WO2023048281A1 - Plasma processing method and plasma processing system - Google Patents

Plasma processing method and plasma processing system Download PDF

Info

Publication number
WO2023048281A1
WO2023048281A1 PCT/JP2022/035685 JP2022035685W WO2023048281A1 WO 2023048281 A1 WO2023048281 A1 WO 2023048281A1 JP 2022035685 W JP2022035685 W JP 2022035685W WO 2023048281 A1 WO2023048281 A1 WO 2023048281A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
power level
plasma processing
bias
chamber
Prior art date
Application number
PCT/JP2022/035685
Other languages
French (fr)
Japanese (ja)
Inventor
宰永 朴
優一 藤澤
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2023048281A1 publication Critical patent/WO2023048281A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • Exemplary embodiments of the present disclosure relate to plasma processing methods and plasma processing systems.
  • Patent Document 1 discloses a method of etching a silicon-containing film.
  • the present disclosure provides a technique for controlling the shape of recesses formed by etching.
  • the RF signal includes alternating first time periods having a first power level and second time periods having a second power level lower than the first power level.
  • a plasma processing method is provided in which the second power level is reduced with respect to the first power level as the etching progresses in step (c).
  • the shape of recesses formed by etching can be controlled.
  • FIG. 1 schematically shows a plasma processing system 1;
  • FIG. It is a flow chart which shows an example of this processing method. It is a figure which shows typically an example of the cross-sectional structure of the board
  • FIG. 4 is a diagram schematically showing an example of a cross-sectional structure of a substrate W after being processed in steps ST3A to ST3F; 4 is a timing chart showing an example of a source RF signal in steps ST3A to ST3F; 4 is a timing chart showing an example of bias RF signals in steps ST3A to ST3F; 4 is a timing chart showing an example of bias DC signals in steps ST3A to ST3F;
  • the bias signal is a pulse wave containing alternating two periods of different power or voltage levels.
  • the bias signal is a continuous wave.
  • a substrate having a silicon-containing film and a mask film formed over the silicon-containing film on a substrate support within a chamber and (b) processing within the chamber.
  • the signal is a pulse wave comprising alternating third periods having a third power or voltage level and fourth periods having a fourth power or voltage level lower than the third power or voltage level.
  • a plasma processing method is provided in which the fourth power or voltage level with respect to the third power or voltage level is increased as the etching progresses.
  • the RF signal is a pulsed wave containing alternating periods of two different power levels.
  • the RF signal is continuous wave.
  • an RF signal is used as the bias signal.
  • a DC signal is used as the bias signal.
  • a substrate having a silicon-containing film and a mask film formed over the silicon-containing film on a substrate support within a chamber and (b) processing within the chamber.
  • processing within the chamber supplying a source RF signal to generate a plasma of the process gas in the chamber and supplying a bias RF signal to the substrate support to etch the substrate.
  • the source RF signal is a pulsed wave comprising alternating first durations having a first power level and second durations having a second power level lower than the first power level;
  • the signal is a pulse wave comprising alternating third periods having a third power level and fourth periods having a fourth power level lower than the third power level; (c1) decreasing the second power level relative to the first power level as the etch progresses; and (c2) increasing the fourth power level relative to the third power level as the etch progresses.
  • step (c1) holds the fourth power level constant relative to the third power level
  • step (c2) holds the second power level constant relative to the first power level
  • step (c2) is performed after step (c1) is performed.
  • step (c2) is performed after the etching time or etching depth exceeds a given time or depth in step (c).
  • step (c) the pressure in the chamber is lowered as the etching progresses.
  • the process gas comprises CxFy gas (x, y are positive integers ) or CsHtFu gas ( s , t, u are positive integers).
  • the recesses formed by the step (c) have an aspect ratio of 100 or more.
  • the duty ratio of the pulse wave of the source RF signal and/or the duty ratio of the pulse wave of the bias RF signal is 20% or more and 80% or less.
  • the silicon-containing film is a laminated film of a silicon oxide film and a silicon nitride film.
  • the film stack is included in a 3D-NAND structure.
  • the mask film is an amorphous carbon film.
  • a chamber a substrate support disposed within the chamber and configured to support a substrate having a silicon-containing film and a mask film formed on the silicon-containing film; and a power supply that produces a source RF signal and a bias RF signal, the source RF signal having a first power level for a first period of time and a first a pulse wave comprising alternating second periods having a second power level less than one power level, wherein the bias RF signal has third periods having a third power level and a third power level; a power supply, which is a pulsed wave comprising alternating fourth periods having a fourth power level lower than the power level; a controller configured to provide a bias RF signal from to the substrate support to control etching of the substrate, the controller controlling the first power level as the etching progresses.
  • a plasma processing system is provided that performs controlled decrease of the second power level and controlled increase of the fourth power level with respect to the third power level as etching progresses.
  • a capacitively coupled plasma processing apparatus is included.
  • the source RF signal is provided to the substrate support.
  • FIG. 1 is a diagram for explaining a configuration example of a capacitively coupled plasma processing apparatus.
  • the plasma processing system includes a capacitively coupled plasma processing apparatus 1 and a controller 2.
  • a capacitively coupled plasma processing apparatus 1 includes a plasma processing chamber 10 , a gas supply section 20 , a power supply 30 and an exhaust system 40 . Further, the plasma processing apparatus 1 includes a substrate support section 11 and a gas introduction section.
  • the gas introduction is configured to introduce at least one process gas into the plasma processing chamber 10 .
  • the gas introduction section includes a showerhead 13 .
  • a substrate support 11 is positioned within the plasma processing chamber 10 .
  • the showerhead 13 is arranged above the substrate support 11 . In one embodiment, showerhead 13 forms at least a portion of the ceiling of plasma processing chamber 10 .
  • the plasma processing chamber 10 has a plasma processing space 10 s defined by a showerhead 13 , side walls 10 a of the plasma processing chamber 10 and a substrate support 11 .
  • the plasma processing chamber 10 has at least one gas supply port for supplying at least one processing gas to the plasma processing space 10s and at least one gas exhaust port for exhausting gas from the plasma processing space.
  • Plasma processing chamber 10 is grounded.
  • the showerhead 13 and substrate support 11 are electrically insulated from the plasma processing chamber 10 housing.
  • the substrate support section 11 includes a body section 111 and a ring assembly 112 .
  • the body portion 111 has a central region 111 a for supporting the substrate W and an annular region 111 b for supporting the ring assembly 112 .
  • a wafer is an example of a substrate W;
  • the annular region 111b of the body portion 111 surrounds the central region 111a of the body portion 111 in plan view.
  • the substrate W is arranged on the central region 111 a of the main body 111
  • the ring assembly 112 is arranged on the annular region 111 b of the main body 111 so as to surround the substrate W on the central region 111 a of the main body 111 .
  • the central region 111a is also referred to as a substrate support surface for supporting the substrate W
  • the annular region 111b is also referred to as a ring support surface for supporting the edge ring assembly 112.
  • the body portion 111 includes a base 1110 and an electrostatic chuck 1111 .
  • Base 1110 includes a conductive member.
  • a conductive member of the base 1110 can function as a bottom electrode.
  • An electrostatic chuck 1111 is arranged on the base 1110 .
  • the electrostatic chuck 1111 includes a ceramic member 1111a and an electrostatic electrode 1111b disposed within the ceramic member 1111a.
  • Ceramic member 1111a has a central region 111a. In one embodiment, the ceramic member 1111a also has an annular region 111b. Note that another member surrounding the electrostatic chuck 1111, such as an annular electrostatic chuck or an annular insulating member, may have the annular region 111b.
  • the ring assembly 112 may be placed on the annular electrostatic chuck or the annular insulating member, or may be placed on both the electrostatic chuck 1111 and the annular insulating member.
  • An RF or DC electrode may also be placed within the ceramic member 1111a, in which case the RF or DC electrode serves as the bottom electrode.
  • An RF or DC electrode is also referred to as a bias electrode when a bias RF signal or DC signal, described below, is connected to the RF or DC electrode. Note that both the conductive member of the base 1110 and the RF or DC electrode may function as the two bottom electrodes.
  • Ring assembly 112 includes one or more annular members.
  • the one or more annular members include one or more edge rings and at least one cover ring.
  • the edge ring is made of a conductive material or an insulating material
  • the cover ring is made of an insulating material.
  • the substrate supporter 11 may include a temperature control module configured to adjust at least one of the electrostatic chuck 1111, the ring assembly 112, and the substrate to a target temperature.
  • the temperature control module may include heaters, heat transfer media, channels 1110a, or combinations thereof.
  • channels 1110a are formed in base 1110 and one or more heaters are located in ceramic member 1111a of electrostatic chuck 1111.
  • the substrate supporter 11 may include a heat transfer gas supply unit configured to supply a heat transfer gas between the back surface of the substrate W and the central region 111a.
  • the showerhead 13 is configured to introduce at least one processing gas from the gas supply unit 20 into the plasma processing space 10s.
  • the showerhead 13 has at least one gas supply port 13a, at least one gas diffusion chamber 13b, and multiple gas introduction ports 13c.
  • the processing gas supplied to the gas supply port 13a passes through the gas diffusion chamber 13b and is introduced into the plasma processing space 10s through a plurality of gas introduction ports 13c.
  • showerhead 13 also includes an upper electrode.
  • the gas introduction part may include one or more side gas injectors (SGI: Side Gas Injector) attached to one or more openings formed in the side wall 10a.
  • SGI Side Gas Injector
  • the gas supply unit 20 may include at least one gas source 21 and at least one flow controller 22 .
  • gas supply 20 is configured to supply at least one process gas from respective gas sources 21 through respective flow controllers 22 to showerhead 13 .
  • Each flow controller 22 may include, for example, a mass flow controller or a pressure controlled flow controller.
  • gas supply 20 may include one or more flow modulation devices that modulate or pulse the flow of at least one process gas.
  • Power supply 30 includes an RF power supply 31 coupled to plasma processing chamber 10 via at least one impedance matching circuit.
  • RF power supply 31 is configured to supply at least one RF signal (RF power), such as a source RF signal and a bias RF signal, to at least one bottom electrode and/or at least one top electrode.
  • RF power source 31 may function as at least part of a plasma generator configured to generate a plasma from one or more process gases in plasma processing chamber 10 .
  • a bias RF signal to at least one lower electrode, a bias potential is generated in the substrate W, and ion components in the formed plasma can be drawn into the substrate W.
  • the RF power supply 31 includes a first RF generator 31a and a second RF generator 31b.
  • the first RF generator 31a is coupled to at least one lower electrode and/or at least one upper electrode via at least one impedance matching circuit to generate a source RF signal (source RF power) for plasma generation.
  • the source RF signal has a frequency within the range of 10 MHz to 150 MHz.
  • the first RF generator 31a may be configured to generate multiple source RF signals having different frequencies.
  • One or more source RF signals generated are provided to at least one bottom electrode and/or at least one top electrode.
  • the second RF generator 31b is coupled to at least one lower electrode via at least one impedance matching circuit and configured to generate a bias RF signal (bias RF power).
  • the frequency of the bias RF signal may be the same as or different from the frequency of the source RF signal.
  • the bias RF signal has a frequency lower than the frequency of the source RF signal.
  • the bias RF signal has a frequency within the range of 100 kHz to 60 MHz.
  • the second RF generator 31b may be configured to generate multiple bias RF signals having different frequencies.
  • One or more bias RF signals generated are provided to at least one bottom electrode. Also, in various embodiments, at least one of the source RF signal and the bias RF signal may be pulsed.
  • Power supply 30 may also include a DC power supply 32 coupled to plasma processing chamber 10 .
  • the DC power supply 32 includes a first DC generator 32a and a second DC generator 32b.
  • the first DC generator 32a is connected to the at least one bottom electrode and configured to generate a first DC signal.
  • a generated first bias DC signal is applied to at least one bottom electrode.
  • the second DC generator 32b is connected to the at least one top electrode and configured to generate a second DC signal. The generated second DC signal is applied to at least one top electrode.
  • At least one of the first and second DC signals may be pulsed.
  • a sequence of DC-based voltage pulses is applied to at least one bottom electrode and/or at least one top electrode.
  • the voltage pulses may have rectangular, trapezoidal, triangular, or combinations thereof pulse waveforms.
  • a waveform generator for generating a sequence of voltage pulses from a DC signal is connected between the first DC generator 32a and the at least one bottom electrode. Therefore, the first DC generator 32a and the waveform generator constitute a voltage pulse generator.
  • the voltage pulse generator is connected to at least one upper electrode.
  • the voltage pulse may have a positive polarity or a negative polarity.
  • the sequence of voltage pulses may include one or more positive voltage pulses and one or more negative voltage pulses in one cycle.
  • the first and second DC generators 32a and 32b may be provided in addition to the RF power supply 31, and the first DC generator 32a may be provided instead of the second RF generator 31b. good.
  • the exhaust system 40 may be connected to a gas exhaust port 10e provided at the bottom of the plasma processing chamber 10, for example.
  • Exhaust system 40 may include a pressure regulating valve and a vacuum pump.
  • the pressure regulating valve regulates the pressure in the plasma processing space 10s.
  • Vacuum pumps may include turbomolecular pumps, dry pumps, or combinations thereof.
  • the controller 2 processes computer-executable instructions that cause the plasma processing apparatus 1 to perform the various steps described in this disclosure. Controller 2 may be configured to control elements of plasma processing apparatus 1 to perform the various processes described herein. In one embodiment, part or all of the controller 2 may be included in the plasma processing apparatus 1 .
  • the control unit 2 may include, for example, a computer 2a.
  • the computer 2a may include, for example, a processing unit (CPU: Central Processing Unit) 2a1, a storage unit 2a2, and a communication interface 2a3.
  • Processing unit 2a1 can be configured to perform various control operations by reading a program from storage unit 2a2 and executing the read program. This program may be stored in the storage unit 2a2 in advance, or may be acquired via a medium when necessary.
  • the acquired program is stored in the storage unit 2a2, read from the storage unit 2a2 and executed by the processing unit 2a1.
  • the medium may be various storage media readable by the computer 2a, or may be a communication line connected to the communication interface 2a3.
  • the storage unit 2a2 may include RAM (Random Access Memory), ROM (Read Only Memory), HDD (Hard Disk Drive), SSD (Solid State Drive), or a combination thereof.
  • the communication interface 2a3 may communicate with the plasma processing apparatus 1 via a communication line such as a LAN (Local Area Network).
  • FIG. 2 is a flow chart showing a plasma processing method (hereinafter also referred to as "this processing method") according to one exemplary embodiment.
  • this processing method includes a step ST1 of providing a substrate, a step ST2 of supplying a processing gas, and a step ST3 of etching the substrate.
  • the step ST3 of etching the substrate includes a step ST3A of etching the first region, a step ST3B of etching the second region, a step ST3C of etching the third region, a step ST3D of etching the fourth region, and a step ST3D of etching the fifth region.
  • ST3E including step ST6F of etching the sixth region.
  • the processing in each step may be performed by the plasma processing system shown in FIG.
  • An example in which the control unit 2 controls each unit of the plasma processing apparatus 1 to perform the present processing method on the substrate W will be described below.
  • step ST ⁇ b>1 the substrate W is provided within the plasma processing space 10 s of the plasma processing apparatus 1 .
  • the substrate W is placed on the upper surface of the substrate support portion 11 .
  • FIG. 3 is a diagram showing an example of the cross-sectional structure of the substrate W provided in step ST1.
  • a silicon-containing film SF and a mask film MF are formed in this order on a base film UF.
  • the substrate W may be used, for example, in the manufacture of semiconductor devices including semiconductor memory devices such as DRAMs, 3D-NAND flash memories and the like.
  • the base film UF may be, for example, a silicon wafer or an organic film, dielectric film, metal film, semiconductor film, or the like formed on a silicon wafer.
  • the base film UF may be configured by laminating a plurality of films.
  • the silicon-containing film SF is a film to be etched in this processing method.
  • the silicon-containing film SF may be, for example, a silicon oxide film, a silicon nitride film, or a silicon oxynitride film.
  • the silicon-containing film SF may be configured by laminating a plurality of films.
  • the silicon-containing film SF may be configured by alternately stacking a silicon oxide film and a polycrystalline silicon film.
  • the silicon-containing film SF may be configured by alternately stacking a silicon oxide film and a silicon nitride film.
  • the mask film MF may be, for example, a carbon-containing film such as an amorphous carbon film, a spin-on carbon film, or a photoresist film.
  • the mask film MF may be a single layer mask consisting of one layer or a multilayer mask consisting of two or more layers.
  • Mask film MF has at least one opening OP.
  • the opening OP may have any shape when the substrate W is viewed from above, that is, when the substrate W is viewed from the top to the bottom in FIG.
  • the shape may be, for example, a circle, an ellipse, a rectangle, a line, or a combination of one or more of these.
  • the mask film MF may have multiple openings OP.
  • a processing gas is supplied into the plasma processing space 10s.
  • the processing gas is a gas used for etching the silicon-containing film SF formed on the substrate W.
  • the type of processing gas may be appropriately selected based on the material of the silicon-containing film SF, the material of the mask film MF, the material of the base film UF, the pattern of the mask film MF, the depth of etching, and the like.
  • the processing gas may include, for example , one or both of CxFy gas and CsHtFu gas .
  • the CxFy gas may be at least one selected from the group consisting of C4F6 gas, C4F8 gas, C3F6 gas and C7F8 gas .
  • the CsHtFu gas may be CH2F2 gas or CH3F gas .
  • the process gas may include a hydrogen-containing gas such as H2 gas or CH4 gas.
  • Step ST3 Etching
  • a source RF signal (RF power) is supplied from the first RF generator 31a to the lower electrode and/or the upper electrode.
  • a bias RF signal is supplied to the lower electrode from the second RF generator 31b.
  • plasma is generated from the processing gas supplied to the plasma processing space 10s, and a bias potential is generated on the substrate W as well.
  • Active species such as ions and radicals in the generated plasma are attracted to the substrate W, and the silicon-containing film SF is etched.
  • the timing to start supplying the source RF signal and the timing to start supplying the bias RF signal may be the same or different.
  • steps ST3A to ST3F of step ST3 the power levels of the source RF signal and the bias RF signal are changed as the etching of the silicon-containing film SF progresses. This point will be described with reference to FIGS. 4A to 4F, 5A to 5F, and 6A to 6F.
  • the progress of etching may be determined based on the elongation of the etching depth or the lapse of etching time.
  • 4A to 4F are diagrams showing examples of cross-sectional structures of the substrate W after being processed in steps ST3A to ST3F, respectively.
  • 5A to 5F are timing charts showing examples of source RF signals in steps ST3A to ST3F, respectively.
  • the horizontal axis indicates time.
  • the vertical axis indicates the effective value of the power level of the source RF signal.
  • “L 11 ”, “L 12 ”, “L 13 ”, and “L 14 ” indicate power levels lower than those indicated by “H 1 ”.
  • L 11 >L 12 >L 13 > L 14 holds between L 11 , L 12 , L 13 and L 14 (that is, L 11 has the highest power level and L 14 has the lowest power level).
  • “L 14 ” includes when the power level is 0 W, ie no signal is applied. As shown in FIGS.
  • the source RF signal has a H1 period (first period) with a power level of H 1 (first power) and L 11 , L 12 , L lower than H 1 .
  • 6A to 6F are timing charts showing examples of bias RF signals in steps ST3A to ST3F, respectively.
  • the horizontal axis indicates time.
  • the vertical axis indicates the effective value of the power level of the bias RF signal.
  • “L 21 ”, “L 22 ”, and “L 23 ” indicate lower power levels than indicated by “H 2 ”.
  • L 21 , L 22 and L 23 have the relationship of L 21 ⁇ L 22 ⁇ L 23 (that is, among L 21 , L 22 and L 23 , L 21 has the lowest power level and L 23 highest power level).
  • “L 21 ” includes when the power level is 0 W, ie no signal is being supplied.
  • the bias RF signal has an H2 period (third period) having a power level of H2 (third power) and a power level of L21 , L22 or L23 lower than H2 (fourth power). It is a pulse wave that alternately includes an L2 period (fourth period).
  • Step ST3A Etching of First Region
  • the step ST3A is performed in the first region from the start of etching until the etching depth of the recess RC formed by etching reaches d1 (see FIG. 4A).
  • the recess RC is a portion of the silicon-containing film SF corresponding to the opening OP of the mask film MF.
  • a pulse wave that alternately includes H1 periods having a power level of H1 and L1 periods having a power level L11 lower than H1 is used as the source RF signal (see FIG. 5A).
  • the bias RF signal a pulse wave that alternately includes H2 periods having a power level of H2 and L2 periods having a power level L21 lower than H2 is used (see FIG. 6A).
  • Step ST3B Etching of Second Region
  • the step ST3B is performed in the second region until the etching depth of the recess RC reaches d2 (see FIG. 4B).
  • the etching depth d2 is deeper than the etching depth d1, and the relationship of d2>d1 holds.
  • a pulse wave that alternately includes H1 periods having a power level of H1 and L1 periods having a power level L12 lower than H1 is used as the source RF signal (see FIG. 5B).
  • the power level L12 of the source RF signal of step ST3B is lower than the power level L11 of the source RF signal of step ST3A.
  • the same pulse wave as in step ST3A is used (see FIG. 6B).
  • Step ST3C etching of the third region
  • the step ST3C is performed in the third region until the etching depth of the recess RC reaches d3 (see FIG. 4C).
  • the etching depth d3 is deeper than the etching depth d2, and the relationship of d3>d2 holds.
  • the etching depth d3 may be, for example, half the depth to be etched in step ST3.
  • the etching depth d3 may be half the thickness of the silicon-containing film SF.
  • a pulse wave that alternately includes H1 periods having a power level of H1 and L1 periods having a power level L13 lower than H1 is used as the source RF signal (see FIG. 5C).
  • the power level L13 of the source RF signal of step ST3C is lower than the power level L12 of the source RF signal of step ST3B.
  • the bias RF signal the same pulse wave as in steps ST3A and ST3B is used (see FIG. 6C).
  • Step ST3D Etching of fourth region
  • the step ST3D is performed in the fourth region until the etching depth of the recess RC reaches d4 (see FIG. 4D).
  • the etching depth d4 is deeper than the etching depth d3, and the relationship of d4>d3 holds.
  • a pulse wave that alternately includes H1 periods having a power level of H1 and L1 periods having a power level L14 lower than H1 is used as the source RF signal (see FIG. 5D).
  • the power level L14 of the source RF signal of step ST3D is lower than the power level L13 of the source RF signal of step ST3C.
  • the bias RF signal the same pulse wave as in steps ST3A to ST3C is used (see FIG. 6D).
  • Step ST3E Etching of fifth region
  • the step ST3E is performed in the fifth region until the etching depth of the recess RC reaches d5 (see FIG. 4E).
  • the etching depth d5 is deeper than the etching depth d4, and the relationship of d2>d1 holds.
  • the same pulse wave as in step ST3D is used as the source RF signal (see FIG. 5E).
  • the bias RF signal a pulse wave containing alternating H2 periods with a power level of H2 and L2 periods with a power level L22 lower than H2 is used (see FIG. 6E).
  • the power level L22 of the bias RF signal in step ST3E is higher than the power level L21 of the bias RF signal in steps ST3A to ST3D.
  • Step ST3F Etching of sixth region
  • the step ST3F is performed in the sixth region until the etching depth of the recess RC reaches d6 (see FIG. 4F).
  • the etching depth d6 is deeper than the etching depth d5, and the relationship of d6>d5 holds.
  • the etching depth d6 is, for example, the film thickness of the silicon-containing film SF.
  • the step ST3F is performed until the bottom of the recess RC reaches the underlying film UF.
  • the aspect ratio of the recess RC in this state may be, for example, 20 or more, 30 or more, 40 or more, 50 or more, or 100 or more.
  • step ST3F the same pulse wave as in steps ST3D and ST3E is used as the source RF signal (see FIG. 5F).
  • the bias RF signal a pulse wave containing alternating H2 periods with a power level of H2 and L2 periods with a power level L23 lower than H2 is used (see FIG. 6E).
  • the power level L23 of the bias RF signal in step ST3F is higher than the power level L22 of the bias RF signal in step ST3E.
  • the duty ratio of the pulse wave of the source RF signal that is, the ratio of the H1 period to the H1 period and the L1 period may be 20% or more and 80% or less.
  • the duty ratio of the pulse wave of the bias RF signal that is, the ratio of the H2 period to the H2 period and the L2 period may be 20% or more and 80% or less.
  • the H1 period of the source RF signal may or may not be synchronous with the H2 period of the bias RF signal.
  • the time length of the H1 period of the source RF signal may be the same as or different from the time length of the H2 period of the bias RF signal. Part or all of the H1 period of the source RF signal may overlap with the H2 period of the bias RF signal.
  • step ST3 the power level of the source RF signal during the L1 period with respect to the power level H1 during the H1 period may decrease stepwise from step ST3A to step ST3D and become lowest in step ST3D to step 3F (FIG. 5A). (see FIG. 5F).
  • step ST3D to 3F high-density plasma is generated in this order in steps ST3A to ST3C, ie, in the etching of the shallower region of the recess RC.
  • steps ST3D to 3F that is, in the etching of the region where the recess RC is deeper, plasma with a lower density than in steps ST3A to ST3C is generated.
  • step ST3 the power level of the bias RF signal during the L2 period with respect to the power level H2 during the H2 period may be the lowest in steps ST3A to ST3D and increase stepwise from step ST3D to step ST3F (FIG. 6A). (see FIG. 6F).
  • a lower bias potential is applied to the substrate W in steps ST3A to ST3D, ie, the etching of the region where the recess RC is shallower than in the steps ST3E to ST3F, ie, the etching of the region where the recess RC is deeper. occur.
  • a higher bias potential is generated on the substrate W in step ST3F than in step ST3E.
  • step ST3 while the power level of the source RF signal during the L1 period is gradually decreased, that is, in steps ST3A to ST3D, the power level of the bias RF signal during the L2 period may be kept constant. Further, while the power level of the bias RF signal during the L2 period is increased stepwise, that is, in steps ST3D to ST3F, the power level of the source RF signal during the L1 period may be kept constant.
  • the shallower portion of the recess RC can be etched with a higher density plasma and a lower bias potential.
  • High - density plasma accelerates the dissociation of CxFy gas and/or CsHtFu gas in the process gas, making it easier to generate molecules with higher adsorption coefficients. Therefore, the amount of reaction products adhering to the mask film MF and the sidewalls of the recess RC may increase.
  • the high-density plasma reduces the flow of ions toward the substrate W, and the low bias potential reduces sputtering on the mask film MF and sidewalls of the recess RC.
  • This protective film can protect the side walls of the recess RC in etching after step ST3 (including etching in a region where the depth of the recess RC is deeper). Therefore, bowing in which the width of the opening of the recess RC is partially widened can be suppressed.
  • the deep region of the recess RC can be etched with a lower density plasma and a higher bias potential.
  • dissociation of CxFy gas and/or CsHtFu gas in the processing gas is difficult to promote, and molecules with high adsorption coefficients are difficult to generate . Therefore, the amount of reaction products adhering to the mask film MF and the sidewalls of the recesses RC can be reduced. As a result, narrowing of the openings of the mask film MF and the recesses RC can be suppressed, and changes in the incident angle of the ions entering the recesses RC can be suppressed.
  • the high density plasma may increase the flow of ions toward the bottom of the recess RC. Furthermore, since etching is performed at a high bias potential, the incident angle of ions entering the recess RC can be closer to the vertical. As described above, it is possible to prevent the bottom width (bottom CD) of the recess RC from being narrowed at a portion where the depth of the recess RC is deep.
  • step ST3 the power level of the source RF signal during the L1 period may be decreased in stages, and then the power level of the bias RF signal during the L2 period may be increased in stages.
  • the power level of the source RF signal during the L1 period may be kept constant, and only the power level of the bias RF signal during the L2 period may be increased stepwise.
  • only the power level of the source RF signal during the L1 period may be stepwise decreased while the power level of the bias RF signal during the L2 period may be kept constant.
  • the pulse wave of the source RF signal and the pulse wave of the bias RF signal may be used.
  • either the source RF signal or the bias RF signal may be continuous waves with no H1, L1, etc. periods.
  • a continuous wave source RF signal and a pulsed bias RF signal may be used.
  • the power level of the continuous wave of the source RF signal may be stepwise decreased
  • steps ST3D to ST3F the power level of the L2 period of the bias RF signal may be stepwise increased.
  • a pulsed source RF signal and a continuous biased RF signal may be used.
  • steps ST3A to ST3D the power level of the L1 period of the source RF signal may be stepwise decreased, and in steps ST3E to ST3F, the power level of the continuous wave of the bias RF signal may be stepwise increased. .
  • a bias RF signal may be used as the bias signal (power) supplied to the lower electrode.
  • a negative DC voltage may be supplied to the lower electrode as a bias DC signal from the first DC generator 32a.
  • the voltage level of the bias DC signal is the effective value of the absolute value of the negative DC voltage.
  • the bias DC signal may be pulsed or continuous wave.
  • the bias DC signal has a sequence of negative voltage pulses during H3.
  • the sequence of negative voltage pulses has, for example, a pulse frequency in the range of 100 kHz to 500 kHz.
  • the negative voltage pulse has a voltage level of V 1 (FIGS. 7A-7D), a voltage level of V 2 (FIG. 7E) or a voltage level of V 3 (FIG. 7F).
  • the waveform of the negative voltage pulse may have a rectangular, trapezoidal, triangular, or combination waveform.
  • V 1 , V 2 , and V 3 show negative values smaller than 0, and the relationship
  • the bias DC signal is a pulse wave containing alternating H3 periods with power levels of V 1 , V 2 or V 3 and L3 periods in which no bias DC signal is provided (voltage level is 0).
  • the bias DC signal may have a sequence of negative voltage pulses during the L3 period. In this case, the voltage level of the voltage of the negative voltage pulse is lower than the voltage level of the negative voltage pulse during the H3 period.
  • bias DC signal shown in FIGS. 7A to 7F is used, as in the case of using the bias RF signal shown in FIGS.
  • a lower bias potential is developed on the substrate W.
  • a higher bias potential is generated on the substrate W in step ST3F than in step ST3E.
  • step ST3 six regions may be provided in which etching is performed by changing the power levels of the source RF signal and the bias RF signal, depending on the depth of the recess RC.
  • the thickness of the silicon-containing film SF is divided into an upper region where the upper half of the thickness is etched and a lower region where the lower half is etched, and the power levels of the source RF signal and the bias RF signal are changed in the upper region and the lower region.
  • the area may be set according to the etching time instead of the etching depth (the depth of the recess RC).
  • step ST3 the pressure inside the plasma processing chamber 10 may be decreased as the etching progresses.
  • a higher density plasma can be generated at a portion where the recess RC is shallower, and a lower density plasma can be generated at a portion where the recess RC is deeper.
  • Etching progress may be determined based on the elongation of the etching depth or the elapse of the etching time.
  • this processing method was applied to the substrate W shown in FIG. 3, and the silicon-containing film SF was etched with a processing gas containing C 4 F 8 gas.
  • the silicon-containing film SF of the substrate W is a laminated film of a silicon oxide film and a silicon nitride film
  • the mask film MF is an amorphous carbon film.
  • the opening pattern of the mask film MF is a hole pattern.
  • the silicon-containing film SF is divided into six regions (referred to as "first region”, "second region”, etc. in order from the top), and in each region, the pulse wave of the source RF signal and the bias RF signal Etching was performed by changing the power level of the pulse wave.
  • the etching time for each region was 300 seconds.
  • Example 1 the power level of the source RF signal was stepped down during the L1 period, and then the power level of the bias RF signal was stepped up during the L2 period.
  • the power level H1 of the source RF signal during the H1 period was 7500 [W] in the first to sixth regions.
  • the power level of the source RF signal during the L1 period was 400 [W] in the first region, 200 [W] in the second region, and 0 [W] in the third to sixth regions.
  • the power level of the bias RF signal during the H2 period was 12000 [W] in all of the first to sixth regions.
  • the power level of the bias RF signal during the L2 period was 0 [W] in the first to fourth regions, 200 [W] in the fifth region, and 700 [W] in the sixth region.
  • Example 2 only the power level of the source RF signal during the L1 period was stepped down, while the power level of the bias RF signal during the L2 period was kept constant.
  • the power level H1 of the source RF signal during the H1 period was 7500 [W] in the first to sixth regions.
  • the power level of the source RF signal during the L1 period is 500 [W] in the first region, 300 [W] in the second region, 100 [W] in the third region, and 0 [W] in the fourth to sixth regions.
  • Met The power level of the bias RF signal during the H2 period was 12000 [W] in all of the first to sixth regions.
  • the power level of the bias RF signal during the L2 period was 0 [W] in all of the first to sixth regions.
  • Example 3 the power level of the source RF signal during the L1 period was kept constant, and only the power level of the bias RF signal during the L2 period was increased stepwise. Specifically, the power level H1 of the H1 period of the source RF signal was 7500 [W] in all of the first to sixth regions. The power level of the source RF signal during the L1 period was 0 [W] in the first to sixth regions. The power level of the bias RF signal during the H2 period was 12000 [W] in all of the first to sixth regions. The power level of the bias RF signal during the L2 period was 0 [W] in the first to fourth regions, 200 [W] in the fifth region, and 700 [W] in the sixth region.
  • the silicon-containing film SF of the substrate W having the same configuration and hole pattern as those of the substrate W in the example was etched with a processing gas containing a C 4 F 8 gas.
  • etching was continuously performed for 1800 seconds without changing the power level of the pulse wave of the source RF signal and the pulse wave of the bias RF signal.
  • the power level of the source RF signal during the H1 period was 7500 [W].
  • the power level of the source RF signal during the L1 period was 0 [W].
  • the power level of the bias RF signal during the H2 period was 12000 [W].
  • the power level of the bias RF signal during the L2 period was 0 [W].
  • Table 1 shows various measurement results for each example and reference example.
  • D is the etching depth of the silicon-containing film SF after processing.
  • B W is the maximum opening width (Boeing CD) of the recess RC.
  • B t is the width (bottom CD) of the bottom of the recess RC.
  • B W ⁇ B t is the difference between Boeing CD and Bottom CD.
  • the difference between the Boeing CD and the bottom CD in the example was improved compared to the reference example. That is, in the example, it was possible to expand the bottom width of the recess RC while suppressing bowing due to etching.
  • this processing method may be performed using a plasma processing apparatus using an arbitrary plasma source, such as inductively coupled plasma or microwave plasma, other than the capacitively coupled plasma processing apparatus 1 .
  • Plasma processing apparatus Control unit 10 Plasma processing chamber 10s Plasma processing space 11 Substrate support 13 shower head 20 Gas supply unit 31a First RF generator 31b Second RF generator 32a First DC generator MF Mask film OP Opening SF Silicon-containing film RC Recess UF Bottom base film, W... substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

Provided is a technology that controls the shape of a recessed section formed by etching. This plasma processing method includes: (a) a step in which a substrate having a silicon-including film and a masking film that is formed on the silicon-including film is provided on a substrate support part in a chamber; (b) a step in which a processing gas is supplied into the chamber; and (c) a step in which an RF signal is supplied and plasma of the processing gas is generated in the chamber, while a biasing signal is supplied to the substrate support part, and the substrate is etched. The RF signal is a pulsed wave that includes, in an alternating manner, first periods having a first power level and second periods having a second power level that is lower than the first power level. During step (c), the second power level is reduced relative to the first power level as the etching proceeds.

Description

プラズマ処理方法及びプラズマ処理システムPlasma processing method and plasma processing system
 本開示の例示的実施形態は、プラズマ処理方法及びプラズマ処理システムに関する。 Exemplary embodiments of the present disclosure relate to plasma processing methods and plasma processing systems.
 特許文献1には、シリコン含有膜をエッチングする方法が開示されている。 Patent Document 1 discloses a method of etching a silicon-containing film.
   特開2016-39309号公報 Japanese Patent Application Laid-Open No. 2016-39309
 本開示は、エッチングで形成される凹部の形状を制御する技術を提供する。 The present disclosure provides a technique for controlling the shape of recesses formed by etching.
 本開示の一つの例示的実施形態において、(a)シリコン含有膜と前記シリコン含有膜上に形成されたマスク膜とを有する基板をチャンバ内の基板支持部上に提供する工程と、(b)前記チャンバ内に処理ガスを供給する工程と、(c)RF信号を供給して前記チャンバ内に前記処理ガスのプラズマを生成するとともに前記基板支持部にバイアス信号を供給して、前記基板をエッチングする工程と、を含み、前記RF信号は、第1の電力レベルを有する第1の期間と、前記第1の電力レベルよりも低い第2の電力レベルを有する第2の期間とを交互に含むパルス波であり、前記(c)の工程において、エッチングの進行に伴って前記第1の電力レベルに対する前記第2の電力レベルを減少させる、プラズマ処理方法が提供される。 In one exemplary embodiment of the present disclosure, the steps of (a) providing a substrate having a silicon-containing film and a mask film formed over the silicon-containing film on a substrate support within a chamber; providing a process gas into the chamber; and (c) providing an RF signal to generate a plasma of the process gas within the chamber and a bias signal to the substrate support to etch the substrate. wherein the RF signal includes alternating first time periods having a first power level and second time periods having a second power level lower than the first power level. A plasma processing method is provided in which the second power level is reduced with respect to the first power level as the etching progresses in step (c).
 本開示の一つの例示的実施形態によれば、エッチングで形成される凹部の形状を制御することができる。 According to one exemplary embodiment of the present disclosure, the shape of recesses formed by etching can be controlled.
プラズマ処理システム1を概略的に示す図である。1 schematically shows a plasma processing system 1; FIG. 本処理方法の一例を示すフローチャートである。It is a flow chart which shows an example of this processing method. 工程ST1で提供される基板Wの断面構造の一例を模式的に示す図である。It is a figure which shows typically an example of the cross-sectional structure of the board|substrate W provided by process ST1. 工程ST3A乃至ST3Fにおける処理後の基板Wの断面構造の一例を模式的に示す図である。FIG. 4 is a diagram schematically showing an example of a cross-sectional structure of a substrate W after being processed in steps ST3A to ST3F; 工程ST3A乃至ST3FにおけるソースRF信号の一例を示すタイミングチャートである。4 is a timing chart showing an example of a source RF signal in steps ST3A to ST3F; 工程ST3A乃至ST3FにおけるバイアスRF信号の一例を示すタイミングチャートである。4 is a timing chart showing an example of bias RF signals in steps ST3A to ST3F; 工程ST3A乃至ST3FにおけるバイアスDC信号の一例を示すタイミングチャートである。4 is a timing chart showing an example of bias DC signals in steps ST3A to ST3F;
 以下、本開示の各実施形態について説明する。 Each embodiment of the present disclosure will be described below.
 一つの例示的実施形態において、(a)シリコン含有膜とシリコン含有膜上に形成されたマスク膜とを有する基板をチャンバ内の基板支持部上に提供する工程と、(b)チャンバ内に処理ガスを供給する工程と、(c)RF信号を供給してチャンバ内に処理ガスのプラズマを生成するとともに基板支持部にバイアス信号を供給して、基板をエッチングする工程と、を含み、RF信号は、第1の電力レベルを有する第1の期間と、第1の電力レベルよりも低い第2の電力レベルを有する第2の期間とを交互に含むパルス波であり、(c)の工程において、エッチングの進行に伴って第1の電力レベルに対する第2の電力レベルを減少させるプラズマ処理方法が提供される。 In one exemplary embodiment, (a) providing a substrate having a silicon-containing film and a mask film formed over the silicon-containing film on a substrate support within a chamber; and (b) processing within the chamber. and (c) providing an RF signal to create a plasma of the process gas in the chamber and a bias signal to the substrate support to etch the substrate, the RF signal comprising: is a pulse wave that alternately includes a first period having a first power level and a second period having a second power level lower than the first power level, and in step (c) A plasma processing method is provided that decreases a second power level relative to the first power level as the etch progresses.
 一つの例示的実施形態において、バイアス信号は、電力又は電圧レベルが異なる2つの期間を交互に含むパルス波である。 In one exemplary embodiment, the bias signal is a pulse wave containing alternating two periods of different power or voltage levels.
 一つの例示的実施形態において、バイアス信号は、連続波である。 In one exemplary embodiment, the bias signal is a continuous wave.
 一つの例示的実施形態において、(a)シリコン含有膜とシリコン含有膜上に形成されたマスク膜とを有する基板をチャンバ内の基板支持部上に提供する工程と、(b)チャンバ内に処理ガスを供給する工程と、(c)RF信号を供給してチャンバ内に処理ガスのプラズマを生成するとともに、基板支持部にバイアス信号を供給して、基板をエッチングする工程と、を含み、バイアス信号は、第3の電力又は電圧レベルを有する第3の期間と、第3の電力又は電圧レベルよりも低い第4の電力又は電圧レベルを有する第4の期間とを交互に含むパルス波であり、(c)の工程において、第3の電力又は電圧レベルに対する第4の電力又は電圧レベルをエッチングの進行に伴って増加させるプラズマ処理方法が提供される。 In one exemplary embodiment, (a) providing a substrate having a silicon-containing film and a mask film formed over the silicon-containing film on a substrate support within a chamber; and (b) processing within the chamber. (c) providing an RF signal to generate a plasma of the process gas in the chamber and a bias signal to the substrate support to etch the substrate; The signal is a pulse wave comprising alternating third periods having a third power or voltage level and fourth periods having a fourth power or voltage level lower than the third power or voltage level. , (c), a plasma processing method is provided in which the fourth power or voltage level with respect to the third power or voltage level is increased as the etching progresses.
 一つの例示的実施形態において、RF信号は、電力レベルが異なる2つの期間を交互に含むパルス波である。 In one exemplary embodiment, the RF signal is a pulsed wave containing alternating periods of two different power levels.
 一つの例示的実施形態において、RF信号は、連続波である。 In one exemplary embodiment, the RF signal is continuous wave.
 一つの例示的実施形態において、バイアス信号として、RF信号を用いる。 In one exemplary embodiment, an RF signal is used as the bias signal.
 一つの例示的実施形態において、バイアス信号として、DC信号を用いる。 In one exemplary embodiment, a DC signal is used as the bias signal.
 一つの例示的実施形態において、(a)シリコン含有膜とシリコン含有膜上に形成されたマスク膜とを有する基板をチャンバ内の基板支持部上に提供する工程と、(b)チャンバ内に処理ガスを供給する工程と、(c)ソースRF信号を供給してチャンバ内に処理ガスのプラズマを生成するとともに、基板支持部にバイアスRF信号を供給して、基板をエッチングする工程と、を含み、ソースRF信号は、第1の電力レベルを有する第1の期間と、第1の電力レベルよりも低い第2の電力レベルを有する第2の期間とを交互に含むパルス波であり、バイアスRF信号は、第3の電力レベルを有する第3の期間と、第3の電力レベルよりも低い第4の電力レベルを有する第4の期間とを交互に含むパルス波であり、(c)の工程は、(c1)エッチングの進行に伴って第1の電力レベルに対する第2の電力レベルを減少させる工程と、(c2)エッチングの進行に伴って第3の電力レベルに対する第4の電力レベルを増加させる工程と、を含むプラズマ処理方法が提供される。 In one exemplary embodiment, (a) providing a substrate having a silicon-containing film and a mask film formed over the silicon-containing film on a substrate support within a chamber; and (b) processing within the chamber. (c) supplying a source RF signal to generate a plasma of the process gas in the chamber and supplying a bias RF signal to the substrate support to etch the substrate. , the source RF signal is a pulsed wave comprising alternating first durations having a first power level and second durations having a second power level lower than the first power level; the signal is a pulse wave comprising alternating third periods having a third power level and fourth periods having a fourth power level lower than the third power level; (c1) decreasing the second power level relative to the first power level as the etch progresses; and (c2) increasing the fourth power level relative to the third power level as the etch progresses. A plasma processing method is provided, comprising the step of:
 一つの例示的実施形態において、(c1)の工程において、第3の電力レベルに対する第4の電力レベルを一定にし、(c2)の工程において、第1の電力レベルに対する第2の電力レベルを一定にする。 In one exemplary embodiment, step (c1) holds the fourth power level constant relative to the third power level, and step (c2) holds the second power level constant relative to the first power level. to
 一つの例示的実施形態において、(c)の工程において、(c1)の工程を行った後、(c2)の工程を行う。 In one exemplary embodiment, in step (c), step (c2) is performed after step (c1) is performed.
 一つの例示的実施形態において、(c)の工程において、エッチング時間又はエッチングの深さが所与の時間又は深さを超えた後に、(c2)の工程を行う。 In one exemplary embodiment, step (c2) is performed after the etching time or etching depth exceeds a given time or depth in step (c).
 一つの例示的実施形態において、(c)の工程において、エッチングの進行に伴って、チャンバ内の圧力を低下させる。 In one exemplary embodiment, in step (c), the pressure in the chamber is lowered as the etching progresses.
 一つの例示的実施形態において、処理ガスは、Cガス(x、yは正の整数)又はCガス(s、t,uは正の整数)を含む。 In one exemplary embodiment, the process gas comprises CxFy gas (x, y are positive integers ) or CsHtFu gas ( s , t, u are positive integers).
 一つの例示的実施形態において、(c)の工程により形成される凹部のアスペクト比が100以上である。 In one exemplary embodiment, the recesses formed by the step (c) have an aspect ratio of 100 or more.
 一つの例示的実施形態において、ソースRF信号のパルス波のデューティ比、および/または、バイアスRF信号のパルス波のデューティ比は、20%以上80%以下である。 In one exemplary embodiment, the duty ratio of the pulse wave of the source RF signal and/or the duty ratio of the pulse wave of the bias RF signal is 20% or more and 80% or less.
 一つの例示的実施形態において、シリコン含有膜は、シリコン酸化膜とシリコン窒化膜との積層膜である。 In one exemplary embodiment, the silicon-containing film is a laminated film of a silicon oxide film and a silicon nitride film.
 一つの例示的実施形態において、積層膜は、3D-NAND構造に含まれる。 In one exemplary embodiment, the film stack is included in a 3D-NAND structure.
 一つの例示的実施形態において、マスク膜は、アモルファスカーボン膜である。 In one exemplary embodiment, the mask film is an amorphous carbon film.
 一つの例示的実施形態において、チャンバと、チャンバ内に設けられ、シリコン含有膜とシリコン含有膜上に形成されたマスク膜とを有する基板を支持するように構成された基板支持部と、チャンバ内に処理ガスを供給するように構成されたガス供給部と、ソースRF信号及びバイアスRF信号を生成する電源であって、ソースRF信号は、第1の電力レベルを有する第1の期間と、第1の電力レベルよりも低い第2の電力レベルを有する第2の期間とを交互に含むパルス波であり、バイアスRF信号は、第3の電力レベルを有する第3の期間と、第3の電力レベルよりも低い第4の電力レベルを有する第4の期間とを交互に含むパルス波である、電源と、電源からソースRF信号を供給してチャンバ内に処理ガスのプラズマを生成するとともに、電源からバイアスRF信号を基板支持部に供給して、基板をエッチングする制御を実行するように構成された制御部と、を有し、制御部は、エッチングの進行に伴って第1の電力レベルに対する第2の電力レベルを減少させる制御と、エッチングの進行に伴って第3の電力レベルに対する第4の電力レベルを増加させる制御と、を実行するプラズマ処理システムを提供する。 In one exemplary embodiment, a chamber; a substrate support disposed within the chamber and configured to support a substrate having a silicon-containing film and a mask film formed on the silicon-containing film; and a power supply that produces a source RF signal and a bias RF signal, the source RF signal having a first power level for a first period of time and a first a pulse wave comprising alternating second periods having a second power level less than one power level, wherein the bias RF signal has third periods having a third power level and a third power level; a power supply, which is a pulsed wave comprising alternating fourth periods having a fourth power level lower than the power level; a controller configured to provide a bias RF signal from to the substrate support to control etching of the substrate, the controller controlling the first power level as the etching progresses. A plasma processing system is provided that performs controlled decrease of the second power level and controlled increase of the fourth power level with respect to the third power level as etching progresses.
 一つの例示的実施形態において、容量結合型のプラズマ処理装置を含む。 In one exemplary embodiment, a capacitively coupled plasma processing apparatus is included.
 一つの例示的実施形態において、ソースRF信号は、基板支持部に供給される。 In one exemplary embodiment, the source RF signal is provided to the substrate support.
 以下、図面を参照して、本開示の各実施形態について詳細に説明する。なお、各図面において同一または同様の要素には同一の符号を付し、重複する説明を省略する。特に断らない限り、図面に示す位置関係に基づいて上下左右等の位置関係を説明する。図面の寸法比率は実際の比率を示すものではなく、また、実際の比率は図示の比率に限られるものではない。 Hereinafter, each embodiment of the present disclosure will be described in detail with reference to the drawings. In each drawing, the same or similar elements are denoted by the same reference numerals, and overlapping descriptions are omitted. Unless otherwise specified, positional relationships such as top, bottom, left, and right will be described based on the positional relationships shown in the drawings. The dimensional ratios in the drawings do not indicate the actual ratios, and the actual ratios are not limited to the illustrated ratios.
<プラズマ処理システムの構成例>
 以下に、プラズマ処理システムの構成例について説明する。図1は、容量結合型のプラズマ処理装置の構成例を説明するための図である。
<Configuration example of plasma processing system>
A configuration example of the plasma processing system will be described below. FIG. 1 is a diagram for explaining a configuration example of a capacitively coupled plasma processing apparatus.
 プラズマ処理システムは、容量結合型のプラズマ処理装置1及び制御部2を含む。容量結合型のプラズマ処理装置1は、プラズマ処理チャンバ10、ガス供給部20、電源30及び排気システム40を含む。また、プラズマ処理装置1は、基板支持部11及びガス導入部を含む。ガス導入部は、少なくとも1つの処理ガスをプラズマ処理チャンバ10内に導入するように構成される。ガス導入部は、シャワーヘッド13を含む。基板支持部11は、プラズマ処理チャンバ10内に配置される。シャワーヘッド13は、基板支持部11の上方に配置される。一実施形態において、シャワーヘッド13は、プラズマ処理チャンバ10の天部(ceiling)の少なくとも一部を構成する。プラズマ処理チャンバ10は、シャワーヘッド13、プラズマ処理チャンバ10の側壁10a及び基板支持部11により規定されたプラズマ処理空間10sを有する。プラズマ処理チャンバ10は、少なくとも1つの処理ガスをプラズマ処理空間10sに供給するための少なくとも1つのガス供給口と、プラズマ処理空間からガスを排出するための少なくとも1つのガス排出口とを有する。プラズマ処理チャンバ10は接地される。シャワーヘッド13及び基板支持部11は、プラズマ処理チャンバ10筐体とは電気的に絶縁される。 The plasma processing system includes a capacitively coupled plasma processing apparatus 1 and a controller 2. A capacitively coupled plasma processing apparatus 1 includes a plasma processing chamber 10 , a gas supply section 20 , a power supply 30 and an exhaust system 40 . Further, the plasma processing apparatus 1 includes a substrate support section 11 and a gas introduction section. The gas introduction is configured to introduce at least one process gas into the plasma processing chamber 10 . The gas introduction section includes a showerhead 13 . A substrate support 11 is positioned within the plasma processing chamber 10 . The showerhead 13 is arranged above the substrate support 11 . In one embodiment, showerhead 13 forms at least a portion of the ceiling of plasma processing chamber 10 . The plasma processing chamber 10 has a plasma processing space 10 s defined by a showerhead 13 , side walls 10 a of the plasma processing chamber 10 and a substrate support 11 . The plasma processing chamber 10 has at least one gas supply port for supplying at least one processing gas to the plasma processing space 10s and at least one gas exhaust port for exhausting gas from the plasma processing space. Plasma processing chamber 10 is grounded. The showerhead 13 and substrate support 11 are electrically insulated from the plasma processing chamber 10 housing.
 基板支持部11は、本体部111及びリングアセンブリ112を含む。本体部111は、基板Wを支持するための中央領域111aと、リングアセンブリ112を支持するための環状領域111bとを有する。ウェハは基板Wの一例である。本体部111の環状領域111bは、平面視で本体部111の中央領域111aを囲んでいる。基板Wは、本体部111の中央領域111a上に配置され、リングアセンブリ112は、本体部111の中央領域111a上の基板Wを囲むように本体部111の環状領域111b上に配置される。従って、中央領域111aは、基板Wを支持するための基板支持面とも呼ばれ、環状領域111bは、エッジリングアセンブリ112を支持するためのリング支持面とも呼ばれる。 The substrate support section 11 includes a body section 111 and a ring assembly 112 . The body portion 111 has a central region 111 a for supporting the substrate W and an annular region 111 b for supporting the ring assembly 112 . A wafer is an example of a substrate W; The annular region 111b of the body portion 111 surrounds the central region 111a of the body portion 111 in plan view. The substrate W is arranged on the central region 111 a of the main body 111 , and the ring assembly 112 is arranged on the annular region 111 b of the main body 111 so as to surround the substrate W on the central region 111 a of the main body 111 . Accordingly, the central region 111a is also referred to as a substrate support surface for supporting the substrate W, and the annular region 111b is also referred to as a ring support surface for supporting the edge ring assembly 112. FIG.
 一実施形態において、本体部111は、基台1110及び静電チャック1111を含む。基台1110は、導電性部材を含む。基台1110の導電性部材は下部電極として機能し得る。静電チャック1111は、基台1110の上に配置される。静電チャック1111は、セラミック部材1111aとセラミック部材1111a内に配置される静電電極1111bとを含む。セラミック部材1111aは、中央領域111aを有する。一実施形態において、セラミック部材1111aは、環状領域111bも有する。なお、環状静電チャックや環状絶縁部材のような、静電チャック1111を囲む他の部材が環状領域111bを有してもよい。この場合、リングアセンブリ112は、環状静電チャック又は環状絶縁部材の上に配置されてもよく、静電チャック1111と環状絶縁部材の両方の上に配置されてもよい。また、RF又はDC電極がセラミック部材1111a内に配置されてもよく、この場合、RF又はDC電極が下部電極として機能する。後述するバイアスRF信号又はDC信号がRF又はDC電極に接続される場合、RF又はDC電極はバイアス電極とも呼ばれる。なお、基台1110の導電性部材とRF又はDC電極との両方が2つの下部電極として機能してもよい。 In one embodiment, the body portion 111 includes a base 1110 and an electrostatic chuck 1111 . Base 1110 includes a conductive member. A conductive member of the base 1110 can function as a bottom electrode. An electrostatic chuck 1111 is arranged on the base 1110 . The electrostatic chuck 1111 includes a ceramic member 1111a and an electrostatic electrode 1111b disposed within the ceramic member 1111a. Ceramic member 1111a has a central region 111a. In one embodiment, the ceramic member 1111a also has an annular region 111b. Note that another member surrounding the electrostatic chuck 1111, such as an annular electrostatic chuck or an annular insulating member, may have the annular region 111b. In this case, the ring assembly 112 may be placed on the annular electrostatic chuck or the annular insulating member, or may be placed on both the electrostatic chuck 1111 and the annular insulating member. An RF or DC electrode may also be placed within the ceramic member 1111a, in which case the RF or DC electrode serves as the bottom electrode. An RF or DC electrode is also referred to as a bias electrode when a bias RF signal or DC signal, described below, is connected to the RF or DC electrode. Note that both the conductive member of the base 1110 and the RF or DC electrode may function as the two bottom electrodes.
 リングアセンブリ112は、1又は複数の環状部材を含む。一実施形態において、1又は複数の環状部材は、1又は複数のエッジリングと少なくとも1つのカバーリングとを含む。エッジリングは、導電性材料又は絶縁材料で形成され、カバーリングは、絶縁材料で形成される。 Ring assembly 112 includes one or more annular members. In one embodiment, the one or more annular members include one or more edge rings and at least one cover ring. The edge ring is made of a conductive material or an insulating material, and the cover ring is made of an insulating material.
 また、基板支持部11は、静電チャック1111、リングアセンブリ112及び基板のうち少なくとも1つをターゲット温度に調節するように構成される温調モジュールを含んでもよい。温調モジュールは、ヒータ、伝熱媒体、流路1110a、又はこれらの組み合わせを含んでもよい。流路1110aには、ブラインやガスのような伝熱流体が流れる。一実施形態において、流路1110aが基台1110 内に形成され、1又は複数のヒータが静電チャック1111のセラミック部材1111a内に配置される。また、基板支持部11は、基板Wの裏面と中央領域111aとの間に伝熱ガスを供給するように構成された伝熱ガス供給部を含んでもよい。 Also, the substrate supporter 11 may include a temperature control module configured to adjust at least one of the electrostatic chuck 1111, the ring assembly 112, and the substrate to a target temperature. The temperature control module may include heaters, heat transfer media, channels 1110a, or combinations thereof. A heat transfer fluid, such as brine or gas, flows through flow path 1110a. In one embodiment, channels 1110a are formed in base 1110 and one or more heaters are located in ceramic member 1111a of electrostatic chuck 1111. As shown in FIG. Further, the substrate supporter 11 may include a heat transfer gas supply unit configured to supply a heat transfer gas between the back surface of the substrate W and the central region 111a.
 シャワーヘッド13は、ガス供給部20からの少なくとも1つの処理ガスをプラズマ処理空間10s内に導入するように構成される。シャワーヘッド13は、少なくとも1つのガス供給口13a、少なくとも1つのガス拡散室13b、及び複数のガス導入口13cを有する。ガス供給口13aに供給された処理ガスは、ガス拡散室13bを通過して複数のガス導入口13cからプラズマ処理空間10s内に導入される。また、シャワーヘッド13は、上部電極を含む。なお、ガス導入部は、シャワーヘッド13に加えて、側壁10aに形成された1又は複数の開口部に取り付けられる1又は複数のサイドガス注入部(SGI:Side Gas Injector)を含んでもよい。 The showerhead 13 is configured to introduce at least one processing gas from the gas supply unit 20 into the plasma processing space 10s. The showerhead 13 has at least one gas supply port 13a, at least one gas diffusion chamber 13b, and multiple gas introduction ports 13c. The processing gas supplied to the gas supply port 13a passes through the gas diffusion chamber 13b and is introduced into the plasma processing space 10s through a plurality of gas introduction ports 13c. Showerhead 13 also includes an upper electrode. In addition to the showerhead 13, the gas introduction part may include one or more side gas injectors (SGI: Side Gas Injector) attached to one or more openings formed in the side wall 10a.
 ガス供給部20は、少なくとも1つのガスソース21及び少なくとも1つの流量制御器22を含んでもよい。一実施形態において、ガス供給部20は、少なくとも1つの処理ガスを、それぞれに対応のガスソース21からそれぞれに対応の流量制御器22を介してシャワーヘッド13に供給するように構成される。各流量制御器22は、例えばマスフローコントローラ又は圧力制御式の流量制御器を含んでもよい。さらに、ガス供給部20は、少なくとも1つの処理ガスの流量を変調又はパルス化する1又はそれ以上の流量変調デバイスを含んでもよい。 The gas supply unit 20 may include at least one gas source 21 and at least one flow controller 22 . In one embodiment, gas supply 20 is configured to supply at least one process gas from respective gas sources 21 through respective flow controllers 22 to showerhead 13 . Each flow controller 22 may include, for example, a mass flow controller or a pressure controlled flow controller. Additionally, gas supply 20 may include one or more flow modulation devices that modulate or pulse the flow of at least one process gas.
 電源30は、少なくとも1つのインピーダンス整合回路を介してプラズマ処理チャンバ10に結合されるRF電源31を含む。RF電源31は、ソースRF信号及びバイアスRF信号のような少なくとも1つのRF信号(RF電力)を、少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に供給するように構成される。これにより、プラズマ処理空間10sに供給された少なくとも1つの処理ガスからプラズマが形成される。従って、RF電源31は、プラズマ処理チャンバ10において1又はそれ以上の処理ガスからプラズマを生成するように構成されるプラズマ生成部の少なくとも一部として機能し得る。また、バイアスRF信号を少なくとも1つの下部電極に供給することにより、基板Wにバイアス電位が発生し、形成されたプラズマ中のイオン成分を基板Wに引き込むことができる。 Power supply 30 includes an RF power supply 31 coupled to plasma processing chamber 10 via at least one impedance matching circuit. RF power supply 31 is configured to supply at least one RF signal (RF power), such as a source RF signal and a bias RF signal, to at least one bottom electrode and/or at least one top electrode. Thereby, plasma is formed from at least one processing gas supplied to the plasma processing space 10s. Accordingly, RF power source 31 may function as at least part of a plasma generator configured to generate a plasma from one or more process gases in plasma processing chamber 10 . Also, by supplying a bias RF signal to at least one lower electrode, a bias potential is generated in the substrate W, and ion components in the formed plasma can be drawn into the substrate W. FIG.
 一実施形態において、RF電源31は、第1のRF生成部31a及び第2のRF生成部31bを含む。第1のRF生成部31aは、少なくとも1つのインピーダンス整合回路を介して少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に結合され、プラズマ生成用のソースRF信号(ソースRF電力)を生成するように構成される。一実施形態において、ソースRF信号は、10MHz~150MHzの範囲内の周波数を有する。一実施形態において、第1のRF生成部31aは、異なる周波数を有する複数のソースRF信号を生成するように構成されてもよい。生成された1又は複数のソースRF信号は、少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に供給される。 In one embodiment, the RF power supply 31 includes a first RF generator 31a and a second RF generator 31b. The first RF generator 31a is coupled to at least one lower electrode and/or at least one upper electrode via at least one impedance matching circuit to generate a source RF signal (source RF power) for plasma generation. configured as In one embodiment, the source RF signal has a frequency within the range of 10 MHz to 150 MHz. In one embodiment, the first RF generator 31a may be configured to generate multiple source RF signals having different frequencies. One or more source RF signals generated are provided to at least one bottom electrode and/or at least one top electrode.
 第2のRF生成部31bは、少なくとも1つのインピーダンス整合回路を介して少なくとも1つの下部電極に結合され、バイアスRF信号(バイアスRF電力)を生成するように構成される。バイアスRF信号の周波数は、ソースRF信号の周波数と同じであっても異なっていてもよい。一実施形態において、バイアスRF信号は、ソースRF信号の周波数よりも低い周波数を有する。一実施形態において、バイアスRF信号は、100kHz~60MHzの範囲内の周波数を有する。一実施形態において、第2のRF生成部31bは、異なる周波数を有する複数のバイアスRF信号を生成するように構成されてもよい。生成された1又は複数のバイアスRF信号は、少なくとも1つの下部電極に供給される。また、種々の実施形態において、ソースRF信号及びバイアスRF信号のうち少なくとも1つがパルス化されてもよい。 The second RF generator 31b is coupled to at least one lower electrode via at least one impedance matching circuit and configured to generate a bias RF signal (bias RF power). The frequency of the bias RF signal may be the same as or different from the frequency of the source RF signal. In one embodiment, the bias RF signal has a frequency lower than the frequency of the source RF signal. In one embodiment, the bias RF signal has a frequency within the range of 100 kHz to 60 MHz. In one embodiment, the second RF generator 31b may be configured to generate multiple bias RF signals having different frequencies. One or more bias RF signals generated are provided to at least one bottom electrode. Also, in various embodiments, at least one of the source RF signal and the bias RF signal may be pulsed.
 また、電源30は、プラズマ処理チャンバ10に結合されるDC電源32を含んでもよい。DC電源32は、第1のDC生成部32a及び第2のDC生成部32bを含む。一実施形態において、第1のDC生成部32aは、少なくとも1つの下部電極に接続され、第1のDC信号を生成するように構成される。生成された第1のバイアスDC信号は、少なくとも1つの下部電極に印加される。一実施形態において、第2のDC生成部32bは、少なくとも1つの上部電極に接続され、第2のDC信号を生成するように構成される。生成された第2のDC信号は、少なくとも1つの上部電極に印加される。 Power supply 30 may also include a DC power supply 32 coupled to plasma processing chamber 10 . The DC power supply 32 includes a first DC generator 32a and a second DC generator 32b. In one embodiment, the first DC generator 32a is connected to the at least one bottom electrode and configured to generate a first DC signal. A generated first bias DC signal is applied to at least one bottom electrode. In one embodiment, the second DC generator 32b is connected to the at least one top electrode and configured to generate a second DC signal. The generated second DC signal is applied to at least one top electrode.
 種々の実施形態において、第1及び第2のDC信号のうち少なくとも1つがパルス化されてもよい。この場合、DCに基づく電圧パルスのシーケンスが少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に印加される。電圧パルスは、矩形、台形、三角形又はこれらの組み合わせのパルス波形を有してもよい。一実施形態において、DC信号から電圧パルスのシーケンスを生成するための波形生成部が第1のDC生成部32aと少なくとも1つの下部電極との間に接続される。従って、第1のDC生成部32a及び波形生成部は、電圧パルス生成部を構成する。第2のDC生成部32b及び波形生成部が電圧パルス生成部を構成する場合、電圧パルス生成部は、少なくとも1つの上部電極に接続される。電圧パルスは、正の極性を有してもよく、負の極性を有してもよい。また、電圧パルスのシーケンスは、1周期内に1又は複数の正極性電圧パルスと1又は複数の負極性電圧パルスとを含んでもよい。なお、第1及び第2のDC生成部32a,32bは、RF電源31に加えて設けられてもよく、第1のDC生成部32aが第2のRF生成部31bに代えて設けられてもよい。 In various embodiments, at least one of the first and second DC signals may be pulsed. In this case, a sequence of DC-based voltage pulses is applied to at least one bottom electrode and/or at least one top electrode. The voltage pulses may have rectangular, trapezoidal, triangular, or combinations thereof pulse waveforms. In one embodiment, a waveform generator for generating a sequence of voltage pulses from a DC signal is connected between the first DC generator 32a and the at least one bottom electrode. Therefore, the first DC generator 32a and the waveform generator constitute a voltage pulse generator. When the second DC generator 32b and the waveform generator constitute a voltage pulse generator, the voltage pulse generator is connected to at least one upper electrode. The voltage pulse may have a positive polarity or a negative polarity. Also, the sequence of voltage pulses may include one or more positive voltage pulses and one or more negative voltage pulses in one cycle. Note that the first and second DC generators 32a and 32b may be provided in addition to the RF power supply 31, and the first DC generator 32a may be provided instead of the second RF generator 31b. good.
 排気システム40は、例えばプラズマ処理チャンバ10の底部に設けられたガス排出口10eに接続され得る。排気システム40は、圧力調整弁及び真空ポンプを含んでもよい。圧力調整弁によって、プラズマ処理空間10s内の圧力が調整される。真空ポンプは、ターボ分子ポンプ、ドライポンプ又はこれらの組み合わせを含んでもよい。 The exhaust system 40 may be connected to a gas exhaust port 10e provided at the bottom of the plasma processing chamber 10, for example. Exhaust system 40 may include a pressure regulating valve and a vacuum pump. The pressure regulating valve regulates the pressure in the plasma processing space 10s. Vacuum pumps may include turbomolecular pumps, dry pumps, or combinations thereof.
 制御部2は、本開示において述べられる種々の工程をプラズマ処理装置1に実行させるコンピュータ実行可能な命令を処理する。制御部2は、ここで述べられる種々の工程を実行するようにプラズマ処理装置1の各要素を制御するように構成され得る。一実施形態において、制御部2の一部又は全てがプラズマ処理装置1に含まれてもよい。制御部2は、例えばコンピュータ2aを含んでもよい。コンピュータ2aは、例えば、処理部(CPU:Central Processing Unit)2a1、記憶部2a2、及び通信インターフェース2a3を含んでもよい。処理部2a1は、記憶部2a2からプログラムを読み出し、読み出されたプログラムを実行することにより種々の制御動作を行うように構成され得る。このプログラムは、予め記憶部2a2に格納されていてもよく、必要なときに、媒体を介して取得されてもよい。取得されたプログラムは、記憶部2a2に格納され、処理部2a1によって記憶部2a2から読み出されて実行される。媒体は、コンピュータ2aに読み取り可能な種々の記憶媒体であってもよく、通信インターフェース2a3に接続されている通信回線であってもよい。記憶部2a2は、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)、又はこれらの組み合わせを含んでもよい。通信インターフェース2a3は、LAN(Local Area Network)等の通信回線を介してプラズマ処理装置1との間で通信してもよい。 The controller 2 processes computer-executable instructions that cause the plasma processing apparatus 1 to perform the various steps described in this disclosure. Controller 2 may be configured to control elements of plasma processing apparatus 1 to perform the various processes described herein. In one embodiment, part or all of the controller 2 may be included in the plasma processing apparatus 1 . The control unit 2 may include, for example, a computer 2a. The computer 2a may include, for example, a processing unit (CPU: Central Processing Unit) 2a1, a storage unit 2a2, and a communication interface 2a3. Processing unit 2a1 can be configured to perform various control operations by reading a program from storage unit 2a2 and executing the read program. This program may be stored in the storage unit 2a2 in advance, or may be acquired via a medium when necessary. The acquired program is stored in the storage unit 2a2, read from the storage unit 2a2 and executed by the processing unit 2a1. The medium may be various storage media readable by the computer 2a, or may be a communication line connected to the communication interface 2a3. The storage unit 2a2 may include RAM (Random Access Memory), ROM (Read Only Memory), HDD (Hard Disk Drive), SSD (Solid State Drive), or a combination thereof. The communication interface 2a3 may communicate with the plasma processing apparatus 1 via a communication line such as a LAN (Local Area Network).
<プラズマ処理方法の一例>
 図2は、一つの例示的実施形態に係るプラズマ処理方法(以下「本処理方法」ともいう。)を示すフローチャートである。図2に示すように、本処理方法は、基板を提供する工程ST1と、処理ガスを供給する工程ST2と、基板をエッチングする工程ST3とを含む。基板をエッチングする工程ST3は、第1領域をエッチングする工程ST3A第2領域をエッチングする工程ST3B、第3領域をエッチングする工程ST3C、第4領域をエッチングする工程ST3D、第5流域をエッチングする工程ST3E、第6領域をエッチングする工程ST6Fを含む。
<Example of plasma treatment method>
FIG. 2 is a flow chart showing a plasma processing method (hereinafter also referred to as "this processing method") according to one exemplary embodiment. As shown in FIG. 2, this processing method includes a step ST1 of providing a substrate, a step ST2 of supplying a processing gas, and a step ST3 of etching the substrate. The step ST3 of etching the substrate includes a step ST3A of etching the first region, a step ST3B of etching the second region, a step ST3C of etching the third region, a step ST3D of etching the fourth region, and a step ST3D of etching the fifth region. ST3E, including step ST6F of etching the sixth region.
 各工程における処理は、図1に示すプラズマ処理システムで実行されてよい。以下では、制御部2がプラズマ処理装置1の各部を制御して、基板Wに対して本処理方法を実行する場合を例に説明する。 The processing in each step may be performed by the plasma processing system shown in FIG. An example in which the control unit 2 controls each unit of the plasma processing apparatus 1 to perform the present processing method on the substrate W will be described below.
(工程ST1:基板の提供)
 工程ST1において、基板Wは、プラズマ処理装置1のプラズマ処理空間10s内に提供される。基板Wは、基板支持部11の上面に配置される。
(Process ST1: Provision of substrate)
In step ST<b>1 , the substrate W is provided within the plasma processing space 10 s of the plasma processing apparatus 1 . The substrate W is placed on the upper surface of the substrate support portion 11 .
 図3は、工程ST1で提供される基板Wの断面構造の一例を示す図である。基板Wは、下地膜UF上に、シリコン含有膜SF及びマスク膜MFがこの順で形成されている。基板Wは、例えば、DRAM、3D-NANDフラッシュメモリ等の半導体メモリデバイスを含む半導体デバイスの製造に用いられてよい。 FIG. 3 is a diagram showing an example of the cross-sectional structure of the substrate W provided in step ST1. In the substrate W, a silicon-containing film SF and a mask film MF are formed in this order on a base film UF. The substrate W may be used, for example, in the manufacture of semiconductor devices including semiconductor memory devices such as DRAMs, 3D-NAND flash memories and the like.
 下地膜UFは、例えば、シリコンウェハやシリコンウェハ上に形成された有機膜、誘電体膜、金属膜、半導体膜等でよい。下地膜UFは、複数の膜が積層されて構成されてよい。 The base film UF may be, for example, a silicon wafer or an organic film, dielectric film, metal film, semiconductor film, or the like formed on a silicon wafer. The base film UF may be configured by laminating a plurality of films.
 シリコン含有膜SFは、本処理方法におけるエッチング対象膜である。シリコン含有膜SFは、一例では、シリコン酸化膜、シリコン窒化膜、シリコン酸窒化膜でよい。シリコン含有膜SFは、複数の膜が積層されて構成されてよい。例えば、シリコン含有膜SFは、シリコン酸化膜と多結晶シリコン膜とが交互に積層されて構成されてよい。また例えば、シリコン含有膜SFは、シリコン酸化膜とシリコン窒化膜とが交互に積層されて構成されてよい。 The silicon-containing film SF is a film to be etched in this processing method. The silicon-containing film SF may be, for example, a silicon oxide film, a silicon nitride film, or a silicon oxynitride film. The silicon-containing film SF may be configured by laminating a plurality of films. For example, the silicon-containing film SF may be configured by alternately stacking a silicon oxide film and a polycrystalline silicon film. Further, for example, the silicon-containing film SF may be configured by alternately stacking a silicon oxide film and a silicon nitride film.
 マスク膜MFは、例えば、アモルファスカーボン膜、スピンオンカーボン膜、フォトレジスト膜等の炭素含有膜でよい。マスク膜MFは、1つの層からなる単層マスクでも、2つ以上の層からなる多層マスクであってもよい。マスク膜MFは、少なくとも一つの開口OPを有する。開口OPは、基板Wの平面視、すなわち、基板Wを図3の上から下に向かう方向に見た場合において、任意の形状を有してよい。当該形状は、例えば、円、楕円、矩形、線やこれらの1種類以上を組み合わせた形状であってよい。マスク膜MFは、複数の開口OPを有してよい。 The mask film MF may be, for example, a carbon-containing film such as an amorphous carbon film, a spin-on carbon film, or a photoresist film. The mask film MF may be a single layer mask consisting of one layer or a multilayer mask consisting of two or more layers. Mask film MF has at least one opening OP. The opening OP may have any shape when the substrate W is viewed from above, that is, when the substrate W is viewed from the top to the bottom in FIG. The shape may be, for example, a circle, an ellipse, a rectangle, a line, or a combination of one or more of these. The mask film MF may have multiple openings OP.
(工程ST2:処理ガスの供給)
 工程ST2において、処理ガスがプラズマ処理空間10s内に供給される。処理ガスは、基板Wに形成されたシリコン含有膜SFをエッチングするために用いられるガスである。処理ガスの種類は、シリコン含有膜SFの材料、マスク膜MFの材料、下地膜UFの材料、マスク膜MFが有するパターン、エッチングの深さ等に基づいて適宜選択されてよい。
(Process ST2: Supply of processing gas)
In step ST2, a processing gas is supplied into the plasma processing space 10s. The processing gas is a gas used for etching the silicon-containing film SF formed on the substrate W. As shown in FIG. The type of processing gas may be appropriately selected based on the material of the silicon-containing film SF, the material of the mask film MF, the material of the base film UF, the pattern of the mask film MF, the depth of etching, and the like.
 処理ガスは、例えば、Cガス及びCガスのいずれか一方又は双方を含んでよい。ここで、x、y、s、t,uは正の整数である。Cガスは、Cガス、Cガス、Cガス及びCガスからなる群から選択される少なくとも1種でよい。Cガスは、CHガス又はCHFガスでよい。処理ガスは、HガスやCHガス等の水素含有ガスを含んでよい。 The processing gas may include, for example , one or both of CxFy gas and CsHtFu gas . where x, y, s, t and u are positive integers. The CxFy gas may be at least one selected from the group consisting of C4F6 gas, C4F8 gas, C3F6 gas and C7F8 gas . The CsHtFu gas may be CH2F2 gas or CH3F gas . The process gas may include a hydrogen-containing gas such as H2 gas or CH4 gas.
(工程ST3:エッチング)
 工程ST3において、第1のRF生成部31aからソースRF信号(RF電力)が下部電極及び/又は上部電極に供給される。また第2のRF生成部31bから、バイアスRF信号が下部電極に供給される。これにより、プラズマ処理空間10sに供給された処理ガスからプラズマが生成されるとともに基板Wにバイアス電位が発生する。生成されたプラズマ中のイオン、ラジカルといった活性種が基板Wに引きよせられ、シリコン含有膜SFがエッチングされる。なお、ソースRF信号の供給を開始するタイミングとバイアスRF信号の供給を開始するタイミングとは、同時でよく、また異なってもよい。
(Step ST3: Etching)
In step ST3, a source RF signal (RF power) is supplied from the first RF generator 31a to the lower electrode and/or the upper electrode. A bias RF signal is supplied to the lower electrode from the second RF generator 31b. As a result, plasma is generated from the processing gas supplied to the plasma processing space 10s, and a bias potential is generated on the substrate W as well. Active species such as ions and radicals in the generated plasma are attracted to the substrate W, and the silicon-containing film SF is etched. The timing to start supplying the source RF signal and the timing to start supplying the bias RF signal may be the same or different.
 工程ST3の工程ST3A~工程ST3Fにおいては、シリコン含有膜SFのエッチングの進行に伴って、ソースRF信号及びバイアスRF信号の電力レベルを変化させる。この点を図4A~図4F、図5A~図5F、及び、図6A~図6Fを用いて説明する。なお、エッチングの進行は、エッチング深さの伸長やエッチング時間の経過に基づいて判断してよい。 In steps ST3A to ST3F of step ST3, the power levels of the source RF signal and the bias RF signal are changed as the etching of the silicon-containing film SF progresses. This point will be described with reference to FIGS. 4A to 4F, 5A to 5F, and 6A to 6F. The progress of etching may be determined based on the elongation of the etching depth or the lapse of etching time.
 図4A~図4Fは、それぞれ工程ST3A~工程ST3Fにおける処理後の基板Wの断面構造の一例を示す図である。 4A to 4F are diagrams showing examples of cross-sectional structures of the substrate W after being processed in steps ST3A to ST3F, respectively.
 図5A~図5Fは、それぞれ、工程ST3A~工程ST3FにおけるソースRF信号の一例を示すタイミングチャートである。図5A~図5Fにおいて、横軸は時間を示す。また縦軸は、ソースRF信号の電力レベルの実効値を示す。「L11」「L12」「L13」「L14」は、「H」で示す電力レベルよりも低いことを示す。またL11、L12、L13、L14には、L11>L12>L13>L14の関係が成り立つ(すなわち、L11、L12、L13、L14の中では、L11の電力レベルが最も高く、L14の電力レベルが最も低い)。「L14」は、電力レベルが0Wである場合、すなわち信号が供給されていない場合を含む。図5A~図5Fに示すとおり、すなわち、ソースRF信号は、Hの電力レベル(第1の電力)を有するH1期間(第1の期間)とHよりも低いL11、L12、L13又はL14の電力レベル(第2の電力)を有するL1期間(第2の期間)とを交互に繰り返すパルス波である。 5A to 5F are timing charts showing examples of source RF signals in steps ST3A to ST3F, respectively. 5A to 5F, the horizontal axis indicates time. Also, the vertical axis indicates the effective value of the power level of the source RF signal. “L 11 ”, “L 12 ”, “L 13 ”, and “L 14 ” indicate power levels lower than those indicated by “H 1 ”. In addition, L 11 >L 12 >L 13 > L 14 holds between L 11 , L 12 , L 13 and L 14 ( that is, L 11 has the highest power level and L 14 has the lowest power level). “L 14 ” includes when the power level is 0 W, ie no signal is applied. As shown in FIGS. 5A-5F, ie, the source RF signal has a H1 period (first period) with a power level of H 1 (first power) and L 11 , L 12 , L lower than H 1 . A pulse wave that alternates with an L1 period (second period) having a power level of 13 or L 14 (second power).
 図6A~図6Fは、それぞれ工程ST3A~工程ST3FにおけるバイアスRF信号の一例を示すタイミングチャートである。図6A~図6Fにおいて、横軸は時間を示す。また縦軸は、バイアスRF信号の電力レベルの実効値を示す。「L21」「L22」「L23」は、「H」で示す電力レベルよりも低いことを示す。またL21、L22、L23には、L21<L22<L23の関係が成り立つ(すなわち、L21、L22、L23の中では、L21の電力レベルが最も低く、L23の電力レベルが最も高い)。「L21」は、電力レベルが0Wである場合、すなわち信号が供給されていない場合を含む。バイアスRF信号は、Hの電力レベル(第3の電力)を有するH2期間(第3の期間)とHよりも低いL21、L22又はL23の電力レベル(第4の電力)を有するL2期間(第4の期間)とを交互に含むパルス波である。 6A to 6F are timing charts showing examples of bias RF signals in steps ST3A to ST3F, respectively. 6A to 6F, the horizontal axis indicates time. The vertical axis indicates the effective value of the power level of the bias RF signal. “L 21 ”, “L 22 ”, and “L 23 ” indicate lower power levels than indicated by “H 2 ”. In addition, L 21 , L 22 and L 23 have the relationship of L 21 <L 22 <L 23 (that is, among L 21 , L 22 and L 23 , L 21 has the lowest power level and L 23 highest power level). “L 21 ” includes when the power level is 0 W, ie no signal is being supplied. The bias RF signal has an H2 period (third period) having a power level of H2 (third power) and a power level of L21 , L22 or L23 lower than H2 (fourth power). It is a pulse wave that alternately includes an L2 period (fourth period).
 (工程ST3A:第1領域のエッチング)
 工程ST3Aは、エッチングの開始から、エッチングにより形成される凹部RCのエッチング深さがd1になるまでの第1領域で実行される(図4A参照)。凹部RCは、シリコン含有膜SFのうちマスク膜MFの開口OPに対応する部分である。工程ST3Aでは、ソースRF信号として、Hの電力レベルを有するH1期間とHよりも低い電力レベルL11を有するL1期間とを交互に含むパルス波を用いる(図5A参照)。またバイアスRF信号として、Hの電力レベルを有するH2期間とHよりも低い電力レベルL21を有するL2期間とを交互に含むパルス波を用いる(図6A参照)。
(Step ST3A: Etching of First Region)
The step ST3A is performed in the first region from the start of etching until the etching depth of the recess RC formed by etching reaches d1 (see FIG. 4A). The recess RC is a portion of the silicon-containing film SF corresponding to the opening OP of the mask film MF. In step ST3A, a pulse wave that alternately includes H1 periods having a power level of H1 and L1 periods having a power level L11 lower than H1 is used as the source RF signal (see FIG. 5A). Also, as the bias RF signal, a pulse wave that alternately includes H2 periods having a power level of H2 and L2 periods having a power level L21 lower than H2 is used (see FIG. 6A).
 (工程ST3B:第2領域のエッチング)
 工程ST3Bは、凹部RCのエッチング深さがd2になるまでの第2領域で実行される(図4B参照)。エッチング深さd2は、エッチング深さd1より深く、d2>d1の関係が成り立つ。工程ST3Bでは、ソースRF信号として、Hの電力レベルを有するH1期間とHよりも低い電力レベルL12を有するL1期間とを交互に含むパルス波を用いる(図5B参照)。工程ST3BのソースRF信号の電力レベルL12は、工程ST3AソースRF信号の電力レベルL11よりも低い。バイアスRF信号としては、工程ST3Aと同一のパルス波を用いる(図6B参照)。
(Step ST3B: Etching of Second Region)
The step ST3B is performed in the second region until the etching depth of the recess RC reaches d2 (see FIG. 4B). The etching depth d2 is deeper than the etching depth d1, and the relationship of d2>d1 holds. In step ST3B, a pulse wave that alternately includes H1 periods having a power level of H1 and L1 periods having a power level L12 lower than H1 is used as the source RF signal (see FIG. 5B). The power level L12 of the source RF signal of step ST3B is lower than the power level L11 of the source RF signal of step ST3A. As the bias RF signal, the same pulse wave as in step ST3A is used (see FIG. 6B).
 (工程ST3C:第3領域のエッチング)
 工程ST3Cは、凹部RCのエッチング深さがd3になるまでの第3領域で実行される(図4C参照)。エッチング深さd3は、エッチングd2より深く、d3>d2の関係が成り立つ。エッチング深さd3は、例えば、工程ST3でエッチングするべき深さの半分でよい。エッチング深さd3は、一例ではシリコン含有膜SFの膜厚の半分の大きさでよい。工程ST3Cでは、ソースRF信号として、Hの電力レベルを有するH1期間とHよりも低い電力レベルL13を有するL1期間とを交互に含むパルス波を用いる(図5C参照)。工程ST3CのソースRF信号の電力レベルL13は、工程ST3BのソースRF信号の電力レベルL12よりも低い。バイアスRF信号としては、工程ST3Aや工程ST3Bと同一のパルス波を用いる(図6C参照)。
(Step ST3C: etching of the third region)
The step ST3C is performed in the third region until the etching depth of the recess RC reaches d3 (see FIG. 4C). The etching depth d3 is deeper than the etching depth d2, and the relationship of d3>d2 holds. The etching depth d3 may be, for example, half the depth to be etched in step ST3. For example, the etching depth d3 may be half the thickness of the silicon-containing film SF. In step ST3C, a pulse wave that alternately includes H1 periods having a power level of H1 and L1 periods having a power level L13 lower than H1 is used as the source RF signal (see FIG. 5C). The power level L13 of the source RF signal of step ST3C is lower than the power level L12 of the source RF signal of step ST3B. As the bias RF signal, the same pulse wave as in steps ST3A and ST3B is used (see FIG. 6C).
 (工程ST3D:第4領域のエッチング)
 工程ST3Dは、凹部RCのエッチング深さがd4になるまでの第4領域で実行される(図4D参照)。エッチング深さd4は、エッチング深さd3より深く、d4>d3の関係が成り立つ。工程ST3Dでは、ソースRF信号として、Hの電力レベルを有するH1期間とHよりも低い電力レベルL14を有するL1期間とを交互に含むパルス波を用いる(図5D参照)。工程ST3DのソースRF信号の電力レベルL14は、工程ST3CのソースRF信号の電力レベルL13よりも低い。バイアスRF信号としては、工程ST3A~工程ST3Cと同一のパルス波を用いる(図6D参照)。
(Step ST3D: Etching of fourth region)
The step ST3D is performed in the fourth region until the etching depth of the recess RC reaches d4 (see FIG. 4D). The etching depth d4 is deeper than the etching depth d3, and the relationship of d4>d3 holds. In step ST3D, a pulse wave that alternately includes H1 periods having a power level of H1 and L1 periods having a power level L14 lower than H1 is used as the source RF signal (see FIG. 5D). The power level L14 of the source RF signal of step ST3D is lower than the power level L13 of the source RF signal of step ST3C. As the bias RF signal, the same pulse wave as in steps ST3A to ST3C is used (see FIG. 6D).
 (工程ST3E:第5領域のエッチング)
 工程ST3Eは、凹部RCのエッチング深さがd5になるまでの第5領域で実行される(図4E参照)。エッチング深さd5は、エッチング深さd4より深く、d2>d1の関係が成り立つ。工程ST3Eでは、ソースRF信号として、工程ST3Dと同一のパルス波を用いる(図5E参照)。バイアスRF信号としては、Hの電力レベルを有するH2期間とHよりも低い電力レベルL22を有するL2期間とを交互に含むパルス波を用いる(図6E参照)。工程ST3EのバイアスRF信号の電力レベルL22は、工程ST3A~工程ST3DのバイアスRF信号の電力レベルL21よりも高い。
(Step ST3E: Etching of fifth region)
The step ST3E is performed in the fifth region until the etching depth of the recess RC reaches d5 (see FIG. 4E). The etching depth d5 is deeper than the etching depth d4, and the relationship of d2>d1 holds. In step ST3E, the same pulse wave as in step ST3D is used as the source RF signal (see FIG. 5E). As the bias RF signal, a pulse wave containing alternating H2 periods with a power level of H2 and L2 periods with a power level L22 lower than H2 is used (see FIG. 6E). The power level L22 of the bias RF signal in step ST3E is higher than the power level L21 of the bias RF signal in steps ST3A to ST3D.
 (工程ST3F:第6領域のエッチング)
 工程ST3Fは、凹部RCのエッチング深さがd6になるまでの第6領域で実行される(図4F参照)。エッチング深さd6は、エッチング深さd5より深く、d6>d5の関係が成り立つ。エッチング深さd6は、一例では、シリコン含有膜SFの膜厚であり、この場合、工程ST3Fは、凹部RCの底部が下地膜UFに到達するまで実行される。この状態における凹部RCのアスペクト比は、例えば、20以上であってよく、30以上、40以上、50以上、又は100以上であってもよい。工程ST3Fでは、ソースRF信号として、工程ST3Dや工程ST3Eと同一のパルス波を用いる(図5F参照)。バイアスRF信号としては、Hの電力レベルを有するH2期間とHよりも低い電力レベルL23を有するL2期間とを交互に含むパルス波を用いる(図6E参照)。工程ST3FのバイアスRF信号の電力レベルL23は、工程ST3EのバイアスRF信号の電力レベルL22よりも高い。
(Step ST3F: Etching of sixth region)
The step ST3F is performed in the sixth region until the etching depth of the recess RC reaches d6 (see FIG. 4F). The etching depth d6 is deeper than the etching depth d5, and the relationship of d6>d5 holds. The etching depth d6 is, for example, the film thickness of the silicon-containing film SF. In this case, the step ST3F is performed until the bottom of the recess RC reaches the underlying film UF. The aspect ratio of the recess RC in this state may be, for example, 20 or more, 30 or more, 40 or more, 50 or more, or 100 or more. In step ST3F, the same pulse wave as in steps ST3D and ST3E is used as the source RF signal (see FIG. 5F). As the bias RF signal, a pulse wave containing alternating H2 periods with a power level of H2 and L2 periods with a power level L23 lower than H2 is used (see FIG. 6E). The power level L23 of the bias RF signal in step ST3F is higher than the power level L22 of the bias RF signal in step ST3E.
 工程ST3において、ソースRF信号のパルス波のデューティ比、すなわち、H1期間及びL1期間に占めるH1期間の割合は、20%以上80%以下でよい。またバイアスRF信号のパルス波のデューティ比、すなわちH2期間及びL2期間に占めるH2期間の割合は、20%以上80%以下でよい。ソースRF信号のH1期間は、バイアスRF信号のH2期間と同期してよく、また同期しなくてもよい。ソースRF信号のH1期間の時間長は、バイアスRF信号のH2期間の時間長と同一でよく、また異なってもよい。ソースRF信号のH1期間の一部又は全部は、バイアスRF信号のH2期間と重複してよい。 In step ST3, the duty ratio of the pulse wave of the source RF signal, that is, the ratio of the H1 period to the H1 period and the L1 period may be 20% or more and 80% or less. Also, the duty ratio of the pulse wave of the bias RF signal, that is, the ratio of the H2 period to the H2 period and the L2 period may be 20% or more and 80% or less. The H1 period of the source RF signal may or may not be synchronous with the H2 period of the bias RF signal. The time length of the H1 period of the source RF signal may be the same as or different from the time length of the H2 period of the bias RF signal. Part or all of the H1 period of the source RF signal may overlap with the H2 period of the bias RF signal.
 工程ST3においては、ソースRF信号のH1期間の電力レベルHに対するL1期間の電力レベルは、工程ST3A~工程ST3Dにかけて段階的に減少し、工程ST3D~工程3Fにおいて最も低くなってよい(図5A~図5F参照)。これにより、工程ST3A~工程ST3C、すなわち凹部RCの深さがより浅い領域のエッチングでは、この順で高密度のプラズマが生成される。また工程ST3D~工程3F、すなわち、凹部RCの深さがより深い領域のエッチングでは、工程ST3A~工程ST3Cに比べて低密度のプラズマが生成される。 In step ST3, the power level of the source RF signal during the L1 period with respect to the power level H1 during the H1 period may decrease stepwise from step ST3A to step ST3D and become lowest in step ST3D to step 3F (FIG. 5A). (see FIG. 5F). As a result, high-density plasma is generated in this order in steps ST3A to ST3C, ie, in the etching of the shallower region of the recess RC. In steps ST3D to 3F, that is, in the etching of the region where the recess RC is deeper, plasma with a lower density than in steps ST3A to ST3C is generated.
 工程ST3においては、バイアスRF信号のH2期間の電力レベルHに対するL2期間の電力レベルは、工程ST3A~工程ST3Dにおいて最も低くなり、工程ST3D~工程ST3Fにかけて段階的に増加してよい(図6A~図6F参照)。これにより、工程ST3A~工程ST3D、すなわち凹部RCの深さがより浅い領域のエッチングでは工程ST3E~工程ST3F、すなわち凹部RCの深さがより深い領域のエッチングに比べて低いバイアス電位が基板Wに生じる。また工程ST3Fは、工程ST3Eに比べてより高いバイアス電位が基板Wに生じる。 In step ST3, the power level of the bias RF signal during the L2 period with respect to the power level H2 during the H2 period may be the lowest in steps ST3A to ST3D and increase stepwise from step ST3D to step ST3F (FIG. 6A). (see FIG. 6F). As a result, a lower bias potential is applied to the substrate W in steps ST3A to ST3D, ie, the etching of the region where the recess RC is shallower than in the steps ST3E to ST3F, ie, the etching of the region where the recess RC is deeper. occur. Further, a higher bias potential is generated on the substrate W in step ST3F than in step ST3E.
 なお、工程ST3において、ソースRF信号のL1期間の電力レベルを段階的に減少させている間、すなわち、工程ST3A~工程ST3Dでは、バイアスRF信号のL2期間の電力レベルは一定にしてよい。また、バイアスRF信号のL2期間の電力レベルを段階的に増加させている間、すなわち工程ST3D~工程ST3Fでは、ソースRF信号のL1期間の電力レベルは一定にしてよい。 In step ST3, while the power level of the source RF signal during the L1 period is gradually decreased, that is, in steps ST3A to ST3D, the power level of the bias RF signal during the L2 period may be kept constant. Further, while the power level of the bias RF signal during the L2 period is increased stepwise, that is, in steps ST3D to ST3F, the power level of the source RF signal during the L1 period may be kept constant.
 以上によれば、工程ST3においては、凹部RCの深さがより浅い箇所では、より高密度のプラズマかつより低いバイアス電位でのエッチングがされ得る。高密度のプラズマでは処理ガス中のCガス及び/又はCガス解離が促進され、より吸着係数の高い分子が生成されやすくなる。そのためマスク膜MFや凹部RCの側壁に付着する反応生成物の量が増加し得る。他方、高密度のプラズマでは基板Wに向かうイオンの流れが減少し、また低いバイアス電位により、マスク膜MFや凹部RCの側壁に対するスパッタリングが低減される。以上により、凹部RCの深さが浅い領域では、マスク膜MFや凹部RCの側壁に保護膜を形成することが容易になる。この保護膜は、工程ST3の以降のエッチング(凹部RCの深さがより深い領域でのエッチングも含む)において、凹部RCの側壁を保護し得る。よって、凹部RCの開口幅が一部で広くなるボーイングが抑制され得る。 According to the above, in the step ST3, the shallower portion of the recess RC can be etched with a higher density plasma and a lower bias potential. High - density plasma accelerates the dissociation of CxFy gas and/or CsHtFu gas in the process gas, making it easier to generate molecules with higher adsorption coefficients. Therefore, the amount of reaction products adhering to the mask film MF and the sidewalls of the recess RC may increase. On the other hand, the high-density plasma reduces the flow of ions toward the substrate W, and the low bias potential reduces sputtering on the mask film MF and sidewalls of the recess RC. As described above, it becomes easy to form the protective film on the mask film MF and the side walls of the recess RC in the shallow region of the recess RC. This protective film can protect the side walls of the recess RC in etching after step ST3 (including etching in a region where the depth of the recess RC is deeper). Therefore, bowing in which the width of the opening of the recess RC is partially widened can be suppressed.
 また工程ST3においては、凹部RCの深さが深い領域では、より低密度のプラズマかつより高いバイアス電位でのエッチングがされ得る。低密度のプラズマでは処理ガス中のCガス及び/又はCガス解離が促進されにくく、吸着係数の高い分子が生成されにくい。そのためマスク膜MFや凹部RCの側壁に付着する反応生成物の量が減少し得る。これにより、マスク膜MFや凹部RCの開口が狭まることが抑制され、凹部RCに入射したイオンの入射角が変化することが抑制され得る。また、高密度のプラズマにより凹部RCの底部に向かうイオンの流れが増加し得る。さらに、高いバイアス電位でエッチングを行うため、凹部RCに入射するイオンの入射角がより垂直に近くなり得る。以上より、凹部RCの深さが深い箇所において、凹部RCの底部幅(ボトムCD)が狭くなることが抑制され得る。 Further, in the step ST3, the deep region of the recess RC can be etched with a lower density plasma and a higher bias potential. In the low-density plasma, dissociation of CxFy gas and/or CsHtFu gas in the processing gas is difficult to promote, and molecules with high adsorption coefficients are difficult to generate . Therefore, the amount of reaction products adhering to the mask film MF and the sidewalls of the recesses RC can be reduced. As a result, narrowing of the openings of the mask film MF and the recesses RC can be suppressed, and changes in the incident angle of the ions entering the recesses RC can be suppressed. Also, the high density plasma may increase the flow of ions toward the bottom of the recess RC. Furthermore, since etching is performed at a high bias potential, the incident angle of ions entering the recess RC can be closer to the vertical. As described above, it is possible to prevent the bottom width (bottom CD) of the recess RC from being narrowed at a portion where the depth of the recess RC is deep.
 上述のとおり、工程ST3においては、ソースRF信号のL1期間の電力レベルを段階的に減少させ、その後、バイアスRF信号のL2期間の電力レベルを段階的に増加させてよい。一例では、工程ST3において、ソースRF信号のL1期間の電力レベルを一定に保ち、バイアスRF信号のL2期間の電力レベルのみを段階的に増加させてよい。また、ソースRF信号のL1期間の電力レベルのみを段階的に減少させ、バイアスRF信号のL2期間の電力レベルを一定に保ってもよい。 As described above, in step ST3, the power level of the source RF signal during the L1 period may be decreased in stages, and then the power level of the bias RF signal during the L2 period may be increased in stages. In one example, in step ST3, the power level of the source RF signal during the L1 period may be kept constant, and only the power level of the bias RF signal during the L2 period may be increased stepwise. Alternatively, only the power level of the source RF signal during the L1 period may be stepwise decreased while the power level of the bias RF signal during the L2 period may be kept constant.
 上述のとおり、工程ST3においては、ソースRF信号のパルス波及びバイアスRF信号のパルス波を用いてよい。一例では、ソースRF信号及びバイアスRF信号のいずれかは、H1期間やL1期間等を有しない連続波としてよい。例えば、ソースRF信号の連続波とバイアスRF信号のパルス波を用いてよい。この場合、工程ST3A~工程ST3Dにおいて、ソースRF信号の連続波の電力レベルを段階的に減少させ、工程ST3D~工程ST3Fにおいて、バイアスRF信号のL2期間の電力レベルを段階的に増加させてよい。また例えば、ソースRF信号のパルス波とバイアスRF信号の連続波を用いてよい。この場合、工程ST3A~工程ST3Dにおいて、ソースRF信号のL1期間の電力レベルを段階的に減少させ、工程ST3E~工程ST3Fにおいて、バイアスRF信号の連続波の電力レベルを段階的に増加させてよい。 As described above, in step ST3, the pulse wave of the source RF signal and the pulse wave of the bias RF signal may be used. In one example, either the source RF signal or the bias RF signal may be continuous waves with no H1, L1, etc. periods. For example, a continuous wave source RF signal and a pulsed bias RF signal may be used. In this case, in steps ST3A to ST3D, the power level of the continuous wave of the source RF signal may be stepwise decreased, and in steps ST3D to ST3F, the power level of the L2 period of the bias RF signal may be stepwise increased. . Alternatively, for example, a pulsed source RF signal and a continuous biased RF signal may be used. In this case, in steps ST3A to ST3D, the power level of the L1 period of the source RF signal may be stepwise decreased, and in steps ST3E to ST3F, the power level of the continuous wave of the bias RF signal may be stepwise increased. .
 上述のとおり、工程ST3においては、下部電極に供給するバイアス信号(電力)として、バイアスRF信号を用いてよい。一例では、第1のDC生成部32aからバイアスDC信号として負極性の直流電圧を下部電極に供給してよい。この場合、バイアスDC信号の電圧レベルは、負極性の直流電圧の絶対値の実効値である。バイアスDC信号は、パルス波でよく、また連続波でもよい。 As described above, in step ST3, a bias RF signal may be used as the bias signal (power) supplied to the lower electrode. In one example, a negative DC voltage may be supplied to the lower electrode as a bias DC signal from the first DC generator 32a. In this case, the voltage level of the bias DC signal is the effective value of the absolute value of the negative DC voltage. The bias DC signal may be pulsed or continuous wave.
 図7A~図7Fは、それぞれ工程ST3A~工程ST3FにおけるバイアスDC信号の一例を示すタイミングチャートである。図7A~図7Fにおいて、横軸は時間を示す。また縦軸は、バイアスDC信号の電圧レベルを示す。図7A~図7Fに示す例において、バイアスDC信号は、H3期間において、負電圧パルスのシーケンスを有する。負電圧パルスのシーケンスは、例えば、100kHzから500kHzまでの範囲内にあるパルス周波数を有する。負電圧パルスは、Vの電圧レベル(図7A~7D)、Vの電圧レベル(図7E)又はVの電圧レベル(図7F)を有する。負電圧パルスの波形は、矩形、台形、三角形又はこれらの組み合わせの波形を有してよい。 7A to 7F are timing charts showing examples of bias DC signals in steps ST3A to ST3F, respectively. 7A to 7F, the horizontal axis indicates time. The vertical axis indicates the voltage level of the bias DC signal. In the example shown in FIGS. 7A-7F, the bias DC signal has a sequence of negative voltage pulses during H3. The sequence of negative voltage pulses has, for example, a pulse frequency in the range of 100 kHz to 500 kHz. The negative voltage pulse has a voltage level of V 1 (FIGS. 7A-7D), a voltage level of V 2 (FIG. 7E) or a voltage level of V 3 (FIG. 7F). The waveform of the negative voltage pulse may have a rectangular, trapezoidal, triangular, or combination waveform.
 図7A~図7Fにおいて、V、V、Vは、0より小さい負の値を示し、|V|<|V|<|V|の関係が成り立つ。すなわち、V、V、Vの中では、Vの電圧レベルが最も低く、Vの電圧レベルが最も高い。バイアスDC信号は、V、V、又は、Vの電力レベルを有するH3期間と、バイアスDC信号が供給されない(電圧レベルが0である)L3期間とを交互に含むパルス波である。なお、一実施形態において、バイアスDC信号は、L3期間において、負電圧パルスのシーケンスを有してよい。この場合、当該負電圧パルスの電圧の電圧レベルは、H3期間における負電圧パルスの電圧レベルよりも小さい。 In FIGS. 7A to 7F, V 1 , V 2 , and V 3 show negative values smaller than 0, and the relationship |V 1 |<|V 2 |<|V 3 | holds true. That is, among V 1 , V 2 and V 3 , V 1 has the lowest voltage level and V 3 has the highest voltage level. The bias DC signal is a pulse wave containing alternating H3 periods with power levels of V 1 , V 2 or V 3 and L3 periods in which no bias DC signal is provided (voltage level is 0). Note that in one embodiment, the bias DC signal may have a sequence of negative voltage pulses during the L3 period. In this case, the voltage level of the voltage of the negative voltage pulse is lower than the voltage level of the negative voltage pulse during the H3 period.
 図7A~図7Fに示すバイアスDC信号を用いた場合、図6A~図6Fに示したバイアスRF信号を用いた場合と同様、工程ST3A~工程ST3Dのエッチングでは工程ST3E~工程ST3Fのエッチングに比べて低いバイアス電位が基板Wに生じる。また工程ST3Fは、工程ST3Eに比べてより高いバイアス電位が基板Wに生じる。 When the bias DC signal shown in FIGS. 7A to 7F is used, as in the case of using the bias RF signal shown in FIGS. A lower bias potential is developed on the substrate W. Further, a higher bias potential is generated on the substrate W in step ST3F than in step ST3E.
 上述のとおり、工程ST3においては、ソースRF信号やバイアスRF信号の電力レベルを変化させてエッチングを行う領域は、凹部RCの深さに応じて6つ設けてよい。一例では、当該領域は2以上でよい。例えば、シリコン含有膜SFの厚みの上半分をエッチングする上部領域と、下半分をエッチングする下部領域の2つに分けて、上部領域と下部領域においてソースRF信号やバイアスRF信号の電力レベルを変化させてよい。また当該領域は、エッチングの深さ(凹部RCの深さ)ではなく、エッチング時間に応じて設定してよい。 As described above, in step ST3, six regions may be provided in which etching is performed by changing the power levels of the source RF signal and the bias RF signal, depending on the depth of the recess RC. In one example, there may be two or more such regions. For example, the thickness of the silicon-containing film SF is divided into an upper region where the upper half of the thickness is etched and a lower region where the lower half is etched, and the power levels of the source RF signal and the bias RF signal are changed in the upper region and the lower region. let me Also, the area may be set according to the etching time instead of the etching depth (the depth of the recess RC).
 一例では、工程ST3において、エッチングの進行に伴って、プラズマ処理チャンバ10内の圧力を減少させてよい。これにより、凹部RCの深さがより浅い箇所でより高密度のプラズマが生成され、凹部RCの深さがより深い箇所でより低密度のプラズマが生成され得る。エッチングの進行は、エッチング深さの伸長又はエッチング時間の経過に基づいて判断してよい。 For example, in step ST3, the pressure inside the plasma processing chamber 10 may be decreased as the etching progresses. As a result, a higher density plasma can be generated at a portion where the recess RC is shallower, and a lower density plasma can be generated at a portion where the recess RC is deeper. Etching progress may be determined based on the elongation of the etching depth or the elapse of the etching time.
<実施例>
 次に、本処理方法の実施例について説明する。本開示は、以下の実施例によって何ら限定されるものではない。
<Example>
Next, an embodiment of this processing method will be described. The present disclosure is in no way limited by the following examples.
 実施例1~実施例3において、図3に示す基板Wに対して、本処理方法を適用し、Cガスを含む処理ガスでシリコン含有膜SFをエッチングした。各実施例において、基板Wのシリコン含有膜SFは、シリコン酸化膜とシリコン窒化膜との積層膜であり、マスク膜MFは、アモルファスカーボン膜である。マスク膜MFの開口パターンは、ホールパターンである。各実施例において、シリコン含有膜SFを6つの領域(上から順に「第1領域」、「第2領域」等という)に分けて、それぞれの領域で、ソースRF信号のパルス波やバイアスRF信号のパルス波の電力レベルを変化させてエッチングを行った。各領域のエッチング時間は、いずれも300秒であった。 In Examples 1 to 3, this processing method was applied to the substrate W shown in FIG. 3, and the silicon-containing film SF was etched with a processing gas containing C 4 F 8 gas. In each embodiment, the silicon-containing film SF of the substrate W is a laminated film of a silicon oxide film and a silicon nitride film, and the mask film MF is an amorphous carbon film. The opening pattern of the mask film MF is a hole pattern. In each embodiment, the silicon-containing film SF is divided into six regions (referred to as "first region", "second region", etc. in order from the top), and in each region, the pulse wave of the source RF signal and the bias RF signal Etching was performed by changing the power level of the pulse wave. The etching time for each region was 300 seconds.
 実施例1では、ソースRF信号のL1期間の電力レベルを段階的に減少させ、その後、バイアスRF信号のL2期間の電力レベルを段階的に増加させた。ソースRF信号のH1期間の電力レベルHは、第1領域~第6領域においていずれも7500[W]であった。ソースRF信号のL1期間の電力レベルは、第1領域で400[W]、第2領域で200[W]、第3領域~第6領域で0[W]であった。バイアスRF信号のH2期間の電力レベルは、第1領域~第6領域でいずれも12000[W]であった。バイアスRF信号のL2期間の電力レベルは、第1領域~第4領域で0[W]、第5領域で200[W]、第6領域で700[W]であった。 In Example 1, the power level of the source RF signal was stepped down during the L1 period, and then the power level of the bias RF signal was stepped up during the L2 period. The power level H1 of the source RF signal during the H1 period was 7500 [W] in the first to sixth regions. The power level of the source RF signal during the L1 period was 400 [W] in the first region, 200 [W] in the second region, and 0 [W] in the third to sixth regions. The power level of the bias RF signal during the H2 period was 12000 [W] in all of the first to sixth regions. The power level of the bias RF signal during the L2 period was 0 [W] in the first to fourth regions, 200 [W] in the fifth region, and 700 [W] in the sixth region.
 実施例2では、ソースRF信号のL1期間の電力レベルのみを段階的に減少させ、バイアスRF信号のL2期間の電力レベルを一定に保った。ソースRF信号のH1期間の電力レベルHは、第1領域~第6領域においていずれも7500[W]であった。ソースRF信号のL1期間の電力レベルは、第1領域で500[W]、第2領域で300[W]、第3領域で100[W]、第4領域~第6領域において0[W]であった。バイアスRF信号のH2期間の電力レベルは、第1領域~第6領域においていずれも12000[W]であった。バイアスRF信号のL2期間の電力レベルは、第1領域~第6領域においていずれも0[W]であった。 In Example 2, only the power level of the source RF signal during the L1 period was stepped down, while the power level of the bias RF signal during the L2 period was kept constant. The power level H1 of the source RF signal during the H1 period was 7500 [W] in the first to sixth regions. The power level of the source RF signal during the L1 period is 500 [W] in the first region, 300 [W] in the second region, 100 [W] in the third region, and 0 [W] in the fourth to sixth regions. Met. The power level of the bias RF signal during the H2 period was 12000 [W] in all of the first to sixth regions. The power level of the bias RF signal during the L2 period was 0 [W] in all of the first to sixth regions.
 実施例3では、ソースRF信号のL1期間の電力レベルを一定に保ち、バイアスRF信号のL2期間の電力レベルのみを段階的に増加させた。具体的には、ソースRF信号のH1期間の電力レベルHは、第1領域~第6領域においていずれも7500[W]であった。ソースRF信号のL1期間の電力レベルは、第1領域~第6領域においていずれも0[W]であった。バイアスRF信号のH2期間の電力レベルは、第1領域~第6領域でいずれも12000[W]であった。バイアスRF信号のL2期間の電力レベルは、第1領域~第4領域で0[W]、第5領域で200[W]、第6領域で700[W]であった。 In Example 3, the power level of the source RF signal during the L1 period was kept constant, and only the power level of the bias RF signal during the L2 period was increased stepwise. Specifically, the power level H1 of the H1 period of the source RF signal was 7500 [W] in all of the first to sixth regions. The power level of the source RF signal during the L1 period was 0 [W] in the first to sixth regions. The power level of the bias RF signal during the H2 period was 12000 [W] in all of the first to sixth regions. The power level of the bias RF signal during the L2 period was 0 [W] in the first to fourth regions, 200 [W] in the fifth region, and 700 [W] in the sixth region.
 参考例では、実施例における基板Wと同一の構成及びホールパターンを有する基板Wについて、Cガスを含む処理ガスで、シリコン含有膜SFをエッチングした。参考例では、ソースRF信号のパルス波やバイアスRF信号のパルス波の電力レベルを変化させず、連続して1800秒のエッチングを行った。ソースRF信号のH1期間の電力レベルは、7500[W]であった。ソースRF信号のL1期間の電力レベルは、0[W]であった。バイアスRF信号のH2期間の電力レベルは、12000[W]であった。バイアスRF信号のL2期間の電力レベルは、0[W]であった。 In the reference example, the silicon-containing film SF of the substrate W having the same configuration and hole pattern as those of the substrate W in the example was etched with a processing gas containing a C 4 F 8 gas. In the reference example, etching was continuously performed for 1800 seconds without changing the power level of the pulse wave of the source RF signal and the pulse wave of the bias RF signal. The power level of the source RF signal during the H1 period was 7500 [W]. The power level of the source RF signal during the L1 period was 0 [W]. The power level of the bias RF signal during the H2 period was 12000 [W]. The power level of the bias RF signal during the L2 period was 0 [W].
 表1は、各実施例及び参考例にかかる各種測定結果を示す。表1において、「D」は、処理後のシリコン含有膜SFのエッチング深さである。「B」は、凹部RCの最大開口幅(ボーイングCD)である。「B」は、凹部RCの底部の幅(ボトムCD)である。「B-B」は、ボーイングCDとボトムCDとの差である。 Table 1 shows various measurement results for each example and reference example. In Table 1, "D" is the etching depth of the silicon-containing film SF after processing. “B W ” is the maximum opening width (Boeing CD) of the recess RC. “B t ” is the width (bottom CD) of the bottom of the recess RC. “B W −B t ” is the difference between Boeing CD and Bottom CD.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、実施例におけるボーイングCDとボトムCDとの差は、いずれも参考例に比べて改善した。すなわち、実施例では、エッチングによるボーイングを抑制しつつ、凹部RCの底部幅を拡大することができた。 As shown in Table 1, the difference between the Boeing CD and the bottom CD in the example was improved compared to the reference example. That is, in the example, it was possible to expand the bottom width of the recess RC while suppressing bowing due to etching.
 本処理方法は、本開示の範囲及び趣旨から逸脱することなく種々の変形をなし得る。例えば、本処理方法は、容量結合型のプラズマ処理装置1以外にも、誘導結合型プラズマやマイクロ波プラズマ等、任意のプラズマ源を用いたプラズマ処理装置を用いて実行してよい。 Various modifications can be made to this processing method without departing from the scope and spirit of the present disclosure. For example, this processing method may be performed using a plasma processing apparatus using an arbitrary plasma source, such as inductively coupled plasma or microwave plasma, other than the capacitively coupled plasma processing apparatus 1 .
1……プラズマ処理装置、2……制御部、10……プラズマ処理チャンバ、10s……プラズマ処理空間、11……基板支持部、13……シャワーヘッド、20……ガス供給部、31a……第1のRF生成部、31b……第2のRF生成部、32a……第1のDC生成部、MF…マスク膜、OP…開口、SF…シリコン含有膜、RC……凹部、UF…下地膜、W…基板 Reference Signs List 1 Plasma processing apparatus 2 Control unit 10 Plasma processing chamber 10s Plasma processing space 11 Substrate support 13 Shower head 20 Gas supply unit 31a First RF generator 31b Second RF generator 32a First DC generator MF Mask film OP Opening SF Silicon-containing film RC Recess UF Bottom base film, W... substrate

Claims (22)

  1. (a)シリコン含有膜と前記シリコン含有膜上に形成されたマスク膜とを有する基板をチャンバ内の基板支持部上に提供する工程と、
    (b)前記チャンバ内に処理ガスを供給する工程と、
    (c)RF信号を供給して前記チャンバ内に前記処理ガスのプラズマを生成するとともに前記基板支持部にバイアス信号を供給して、前記基板をエッチングする工程と、を含み、
     前記RF信号は、第1の電力レベルを有する第1の期間と、前記第1の電力レベルよりも低い第2の電力レベルを有する第2の期間とを交互に含むパルス波であり、
     前記(c)の工程において、エッチングの進行に伴って前記第1の電力レベルに対する前記第2の電力レベルを減少させる、
    プラズマ処理方法。
    (a) providing a substrate having a silicon-containing film and a mask film formed over the silicon-containing film on a substrate support within a chamber;
    (b) supplying a process gas into the chamber;
    (c) providing an RF signal to generate a plasma of the process gas within the chamber and a bias signal to the substrate support to etch the substrate;
    wherein said RF signal is a pulse wave comprising alternating first periods having a first power level and second periods having a second power level lower than said first power level;
    In step (c), decreasing the second power level with respect to the first power level as the etching progresses;
    Plasma treatment method.
  2.  前記バイアス信号は、電力レベルが異なる2つの期間又は電圧レベルが異なる2つの期間を交互に含むパルス波である、請求項1に記載のプラズマ処理方法。 The plasma processing method according to claim 1, wherein the bias signal is a pulse wave that alternately includes two periods with different power levels or two periods with different voltage levels.
  3.  前記バイアス信号は、連続波である、請求項1に記載のプラズマ処理方法。 The plasma processing method according to claim 1, wherein said bias signal is a continuous wave.
  4. (a)シリコン含有膜と前記シリコン含有膜上に形成されたマスク膜とを有する基板をチャンバ内の基板支持部上に提供する工程と、
    (b)前記チャンバ内に処理ガスを供給する工程と、
    (c)RF信号を供給して前記チャンバ内に前記処理ガスのプラズマを生成するとともに、前記基板支持部にバイアス信号を供給して、前記基板をエッチングする工程と、を含み、
     前記バイアス信号は、第3の電力又は電圧レベルを有する第3の期間と、前記第3の電力又は電圧レベルよりも低い第4の電力又は電圧レベルを有する第4の期間とを交互に含むパルス波であり、
     前記(c)の工程において、前記第3の電力又は電圧レベルに対する前記第4の電力又は電圧レベルをエッチングの進行に伴って増加させる、
    プラズマ処理方法。
    (a) providing a substrate having a silicon-containing film and a mask film formed over the silicon-containing film on a substrate support within a chamber;
    (b) supplying a process gas into the chamber;
    (c) providing an RF signal to generate a plasma of the process gas within the chamber and providing a bias signal to the substrate support to etch the substrate;
    The bias signal is pulsed with alternating third durations having a third power or voltage level and fourth durations having a fourth power or voltage level lower than the third power or voltage level. is a wave,
    In the step (c), increasing the fourth power or voltage level with respect to the third power or voltage level as the etching progresses;
    Plasma treatment method.
  5.  前記RF信号は、電力レベルが異なる2つの期間を交互に含むパルス波である、請求項4に記載のプラズマ処理方法。 The plasma processing method according to claim 4, wherein the RF signal is a pulse wave that alternately includes two periods with different power levels.
  6.  前記RF信号は、連続波である、請求項4に記載のプラズマ処理方法。 The plasma processing method according to claim 4, wherein said RF signal is a continuous wave.
  7.  前記バイアス信号として、RF信号を用いる、請求項1乃至請求項6のいずれか1項に記載のプラズマ処理方法。 The plasma processing method according to any one of claims 1 to 6, wherein an RF signal is used as said bias signal.
  8.  前記バイアス信号として、DC信号を用いる、請求項1乃至請求項6のいずれか1項に記載のプラズマ処理方法。 The plasma processing method according to any one of claims 1 to 6, wherein a DC signal is used as the bias signal.
  9. (a)シリコン含有膜と前記シリコン含有膜上に形成されたマスク膜とを有する基板をチャンバ内の基板支持部上に提供する工程と、
    (b)前記チャンバ内に処理ガスを供給する工程と、
    (c)ソースRF信号を供給して前記チャンバ内に前記処理ガスのプラズマを生成するとともに、前記基板支持部にバイアスRF信号を供給して、前記基板をエッチングする工程と、を含み、
     前記ソースRF信号は、第1の電力レベルを有する第1の期間と、前記第1の電力レベルよりも低い第2の電力レベルを有する第2の期間とを交互に含むパルス波であり、
     前記バイアスRF信号は、第3の電力レベルを有する第3の期間と、前記第3の電力レベルよりも低い第4の電力レベルを有する第4の期間とを交互に含むパルス波であり、
     前記(c)の工程は、(c1)エッチングの進行に伴って前記第1の電力レベルに対する前記第2の電力レベルを減少させる工程と、(c2)エッチングの進行に伴って前記第3の電力レベルに対する前記第4の電力レベルを増加させる工程と、を含む、
    プラズマ処理方法。
    (a) providing a substrate having a silicon-containing film and a mask film formed over the silicon-containing film on a substrate support within a chamber;
    (b) supplying a process gas into the chamber;
    (c) providing a source RF signal to generate a plasma of the process gas in the chamber and providing a bias RF signal to the substrate support to etch the substrate;
    the source RF signal is a pulsed wave comprising alternating first periods having a first power level and second periods having a second power level lower than the first power level;
    said bias RF signal is a pulse wave comprising alternating third periods having a third power level and fourth periods having a fourth power level lower than said third power level;
    The step (c) includes (c1) decreasing the second power level with respect to the first power level as etching progresses, and (c2) decreasing the third power level as etching progresses. increasing the fourth power level to level;
    Plasma treatment method.
  10.  前記(c1)の工程において、前記第3の電力レベルに対する前記第4の電力レベルを一定にし、前記(c2)の工程において、前記第1の電力レベルに対する前記第2の電力レベルを一定にする、請求項9に記載のプラズマ処理方法。 In step (c1), the fourth power level is kept constant with respect to the third power level, and in step (c2), the second power level is kept constant with respect to the first power level. 10. The plasma processing method according to claim 9.
  11.  前記(c)の工程において、前記(c1)の工程を行った後、前記(c2)の工程を行う、請求項9又は請求項10のいずれかに記載のプラズマ処理方法。 11. The plasma processing method according to claim 9 or 10, wherein in the step (c), the step (c2) is performed after the step (c1) is performed.
  12.  前記(c)の工程において、エッチング時間又はエッチングの深さが所与の時間又は深さを超えた後に、前記(c2)の工程を行う、請求項9乃至請求項11のいずれか1項に記載のプラズマ処理方法。 12. The method according to any one of claims 9 to 11, wherein in the step (c), the step (c2) is performed after the etching time or etching depth exceeds a given time or depth. The plasma treatment method described.
  13.  前記(c)の工程において、エッチングの進行に伴って、前記チャンバ内の圧力を低下させる、請求項1乃至請求項12のいずれか1項に記載のプラズマ処理方法。 13. The plasma processing method according to any one of claims 1 to 12, wherein in the step (c), the pressure in the chamber is lowered as the etching progresses.
  14.  前記処理ガスは、Cガス(x、yは正の整数)又はCガス(s、t,uは正の整数)を含む、請求項1乃至請求項13のいずれか1項に記載のプラズマ処理方法。 14. Any of claims 1 to 13, wherein the process gas comprises CxFy gas (x, y are positive integers ) or CsHtFu gas (s, t , u are positive integers). 1. The plasma processing method according to claim 1.
  15.  前記(c)の工程により形成される凹部のアスペクト比が100以上である、請求項1乃至請求項14のいずれか1項に記載のプラズマ処理方法。 15. The plasma processing method according to any one of claims 1 to 14, wherein the recesses formed by the step (c) have an aspect ratio of 100 or more.
  16.  前記ソースRF信号のパルス波のデューティ比、および/または、前記バイアスRF信号のパルス波のデューティ比は、20%以上80%以下である、請求項9乃至請求項12のいずれか1項に記載のプラズマ処理方法。 13. The duty ratio of the pulse wave of the source RF signal and/or the duty ratio of the pulse wave of the bias RF signal is 20% or more and 80% or less, according to any one of claims 9 to 12. plasma treatment method.
  17.  前記シリコン含有膜は、シリコン酸化膜とシリコン窒化膜との積層膜である、請求項1乃至請求項16のいずれか1項に記載のプラズマ処理方法。 The plasma processing method according to any one of claims 1 to 16, wherein said silicon-containing film is a laminated film of a silicon oxide film and a silicon nitride film.
  18.  前記積層膜は、3D-NAND構造に含まれる、請求項17に記載のプラズマ処理方法。 The plasma processing method according to claim 17, wherein the laminated film is included in a 3D-NAND structure.
  19.  前記マスク膜は、アモルファスカーボン膜である、請求項1乃至請求項18のいずれか1項に記載のプラズマ処理方法。 The plasma processing method according to any one of claims 1 to 18, wherein said mask film is an amorphous carbon film.
  20.  チャンバと、
     前記チャンバ内に設けられ、シリコン含有膜と前記シリコン含有膜上に形成されたマスク膜とを有する基板を支持するように構成された基板支持部と、
     前記チャンバ内に処理ガスを供給するように構成されたガス供給部と、
     ソースRF信号及びバイアスRF信号を生成する電源であって、前記ソースRF信号は、第1の電力レベルを有する第1の期間と、前記第1の電力レベルよりも低い第2の電力レベルを有する第2の期間とを交互に含むパルス波であり、前記バイアスRF信号は、第3の電力レベルを有する第3の期間と、前記第3の電力レベルよりも低い第4の電力レベルを有する第4の期間とを交互に含むパルス波である、電源と、
     前記電源から前記ソースRF信号を供給して前記チャンバ内に前記処理ガスのプラズマを生成するとともに、前記電源から前記バイアスRF信号を前記基板支持部に供給して、前記基板をエッチングする制御を実行するように構成された制御部と、を有し、
     前記制御部は、エッチングの進行に伴って前記第1の電力レベルに対する前記第2の電力レベルを減少させる制御と、エッチングの進行に伴って前記第3の電力レベルに対する前記第4の電力レベルを増加させる制御と、を実行する、
    プラズマ処理システム。
    a chamber;
    a substrate support provided in the chamber and configured to support a substrate having a silicon-containing film and a mask film formed on the silicon-containing film;
    a gas supply configured to supply a process gas into the chamber;
    A power supply for generating a source RF signal and a bias RF signal, the source RF signal having a first duration having a first power level and a second power level lower than the first power level. wherein the bias RF signal has a third period having a third power level and a fourth power level lower than the third power level. a power source, which is a pulse wave comprising alternating 4 periods;
    providing the source RF signal from the power supply to generate a plasma of the process gas in the chamber and providing the bias RF signal from the power supply to the substrate support to control etching of the substrate; a controller configured to
    The control unit controls to decrease the second power level with respect to the first power level as etching progresses, and decreases the fourth power level with respect to the third power level as etching progresses. increasing control and performing
    Plasma processing system.
  21.  容量結合型のプラズマ処理装置を含む、請求項20に記載のプラズマ処理システム。 The plasma processing system according to claim 20, comprising a capacitively coupled plasma processing device.
  22.  前記ソースRF信号は、前記基板支持部に供給される、請求項20又は請求項21のいずれかに記載のプラズマ処理システム。 22. The plasma processing system of any of claims 20 or 21, wherein the source RF signal is provided to the substrate support.
PCT/JP2022/035685 2021-09-27 2022-09-26 Plasma processing method and plasma processing system WO2023048281A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-156681 2021-09-27
JP2021156681 2021-09-27

Publications (1)

Publication Number Publication Date
WO2023048281A1 true WO2023048281A1 (en) 2023-03-30

Family

ID=85720847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035685 WO2023048281A1 (en) 2021-09-27 2022-09-26 Plasma processing method and plasma processing system

Country Status (1)

Country Link
WO (1) WO2023048281A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204050A (en) * 2013-04-09 2014-10-27 株式会社日立ハイテクノロジーズ Plasma processing method and plasma processing apparatus
US20140363975A1 (en) * 2011-12-19 2014-12-11 Beijing Nmc Co., Ltd. Substrate etching method and substrate processing device
US20180053661A1 (en) * 2016-08-17 2018-02-22 Samsung Electronics Co. Ltd. Plasma etching apparatus and method of manufacturing a semiconductor device using the same
WO2020163100A1 (en) * 2019-02-08 2020-08-13 Applied Materials, Inc. Methods and apparatus for etching semiconductor structures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140363975A1 (en) * 2011-12-19 2014-12-11 Beijing Nmc Co., Ltd. Substrate etching method and substrate processing device
JP2014204050A (en) * 2013-04-09 2014-10-27 株式会社日立ハイテクノロジーズ Plasma processing method and plasma processing apparatus
US20180053661A1 (en) * 2016-08-17 2018-02-22 Samsung Electronics Co. Ltd. Plasma etching apparatus and method of manufacturing a semiconductor device using the same
WO2020163100A1 (en) * 2019-02-08 2020-08-13 Applied Materials, Inc. Methods and apparatus for etching semiconductor structures

Similar Documents

Publication Publication Date Title
JP6175570B2 (en) Method for deep silicon etching using gas pulses
JP2017098323A (en) Plasma etching method
WO2023127655A1 (en) Plasma treatment device, power supply system, control method, program, and storage medium
WO2023048281A1 (en) Plasma processing method and plasma processing system
TW202245053A (en) Etching method and etching processing apparatus
WO2024117212A1 (en) Etching method and plasma processing apparatus
US20240087846A1 (en) Plasma processing apparatus and rf system
US20240038501A1 (en) Etching method and plasma processing apparatus
WO2024070580A1 (en) Plasma processing device and power supply system
US20230268190A1 (en) Plasma processing method and plasma processing system
WO2024070578A1 (en) Plasma processing device and power supply system
WO2023214575A1 (en) Plasma processing method and plasma processing device
WO2022215556A1 (en) Etching method and etching apparatus
US20240213032A1 (en) Etching method and plasma processing apparatus
WO2024090252A1 (en) Substrate treatment method and substrate treatment device
US20240153742A1 (en) Plasma processing method and plasma processing apparatus
US20230377851A1 (en) Etching method and plasma processing apparatus
JP2024039240A (en) Etching method and plasma processing apparatus
US20240105424A1 (en) Plasma processing apparatus and plasma processing method
JP2024013548A (en) Plasma processing device and plasma processing method
KR20230117529A (en) Plasma processing method and plasma processing system
JP2022158811A (en) Etching method and etching device
JP2023109496A (en) Etching method and plasma processing device
KR20230057953A (en) Plasma processing method and plasma processing system
TW202418335A (en) Plasma processing equipment and power supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22873032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE