprint lithography
JP2021504736A (en) * 2017-11-21 2021-02-15 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Manufacturing method of waveguide coupler
JP2021530730A (en) * 2018-06-29 2021-11-11 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated Use of fluidity CVD to fill gaps in micro / nanostructures of optics
JP2021530862A (en) * 2018-06-28 2021-11-11 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated Manufacture of diffraction grating

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519071A (en) * 2008-04-29 2011-06-30 コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス Grating coupler, system and method
JP2011221518A (en) * 2010-03-23 2011-11-04 Asahi Rubber Inc Reflective material
JP2021504736A (en) * 2017-11-21 2021-02-15 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Manufacturing method of waveguide coupler
JP2021530862A (en) * 2018-06-28 2021-11-11 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated Manufacture of diffraction grating
JP2021530730A (en) * 2018-06-29 2021-11-11 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated Use of fluidity CVD to fill gaps in micro / nanostructures of optics
US20200333527A1 (en) * 2019-04-18 2020-10-22 Facebook Technologies, Llc Reducing demolding stress at edges of gratings in nanoimprint lithography

Similar Documents

Publication Publication Date Title
US8858753B2 (en) Focus ring heating method, plasma etching apparatus, and plasma etching method
CN109154085B (en) System and method for temperature control in a plasma processing system
US8083961B2 (en) Method and system for controlling the uniformity of a ballistic electron beam by RF modulation
CN106605292B (en) Plasma processing method and plasma processing apparatus
US20080035605A1 (en) Exhaust Assembly for Plasma Processing System and Method
JP2015216261A (en) Upper electrode structure of plasma processing device, plasma processing device, and method for operating plasma processing device
JP7145041B2 (en) Substrate support, plasma processing apparatus, and focus ring
KR20100099219A (en) Silicon carbide focus ring for plasma etching system
KR20200142094A (en) Etch stop layer deposition for enhanced patterning
US20180374682A1 (en) Plasma processing method and plasma processing apparatus
JP2011071464A (en) Method of heating focus ring, plasma etching apparatus, and plasma etching method
JP7061653B2 (en) How to process the object to be processed
JP2022512491A (en) Manufacturing method of optical device using electron beam device
JP2007515056A (en) A method of improving the photoresist shape after development on a deposited dielectric film.
US20120111500A1 (en) Plasma processing apparatus
JP4903567B2 (en) Method and apparatus for depositing materials having tunable optical and etching properties.
JP4594235B2 (en) Method for etching an ARC layer
WO2024084965A1 (en) Diffraction grating formation method
TWI723406B (en) Plasma processing device
KR20210021440A (en) Microlens manufacturing method and plasma processing device
WO2023048281A1 (en) Plasma processing method and plasma processing system
US20240112927A1 (en) Etching method and plasma processing apparatus
KR20230125757A (en) Plasma processing method and plasma processing system
WO2024018960A1 (en) Plasma processing device and plasma processing method
JP2024006972A (en) Plasma processing method and plasma processing system